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Abstract

Pre-trained deep learning models are emerging fast as a tool for enhancing scien-
tific workflow and accelerating scientific discovery. Representation learning is a
fundamental task to study the molecular structure–property relationship, which is
then leveraged for predicting the molecular properties or designing new molecules
with desired attributes. However, evaluating the emerging "zoo" of pre-trained
models for various downstream tasks remains challenging. We propose an unsu-
pervised method to characterize embeddings of pre-trained models through the
lens of non-parametric group property-driven subset scanning (SS). We assess its
detection capabilities with extensive experiments on diverse molecular benchmarks
(ZINC-250K, MOSES, MoleculeNet) across predictive chemical language models
(MoLFormer, ChemBERTa) and molecular graph generative models (GraphAF,
GCPN). We further evaluate how representations evolve as a result of domain
adaptation by finetuning or low-dimensional projection. Experiments reveal no-
table information condensation in the pre-trained embeddings upon task-specific
fine-tuning as well as projection techniques. For example, among the top-120
most-common elements in the embedding (out of ≈ 700), only 11 property-driven
elements are shared between the three tasks (BACE, BBBP, and HIV), while
≈ 70-80 of those are unique to each task. This work provides a post-hoc qual-
ity evaluation method for representation learning models and domain adaptation
methods that is task and modality-agnostic.

1 Introduction

With the surge of pre-trained deep learning models [1; 2; 3], the question of which representation is
best for deployment is gaining importance to ML researchers and practitioners [4; 5]. There exists
a wide range of methods for this purpose, such as mutual information between representations and
labels [6; 7], feature projection to new target domains [8], mechanistic intepretability [9; 10] and
probing [11; 12; 13]. Most of the proposed frameworks for evaluation are heavily dependent on
the type of model, tasks, and adaptation technique used. Pre-trained deep learning models are also
emerging fast as a tool for enhancing scientific workflow and accelerating scientific discovery. For
example, representation learning is a fundamental task to study the molecular structure–property
relationship, which is then leveraged for predicting the molecular properties or designing new
molecules with desired attributes. Given the complexity of molecular structure-function relationships,
a plethora of deep learning-based models have emerged that take in text-based annotations, graphs,
and 3D structure as input [14; 15; 16; 17; 18; 19; 20; 21; 22; 23]. Recently, self-supervised learning
methods for molecular representation have been employed to address insufficient labeled molecules
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and learn a task-agnostic universal representation. The pre-trained molecular models are diverse
in nature, vary in size and architecture, are trained using particular self- or un-supervised methods,
or are domain-adapted via task-specific finetuning [24; 25; 26; 8]. While these models have shown
improvement in performance for generative and predictive benchmarks, the semantics of the learned
representations remain opaque. Examples of unsolved questions about learned representations include:
Is there any disentanglement in terms of molecular structural and/or functional attributes? How does a
pre-trained representation change upon task-specific fine-tuning or feature projection? How to provide
a principled evaluation to ensure the trustworthiness of the chosen representation [27; 28; 4]. In this
work, we characterize small organic molecular representations to (1) determine which pre-trained
representation is more task-optimal (2) evaluate if and to what extent an adaptation method is needed
for a pre-trained representation (and which approach among fine-tuning, projection, etc., will work
best for a new task) and (3) to enable more fine-grained introspection in molecular generation (e.g.,
a user might want to generate molecules with a logical combination of multiple properties, e.g.,
Scaffold AND Molecular weight ≤ 270 OR ≥ 550 Dalton AND LogP ≥ 1.3).

