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ABSTRACT

Transformers have emerged as powerful sequence models for offline reinforce-
ment learning (RL), but their reliance on purely self-attention mechanisms can
limit their ability to capture fine-grained local dependencies and Markovian dy-
namics present in many RL datasets. In this work, we introduce a modified Deci-
sion Transformer architecture that incorporates a Gaussian-biased masked causal
attention mechanism. By augmenting attention scores with a distance-aware bias,
the model adaptively emphasizes temporally local relationships while still retain-
ing the ability to capture long-range dependencies through self-attention. Ex-
perimental results on benchmark offline RL tasks show that our Gaussian-biased
Decision Transformer achieves achieves state-of-the-art performance and notable
gains over the standard DT, particularly in environments with strong Markovian
structure. This demonstrates the importance of explicitly encoding locality into
attention mechanisms for sequential decision-making.

1 INTRODUCTION

Offline reinforcement learning (RL) addresses the problem of learning policies from fixed datasets
without additional interaction with the environment (7). This setting is especially important in do-
mains such as robotics, healthcare, and recommendation systems, where online exploration may be
unsafe or impractical (15). Offline RL, though promising, is inherently constrained by the absence
of active exploration and its sensitivity to distributional shift; the agent must train exclusively on
a fixed dataset D, lacking any mechanism to acquire new transitions that might reveal high-return
regions in the state–action space.

Return-Conditioned Supervised Learning (RCSL) provides an effective framework for offline RL
(18; 9; 3). In this approach, policy learning is formulated as a conditional prediction problem in
which the agent predicts actions from states or histories conditioned on a desired return. This refram-
ing aligns reinforcement learning with supervised learning methods, allowing the use of powerful
supervised learning techniques and architectures for policy optimization. Building on this founda-
tion, Conditional Sequence Modeling (CSM) approaches extend the idea by representing trajectories
as sequences and modeling them directly. Among these, the Decision Transformer (DT) has become
a prominent example, recasting RL entirely as a sequence modeling problem and achieving strong
empirical performance in offline RL tasks (3; 22; 21). A more detailed overview of offline reinforce-
ment learning is provided in Appendix A for readers unfamiliar with the topic.

Conditional Sequence Modeling (CSM) approaches benefit significantly from recent advances in se-
quence modeling, particularly architectures like MetaFormers, which provide a powerful and general
framework for representing sequences by decoupling the architectural backbone from the specific
choice of token-mixing operation (24). Within this framework, sequences such as reinforcement
learning trajectories can be modeled using any suitable token mixer while preserving the core archi-
tectural components including residual connections, normalization layers, and feedforward networks
that ensure stability and expressivity (figure 2).
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Building on this general framework, DT lever-
ages the transformer architecture to model
trajectories in reinforcement learning as tok-
enized sequences of returns, states, and ac-
tions (figure 1) (3). Specifically, a trajec-
tory is represented as an ordered sequence
(R̂t, st, at, ˆRt+1, st+1, at+1, . . .) where R̂t de-
notes the desired return-to-go at time t. This
sequence is fed into a causal Transformer with
self-attention layers as token-mixer that capture
long-range dependencies across time steps, en-
abling the model to learn temporal correlations
between past returns, states, and actions. By
conditioning the prediction of each action on the
preceding context including both the desired fu-
ture return and past observations, DT learns a
return-conditioned policy without explicitly es-
timating value functions. This design allows DT
to directly exploit the powerful sequence mod-
eling and representation learning capabilities of
Transformers for decision-making tasks. The
core component enabling the Decision Trans-
former to model trajectories effectively is the
self-attention mechanism (19).

Figure 1: Architecture of the Decision Trans-
former (DT). Red arrows illustrate the Markov
property. Yellow arrows indicate that the selec-
tion of each action is influenced by both the cur-
rent state and the corresponding return-to-go.

