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ABSTRACT

Transformer-based time series forecasting has recently gained strong interest due
to the ability of transformers to model sequential data. Most of the state-of-the-art
architectures exploit either temporal or inter-channel dependencies, limiting their
effectiveness in multivariate time-series forecasting where both types of depen-
dencies are crucial. We propose Sentinel, a full transformer-based architecture
composed of an encoder able to extract contextual information from the channel
dimension, and a decoder designed to capture causal relations and dependencies
across the temporal dimension. Additionally, we introduce a multi-patch attention
mechanism, which leverages the patching process to structure the input sequence
in a way that can be naturally integrated into the transformer architecture, replac-
ing the multi-head splitting process. Extensive experiments on standard bench-
marks demonstrate that Sentinel, because of its ability to “monitor” both the tem-
poral and the inter-channel dimension, achieves better or comparable performance
with respect to state-of-the-art approaches.

1 INTRODUCTION

Time-series forecasting is a critical task in many real-world applications, hence the interest in re-
searching better techniques in this field is high. Recent advancements in deep learning have provided
new approaches to tackle this problem. However, effectively modeling multivariate time series,
where complex relationships exist between multiple features, remains a challenging task. In this
perspective, capturing both long-term dependencies and inter-channel relationships is crucial for
improving forecast accuracy.

Transformers (Vaswani et al., 2017) have shown promise in handling long-range dependencies in
various domains, including natural language processing (Brown et al., 2020) and computer vision
(Dosovitskiy et al., 2021). Some recent works have extended transformers to the time-series fore-
casting task, with mixed results. While some studies demonstrate their effectiveness in capturing
temporal relationships(Wang et al., 2024; Liu et al., 2024; Zhang & Yan, 2023), others highlight
limitations in addressing inter-channel dependencies efficiently (Nie et al., 2023; Jin et al., 2024;
Chang et al., 2023).

The current literature on transformers for time-series forecasting can be mainly divided in two
trends: developing new transformer architectures (Liu et al., 2024; Wang et al., 2024; Nie et al.,
2023; Zhang & Yan, 2023) or fine-tuning pre-trained models (Zhou et al., 2023; Chang et al., 2023).
While both directions are promising, in this work we focus on the first approach where we iden-
tify a gap in the current literature: most transformer-based approaches focus on either temporal or
inter-channel dependencies but only few works try to model both these dependencies (Wang et al.,
2024). This limits the ability of state-of-the-art models to fully exploit the intricate relationships
within multivariate time-series data.

Against this background, we designed a full transformer-based architecture capable of capturing
both temporal and inter-channel relationships. The encoder is responsible for modeling inter-channel
dependencies, learning how different features (or channels) in the time series relate to each other on
a patch basis across the entire sequence. This allows the encoder to generates a global context for
each channel.
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On the other hand, the decoder specializes in capturing temporal dependencies searching for causal
relationships across the time dimension. The input to the decoder first passes through a self-attention
layer, and the output of this layer serves as the query for the cross-attention mechanism. To further
enhance prediction accuracy, the cross-attention mechanism integrates the channel-wise context gen-
erated by the encoder with the temporal query produced by the decoder in the previous step, enabling
the model to effectively forecast future time steps.

Additionally, the division of the time series into patches (Nie et al., 2023) has shown to be helpful in
the forecasting task: it simplifies the discovery of closer relations between patches and reduces the
computational complexity of the model.

Following this idea we propose a modified attention mechanism. It takes advantage of the patching
process, replacing the traditional multi-head attention with a multi-patch attention, to shift the focus
from the concept of “head” to that of “patch”. This multi-patch mechanism is utilized throughout
the entire architecture: in the encoder, where each “head” independently attends to the sequence at
patch level, extracting the channels relationships between the various time steps, and in the decoder,
where each “head” independently attends to the sequence at patch level, extracting the temporal
relationships between the various time steps.

Summarizing, our key contributions are:

• A novel multi-patch attention mechanism able to exploit the patched input, redesigning the
multi-head attention.