2 Preliminaries

Representation learning models Chemical Language Models (CLMs) and Graph Generative
Models (GGMs) are two of the most abundant approaches for molecule generation [25; 26; 29]
and property prediction [24; 25; 30; 31]. In this work, we showcase the characterization of rep-
resentation across two models of each category. For CLMs, we selected two encoders capable of
producing task-agnostic and fine-tuned molecular embeddings. First, ChemBERTa [24], which is a
transformer architecture for molecular property prediction, and second, MoLFormer [30], which uses
a transformer-like architecture that is trained on an efficient linear attention mechanism. For GNNs,
we consider Graph Convolutional Policy Network (GCPN) [32] and a Flow-based autoregressive
model (GraphAF) [33]. GCPN employed a reinforcement learning strategy for molecular graph
generation that optimized domain-specific characteristics through policy gradient [32]. GraphAF
aimed to exploit the advantages offered by both autoregressive and flow-based approaches to provide
enhanced flexibility, efficiency, and improved sampling process to encode domain knowledge [33].

Domain adaptation techniques We consider pre-trained embeddings to be fixed vectors from the
encoder obtained during the training using self-supervised learning (e.g SMILES masking) [30]. We
then examine two domain adaptation methods: fine-tuning and feature projection. In fine-tuning,
some or all weights of a pre-trained model are adjusted to new data from the target domain. Instead,
during feature projection, we learn a mapping from a pre-trained source domain to the target domain
space, Pro2 [8] is an interpolation of orthogonal features.

Baselines and evaluation techniques Cintas et al. [34] propose a simpler characterization of
inner representations in neural networks for Out-Of-Distribution detection problems. This is a useful
baseline because it returns the subset of elements associated with the abnormal pattern detection, in
our case, a class belonging to a new task. This allows comparisons regarding the subset of elements
found by our proposed evaluation. Tadesse et al. [28] reported characterizing the generation frequency
of generative graph models, e.g., characteristics of molecules more or less frequently generated by a
model compared to the training set or another model. However, their approach is limited to identifying
these characteristics in the output space rather than the embedding subspace.

3 Scanning Over Molecular Representations

Subset scanning has been used to detect anomalous samples in various computer vision and audio
tasks [35; 36; 34; 37]. Previously, it was mainly aimed as a detection method of abnormal samples;
We believe that extending this type of methodology to characterization and evaluation of the quality
of molecular representations has the potential to provide a metric to contrast different domain
adaptation methods as well as quality assessment of generative processes. Consider a set of samples
from the embedding vectors X = {X1 · · ·XM} and elements O = {O1 · · ·OJ} generated e.g., by
CLMEncoder. Where CLMEncoder is a Chemical Language Model Encoder capable of producing
task-agnostic and fine-tuned molecular embeddings [30; 24]. Let XS ⊆ X and OS ⊆ O, we
then define the subsets S under consideration to be S = XS × OS . The goal is to find the most
property-driven subset:S∗ = argmaxS F (S), where the function F (S) defines the property-driven
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score of a subset of samples from the elements of a given component from CLMEncoder or a Graph
Generative Model (GGM ). Group subset scanning computes an empirical p-value for each element,
as a measurement of how divergent the activation (l∑) or embedding (e) value of a potentially novel
sample is at a given element. Group property-driven subset scanning algorithms can be seen in the
Appendix A. Group property-driven subset scanning uses non-parametric scan statistics (NPSS) that
have been used in other pattern detection methods [38; 39; 34; 36; 35]. There are three steps to
using the non-parametric scan statistics on the model’s activations and embeddings. (1) Expectation:
Forming a distribution of “expected” activations at each element (H0). We generate this distribution
by letting the generative process create canonical samples that are known to be from the training
data, in the case of GGMs, and the most common samples for CLMs scenarios, sometimes referred
to as “background” samples, and record the activations. (2) Scoring: Scoring a group of samples
in a test set that may contain candidates with a given property or not, this means that the samples
can belong to our alternative hypothesis (H1), which is our case, could be a particular class of a
new task or comparing different adaptation techniques. We record the activations induced by the
group of test samples and compare them to the baseline activations created in the first step. This
comparison results in a p-value for each sample in the test set at each element. (3) Quantify: We
measure the degree of anomalousness of the resulting p-values by finding XS and OS that maximize
the NPSS, which estimates how much an observed distribution of p-values deviates from the uniform
distribution. More details of NPSS scoring functions can be found in Appendix A.1.

