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ABSTRACT

Transformer networks excel in natural language processing (NLP) and computer
vision (CV) tasks. However, they face challenges in generalizing to Out-of-
Distribution (OOD) datasets, that is, data whose distribution differs from that seen
during training. The OOD detection aims to distinguish data that deviates from the
expected distribution, while maintaining optimal performance on in-distribution
(ID) data. This paper introduces a novel approach based on OOD detection,
termed the Generate Rounded OOD Data (GROD) algorithm, which significantly
bolsters the generalization performance of transformer networks across various
tasks. GROD is motivated by our new OOD detection Probably Approximately
Correct (PAC) Theory for transformer. The transformer has learnability in terms
of OOD detection that is, when the data is sufficient the outlier can be well repre-
sented. By penalizing the misclassification of OOD data within the loss function
and generating synthetic outliers, GROD guarantees learnability and refines the
decision boundaries between inlier and outlier. This strategy demonstrates robust
adaptability and general applicability across different data types. Evaluated across
diverse OOD detection tasks in NLP and CV, GROD achieves SOTA regardless of
data format. The code is available at https://anonymous.4open.science/r/GROD-
OOD-Detection-with-transformers-B70F.

1 INTRODUCTION

Mainstream machine learning algorithms typically assume data independence, called in-distribution
(ID) data (Krizhevsky et al., 2012; He et al., 2015). However, in practical applications, data often
follows the “open world” assumption (Drummond & Shearer, 2006), where outliers with different
distributions can occur during inference. This real-world challenge frequently degrades the perfor-
mance of AI models in prediction tasks. One remedy is to incorporate OOD detection techniques.
This paper proposes a new algorithm based on OOD detection for transformer networks, which can
significantly improve their performance in predicting outlier instances.

The transformer is a deep neural network architecture that leverages an attention mechanism. It is
renowned for its powerful capabilities in a variety of deep learning models, such as large language
models, computer vision models, and graph neural networks. OOD detection aims to identify and
manage semantically distinct outliers, referred to as OOD data. It requires the designed algorithm to
detect OOD instances and avoid making predictions on them, while maintaining robust performance
on ID data. By employing OOD detection, we develop a new algorithm, which we call Generate
Rounded OOD Data (GROD), for fine-tuning a transformer network to enhance its ability to predict
the unknown distribution. By taking account of the OOD Detection in network training, we can
strengthen the recognition of the in-distribution and out-distribution boundary.

We establish the OOD Detection PAC Learning Theorem (Theorem 4). It demonstrates that penal-
izing the misclassification of OOD data in the training loss of the transformer clarifies the decision
boundary between inliers and outliers. This condition ensures that the model possesses OOD Detec-
tion Learnability. Moreover, we quantify the learnability by proving an error boundary regarding
the transformer model’s budget (the number of total trainable parameters) (Theorem 5). We define
GROD following these two theorems. When the network depth is substantial, the GROD-enhanced
transformer converges to the target mapping with robust generalization capabilities.

Our main contributions are summarized as follows:
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Figure 1: Overview of GROD algorithm: In the fine-tuning stage, GROD generates fake OOD data
as part of the training data. GROD then guides the training by incorporating the ID-OOD classifier
in the loss. In the inference stage, the features and adjusted LOGITS are input into the post-processor.

• We establish a PAC learning framework for OOD detection applied to transformers, provid-
ing necessary and sufficient conditions as well as error boundary estimates for learnability.
This contribution not only bridges a theoretical gap but also supports practical decisions re-
garding parameter selection and model design in terms of learnability and generalizability.

• Inspired by our theoretical framework and empirical validation, we propose a novel OOD
detection approach, Generate Rounded OOD Data (GROD). This strategy is theoretically
grounded and high-quality in generating and representing features regardless of data types.

• We conduct comprehensive experiments to explore the existing limitations and the inter-
pretability of GROD, and display the state-of-the-art (SOTA) performance of GROD on
image and text datasets together with ablation studies and visualizations.

2 RELATED WORKS

Methods and theory of OOD detection. Out-of-distribution (OOD) detection has seen significant
advancements in both methods and theory. Recent approaches typically combine post-processing
techniques and training strategies to improve model performance. Key post-processing techniques
include distance functions (Denouden et al., 2018), scoring functions (Ming et al., 2022a), and the
integration of disturbance terms (Hsu et al., 2020). On the training side, strategies such as loss func-
tions for compact representations (Tao et al., 2023) and reconstruction models for anomaly detection
(Graham et al., 2023; Jiang et al., 2023) have been proposed. The transformer architecture, known
for its robust feature representation capabilities, has gained popularity in OOD detection (Koner
et al., 2021; Fort et al., 2021). Additionally, leveraging auxiliary outliers has emerged as a prominent
strategy, with methods like Outlier Exposure (OE) using external datasets to train models for distin-
guishing ID from OOD samples (Hendrycks et al., 2018; Zhu et al., 2023), and generative-based
methods creating synthetic OOD data through methods like VOS (Du et al., 2022) and OpenGAN
(Kong & Ramanan, 2021). These generative methods help to overcome the reliance on predefined
outlier datasets (Wang et al., 2023; Zheng et al., 2023). Theoretical work in OOD detection has also
grown, with studies on maximum likelihood estimation (Morteza & Li, 2022), density estimation
errors (Zhang et al., 2021), and PAC learning theory (Fang et al., 2022). However, a comprehensive
theory for OOD detection with transformers is yet to be established (Yang et al., 2021), hindering
the development of reliable OOD detection algorithms. In Appendix A, we provide a more detailed
discussion of the advancements in more related fields.

Notation. We introduce some notations regarding OOD detection tasks. We employ subscripts
following the standard notation to represent the elements of a vector or matrix. Formally, X
and Y := {1, 2, · · · ,K,K + 1} denote the whole dataset and its label space. As subsets in
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X , Xtrain, Xtest and XI represents the training dataset, test dataset and ID dataset, respectively.
YI := {1, · · · ,K} denote the ID label space. l(y1,y2),y1,y2 ∈ Y denotes the paired loss of the
prediction and label of one data, and L denotes the total loss. We depict the basic structure of a trans-
former network as follows, which includes the following components: input embedding, positional
encoding, an encoder, a decoder and an output layer. For OOD detection tasks, which predominantly
encompass classification objectives, we directly connect an output layer subsequent to the encoder
to streamline the process. For clarity and operational simplicity, we assume that the input data X
is processed by the input embedding and positional encoding mechanisms. The encoder is an as-
sembly of multiple attention blocks, each comprising a self-attention layer and a Feed-forward Fully
Connected Network (FFCN). The self-attention layer calculates matrices of key, query, and value,
to express the self-attention mechanism, where the hidden dimensions for keys and queries are mh,
and for values are mV . Each individual data is transformed into τ tokens, with each token having a
dimension d̂. To quantify the computational overhead of a transformer block, we define the budget
m := (d̂, h,mh,mV , r), representing the parameter size of one block. More details about notations
and preliminaries for theoretical analysis are illustrated in Appendix B.

3 GROD ALGORITHM

Framework overview. As illustrated in Figure 1, GROD contains several pivotal steps. Firstly, a
binary ID-OOD classification loss function is added to fine-tune the transformer. This adjustment
aligns more closely with the transformer’s learnable conditions in the proposed theory. To effectively
leverage this binary classification loss, we introduce a novel strategy for synthesizing high-quality
OOD data for training. To minimize computational overhead while leveraging high-quality em-
beddings for enhanced efficiency, GROD generates virtual OOD embeddings, rather than utilizing
original data. As defined in Definition 4, GROD gains theoretical guarantee on transformers with
multiple transformer layers and a classifier for OOD detection and classification tasks. So GROD
has compatibility for transformers extract features like CLS tokens and inputs into the classifier,
which is appliable to almost all transformer models. Notably, we focus on OOD detection without
training with outlier datasets, which is another dev different from OE and also has its real applica-
tion scenarios (Yang et al., 2024). Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) projections are employed to generate global and inter-class outliers respectively,
utilizing overall ID information and distinct features for each ID data category. Next, a filtering
mechanism is applied to remove synthetic ID-like outliers and maintain a reasonable ratio of ID and
OOD. This refined dataset together with the binary loss then serves to fine-tune the transformer un-
der GROD framework. During the testing phase, embeddings and prediction LOGITS are extracted
from the GROD-enhanced transformer. These outputs are reformulated for post-processing. The
post-processor, VIM (Wang et al., 2022), is applied to get the final prediction.

Recognize boundary ID features by PCA and LDA projections. Let Xtrain denote the input
to the transformer backbone, which is transformed into a feature representation F ∈ Rn×s in the
feature space:

F = Feat ◦ Blockn(Xtrain), (1)
where Feat(·) is the process to obtain features. For instance, in ViT models, Feat(·) represents
extracting CLS tokens. Subsequently, we generate synthetic OOD vectors using PCA for global
outliers and LDA for inter-class distinctions. LDA is selected for its ID-separating ability, with
techniques to guarantee the robustness of generated OOD, where B is the batch size. Specifically,
we first find data with maximum and minimum values of each dimension in projection spaces. F is
projected by

FPCA = PCA(F), FLDA,i = LDA(F ,Y)|y=i, i ∈ YI . (2)
Features are mapped from Rd to Rnum, num ≤ d. Then target vectors are acquired, denoted as
vMPCA,j = argmaxv∈FPCA

vj , vMLDA,i,j = argmaxv∈FLDA,i
vj for maximum and vmPCA,j , vmLDA,i,j

for minimum, i ∈ YI , j = 1, · · · s. The sets V̂PCA := {vMPCA,j and vmPCA,j , j = 1, · · · s} and
V̂LDA,i := {vMLDA,i,j and vmLDA,i,j , j = 1, · · · s}, i ∈ YI are the boundary points in the projection
spaces, which are mapped back to the original feature space:

VPCA = PCA−1(V̂PCA), VLDA,i = LDA−1(V̂LDA,i), i ∈ YI , (3)

where PCA−1 and LDA−1 are inverse mappings of PCA and LDA according to set theory.
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Generate fake OOD data. Boundary points, while initially within ID, are extended into OOD
regions. Firstly, the centers of every training batch and category are calculated by µPCA =

∑
v∈F v

|F|

and µLDA,ik =
∑

v∈F v|y=ik

Bik
, where ik ∈ {i = 1, · · · ,K : |F|y=i| > 1} := Î . To save computation

costs and control the ratio of ID and OOD, we derive a subset from Î to generate fake OOD, and
denote it as I for simplicity:

κ = min{|Î|, [ 2B

K · num
]}, (4)

I := {i ∈ Î : |F|y=i is the top-κ maximum for all i}, (5)
where num is a hyperparameter empirically set to be 1. When n = 0, only PCA is used. Then we
generate Gaussian mixture fake OOD data with expectations UOOD:

UOOD =

{
v + α

v − µ

||v − µ||2 + ϵ
: v ∈ VPCA, µ = µPCA or v ∈ VLDA,ik , µ = µLDA,ik , ik ∈ I

}
,

(6)
where ϵ = 10−7, α is a hyperparameter representing extension proportion of L2 norm. Gaussian
mixture fake OOD data are generated with distribution

DOOD =
1

|UOOD|
∑

µOOD∈UOOD

N (µOOD, α/3 · IOOD), (7)

where IOOD is the identity matrix. We denote the set of these fake OOD data as F̂OOD := F̂OOD
PCA ∪

(∪ik∈IF̂OOD
LDA,ik

), where F̂OOD
PCA and F̂OOD

LDA,ik
are clusters consist of num data points each, in the

Gaussian distribution with expectations µPCA and µLDA,ik respectively.

Filter OOD data. To eliminate ID-like synthetic OOD data, we utilize the Mahalanobis distance,
improving the generation quality of outliers. Specifically, Mahalanobis distance from a sample x to
the distribution of mean µ and covariance Σ is defined as Dist(x, µ,Σ) = (x − µ)Σ−1(x − µ)T .
To ensure robust computations, the inverse matrix of Σ is calculated with numerical techniques.
Firstly, we add a regularization term with small perturbation to Σ, i.e. Σ′ = Σ + ϵ0Id, where
ϵ0 = 10−4 and Id is the identity matrix. Given that Σ′ is symmetric and positive definite, the
Cholesky decomposition technique is employed whereby Σ′ = L · LT . L is a lower triangular
matrix, facilitating an efficient computation of the inverse Σ−1 = (L−1)T · L−1. Then we filter
F̂OOD by Mahalanobis distances. The average distances from ID data to their global and inter-class
centers i.e. DistIDPCA and DistIDLDA,ik

respectively are obtained by

DistIDPCA =
1

|F|
∑
v∈F

Dist(v, µPCA, cov(F)),

DistIDLDA,ik
=

1

|F|y=ik |
∑

v∈F|y=ik

Dist(v, µLDA,ik , cov(F|y=ik)),
(8)

where cov(·) is the operator to calculate the covariance matrix of samples F . In the meanwhile,
Mahalanobis distances between OOD and ID are calculated:

DistOOD(v) =

{
Dist(v, µPCA, cov(F)), if |I| = 0,

min
ik∈I

Dist(v, µLDA,ik , cov(F|y=ik)), if |I| > 0. (9)

And if |I| > 0, i0 = i0(v) = argminik∈I Dist(v, µLDA,ik , cov(F|y=ik)) is also recorded. The set
to be deleted FD is

FD =

{
{v ∈ F̂OOD : DistOOD(v) < (1 + Λ)DistIDPCA}, if |I| = 0,

{v ∈ F̂OOD : DistOOD(v) < (1 + Λ)DistIDLDA,i0}, if |I| > 0,
(10)

where Λ = λ · 10
|F̂OOD|

∑
v∈F̂OOD

(DistOOD(v)
DistID − 1), λ is a learnable parameter with the initial value 0.1.

