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ABSTRACT

Generative models in drug discovery have recently gained attention as efficient al-
ternatives to brute-force virtual screening. However, most existing models do not
account for synthesizability, limiting their practical use in real-world scenarios. In
this paper, we propose RXNFLOW, which sequentially assembles molecules using
predefined molecular building blocks and chemical reaction templates to constrain
the synthetic chemical pathway. We then train on this sequential generating pro-
cess with the objective of generative flow networks (GFlowNets) to generate both
highly rewarded and diverse molecules. To mitigate the large action space of syn-
thetic pathways in GFlowNets, we implement a novel action space subsampling
method. This enables RXNFLOW to learn generative flows over extensive action
spaces comprising combinations of 1.2 million building blocks and 71 reaction
templates without significant computational overhead. Additionally, RXNFLOW
can employ modified or expanded action spaces for generation without retraining,
allowing for the introduction of additional objectives or the incorporation of newly
discovered building blocks. We experimentally demonstrate that RXNFLOW out-
performs existing reaction-based and fragment-based models in pocket-specific
optimization across various target pockets. Furthermore, RXNFLOW achieves
state-of-the-art performance on CrossDocked2020 for pocket-conditional gener-
ation, with an average Vina score of —8.85 kcal/mol and 34.8% synthesizability.
Code is available at https://anonymous.4open.science/r/RxnFlow-B13E/.

1 INTRODUCTION

Structure-based drug discovery (SBDD) has emerged as a pivotal paradigm for early drug discov-
ery, facilitated by the increasing accessibility of protein structure prediction tools (Jumper et al.,
2021) and high-resolution crystallography (Liu et al., 2015). However, traditional brute-force vir-
tual screening is computationally expensive (Graff et al., 2021), prompting the development of deep
generative models that can bypass this inefficiency. In this context, various approaches such as deep
reinforcement learning (Zhavoronkov et al., 2019), variational autoencoders (Zhung et al., 2024)
generative adversarial network (Ragoza et al., 2022), and diffusion models (Guan et al., 2023a;b)
have been proposed to directly sample candidate molecules against a given protein structure.

While generative models have shown success in molecular discovery with desirable biological prop-
erties, most overlook synthesizability which is a crucial factor for wet-lab validation (Gao & Coley,
2020). One line to improve synthesizability is multi-objective optimization using cheap functions
to estimate the synthesizability (Ertl & Schuffenhauer, 2009), but this is too simplified to reflect
complex synthetic principles (Cretu et al., 2024). Other efforts aim to project molecules from gener-
ative models into a synthesizable space (Gao et al., 2022b; Luo et al., 2024; Gao et al., 2024b), but
chemical modifications in this process can degrade the optimized properties.

To address this issue, recent works formulate the generation of synthetic pathways as a Markov
decision process (MDP) for molecular design (Gottipati et al., 2020). These approaches return a
synthesizable molecule by assembling purchasable building blocks and reaction templates accord-
ing to the generated synthetic pathway. Notably, the emergence of virtual libraries—created by
combinatorially enumerating building blocks and reaction templates, such as Enamine REAL (Gry-
gorenko et al., 2020)—allows the generated molecules to be readily synthesizable on demand with
their synthetic pathways. Recent studies (Cretu et al., 2024; Koziarski et al., 2024) advanced this



Under review as a conference paper at ICLR 2025

i Continuous Action Space A b) Policy Estimation - A*
(a) Action Space (10M template-block pairs, section 3.2) ( ) y Fe(st’ a) e (alsi" A‘ )

Action Space

bl
Building Action Template A Template B ‘Subsamplin /i a2 s
Blocks Embedding | Yo" . % ° (Secmn%s)g / g . V. -
(2m A i [; (:j Cj ag @ ag
Reacti 1 Template C . o =
eaction B | AL ; 5
Templates | One-hot O’\A{l o 2o < i i
(71) Encoding
Importance Sampling

c) Generation
6 ] Reaction

Starting 5')\:5]) o
Block T~

Figure 1: Overview of RXNFLOW. (a) Synthetic action space which is represented in a continuous
action space. Each colored box corresponds to a reaction template and the molecules in the box are
reactant blocks. (b) Policy estimation using the action space subsampling in a manner of importance
sampling. (c) Molecular generation process and model training.

approach by training the decision-making policy using the objective of generative flow networks
(GFlowNets; Bengio et al., 2021). This objective encourages the policy to sample in proportion to
the reward function, enabling the retrieval of samples from a diverse range of modes.

Unlike atom-based or fragment-based models, the synthetic action spaces are massive and composed
of millions of building blocks and tens of reaction templates. While the large action spaces offer
opportunities to discover novel hit candidates by expanding an explorable chemical space (Sady-
bekov et al., 2022), it incurs significant computational overhead. Thus, prior works have restricted
the action spaces to trade off the size of the search space for efficiency. However, reducing the
search space leads to a decrease in diversity and synthetic complexity. While one could compensate
for the reduced number of building block candidates by adding more reaction steps, this leads to
the increase in synthetic complexity, negatively influencing synthesizability, yield, and cost (Coley
etal., 2018; Kim et al., 2023).

