Under review as a conference paper at ICLR 2026

DYGB: DYNAMIC GRADIENT BOOSTING DECISION
TREES WITH IN-PLACE UPDATES FOR EFFICIENT DATA
ADDITION AND DELETION

Anonymous authors
Paper under double-blind review

ABSTRACT

Gradient Boosting Decision Tree (GBDT) is one of the most popular machine
learning algorithm in various applications. However, in the traditional settings, all
data should be simultaneously accessed in the training procedure: it does not allow
to add or delete any data instances after training. In this paper, we propose DyGB
(Dynamic GBDT), a novel framework that enables efficient support for both in-
cremental and decremental learning within GBDT. To reduce the learning cost,
we present a collection of optimizations for DyGB, so that it can add or delete a
small fraction of data on the fly. We theoretically show the relationship between
the hyper-parameters of the proposed optimizations, which enables trading off ac-
curacy and cost on incremental and decremental learning. Empirical results on
backdoor and membership inference attacks demonstrate that DyGB can effec-
tively add and remove data from a well-trained model through incremental and
decremental learning. Furthermore, experiments on public datasets validate the
effectiveness and efficiency of the proposed DyGB framework and optimizations.

1 INTRODUCTION

Gradient Boosting Decision Tree (GBDT) has demonstrated outstanding performance across a wide
range of applications (Sudakov et al., 2019} Biau et al., 2019} Rao et al 2019} Liu & Yul [2007).
It outperforms deep learning models on many datasets in accuracy and provides interpretability for
the trained models. In particular, GBDT has become the de facto choice for modeling tabular and
categorical data, where it consistently achieves state-of-the-art performance. Its effectiveness has led
to widespread adoption in real-world domains such as financial risk assessment(Ji & Li} [2025} |Xie}
2025)), recommender systems (Yan et al., 2024} Zhao et al.,2025]), and healthcare analytics (Yildiz &
Kalayci,[2025)). This broad applicability further highlights the importance of improving its flexibility
in dynamic environments. However, in traditional setting, all data is simultaneously accessed in
training procedure, making its application limited.

Dynamic Learning. Incremental learning refers to the ability of a model to learn continuously from
new data as it becomes available (Tian et al.l 2024; He} 2024), while decremental learning is the
ability of a model to unlearn or forget previously learned data (Liu et al.l 2025} |Wang et al., [2024).
We introduce the concept of dynamic learning, which combines capabilities of both incremental
learning (adding training data) and decremental learning (removing a subset of training data). This
allows the model to dynamically adapt to the latest data while removing outdated data. For example,
recommender system can incrementally learn latest user behaviors and remove outdated behaviors
without training from scratch (Wang et al., 2023} |Shi et al., 2024)).

Incremental Learning. There are some challenges for incremental learning in GBDT due to its
natural properties (Friedman et al.,|2000). Traditional GBDT trains over an entire dataset, and each
node is trained on the data reaching it to achieve the best split for optimal accuracy. Adding unseen
data may affect node splitting results, leading to catastrophic performance changes.

Moreover, training gradient boosting models involves creating trees for each iteration, with tree
fitting based on the residual of previous iterations. More iterations create more trees, increasing
model sizes and hurting inference throughput. This also prohibits tasks like fine-tuning or transfer
learning without substantially increasing model sizes.

Under review as a conference paper at ICLR 2026

Recent studies have explored incremental learning on classic machine learning, such as support vec-
tor machine (SVM), random forest (RF), and gradient boosting (GB). |Shilton et al.| (2005); Laskov
et al. (2006); Fine & Scheinberg|(2001) proposed methods to maintain SVM optimality after adding
a few training vectors. Wang et al.|(2009) presented an incremental random forest for online learning
with small streaming data. Beygelzimer et al.|(2015a) extended gradient boosting theory for regres-
sion to online learning. Zhang et al.| (2019) proposed iGBDT for incremental learning by “lazily”
updating, but it may require retraining many trees when the new data size is large. It is important
to note that prior studies on online gradient boosting (Beygelzimer et al., 2015a; |Chen et al.| 2012;
Beygelzimer et al., 2015b)) and incremental gradient boosting (Zhang et al., 2019; Hu et al.l [2017)
do not support decremental learning.

Decremental Learning. Decremental learning is more complex and less studied than incremental
learning (Dilworth| [2025)). |Cauwenberghs & Poggio| (2000) presented a recursive algorithm for
training SVM with efficient decremental learning. [Chen et al.[|(2019) proposed a dynamic learning
algorithm based on variable SVM, leveraging pre-calculated results. Brophy & Lowd| (2021} and
Brophy & Lowd| (2020) provided dynamic methods for data addition and removal in RF. [Schelter
et al.| (2021)) proposed robust tree node split criteria and alternative splits for low-latency unlearning.
Many works have also studied decremental learning in deep neural networks (DNN).|Bourtoule et al.
(2021) introduced a framework that accelerates decremental learning by constraining individual data
points’ impact during training.

While dynamic learning has emerged as a popular topic recently, it has been barely investigated on
GBDT. Wu et al.|(2023); |Lin et al.| (2023)) are among the latest studies in decremental learning for
GBDT. |Wu et al.[(2023)) presented DeltaBoost, a GBDT-like model enabling data deletion. Delta-
Boost divides the training dataset into several disjoint sub-datasets, training each iteration’s tree on
a different sub-dataset, reducing the inter-dependency of trees. However, this simplification may
impact model performance. |[Lin et al.|(2023) proposed an unlearning framework in GBDT without
simplification, unlearning specific data using recorded auxiliary information from training. It opti-
mizes to reduce unlearning time, making it faster than retraining from scratch, but introduces many
hyper-parameters and performs poorly on extremely large datasets.

In this paper, we propose DyGB (Dynamic GBDT), an efficient framework for both incremental and
decremental learning in GBDT. To the best of our knowledge, DyGB is the first approach to support
in-place learning for both adding and removing data in GBDT models. Furthermore, DyGB intro-
duces a unified mechanism for incremental and decremental updates for efficient implementation.

Challenges. We identify three major challenges in enabling in-place dynamic learning for GBDT:
(1) Unlike batch training of DNN, more iterations in GBDT create more trees and parameters, lead-
ing to unbounded memory and computation costs in online learning. In-place learning on originally
constructed trees is necessary for practicality. (2) Gradient-based methods in DNN add/subtract gra-
dients for incremental and decremental learning, but GBDT is not differentiable. (3) GBDT trees are
sequentially dependent via residuals, unlike independent iterations in random forests. Changing one
tree requires modifying all subsequent trees, complicating incremental and decremental learning.