DistID = DistIDPCA if |I| = 0, else DistID = DistIDLDA,i0(v)
. Additionally, we randomly filter the

remaining OOD data to no more than [B/K]+2, and the filtered set is denoted as FRD. In this way,
we obtain the final generated OOD set FOOD := F̂OOD −FD −FRD, with the label y = K + 1.
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Train-time and test-time OOD detection. During fine-tuning, training data in the feature space
is denoted as Fall := F ∪ FOOD, with labels y ∈ Y . Fall is fed into a linear classifier for K + 1
classes. A loss function L that integrates a binary ID-OOD classification loss L2, weighted by the
cross-entropy loss L1, to penalize OOD misclassification and improve ID classification, i.e.

L = (1− γ)L1 + γL2, (11)

where Φ̂ is depicted as Eq. 61, and

L1(y,x) = −Ex∈X

K+1∑
j=1

yj log(softmax(f ◦H(x))j), (12)

L2(y,x) = −Ex∈X

2∑
j=1

ϕ̂(y)j log(ϕ̂(softmax(f ◦H(x)))j). (13)

During the test time, the feature set Ftest and logit set LOGITS serve as the inputs. The post-processor
VIM is utilized due to its capability to leverage both features and LOGITS effectively. To align the
data formats, the first K values of LOGITS are preserved and normalized using the softmax function,
maintaining the original notation. We then modify LOGITS to yield the logit matrix LOGITS:

LOGITSi =


1

K
1K , if argmax

i∈Y
LOGITSi = K + 1,

LOGITSi, else.
(14)

Nevertheless, this approach is adaptable to other OOD detection methods, provided that LOGITS is
consistently adjusted for the trainer and post-processor. Formally, we also give the pseudocode of
GROD displayed in Algorithm 1.

Theoretical guarantee A crucial aspect of using transformer networks for OOD detection is defin-
ing the limits of their OOD detection capabilities. Thus we incorporate OOD detection learning
theory into transformer, including conditions for learnability (Theorem 4) and error approximation
of model budgets on transformers (Theorem 5) in Appendix 3. A model is considered learnable for
OOD detection if, when trained on sufficient ID data, it is capable of distinguishing OOD samples
from ID samples without compromising its classification performance. Both theorems are summa-
rized informally below:
Theorem 1. (Informal Theorem 4, the equivalent conditions for OOD detection learnability on
transformer networks) Given the condition l(y2,y1) ≤ l(K + 1,y1) for any in-distribution labels
y1,y2 ∈ Y , and ID and OOD have no overlap, then there exists one transformer s.t. OOD detection
is learnable, if and only if |X | = n < +∞. Furthermore, if |X | < +∞, ∃δ > 0 and a transformer
with block budget m and l layers, where m = (d̂0, 2, 1, 1, 4) and l = O(τ(1/δ)(d̂0τ)), or m =

(K+1) · (2τ(2τ d̂0+1), 1, 1, τ(2τ d̂0+1), 2τ(2τ d̂0+1)) and l = 2 s.t. OOD detection is learnable.

Theorem 2. (Informal Theorem 5, error boundary regarding the transformer’s budget) Given the
condition l(y2,y1) ≤ l(K + 1,y1), for any in-distribution labels y1,y2 ∈ Y , |X | = n < +∞ and
τ > K + 1, and set l = 2 and m = (2mh + 1, 1,mh, 2τ d̂0 + 1, r). Using a linear classifier c, the
probability of OOD detection learnability regarding data distribution P defined in Definition 5 has a
lower bound P ≥ (1− η

|I|λ0
τ2C0(

C1

m2α−1
h

+C2

rβ
(kmh)

β))(K+1)n+1

, where C0, C1, C2, η, λ0, |I|, α, β
can be treated as constants.

In Theorem 1, we provide the sufficient and necessary conditions for OOD detection learnability in
transformers, that is, finite data and higher penalty for OOD misclassification relative to ID misclas-
sification errors. Moreover, we give the specific budget of the learnable transformer in limited width
or depth. Theorem 2 explores the scenario where a transformer’s parameter scale falls short of the
requirements specified in Theorem 1. A lower bound is derived for the probability of learnability in
Definition 5, based on the same conditions of penalization and finite data of Theorem 1.

In real-world scenarios, models are trained with finite data. Thus, if the condition l(y2,y1) ≤
l(K+1,y1) from Theorem 1 and Theorem 2 is met, optimal performance and error control in OOD
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detection can be achieved with appropriate data distributions. However, traditional cross-entropy
loss, effective for distinguishing ID categories, does not satisfy this condition. We also conduct
experiments under ideal conditions with enough transformer budgets to ensure learnability, revealing
a disparity between the reality and the theoretical ideal using cross-entropy loss only (Appendix F).
To narrow this gap, we design the ID-OOD binary classification loss function L2 in Eq. 13, adding
it to the cross-entropy loss L1 weighted by γ. Since training datasets without OOD cannot fully
utilize L2, we propose a novel method to generate high-quality outliers. Therefore, we form the
GROD algorithm, which enhances the generalization of transformers through fine-tuning, supported
by our theoretical analysis. Notably, a trade-off between ID classification effectiveness and OOD
detection capability exists associated with γ, as demonstrated in our ablation study (Section 4.3) and
experiments on Gaussian mixture datasets (Appendix G). More details on the theoretical analysis
and experimental validation using Gaussian mixture datasets are available in Appendix B-G.

4 EXPERIMENT RESULTS

In this section, we provide empirical evidence to validate the effectiveness of GROD across a range
of real-world classification tasks and types of outliers, including comparison experiments with base-
lines on various NLP and CV tasks, and the ablation study of key parameters and modules in GROD.

4.1 EXPERIMENTAL SETTING

Models. We use GROD to strengthen the generalization capability of ViT-B-16 (Dosovitskiy et al.,
2020), pre-trained on ImageNet-1K (Russakovsky et al., 2015), as the backbone for image classi-
fication. For text classification, we explore broader transformer architectures, as two pre-trained
models i.e. encoder-only BERT (Devlin et al., 2018)and decoder-only GPT-2 small (Radford et al.,
2019) are backbones. Details on training hyper-parameters are provided in Appendix I.1.

Table 1: Image and text datasets for experiments.
Image Datasets

ID Near-OOD Far-OOD

Classical CIFAR-10 CIFAR-100 Tiny ImageNet
SVHNCIFAR-100 CIFAR-10 Tiny ImageNet

Large-scale ImageNet-200 CIFAR-10 CIFAR-100
Text Datasets

ID OOD

Semantic Shift CLINC150 with intents CLINC150 without intents
Background Shift IMDB Yelp

Datasets. For image classification tasks,
we use four benchmark datasets i.e
CIFAR-10 (Krizhevsky et al., 2009),
CIFAR-100 (Krizhevsky et al., 2009),
ImageNet-200 (Deng et al., 2009), Tiny
ImageNet (Le & Yang, 2015) and SVHN
(Netzer et al., 2011). CIFAR-10, CIFAR-
100 or ImageNet-200 serve as ID data, re-
spectively, while three of the others are
OOD data. The categories of OOD are
disjoint from ID. And SVHN is uniquely
identified as far-OOD data due to its dis-
tinct image contents and styles. For outlier exposure method OE and MIXOE, the auxiliary
OOD datasets is Tiny ImageNet-597 for CIFAR-10 and CIFAR-100 as ID, and ImageNet-800
for ImageNet-200 as ID (Zhang et al., 2023b; Yang et al., 2022a;b; 2021; Bitterwolf et al., 2023).
For text classification, we employ datasets in Ouyang et al. (2023) to experiment with detecting se-
mantic and background shift outliers. The semantic shift task uses the dataset CLINC150 (Larson
et al., 2019), where sentences of intents are considered ID, and those lacking intents are treated as
semantic shift OOD, following Podolskiy et al. (2021). For the background shift task, the movie re-
view dataset IMDB (Maas et al., 2011) serves as ID, while the business review dataset Yelp (Zhang
et al., 2015) is used as background shift OOD, following Arora et al. (2021). We summarize infor-
mation like the scale, data type, and ID-OOD similarity of datasets used in the experiment in Table
1. Detailed dataset information can be found in Appendix I.2.

Evaluation metrics. We evaluate our models using ID data classification accuracy (ID ACC) and
three metrics for binary classification of ID and OOD data: FPR@95 (F), AUROC (A), AUPR for
ID test dataset AUPR_IN (I), and AUPR for OOD test dataset AUPR_OUT (O).
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4.2 MAIN RESULTS

Several prevalent methods are used as baselines for comparison, including MSP (Hendrycks &
Gimpel, 2016), ODIN (Liang et al., 2017), VIM (Wang et al., 2022), GEN (Liu et al., 2023a), and
ASH (Djurisic et al., 2022) which require only post-processing, and finetuning models G-ODIN
(Hsu et al., 2020), NPOS (Tao et al., 2023), CIDER (Ming et al., 2022b), OE (Hendrycks et al.,
2018) and MIXOE (Zhang et al., 2023a). All the baselines are offered in the OpenOOD benchmark
(Zhang et al., 2023b; Yang et al., 2022a;b; 2021; Bitterwolf et al., 2023).

Results for image classification. As discussed in Section 3, GROD employs LDA projection
to generate inter-class OOD only when |I| > 0 to ensure the stability of the synthesized OOD. To
evaluate performance under both scenarios of |I|, we use CIFAR-10 training set with both LDA and
PCA, CIFAR-100 in the transition, and ImageNet-200 training sets with PCA only.

When |I| > 0, the inclusion of both PCA and LDA projections enriches the information in OOD, not
only creating virtual OOD around ID but also synthesizing it among ID categories. Correspondingly,
the experimental results presented in Table 2 show that GROD surpasses other competitors, achiev-
ing SOTA performance across all five evaluation metrics. On average, GROD reduces the FPR@95
from 9.41%, achieved by the current most competitive method, to 0.12%, while enhancing the AU-
ROC from 97.88% to 99.98%. In transition situation i.e. B < K but the probability P (|I| > 0) > 0,
Table 3 shows that mainly using PCA with assistance of LDA on pat of clusters still achieve SOTA
performance. When |I| = 0, although GROD is not as effective as the LDA-based inter-class OOD
generation, it still yields competitive outcomes using only PCA, as evidenced in Tables 4. Because
it relies solely on PCA without LDA, this approach falls short in capturing features of inter-class
OOD data. In the special case of using ImageNet-200 as ID and SVHN as OOD, the baseline
model easily recognizes the difference between ID and OOD. In this situation, additional OOD de-
tection techniques interfere with the results to varying degrees, yet GROD remains robust compared
to other competitive fine-tuning methods such as NPOS and CIDER. In general, GROD achieves
the best and most stable performance.

Table 2: Quantitative comparison with prevalent methods of the ID classification and OOD detection
performance, where the backbone ViT-B-16 pre-trained with ImageNet-1K is employed. CIFAR-
10 is the ID Dataset and LDA projections are used for generating inter-class fake outliers. The red,
blue and bold fonts denote Top 1,2,3 in ranking.

OOD Datasets - CIFAR-100 Tiny ImageNet SVHN Average

Evaluate Metrics (%) ID
ACC↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑

Baseline MSP 96.16 29.31 91.70 92.70 90.28 21.21 94.05 95.54 92.04 15.39 95.11 92.72 97.56 21.97 93.62 93.65 93.29

PostProcess

ODIN

96.16

42.96 91.01 90.69 91.35 14.59 97.10 97.39 96.91 21.49 94.94 90.88 97.89 26.35 94.35 92.99 95.38
VIM 21.59 95.43 95.64 95.38 8.52 98.39 98.68 98.14 3.26 99.39 98.61 99.78 11.12 97.74 97.64 97.77
GEN 27.24 93.51 93.72 93.32 16.99 96.40 97.02 95.86 11.16 97.65 95.50 99.04 18.46 95.85 95.41 96.07
ASH 26.48 93.64 93.70 93.46 16.87 96.41 96.99 95.87 9.79 98.19 96.55 99.26 17.71 96.08 95.75 96.20

Finetuning+
PostProcess

G-ODIN 95.56 82.60 70.76 68.21 72.86 64.97 83.05 83.88 83.58 62.42 89.48 68.61 95.81 70.00 81.10 73.57 84.08
NPOS 96.75 21.18 95.63 95.46 95.68 15.33 96.85 97.20 96.47 3.33 99.18 98.45 99.60 13.28 97.22 97.04 97.25
CIDER 96.98 14.13 96.99 96.98 96.97 10.19 97.78 97.95 97.57 3.91 98.86 98.17 99.41 9.41 97.88 97.70 97.98
OE 95.70 24.74 94.62 94.75 94.58 4.97 99.18 99.30 99.08 4.39 99.04 97.94 99.59 11.37 97.61 97.33 97.75
MIXOE 96.47 20.31 95.60 95.73 95.64 10.66 97.92 98.28 97.67 5.94 98.77 97.40 99.51 12.30 97.43 97.14 97.61
Ours 97.31 0.16 99.97 99.97 99.96 0.11 99.98 99.98 99.97 0.09 99.98 99.97 99.99 0.12 99.98 99.97 99.97

Quantitative comparison of the computational cost. By appropriately selecting |I| in Eq. 5,
we ensure an effective fine-tuning stage that minimizes time costs while maximizing performance
gains. In the post-processing phase, we save the fine-tuned transformer models without adding
extra parameters, highlighting their computational advantages in real-world applications. Figure 2
presents a quantitative comparison of the time costs of various OOD detection methods. Combined
with the results from Tables 2, 3, and 4, it is evident that GROD achieves an optimal balance
between computational expense and performance enhancement. Methods that rely solely on post-
processing for OOD detection, and G-ODIN, exhibit lower fine-tuning time costs but suffer from
reduced task performance. Although fine-tuning methods demonstrate competitive capabilities in
image ID classification and OOD detection, they are slower than GROD in terms of fine-tuning and
post-processing speed.
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Table 3: Quantitative comparison with prevalent methods of the ID classification and OOD detection
performance using only PCA projection and the transition mode with LDA assistance appeared in
GROD algorithm for generating fake OOD data. Take CIFAR-100 as ID.