4 Experimental Setup

We have done extensive experiments to validate the generalizability and characterization capabilities
of the proposed framework. To this end, we evaluated two groups of models: GGMs and CLMs.
Models in each group were evaluated across different domain adaptation techniques and downstream
tasks. See more details in Appendix B. We assess the quality of molecular embeddings from
different CLMs task-agnostic and fine-tuned representations obtained from MoLFormer [30]1 and
ChemBERTa [24]2. For both CLMs, we used publicly available pre-trained and fine-tuned models.
For Pro2 [8] projection method, we find an optimal number of features for the projection, we did
a grid search of 10 to 200 elements for each task. We also employed two autoregressive GGMs to
evaluate further the capability of our framework in providing fine-grained control in the generation
process. Specifically, we used GCPN [32] and GraphAF [33] as the graph generator. We followed
training procedures and pre-trained models detailed in the GT4SD platform [40] for ZINC-250K [41]
and MOSES [42]. We chose to scan over a summarization layer (l∑), which concatenates node and
edge representation. We evaluate the learned representation on two different tasks. First, the detection
of invalid graphs in the learned representation space, and the second task is to identify candidates
with a given set of property MPEGO rules [28]; examples can be seen in Fig. 1.

Baseline and Scanning Setup We compare our proposed approach with an existing baseline [34].
Our experiments use elements extracted from task-agnostic and fine-tuned embeddings (|e| = 768)
generated by MoLFormer [30] and ChemBERTa [24], as well as summarization layers (|l∑| = 256)
from GCPN [32] and GraphAF [33]. We extract H0 from a forward pass of the known data through
the CLMEncoder or a GGM and record the activations at each element. For the downstream tasks
such as HIV, BACE, and BBBP, H0 contains the most common class, and H1 will only have the
remaining class. During testing, we set 100 randomized runs. In each run, we create test sets with
samples from both H0 and H1 to assert the detection capabilities. More details are in Appendix B.2.1.

5 Results & Conclusion

Representation in CLMs Embeddings Initially, we compared task-agnostic embeddings from
both ChemBERTa [24] and MoLFormer [30], see Table 1. Since MoLFormer embeddings provided
the best performance in both downstream tasks, we continue domain adaptation experiments only with
this model. We observe the detection power improves when scanning the fine-tuned (FT) embeddings
compared to the task-agnostic (TA) version for each of the three binary classification tasks. While the
detection power increases in FT embeddings, the cardinality of elements needed to detect a given
class is significantly smaller when scanning the FT representation (≈ 130 elements) compared to

1https://github.com/IBM/molformer Last accessed 15th May 2023.
2https://huggingface.co/seyonec/ChemBERTa-zinc-base-v1 Last accessed 15th May 2023.
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Table 1: Averaged Detection Power (AUC) across five runs for tasks under the scenario large (n > 1000) and
small sample sizes in the target task (n = 100). For projection [8], we have the optimal feature vector with 10
features for BBBP and 100 features for BACE. (∗) Sample size for BACE task and for BBBP (∗∗).

Downstream Tasks Embedding Dimensions
CLM Adaptation BBBP BACE |e|BBBP |e|BACE n

ChemBERTa [24] Pre-trained 0.56± 0.03 0.58± 0.04 768 768 -
MoLFormer [30] Pre-trained 0.89± 0.00 0.66± 0.03 768 768 -

MoLFormer [30] Finetuned 0.91± 0.05 0.99± 0.00 768 768 100
MoLFormer [8] Projected 0.98± 0.01 0.90± 0.02 10 100 100
MoLFormer [30] Finetuned 1.0± 0.00 0.99± 0.01 768 768 1065∗, 1400∗∗