Contributions. (1) We introduce DyGB, an efficient in-place dynamic learning framework for gra-
dient boosting models supporting incremental and decremental learning. (2) We present optimiza-
tions to reduce the cost of incremental and decremental learning, making adding or deleting a small
data fraction substantially faster than retraining. (3) We theoretically show the relationship among
optimization hyper-parameters, enabling trade-offs between accuracy and cost. (4) We experimen-
tally evaluate DyGB on public datasets, confirming its effectiveness and efficiency. (5) We release
an open-source implementation of DyG

2 DyNAMIC GBDT FRAMEWORK

2.1 GBDT PRELIMINARY

GBDT is an powerful ensemble technique that combines multiple decision tree to produce an accu-
rate predictive model (Friedman et al., [2000; [Friedman, 2001). Given a dataset D, = {y;,x;} fil,
where N is the size of training dataset, and x; indicates the i data vector and y; € {0,1, ..., K — 1}

"https://anonymous.4open.science/r/DyGB

https://anonymous.4open.science/r/DyGB

Under review as a conference paper at ICLR 2026

Algorithm 2 Online Learning in Gradient Boosting

Algorithm 1 Robust LogitBoost Algorithm.

I: Fie=0,pix=~%k=00K—-1,i=1t0N
2: form=0to M — 1do

D’ = D,, if incremental learning else Dy,
form =0to M — 1do

1:
2:
3 fork=0t0K —1do j f"rg,io“’K*ld" D)
4: Dy = {rix —pir, Xitie : = {rin —Pik, Xitioy A
5 wik = pix(l — i) 5: Compute w; ;. = pj,k(l — pi,k) for D’ using F; i,
6: 6: Compute r; 3, for D’ using Fj x

7

8

9

{R]-,kﬂn}‘j;1 = J-terminal node regression 0 !
if incremental learning then

tree from ﬁ,,, with weights w; x, using the

R J .
tree split gain formula Eq. equation[5] {R],k:,m} = incr({Rj,k,m};]:P D’ wi g, Tik)
j=1

T o—
X €R; k.om i,k —Pik else

7: Bikm = Kt

K ZX-ERJ X (I*Pi.k)m,k ! ~ J ; R
e 10: {R'.k,m} =decr({ Rjk,m}i—1> D> Wik, Ti k)
8: ék = fzjzl Biskmlxicrypms Fi = o endif]’ i {Rjkm}tjoy
ik T Vik) . J
9: end for « 12: Update F; j with {Rj,k,m})
10: pik = exp(Fix)/ >,y exp(Fis) 13: end for g=t
11: end for 14: end for

denotes the label for the i data point. For a GBDT model with M iteration, the probability p; ;. for
i data and class k is: e

pik = Pr(y; = klx;) = W, i=1,2,...,N (1

where F' is a combination of M terms: Mt
FOOx) =" pmh(x;am) @)

m=0

where h(x;a,,) is a regression tree, and p,, and a,, denote the tree parameters that learned by
minimizing the negative log-likelihood:

N K—1
L= ZLi, L; =— 74,k 10g Di i 3)
=1 k=0
where 7; ; = . . The training procedures require calculating the derivatives of loss
’ 0, otherwise
function L with respect to F; j: ,
ik = =—(Tik —Dik), hik = 755 =Pik (1 —Pik). 4
9k = 5F , (Tik — Pik) k= g = Pik (1= pik) 4

i,k

In GBDT training, to solve numerical instability problem (Friedman et al.| |2000; [Friedman, 2001}
Friedman et al.,|2008)), we apply Robust LogitBoost algorithm (Li,/2010) as shown in Algorithm
which has three parameters, the number of terminal nodes .J, the shrinkage v and the number of
boosting iterations M. To find the optimal split for a decision tree node, we first sort the /N data by
the feature values being considered for splitting. We then iterate through each potential split index
s, where 1 < s < N, to find the best split that minimizes the weighted squared error (SE) between
the predicted and true labels. Specifically, we aim to find an sylit s to maximize the gain function:

2
N N
(S 9i)’ i (Zi:s+1 gi’k) _ (Zi:l gi’k)
21 hik Zﬁ\;ﬁ-l hi Zi\le B

Gain(s) = (5)

2.2 PROBLEM SETTING

For classic GBDT, all training data must be loaded during training, and adding/deleting instances is
not allowed afterwards. This work proposes DyGB, enabling in-place addition/deletion of specific
data instances to/from a trained model through incremental/decremental learning.

Problem Statement. Given a trained gradient boosting model 7°(#) on training dataset D;,, where
6 indicates the parameters of model 7', an incremental learning dataset D;,, and/or a decremental
learning dataset D, (Dge C D,,), our goal is to find a tree model T'(¢’) that fits dataset D, U D;, \
Dy, where |0 = |€’| (the parameter size and the number of trees stay unchanged).

The most obvious way is to retrain the model from scratch on dataset D, U D;, \ D,.. However,
retraining is time-consuming and resource-intensive. Especially for dynamic learning applications,
rapid retraining is not practical. The key question of this problem is: Can we obtain the model T'(6")
based on the learned knowledge of the original model T'(0) without retraining the entire model?

The proposed DyGB aims to find a tree model T'(6’) as close to the model retraining from scratch
as possible based on the learned knowledge of the model 7'(6). In addition, this dynamic learning

Under review as a conference paper at ICLR 2026

(c) (2) Replace the original sub-tree
T 1

split Candidates [34,5,8,9,12,1.18,19)
Retrain

‘Split Candidates

Credit < 24, Gain: 17.482

Loan <31, Gain: 26.937

nnnnnnn

Best Split has shified i Best Split has shified

Incremental Learnin Decremental Learning
nding Sub-tree e } 2 }

(2021,22.23)
e = QTAL13) Jd) = 1Dl = Ducl = 4

| (d) o

i Incremental Learning:

i [0] [2IsTals] [7Ielo9l0]12]13] (18 T19 202122 23]

i Update the derivatives of {0,2,3,4,5,7,8,9,10,11,12,13,15,18,19,20,21,22,23}

ental Learning:

o] [sloT0] EERETH

Update the derivatives of {0,3,4,5,8,9,10,12,15, 18,19}

e 10,3,7,10,15,22)
Dec: (0%7,10,15)

Figure 1: An example for the incremental learning and decremental learning procedure in DyGB.
(a) For the node of Loan < 31, the current split is still the best after dynamic learning. Thus, the
split does not need to change. (b) An already well-trained tree in D;,. (c) For the node of Auto <
57, the best split has shifted after dynamic learning. (d) Incremental update for derivatives — only
update the derivatives for those data reaching the changed terminal nodes.

algorithm is in a “warm-start” manner, because it learns a new dataset D;, or removes a learned
sub-dataset Dy, C D, on a model that is already well-trained on training dataset D;,.