OOD Datasets - CIFAR-10 Tiny ImageNet SVHN Average

Evaluate Metrics (%) ID
ACC↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑

Baseline MSP 84.34 71.11 77.17 75.37 77.56 51.34 84.15 86.55 78.08 49.58 82.07 71.41 91.97 57.34 81.13 77.78 82.54

PostProcess

ODIN

84.34

80.29 70.06 67.71 73.54 51.63 88.78 90.12 86.62 57.96 82.07 66.59 91.74 63.29 80.30 74.81 83.97
VIM 54.97 85.42 84.62 85.71 30.22 92.30 94.69 88.43 23.02 93.93 88.69 97.15 36.07 90.55 89.33 90.43
GEN 73.77 80.89 77.28 82.37 45.00 89.06 91.44 84.77 35.83 90.96 81.97 96.17 51.53 86.97 83.56 87.77
ASH 75.26 80.61 76.87 82.19 44.68 88.98 91.42 84.62 35.87 90.88 81.85 96.12 51.94 86.82 83.38 87.64

Finetuning+
PostProcess

G-ODIN 61.40 89.14 47.52 51.63 47.76 74.07 68.87 77.48 54.99 30.77 93.15 95.55 89.40 64.66 69.85 74.89 64.05
NPOS 84.76 43.53 89.63 89.14 90.42 33.36 91.72 94.14 88.38 38.86 90.62 81.67 96.04 38.58 90.66 88.32 91.61
CIDER 84.87 44.47 89.41 88.74 90.23 33.08 91.83 94.18 88.60 30.36 93.48 84.46 97.36 35.97 91.57 89.13 92.06
OE 74.97 73.80 73.72 72.86 75.75 22.02 96.64 97.11 96.46 41.66 92.97 81.74 97.37 45.83 87.78 83.97 89.86
MIXOE 77.84 71.07 75.84 74.76 78.55 49.01 88.61 91.22 86.03 49.08 92.14 78.58 97.26 56.39 85.53 81.52 87.28
Ours
(PCA) 86.21 43.38 88.00 88.01 87.94 38.84 91.44 93.46 87.91 23.38 94.59 87.88 98.63 35.20 91.34 89.78 91.49

Ours 86.10 38.22 90.45 90.17 90.88 27.98 93.32 95.38 90.52 22.12 93.70 88.91 96.59 29.44 92.49 91.49 92.66

Table 4: Quantitative comparison with prevalent methods of the ID classification and OOD detection
performance using only PCA projection for generating fake OOD data. Take ImageNet-200 as ID.

OOD Datasets - CIFAR-10 CIFAR-100 SVHN Average

Evaluate Metrics (%) ID
ACC↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑

Baseline MSP 89.09 25.28 92.79 93.05 91.98 32.09 93.02 93.18 92.69 1.01 99.72 99.54 99.84 19.46 95.18 95.26 94.84

PostProcess

ODIN

89.09

40.38 89.34 91.29 91.24 33.98 93.69 93.23 91.58 23.66 93.65 93.58 95.09 32.67 92.23 92.70 92.64
VIM 27.14 92.48 93.03 90.54 35.49 91.27 90.94 89.19 9.12 95.12 94.93 95.54 23.92 92.96 92.97 91.76
GEN 33.79 83.84 87.94 75.21 34.40 85.47 89.04 76.56 20.86 86.75 86.97 88.20 29.68 85.35 87.98 79.99
ASH 33.66 92.26 91.79 92.12 39.49 91.76 90.16 90.42 1.50 99.56 99.33 99.62 24.88 94.53 93.76 94.05

Finetuning+
PostProcess

G-ODIN 89.28 84.39 66.20 63.15 68.85 84.69 73.99 69.78 75.80 22.49 95.98 89.78 98.53 63.86 78.72 74.24 81.06
NPOS 89.96 14.20 95.32 96.59 93.77 26.33 93.28 93.13 91.91 13.87 94.59 92.54 95.01 18.13 94.40 94.09 93.56
CIDER 90.13 14.51 95.37 96.23 93.73 26.01 93.80 93.81 91.95 7.39 96.09 95.83 96.07 15.97 95.09 95.29 93.92
OE 89.48 25.33 92.66 93.02 91.74 33.08 92.99 93.10 92.68 0.69 99.78 99.64 99.87 19.70 95.14 95.25 94.76
MIXOE 90.49 25.43 92.46 92.75 91.22 33.71 92.60 92.69 92.09 1.41 99.63 99.36 99.80 20.18 94.90 94.93 94.37
Ours 90.71 21.98 93.86 94.85 93.87 28.39 93.15 93.98 92.84 4.41 98.72 97.78 98.97 18.26 95.24 95.54 95.23

Figure 2: Quantitative comparison of the computational costs associated with various OOD detection
methods on image datasets is presented, with fine-tuning and post-processing times reported in
subfigures (a) and (b), respectively. Methods with only post-processing including MSP, ODIN,
VIM, GEN, and ASH are used after “baseline” fine-tuning. Outlier exposure methods OE and
MIXOE use MSP for post-processing.

Results for text classification. Table 4.2 presents the results for text classification. As two ID
datasets, IMDB and CLINC150 have two and ten categories respectively, with |I| > 0 in both
cases. Hence, both PCA and LDA projections are applied to these datasets. In line with the results
and analysis of image classification in Table 2, GROD outperforms other powerful OOD detection
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techniques. While many popular OOD detection algorithms are rigorously tested on image datasets,
their effectiveness on text datasets does not exhibit marked superiority, as Table 4.2 illustrates. In
addition, methods like ODIN (Liang et al., 2017) and G-ODIN (Hsu et al., 2020), which compute
data gradients, necessitate floating-point number inputs. However, the tokenizer-encoded long in-
tegers used as input tokens create data format incompatibilities when attempting to use BERT and
GPT-2 alongside ODIN or G-ODIN. Given their marginal performance on image datasets, these
methods are excluded from text classification tasks. For the decoder-only GPT-2 model, some meth-
ods (Baseline, GEN) are compatible with both models using CLS tokens as features and without
them, as they only require logits for processing. Others are only compatible with transformers with
CLS tokens since they combine features and logits. We test two modes (with/without CLS token),
labeled Method-C (with CLS) and Method-L (without CLS). As shown in Table 4.2, GROD consis-
tently improves model performance across both image and text datasets and various OOD detection
tasks, highlighting its versatility and broad applicability.

Table 5: Quantitative comparison with prevalent methods of the ID classification and OOD detection
performance, where the pre-trained BERT (a) and GPT-2 (b) are employed. Experimental results on
two typical OOD in the text OOD detection, i.e. background shift OOD and semantic shift OOD are
reported.

(a) BERT
OOD Detection Type Background Shift Semantic Shift

ID Datasets IMDB CLINC150 with Intents
OOD Datasets Yelp CLINC150 with Unknown Intents

Evaluate Metrics (%) ID
ACC↑ F ↓ A ↑ I↑ O↑ ID

ACC↑ F ↓ A ↑ I↑ O↑

Baseline MSP 91.36 57.72 74.28 73.28 74.60 97.78 37.11 92.31 97.70 74.66

PostProcess
VIM

91.36
64.00 74.61 70.17 76.05

97.78
29.33 93.58 98.03 80.99

GEN 57.63 74.28 73.28 74.60 36.27 92.27 97.47 79.43
ASH 73.27 71.43 65.11 76.64 40.67 92.56 97.60 79.70

Finetuning+
PostProcess

NPOS 90.36 76.31 68.48 61.84 74.56 95.62 49.89 83.57 95.64 48.52
CIDER 91.28 59.71 78.10 75.09 79.07 95.93 45.04 86.39 96.44 55.17

Ours 91.47 52.89 78.86 77.61 79.63 97.66 24.00 94.58 98.52 82.47

(b) GPT-2
OOD Detection Type Background Shift Semantic Shift

ID Datasets IMDB CLINC150 with Intents
OOD Datasets Yelp CLINC150 with Unknown Intents

Evaluate Metrics (%) ID
ACC↑ F ↓ A ↑ I↑ O↑ ID

ACC↑ F ↓ A ↑ I↑ O↑

Baseline-
L MSP-L 88.56 100.0 59.10 67.81 70.51 97.09 41.76 91.81 97.92 72.86

Baseline-
C MSP-C 87.93 100.0 58.41 64.50 67.59 97.44 60.36 86.29 96.26 55.34

PostProcess

VIM 87.93 84.81 58.55 51.60 63.95 97.44 27.53 93.71 98.21 79.25
GEN-L 88.56 57.80 75.00 73.55 75.43 97.08 33.29 92.46 97.77 76.76
GEN-C 87.93 76.90 65.84 60.79 69.52 97.44 32.87 93.24 98.11 77.25

ASH 87.93 85.41 60.45 50.97 68.66 97.44 41.27 92.73 97.80 78.21

Finetuning+
PostProcess

NPOS 88.08 96.92 50.23 39.94 60.67 97.33 66.24 77.01 93.47 43.90
CIDER 87.89 84.46 59.71 52.03 62.99 97.43 57.27 81.40 95.00 49.16

Ours 88.03 75.17 66.91 61.96 70.95 97.51 23.80 94.90 98.55 84.75

4.3 ABLATION STUDY

Comprehensive ablation studies are conducted to explore hyper-parameters and optimization strate-
gies, where Figure 5 shows the ablation experiments for key parameters γ, α, and num, and the
ablation results of modules in GROD are displayed in Table 4.3.

Abaltion study on hyper-parameters. Our method introduce three hyperparameters α, num and
γ. num = 1 is empirically an optimal choice, which is consistent with the conclusion in Fort et al.
(2021) that even adding one or two OOD can raise the OOD detection performance of transformers.
The ablation results regarding γ in Fig. 5 show that γ ∈ [0.1, 0.3] benefits the task performance,
which is also in line with the theoretical insights and the classification (learned by L1) and OOD
detection (learned by L2) goal of the task. Therefore, num and γ have their optimal solution.
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As to α, we recommend α = 10−3 if LDA is used, otherwise a larger value should be taken to
capture a global characteristic of outliers. We have analyzed these parameters in detail, and give an
explanation from the perspective of OOD detection learning theory in Appendix J.

Table 6: Ablation experiments. The ID dataset is CIFAR-10 and the backbone is ViT-B-16 pre-
trained with ImageNet-1K. Respectively, L2, FOOD, Maha represent whether to use the binary loss
function L2, fake OOD data generation and Mahalanobis distance filtration. Outliers with Gaussian
distribution and randomly uniform distribution are denoted as ‘G’ and ‘U’ respectively.

OOD Datasets - CIFAR-100 Tiny ImageNet SVHN Average

Evaluate Metrics (%) ID
ACC↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑ F ↓ A ↑ I↑ O↑

L2 FOOD Maha
96.16 21.59 95.43 95.64 95.38 8.52 98.39 98.68 98.14 3.26 99.39 98.61 99.78 11.12 97.74 97.64 97.77

✓ ✓ 96.96 22.66 94.98 95.13 94.94 13.04 96.98 97.68 96.27 4.69 99.18 98.11 99.70 13.46 97.05 96.97 96.97
✓ 97.00 18.02 96.32 96.32 96.49 8.78 98.45 98.70 98.27 2.76 99.45 98.58 99.81 9.85 98.07 97.87 98.19
✓ ✓ 96.68 21.17 95.57 95.52 95.78 9.41 98.27 98.58 98.04 0.49 99.83 99.77 99.88 10.36 97.89 97.96 97.90
✓ G ✓ 96.86 20.22 96.10 95.95 96.30 10.92 97.97 98.21 97.79 2.29 99.41 98.74 99.75 11.14 97.83 97.63 97.95
✓ U ✓ 96.67 19.39 95.84 95.90 95.92 10.06 98.03 98.42 97.70 4.03 99.22 98.11 99.72 11.16 97.70 97.48 97.78
✓ ✓ ✓ 97.31 0.16 99.97 99.97 99.96 0.11 99.98 99.98 99.97 0.09 99.98 99.97 99.99 0.12 99.98 99.97 99.97