GCPN [43] GraphAF [33]

Score Distributions

MPEGO Ruleset Scaffold=0 ∩Weight ≤ 272.4 ∩ LogP ≥ 1.3 Ring ≤ 3 ∩ SAS > 3.1 ∩ QED ≤ 0.6
Detection Power 0.819 0.969

Figure 1: Score Distributions (SD) for group of elements in l∑ that contain representations that have the
properties described in MPEGO Ruleset [28].

the TA (≈ 240 elements), which can be a step forward for detecting the subset of elements that are
more likely to improve the quality of the representation for a given task via FT (Appendix Figs. 3, 4
and 5). When we look at the most common top−120 elements across all runs and compare them
between the tasks, only 11 property-driven elements are shared in the three tasks, while ≈ 70− 80
of those are unique to each task. Further, we can see that HIV and BACE, share almost double the
elements (27); both of these tasks involve enzyme inhibition, compared to the 14 and 13 nodes share
with BBBP, which is associated with a fundamentally different mechanism. When we averaged
the precision across 100 test runs for task-agnostic and fine-tuned embeddings for all tasks, we see
≈ 0.23 improvement in the average precision (P ). Lastly, we compared in a reduced data scenario
when a small amount of target data for domain adaptation is available (n = 100 in this experiment);
we compared the performance of projection methods and fine-tuning (See Table 1). We can observe
that for the BBBP task, the projected embedding improves the Detection Power while requiring less
computation and generating a reduced feature space than using the complete finetuned embedding.
Nonetheless, we observe that for the BACE task, reduced finetuning is still a better option than
projection, hence the need for methods to select the best domain adaptation technique for a given
task.

Representation in GGMs The score distributions for the MPEGO rulesets can be seen in Fig. 1.
In the case of the MPEGO ruleset, both H0 and H1 contain valid representations. Particularly, H1,
contains valid representations with the given ruleset, which makes a more difficult detection problem.
Furthermore, we evaluated the impact of the H0 definition in Appendix Fig. 2. Furthermore, we
can observe that the trained l∑ from GraphAF, shows a clear discrimination between activations
that will generate a given ruleset compared to the rest of the possible properties combination. This
confirms, from activation data, a potential bias of the model to be over-generating samples with those
properties, as supported by the findings of [28] in the output space.

This study aimed to quantify the relative goodness of pre-trained representations in terms of task-
specific information consolidation. Our framework works across models with different architecture,
inner representation types, and input features. We propose a non-parametric group property-driven
subset scanning to analyze representation learning models and domain adaptation techniques. Cur-
rently, the study faces limitations given that all the experiments are done with small molecules and
binary classification. Future research will explore the disentanglement of the feature vectors found in
fine-tuned and projected embeddings.
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A Property-driven Subset Scanning Algorithm

Group property-driven subset scanning uses an iterative ascent procedure that alternates between
two steps: a step identifying the most property-driven subset of molecule samples for a fixed subset
of elements, or a step that identifies the converse. In each step, there are 2M − 1 possible subsets
of samples that need to be reduced to only M while guaranteeing that the highest-scoring subset
will be identified. This optimization function: OptimizeCandidates (Algorithm 2) is achieved by the
Linear-time Subset Scanning property (LTSS). In OptimizeCandidates, each element is sorted by its
priority (SortByProportion), which is its proportion of p-values less than a significance α threshold.
After elements are sorted, we proceed to score them; we provide more details regarding the scoring
in Section A.1. The LTSS property states that the highest-scoring subset will consist of the top-k
elements [44; 45]. This drastic reduction in the search space is the key feature that enables subset
scanning to scale to large networks, embeddings, and sets of samples.