In response to this challenge, we propose RXNFLOW, a synthesis-oriented generative framework
that allows training generative flows over a large action space to generate synthetic pathways for
drug design. The distinctive features of this method are as follows. First, we introduce an action
space subsampling (Figure 1) to handle massive action spaces without significant memory overhead,
enabling us to explore a broader chemical space with fewer reaction steps than existing models.
Then, we train the generative policy with a GFlowNet objective to sample both diverse and potent
molecules from the expanded search space. We demonstrate that RXNFLOW effectively generates
drug candidates, outperforming existing reaction-based, atom-based, and fragment-based baselines
across various SBDD tasks, while ensuring the synthesizability of generated drug candidates. We
also achieve a new state-of-the-art Vina score, drug-likeness, and synthesizability on the Cross-
Docked2020 pocket-conditional generation benchmark (Luo et al., 2021).

Furthermore, we formulate an adaptable MDP (Figure 2) for consistent flow estimation on modified
building block libraries, which can be highly practical in real-world applications. By combining the
proposed MDP with action embedding (Dulac-Arnold et al., 2015), which represents actions in a
continuous space instead of a discrete space, RXNFLOW can achieve further objectives or incorpo-
rate newly discovered building blocks without retraining. We experimentally show that RXNFLOW
can achieve an additional solubility objective and behave appropriately for unseen building blocks.
This capability makes RXNFLOW highly adaptable to real-world drug discovery pipeline, where
new objectives frequently arise (Fink et al., 2022) and building block libraries are continuously
expanding (Grygorenko et al., 2020).

2 RELATED WORKS

Structure-based drug discovery. The first type of SBDD involves pocket-specific optimization
methods to enhance docking scores against a single pocket, including evolutionary algorithms (Rei-
denbach, 2024), reinforcement learning (RL) (Zhavoronkov et al., 2019), and GFlowNets (Bengio
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et al., 2021). However, these require individual optimizations for each pocket, limiting scalability.
The second type is based on pocket-conditional generation, which generates molecules against
arbitrary given pockets without additional training. This can be achieved by distribution-based gen-
erative models (Ragoza et al., 2022; Peng et al., 2022; Guan et al., 2023b; Schneuing et al., 2023; Qu
et al., 2024) trained on protein-ligand complex datasets to model ligand distributions for given pock-
ets. On the other hand, Shen et al. (2023) formulated a pocket-conditioned policy for GFlowNets to
generate samples from reward-biased distributions in a zero-shot manner.

Syntheis-oriented generative models. To ensure the synthesizability of generated molecules,
synthesis-oriented de novo design approaches incorporate combinatorial chemistry principles into
generative models. Bradshaw et al. (2019) represented the synthetic pathways as directed acyclic
graphs (DAG) for generative modeling. Horwood & Noutahi (2020) formulated the synthetic path-
way generation as an MDP and optimize the molecules with RL. Similarly, Gao et al. (2022b)
employed a genetic algorithm to optimize synthesis trees to generate molecules with the desired
properties. Seo et al. (2023) proposed a conditional generative model to directly sample molecules
with desired properties without optimization. Recently, Cretu et al. (2024); Koziarski et al. (2024)
proposed the reaction-based GFlowNet to generate diverse and potent molecules.

Action embedding for large action spaces. To handle large action spaces in the synthesis-oriented
generation, Gottipati et al. (2020) employed action embedding (Dulac-Arnold et al., 2015) that rep-
resents building blocks in a continuous action space with their chemical information. Later, Seo
et al. (2023); Koziarski et al. (2024) experimentally demonstrated that it can enhance the model
training and generative performance. The continuous action space provides the benefit of reducing
the computational complexity for sampling from large space of actions and the memory requirement
for parameterizing the categorical distribution over the large action space.

Generative Flow Networks. GFlowNets are a learning framework for a stochastic generative policy
that constructs an object through a series of decisions, where the probability of generating each
object is proportional to a given reward associated with that object (Bengio et al., 2021). Unlike other
optimization methods that maximize rewards and often converge to a single solution, GFlowNets
aim to sample a diverse set of high-rewarded modes, which is vital for novel drug design (Shen et al.,
2023; Jain et al., 2022). To this end, the generative policy is trained using objectives such as flow
matching (Bengio et al., 2021), detailed balance (Bengio et al., 2023), and trajectory balance (Malkin
et al., 2022). Extending the GFlowNets to various applications is an active area of research, e.g.,
GFlowNets have been applied to designing crystal structures (Nguyen et al., 2023b), phylogenetic
inference (Zhou et al., 2023), finetuning diffusion models (Venkatraman et al., 2024), and causal
inference (Nguyen et al., 2023a).