Ablation on key modules in GROD. GROD comprises three key modules: adjusting the loss
function, generating virtual OOD data, and employing the Mahalanobis distance filtering mecha-
nism, denoted as L2, FOOD, and Maha, respectively. Table 4.3 presents the ablation studies for
these modules. L2 alone can enhance model optimization, whereas FOOD and Maha contribute
positively when integrated with L2. Utilizing all three strategies concurrently yields optimal perfor-
mance, confirming that GROD effectively synergizes these modules to assign penalties associated
with OOD and sharpen the precision of the ID-OOD decision boundary. We have also tested two
simple methods to generate outliers i.e. outliers with Gaussian distribution and randomly uniform
distribution to validate the positive utility of our synthesis strategy, denoted as ‘G’ and ‘U’ in Ta-
ble 4.3, respectively. Moreover, features Fall, along with the prediction LOGITS LOGITS of GROD
and the baseline, are visualized under t-SNE dimensional embedding (Appendix K), which illustrate
the efficiency of GROD directly.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose GROD, a novel algorithm that enhances the generalization of transformers
during fine-tuning and leverages them for OOD detection. Inspired by theoretical insights, GROD
minimizes the gap between optimal generalization and practical performance with rigorous mathe-
matical foundations, including two theorems deriving conditions and error bounds for OOD detec-
tion learnability in transformer networks. In both NLP and CV tasks involving outliers, transformers
equipped with GROD show superior performance compared to standard transformers. Furthermore,
its effectiveness is validated by robust ablation studies and visualizations. Our research enriches
OOD detection theory by integrating with transformers, offering guidance for their use in both re-
search of generalization and applications of transformers in OOD detection, with GROD demon-
strating adaptability across multiple data formats. The proposal of a “gold standard" for measuring
virtual OOD can fully utilize theoretical results and unleash the generalization potential of trans-
formers, which is of importance in future research. We believe our findings will give insights into
the generalization and reliability of transformers, and motivate further research on OOD detection
and model security. In the future, we will focus on improving GROD for stable inter-class OOD
data generation in multi-class tasks and more deeply explore the layer of transformer feature spaces.
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tion under constraints is possible with transformers. arXiv preprint arXiv:2110.03303, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Learning multiple layers of features from tiny images, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Stefan Larson, Anish Mahendran, Joseph J Peper, Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K Kummerfeld, Kevin Leach, Michael A Laurenzano, Lingjia Tang, et al. An evaluation
dataset for intent classification and out-of-scope prediction. arXiv preprint arXiv:1909.02027,
2019.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
tion. Advances in neural information processing systems, 33:21464–21475, 2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xixi Liu, Yaroslava Lochman, and Christopher Zach. Gen: Pushing the limits of softmax-based
out-of-distribution detection. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 23946–23955, 2023a.

Yixin Liu, Kaize Ding, Huan Liu, and Shirui Pan. Good-d: On unsupervised graph out-of-
distribution detection. In Proceedings of the Sixteenth ACM International Conference on Web
Search and Data Mining, pp. 339–347, 2023b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Shengjie Luo, Shanda Li, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He. Your transformer
may not be as powerful as you expect. Advances in neural information processing systems, 35:
4301–4315, 2022.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142–150, 2011.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. Advances
in neural information processing systems, 36, 2024.

Yifei Ming, Ziyang Cai, Jiuxiang Gu, Yiyou Sun, Wei Li, and Yixuan Li. Delving into out-of-
distribution detection with vision-language representations. Advances in neural information pro-
cessing systems, 35:35087–35102, 2022a.

Yifei Ming, Yiyou Sun, Ousmane Dia, and Yixuan Li. How to exploit hyperspherical embeddings
for out-of-distribution detection? arXiv preprint arXiv:2203.04450, 2022b.

Peyman Morteza and Yixuan Li. Provable guarantees for understanding out-of-distribution detection.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 7831–7840,
2022.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 7. Granada, Spain, 2011.

Yawen Ouyang, Yongchang Cao, Yuan Gao, Zhen Wu, Jianbing Zhang, and Xinyu Dai. On prefix-
tuning for lightweight out-of-distribution detection. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1533–1545, 2023.

Alexander Podolskiy, Dmitry Lipin, Andrey Bout, Ekaterina Artemova, and Irina Piontkovskaya.
Revisiting mahalanobis distance for transformer-based out-of-domain detection. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pp. 13675–13682, 2021.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Im-
ageNet Large Scale Visual Recognition Challenge. International journal of computer vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. Transformers as recog-
nizers of formal languages: A survey on expressivity. arXiv preprint arXiv:2311.00208, 2023.

Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
neighbors. In International Conference on Machine Learning, pp. 20827–20840. PMLR, 2022.

Leitian Tao, Xuefeng Du, Xiaojin Zhu, and Yixuan Li. Non-parametric outlier synthesis. arXiv
preprint arXiv:2303.02966, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Paul Urysohn. Über die mächtigkeit der zusammenhängenden mengen. Mathematische annalen, 94
(1):262–295, 1925.

Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. Vim: Out-of-distribution with virtual-
logit matching. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4921–4930, 2022.

Qizhou Wang, Junjie Ye, Feng Liu, Quanyu Dai, Marcus Kalander, Tongliang Liu, Jianye Hao,
and Bo Han. Out-of-distribution detection with implicit outlier transformation. arXiv preprint
arXiv:2303.05033, 2023.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
A survey. arXiv preprint arXiv:2110.11334, 2021.

Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, Wenxuan Peng, Haoqi
Wang, Guangyao Chen, Bo Li, Yiyou Sun, et al. Openood: Benchmarking generalized out-of-
distribution detection. Advances in neural information processing systems, 35:32598–32611,
2022a.

Jingkang Yang, Kaiyang Zhou, and Ziwei Liu. Full-spectrum out-of-distribution detection. arXiv
preprint arXiv:2204.05306, 2022b.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
A survey. International Journal of Computer Vision, pp. 1–28, 2024.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions? arXiv preprint
arXiv:1912.10077, 2019.

Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and San-
jiv Kumar. O (n) connections are expressive enough: Universal approximability of sparse trans-
formers. Advances in neural information processing systems, 33:13783–13794, 2020.

Jingyang Zhang, Nathan Inkawhich, Randolph Linderman, Yiran Chen, and Hai Li. Mixture outlier
exposure: Towards out-of-distribution detection in fine-grained environments. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 5531–5540, 2023a.

Jingyang Zhang, Jingkang Yang, Pengyun Wang, Haoqi Wang, Yueqian Lin, Haoran Zhang, Yiyou
Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Yixuan Li, Ziwei Liu, Yiran Chen, and Hai
Li. Openood v1.5: Enhanced benchmark for out-of-distribution detection. arXiv preprint
arXiv:2306.09301, 2023b.

Lily Zhang, Mark Goldstein, and Rajesh Ranganath. Understanding failures in out-of-distribution
detection with deep generative models. In International Conference on Machine Learning, pp.
12427–12436. PMLR, 2021.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classi-
fication. Advances in neural information processing systems, 28, 2015.

Haotian Zheng, Qizhou Wang, Zhen Fang, Xiaobo Xia, Feng Liu, Tongliang Liu, and Bo Han. Out-
of-distribution detection learning with unreliable out-of-distribution sources. Advances in Neural
Information Processing Systems, 36:72110–72123, 2023.

Wenxuan Zhou, Fangyu Liu, and Muhao Chen. Contrastive out-of-distribution detection for pre-
trained transformers. arXiv preprint arXiv:2104.08812, 2021.

Jianing Zhu, Yu Geng, Jiangchao Yao, Tongliang Liu, Gang Niu, Masashi Sugiyama, and Bo Han.
Diversified outlier exposure for out-of-distribution detection via informative extrapolation. Ad-
vances in Neural Information Processing Systems, 36:22702–22734, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DETAILED RELATED WORKS.

Application of OOD detection. The recent advancements in OOD detection models and algo-
rithms have been significant (Sun et al., 2022; Liu et al., 2023b; Cai & Li, 2023). Typically, OOD
detection methods leverage both post-processing techniques and training strategies, which can be
implemented either separately or in combination (Zhang et al., 2023b). Key post-processing tech-
niques include the use of distance functions (Denouden et al., 2018), the development of scoring
functions (Ming et al., 2022a), and the integration of disturbance terms (Hsu et al., 2020), among
others. Several methods introduce training strategies for OOD detection models. For instance, Tao
et al. (2023) suggests loss functions to facilitate the learning of compact representations, while
Graham et al. (2023); Jiang et al. (2023) innovatively employs reconstruction models to pinpoint
abnormal data. In addition, the transformer architecture has gained popularity in OOD detection,
prized for its robust feature representation capabilities (Koner et al., 2021; Fort et al., 2021).

Leveraging auxiliary outliers. Leveraging auxiliary data for OOD detection has emerged as a
prominent strategy, broadly categorized into Outlier Exposure (OE) and outlier generating methods.
OE involves utilizing external datasets as outliers during training to calibrate the model’s ability to
distinguish ID from OOD samples (Kirchheim & Ortmeier, 2022; Chen et al., 2021). Hendrycks
et al. (Hendrycks et al., 2018) first proposed OE, demonstrating the effectiveness of using extra
datasets, while Zhu et al. (Zhu et al., 2023) enhanced this method by introducing diversified outlier
exposure through informative extrapolation. Zhang et al. (Zhang et al., 2023a) further extended this
to fine-grained environments with Mixture Outlier Exposure, emphasizing the relevance of auxiliary
outliers to specific tasks. Generative-based methods, on the other hand, utilize generative models
and feature modeling to create synthetic data that imitates OOD characteristics, thus enabling the
generation of diverse and informative outlier samples without the need for predefined outlier datasets.
VOS (Du et al., 2022) models the features as a Gaussian mixture distribution and samples out-of-
distribution data in low-likelihood areas. NPOS (Tao et al., 2023) further uses KNN to generate
out-of-distribution features. OpenGAN (Kong & Ramanan, 2021) pioneered this approach with
GANs to generate open-set examples, and Wang et al. (Wang et al., 2023) advanced it by employing
implicit outlier transformations for more diverse OOD representations. Zheng et al. (Zheng et al.,
2023) addressed scenarios with noisy or unreliable auxiliary data, refining generative processes for
robust outlier synthesis. Du et al. (2024) is highlighted on generating high-resolution outliers in
the pixel space using diffusion models. These methods, by leveraging external or synthesized data,
represent critical progress in enhancing OOD detection and improving model robustness in open-
world scenarios.

Theory of OOD detection. Theoretical research into OOD detection has recently intensified.
Morteza & Li (2022) examines maximum likelihood on mixed Gaussian distributions and introduces
a GEM log-likelihood score. Zhang et al. (2021) reveals that even minor errors in density estimation
can result in OOD detection failures. Fang et al. (2022) presents the first application of Probably Ap-
proximately Correct (PAC) learning theory to OOD detection, deriving the Impossibility Theorem
and exploring conditions under which OOD detection can be learned in previously unknown spaces.
Moreover, Yang et al. (2021) has pioneered the concept of generalized OOD detection, noting its
commonalities with anomaly detection (AD) and open set recognition (OSR) (Fang et al., 2021). To
the best of our knowledge, no comprehensive theory of OOD detection for transformers has been
established yet.

Transformers and their universal approximation power Transformers bring inspiration and
progress to OOD detection, with algorithms utilizing their self-attention mechanism achieving note-
worthy results (Koner et al., 2021; Hendrycks et al., 2020; Podolskiy et al., 2021; Zhou et al., 2021).
Understanding the expressivity of transformers is vital for their application in OOD detection. Cur-
rent research predominantly explores two main areas: formal language theory and approximation
theory (Strobl et al., 2023). The former examines transformers as recognizers of formal languages,
clarifying their lower and upper bounds (Hahn, 2020; Chiang et al., 2023; Merrill & Sabharwal,
2024). Our focus, however, lies primarily in approximation theory. The universal approximation
property (UAP) of transformers, characterized by fixed width and infinite depth, was initially demon-
strated by Yun et al. (2019). Subsequent studies have expanded on this, exploring UAP under various
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conditions and transformer architectures (Yun et al., 2020; Kratsios et al., 2021; Luo et al., 2022; Al-
berti et al., 2023). As another important development, Jiang & Li (2023) established the UAP for
architectures with a fixed depth and infinite width and provided Jackson-type approximation rates
for transformers.

B NOTATIONS AND PRELIMINARIES

Notations. More notations for theoretical analysis can be found here. | · | indicates the count of
elements in a set, and || · ||2 represents the L2 norm in Euclidean space. The data priori-unknown
distribution spaces include Dall

XY , which is the total space including all distributions; Ds
XY , the

separate space with distributions that have no ID-OOD overlap; DDXY

XY , a single-distribution space
for a specific dataset distribution denoted as DXY ; DF

XY , the Finite-ID-distribution space containing
distributions with a finite number of ID examples; and Dµ,b

XY , the density-based space characterized
by distributions expressed through density functions. A superscript may be added on DXY to denote
the number of data points in the distribution. The model hypothesis space is represented by H, and
the binary ID-OOD classifier is defined as Φ. These notations, consistent with those used in Fang
et al. (2022), facilitate a clear understanding of OOD detection learning theory.

Several notations related to spaces and measures of function approximation also require further clar-
ification to enhance understanding of the theoretical framework. C and C denote the compact func-
tion set and compact data set, respectively. Complexity measures for the self-attention blocks within
transformers are denoted as C0(·) and C

(α)
1 (·), while C

(β)
2 (·) represents a regularity measure for

the feed-forward neural networks within transformers. These measures indicate the approximation
capabilities of transformers, with α and β being the convergence orders for Jackson-type estimation.
C̃(α,β) within C is the function space where Jackson-type estimation is applicable. Given the com-
plexity of the mathematical definitions and symbols involved, we aim to provide clear conceptions
to facilitate a smooth understanding of our theoretical approach. These mathematical definitions
regarding function approximation follow those presented by Jiang & Li (2023).