Algorithm 1: Group property-driven single step over M molecule candidates (e or l∑ represen-
tations) and J elements.
input :(M × J) p-values
output :score, Xs, Os

1 score← −1 ;
2 Xs ← Random(M) ;
3 Os ← Random(J) ;
4 while score is increasing and not max iteration do
5 (M × J ′) = (M × J)|Os ;
6 score, Xs ← OptimizeCandidates((M × J ′)) ;
7 (M ′ × J) = (M × J)|Xs ;
8 score, Os ← OptimizeCandidates((J ×M ′));
9 return score, Xs, Os

A.1 NPSS score function

The general form of the NPSS score function is

F (S) = max
α

Fα(S) = max
α

ϕ(α,Nα(S), N(S)) (1)

where N(S) is the number of empirical p-values contained in subset S and Nα(S) is the number of
p-values less than (significance level) α ∈ (0, 1) contained in subset S. It has been shown that for a
subset S consisting of N(S) empirical p-values, it holds: E [Nα(S)] = N(S)α [38]. Group-based
subset scanning attempts to find the subset S that shows the most evidence of an observed significantly
higher than an expected significance, Nα(S) > αN(S), for a significance level α. This work uses the
Higher-Criticism test [46] as our scan statistic. This can be interpreted as the test statistic of a Wald
test for the amount of significant p-values given that Nα is binomially distributed with parameters
Nα and α.

|Nα −Nα|√
Nα(1− α)

(2)

Because Higher-Criticism normalizes by the standard deviation of Nα, it tends to be more sensitive to
small subsets with very extreme p-value ranges as this would produce large values in the numerator
and smaller ones in the denominator.

B Experimental Setup Details

All group property-driven subset scanning experiments presented in this work were performed in a
desktop machine (2.9 GHz Quad-Core Intel Core i7, 16 GB 2133 MHz LPDDR3). All models were
off-the-shelf trained models. Table 2 shows the details of our experiments, including a description of
the alternative hypotheses (H1) and sample sizes used to build the hypotheses.
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Algorithm 2: OptimizeCandidates. Optimizes over fixed subsets of E ⊂M molecule candidates
and C ⊂ J elements. It returns the max_score and max_subset, the subset that maximizes the
score over all possible subsets with different thresholds t.
input :p-values from all molecule candidates E and relevant C elements
output :max_score, max_subset

1 max_score← −1;
2 arg_max_subset← ∅ ;
3 for t in LinearSpace(0,1) do
4 sorted_priority ← SortByProportion(E, t) /* Sort E by p-value ratio across C < t */ ;
5 score, subset← NPSS(sorted_priority, t) ;
6 if score > max_score then
7 max_score← score ;
8 max_subset← subset ;

9 return max_score, max_subset

B.1 Metrics

We employ the area under the receiver operating characteristic curve (AUC) and precision (P ) as
our performance metrics in both generation and representation analyses. In group property-driven
scanning results, AUC can be thought of as detection power, which is the method’s ability to
distinguish between test sets that contain some proportion of molecule candidates from H1 and test
sets containing only samples from H0. P reflects detection performance, which is the method’s
ability to label which candidates in the test set belong to H1.

Table 2: Description of the base models used to extract pre-trained, fine-tuned, and projected embeddings from
CLMs and summarization layers from GGMs, type of the alternative hypothesis defined in each experiment
(H1), the number (#) of samples used to build the null hypothesis (H0), and to test H1 in the different scenarios.

Base Model Adaptation # for H0 # for H1 H1 Dataset

MoLFormer [30]

Pre-trained 822 691 Class 1 BACE
Pre-trained 1567 483 Class 0 BBBP
Pre-trained 3983 130 Class 1 HIV
Finetuned 822 691 Class 1 BACE
Finetuned 1567 483 Class 0 BBBP
Finetuned 3983 130 Class 1 HIV
Projected 767 646 Class 1 BACE
Projected 1497 453 Class 0 BBBP

ChemBERTa [24]

Pre-trained 822 691 Class 1 BACE
Pre-trained 1567 483 Class 0 BBBP
Projected 767 646 Class 1 BACE
Projected 1497 453 Class 0 BBBP