• A specialized encoder-decoder architecture that is able to capture both temporal and inter-
channel dependencies, where the encoder focuses on inter-channel relationships and the
decoder captures temporal dependencies, enhancing the model’s forecasting capabilities.

• An extensive evaluation on standard benchmarks for time-series forecasting, showing that
the proposed architecture achieves better or comparable performances with respect to other
state-of-the art approaches.

• An ablation study demonstrating that the components we propose contribute significantly
to enhance overall forecasting performance.

2 RELATED WORK

Several transformer-based architectures have proven to be effective in time series forecasting, lead-
ing to the development of various methods aimed at improving performance and reducing computa-
tional complexity.

The key ingredient that allows transformer-based architectures to achieve good result in time se-
ries forecasting is the attention mechanism. Several works have focused on reducing computational
complexity and memory usage. For instance, LogTrans (Li et al., 2019) introduces a convolutional
self-attention mechanism alongside a LogSparse Transformer to reduce the complexity of standard
attention mechanism. Informer (Zhou et al., 2021) proposed a ProbSparse self-attention mechanism
to address memory usage and computational overhead. In contrast, Autoformer (Wu et al., 2021)
proposes an auto-correlation mechanism. FedFormer (Zhou et al., 2022) enhances transformer ar-
chitectures with frequency domain information. Pyraformer (Liu et al., 2022) developes a pyramidal
attention module able to summarize features at different resolutions. Other works, such as SAM-
former (Ilbert et al., 2024) aim to limit overfitting by proposing a shallow lightweight transformer
model to escape local minima.

PatchTST (Nie et al., 2023) introduces the concept of patch and channel independence, which has led
to significant improvements in forecasting performance. In our work, we exploit the patch structure
created through their idea, but we leverage it by considering the full channel relationships. Addi-
tionally, other works have attempted to challenge the notion of channel independence, demonstrating
that exploring relationships at the channel level is crucial. Crossformer (Zhang & Yan, 2023) imple-
ments a Two-Stage Attention mechanism designed to capture both cross-time and cross-dimension
dependencies. iTransformer (Liu et al., 2024) applies the attention and feed-forward network on
the temporal dimension to improve forecasting performance. CARD (Wang et al., 2024) introduces
a channel-aligned transformer combined with a signal decay-based loss function. With respect to
CARD, which implements an encoder-only structure to model both temporal and cross-channels
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dependencies, we propose an encoder-decoder architecture that specializes the encoder in captur-
ing contextual information through the channel dimension while allowing the decoder to focus on
modeling causal relations and dependencies across the temporal dimension.

Another trend focuses on leveraging pre-trained models for time-series forecasting. LLMTime
(Nate Gruver & Wilson, 2023) presents a zero-shot approach by encoding numbers as text. lag-llama
(Rasul et al., 2024) proposes a foundation model for univariate probabilistic time series forecasting.
GPT4TS (Zhou et al., 2023) demonstrates the universality of transformer models and emphasizes the
importance of freezing attention layers during fine-tuning. Time-LLM (Jin et al., 2024) introduces
a reprogramming framework to repurpose LLMs for general time series forecasting tasks. LLM4TS
(Chang et al., 2023) employs a two-stage fine-tuning strategy for utilizing pre-trained LLMs for
time-series forecasting. Moirai (Woo et al., 2024) introduces a novel transformer architecture and
a related large dataset of time series from several domains to support the requirements of universal
forecasting.

3 MODEL ARCHITECTURE

The forecasting problem for multivariate time-series can be encoded as follows: given an input
multivariate time series X = {x1, · · · ,xL} ∈ RL×C where L is the input lookback window and C
is the number of channels, we want to predict the future T time steps {xL+1, · · · ,xL+T } ∈ RT×C .

Figure 1 depicts our model architecture. We employ a fully transformer-based architecture, incor-
porating a multi-patch attention mechanism.