Goal of theory. As an impressive work on OOD detection theory, Fang et al. (2022) defines
strong learnability for OOD detection and has applied its PAC learning theory to the FCNN-based
and score-based hypothesis spaces:

Definition 1. (Fang et al., 2022)(Strong learnability) OOD detection is strongly learnable in DXY ,
if there exists an algorithm A: ∪+∞

n=1(X ×Y)n −→ H and a monotonically decreasing sequence ϵ(n)
s.t. ϵ(n) −→ 0, as n −→ +∞, and for any domain DXY ∈ DXY ,

ES∼Dn
XIYI

[Lα
D(A(S))− infh∈HLα

D(h)] ≤ ϵ(n), ∀α ∈ [0, 1].

In the data distribution spaces under our study, the equality of strong learnability and PAC learnabil-
ity has been proved. So we only need to gain strong learnability to verify the proposed theorems.

Theorem 3. (Fang et al., 2022) (Informal, learnability in FCNN-based and score-based hypothesis
spaces)

If l(y2, y1) ≤ l(K + 1, y1) for any in-distribution labels y1 and y2 ∈ Y , and the hypothesis space
H is FCNN-based or corresponding score-based, then OOD detection is learnable in the separate
space Ds

XY for H if and only if |X | < +∞.

Inspired by Theorem 3 and its Proof, the goal of our theory is proposed as follows:

Goal: Given a transformer hypothesis space HTOOD, what are necessary or
sufficient conditions to ensure the learnability of OOD detection? Furthermore,
we try to derive the approximation rates and error bounds of OOD detection.

The transformer hypothesis space. Under the goal of investigating the OOD detection learning
theory on transformers, our research defines a fixed transformer hypothesis space for OOD detection
Htood. A transformer block Block(·) : Rd̂×τ −→ Rd̂×τ consists of a self-attention layer Att(·) and
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a feed-forward layer FF(·), i.e.

Att(hl) = hl +

h∑
i=1

W i
OW

i
V hl · σ[(W i

Khl)
TW i

Qhl], (15)

hl+1 = FF(hl) = Att(hl) +W2 · Relu(W1 ·Att(hl) + b11
T
n ) + b21

T
n , (16)

with W i
O ∈ Rd̂×mv , W i

V ∈ RmV ×d̂, W i
K ,W i

Q ∈ Rmh×d̂, W1 ∈ Rr×d̂, W2 ∈ Rd̂×r, b1 ∈ Rr and

b2 ∈ Rd̂. Besides, hl ∈ Rd̂×τ is the hidden state of l-th transformer block with h0 ∈ Rd̂×τ is the
input data X ∈ R(d̂0×τ)×n (with position encoding) after a one-layer FCNN F : Rd̂0×τ −→ Rd̂×τ ,
and σ(·) is the column-wise softmax function. We denote d := d̂ × τ and d0 := d̂0 × τ for
convenience.

The computation budget of a transformer block includes the number of heads h, the hidden layer
size r of FF , mh, mV , and n, denoted by m = (d̂, h,mh,mV , r). Formally, a classic transformer
block with a budget of m and l-th layer can be depicted as Block(m)

l (·) = FF ◦Att(·). Transformer
is a composition of transformer blocks, by which we define transformer hypothesis space HTrans:
Definition 2. (Transformer hypothesis space) The transformer hypothesis space is HTrans is

HTrans = ∪lH(l)
Trans = ∪l ∪m H(l,m)

Trans (17)

where H(l)
Trans is the transformer hypothesis space with l layers, and H(l,m)

Trans is the transformer
hypothesis space with l layers of Block(m)

i (·), i ∈ {1, 2, . . . , l}. More specifically,

H(l,m)
Trans := {Ĥ : Ĥ = Block

(m)
l ◦ Block(m)

l−1 ◦ · · · ◦ Block(m)
1 ◦ F}. (18)

By the Definition 2 that ∀Ĥ ∈ HTrans, Ĥ is a map from Rd0×n to Rd×n. To match the OOD
detection task, we insert a classifier c : Rd −→ Y applied to each data as follows:
Definition 3. (Classifier ) c : Rd −→ Y is a classical classifier with forms:

(maximum value) c(hl) = argmax
k∈Y

fk(hl), (19)

(score-based) c(hl) =

{
K + 1, E(f(hl)) < λ,

argmax
k∈Y

fk(hl), E(f(hl)) ≥ λ,
(20)

where fk is the k-th coordinate of f ∈ {f̂ ∈ Rd −→ RK+1}, which is defined by

fk(hl) = W4,k(W3,khl + b3,k)
T + b4,k. (21)

W3,k ∈ R1×d̂, W4,k, b3,k ∈ R1×τ and b4,k ∈ R. And E(·) is the scoring functions like softmax-
based function (Hendrycks & Gimpel, 2016) and energy-based function (Liu et al., 2020).

Now, we can naturally derive the Definition of transformer hypothesis space for OOD detection:
Definition 4. (Transformer hypothesis space for OOD detection)

Htood := {H ∈ Rd0×n −→ Yn : H = c ◦ Ĥ, c is a classifier in Definition 3, Ĥ ∈ HTrans} (22)

Similarly, we denote H(l)
tood and H(l,m)

tood as in Definition 2.

C THEORETICAL RESULTS OF OOD DETECTION USING TRANSFORMERS

In the five priori-unknown spaces defined in Fang et al. (2022), the total space Dall
XY has been

thoroughly discussed. Following the impossible Theorem, OOD detection is NOT learnable due to
the overlapping of datasets, even when the budget m −→ +∞. Consequently, we shift our focus to
the learning theory of transformers within the other four spaces: DDXY

XY , Ds
XY , DF

XY , and Dµ,b
XY .

For each space, we investigate whether OOD detection is learnable under Htood, considering the
specific constraints, conditions, or assumptions. If OOD detection is found to be learnable, we
then explore the approximation of rates and boundaries to further understand the generalization
capabilities of transformers.
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C.1 OOD DETECTION IN THE SEPARATE SPACE

Since the overlap is a crucial factor preventing models from successfully learning OOD detection, a
natural perspective is to explore the separate space Ds

XY .

Conditions for learning with transformers. Firstly, by Theorem 10 in Fang et al. (2022) and
Theorems 5, 8 in Bartlett & Maass (2003), OOD detection is NOT learnable in Ds

XY . It means OOD
detection also has the impossible Theorem in Ds

XY for Htood. So we enquire about the conditions
for Htood to meet the requirements of learnability, deriving Theorem 4:

Theorem 4. (Necessary and sufficient condition for OOD detection learnability on transformers)

Given the condition l(y2,y1) ≤ l(K + 1,y1), for any in-distribution labels y1,y2 ∈ Y , then
OOD detection is learnable in the separate space Ds

XY for Htood if and only if |X | = n < +∞.
Furthermore, if |X | < +∞, ∃δ > 0 and g ∈ H(m,l)

tood , where Block(·) budget m = (d̂0, 2, 1, 1, 4) and
the number of Block(·) layer l = O(τ(1/δ)(d̂0τ)), or m = (K +1) · (2τ(2τ d̂0 +1), 1, 1, τ(2τ d̂0 +

1), 2τ(2τ d̂0 + 1)) and l = 2 s.t. OOD detection is learnable with g.

Theorem 4 gives the necessary and sufficient conditions for OOD detection learnability on trans-
formers with a fixed depth or width. Detailed proof and remarks on inspection can be found in the
Appendix D.

Approximation of rates and boundaries. To further investigate the approximation rates and
boundaries as the budget m grows, we formulate Jackson-type estimates for OOD detection learn-
ability using transformer models. Before presenting the main Theorem 5, it is essential to define the
probability associated with the learnability of OOD detection:

Definition 5. (Probability of the OOD detection learnability) Given a domain space DXY and the
hypothesis space H(m,l)

tood , D′n
XY ⊂ Dn

XY ∈ DXY is the distribution that for any dataset X ∼ D′n
XIYI

,
OOD detection is learnable, where Dn

XY is any distribution in DXY with data amount n. The
probability of the OOD detection learnability is defined by

P := lim
Dn

XY ∈DXY

lim
D′n

XY ⊂Dn
XY

µ(D′n
XY )

µ(Dn
XY )

, (23)

where µ is the Lebesgue measure in Rd and n ∈ N∗.

Then the main Theorem 5 of the Jackson-type approximation is formally depicted:

Theorem 5. Given the condition l(y2,y1) ≤ l(K+1,y1), for any in-distribution labels y1,y2 ∈ Y ,
|X | = n < +∞ and τ > K + 1, and set l = 2 and m = (2mh + 1, 1,mh, 2τ d̂0 + 1, r).

Then in H(m,l)
tood restricted to maximum value classifier c, P ≥ (1 − η

|I|λ0
τ2C0(ri)(

C
(α)
1 (ri)

m2α−1
h

+

C
(β)
2 (ri)

rβ
(kmh)

β))(K+1)n+1

, and in H(m,l)
tood restricted to score-based classifier c, P ≥ (1 −

η
|I|λ0

τ2C0(ri)(
C

(α)
1 (ri)

m2α−1
h

+
C

(β)
2 (ri)

rβ
(kmh)

β))(K+1)n+1+1, for any fixed λ0 > 0 and ri defined in

Lemma 5, if {v ∈ RK+1 : E(v) ≥ λ} and {v ∈ RK+1 : E(v) < λ} both contain an open ball

with the radius R, where R > ||W4||2|I|(τ2C0(ϕ)(
C

(α)
1 (ϕ)

m2α−1
h

+
C

(β)
2 (ϕ)

rβ
(kmh)

β) + λ0), ϕ defined in

Lemma 6 and W4 is determined by ϕ.

The proof structure leverages the Jackson-type approximation of transformers, as detailed in Jiang
& Li (2023), to fulfill one of the sufficient conditions for OOD detection learnability i.e. Theorem
7 in Fang et al. (2022). Notably, the Jackson-type approximation of transformers has a global error
bound instead of the uniform convergence in UAP theory. Therefore, Markov’s inequality is applied
to get probabilistic conclusions regarding Definition 5. This approach establishes a lower bound
of error and its convergent rate for OOD detection using transformers. The lower bound is not the
infimum because the Jackson-type approximation is sufficient but not necessary. The specific proof
and discussion about the convergent rate and insights into transformers are organized in Appendix E.
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C.2 OOD DETECTION IN OTHER PRIORI-UNKNOWN SPACES

In the single-distribution space DDXY

XY , the Finite-ID-distribution space DF
XY , and the density-

based space Dµ,b
XY , if there exists an overlap between ID and OOD, OOD detection is NOT learnable,

which has been discussed in Fang et al. (2022); otherwise, DDXY

XY ⊂ Ds
XY , this situation is analyzed

in the previous Appendix C.1. Additionally, in the density-based space Dµ,b
XY , Theorem 9 and

Theorem 11 in Fang et al. (2022) are still established in the hypothesis space Htood, as the proof
of these two theorems only need to check the finite Natarajan dimension (Shalev-Shwartz & Ben-
David, 2014) of the hypothesis space, which is a weaker condition compared with the finite VC
dimension.

Theorem 4 demonstrates that in Htood, models are OOD detection learnable given sufficient param-
eters, thereby providing a theoretical basis for employing transformers in OOD detection algorithms
(Koner et al., 2021; Fort et al., 2021). Nevertheless, training models to reach their optimal state
poses significant challenges. To overcome these issues, additional strategies such as incorporating
extra data (Fort et al., 2021; Tao et al., 2023) and utilizing various distance metrics (Podolskiy et al.,
2021) have been developed. Detailed discussions on Gaussian mixture datasets, which explore the
discrepancy between theoretical performance and practical outcomes and suggest ways to bridge
this gap, can be found in Appendices F and G.

D PROOF AND REMARKS OF THEOREM 4

We first propose several Lemmas before proving the Theorem 4.

Lemma 1. The FCNN-based hypothesis space HRelu
q ⊆ H(m,l)

tood , where q = (l1, · · · , lg), l1 =
d0, lg = K + 1, lM = max{l1, · · · , lg},m = (lM , 1, 1, 1, lM ), and l = g − 3, g > 2.

Proof. Given weights wi ∈ Rli×li−1 and bias bi ∈ Rli×1 and considering x = h0 ∈ Rd0 is a data
in the dataset X , the i-layer output of FCNN with architecture q can be written as

fi(x) = Relu(wifi−1(x) + bi), (24)

and that of the transformer network H = c ◦Block(m)
l ◦Block(m)

l−1 ◦ · · · ◦Block
(m)
1 ◦F in the trans-

former hypothesis space for OOD detection Htood is depicted by Eq. equation 15 and equation 16.
Particularly, set W i

O = 0, and m = (lM , 1, 1, 1, lM ), then we get

hi = hi +W2 · Relu(W1 · hi−1 + b1) + b2, (25)

where hi,hi−1,b1 ∈ RlM ,W1,W2 ∈ RlM×lM . Since H is composed of l blocks and mappings c at
the bottom and F at the top as two layers, a simple case is when g = 3, it comes that l = 0, H(m,l)

tood

collapse into HRelu
q′ , where q′ = (l1, lM , lg), lM = max{l1, lg}. So HRelu

q ⊆ HRelu
q′ according to

Lemma 10 in Fang et al. (2022).

When g > 3, consider F (·) : Rd0×n −→ RlM×n, F (x) = Relu(Wx + b) column-wise and the
first layer of the FCNN-based network f1 : Rl1 −→ Rl2 , f1(x) = Relu(ω1x + β1). Since lM =
max{l1, · · · , lg}, l2 ≤ lM . Let

W = [ω1,0]
T , b = [β1,0]

T , (26)

then F (x) = [f1(x),0]
T . Similarly, we compare fi = Relu(ωifi−1(x) + βi) and Blocki−2. Sup-

pose that hi−3 = [fi−1(x),0]
T , let b2 = −hi−3,b1 = [βi,0]

T ,W2 = IdlM×lM and

W1 =

[
ωi 0
0 0

]
, (27)

then it is clear that hi−2 = [fi(x),0]
T .