3 METHOD

3.1 GFLOWNET PRELIMINARIES

GFlowNets (Bengio et al., 2021) are the class of generative models that learn to sample objects
x € X proportional to a given reward function, i.e., p(x) o< R(x). This is achieved by sequentially
constructing a compositional object x through a series of state transitions s — s, forming a trajec-
tory 7 = (s = ... = s, = x) € T. The set of all complete trajectories from the initial state
S0 can be represented as a directed acyclic graph G = (S, .A) with a reachable state space S and
an action space .A. Each action a induces a transition from the state s to the state s, expressed as
s’ = T(s,a) and represented as s — s’. Then, we define the frajectory flow F(7), which flows
along the trajectory 7 = (so — ... — s, = ), as the reward of the terminal state, R(x). The edge
flow F(s — s), or equivalently F'(s, a), is defined as the total flow along the edge a : s — '

F(s—s')=F(s,a) = > F(7). (1)
TET st (s—s')eT
The state flow F'(s) for the intermediate state is defined as the total flow through the state s:

F(s)= >  Flr)= > F(" —s= > F(s—=s) 2)

TET s.t. sET (s""—=s)eA (s—s’)eA

Intermediate flow matching condition
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In addition to the flow matching condition for intermediate states, there are two boundary conditions
for the states. First, the flow of a terminal state = must equal the reward of the objective: F(z) =
R(x). Second, the partition function, Z, is equivalent to the sum of all trajectory flows and the
sum of all rewards: Z = F(sg) = > 7 F(7) = > . R(x). These three conditions—one for
intermediate states and two for boundary states—are known as the flow matching conditions and
ensure that GFlowNets generate objectives proportional to their rewards.

To convert the flow network into a usable policy, we define the forward policy as the forward transi-

tion probability Pr(s’|s) and the backward policy as the backward transition probability Pg(s|s’):

F(s—¥)
F(s)

F(s—¥)

Pr(s'|s) := P(s — §'|s) = Fis)

Pg(s|s’) == P(s — §'|s') = (3)

3.2 ACTION SPACE FOR SYNTHETIC PATHWAY GENERATION

Following Cretu et al. (2024), we treated a chemical reaction as a forward transition and a synthetic
pathway as a trajectory for molecular generation. For the initial state sq, the model always chooses
AddFirstReactant to sample a building block b from the entire building block set 53 as a starting
molecule. For the later states s, the model samples actions among ReactUni, ReactBi, or Stop.
When the action type is ReactUni, the model performs in silico uni-molecular reactions with an
assigned reaction template » € R;. When the action type is ReactBi, the model performs bi-
molecular reactions with a reaction template » € R and a reactant block b in the possible reactant
set for the reaction template r: B, C B. If Stop is sampled, the trajectory is terminated. To sum
up, the allowable action space A(s) for the state s is:

. B ifs= S0
Als) = {{Stop} URy U{(r,b)|r € Re,b € B,} otherwise @)

where unavailable reaction templates to the molecule of the state s are masked.

3.3 FLOW NETWORK ON ACTION SPACE SUBSAMPLING

We propose a novel memory-efficient technique called the action space subsampling, that estimates
the state flow Fy(s) from a subset of the outgoing edge flows Fy(s — s’) for forward policy esti-
mation. First, we implement an auxiliary policy, termed subsampling policy P(.A), which samples a
subset of the action space .A* C A. This reduces both the memory footprint and the computational
complexity from O(|B||Rz|) to O(|B*||R2|) with the controllable size |3*|. We then estimate the
forward policy by importance sampling. In contrast to the parameterized forward policy, we formu-
late a fixed backward policy since it is hard to force invariance to molecule isomorphism (Malkin
et al., 2022). Theoretical backgrounds are provided in Sec. A.

Subsampling policy. Subsampling policy P(.A) performs uniform sampling for the initial state and
importance sampling for the later states. For the initial state, the allowable action space A(sg) = B
is homogeneous since all of them are AddFirstReactant actions. For the later state, the action
space is comprised of one Stop, tens of ReactUni actions, and millions of ReactBi actions.
To capture rare-type actions in the inhomogeneous space, we use all St op and ReactUni actions.
The partial action space A*(s) ~ P(A(s)) comprises the uniform subset B* C B or B¥ C B,

B* if s = 59

{Stop} URy U{(rb)lr € Rasb € B} otherwise ®)

= {

Forward policy. To estimate the forward policy Pr(s’|s) = F(s — s')/F(s) from the partial
action space A*, we estimate the state flow F'(s) with a subset of outgoing edge flows F(s — s').
Since we introduce importance sampling for action types, we weight the edge flow F(s — s’) of
edge a : s — s’ according to the subsampling ratio:

|B|/|B*| ifa€B
Wa = Wis—sry = § |Brl/|IBy| if ais (r,b) where r € Ry (6)
1 ifais Stopora € R,
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Figure 2: Comparison of using modified building block library for the generation: (a) a hier-
archical MDP, and (b) a non-hierarchical MDP. More details are in Figure 7.

leed

By weighting edge flows, we can estimate the state flow Fg(s; A*) as

Fy(s; A%) = Z W(s— s Fo(s — 5", (7
(s—s’)eA*(s)
which the estimated forward policy is Pp(s'|s; A*;0) = Fy(s — ')/ Fy(s; A*).