Let A denotes the initial GBDT learning algorithm , then we have A(D,) € H, where H is the
hypothesis space. A dynamic learning algorithm £ for incremental learning or decremental learning
can be used to learn dataset D;, or remove dataset D;, C D,,.

Algorithm 3 Incr./Decr. Learning on One Tree

2.3 DYGB: FRAMEWORK OVERVIEW

depths do

~ ’
D' ={rix — pik, xi}gl‘

The goal of this work is to propose a dynamic 5
3: s =current split of node
4

GBDT framework that supports incremental and
decremental learning for any collection of data.

Dynamic Learning in GBDT. The Algorithm and w; j, after adding/removing D’
shows the dynamic learning procedure in GBDT. 5: ifs’ # s then

At first, the GBDT model is a well-trained model ©: sztram the subtree rooted at node.
on the training dataset D,,. Recall that the GBDT ; ensr;grlf

model is frozen and can not be changed after

1: for non-terminal node in {Rj7k’m}]‘-]=1 with ascending

s’ = compute best gain with Eq. equationwith Tik

9: Update prediction value ;. x,, for all terminal nodes

training—no training data modification. In this pro-
posed framework, the user can do (1) incremental learning: update a new dataset D;, to the model,
and (2) decremental learning: remove a learned dataset Dy, C D,, and its effect on the model.

As shown in Algorithm [2} it is similar to the learning process, but it only needs to compute 7;
and p; (1 — p;) for target dataset D’ without touching the training dataset D,,. Then, it will

. J
call the function of incremental learning or decremental learning to obtain {Rj,k,m} . Finally, we
i=1

~ J

update F; j, with new {Rj, k,m} . Here we use the same notion to design the function of incremen-
j=1

tal learning and decremental learning — decremental learning is the inverse process of incremental

learning for dataset D’. Therefore, we describe them in the Algorithm 3]at the same time.

Incremental & Decremental Learning on One Tree. Algorithm [3|describes the detailed process
for incremental and decremental learning, which are almost the same as decremental learning is the
inverse of incremental learning for dataset D’. The main difference is at Line 3. First, we traverse all
non-terminal nodes layer by layer from root to leaves. For each node, let s denote the current split.
We recompute the new best gain value with r; 5, and p; (1 — p;) after adding D’ for incremental
learning or removing D’ for decremental learning. If the current split s matches the new best split
s’ (after adding/removing D’), we keep the current split (Figure a)). Otherwise, if the current best
split has changed (s # s', Figure[l[c)), we retrain the sub-tree rooted on this node and replace it with
the new sub-tree. After testing all nodes, node splits remain on the best split. Finally, we recompute
the prediction value on all terminal nodes. Appendix [E|provides a detailed explanation of Figure

Under review as a conference paper at ICLR 2026

3 OPTIMIZING LEARNING TIME

In this section, we introduce optimizations for the proposed DyGB to reduce computation overhead
and costs. The key step is deciding whether a node should be kept or replaced: Can we design
an algorithm to quickly test whether the node should be retained or retrained without touching the
training data? Our most important optimization is to avoid touching the full training dataset. We ap-
ply incremental update and split candidates sampling concepts from (Lin et al.l 2023)), extend them
to support dynamic learning, and provide evidence of the relationship between hyper-parameters of
different optimizations, enabling trade-offs between accuracy and cost. Additionally, we design op-
timizations specific to DyGB: 1) adaptive lazy update for residuals and hessians to decrease dynamic
learning time; 2) adaptive split robustness tolerance to reduce the number of retrained nodes.

3.1 UPDATE WITHOUT TOUCHING TRAINING DATA

To reduce computation overhead and dynamic learning time, we target to avoid touching the original
training dataset D, and only focus on the dynamic learning dataset D’. Following the study (Lin
et al.,[2023), we extend the optimization of updating statistical information to the scenarios of dy-
namic learning: (1) Maintain Best Split; (2) Recomputing Prediction Value; (3) Incremental Update
for Derivatives, and the computation cost is reduced from O(D + D’) to O(D’) by these optimiza-
tions. The implementation of these optimizations are included in Appendix [G|

3.2 ADAPTIVE LAZY UPDATE FOR DERIVATIVES

Although incremental update can substantially reduce dynamic learning time, we can take it a step
further: if no retraining occurs, the changes to the derivatives will be very small. How can we
effectively utilize the parameters already learned to reduce dynamic learning time?

Gradient Accumulation (Li et al.l 20145 (Goyal et al., 2017 Ruder} 2016) is widely used in DNN
training. After computing the loss and gradients for each mini-batch, the system accumulates these
gradients over multiple batches instead of updating the model parameters immediately. Inspired
by this techniques, we introduce an adaptive lazy update for the proposed DyGB. Unlike [Lin et al.
(2023)), which perform updates after a fixed number of batches, we update the derivatives only
when retraining occurs. This approach uses more outdated derivatives for gain computation but
significantly reduces the cost of derivative updates.

3.3 SpPLIT CANDIDATES SAMPLING

From the above optimizations, if retraining is not required, we can keep the current best split. In
this case, we only need to iterate over the dynamic learning dataset D’ and update the prediction
values to accomplish dynamic learning, whether it involves adding or removing data. However, if
the sub-tree rooted in this node requires retraining, it is necessary to train the new sub-tree on the
data from the dataset D, & D’ that reaches this node. It is clear that retraining incurs more resource
consumption and takes a longer execution time. In the worst case, if retraining is required in the root
node, it has to retrain the entire new tree on full dataset D, &= D’.

To reduce time and resource consumption of dynamic learning, a straightforward approach is to
minimize retraining frequency. Therefore, we introduce split candidate sampling to reduce frequent
retraining by limiting the number of splits, benefiting both training and dynamic learning. All fea-
tures are discretized into integers in 0,1, - - , B — 1, as shown in Appendix [C] The original training
procedure enumerates all B potential splits, then obtains the best split with the greatest gain value.
In split candidates sampling, we randomly select [aB] splits as candidates and only perform gain
computing on these candidates. As a decreases, the number of split candidates decreases, resulting
in larger distances between split candidates. Consequently, the best split is less likely to change.

Definition 1 (Distance Robust) Let s be the best split, and % = A\. N is the distance between s
and its nearest split t with same feature, Na = ||t — s||. s is distance robust if
AGain(s
Na > 3 (5) 5 (6)
1 (inezs gi.k) 1 (iners gi,k)
Nis Xxjets Misk Nrs Y ers Mik

where [represents the left child of split s, and it contains the samples belonging to this node, while
r represent the right child, N5 denotes |I;|, and N,.; denotes |rs|. In this definition, E(Na) = 1/«
where o denotes the split sampling rate, we can observe that a smaller sampling rate will result in a

Under review as a conference paper at ICLR 2026

more robust split, so we can reduce the number of retrain operations by reducing the sampling rate.
Similarly, incremental learning can get the same result.