By mathematical induction, it follows that hg−3 = [fg−1(x),0]
T and f(hg−3) = fg(x), f is defined

in Definition 3. Therefore, for any entry hw,b ∈ HRelu
q , there exists H ∈ H(m,l)

tood , m, l defined in the
Lemma s.t. H = hw,b.

Lemma 2. For any h ∈ C(Rd,RK+1), and any compact set C ∈ Rd, ϵ > 0, there exists a two
layer transformer Ĥ ∈ H(m,2)

Trans and a linear transformation f s.t. ||f ◦ Ĥ − h||2 < ϵ in C, where
m = (K + 1) · (2τ(2τ d̂0 + 1), 1, 1, τ(2τ d̂0 + 1), 2τ(2τ d̂0 + 1)).
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Proof. Let h = [h1, · · · , hK+1]
T . Based on the UAP of transformers i.e. Theorem 4.1 in Jiang & Li

(2023), for any ϵ > 0, there exists ĥi = f̂i ◦H̄i, where f̂i is a linear read out and H̄i ∈ H(m̂,2)
Trans, m̂ =

2τ(2τ d̂0 + 1), 1, 1, τ(2τ d̂0 + 1), 2τ(2τ d̂0 + 1) s.t.

max
x∈C

||ĥi(x)− hi(x)||1 < ϵ/
√
K + 1, i = 1, 2, · · · ,K + 1. (28)

We need to construct a transformer network Ĥ ∈ H(m,2)
Trans and a linear transformation f s.t.

(f ◦ Ĥ)i = f̂i ◦ H̄i (29)

for all i ∈ {1, · · · ,K + 1}. The following shows the process of construction:

Denote the one-layer FCNN in H̄i by Fi : Rd0×n −→ RD×n, where D = 2n(2nd0 + 1), the set the
one-layer FCNN in Ĥ:

F : Rd0×n −→ RD(K+1)×n,

F = [F1, · · · , FK+1]
T ,

(30)

then h0 = [h1
0, · · · , hK+1

0 ]T , where h0 is the input to transformer blocks in Ĥ, and hi
0 is that in

H̄i, i = 1, · · · ,K + 1.

Denote the matrices in H̄i by W̄ i
K , W̄ i

Q, W̄ i
V and W̄ i

O since each block only has one head. For the
i-th head in each block of transformer network Ĥ, we derive the matrix W i

k ∈ R(K+1)m̂h×(K+1)D

from W̄ i
K with m̂h = 1:

W i
K =

0(i−1)m̂h×(i−1)D

W̄ i
K

0(K+1−i)m̂h×(K+1−i)D

 . (31)

Furthermore, we obtain W i
Q, W i

V and W i
O in the same way, then independent operations can be

performed on different blocks in the process of computing the matrix Att(h0) ∈ R(K+1)D×n. So
we can finally get the attention matrix in the following form:

Att(h0) = [Att1(h0), · · ·AttK+1(h0)]
T , (32)

where Atti(h0) ∈ RD×n, i ∈ YI + 1 are attention matrices in H̄i.

Similarly, it is easy to select W1,W2,b1,b2 such that FF(h0) = [FF1(h0), · · ·FFK+1(h0)]
T , i.e.

h1 = [h1
1, · · · , hK+1

1 ]T , where the meaning of superscripts resembles to that of hi
0. Repeat the

process, we found that
Ĥ(X ) = [H̄1(X ), · · · H̄K+1(X )]T . (33)

Denote f̂i(H̄i) = wi · H̄i + bi, then it is natural to construct the linear transformation f by:

f(Ĥ) = [w1, · · · , wK+1]
T · Ĥ+ [b1, · · · , bK+1]

T , (34)

which satisfies Eq. equation 29.

By Eq. equation 28, for any ϵ > 0, there exists Ĥ ∈ H(m,2)
Trans and the linear transformation f s.t.

max
x∈C

||f ◦ Ĥ− h||2 ≤

√√√√K+1∑
i=1

(max
x∈C

||ĥi(x)− hi(x)||1)2

<

√√√√K+1∑
i=1

(ϵ/
√
K + 1)2 = ϵ,

(35)

where m = (K + 1) · m̂.

We have completed this Proof.

Then we prove the proposed Theorem 4.
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Proof. First, we prove the sufficiency. By the proposed Lemma 1 and Theorem 10 in Fang et al.
(2022), the sufficiency of Theorem 4 is obvious.

Furthermore, according to the Proof of Theorem 10 in Fang et al. (2022), to replace the FCNN-
based or score-based hypothesis space by the transformer hypothesis space for OOD detection
Htood, the only thing we need to do is to investigate the UAP of transformer networks s.t. the
UAP of FCNN network i.e. Lemma 12 in Fang et al. (2022) can be replaced by that of transformers.
Moreover, it is easy to check Lemmas 131̃6 in Fang et al. (2022) still holds for Htood. So following
the Proof of Theorem 10 in Fang et al. (2022), by Theorem 3 in Yun et al. (2019) and the proposed
Lemma 2, we can obtain the needed layers l and specific budget m which meet the conditions of the
learnability for OOD detection tasks.

Second, we prove the necessity. Assume that |X | = +∞. By Theorems 5, 8 in Bartlett & Maass
(2003), VCdim(Φ ◦H(m,l)

tood ) < +∞ for any m, l, where Φ maps ID data to 1 and maps OOD data to
2. Additionally, sup

h∈H(m,l)
tood

|{x ∈ X : h(x) ∈ Y}| = +∞ given |X | = +∞ for any m, l. By the
impossibility Theorem 5 for separate space in Fang et al. (2022), OOD detection is NOT learnable
for any finite m, l.
Remark 1. Yun et al. (2019) and Jiang & Li (2023) provide two perspectives of the capacity of
transformer networks. The former gives the learning conditions of OOD detection with limited
width (or budget of each block) and any depth of networks, and the letter develops the learning
conditions with limited depth.
Remark 2. Define a partial order for the budget m: for m = (d, h,mh,mV , r) and m′ =
(d′, h′,m′

h,m
′
V , r

′), m′ < m if every element in m′ is less than the corresponding element in
m. m′ ≤ m if if every element in m′ is not greater than the corresponding element in m. So it easily
comes to a corollary: ∀m′ satisfies m ≤ m′ and l ≤ l′, if transformer hypothesis space H(m,l)

tood is

OOD detection learnable, then H(m′,l′)
tood is OOD detection learnable.

Remark 3. It is notable that when m = +∞ or l = +∞, VCdim(Φ ◦ H(m,l)
tood ) may equal to +∞.

This suggests the possibility of achieving learnability in OOD detection without the constraint of
|X | < +∞. Although an infinitely capacitated transformer network does not exist in reality, ex-
ploring whether the error asymptotically approaches zero as capacity increases remains a valuable
theoretical inquiry.

E PROOF AND REMARKS OF THEOREM 5

To derive the Theorem 5, we need to figure out some Lemmas.

Lemma 3. For any h ∈ C̃(α,β), and any compact set C ∈ Rd, there exists a two layer transformer
Ĥ ∈ H(m,2)

Trans and a linear read out c : Rd̂×τ −→ R1×τ s.t. the inequality equation 39 is established,
where m = (2mh + 1, 1,mh, 2τ d̂0 + 1, r).

Proof. According to Theorem 4.2 in Jiang & Li (2023), for any h ∈ C̃(α,β), there exists H ∈ H(m,2)
Trans

and a linear read out c s.t.∫
I

τ∑
t=1

|c ◦Ht(x)− ht(x)|dx ≤ τ2C0(h)(
C

(α)
1 (h)

m2α−1
h

+
C

(β)
2 (h)

mβ
FF

(mh)
β). (36)

Based on Chebyshev’s Inequality,

P (

τ∑
t=1

|c ◦Ht(x)i − ht(x)i|/|I| > RHS in Eq. equation 36) + λ0) ≤
RHS in Eq. equation 36

λ0|I|
(37)

for any λ0 > 0. Additionally,

||c ◦H(x)− h(x)||2 =

√√√√ τ∑
t=1

|c ◦Ht(x)i − ht(x)i|2

≤
τ∑

t=1

|c ◦Ht(x)i − ht(x)i|.

(38)
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So we get

P (||c ◦H(x)− h(x)||2 > |I|(RHS in Eq. equation 36 + λ0) ≤
RHS in Eq. equation 36

λ0|I|
(39)

where mFF is usually determined by its number of neurons and layers. As the number of layers in
FF is fixed, the budget mFF and r are proportional:

r = k ·mFF. (40)

So the right side of the equation equation 36 can be written as

RHS = τ2C0(h)(
C

(α)
1 (h)

m2α−1
h

+
C

(β)
2 (h)

rβ
(kmh)

β). (41)

We have completed this Proof of the Lemma 3.

Given any finite δ hypothesis functions h1, · · · , hδ ∈ {X −→ Y}, for each hi, we introduce a
correspongding gi (defined over X ) satisfying that for any x ∈ X , gi(x) = yk and W4g

T
i +b4 = zk

if and only if hi(x) = k, where zk ∈ RK+1 is the one-hot vector corresponding to the label
k with value N . Clearly, gi is a continuous mapping in X , because X is a discrete set. Tietze
Extension Theorem (Urysohn, 1925) implies that gi can be extended to a continuous function in Rd.
If τ ≥ K + 1, we can find such gi,W4, b4.

Lemma 4. For any introduced gi mentioned above, there exists ĝi satisfies ĝi ∈ C̃(α,β) and ||ĝi −
gi||2 < ϵ.

Proof. Based on Theorem 7.4 in DeVore et al. (2021), set G ≡ 0 and ρ ≡ 0, then ĝi ∈ C̃(α,β), and
there exists a constant C, s.t. ||ĝi − gi||2 < C

(r+1)β
.

Choose r which is great enough, the proof is completed.

Remark 4. Note that we can also prove the same result if gi is any continuous function from Rd̂ to
R with compact support.

Lemma 5. Let |X | = n < +∞, τ > K + 1 and σ be the Relu function. Given any finite
δ hypothesis functions h1, · · · , hδ ∈ {X −→ {1, · · · ,K + 1}}, then for any mh, r > 0, m =

(2mh + 1, 1,mh, 2τ d̂0 + 1, r), P (h1, · · · , hδ ∈ H(m,2)
tood ) ≥ (1 − mRHS in Eq. equation 36

|I|λ0
)(K+1)δ for

any η > 1.

Proof. Since X is a compact set, then Lemma 4 implies that there exists ĝi ∈ C̃(α,β) s.t.

||gi − ĝi||2 < ϵ/||W4||2. (42)

Denote ri = W4g
T
i + b4 and r̂i = W4ĝ

T
i + b4, So we get

||ri − r̂i||2 = ||W4(gi − ĝi)
T ||2 ≤ ϵ. (43)

Then by Lemma 3, there exists Ĥ ∈ H(m,2)
Trans and a linear read out c s.t.

P (||c◦H(x)−h(x)||2 ≤ |I|(RHS in Eq. equation 36+λ0) ≥ 1− RHS in Eq. equation 36

λ0|I|
. (44)

Thus we get if hi(x) = k, which is equal to gi(x) = yk or ri(x) = zk:

Firstly, denote f = W4c ◦HT + b4, and let h = ĝi, then

P (||f(x)− r̂i(x)||2 ≤ ||W4||2|I|(RHS in Eq. equation 36 + λ0) ≥ 1− RHS in Eq. equation 36

λ0|I|
.

(45)
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So we obtain that

P (|fk −N | ≤ ||W4||2|I|(RHS in Eq. equation 36 + λ0)

≥ P (|fk − r̂i,k|+ |r̂i,k − ri,k| ≤ ||W4||2|I|(RHS in Eq. equation 36 + λ0))

≥ P (||f − r̂i||2 + ||r̂i − ri||2 ≤ ||W4||2|I|(RHS in Eq. equation 36 + λ0))

≥ P (||f − r̂i||2 + ϵ ≤ ||W4||2|I|(RHS in Eq. equation 36 + λ0))

= P (||f − r̂i||2 ≤ ||W4||2|I|(RHS in Eq. equation 36 + (λ0 −
ϵ

|I|
)))

≥ 1− RHS in Eq. equation 36

|I|(λ0 − ϵ
|I| )

= 1− RHS in Eq. equation 36

|I|λ0 − ϵ
.

(46)

Similarly, for any j ̸= k, we can also obtain that

P (|fk| ≤ ||W4||2|I|(RHS in Eq. equation 36 + λ0) ≥ 1− RHS in Eq. equation 36

|I|λ0 − ϵ
. (47)

Therefore, P (argmaxk∈Y fk(x) = hi(x)) ≥ (1− ηRHS in Eq. equation 36
|I|λ0

)K+1 for any x, if

N > 2||W4||2|I|(RHS in Eq. equation 36 + λ0) (48)

for any η > 1, i.e.

P (h1, · · · , hδ ∈ H(m,2)
tood ) ≥ (1− ηRHS in Eq. equation 36

|I|λ0
)(K+1)δ, (49)

if
N > 2||W4||2|I|(RHS in Eq. equation 36 + λ0) (50)

for any η > 1. Since N is arbitrary, we can find such N .