Xdec ∈ RC×N×dmodel

Odec ∈ R C×N×dmodel

X ∈ RL × C

Xenc ∈ R N×C×dmodel

Oenc ∈ R C×N×dmodel
O ∈ RT×C

Time Dimension
Multi-Patch

Cross-Attention

Time Dimension
Multi-Patch
Attention

Norm

Norm

Feed Forward

Patching

Embedding

Encoder
Decoder

Projection

+

+

+

Norm

Norm

Feed Forward

Channel Dimension
Multi-Patch
Attention

+

+

Nenc Ndec

Revin

Revin

Figure 1: Sentinel architecture

To mitigate the distributional shift problem, we integrate RevIN (Reversible Instance Normalization)
(Kim et al., 2022). RevIN normalizes the input sequence using instance-specific mean and standard
deviation. During normalization, learnable affine parameters (γ and β) are applied to scale and
shift the input, allowing the model to process inputs with consistent statistics. At the output stage,
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a corresponding denormalization step reverses the process, restoring predictions to their original
scale.

3.1 PATCHING AND EMBEDDING

Following the normalization process described earlier, the input time series undergoes a patching
process (Nie et al., 2023) which divides the input series into patches of size P along the time dimen-
sion. This patching is performed with overlapping regions determined by the stride S. After this
operation, the resulting tensor is represented as X ∈ RC×N×P where N = [L−P

S +1] is the number
of patches.

After patching, the patched tensor is projected to the model’s latent dimension resulting in the em-
bedding tensor X(1) ∈ RC×N×dmodel . This transformation is performed through a multi-layer per-
ceptron (MLP).

As highlighted by Nie et al. (2023), since the computational complexity of the attention mechanism
scales quadratically with the length of the sequence, dividing the input time series into smaller
patches, the memory usage and computational complexity are reduced quadratically by a factor S.

3.2 RESHAPING

The tensors for encoder and decoder are shaped differently from each other, allowing the model to
focus on distinct aspects of the time series data. Given the tensor X(1) ∈ RC×N×dmodel we perform
the following shaping

Xenc = X(2) ∈ RN×C×dmodel (1)

Xdec = X(1) ∈ RC×N×dmodel (2)

This reshaping enables the encoder to focus on inter-channel relationships and the decoder to focus
on temporal dependencies, thus enhancing the model’s ability to capture both types of relationships
effectively.

3.3 MULTI-PATCH ATTENTION

The patching process introduces a natural link to the multi-head attention mechanism, where the
multi-head splitting can be reinterpreted as a multi-patch splitting. This enables us to modify the
attention structure leveraging the patching operation to efficiently capture diverse patterns in the
input sequence.

In the traditional multi-head transformer architecture (Vaswani et al., 2017), the Query (Q), Key
(K) and Value (V) are projected into h independent attention heads. Each attention head i has its
own set of learned projection matrices WQ

i ,WK
i ,W V

i ∈ Rdmodel×dh , where dh = dmodel

h is the
dimension of each head.

Given an input matrix X ∈ RL×dmodel , the corresponding query, key, and value representations for
each head are computed as follows:

Qi = XWQ
i , Ki = XWK

i , Vi = XW V
i (3)

Qi,Ki,Vi ∈ RL×dh are the projected query, key and value matrices for the i-th attention head.
Each head independently refers to different sub-spaces of the input sequence, enabling multi-head
attention to capture different relations along the input sequence. The attention output is computed
as:

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

MultiHead(Q,K,V ) = Concat(head1, · · · , headh)WO ∈ RL×dmodel (4)

headi = Attention(XWQ
i ,XWK

i ,XW V
i ) ∈ RL×dh (5)

Attention(Qi,Ki,Vi) = softmax

(
QiK

T
i√

dh

)
Vi ∈ RL×dh (6)

where WO ∈ Rhdh×dmodel is the learned weight matrix that projects the concatenated outputs back
to RL×dmodel .