Self-attention computes a weighted representation of each token (e.g., returns, states, actions) by
attending to all other tokens in the sequence, allowing the model to capture long-range temporal de-
pendencies (figure 2). This property relaxes the strict Markovian assumption in reinforcement learn-
ing by conditioning decisions on extended historical context rather than only the most recent state.
However, the same mechanism can also become a limitation in offline RL. By distributing attention
weights broadly across all past timesteps, standard self-attention may dilute the local, decision-
critical information necessary for predicting the next action, potentially impairing the model’s abil-
ity to capture short-horizon dynamics that are essential for fine-grained decision-making (10). This
limitation arises from the Markovian property of state transitions (figure 1), which dictates that the
next state at any given timestep primarily depend on the current state and action rather than the
full sequence of preceding states (2). As a result, recent states encode the most critical information
for accurate decision-making, whereas distant states generally provide diminishingly relevant infor-
mation. By distributing attention broadly across all tokens in a trajectory, DT may assign undue
weight to temporally distant states, potentially weakening decision-critical signals and impairing
the model’s ability to exploit the inherent short-term correlations present in offline RL datasets (10).
Addressing this discrepancy is crucial for enhancing the sample efficiency and predictive accuracy
of sequence-based policy learning models.

Recent approaches have attempted to address the limitation of standard self-attention in offline RL
by introducing temporal inductive biases. For instance, the Decision Conformer (DC) (10) leverages
convolutional modules to capture local, short-term dependencies, while the Long-Short Decision
Transformer (LSDT) (20) combines convolution with attention to balance both short- and long-term
interactions. Although effective to some extent, these methods either overemphasize local patterns
at the expense of global context (DC) or introduce additional architectural complexity (LSDT),
limiting their performance.

Decision ConvFormer (DC) addresses this limitation by replacing DT’s attention module with causal
convolution filters, explicitly modeling local temporal correlations. DC excels at capturing short-
term dependencies and inter-modal relationships with fewer parameters and faster training, but un-
derperforms in environments requiring long-range dependencies, such as non-Markovian or mixed-
policy datasets. Long-Short Decision Transformer (LSDT) improves upon this trade-off using a
dual-branch architecture, combining a long-term self-attention branch for global dependencies with
a short-term dynamic convolution branch for local dependencies. This flexible design enables robust
performance across diverse RL tasks and allows modular integration of alternative local modeling
strategies.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Comparison of different token mixer designs within the Metaformer framework. Deci-
sion Transformer (DT) captures long-term dependencies using self-attention. Long-Short Decision
Transformer (LSDT) combines self-attention for long-term dependencies with convolution for local
information. Decision Conformer (DC) relies purely on convolution for short-term modeling, while
our proposed Gaussian Decision Transformer (GDT) introduces a Gaussian-biased attention mech-
anism to balance local and global context effectively.

Motivated by advances in Natural Language Inference, where Gaussian-biased attention effectively
emphasizes neighboring tokens while maintaining global context (17; 4), we introduce the Gaussian-
Biased Decision Transformer (GDT). GDT incorporates a distance-aware Gaussian bias into the
self-attention mechanism, prioritizing temporally local interactions while preserving long-range de-
pendencies (figure 2). This unifies the strengths of DC and LSDT, enabling stable and efficient
modeling of offline RL trajectories with mixed temporal dependencies. Our main contributions are:

• We propose a Gaussian-biased Decision Transformer that explicitly encodes temporal lo-
cality into the attention scores via a distance-aware bias. This modification allows the
model to focus on recent, decision-critical timesteps while retaining the ability to capture
long-range dependencies when needed.

• We provide insights into the Markovian structure of offline RL datasets and show how
Gaussian biases align with this structure.

• We demonstrate that GDT outperforms both the state-of-the-art DT-based methods across
diverse D4RL tasks, achieving better performance in both continuous control and long-
horizon sparse-reward settings.

2 GAUSSIAN-BIASED DECISION TRANSFORMER

In this section, we present the Gaussian-Biased Decision Transformer (GDT), which integrates a
distance-aware Gaussian bias into the self-attention mechanism to effectively balance local and
global temporal dependencies in RL trajectories.