Lemma 6. Let the activation function σ be the Relu function. Suppose that |X | < +∞, and
τ > K + 1. If {v ∈ RK+1 : E(v) ≥ λ} and {v ∈ RK+1 : E(v) < λ} both contain an
open ball with the radius R > ||W4||2|I|(RHS in Eq. equation 36(ϕ) + λ0), the probability of
introduced binary classifier hypothesis space H(m,2),λ

tood,E consisting of all binary classifiers P > (1−
ηRHS in Eq. equation 36

|I|λ0
)(K+1)δ+1, where m = (2mh + 1, 1,mh, 2τ d̂0 + 1, r) and ϕ(x) is determined

by centers of balls, specifically defined in the proof and W4 is determined by ϕ(x).

Proof. Since {v ∈ RK+1 : E(v) ≥ λ} and {v ∈ RK+1 : E(v) < λ} both contain an open ball
with the radius R ≥ ||W4||2|I|(RHS in Eq. equation 36 + λ0), we can find v1 ∈ {v ∈ RK+1 :
E(v) ≥ λ}, v2 ∈ {v ∈ RK+1 : E(v) < λ} s.t. BR(v1) ⊂ {v ∈ RK+1 : E(v) ≥ λ}
and BR(v2) ⊂ {v ∈ RK+1 : E(v) < λ}, where BR(v1) := {v : ||v − v1||2 < R} and
BR(v2) := {v : ||v − v2||2 < R}.

For any binary classifier h over X , we can induce a vector-valued function as follows. For any
x ∈ X ,

ϕ(x) =

{
v1, if h(x) = 1,

v2, if h(x) = 2.
(51)

Since X is a finite set, the Tietze Extension Theorem implies that ϕ can be extended to a continuous
function in Rd. Since X is a compact set, then Lemma 3 and Lemma 4 implies that there exists a
two layer transformer H ∈ H(m,2)

Trans and f defined in 3 s.t for any η > 1,

P (||f ◦H(x)−ϕ(x)||2 ≤ ||W4||2|I|(RHS in Eq. equation 36+λ0) ≥ 1− RHS in Eq. equation 36

|I|λ0 − ϵ
(52)

Therefore, for any x ∈ X , it is easy to check that E(f ◦ H(x)) ≥ λ if and only if h(x) = 1, and
E(f ◦H(x)) < λ if and only if h(x) = 2 if the condition in P (·) is established.
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Since |X| < +∞, only finite binary classifiers are defined over X . By Lemma 5, we get

P (Hb
all = H(m,2),λ

tood,E ) ≥ (1− ηRHS in Eq. equation 36

|I|λ0
)(K+1)δ+1 (53)

The proof is completed.

Now we prove one of the main conclusions i.e. Theorem 5, which provides a sufficient Jackson-type
condition for learning of OOD detection in Htood.
Proof. First, we consider the case that c is a maximum value classifier. Since |X | < +∞, it is
clear that |Hall| < +∞, where Hall consists of all hypothesis functions from X to Y . For |X | < +∞
and τ > K +1, according to Lemma 5, P (Hall ⊂ H(m,2)

tood ) ≥ (1− ηRHS in Eq. equation 36
|I|λ0

)(K+1)δ for
any η > 1, where m = (2mh + 1, 1,mh, 2nd+ 1, r) and δ = (K + 1)n.

Consistent with the proof of Lemma 13 in Fang et al. (2022), we can prove the correspondence
Lemma 13 in the transformer hypothesis space for OOD detection if Hall ⊂ H(m,2)

tood , which implies
that there exist Hin and Hb s.t. H(m,2)

tood ⊂ Hin ◦ Hb, where Hin is for ID classification and Hb

for ID-OOD binary classification. So it follows that Hall = H(m,2)
tood = Hin ◦ Hb. Therefore, Hb

contains all binary classifiers from X to {1, 2}. According to Theorem 7 in (Fang et al., 2022), OOD
detection is learnable in Ds

XY for H(m,2)
tood .

Second, we consider the case that c is a score-based classifier. It is easy to figure out the probability
of which OOD detection is learnable based on Lemma 6 and Theorem 7 in Fang et al. (2022).

The proof of Theorem 5 is completed.
Remark 5. Approximation of α: First of all, it is definitely that α > 1

2 to maintain the conditions in
Theorem 4.2 of Jiang & Li (2023). Then, analyze the process of our proof, because of the powerful
expressivity of Relu, we only need G ≡ 0 to bridge from C to C̃(α,β). So with regard to Htood, any
α > 1

2 satisfies all conditions. But Cα
1 can increase dramatically when α get greater.

Remark 6. Approximation of β: We denote β ∈ (0, βmax]. According to Theorem 7.4 in DeVore
et al. (2021), βmax ∈ [1, 2].
Remark 7. By the approximation of α and β, we discuss the trade-off of expressivity and the budget
of transformer models. Firstly, the learnability probability P −→ 1 if and only if mh −→ +∞ and
r

mh
−→ +∞. For a fixed r, there exists a mh which achieves the best trade-off. For a fixed mh, the

greater r is, the more powerful the expressivity of transformer models is.
Remark 8. Different scoring functions E have different ranges. For example,

maxk∈{1,···K}
ev

k∑K+1
c=1 evc and T log

∑K
c=1 e

( vc

T ) have ranges contain ( 1
K+1 , 1) and (0,+∞),

respectively. The Theorem 5 gives the insight that the domain and range of scoring functions should
be considered when dealing with OOD detection tasks using transformers.
Remark 9. It can be seen from Theorem 5 that the complexity of the data increases, and the scale
of the model must also increase accordingly to ensure the same generalization performance from
the perspective of OOD detection. Increasing the category K of data may exponentially reduce the
learnable probability of OOD detection, while increasing the amount of data n reduces the learnable
probability much more dramatically. Using Taylor expansion for estimation,

(1− η

|I|λ0
τ2C0(ri)(

C
(α)
1 (ri)

m2α−1
h

+
C

(β)
2 (ri)

rβ
(kmh)

β))(K+1)n+1

= 1− (K + 1)n+1 η

|I|λ0
τ2C0(ri)(

C
(α)
1 (ri)

m2α−1
h

+
C

(β)
2 (ri)

rβ
(kmh)

β)
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for any η
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β) < 1. To ensure generalization, increasing the

data category K requires a polynomial increase of model parameters; while increasing the amount
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of data n requires an exponential increase of model parameters. The data with positional coding
X is contained in I. The greater I is, the more possibility transformers have of OOD detection
learnability. Nevertheless, the scoring function needs to meet a stronger condition of R. Theorem 5
indicates that large models are guaranteed to gain superior generalization performance.

Remark 10. This theorem has limitations for not determining the exact optimal convergence order
and the infimum of the error. More research on function approximation theory would be helpful to
develop it in-depth.

F THE GAP BETWEEN THEORETICAL EXISTENCE AND TRAINING OOD
DETECTION LEARNABLE MODELS

We first show the key problems that intrigue the gap by conducting experiments on generated
datasets. The specific experiments are described as follows.

F.1 BASIC DATASET GENERATION

We generated Gaussian mixture datasets consisting of two-dimensional Gaussian distributions. The
expectations µi and the covariance matrices Σi are randomly generated respectively, i = 1, 2 i.e.
K = 2:

µi =
i

10
[|N (0, 1)|, |N (0, 1)|]T ,

Σi =

[
σi
1 0
0 σi

2

]
, where σi

j =
i

10
|N (0, 1)|+ 0.1, j = 1, 2,

(55)

and the data whose Euclidean distance from the expectation is greater than 3σ is filtered to construct
the separate space. Further, we generated another two-dimensional Gaussian distribution dataset,
and also performed outlier filtering operations as OOD data with the expectation µO and the covari-
ance matrix ΣO as

µO =
1

2
[−|N (0, 1)|,−|N (0, 1)|]T ,

ΣO =

[
σO
1 0
0 σO

2

]
, where σO

j = 0.2|N (0, 1)|+ 0.1.
(56)

Formally, the distribution of the generated dataset can be depicted by

DX =
1

3
(N (µ1,Σ1) +N (µ2,Σ2) +N (µO,ΣO)) (57)

as the quantity of each type of data is almost the same. A visualization of the dataset with a fixed
random seed is shown in Figure 3(a).

F.2 MODEL CONSTRUCTION AND GAP ILLUSTRATION

We constructed the transformer models strictly following the hypothesis space definition 4, where
d̂0 = d̂ = 2 and τ = 1. Our experimental results are shown in Figure 5(b). According to Theorem
4, in H(m,l)

tood , where m = (2, 2, 1, 1, 4) and l is sufficiently large, or l = 2, m = (2w, 1, 1, w, 2w),
where w := τ(2τ d̂0 + 1) = 15, OOD detection can be learned. Since Theorem 4 does not give a
specific value for l, so we choose a wide range of l for experiments. Figure 5(b) shows that even for a
very simple Gaussian mixture distribution dataset, transformer models without additional algorithm
design can classify ID data with high accuracy in most cases, but can not correctly classify OOD
data, showing severe overfitting and strong bias to classify OOD data into ID categories. By chance,
transformers with some l just converge to a learnable state. We have also selected the scoring

function E(f(hl)) = maxk∈{1,···K}
ef(hl)

k∑K+1
c=1 ef(hl)

c and visualized the scoring function values for
every category by the trained models. It can be seen that in a model that cannot identify OOD data,
using the score-based classifier c also can not distinguish the OOD data.
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Figure 3: (a) The visualization of the generated two-dimensional Gaussian mixture dataset. (b)
Curves show the classification accuracy and OOD detection accuracy of the training stage and test
stage with different model budgets. And likelihood score bars demonstrate that the model with the
theoretical support is disabled to learn OOD characters, leading to the failure of OOD detection.

G DETAILS OF OPTIMIZATION AND VALIDATION ON GENERATED DATASETS

In this section, we analyze the causes of training failures and introduce an algorithm designed to
address these challenges. We used five different random seeds for data generation for each dataset
type discussed later. The experimental outcomes are illustrated in Figure 4.

Figure 4: The classification and OOD detection results in the optimization process. The first row of
subfigures is the results of experiments under different OOD data distributions. The scAtter plots
below show the corresponding training and test set data. The trade-off of loss function L is shown
when picking different γ, and the power of adding rounded OOD data is illustrated with perfect
performance in the third column.
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G.1 OPTIMIZATION 1

First of all, considering that the classical cross-entropy loss L1 does not satisfy the condition
l(y2,y1) ≤ l(K + 1,y1), for any in-distribution labels y1,y2 ∈ Y , and there is no instruction
for model to learn recognizing OOD data, an additional loss L2 is added in the loss function:

L = (1− γ)L1 + γL2, (58)

L1(y,x) = −Ex∈X

K+1∑
j=1

yj log(softmax(f ◦H(x))j), (59)

L2(y,x) = −Ex∈X

2∑
j=1

ϕ̂(y)j log(ϕ̂(softmax(f ◦H(x)))j), (60)

where H ∈ HTrans, y is the one-hot label vector, ϕ̂ : RK+1 −→ R2 is depicted as follows:

ϕ̂(y) =

[∑K
i=1 yi

yK+1

]
. (61)

When the condition is satisfied, the classification loss sensitivity of ID data classification decreases,
affecting the classification performance of ID data. Therefore, it is qualitatively evident that the
value of γ has a trade-off between the performance of ID data classification and OOD data recogni-
tion.

G.2 OPTIMIZATION 2

Selecting γ = 0.0, 0.5, 0.9, we observe a nuanced trade-off illustrated in the basic generated dataset
(see the first column of Figure 4), as the model will classify ID data randomly, achieving only 50%
accuracy in both training and testing phases, if γ = 1. Modifying the loss function merely increases
the probability that the model can learn from OOD data but does not ensure stable training for
achieving high-performance OOD detection. This limitation arises because when the model accu-
rately classifies ID data, the value of f ◦H(x)K+1 remains small, rendering L2 almost ineffective
during training and impeding the model’s ability to distinguish between ID and OOD. Without OOD
data in the training set, the model tends to classify all test set data as ID. To address these issues,
we explore the generation of virtual OOD data. Our experiments, shown in the middle column of
Figure 4, indicate that creating a single cluster of virtual OOD data markedly enhances the OOD
detection capabilities of transformers, while also illustrating the trade-offs associated with the pa-
rameter γ as analysized in Section 3. However, challenges persist in situations where the model
correctly classifies ID data but fails to identify OOD data during training. To further enhance per-
formance, we generate three clusters of OOD data surrounding the ID data. As demonstrated in the
right column of Figure 4, enriching the content of virtual OOD data enables the model to consis-
tently learn ID classification and extend its generalization to OOD data. Adding rounded clusters of
OOD data significantly diminishes the influence of L2, emphasizing the importance of generating
high-quality fake OOD data. Considering the high dimensionality of most datasets and the chal-
lenges of delineating high-dimensional ID data boundaries in Euclidean space due to the curse of
dimensionality, we retain the binary loss L2 in our algorithm.

Our experimental results are also consistent with recent research. For example, Fort et al. (2021)
shows that incorporating outlier exposure significantly improves the OOD detection performance
of transformers, and Tao et al. (2023) has presented a method for synthesizing OOD data using
boundary data from KNN clusters.