Definition 2 (Robustness Split) For a best split s and an arbitrary split t,t # s, and dynamic

‘L;_I‘ =), the best split s is robust split if

learning data rate D

Gain(s) > ﬁ Gain(t)

Robustness split shows that, as A = ‘lg “ decreases, the splits are more robust, decreasing the

frequency of retraining. In conclusion, decreasing either o or A makes the split more robust, reducing
the change occurrence in the best split, and it can significantly reduce the dynamic learning time.
We provide the proof of Distance Robust and Robustness Split in Appendix [F

@)

3.4 ADAPTIVE SPLIT ROBUSTNESS TOLERANCE

——Add 1 15
—Add 0.1%

Add 0.5%
—Add 1.0%

—Add 1

—Add 0.1%
Add 0.5%
—Add 1.0%

Recall the retraining condition for a node that
we mentioned previously: we retrain the sub-
tree rooted at a node if the best split changes.
Although the best split may have changed to an-
other one, the gain value might only be slightly
different from the original best split. We show
the observation of the distance of best split
changes (the changes in the ranking of the
best split) in Figure 2| The top row illustrates
the distance of best split changes observed in
the Adult and Covtype datasets for incremen-
tal learning, while the bottom row depicts same
in Letter and SUSY datasets for decremental
learning. Similar patterns are observed across
various other datasets. For adding or deleting a
single data point, the best split does not change
in most cases. As the |D’| increases to 0.1%,
0.5%, and 1%, the best split in most cases switch to the second best. If we only apply the optimal
split, it will lead to frequent retraining during online learning.

Adult Covtype

o
o

-

o

«

Best Split Shift Distance
Best Split Shift Distance

5}

s pO
100 20 40 60 80
Iteration

i f i
20 40 60 80
Iteration

100

o

—Del 1

—Del 0.1%
Del 0.5%

—Del 1.0%

70 40 60 80 100 20 40 60 80
Iteration Iteration

—Del 1

—Del 0.1%
Del 0.5%

—Del 1.0%

Letter 10} susy

IS

~

Best Split Shift Distance
Best Split Shift Distance

oN & O ®

o

Figure 2: Observation of distance of best split
changes. The lines represents the average changes
of best split distance, and the shaded region is the
standard error.

The distance of the best split changes is usually small. Tolerating its variation within a certain
range and continuing to use the original split significantly accelerates dynamic learning. We propose
adaptive split robustness tolerance: for a node with [«aB| potential splits, if the current split is among
the top [caB], we continue using it, where o (0 < o < 1) is the robustness tolerance. ¢ = 0
selects only the best split, while ¢ = 1 avoids retraining. Higher ¢ indicates greater tolerance,
making the split robust and less likely to retrain. We recommend setting o to approximately 0.1.

4 EXPERIMENTAL EVALUATION

In this section, we compare 1) our incremental learning with OnlineGB (onl, 2014 [Leistner et al.,
2009) and iGBDT (Zhang et al.| |2019); 2) decremental learning with DeltaBoost (Wu et al., [2023)
and MUinGBDT (Lin et al., 2023); 3) training cost with popular GBDT libraries XGBoost (Chen
& Guestrin, 2016), LightGBM (Ke et al. [2017), CatBoost (Dorogush et al.l 2018) and Thun-

derGBM (Wen et al,; [2020). Table 1: Dataset specifications.

Implementation Details. Experimental settings are detailed

Dataset # Train #Test #Dim # Class

in Appendix [D| We employ one thread for all experiments to ~adaun 36139 9034 & 2
. - CreditInfc 105,000 45,000 10 2

have a fa1r comparison, and run ThunderGBM on a NVIDIA s[r;si/[e 2,500,000 2,500,000 18 2
A100 40GB GPU, since it does not support only CPU (thu, 0%, %90 0% & ¢
11 1 - Pendigits 7,493 3,497 16 10

2018)). Unless explicitly stated otherwise, our default param- Fends v A
eter settings are: v = 1, M = 100, J = 20, B = 1024, Covwype 290506 290,506 54 7
/ Abalone 2,785 1,392 8 Reg.
|D'| = 0.1% X |Dy|, « = 0.1, and 0 = 0.1. WineQuality 4332 2165 12 Reg

Datasets. We utilize 10 public datasets in the experiments. The specifications of these datasets are
presented in Table The smallest dataset, Optdigits, consists of 3,822 training instances, while

Under review as a conference paper at ICLR 2026

Table 2: Total incremental or decremental learning time (seconds). For the methods supporting