2.1 PRELIMINARIES

Markov Decision Process (MDP): We consider an MDP (16) defined by the tuple (S,A, P, r, γ),
where S is the state space, A is the action space, P (s′ | s, a) defines the transition dynamics, r(s, a)
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is the reward function, and γ ∈ [0, 1] is the discount factor that controls the importance of future
rewards. The goal of reinforcement learning is to find a policy π(a | s) that maximizes the expected
return J(π) = Eπ

[∑T
t=1 γ

t−1r(st, at)
]
.

return-to-go: We define the return-to-go at time t as R̂t =
∑T

t′=t r(st′ , at′) , the sum cumulative
reward starting at timestep t. This sequence is fed into a causal Transformer, where the prediction
of each action at is conditioned on the preceding context, including both the desired return and
historical observations.
Context window and tokenization: At each time step t, we construct the context sequence

τt−K+1:t =
(
R̂t−K+1, st−K+1, at−K+1, . . . , R̂t−1, st−1, at−1, R̂t, st

)
, (1)

which contains the desired return-to-go, states, and actions over the past K steps up to the current
time t. The model then predicts the next action at conditioned on this context τt−K+1:t.

Each element of τt−K+1:t is linearly projected into a d-dimensional embedding (token). Denoting
the resulting token vectors in temporal order by

x1, x2, . . . , x3K−1 ∈ R1×d, (2)

we thus obtain a sequence of 3K − 1 tokens representing the context at time t.

2.2 GAUSSIAN SELF-ATTENTION

Given the token sequence {x1, x2, . . . , x3K−1} from Eq. equation 2, standard self-attention com-
putes attention weights using the scaled dot-product:

Attn(Q,K, V ) = softmax
(
QK⊤
√
d

)
V, (3)

where Q,K, V ∈ R(3K−1)×d are the query, key, and value matrices, and d is the embedding dimen-
sion. This formulation treats all tokens equally regardless of their temporal distance, which may
overemphasize distant and less relevant tokens in sequential decision-making tasks.

Gaussian locality prior. To emphasize temporally local information, we introduce a distance-aware
Gaussian bias into the attention mechanism. Let dij = |i− j| denote the temporal distance between
tokens xi and xj . We define the Gaussian prior as

g(dij) = e−
d2ij

2σ2 , (4)

where σ > 0 controls the locality strength: smaller σ focuses attention on nearby tokens, while
larger σ allows longer-range interactions.

Log-space parameterization. Rather than multiplying by g(dij) directly, we add its logarithm to
the attention logits before the softmax:

αij = softmaxj

(
QK⊤
√
d

− w d2ij

)
, w =

1

2σ2
. (5)

we introduce a scalar parameter w > 0 to control the decay rate: In our implementation, we treat
w as a hyperparameter and select its value using validation performance, thereby allowing us to
balance the emphasis on local versus global temporal dependencies.
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Central token punishment term. In addition to the
Gaussian locality prior, we introduce a punishment
term b to mitigate over-attention to the current token
itself. Following the approach proposed by Guo et
al. (8), we apply a negative bias b ≤ 0 to reduce, but
not completely suppress, the self-attention weight. The
modified attention formulation is given by

Attn(Q,K, V ) = softmax
(
QK⊤
√
d

−
∣∣w d2ij + b

∣∣)V,

(6)
where b ≤ 0 penalizes over-attention at dij = 0. This
strategy ensures that information from the current to-
ken is still preserved while encouraging the model to
attend more to its temporal neighbors as shown in fig-
ure 3.

Figure 3: Illustration of Gaussian bias
functions: (a) shows the vanilla Gaussian
(b) depicts the variant with an additional
bias term to penalize central token.

2.3 MODEL ARCHITECTURE

GDT adopts the causal Transformer architecture with stacked layers of Gaussian-biased self-
attention, layer normalization, and feedforward networks. The overall design remains similar to
DT while explicitly encoding temporal inductive biases into the attention mechanism.