Action embedding. In the standard implementation (Bengio et al., 2021) of the flow function Fj
and its neural network ¢y, the edge flow of the edge a : s — s’ is computed with the corresponding
action-specific parameter 6,: Fy(s — s') = Fy(s,a) = ¢p-¥ (457 (s)).

However, large action spaces require numerous parameters which increase model complexity. To
address this, we use an additional network ¢}°* for AddFirstReactant and ReactBi, which
embeds the building block b into a continuous action space with its structural information, molecular
fingerprints (see Sec. B.3):

Fy(s0,b) = ¢5™ (65"(5), 6°* (b)), Fy(s, (r,0)) = 6™ (65" (5),0(r), 5°* (b))~ (8)
where §(r) is the one-hot encoding for a bi-molecular reaction template 7.

GFlowNet training. In this work, we use the trajectory balance (TB; Malkin et al., 2022) as the
training objective of GFlowNets from Eq. (9) and train models following Sec. B.4. The action space
subsampling is performed for each transition s; — s;1: Af ~ P(A).

N 2
A Zo 17, P 1 AF ;0
£TB (T) — <log 0 Ht:l F(st ‘St 1 Atfl’ ))

7 ©))
R(x) [T, P(st-1lst)
For online training, we use the sampling policy 7y proportional to Pp (—|—; A*; 0), given by:
Wis—sFo(s — &
mo(s |53 A¥) = (o) P ) (10)

Z(S*)S”)G.A*(s) ’LU(SHS//)FQ(S — S”)

3.4 JOINT SELECTION OF TEMPLATES AND BLOCKS

For bi-molecular reactions, existing synthesis-oriented methods (Gao et al., 2022b; Cretu et al.,
2024; Koziarski et al., 2024) formulated a hierarchical MDP which selects a reaction template r
first and then the corresponding reactant block b sequentially from Eq. (11). However, as shown in
Figure 2, the probability of selecting each reaction template r is fixed after training in a hierarchical
MDP, and this rigidity can lead to incorrect policy estimates in modified block libraries. Therefore,
we formulate a non-hierarchical MDP that jointly selects reaction templates and reactant blocks
(r,b) at once, as given by Eq. (12), resulting in more consistent estimates of forward policy Pp.

Fyfs.r) )

ZWE'RqURQU{StOp} Fy(s,r")  Xyes, Fols, (r,0))
Fy(s, (r,b))

ZT’E'Rlu{Stop} Fy(s,1") + 2er, Zb'eB,./ Fy(s, (r',0"))

Pr(T(s, (r,0))]s;0) = (11)

Pr(T(s, (r,0))]s;0) = (12)
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4 EXPERIMENTS

Overview. We validate the effectiveness of RXNFLOW in two common SBDD tasks: pocket-specific
optimization (Sec. 4.1) and pocket-conditional generation (Sec. 4.2). To the best of our knowledge,
this is the first synthesis-oriented approach for pocket-conditional generation. We also investigate
the applicability of RXNFLOW in real-world drug discovery pipelines where new further objectives
may be introduced (Sec. 4.3) and the building block libraries are constantly expanded (Sec. 4.4).
Lastly, we conduct an ablation study in Sec. 4.5 and a theoretical analysis in Sec. D.8.

Setup. We use the reaction template set constructed by Cretu et al. (2024) including 13 uni- and
58 bi-molecular reaction templates. For the building blocks, we use 1.2M blocks from the Enamine
comprehensive catalog. We use up to 3 reaction steps for generation following Enamine REAL
Space (Grygorenko et al., 2020), while SynFlowNet and RGFN allow 4 steps. For the subsampling
policy, we set a sampling ratio of 1%. The experimental details are provided in Sec. C.

Synthesizability estimation. To assess the synthesizability of the generated compounds, we used
the computationally intensive retrosynthetic analysis tool AiZynthFinder (Genheden et al., 2020)
with the Enamine building block library. We note that the molecule is identified as synthesizable
only if it can be synthesized using the USPTO reactions (Lowe, 2017) and given building blocks.

4.1 POCKET-SPECIFIC OPTIMIZATION WITH GPU-ACCELERATED DOCKING

Setup. Since GFlowNets sample a large number of molecules for online training, we employed
a GPU-accelerated UniDock (Yu et al., 2023) with Vina scoring (Trott & Olson, 2010). It is well
known that docking can be hacked by increasing molecule size (Pan et al., 2003), so the appropriate
constraints are required. We select QED (Bickerton et al., 2012) as a comprehensive molecular prop-

erty constraint, QED>0.5, and set the reward function as R(z) = w;QED(z) + wyVina(x) where
w1, we are used as the input of multi-objective GFlowNets (Jain et al., 2023) for all GFlowNets and

are set to 0.5 for non-GFlowNet baselines. Vina is a normalized docking score (Eq. (30)).