GraphAF [33]
Pre-trained 10000 1168 Valid ZINC250K
Pre-trained 10000 1653 Valid MOSES
Pre-trained 4000 408 MPEGO ZINC250k

GCPN [43]
Pre-trained 8000 567 Valid ZINC250K
Pre-trained 4000 227 MPEGO ZINC250K
Pre-trained 8000 490 Valid MOSES

B.2 Representation Analysis in Graph Generative Models

We employed two autoregressive Graph Generative Models (GGMs) to further evaluate the capability
of our framework in providing fine-grained control in the generation process. Specifically, we used
two GGMs: Graph Convolutional Policy Network (GCPN) [32] and a Flow-based Autoregressive
(GraphAF) [33] as the graph generator. GCPN employed a reinforcement learning strategy for molec-
ular graph generation that optimized domain-specific characteristics through policy gradient [32].
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GraphAF aimed to exploit the advantages offered by both autoregressive and flow-based approaches
in order to provide enhanced flexibility, efficiency, and improved sampling process to encode domain
knowledge [33]. In our experimental setup, we followed similar implementation, training procedures,
and pre-trained models detailed in the GT4SD platform [40].

To this end, both GCPN and GraphAF were trained on the publicly available ZINC-250K [41]3

dataset, which contains 249, 455 small molecules.Additionally, we used a refined version of ZINC4

molecules, as proposed by the benchmark platform MOSES [42], which undergoes filtering by certain
parameters, such as molecular weight ranges and the number of rotatable bonds, among others.
For both GCPN and GraphAF models, we chose to scan over a summarization layer (l∑), which
concatenates node and edge representation. In this case, we evaluate the learned representation on
two different tasks. First, the detection of invalid graphs in the learned representation space (l∑),
and the second task, is to identify candidates with a given set of rules generated by MPEGO [28].
An example of Rulesets generated by MPEGO for each graph generative model and dataset can be
seen in Fig. 1. These sets of properties correspond to molecules being generated with higher or lower
frequencies.

B.2.1 Baseline and Scanning Setup in GGMs

In the validity test, H0 is designed to contain only invalid graph representations; these are generated
at a higher rate in both generative graph generative models. In the MPEGO ruleset case, H0 will
contain valid representations that do not contain properties found in the ruleset. The H1 distributions
are built from a forward pass with only samples belonging to a given class, valid representations (for
the validity use-case), and representations that generate molecules with a given set of properties for
the MPEGO use-case.

B.2.2 Change of Expectation H0 for MPEGO rulesets

We can observe that the detection of power reduces compared to the validity task; this is partially
because the expectation for the validity task is clearly divided from our alternative hypothesis, i.e.,
H0 corresponds to invalid graph representations, while H1 contains only valid graph representations.
Furthermore, we consider two H0 for the experiments for MPEGO rulesets [28] (See Fig. 2). The first
one will be to have a mix of valid and invalid representations of molecules generated by each model,
which we observe more discrimination as MPEGO rules will never have invalid graph representations.
And the second, more realistic H0 will only contain valid graph representations as appears in the final
experiments.

C Run-time benchmark

Scalability is often an issue in most existing evaluation frameworks, particularly in the molecular
space, when the group of samples is large. After all, there are exponentially many subsets with respect
to the group size. To this end, we utilize linear-time subset scanning property that helps to scan across
samples in linear time via its ranking function. In Table 3, we can see the execution time for subset
scanning under a summarization layer (l∑) from both GraphAF and GCPN as well embeddings e
from MoLFormer and ChemBERTa. We performed 100 runs with the High Criticism score function
for multiple molecule candidates for the evaluation. The tests were performed in a desktop machine
(2.9 GHz Quad-Core Intel Core i7, 16 GB 2133 MHz LPDDR3) under Linux 4.15.0-139-generic
operating system.