2.4 TRAINING OBJECTIVE

2.5 TRAINING

We train the Gaussian-Biased Decision Transformer (GDT) to predict the next action conditioned
on a recent subtrajectory of returns, states, and past actions. Formally, for each trajectory in the
offline dataset D, we sample a subtrajectory of length K and process it through all Gaussian-biased
Transformer layers described above. The output tokens from the final layer are projected to obtain
the action predictions

ât = πθ

(
R̂t−K+1:t, st−K+1:t, at−K+1:t−1

)
, t = 1, . . . ,K, (7)

where πθ denotes the GDT parameterized by θ. The parameters are optimized by minimizing the
mean squared error between the predicted and ground-truth actions:

LGDT = Eτ∼D

[
1

K

K∑
t=1

(at − ât)
2

]
. (8)

The implementation details are provided in appendix B

3 EXPERIMENTS

Our experiments are designed to evaluate the effectiveness of GDT in offline reinforcement learning
tasks. Specifically, we aim to answer the following questions:

• Does GDT improve performance compared to standard Decision Transformer (DT) and its
variants?

• Does GDT demonstrate robustness across environments with varying dataset optimality
(e.g., medium, medium-replay, and medium-expert datasets)?

• Does GDT improve performance compared to baselines on sparse reward and goal oriented
environments?

• Does GDT discover policies that perform better than behavioral policy that generates the
dataset?

5
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3.1 EXPERIMENTAL SETUP

Environments and Datasets. We evaluate GDT on the D4RL benchmark suite (5), a standardized
collection of offline RL datasets for continuous control. Experiments are conducted in two domains:
Gym-MuJoCo and AntMaze, targeting both dense- and sparse-reward settings.

In the Gym-MuJoCo domain, we study three locomotion tasks: Walker2d, Hopper, and HalfChee-
tah. For each task, we use three datasets: medium, medium-replay, and medium-expert. These
datasets differ in terms of data quality and behavioral policies: medium is generated by a partially
trained policy, medium-replay combines the full replay buffer collected during training and thus
contains more suboptimal trajectories, and medium-expert mixes medium-quality data with expert
demonstrations, representing near-optimal behavior. All tasks in this domain feature dense, smooth
reward functions that measure the quality of locomotion.

The AntMaze domain evaluates long-horizon, goal-directed navigation with sparse rewards. We use
four datasets: umaze, umaze-diverse, medium-diverse, and large-diverse, which differ in maze size
and trajectory diversity, requiring trajectory stitching for successful planning.

Baselines. We compare GDT against two categories of state-of-the-art methods: value-based ap-
proaches and Return-Conditioned Behavioral Cloning approaches. For value-based approaches, we
consider TD3+BC (6), IQL (12), and CQL(14). For CSM approaches, we include the standard De-
cision Transformer (DT) (3), Q-learning Decision Transformer (QDT) (23), Decision ConvFormer
(DC) (10), and Long Short-Term Decision Transformer (LSDT) (20), where LSDT leverages com-
bination of convolution layers and self-attention to capture both long- and short-term temporal de-
pendencies, and DC employs convolutional layers to better extract local features.

Evaluation Protocol. Following (5), we report normalized scores to enable direct comparison
across tasks with different reward scales. For each setting, we average results over 10 evaluation
episodes and 3 random seeds.

The normalized score is defined as:

Normalized Score = 100×
Ragent −Rrandom

Rexpert −Rrandom
(9)

where Ragent is the return of the evaluated policy, Rrandom is the expected return of a random policy,
and Rexpert corresponds to expert-level performance. A score of 100 indicates expert-level returns.
Results are analyzed separately for each domain.

4 RESULTS

4.1 MUJOCO CONTINUOUS CONTROL TASKS

We first evaluate the Gaussian-biased Decision Transformer (GDT) on the MuJoCo continuous con-
trol benchmark, comparing it against both value-based and return-conditioned behavioral cloning
(RCBC) methods across medium (m), medium-replay (m-r), and medium-expert (m-e) datasets. Ta-
ble summarizes the normalized scores averaged over three random seeds and ten evaluation episodes.