Each method generates up to 64,000 molecules for each of the 15 proteins in the LIT-PCBA dataset
(Tran-Nguyen et al., 2020). We then filter the molecules with the property constraint and select
the top 100 diverse candidates based on the docking score, using a Tanimoto distance threshold of
0.5 to ensure structural diversity. The selected molecules are evaluated with the following metrics:
Hit ratio (%) measures the fraction of hits, defined as the molecules that are identified as synthe-
sizable by AiZynthFinder and having better docking scores than known active ligands (Lee et al.,
2023). Vina (kcal/mol) measures the average docking score. Synthesizability (%) is the fraction
of synthesizable molecules. Synthetic complexity, which is highly correlated to yield and cost, is
evaluated as the average number of synthesis steps (Coley et al., 2018).

Baselines. We perform comparisons to various synthetic-oriented approaches: genetic algorithm
(SynNet) (Gao et al., 2022b), conditional generative model (BBAR!) (Seo et al., 2023), and
GFlowNets (SynFlowNet, RGFN) (Cretu et al., 2024; Koziarski et al., 2024). For SynFlowNet
and RGFN, we used 6,000 and 350 blocks, respectively, and set the maximum reaction step to 4
following the original papers. Moreover, we consider fragment-based GFlowNets (FragGFN) to
analyze the effects of synthetic constraints on the performance. For FragGFN, we also consider
additional synthesizability objectives with commonly-used synthetic accessibility score (SA; Ertl &
Schuffenhauer, 2009) (FragGFN+SA).

Results. The results for the first five targets are shown in Tables 1 and 2, and additional results for
the 10 remaining targets are reported in Sec. D.1. The property distribution for each target are re-
ported in Sec. D.2. RXNFLOW outperforms the baselines across all test proteins, demonstrating that
the expanded sample space with the large action space enabled the model to generate more potent
and diverse molecules. Additionally, as shown in Tables 3 and 4, RXNFLOW ensures the synthesiz-
ability of the generated molecules more effectively than the other synthesis-oriented methods and
GFlowNets which employ the same reactions as ours. These results support our primary assertion
that existing synthesis-oriented approaches using more synthetic steps with smaller building block
libraries can increase overall synthesis complexity and reduce synthesizability. Furthermore, Frag-

!Since BBAR requires labeled training data with QED and docking score, we perform docking with random
62,720 ZINC molecules for training and evaluate 1,280 samples according to the reported splitting ratio.
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Table 1: Hit ratio. Mean and standard deviation over 4 runs. The best results are in bold.
Hit Ratio (%, 1)

Category Method ADRB2 ALDH1 ESR_ago ESR_antago FEN1
Fraement FragGFN 4.00 (£ 3.54) 375+ 1.92) 0.25 (+ 0.43) 0.25 (+£043)  0.25 (+£043)
& FragGFN+SA  5.75(+ 148  4.00(+ 158  0.25( 043) 0.00 (0000  0.00 (& 0.00)
SynNet 45.83 (£722) 25.00 (25000 0.00 (= 0.00) 0.00 (£0.00) 50.00 (£ 0.00)
BBAR 21.25(£536) 1825+ 192 3.50* 1.12)  2.25(+1.09 11.75 (=259
Reaction  SynFlowNet 52.75 (£ 1.09) 57.00 (+ 6.04) 30.75(+£10.03) 11.25£1.48) 53.00 (£8.92)
RGFN 46.75 (+6.87) 39.75 (*+ 8.17)  4.50 (£ 1.66) 1.25 (+£043) 19.75 (£432)
RXNFLOW 60.25 (+3.77) 63.25 (+ 3.11) 71.25(+ 4.15 46.00 (£7.00) 65.50 (£ 4.09)

Table 2: Vina. Mean and standard deviation over 4 runs. The best results are in bold.

Average Vina Docking Score (kcal/mol, |)

Category Method ADRB?2 ALDHI1 ESR_ago ESR_antago FEN1
Fraement FragGFN -10.19 (£033) -1043 (029  -9.81 (£0.09 -9.85(*0.13) -7.67 (£0.71)
& FragGFN+SA  -9.70 (£ 061) -9.83 (£0.65  -9.27 (095 -10.06 (£030) -7.26 (40.10)
SynNet -8.03 (£ 026) -8.81(+021) -8.88 (+0.13) -8.52(+0.16) -6.36 (+0.09)
BBAR -9.95 (004 -10.06 (+£0.14) -9.97 (£0.03) -9.92 (£005 -6.84 (+0.07)
Reaction = SynFlowNet -10.85 (£ 0.100 -10.69 (£0.09) -10.44 (+£0.05) -10.27 (£0.04) -7.47 (£0.02)
RGFN 984 (+021) -993 (011 -9.99 (+0.11) -9.72 (+£0.14) -6.92 (+0.06)
RXNFLOW -11.45 (£0.05 -11.26 (+0.07) -11.15 (£ 0.02) -10.77 (£0.04) -7.66 (+ 0.02)

Table 3: Synthesizability. Mean and standard deviation over 4 runs. The best results are in bold.