In contrast, in our proposed Multi-Patch Attention, we eliminate the multi-head splitting by lever-
aging the patch-based input structure. Instead of splitting the input into multiple heads, attention is
applied directly to each patch. Furthermore, since the encoder deals with channel attention and the
decoder with temporal attention, we use a reshaping function (see Section 3.2) to prepare the two
inputs.
Considering the encoder input X(2) ∈ RN×C×dmodel , we can extract N patches X

(2)
n ∈

RC×dmodel , n = 1, · · · , N by slicing on the first dimension. For each patch we can then com-
pute matrices Q(2)

n ,K
(2)
n ,V

(2)
n using the following equation:

Q(2)
n = X(2)

n WQ, K(2)
n = X(2)

n WK , V (2)
n = X(2)

n W V (7)

where, WQ,WK ,W V ∈ Rdmodel×dmodel are learned weight matrices shared across all patches
and Q

(2)
n ,K

(2)
n ,V

(2)
n ∈ RC×dmodel .

This is different than the classical multi-head mechanism, in which a single input is multiplied
by specific projection matrices WQ

i ,WK
i ,W V

i (see equation 3). In the multi-patch attention, in-
stead, different input patches X(2)

n , n = 1, · · · , N are multiplied by the same projection matrices
WQ,WW ,W V (see equation 7). Figure 2 shows how the patching process can be exploited to cre-
ate a structure similar to the one created through the multi-head splitting. The multi-patch attention
is computed in the encoder according to the following formulas:

MultiPatch(Q(2),K(2),V (2)) = Fold(patch1, · · · , patchN ) ∈ RN×C×dmodel (8)

patchn = Attention(X(2)
n WQ,X(2)

n WK ,X(2)
n W V ) ∈ RC×dmodel

(9)

Attention(Q(2)
n ,K(2)

n ,V (2)
n ) = softmax

(
Q

(2)
n K

(2)T
n√

dmodel

)
Vn ∈ RC×dmodel (10)

In the decoder, the equations remain the same but the input tensor is X(1) ∈ RC×N×dmodel in-
stead of X(2) ∈ RN×C×dmodel , hence we extract C patches patchc, c = 1, · · · , C instead
of N patches, and query, key and value matrices are Q

(1)
c ,K

(1)
c ,V

(1)
c ∈ RN×dmodel . Con-

sequently, Attention(Q
(1)
c ,K

(1)
c ,V

(1)
c ) ∈ RN×dmodel and MultiPatch(Q(1),K(1),V (1)) ∈

RC×N×dmodel .

3.4 ENCODER AND DECODER

Encoder Attention across channels was shown to be effective in various works (Liu et al.,
2024; Wang et al., 2024; Zhang & Yan, 2023). In our model, the encoder receives as input

5
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Figure 2: The figure illustrates the multi-patch attention mechanism. Initially, the time series is di-
vided into multiple patches, where N represents the number of patches and P denotes the patch size.
Each patch is generated with a stride S, which defines the distance between consecutive patches. On
the right-hand side, the figure shows how this patching structure can be seamlessly integrated into
a multi-head attention mechanism. By leveraging the patch-based representation, the patches serve
as inputs to the attention layer, effectively exploiting the structure naturally induced by the patching
operation.

X(2) ∈ RN×C×dmodel , enabling the model to learn relationships between the C different chan-
nels across the sequence. In the Scaled Dot-Product Attention we compute the attention between
channels, namely,

W
(2)
attn = softmax

(
Q(2)K(2)T

√
dk

)
where Q(2),K(2) ∈ RN×C×dmodel . The resulting attention weights W(2)

attn ∈ RN×C×C , show how
each channel relates to every other channel in each patch n = 1, . . . , N, enabling the attention mech-
anism to focus on the relationships between channels within a patch. Finally, the attention weights
are applied to the value tensor, i.e., W (2)

attnV(2) resulting in the attention output ∈ RN×C×dmodel .

The output of the encoder is then reshaped from RN×C×dmodel to RC×N×dmodel resulting in Oenc ∈
RC×N×dmodel (see Figure 1) and used as the key (K) and value (V) in the cross-attention part of the
decoder.

Decoder The decoder receives the input tensor X(1) ∈ RC×N×dmodel . Both self-attention and
cross-attention in the decoder are applied along the temporal dimension to capture causal temporal
dependencies

In the self-attention mechanism, the query Q(1), key K(1) and value V(1) tensors are derived from
X(1) and the attention is performed along the temporal dimension with causal masking applied. This
allows the model to learn relationships between different time steps, capturing temporal patterns
across the sequence.