Across all locomotion tasks, GDT consistently matches or outperforms standard DT and other
RCBC baselines. Notably, GDT achieves the highest locomotion mean score (84.7), surpassing
LSDT (82.0) and DC (82.2), demonstrating its ability to balance local and global temporal depen-
dencies effectively. For example, on Hopper-medium, GDT reaches 99.1, a substantial improve-
ment over DT (68.4) and even surpassing LSDT (87.2) and DC (92.5). Similarly, on Walker2d-
medium-replay, GDT achieves 83.5, the highest among all methods, highlighting its robustness on
datasets with mixed-quality trajectories. While value-based approaches like IQL and CQL remain
competitive on some datasets (e.g., HalfCheetah-m and Walker2d-m), GDT consistently performs
better on sparse or suboptimal datasets where temporal locality is crucial. For instance, on Hopper-
medium-replay, GDT reaches 95.9, outperforming all value-based methods, indicating the advan-
tage of modeling local dependencies explicitly in challenging settings. On medium-expert datasets,
where trajectories already include near-optimal behavior, most methods perform close to the expert
upper bound. Nevertheless, GDT maintains strong performance, achieving 111.9 on Hopper-m-e
and 111.2 on Walker2d-m-e, matching or exceeding all baselines. Key insights are as follows:

6
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Locality Bias Helps on Suboptimal Data: GDT yields the largest gains on medium and medium-
replay datasets, where local decision-critical signals are essential for accurate action prediction.
Competitive on Expert Data: Even when trajectories are near-optimal, GDT performs on par with
or better than state-of-the-art baselines, indicating no loss of global context due to the locality bias.
Best Overall Performance: Averaged across all tasks, GDT achieves the highest normalized score
(84.7), demonstrating its robustness across varying dataset qualities and environments.

Dataset Value-Based Method Return-Conditioned BC

TD3+BC IQL CQL DT ODT RvS DS4 DC LSDT GDT (ours)

halfcheetah-m 48.3 47.4 44.0 42.6 43.1 41.6 42.5 43.0 43.6 43.46

hopper-m 59.3 63.8 58.5 68.4 78.3 60.2 54.2 92.5 87.2 99.1

walker2d-m 83.7 79.9 72.5 75.5 78.4 71.7 78.0 79.2 81.0 82.8

halfcheetah-m-r 44.6 44.1 45.5 37.0 41.5 38.0 15.2 41.3 42.9 42.4

hopper-m-r 60.9 92.1 95.0 85.6 91.9 73.5 49.6 94.2 93.9 95.9

walker2d-m-r 81.8 73.7 77.2 71.2 81.0 60.6 69.0 76.6 74.7 83.5

halfcheetah-m-e 90.7 86.7 91.6 88.8 94.8 92.2 92.7 93.0 93.2 92.4

hopper-m-e 98.0 91.5 105.4 109.6 111.3 101.7 110.8 110.4 111.7 111.9

walker2d-m-e 110.1 109.6 108.8 109.3 108.7 106.0 105.7 109.6 109.8 111.2

locomotion mean 75.3 76.5 77.6 76.4 81.0 71.7 68.6 82.2 82.0 84.7

Table 1: Performance comparison on MuJoCo locomotion tasks. Normalized scores (0-100 scale)
are reported, with higher values indicating better performance. Dataset abbreviations: medium (m),
medium-replay (m-r), medium-expert (m-e). Each result is averaged over 3 random seeds, and each
seed is evaluated on 10 independent episodes. Bold values indicate scores within 95% of the best in
each row.

4.2 ANTMAZE NAVIGATION TASKS

The AntMaze domain provides a challenging benchmark for evaluating long-horizon planning and
decision-making under sparse rewards. Table 2 reports normalized success rates (0–100 scale) for
two datasets: antmaze-u and antmaze-u-d. Results are averaged over three random seeds, with each
seed evaluated across ten independent episodes.