Percentage of Synthesizable Molecules (%, 1)

Category  Method ADRB2 ALDH1 ESR_ago ESR _antago FEN1
Fraement FragGFN 4.00 (£354  3.75(*£1.92) 1.00 (£ 1.000  3.75(£ 192) 0.25(*£043)
& FragGFN+SA  5.75(+148)  6.00 (255  4.00 (£224) 1.00 &+ 0.00)  0.00 (£ 0.00)
SynNet 54.17 (+7.22) 50.00 (£0.000 50.00 (+0.000 25.00 (£25.000 50.00 (& 0.00)
BBAR 21.25 (+536) 19.50 (£3200 17.50 (£1.50) 19.50 (+ 3.64) 20.00 (£2.12)
Reaction = SynFlowNet 52.75 (£ 1.09) 57.00 (£6.04) 53.75(£952) 56.50(x 229) 53.00 (£8.92)
RGFN 46.75 (£ 6.86) 47.50 (£4.06) 50.25 (+2.17) 49.25 (£ 4.38) 48.50 (£6.58)
RXNFLOW 60.25 (+3.77) 63.25 (£3.11) T71.25(£4.15 66.50 (+ 4.03) 65.50 (+ 4.09)

Table 4: Synthetic complexity. Mean and standard deviation over 4 runs. The best results are in
bold.

Average Number of Synthesis Steps ({.)

Category  Method ADRB2 ALDHI1 ESR_ago ESR _antago FENI1
Fraement FragGFN 3.60 (£0.100 3.83(+£008) 3.76 (£0200 3.76 (£0.16)  3.34 (£ 0.18)
& FragGFN+SA  3.73 (£0.09  3.66 (£0.04) 3.66 (£007)  3.67 (£021) 3.79(£0.19)
SynNet 329 (£036) 3.50 (40000 3.00 (£000 4.13 (089  3.50 (& 0.00)
BBAR 3.60 (£017)  3.62(£0.19)  3.76 (£0.04) 3.72 (£ 0.11) 3.59 (+0.14)
Reaction SynFlowNet 2.64 (£007) 248 (+007) 2.60(£025  2.45F009  2.56 (+0.29)
RGFN 2.88 (£021) 2.65(+£009  2.78 (+£0.19) 2.91 (+£0.23) 2.76 (+0.17)
RXNFLOW 242 (+023) 219(t012 1.95F020 215018  2.23 (£0.18)

GFN+SA does not show meaningful improvement in synthesizability, implying that optimization of
a cheap synthesizability estimation function is suboptimal.

Furthermore, it is noteworthy that RXNFLOW outperformed FragGFN which does not consider syn-
thesizability. This improvement can be attributed to two key factors. First, the Enamine building
block library is specifically curated for drug discovery, limiting the search space & to a drug-like
chemical space and simplifying the optimization complexity. Second, RXNFLOW needs shorter tra-
jectories compared to FragGFNs since it assembles molecules with large building blocks instead
of atoms or small fragments. This is beneficial for trajectory balance objectives where stochastic
gradient variance tends to increase over longer trajectories (Malkin et al., 2022).
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Table 5: CrossDocked2020 benchmark. We report the average and median values over the average
properties for each test pocket. The best results are in bold and the second ones are in underlined.
We denote the Generation Success as Succ., Synthesizability as Synthesiz., and Diversity as Div.
Reference means the known binding active molecules in the test set. MolCRAFT-large (Qu et al.,
2024) is the result when generating with more atoms than the reference ligands.

Succ. (1) Vina ({) QED (1) Synthesiz. (1) Div. (1) Time ()

Category  Model Avg. Avg. Med. Avg. Med. Avg. Med. Avg. Avg.
Reference - - =771 -7.80 048 047 36.1% - - -

Pocket2Mol 98.3% -7.60 -7.16 057 058 29.1% 22.0% 0.83 2504

TargetDiff 91.5% -7.37 -7.56 049 0.49 9.9% 3.2% 0.87 3428

DecompDiff 66.0% -835 -825 037 035 0.9% 0.0% 0.84 6189
Atom DiffSBDD 76.0% -6.95 -7.10 047 048 2.9% 2.0% 0.88 135

MoICRAFT 96.7% -8.05 -8.05 050 050 16.5% 9.1% 0.84 141

MolCRAFT-large 70.8% -9.25 -9.24 045 044 3.9% 0.0% 0.82 >141
Fragment  TacoGFN 100.0% -8.24 -8.44 0.67 0.67 1.3% 1.0% 0.67 4
Reaction RXNFLOW 100.0% -8.85 -9.03 0.67 0.67 348% 34.5% 0.81 4

(a) Generated Molecules (b) Reference Ligands

Vina: -9.3, QED: 0.49 Vina: -9.2, QED: 0.53 Vina: -8.7, QED: 0.44 Vina: -8.0, QED: 0.88

(c) Synthetic Pathway ™
=N

N Heck Reaction SNvAR N 1,2,4-Triazole )
~ > N —_— —_— N NH
cr o
OH

Figure 3: Visualization of generated molecules in a zero-shot manner. (a-b) Docking results of
generated molecules and known reference ligands of TBK1 (PDB Id: 1FV, SU6). (c¢) Generative
trajectory, which is the generated synthetic pathway of the left molecule in (a).