D Extended Results

D.1 Group property-driven subset scanning over fine-tuned and task-agnostic MoLFormer

In Fig. 3, we observe that for the BBBP task, the detection power for pre-trained embeddings is
0.89 and 1.0 for fine-tuned representation with all target datasets (train test splits following [30]).
Similarly, for HIV task, pre-trained embeddings are 0.98 and 1.0 for fine-tuned representation. This

3https://www.kaggle.com/datasets/basu369victor/zinc250k Last Accessed 15th May 2023.
4https://zinc.docking.org/
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Model Detection Power (↑) Scores Distributions in l∑ H0

GCPN [43] 0.819

Hvalid
0

GCPN [43] 0.984

Hmix
0

GraphAF [33] 0.969

Hvalid
0

GraphAF [33] 0.991

Hmix
0

Figure 2: Scores distributions for different rulesets obtained from MPEGO [28].

can imply that fine-tuned representations have higher discriminative power for the given task, see
Table 1 for more comparisons. Further, the cardinality of identified elements needed to detect a
given sample type in the embeddings reduces to half. See Fig. 4 for more details regarding node
identification.
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Table 3: Run-time benchmark. Scan time involves p-value calculation and scanning process for both evaluation
samples. Total time measures the complete pipeline from activation extraction to output metrics recording and
visualization.

Model task scan time (secs) Total time (secs)

ChemBERTa [24] BACE 10.75± 0.06 18.41± 0.89
MoLFormer [30] BACE 14.03± 0.49 20.75± 1.11

GCPN [43] Invalid 7.69± 0.23 14.3± 0.21
GraphAF [33] Invalid 7.68± 0.03 6.99± 0.40

Task MoLFormer - Pre-trained MoLFormer - Finetuned

BACE

BBBP

HIV

Figure 3: Score distributions for group property-driven subset scanning over fine-tuned and task-agnostic
MoLFormer embeddings [30].

D.2 Identified candidates

A random example of an extracted group of molecule candidates that were identified by the same
group of elements in the task-agnostic embedding to belong to class 1 under BBBP task with a
precision of P = 0.83 can be seen in Fig. 6.
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Figure 4: Cardinality distribution of detected elements for BBBP with task-agnostic and fine-tune embeddings.

Figure 5: When we look at the most common top−120 elements across all runs and compare them between
the tasks, only 11 property-driven elements are shared in the three tasks, while between 70 to 80 of those are
unique to each task. We can also observe that HIV and BACE, share almost double the elements (27); both of
these tasks involve enzyme inhibition, compared to the 13 and 14 nodes share with BBBP, respectively, which is
associated with a fundamentally different mechanism.

Table 4: Detection power (AUC) across two different Generative Models (GGMs) GraphAF [33] and GCPN [32]
trained in two datasets, ZINC250k and MOSES. The first H1 corresponds to finding the graph inner representation
of valid molecules, and the second H1 corresponds to a group of molecules with a set of chemistry properties
found in [28]. NA: a ruleset is not available for that dataset.

Invalid Molecules MPEGO Rulesets
GGM Dataset SS (Ours) Cintas et al.[34] SS (Ours) Cintas et al.[34]

GraphAF [33] ZINC250K 0.984 0.639 0.969 0.596
MOSES 0.998 0.768 NA NA

GCPN [43] ZINC250K 0.878 0.713 0.819 0.369
MOSES 0.996 0.644 NA NA

D.3 Group property-driven subset scanning over GGMs

Table 4 shows the detection power of our approach for two different tasks across generative models
and datasets. For all cases, we observe that group-based scanning yields higher detection power than
the baseline [34]. We hypothesize this is thanks to the unique ability to identify anomalous elements
across a group of candidate molecules to detect different tasks.
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Figure 6: Subset of molecules identified by our proposed approach in the task-agnostic embedding space as
candidates to belong to class 1 under BBBP task with a precision of 0.839 and a recall of 0.766.
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