In the cross-attention mechanism, the query Q is the output of the decoder self-attention operation,
while the key KOenc and value VOenc are derived from the encoder output Oenc which encapsulates
relationships across channels.

By performing cross-attention over the temporal dimension, the decoder integrates both temporal de-
pendencies (from the self-attention mechanism) and cross-channel information (from the encoder),
effectively merging both channel and temporal relationships in the final output.

4 EXPERIMENTS

In this section, we introduce the datasets used to evaluate our approach, along with the baseline
methods selected for comparison. Before presenting the results, we will discuss the experimental
settings adopted to achieve these outcomes. Following this, we will present the results, including
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an ablation study that highlights the importance of the proposed components. Additionally, we will
demonstrate how performance improves as the lookback window increases.

4.1 EXPERIMENTAL SETTING

Datasets We evaluated the performance of our model on various benchmarks used for long-term
forecasting, including ETTh1, ETTh2, ETTm1, ETTm2, Electricity, and Weather. Details about the
number of variables of each dataset, their training/validation/test sizes and frequency are available
in Table 1.

Datasets Variables Dataset Size Frequency

ETTh1 7 (8545, 2881, 2881) Hourly

ETTh2 7 (8545, 2881, 2881) Hourly

ETTm1 7 (34465, 11521, 11521) 15 Minutes

ETTm2 7 (34465, 11521, 11521) 15 Minutes

Weather 21 (36792, 5271, 10540) 10 Minutes

Electricity 321 (18317, 2633, 5261) Hourly

Traffic 862 (12185, 1757, 3509) Hourly

Table 1: Description of the datasets

Baselines To evaluate the performance of Sentinel, we selected the following forecasting models
as benchmarks, based on their good performance. Specifically, we used: CARD (Wang et al., 2024),
iTransformer (Liu et al., 2024), PatchTST(Nie et al., 2023), Crossformer (Zhang & Yan, 2023),
DLinear (Zeng et al., 2023), FEDformer (Zhou et al., 2022), Autoformer (Wu et al., 2021).

Settings We run the experiments on each dataset with multiple seeds and report the average Mean
Squared Error (MSE) and Mean Absolute Error (MAE). In all experiments, we used a patch size
of 16 and a stride of 8. The dropout is set to 0.3 and AdamW (Loshchilov & Hutter, 2019) is used
as optimizer with a learning rate of 0.0005 and an L1 loss. For each dataset we perform various
runs with a variable number of encoder layers Nenc = 1, · · · , 4 (see Figure 1), decoder layers
Ndec = 1, · · · , 4 (see Figure 1), and different model dimension dmodel = 16, 32, 64, 128, 256, 512.
We selected the configuration yielding the best performance. To align with baseline performance
in the literature, we used a fixed lookback window L = 96 and a set of different prediction length
T = (96, 192, 336, 720). The model parameters are consistent across all prediction lengths within
each dataset.

Hardware and software We run our experiments on a NVIDIA RTX A6000 (48 GiB) and on a
on a NVIDIA A100 (80 GiB). The code is attached to this submission and it will be published online
upon acceptance.

4.2 RESULTS

The results, summarized in Table 2, show that Sentinel is consistently the best or second-best per-
forming approach among all competitors. Alongside CARD (Wang et al., 2024), Sentinel demon-
strates superior forecasting accuracy compared to the other models. In general, we observe that
models incorporating specialized blocks to handle the channel dimension, such as iTransformer
(Liu et al., 2024) and CARD (Wang et al., 2024), tend to outperform those without such component.
However, since the temporal dimension is equally critical, approaches like Sentinel and CARD,
which integrates components specifically designed to manage both channel anpatch tsd temporal
dependecies, consistently deliver the hightest performance. This highlights the importance of effec-
tively addressing both channel and temporal dimensions in multivariate time series forecasting, a
balance that Sentinel achieves through its specialized architecture.
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Models Sentinel CARD iTransformer PatchTST Crossformer DLinear FEDformer Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1
96 0.311 0.340 0.316 0.347 0.334 0.368 0.342 0.378 0.366 0.400 0.345 0.372 0.764 0.416 0.505 0.475