4.2 ZERO-SHOT SAMPLING VIA POCKET CONDITIONING

Setup. We extend our works to a pocket-conditional generation problem to design binders for arbi-
trary pockets without additional training oracles (Ragoza et al., 2022; Liu et al., 2022; Peng et al.,
2022; Guan et al., 2023a;b; Schneuing et al., 2023). To address this challenge, we follow TacoGFN
(Shen et al., 2023), which is a fragment-based GFlowNet for pocket-conditional generation. Since
it requires more training oracles to learn pocket-conditional policies than target-specific genera-
tion, TacoGFN used pre-trained proxies that predict docking scores against arbitrary pockets using
pharmacophore representation (Seo & Kim, 2023). Since RXNFLOW explicitly considers synthesiz-
ability, we exclude the SA score from the TacoGFN’s reward function as described in Sec. C.2.

We generate 100 molecules for each of the 100 test pockets in the CrossDocked2020 benchmark
(Francoeur et al., 2020) and evaluate them with the following metrics: Vina (kcal/mol) measures the
average docking score from QuickVina (Alhossary et al., 2015). QED measures the average drug-
likeness of molecules. Synthesizability (%) is the fraction of synthesizable molecules. Diversity
measures an average pairwise Tanimoto distance of ECFP4 fingerprints (Morgan, 1965). Moreover,
we report the Generation Success (%) which is the percentage of unique RDKit-readable molecules
without disconnected parts, and Time (sec.) which is the average sampling time to generate 100
molecules.

Baselines. We compare RXNFLOW with state-of-the-art distribution learning-based models trained
on a synthesizable drug set: an autoregressive model (Pocket2Mol (Peng et al., 2022)), diffusion
models (TargetDiff (Guan et al., 2023a), DiffSBDD (Schneuing et al., 2023), DecompDiff (Guan
et al., 2023b)), and bayesian flow network (MolCRAFT (Qu et al., 2024)). We also perform a
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Figure 4:  Property distribution of sampled Figure 5: QED reward distribution
molecules with “all” building blocks and “low”- of generated molecules for each of the
TPSA building blocks. Vina score was calculated “seen”’, “unseen”, and “all” blocks. Ad-
against the KRAS-G12C target. ditional results are in Figure 13.

comparison with an optimization-based TacoGFN (Shen et al., 2023). For a fair comparison with
the distribution learning-based approaches, we used the docking proxy trained on CrossDocked2020.

Result. As shown in Table 5, RXNFLOW achieves significant improvements in drug-related prop-
erties. In particular, RXNFLOW outperforms the docking score for TacoGFN and attains high drug-
likeness while showing a competitive docking score with the state-of-the-art model, MolCRAFT-
large. Moreover, RXNFLOW ensures the synthesizability comparable to known active ligands,
outperforming the fragment-based TacoGFN trained on the SA score objective and the distribu-
tional learning-based models trained on synthesizable drug molecules. Figure 3 illustrates generated
molecules against TANK-binding kinase 1 (TBK1) which is not included in the training set.

An important finding is that RXNFLOW maintains high structural diversity (0.81) despite the typ-
ical trade-off between optimization power and diversity (Gao et al., 2022a). This is a significant
improvement over the fragment-based TacoGFN, which scored 0.67 and is comparable to the distri-
butional learning-based models that range from 0.83 to 0.87. We attribute this enhancement to our
action space, which contains chemically diverse building blocks, in contrast to the small and lim-
ited fragment sets used in fragment-based GFlowNets. This suggests that our model can effectively
balance the potency and diversity of generated molecules.

4.3 INTRODUCING ADDITIONAL OBJECTIVE WITHOUT RETRAINING

In drug discovery, new objectives often arise during the research process, such as enhancing solubil-
ity, reducing toxicity, or improving selectivity (Fink et al., 2022; Joshi et al., 2021). These additional
objectives typically not only require retraining models but also increase the optimization complex-
ity. In this context, RXNFLOW can achieve some additional objectives by simply introducing con-
straints to MDP without retraining thanks to the non-hierarchical action space (Sec. 3.4). As shown
in Figure 4, we explore the scenario of adding a solubility objective to a pre-trained GFlowNet in
Sec. 4.2. Specifically, we target the generation of hydrophobic molecules by restricting the build-
ing blocks with topological polar surface area (TPSA) in the bottom 15% (“low”) and sampled 500
molecules for the KRAS-G12C mutant (PDB Id: 60oim). While there are slight differences in the
QED distributions due to the correlation between TPSA and QED, the generated molecules are more
hydrophobic and retain similar overall reward distributions. We also performed the ablation study
of non-hierarchical MDP in Sec. D.6.