i mental or decremental learning (OnlineGB, iGBDT, etc.) dup = ner/dect learning time - ¢,
ncremental or decremental learning nime ,1 , €lC.), speedup Tine 1 ppE—_ otner-
our onlne learning time
. d training time
WISE, speeaup — —————>——————,
our online learning time
Incremental Learning Decremental Learning
. ’ Total Time (seconds) ‘Speedup vs. Total Time (seconds) Speedup s
Daaset |D'| ThunderGBM ThunderGBM
OnlineGB iGBDT Ours | OnlineGB iGBDT ~XGBoost LighGBM CatBoost (5 Deltaboost MUinGBDT Ours | DeltsBoost MU in GBDT XGBoost LighGBM Catboost (G201
1 0265 0595 0035 | 7.6x X 2705x 147x 438x 16.1x 0923 0217 0034 | 27.0x 64x 278.4x 15.2x 450 16.6x
Adul 01% | 902 Ll45 0005 | 859x 109 90.2x 4.9x 14.6x 54x 28022 0751 0103 | 2721x 7.3x 91.9x 5x 14.9x 5.5x
W 05w | aa6s 1296 0212 | 21060 61x 447x 24x 7.2x 27x 34461 1059 0222 | 1552x 48 42,61 23x 6.9x 2.5%
1% 98 1573 0344 | 2849x 46x 275x 15x 4.5¢ L6x 62.124 1276 0379 | 163.9x 34x 25x 14x 4 1.5%
1 2 0475 0014 | 2544x 42x 1168x 16.1x 30.2x Six 89.007 0113 0.055 | 1.619.9% 20x 220x 3 627x 10.6x
Creditinfo O1% | 338625 1391 0249 | 135994x Sex S35k 7.4x 13.8x 23x 78.836 0426 0153 | 515.3x 28 87x 12x 225x 38
Ao 05g | 28875 1428 0321 | 89.9533x 4dx 41.5x 57x 10.7x 1.8x 80.559 0.824. 0.251 321x 33x 53x 7.3x 13.7x 23x
19 | 336000 1568 0383 | §772846x 41x 348x 48x 9x 15x 74331 1065 0355 | 209.4x 3x 37.5x 52 9.7x 1.6x
1 OOM 12037 1678 - T2 973x S8 649x 36x 309.19 1707 1303 | 2373x 13x 12547x 749x 83.6x 46x
susy O1%| OOM Side 7972 - 67x 2051x 12.2x 137 08x 180.894 23999 6263 | 289x 38x 261% 15.6x 17.4x Ix
SUS 05% | OOM 5538 1339 - 4l 120x 7.3x 8.1x 04x 197.86 53962 15438 | 128x 35x 105.9% 6.3x 7.1x 0.4x
1% | OOM 5768 20093 - 20x 8ldx 49x 54x 03x 208.44 7776 2598 | 115x 3x 62.9x 38 42x 0.2x
1 OOM 4525 5488 - 82x 4063x 3Bdx 553x 25x OOM 4.967 3367 B 15% 6623x 627x 90.2x 4x
megs 0% | OOM 13246 26558 - 5x 84x 7.9x 1L4x 05x 00M 55265 18.926 - 29x 17.8x 1LIx 16x 07x
o 0.5% | OOM 16534 43.17 - 38x S17x 49x x 0.3x 0oM 152095 48.683 - 31x 45.8x 43x 62x 03x
1% | 0OM 17116 65579 - 2.6x 34x 32x 4.6x 02x 0oM 251224 80776 - 3x 27.6x 26x 38x 0.2x
1 0032 0174 0011 29x 1580 68.4x 9.6x 16.1x 269x 0,687 0015 0.01 68.7x 15¢ 75.2x 10.6x 17.7x 29.6x
Opigis 01% | 0091 08I 0015 | 6lx 20 500x 7ix 11.8x 19.7x 0645 0032 0014 | 46.1x 23x 537x 7.6x 12,61 2L1x
PUES gsg | 0559 0191 0029 | 193x 66x 259x 37x 6.1x 102x 0563 0.067 0029 | 19.4x 23x 259x 37x 61x 102x
1% | 1403 0196 0043 | 326x 46y 175x 25x 4 6.9x 0.638 0.085 0046 | 139x 18x 16.3x 23x 38 6x
1 0014 0181 0.014 Ix 129¢ 4l 9.4 131 27.6x 0525 0.013 0015 35¢ 0.9x 383x 87x 122¢ 258x
pendigis 0% | 0082 0224 0026 | 32x 86x 221x Sx 7x 14.9¢ 0465 0.022 0025 | 186x 0.9 23x 52¢ 73x 15.5%
S 05% | 0427 0234 0042 | 102x Sex 137x 3x 44x 9.2x 0531 0,089 0.041 13x 22x Lix 3¢ 45x 9.4x
1% 082 0235 0053 | 155 44x 108x 25x 35¢ 73x 0.768 0.129 0057 | 135x 23x 10.1x 23x 32x 6.58x
1 0033 0102 0016 | 2x 64x T 12.7x 14.5¢ 2295 0863 0017 0.014 | 61.6x 12x 83.6x 14.5x 16.6x 26.1x
Leter 01| 0551 0167 004 13.8x 420 293x 5.x 580 9.2x 0.664 0.032 0058 | 114x 0.6x 202x 35x 4x 6.3x
05% | 2768 0187 0067 | 413x 28 175 3x 3.5% 55x 0676 0.066 0103 | 66x 0.6x 1.4 2x 23x 36x
1% | 568 0201 0428 | 44ax Lex 9lx L6x 18x 29x 0997 0.094 0134 | Tax 07x 8.7x 15¢ L7x 27x
1 009 1321 029 0.3x a60 2204x 15.8¢ 212x SIx 28519 0.562 0161 | 177.0x 35x 397x 285x 38.1x 9.2x
Covype O1% | 21408 6391 0639 | 335 10x 100x 7.2x 9.6x 23x 19.61 344 0.546 | 359x 6.3x 17.1x 8.4x 11.2x 27x
YPE05% | 105688 7765 1095 | 96.5x TIx o S84x 42x 5.6x 1.3x 20035 5519 1187 16.9x 4.6x 53.8x 39x 5.2x 12x
1% | 214188 8088 1724 | 1242x 47x 3lhx 27x 3.6x 09x 21864 6917 1963 | 1Lix 3.5 3265 23x 3x 0.8x
1 0013 0331 0027 | O5x 123x 69x 36% 197x 155x 0.659 0.069 0026 | 253x 27x 72x 38x 20.5x 16.1x
Abalone 1% | 0026 0356 0032 | 08x ix S8 3x 167 13.0x 0.586 0263 0029 | 202x 9.1x 6. 34x 18.4x 14.4x
Adalone o sg. | 047 0338 0.049 35x 6.9x 38x 2x 109x 8.5x 1015 0372 0.054 18.8x 6.9x 34x 1.8x 9.9x 7.7x
1% | 0354 0366 0055 | 64x 67x 34x 18x 9.7x 7.6% 0917 0417 0.049 | 187x 8.5% 38 2 10.9x 8.5%
1 0014 0239 0017 | O8x W 124x 53x 50.5x 25x 0574 0.022 0016 | 359x Tax 13x 56¢ 536x 220x
WineQualiy 0% | 0057 0262 0027 | 21x 97x 78 EEN 318 13.6¢ 0329 0.196 0024 | 137x 82x 8.8x 38x 35.8x 15.3x
MUY 056 | 0296 0282 0.041 7.2x 69x sx 22x 209x 89x 2173 0298 0.037 58.7x 81x 57x 24x 23.2x 9.9x
1% | 0608 0276 0051 | 119x Sax ddx 1.8x 16,8 7% 2711 0333 0051 | 532x 6.5 41x 18x 16.8x 72x

Table 3: Comparison of total training time (in seconds) and memory usage (total allocated, MB).