H THE PSEUDOCODE OF GROD

The pseudocode of GROD is shown in Alg. 1.
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Algorithm 1 GROD
Require: The training dataset and labels Xtrain, Y , the testing dataset and labels Xtest, Ytest, the learnable

parameter α, fixed parameters γ and the number of each cluster of OOD data num, batch size B, number of
ID classes K

Ensure: Trained model M , classification results Ŷtest for ID data and OOD detection
{Fine-tuning Stage}
for ep in training epochs do

for each batch X in Xtrain do
F ← NET(X ) {Obtain features by Eq. equation 1}
FPCA ← PCA(F , num) {PCA projction}
VPCA ← Boundary(FPCA) {Obtain boundary ID data}
µPCA ← MEAN(F) {Obtain centers of ID data}
ΣPCA ← COV(F)
DistIDPCA ← MEAN(DIST(F , µPCA,ΣPCA)) {Obtain average distances of ID by Eq. equation 8 (the
former one)}
F̂OOD

PCA ← GENERATE(VPCA, µPCA, α, num) {Generate fake OOD data by Eq. equation 6-Eq. equa-
tion 7}
FLDA := ∪K

i=1FLDA,i ← LDA(F ,Y, num) {Generate inter-class fake OOD data and calculate Ma-
halanobis distances similar to the above process}
VLDA,i ← Boundary(FLDA,i)
for ik ∈ I do

µLDA,ik ← MEAN(F|y=ik )
ΣLDA,ik ← COV(F|y=ik )

µID
LDA,ik

← MEAN(DIST(F|y=ik , µPCA,ΣLDA,ik ))

F̂OOD
LDA,ik

← GENERATE(VLDA,ik , µLDA,ik , α, num) {I is derived by Eq. 5}
end for
{Mahalanobis distance filtering mechanism by Eq. equation 9-Eq. equation 10}
if |I| > 0 then
F̂OOD ← F̂OOD

PCA ∪ (∪ik F̂
OOD
LDA,ik

)

DistOOD ← minikDIST(F̂
OOD, µLDA,ik ,ΣLDA,ik )

I0 ← argminik
DIST(F̂OOD, µLDA,ik ,ΣLDA,ik )

Λ← LAMBDA(λ, F̂OOD,DistOOD,DistIDLDA,I0)

mask = DistOOD ≥ (1 + Λ)DistIDLDA,I0
else
F̂OOD ← F̂OOD

PCA

DistOOD ← DIST(F̂OOD, µPCA,ΣPCA)

Λ← LAMBDA(λ, F̂OOD,DistOOD,DistIDPCA)
mask = DistOOD ≥ (1 + Λ)DistIDPCA

end if
FOOD ← F̂OOD[mask]
if |FOOD| > B/K + 2 then
FOOD ← FOOD[random mask] {Random filtering mechanism}
Fall ← F ∪ FOOD

Yall ← STACK(Y, (K + 1)1|FOOD|)

Ŷall, LOGITS ← CLASSIFIER(Fall)
Iterate the model parameters according to the loss function L in Eq. equation 58-equation 60.

end if
end for
Save model M with the best performance.

end for
return M
{Inference Stage}
Ftest, LOGITStest ←M(Ftest)
LOGITStest ← ADJUST(LOGITStest) {Adjust LOGITS by Eq. equation 14}
Ŷtest ← PostProcessor(Ftest, LOGITStest) {Obtain prediction results after post-processing}
return Ŷtest
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I IMPLEMENTATION DETAILS

I.1 SETTINGS FOR THE FINE-TUNING STAGE.

For image classification, we finetune the ViT backbone and GROD model with hyper-parameters
as follows: epoch number = 20, batch size = 64, and the default initial learning rate = 1 × 10−4.
We set parameters α = 1 × 10−3 for PCA and LDA projection and α = 0.1 for PCA projection,
num = 1, and γ = 0.1. An AdamW (Kingma & Ba, 2014; Loshchilov & Hutter, 2017) optimizer
with the weight decay rate 5 × 10−2 is used when training with one Intel(R) Xeon(R) Platinum
8352V CPU @ 2.10GHz and one NVIDIA GeForce RTX 4090 GPU with 24GiB memory. For
other OOD detection methods, we adopt the same values of common training hyperparameters for
fair comparison, and the parameter selection and scanning strategy provided by OpenOOD (Zhang
et al., 2023b; Yang et al., 2022a;b; 2021; Bitterwolf et al., 2023) for some special parameters. For
text classification, we employ the pre-trained BERT base model and GPT-2 small. We modify the
default initial learning rate to 2× 10−5 and the weight decay rate to 1× 10−3 for BERT, and initial
learning rate to 5 × 10−5 and the weight decay rate to 1 × 10−1 for GPT-2, other hyperparameters
maintain the same as in image classification tasks.

GROD has three hyperparameters i.e. num, γ and α. num = 1 is empirically an optimal choice,
which is consistent with the conclusion in Fort et al. (2021) that even adding one or two OOD can
raise the OOD detection performance of transformers, and is coordinated for the ratio of ID and
fake OOD. The ablation results regarding γ in Fig. 5 show that γ ∈ [0.1, 0.3] benefits the task
performance, which is also in line with the theoretical insights and the classification (learned by L1)
and OOD detection (learned by L2) goal of the task. As for α, empirically, if LDA is used, we
recommend α = 10−3, otherwise 10−1 should be taken.

We preserve the finetuned model with the highest ID data classification accuracy on the validation
dataset and evaluate its performance with test datasets. The training and validation process is con-
ducted without any OOD exposure.

I.2 DATASET DETAILS

We provide details of the datasets as follows:

Image datasets.

• CIFAR-10 (Krizhevsky et al., 2009): This dataset contains 60, 000 images of 32x32 pixels
each, distributed across 10 diverse categories (airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck). Each category includes 6, 000 images, split into 50, 000 for
training and 10, 000 for testing. It is a standard benchmark for image classification tasks.

• CIFAR-100 (Krizhevsky et al., 2009): Building on the structure of CIFAR-10, CIFAR-
100 offers greater variety with 100 categories, each containing 600 images. This dataset
serves as an extension of CIFAR-10, providing a deeper pool of images for more complex
machine-learning models.

• ImageNet-200 (Deng et al., 2009): ImageNet-200 is images selected from ImageNet-1k
with 200 categories. The detailed data list is following the OpenOOD benchmark (Zhang
et al., 2023b; Yang et al., 2022a;b; 2021; Bitterwolf et al., 2023).

• Tiny ImageNet (Le & Yang, 2015): Tiny ImageNet comprises 100, 000 images resized to
64×64 pixels, spread across 200 categories, with each category featuring 500 training sam-
ples, and 50 samples each for validation and testing. This dataset offers a broad spectrum
of challenges in a format similar to the CIFAR datasets but on a larger scale.

• SVHN (Netzer et al., 2011): The Street View House Numbers (SVHN) dataset, extracted
from Google Street View images, focuses on number recognition with 10 classes corre-
sponding to the digits 0, 1, · · · , 9. This dataset is particularly suited for developing machine
learning techniques as it simplifies preprocessing steps.

• Tiny ImageNet-597 (Zhang et al., 2023b; Yang et al., 2022a;b; 2021; Bitterwolf et al.,
2023): Firstly filter out many categories from ImageNet-1K to avoid overlap with test
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OOD data, resulting in 597 categories left. Then apply the same processing as getting Tiny
ImageNet from ImageNet to create this dataset.

• ImageNet-800(Zhang et al., 2023b; Yang et al., 2022a;b; 2021; Bitterwolf et al., 2023):
The 800-class subset of ImageNet-1K that is disjoint with ImageNet-200.

Text datasets.

• Semantic shift: Following the approach in Podolskiy et al. (2021), we use the CLINC150
dataset (Larson et al., 2019), which consists of phrases used in voice assistants, representing
various intents. The OOD data is set to be phrases with unidentified intents, serving as
"out-of-scope" inquiries not aligned with any predefined categories. This dataset is ideal
for testing the robustness of intent classification systems against unexpected queries and
includes both in-scope and out-of-scope data.

• Background shift: We follow (Arora et al., 2021) to choose the long movie review dataset
IMDB (Maas et al., 2011) as the ID dataset and a business review dataset Yelp (Zhang
et al., 2015) as the OOD dataset. The IMDB dataset consists of 50, 000 movie reviews,
tailored for binary sentiment classification to discern positive and negative critiques. The
Yelp dataset, which includes a variety of business, review, and user data, represents a shift
in the background context and is treated as OOD data, providing a different commercial
background from the movie reviews of the IMDB dataset.

J ABLATION STUDY ON HYPER-PARAMETERS.

Ablation on the loss weight γ. Figure 5(a) examines variations in γ within the loss function as
detailed in Eq. equation 11-equation 13. As outlined in Section 3, changes in γ show the trade-off
within the loss function L. When the value of γ ranges from 0 to 1, the performance under each eval-
uation metric initially increases and then decreases. When γ = 1, the model fails to classify ID data.
Intriguingly, L2 and the fake OOD slightly enhance the ID classification performance, surpassing
the 10% accuracy threshold of randomness, which explains how GROD simultaneously improves
ID data classification and OOD detection performance, as illustrated in Section 4.2. The efficiency
of L2 also indicates that OOD generated by GROD closely mimics OOD from real datasets.

Figure 5: Ablation study on extra hyperparameters in GROD. (a) The weight γ in L. (b) The
parameter α adjusts the extending distance of generated OOD data. (c) The number of every OOD
cluster num. The ID dataset is CIFAR-10 and the backbone is the pre-trained ViT-B-16.
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Ablation on α in adjusting the ID-OOD distance. In Figure 5(b), the value of α is adjusted,
demonstrating that a larger α increases the Mahalanobis distance between ID and synthetic OOD.
Empirical results indicate that an α value of 1 × 10−3 achieves optimal performance when using
LDA projection. If α is reduced, causing ID and OOD data to be too closely aligned in Mahalanobis
distance, the model tends to overfit and fails to discern their differences. Conversely, if α is too
high, most inter-class OOD data either become global OOD around ID data or resemble ID from
other classes, thus being excluded by the Mahalanobis distance condition in Eq. equation 9. At
this time, inter-class OOD is similar to global OOD typically generated only by PCA, leading to a
significant drop in near-OOD detection performance, while far-OOD detection remains consistent.
The performance curves of near-OOD detection also indicate that if only PCA projections are used,
we can set α in a larger value, as the performance increases after dropping from the top.

Ablation on num in the number of outliers. Figure 5(c) explores how the dimension parameter
num influences performance. The model demonstrates superior performance when num is set
to 1 or 2, as PCA and LDA effectively retain characteristics of the original data and distinguish
clusters of each category. Increasing the dimensions of PCA and LDA projections often results in
the selection of less representative features in our filtering mechanism. Besides, maintaining num
at 1 or 2 usually ensures a balanced ratio of generated OOD data to ID data. Overall, the model
consistently delivers competitive outcomes, affirming the efficiency of GROD in various settings.

K VISUALIZATION FOR FAKE OOD DATA AND PREDICTION LIKELIHOOD

Feature visualization. As shown in Figure 6, we use the t-SNE dimensionality reduction method
to visualize the two-dimensional dataset embeddings in the feature space. All the subfigures are
derived from the same fine-tuned ViT-B-16 model.

The ID dataset, the test set of CIFAR-10, displays ten distinct clusters after embedding, each clearly
separated. Consistent with our inference on GROD, the LDA projection generates fake OOD around
each ID data cluster. Despite the high-dimensional feature space where OOD data typically lies out-
side ID clusters due to GROD’s generation and filtering mechanisms, the two-dimensional visual-
ization occasionally shows virtual OOD data within the dense regions of ID. This occurs because the
projection from high dimensions to two-dimensional space inevitably results in some loss of feature
expression, despite efforts to maintain the integrity of the data distribution.

Figure 6: t-SNE visualization of the generated OOD data and test sets in the feature space.

We also visualize real OOD features from near-OOD datasets CIFAR-100 and Tiny ImageNet, and
the far-OOD dataset SVHN. To distinctively compare the distribution characteristics of fake and real
OOD data, we plot an equal number of real and synthetic OOD samples selected randomly. Near-
OOD data resembles our synthetic OOD, both exhibiting inter-class surrounding characteristics,
while far-OOD data from SVHN displays a different pattern, mostly clustering far from the ID
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clusters. Although far-OOD data diverges from synthetic OOD data, the latter contains a richer
array of OOD features, facilitating easier detection of far-OOD scenarios. Thus, GROD maintains
robust performance in detecting far-OOD instances as well. The visualization results in Figure 6
confirm that GROD can generate high-quality fake OOD data effectively, overcoming the limitation
discussed in He et al. (2022) that OOD generated by some methods can not represent real outliers.

Figure 7: The distribution histograms and probability density curves of prediction likelihoods of ID
and OOD test data. Results derived by GROD and the baseline MSP are visualized, with CIFAR-
10 as ID and SVHN as OOD.

Likelihood visualization. The process of OOD detection and model performance evaluation fol-
lows a standardized protocol, where classification predictions and their likelihood scores are gener-
ated and subsequently analyzed. The likelihood scores for OOD data are typically lower than those
for ID data, as OOD samples do not fit into any ID category, resulting in a bimodal distribution of
likelihood scores of all test data. In this distribution, ID and OOD form distinct high-frequency ar-
eas, separated by a zone of lower frequency. A broader likelihood range in this low-frequency zone
with minimal overlap between the ID and OOD data signifies the model is more effective for OOD
detection.

Comparing the likelihood distributions of the baseline MSP model with GROD as shown in Fig-
ure 7, it is evident that GROD significantly enhances the distinction in classification likelihood be-
tween ID and OOD, thereby improving OOD detection performance. The enhancements are quan-
titatively supported by the performance metrics reported in Table 2, where GROD surpasses the
baseline by 15.30% in FPR@95 and 4.87% in AUROC on datasets CIFAR-10 and SVHN.
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