4.4 SCALING ACTION SPACE WITHOUT RETRAINING

The building block libraries for drug discovery continue to grow, from 60,000 in 2020 to over 1.2
million blocks today, to enhance chemical diversity and novelty (Grygorenko et al., 2020). However,
existing generative models require retraining to accommodate newly discovered building blocks,
limiting their scalability and adaptability. On the other hand, RXNFLOW can integrate new building
blocks without retraining by understanding the chemical context of actions through action embed-
ding. We first divide the 1M-sized block library (“all”) into two sets: 500,000 blocks for training
(“seen”) and the remaining blocks (“unseen”). After training with the QED objective on various

reward exponent settings (R?), we generate 5,000 molecules from each set (“seen”, “unseen”, and
“all”). Figure 5 shows that the reward distributions of samples are nearly identical, demonstrating



Under review as a conference paper at ICLR 2025

@_111 (b) © s
1.0 4 >
> 2
S G £ 0.79 4
o — E 4 .
2 -2 2 54 g S
= 3 5 0.78 1 334
© —11.34 = o
= B 0.6 1 o 24
- s 50771 E
£ -11.41 S
> 304 £ 0.76 1 11
wn
15— —— — 0
102 10° 10* 105 10° 102 10° 10 105 10° 102 10° 104 105 10° 102 10° 10% 105 10°

Num Building Blocks Num Building Blocks Num Building Blocks Num Building Blocks

Figure 6: Optimization power, diversity, and generation time according to building block library
size. (a-c) Average and standard deviation of properties of the top-1000 high-affinity molecules over
4 runs on pocket-specific generation. (a) Average docking score. (b) The uniqueness of Bemis-
Murcko scaffolds. (¢) Average Tanimoto distance. (d) Average runtime to generate 100 molecules
over the CrossDocked2020 test pockets in a zero-shot manner.

that RXNFLOW performs robustly with unseen building blocks. This result highlights the general-
ization ability and scalability of RXNFLOW, a significant advantage for real-world applications.

4.5 ABLATION STUDY: THE EFFECT OF BUILDING BLOCK LIBRARY SIZE

Expanding the size of building block libraries provides an opportunity to discover more diverse
and potent drug candidates (Grygorenko et al., 2020). In Sec. 4.1, RXNFLOW outperforms Syn-
FlowNet and RGFN which use smaller block libraries, but differences in model architectures may
have contributed to these results. To isolate the effect of the building block library size, we conduct
an ablation study using partial libraries with a pocket-specific optimization task against the kappa-
opioid receptor (PDB Id: 6b73), as illustrated in Figure 6(a-c). The results indicate that increasing
the library size enhances both optimization power, in terms of docking scores, and diversity, in terms
of a higher number of unique Bemis-Murcko scaffolds (Bemis & Murcko, 1996) and an increased
Tanimoto diversity of the generated molecules. Additionally, as shown in Figure 6(d), the genera-
tion time only doubles on the 100-fold larger action space, highlighting the efficiency of RXNFLOW.
These results demonstrate the forte of RXNFLOW in navigating a broader chemical space to discover
novel drug candidates by overcoming the computational limitations for expanding the action space.
We also investigated the scaling laws with other reaction-based GFlowNets in Sec. D.3.

5 CONCLUSION

In this work, we introduce RXNFLOW, a synthesis-oriented generative framework designed to ex-
plore broader chemical spaces, thereby enhancing both diversity and potency for drug discovery.
Our framework efficiently handles massive action spaces to expand the search space without signifi-
cant computational or memory overhead by employing a novel action space subsampling technique.
RXNFLOW can effectively identify diverse drug candidates with desired properties and synthetic
feasibility by learning the objective of generative flow networks on synthetic pathways. Addition-
ally, by formulating a non-hierarchical MDP, RXNFLOW can model generative flows on modified
action spaces, allowing it to achieve additional objectives and incorporate newly discovered build-
ing blocks without retraining. These results highlight the potential of RXNFLOW as a practical and
versatile solution for real-world drug discovery.

Still, our framework has room for improvement regarding more efficient learning and sampling.
First, the 3D conformer generation and protein-ligand interaction modeling could be introduced
for state embedding. Given the high correlation between binding affinity and conformation, such
interaction modeling enhances not only the training of flow networks but also the interpretability
of decision. In this case, the mode-collapse problem of sequential conformation generation models
should be addressed. In addition, the current action space subsampling method forces exploration
due to uniform sampling to minimize bias. We can enhance the exploitation by prioritizing the
building blocks on action space subsampling instead of uniform subsampling.

10
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