Method Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype ~ Abalone WineQuality

%\ iGBDT 1.875 1.787 63.125 180.459 0.263 0.345 0.26 9.158 1.434 1.047
g OnlineGB 6,736.18 330,746.80 OOM OOM 130.7 87.361 771.99 19,938.80 39.874 62.034
2 DeltaBoost 78.213 154.52 4,281.59 OOM 9.517 18.457 21.532 582.36 3.104 4.89
2 MU in GBDT 1.285 1.648 58.551 175.95 0.261 0.35 0.289 6.454 1.431 1.034
QE) XGBoost 9.467 13.314 1,634.82 2,230.03 0.752 0.574 1.171 63.917 0.186 0.21
= LightGBM 0.516 1.836 97.622 211 0.106 0.131 0.203 4.581 0.098 0.09
S CatBoost 1.532 3.447 108.95 303.56 0.177 0.183 0.232 6.14 0.533 0.858
'’ ThunderGBM (GPU) 0.564 0.583 5.993 13.708 0.296 0.387 0.366 1.474 0.418 0.366
E Ours 2.673 1.818 64.935 177.1 0.276 0.368 0.352 9.336 0.582 0.427
—~ iGBDT 1,153.13 2,192.13 31,32040 31,724.40 2,161.20 3917.61 3,370.38 18,381.10 1,767.23 1,281.08
g OnlineGB 35,804.10 58,119.61 OOM OOM 749397 648875 13,067.75 19,699.62 582.97 345.83
< DeltaBoost 43,286.70 285,608 409,850.30 OOM 2,336.79 1,173.59 3,741.46 210,409 786.53 549.64
qbr:n MU in GBDT 570.78 1,095.70 16,576.50 34,380.90 1,080.49 1,959.02 1,805.22 9,637.65 1,711.02 1,194.82
3 XGBoost 179.13 140.88 2,093.95 7,467.32 131.11 120.93 121.59 770.3 204.74 200.91
= LightGBM 150.45 149.19 1,688.57 4,109.54 121.08 135.45 161.97 542.47 215.15 214.95
g CatBoost 83.02 129.09 1,503.93 3,090.55 2941 36.64 99.79 595.27 40.97 27.91

S ThunderGBM (GPU) 673.45 418.97 3,725.82 5,855.04 353.95 378.11 360.56 931.89 367.67 348.83
= Ours 577.18 1,096.71 16,576.40 24,333.30 1,081.15 1,959.49 1,805.76 9,665.21 762.78 531.88

the largest dataset, HIGGS, contains a total of 11 million instances. The number of dimensions or
features varies between 8 and 87 across the datasets.

4.1 TRAINING TIME AND MEMORY OVERHEAD

Since the proposed DyGB stores statistical information during training, this impacts both the training
time and memory usage. Table 3] presents a report of the total training time and memory overhead.

Training Time. Table [3]shows the total training time across methods. DyGB is much faster than
OnlineGB, DeltaBoost, and XGBoost, and slightly slower than iGBDT. While slower than Light-
GBM on smaller datasets, it outperforms on larger ones like SUSY and HIGGS, with training times
similar to MUinGBDT. Overall, DyGB offers achieves fast training while remaining competitive
with popular GBDT libraries.

Memory Overhead. Memory usage is crucial for practical applications. Most incremental and
decremental learning methods store auxiliary information or learned knowledge during training,
occupying significant memory. As shown in Table 3] our DyGB’s memory usage is significantly
lower than OnlineGB, iGBDT, and DeltaBoost, while OnlineGB and DeltaBoost encountered OOM.

4.2 DYNAMIC LEARNING TIME

Retraining from scratch can be time-consuming, but in some cases, the cost of dynamic learning
outweighs the benefits compared to retraining from scratch, making dynamic learning unnecessary.

Under review as a conference paper at ICLR 2026

Thus, evaluating the cost of dynamic learning is crucial for practical applications. Table [2] shows
the total dynamic learning time (s) and speedup vs. baselines, comparing OnlineGB & iGBDT for
incremental learning, and DeltaBoost & MUinGBDT for decremental learning.

In incremental learning, compared to OnlineGB and iGBDT, which also support incremental learn-
ing, adding a single data instance can be up to 254.4x and 17x faster, respectively. Furthermore,
compared to retraining from scratch on XGBoost, LightGBM, CatBoost, and ThunderGBM (GPU),
it can achieve speedups of up to 974.3x, 58.2x, 64.9x, and 27.6x, respectively. In decremental learn-
ing, deleting a data is 1,619.9x and 6.4x faster than DeltaBoost and MUinGBDT, and 1,254.7x,
74.9%, 90.2%, and 29.6x faster than XGBoost, LightGBM, CatBoost, and ThunderGBM (GPU),
respectively.

Our method is substantially faster than other
methods both in incremental and decremental N
learning, especially on large datasets. For ex- 0
ample, in HIGGS, the largest dataset in exper- oo
iments, on removing (adding) 1% data, we are 7
3.1x faster than MUinGBDT (2.6x faster than
iGBDT), while OnlineGB and DeltaBoost en-
counter OOM.

sl Adult

T
|
1
I
|
1
1
1
1
|
1
1
|
1
o

Interestingly, we observed that when |D’| is
small, decremental learning is faster than incre-
mental learning. However, as | D’| increases, in-
cremental learning becomes faster than decre-
mental learning. For decremental learning, the
data to be removed has already been learned,
and their derivatives have been stored from
training. However, the deleted data often exists
discretely in memory. On the other hand, for
incremental learning, the data to be added are
unseen, and derivatives need to be computed i =
during the incremental learning process. Nev-

ertheless, we append the added data at the end, Figure 3: The impact of tuning data size on the
ensuring that the added data are stored contigu- number of retrained nodes for each iteration in in-
ously in memory. With a small | D’|, derivatives ~cremental learning.

can be reused in decremental learning, whereas

derivatives need to be computed in incremental learning. Therefore, decremental learning is faster.
However, as | D’| grows, contiguous memory access in incremental learning becomes faster, making
it more efficient.

8of Optdigits

100
Trained Data Rate (%)

4.3 BATCH ADDITION & REMOVAL

In the traditional setting, GBDT models must be trained in one step with access to all training data,
and they cannot be modified after training — data cannot be added or removed. In our proposed
dynamic learning framework, DyGB support both incremental and decremental learning, allowing
continual batch learning (data addition) and batch removal, similar to mini-batch learning in DNNs.

We conducted experiments on continual batch addition and removal by dividing the data into 20
equal parts, each with 5%| Dy, |. Figure (left) shows a GBDT model incrementally trained from 5%
to 100% of the data, then decrementally reduced back to 5%. We retrained models for comparison.
Figure[3|(right) depicts a model decrementally reduced from 100% to 5%, then incrementally trained
back to 100%. We also report the accuracy of XGBoost and LightGBM. The overlapping curves
highlight DyGB’s effectiveness. Due to space limit, results are shown for three datasets.