192 0.360 0.368 0.363 0.370 0.377 0.391 0.372 0.393 0.396 0.414 0.380 0.389 0.426 0.441 0.553 0.496

336 0.391 0.392 0.392 0.390 0.426 0.420 0.402 0.413 0.439 0.443 0.413 0.413 0.445 0.459 0.621 0.537

720 0.456 0.432 0.458 0.425 0.491 0.459 0.642 0.449 0.540 0.509 0.474 0.453 0.543 0.490 0.671 0.561

Avg 0.379 0.383 0.383 0.384 0.407 0.410 0.395 0.408 0.435 0.417 0.403 0.407 0.448 0.452 0.588 0.517

E
T

T
m

2

96 0.172 0.246 0.169 0.248 0.180 0.264 0.176 0.258 0.273 0.346 0.193 0.292 0.203 0.287 0.255 0.339

192 0.238 0.295 0.234 0.292 0.250 0.309 0.244 0.304 0.350 0.421 0.284 0.362 0.296 0.328 0.281 0.340

336 0.301 0.335 0.294 0.339 0.311 0.348 0.304 0.342 0.474 0.505 0.369 0.427 0.325 0.366 0.339 0.372

720 0.401 0.391 0.390 0.388 0.412 0.407 0.408 0.403 1.347 0.812 0.554 0.522 0.421 0.415 0.433 0.432

Avg 0.278 0.317 0.272 0.317 0.288 0.332 0.283 0.327 0.609 0.521 0.350 0.401 0.305 0.349 0.327 0.371

E
T

T
h1

96 0.390 0.396 0.383 0.391 0.386 0.405 0.426 0.426 0.391 0.417 0.386 0.400 0.376 0.419 0.449 0.459

192 0.445 0.425 0.435 0.420 0.441 0.436 0.469 0.452 0.449 0.452 0.437 0.432 0.420 0.448 0.500 0.482

336 0.490 0.447 0.479 0.442 0.487 0.458 0.506 0.473 0.510 0.489 0.481 0.459 0.459 0.465 0.521 0.496

720 0.490 0.468 0.471 0.461 0.503 0.491 0.504 0.495 0.594 0.567 0.519 0.516 0.506 0.507 0.514 0.512

Avg 0.453 0.434 0.442 0.429 0.454 0.447 0.455 0.444 0.486 0.481 0.456 0.452 0.440 0.460 0.496 0.487

E
T

T
h2

96 0.299 0.320 0.281 0.330 0.297 0.349 0.292 0.342 0.641 0.549 0.333 0.387 0.358 0.397 0.346 0.388

192 0.370 0.386 0.363 0.381 0.380 0.400 0.387 0.400 0.896 0.656 0.477 0.476 0.429 0.439 0.456 0.452

336 0.417 0.418 0.411 0.418 0.428 0.432 0.426 0.434 0.936 0.690 0.594 0.541 0.496 0.487 0.482 0.486

720 0.425 0.439 0.416 0.431 0.427 0.445 0.430 0.446 1.390 0.863 0.831 0.657 0.463 0.474 0.515 0.511

Avg 0.378 0.391 0.368 0.390 0.383 0.407 0.384 0.406 0.966 0.690 0.559 0.515 0.437 0.449 0.450 0.459

W
ea

th
er

96 0.161 0.195 0.150 0.188 0.174 0.214 0.176 0.218 0.164 0.232 0.196 0.255 0.217 0.296 0.266 0.336

192 0.210 0.243 0.202 0.238 0.221 0.254 0.223 0.259 0.211 0.276 0.237 0.296 0.276 0.336 0.307 0.367

336 0.266 0.284 0.260 0.282 0.278 0.296 0.277 0.297 0.269 0.327 0.283 0.335 0.339 0.380 0.359 0.395