The proposed Gaussian-Biased Decision Transformer (GDT) consistently achieves the highest suc-
cess rates across all AntMaze datasets, attaining an average score of 89.1, a significant improvement
over both value-based methods and other return-conditioned baselines. On antmaze-u, GDT ob-
tains 90.0, surpassing the best-performing value-based method, IQL (87.1). On the more difficult
antmaze-u-d dataset, GDT reaches 88.2, outperforming the strongest baseline, CQL (84.0).

Among value-based methods, CQL performs robustly with an average score of 79.0, while IQL
excels on antmaze-u but struggles on antmaze-u-d. Return-conditioned approaches exhibit greater
variability: standard DT and ODT underperform on average, whereas DC and LSDT deliver compet-
itive results, suggesting that modeling local dependencies benefits long-horizon planning. Neverthe-
less, GDT consistently outperforms all baselines, demonstrating the effectiveness of incorporating a
Gaussian locality bias for trajectory modeling under sparse rewards.

5 ATTENTION ANALYSIS

To better understand how the Gaussian-biased Decision Transformer (GDT) differs from
the standard Decision Transformer (DT), we visualize the learned attention weights on the
hopper-medium dataset (Figure 4). Each panel shows the average attention map across heads
and layers for a representative trajectory.

DT vs. GDT Attention Patterns. The first two panels reveal a clear difference between DT and
GDT. While DT distributes its attention broadly across the trajectory with only weak emphasis on lo-
cal context, GDT exhibits strong diagonal attention, focusing on recent, decision-critical timesteps.

7
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Dataset Value-Based Method Return-Conditioned BC

TD3+BC IQL CQL DT ODT RvS DS4 DC LSDT GDT (ours)

antmaze-u 78.6 87.1 74.0 69.4 73.5 64.4 63.4 85.0 80.0 90.0

antmaze-u-d 71.4 64.4 84.0 62.2 41.8 70.1 64.6 78.5 83.2 88.2

Average 75.0 75.8 79.0 65.8 57.7 67.3 64.0 81.8 81.6 89.1

Table 2: Performance comparison on AntMaze navigation tasks with sparse rewards.Normalized
success rates (0-100 scale) are reported, with higher values indicating better performance. Dataset
abbreviations: umaze (u), umaze-diverse (u-d). Each result is averaged over 3 random seeds, and
each seed is evaluated on 10 independent episodes. Bold values indicate scores within 95% of the
best in each row. The final row shows the average performance across all AntMaze datasets.

Figure 4: Visualization of attention patterns in the hopper-medium environment for the standard
Decision Transformer (DT) and the proposed Gaussian-biased Decision Transformer (GDT). GDT
exhibits strong diagonal attention, focusing on recent, decision-critical timesteps, whereas DT dis-
tributes attention more diffusely across the trajectory. The difference plot (GDT–DT) highlights that
GDT assigns consistently higher weights along the diagonal (blue), reflecting the Gaussian bias to-
ward local temporal dependencies.

This behavior aligns with the Markovian nature of sequential decision-making, where the next state
primarily depends on the most recent state and action rather than the entire history.

Difference Plot (GDT–DT). The third panel highlights the attention difference between GDT and
DT. Blue regions along the diagonal indicate that GDT assigns significantly higher weights to tem-
porally local tokens, while occasional red regions off the diagonal show where DT places relatively
more weight on distant tokens. This confirms that the Gaussian bias explicitly enforces locality, pre-
venting over-attention to irrelevant distant states while preserving the ability to capture long-range
dependencies when necessary.

The attention analysis demonstrates that GDT learns a structured inductive bias: it prioritizes lo-
cal temporal information critical for accurate action prediction, yet retains global context for long-
horizon reasoning. This explains the substantial performance gains of GDT over DT, especially in
environments with suboptimal or noisy trajectories where local decision cues dominate.