4.4 VERIFYING BY BACKDOOR ATTACKING

Backdoor attacks in machine learning refers to a type of malicious manipulation of a trained model,
which is designed to modify the model’s behavior or output when it encounters a specific, predefined
trigger input pattern (Salem et al.l 2022 Saha et al.| 2020). In this evaluation, we demonstrate that
DyGB can successfully inject and remove backdoor in a well-trained, clean GBDT model using

Under review as a conference paper at ICLR 2026

incremental learning and decremental learning. The details of backdoor attack experiments are
provided in Appendix [}

In this evaluation, we randomly selected a sub- Table 4: Accuracy for clean test dataset and attack

set of the training dataset and injected triggers successful rate for backdoor test dataset.
into it to create a backdoor training dataset, puu PsaBackdoor
leaving the rest as the clean training dataset. ongs o100

The test dataset was similarly divided into e 6% 100%

backdoor and clean subsets. We report the ac-

curacy for clean test dataset and attack successful rate (ASR) for backdoor test dataset in Table [4]
Initially, we trained a model on the clean training data (“Train Clean”), which achieved high accu-
racy on the clean test dataset but low ASR on the backdoor test dataset. We then incrementally add
the backdoor training data with triggers in to the model (“Add Backdoor”). After incremental learn-
ing, the model attained 100% ASR on the backdoor test dataset, demonstrating effective learning of
the backdoor data. For comparison, training a model on the combined clean and backdoor training
datasets (“Train Backdoor”) yielded similar results to “Add Backdoor”. Finally, we removed the
backdoor data using decremental learning (“Remove Backdoor”), reducing the ASR to the level of
the clean model and confirming the successful removal of backdoor data.

Remove Backdoor
Clean Backdoor

Train Backdoor
Clean Backdoor

96.27% 100%
96.43% 100%
94.08% 100%
78.32% 100%

Train Clean
Clean Backdoor

96.21% 8.91%
96.11% 3.97%
93.9% 1.38%
78.4% 47.83%

4.5 ADDITIONAL EVALUATIONS

To further validate our method’s effectiveness and efficiency, we have included comprehensive ad-
ditional evaluations in the Appendix due to page limitations:

* Time Complexity Analysis: We analyze the computational complexity of our proposed frame-
work compared to retraining from scratch in Appendix

* Test Error Rate: We compare the test error rate between our proposed method and several base-
line approaches, with detailed results provided in Appendix [I}

* Real-world Time Series Evaluation: To confirm DyGB’s performance on real-world datasets
with varying data distributions, we report the experiments on two time series datasets in Appendix[J]

* Extremely High-dimensional Datasets: To confirm the scalability of DyGB, we report the ex-
periments for two extremely high-dimensional datasets in Appendix

* Model Functional Similarity: We evaluate the similarity between the model learned by dynamic
learning and the one retrained from scratch in Appendix [K]

* Approximation Error of Leaf Scores: Since DyGB might use the outdated derivatives in the
gain computation, to assess the effect of outdated derivatives, we report the approximation error of
leaf scores in Appendix

* Different Base Learners: We include the experiments on various base learners in Appendix [N]
* Recommender System: We report a practical use case of recommender system in Appendix

» Data Addition with More Classes: DyGB supports incremental learning for previously unseen
classes. Detailed results and analysis are provided in Appendix [P}

e Membership Inference Attack: We also confirm the effectiveness of our method on
adding/deleting data by membership inference attack (MIA) in Appendix [M]

* Ablation Study: We report the detailed ablation study results for different hyper-parameter set-
tings and their effects in Appendix [S]

5 CONCLUSION

In this paper, we propose DyGB, an in-place dynamic learning framework for GBDT that support
incremental and decremental learning: it enables us to dynamically add a new dataset to the model
and delete a learned dataset from the model. It support continual batch addition/removal, and data
additional with unseen classes. We present a collection of optimizations on DyGB to reduce the
cost of dynamic learning. Adding or deleting a small fraction of data is substantially faster than
retraining from scratch. Our extensive experimental results confirm the effectiveness and efficiency
of DyGB and optimizations — successfully adding or deleting data while maintaining accuracy.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research proposes a framework for dynamic gradient boosting decision trees that allows effi-
cient addition and removal of data. The work does not involve human subjects, sensitive personal
data, or proprietary datasets; all experiments are conducted using publicly available benchmark
datasets. We carefully follow applicable data usage policies to ensure compliance with privacy and
licensing requirements.

A potential ethical concern is the possibility that dynamic learning techniques could be misused for
malicious purposes, such as unauthorized data manipulation or backdoor insertion. To address this,
our study explicitly evaluates such scenarios to raise awareness of these risks and to demonstrate
how our framework can also enable secure data removal when necessary. We affirm that this work
is intended for advancing trustworthy and responsible machine learning research, and we disclose
no conflicts of interest or external influences.

REPRODUCIBILITY STATEMENT

‘We have made extensive efforts to ensure that the findings of this paper are reproducible. All datasets
used are publicly available, and their details are clearly specified. The methods are described at both
the conceptual and algorithmic levels, including hyperparameters and evaluation protocols.

For transparency, we provide an anonymized implementation of the proposed framework, along with
scripts and instructions to reproduce the reported experiments. Together with the detailed descrip-
tions in the main paper and supplementary materials, this ensures that independent researchers can
reliably replicate our results.

REFERENCES

Online boosting. https://github.com/charliermarsh/online_boosting, 2014.
URLhttps://github.com/charliermarsh/online_boosting.

Global temperatures. https://www.kaggle.com/datasets/berkeleyearth/
climate-change—-earth-surface-temperature—datal 2017.
URL https://www.kaggle.com/datasets/berkeleyearth/

climate-change-earth-surface-temperature-data.

Thundergbm faq. https://github.com/Xtra-Computing/thundergbm/blob/
master/docs/faqg.md, 2018. URL https://github.com/Xtra-Computing/
thundergbm/blob/master/docs/fag.md.

Web traffic. https://www.kaggle.com/datasets/raminhuseyn/
web-traffic-time-series—-dataset, 2024. URL https://www.kaggle.
com/datasets/raminhuseyn/web—traffic-time-series—dataset.

Yossi Adi, Carsten Baum, Moustapha Cissé, Benny Pinkas, and Joseph Keshet. Turning your weak-
ness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX Secu-
rity Symposium (USENIX Security), pp. 1615-1631, Baltimore, MD, 2018.

Boris Babenko, Ming-Hsuan Yang, and Serge J. Belongie. A family of online boosting algorithms.
In 12th IEEE International Conference on Computer Vision Workshops (ICCV), pp. 1346—-1353,
Kyoto, Japan, 2009.

Alina Beygelzimer, Elad Hazan, Satyen Kale, and Haipeng Luo. Online gradient boosting. In
Advances in Neural Information Processing Systems (NIPS), pp. 2458-2466, Montreal, Quebec,
Canada, 2015a.