720 0.342 0.337 0.343 0.353 0.358 0.347 0.353 0.347 0.355 0.404 0.345 0.381 0.403 0.428 0.419 0.428

Avg 0.244 0.265 0.239 0.261 0.258 0.278 0.257 0.280 0.250 0.310 0.265 0.317 0.309 0.360 0.338 0.382

E
le

ct
ri

ci
ty

96 0.140 0.235 0.141 0.233 0.148 0.240 0.190 0.296 0.254 0.347 0.197 0.282 0.193 0.308 0.201 0.317

192 0.162 0.250 0.160 0.250 0.162 0.253 0.199 0.304 0.261 0.353 0.196 0.285 0.201 0.345 0.222 0.334

336 0.181 0.268 0.173 0.263 0.178 0.269 0.217 0.319 0.273 0.364 0.209 0.301 0.214 0.329 0.231 0.338

720 0.219 0.303 0.197 0.284 0.225 0.317 0.258 0.352 0.303 0.388 0.245 0.333 0.246 0.355 0.254 0.361

Avg 0.176 0.264 0.168 0.258 0.178 0.270 0.216 0.318 0.273 0.363 0.212 0.300 0.214 0.327 0.227 0.338

Tr
af

fic

96 0.478 0.263 0.419 0.269 0.395 0.268 0.462 0.315 0.558 0.320 0.650 0.396 0.587 0.366 0.613 0.388

192 0.481 0.270 0.443 0.276 0.417 0.276 0.473 0.321 0.569 0.321 0.650 0.396 0.604 0.373 0.616 0.382

336 0.496 0.253 0.460 0.283 0.433 0.283 0.494 0.331 0.591 0.328 0.605 0.373 0.621 0.383 0.622 0.337

720 0.547 0.294 0.490 0.299 0.467 0.302 0.522 0.342 0.652 0.359 0.650 0.396 0.626 0.382 0.660 0.408

Avg 0.501 0.270 0.453 0.282 0.428 0.282 0.488 0.327 0.593 0.332 0.625 0.383 0.610 0.376 0.628 0.379

Table 2: Results table for long-term forecasting tasks. The lookback window is set as 96 for all
experiments with a varying prediction horizons 96, 192, 336, 720. Avg is the average of all four
predictions lengths. Each dataset is run on multiple seeds. The best models is indicated in bold, the
second underlined. All reported results are extracted from CARD (Wang et al., 2024), except for the
iTransformer (Liu et al., 2024), which were obtained directly from its original paper.

4.3 ABLATION-STUDY

We conducted an ablation study by systematically removing the different components proposed in
this paper, with the results summarized in Table 3. As seen in the table, each component plays
a critical role in achieving high performance. Specifically, the benefits introduced by Sentinel are
more pronounced in datasets with a large number of features. For instance, in datasets with many
channels, such as electricity or weather in Table 3, the removal of the channel-encoder, responsible
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for handling cross-channel relationships, leads to a significant drop in performance (i.e., respectively
−8.0% and −9.7% of MSE; −3.0% and −4.5% in terms of MSE). Conversely, in datasets with
fewer features, such as ETTh2 in Table 3, the impact is less severe. In these scenarios, the most
harmful effect is observed when the decoder is removed (i.e., −0.3% of MSE and −1.3% of MAE),
as the reduced feature set places less emphasis on feature importance, making the role of the decoder
more critical.

Lastly, the final row of the table, shows the architecture using the classic multi-head encoder and
decoder, without the multi-patch attention. It consistently performs lower than the multi-patch at-
tention solution across all datasets, regardless of their properties. This strong and consistent per-
formance gap highlights the importance of rethinking the traditional “head” attention into a “patch”
attention. By replacing multi-head attention with our novel multi-patch attention, we exploit the
natural structure of the time-series created by the patching process, thereby increasing the overall
forecasting performance. All these results confirm the importance of the Sentinel components for
effectively processing multivariate datasets and providing improved forecasting performance.