6 CONCLUSION

We introduced the Gaussian-biased Decision Transformer (GDT), a simple yet effective modifica-
tion of the standard Decision Transformer (DT) that incorporates a distance-aware Gaussian bias into
the self-attention mechanism. By explicitly encoding temporal locality, GDT prioritizes decision-
critical recent timesteps while preserving the flexibility of global self-attention.

Our analysis across diverse offline RL benchmarks demonstrates that GDT consistently outperforms
DT and several state-of-the-art baselines, particularly in settings with suboptimal or noisy trajecto-
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ries where local information is essential. Attention visualizations further reveal that the Gaussian
bias induces structured, diagonal attention patterns, aligning model behavior with the underlying
Markovian structure of sequential decision-making tasks.

Overall, GDT offers a principled way to integrate inductive biases into attention mechanisms for
offline RL, bridging the gap between local temporal reasoning and long-horizon planning. Future
work may explore adaptive or learnable locality priors, extending GDT to broader sequence model-
ing tasks beyond reinforcement learning.

7 REPRODUCIBILITY

All code, configuration files, and detailed instructions required to replicate our results is provided in
(anonymous).
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Appendix

A PRELIMINARIES

OFFLINE REINFORCEMENT LEARNING

Offline Reinforcement Learning (RL) focuses on learning solely from a fixed dataset of transitions
D = {(s, a, r, s′)}, generated by some unknown behavior policy πβ . The goal is to learn a policy
π(a | s) that maximizes the expected return J(π) when deployed in the environment, using only the
offline dataset (15).

The offline setting introduces unique challenges, prompting the development of a range of methods
broadly categorized into value-based and value-free approaches (15; 21).

Value-based methods: These methods aim to learn a value function, typically the state-action value
Q(s, a). Once the Q-function is estimated, the policy is derived by acting greedily with respect to
Q. The learning objective minimizes the Bellman error:

LBellman = E(s,a,r,s′)∼D

[(
Q(s, a)−

(
r + γ Ea′∼π(·|s′)[Q(s′, a′)]

))2]
. (10)
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A key challenge arises from the distributional shift: the dataset D reflects πβ , while the learned
policy π induces a different distribution. Because the Bellman target involves sampling a′ from π,
many such actions may be out-of-distribution (OOD) relative to D, producing unreliable Q(s′, a′)
estimates. This extrapolation error (7) often destabilizes training and degrades performance.

Two major strategies address this problem:

• Policy constraints: Enforce similarity between the learned policy π and the behavior pol-
icy πβ (7; 13).

• Regularization: Methods such as Conservative Q-Learning (CQL) (14) and Implicit Q-
Learning (IQL) (11) penalize overestimated Q-values or impose conservative updates,
shaping the policy without explicitly modeling πβ .

Value-free methods: These approaches skip explicit value estimation and optimize policies directly,
avoiding extrapolation errors altogether. A notable example is the Decision Transformer (DT) (3),
which reformulates RL as a sequence modeling task using Transformer architectures (19).

DT represents trajectories as sequences of Return-to-Go (RTG), state, action triplets over a horizon
H and trains the model to predict the next action given historical context. By leveraging extended
temporal dependencies rather than bootstrapped value targets, DT achieves greater stability and is
well-suited for modeling long-horizon behaviors (18).

B IMPLEMENTATION DETAILS

B.1 POLICY

Our policy architecture is based on the Decision Transformer framework, employing a GPT-2 style
transformer with causal attention. We built upon the open-source implementation available at
https://github.com/nikhilbarhate99/min-decision-transformer. The hy-
perparameters used for the model are summarized in Table 3.

For training, we ran 105 gradient steps on the AntMaze domain and 54 gradient steps on the MuJoCo
domains. We set the conditioning target return-to-go (RTG) during evaluation to twice the maximum
trajectory return observed in the dataset.

Table 3: Hyperparameters of Policy in our experiments.

Parameter Value
Number of layers 3
Number of attention heads 2
Embedding dimension 128
Activation function ReLU (1)
Batch size 64
Context length K 20
Dropout 0.1
Learning rate 3.0e-4
w 0.1
b -0.05
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