Components Electricity Weather ETTh2

Encoder Decoder MSE % MAE % MSE % MAE % MSE % MAE %

Multi-Patch Channel Multi-Patch Time 0,176 - 0,263 - 0,244 - 0,264 - 0,378 - 0,391 -

Multi-Patch Time Multi-Patch Time 0,190 -8,0 0,271 -3,0 0,249 -2,1 0,267 -1,1 0,379 -0,3 0,395 -1,0

Multi-Patch Channel w/o Decoder 0,182 -3,4 0,269 -2,2 0,249 -2,1 0,270 -2,3 0,379 -0,3 0,396 -1,3

w/o Encoder Multi-Patch Time 0,193 -9,7 0,275 -4,5 0,250 -2,5 0,269 -1,9 0,375 0,8 0,393 -0,5

Multi-Head Channel Multi-Head Time 0,180 -2,3 0,265 -0,8 0,249 -2,1 0,267 -1,1 0,382 -1,1 0,399 -2,1

Table 3: Ablation study results for various dataset configurations. We conducted experiments on
various datasets, replacing or removing components proposed in this work. The first row indicates
the configuration of Sentinel. The percentage column reflects the relative performance degradation
for each configuration compared to the proposed approach.

4.4 VARYING-LOOKBACK WINDOW

Transformer-based architectures have been shown to experience performance degradation as the
lookback window increases (Zeng et al., 2023). In our evaluation, as in other works (Wang et al.,
2024; Liu et al., 2024; Nie et al., 2023) we explored the impact of varying lookback lengths. As
shown in Figure 3 and Tables 4.4, our approach demonstrates that increasing lookback window,
thereby providing the model with more historical information for forecasting, generally leads to im-
proved overall performance. This suggests that a longer historical context can enhance the model’s
ability to capture temporal patterns and make more accurate predictions.

96 192 336 720
Input sequence length

0.15

0.20

0.25

0.30

0.35

m
se

Varying Lookback Window (MSE)

ettm1
etth2
weather
electricity

96 192 336 720
Input sequence length

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

m
ae

Varying Lookback Window (MAE)

ettm1
etth2
weather
electricity

Figure 3: Evolution of MAE and MSE Based on Lookback Window
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Dataset

MSE

Lookback Window

96 196 336 720

ETTh2 0,378 0,383 0,377 0,359
ETTm1 0,377 0,363 0,365 0,362
Weather 0,244 0,237 0,232 0,226

Electricity 0,176 0,161 0,164 0,160

Dataset

MAE

Lookback Window

96 196 336 720

ETTh2 0,391 0,402 0,400 0,396

ETTm1 0,383 0,376 0,379 0,382

Weather 0,264 0,259 0,256 0,255
Electricity 0,263 0,250 0,254 0,253

Table 4: The two tables show the variation of MSE and MAE with respect to the lookback
window. Values in the tables represent the means calculated over multiple prediction lengths
(96, 192, 336, 720)

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced Sentinel, a fully Transformer-based architecture specifically designed
for multivariate time-series forecasting. Sentinel addresses a critical limitation in existing trans-
former models by simultaneously capturing both cross-channel and temporal dependencies, which
are essential for improving forecast accuracy in complex multivariate datasets. Additionally, we in-
troduced the concept of multi-patch attention to leverage the structure created through the patching
process. This novel component has proven to be highly valuable in ablation studies, significantly
enhancing forecasting performance. By rethinking the traditional multi-head attention and replac-
ing it with multi-patch attention, Sentinel is able to better utilize the patched time-series structure,
leading to superior results across a wide range of multivariate datasets.

In the near future, we aim to refine the architecture of Sentinel by focusing on both the encoder and
the decoder. As highlighted in the ablation study, the encoder shows a strong impact when dealing
with datasets with a high number of features but it tends to overfit when the number of features
is lower. To address this lack, we aim to develop techniques to mitigate overfitting in such cases,
ensuring the encoder remains effective across various sizes of the feature-space. Conversely, the
decoder has less impact as the number of features increases. We aim to improve its contribution
in such high-feature scenarios. Another promising direction is to evaluate the few-shot learning
capabilities of Sentinel, which could expand its applicability to a wider range of forecasting tasks.
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