Alina Beygelzimer, Satyen Kale, and Haipeng Luo. Optimal and adaptive algorithms for online
boosting. In Proceedings of the 32nd International Conference on Machine Learning (ICML),
volume 37 of JMLR Workshop and Conference Proceedings, pp. 2323-2331, Lille, France, 2015b.

Gérard Biau, Benoit Cadre, and Laurent Rouviere. Accelerated gradient boosting. Mach. Learn.,
108(6):971-992, 2019.

10

https://github.com/charliermarsh/online_boosting
https://github.com/charliermarsh/online_boosting
https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
https://github.com/Xtra-Computing/thundergbm/blob/master/docs/faq.md
https://github.com/Xtra-Computing/thundergbm/blob/master/docs/faq.md
https://github.com/Xtra-Computing/thundergbm/blob/master/docs/faq.md
https://github.com/Xtra-Computing/thundergbm/blob/master/docs/faq.md
https://www.kaggle.com/datasets/raminhuseyn/web-traffic-time-series-dataset
https://www.kaggle.com/datasets/raminhuseyn/web-traffic-time-series-dataset
https://www.kaggle.com/datasets/raminhuseyn/web-traffic-time-series-dataset
https://www.kaggle.com/datasets/raminhuseyn/web-traffic-time-series-dataset

Under review as a conference paper at ICLR 2026

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 42nd IEEE
Symposium on Security and Privacy (SP), pp. 141-159, San Francisco, CA, 2021.

Jonathan Brophy and Daniel Lowd. DART: data addition and removal trees. CoRR, abs/2009.05567,
2020.

Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests. In Proceedings of
the 38th International Conference on Machine Learning (ICML), volume 139 of Proceedings of
Machine Learning Research, pp. 1092—1104, Virtual Event, 2021.

Pedro G. Campos, Fernando Diez, and Ivdn Cantador. Time-aware recommender systems: a com-
prehensive survey and analysis of existing evaluation protocols. User Model. User Adapt. Inter-
act., 24(1-2):67-119, 2014.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE Symposium on Security and Privacy (SP), pp. 463—480, San Jose, CA, 2015.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Mem-
bership inference attacks from first principles. In 43rd IEEE Symposium on Security and Privacy,
SP, pp. 1897-1914, San Francisco, CA, 2022.

Gert Cauwenberghs and Tomaso A. Poggio. Incremental and decremental support vector machine
learning. In Advances in Neural Information Processing Systems (NIPS), pp. 409-415, Denver,
CO, 2000.

Min Chen, Weizhuo Gao, Gaoyang Liu, Kai Peng, and Chen Wang. Boundary unlearning: Rapid
forgetting of deep networks via shifting the decision boundary. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77667775, Vancouver,
BC, Canada, 2023.

Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. An online boosting algorithm with theoretical
justifications. In Proceedings of the 29th International Conference on Machine Learning (ICML),
Edinburgh, Scotland, UK, 2012.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp.
785-794, San Francisco, CA, 2016.

Yuantao Chen, Jie Xiong, Weihong Xu, and Jingwen Zuo. A novel online incremental and decremen-
tal learning algorithm based on variable support vector machine. Clust. Comput., 22:7435-7445,
2019.

Christopher A. Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nicolas Papernot. Label-
only membership inference attacks. In Proceedings of the 38th International Conference on
Machine Learning, ICML, volume 139 of Proceedings of Machine Learning Research, pp. 1964—
1974, Virtual Event, 2021.

Aleksandr Dekhovich, David MJ Tax, Marcel HF Sluiter, and Miguel A Bessa. Continual prune-
and-select: class-incremental learning with specialized subnetworks. Applied Intelligence, pp.
1-16, 2023.

Robert Dilworth. Privacy preservation through practical machine unlearning. CoRR,
abs/2502.10635, 2025.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting with
categorical features support. CoRR, abs/1810.11363, 2018.

Shai Fine and Katya Scheinberg. Incremental learning and selective sampling via parametric opti-
mization framework for SVM. In Advances in Neural Information Processing Systems (NIPS),
pp- 705-711, Vancouver, British Columbia, Canada, 2001.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189-1232, 2001.

11

Under review as a conference paper at ICLR 2026

Jerome H. Friedman, Trevor J. Hastie, and Robert Tibshirani. Additive logistic regression: a statis-
tical view of boosting. The Annals of Statistics, 28(2):337-407, 2000.

Jerome H. Friedman, Trevor J. Hastie, and Robert Tibshirani. Response to evidence contrary to the
statistical view of boosting. Journal of Machine Learning Research, 9:175-180, 2008.

Antonio Ginart, Melody Y. Guan, Gregory Valiant, and James Zou. Making Al forget you: Data
deletion in machine learning. In Advances in Neural Information Processing Systems (NeurlPS),
pp- 3513-3526, Vancouver, BC, Canada, 2019.

Sergiu Gordea and Markus Zanker. Time filtering for better recommendations with small and sparse
rating matrices. In Web Information Systems Engineering - WISE 2007, 8th International Con-
ference on Web Information Systems Engineering, Nancy, France, December 3-7, 2007, Proceed-
ings, volume 4831 of Lecture Notes in Computer Science, pp. 171-183, 2007.

Priya Goyal, Piotr Dollar, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training ima-
genet in 1 hour. CoRR, abs/1706.02677, 2017.

Jiangpeng He. Gradient reweighting: Towards imbalanced class-incremental learning. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR, pp. 16668—16677, Seattle, WA,
2024.

Hanzhang Hu, Wen Sun, Arun Venkatraman, Martial Hebert, and J. Andrew Bagnell. Gradient
boosting on stochastic data streams. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (AISTATS), volume 54 of Proceedings of Machine Learning
Research, pp. 595-603, Fort Lauderdale, FL, 2017.

Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S. Yu, and Xuyun Zhang. Mem-
bership inference attacks on machine learning: A survey. ACM Comput. Surv., 54(11s):235:1-
235:37,2022.

Muhammad Awais Hussain, Chun-Lin Lee, and Tsung-Han Tsai. An efficient incremental learning
algorithm for sound classification. IEEE Multim., 30(1):84-90, 2023.

Lin Ji and Shenglu Li. A dynamic financial risk prediction system for enterprises based on gradient
boosting decision tree algorithm. Systems and Soft Computing, 7:200189, 2025.

Masayuki Karasuyama and Ichiro Takeuchi. Multiple incremental decremental learning of support
vector machines. In Advances in Neural Information Processing Systems (NIPS), pp. 907-915,
Vancouver, Canada, 2009.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Sys-
tems (NIPS), pp. 31463154, Long Beach, CA, 2017.

Ilja Kuzborskij, Francesco Orabona, and Barbara Caputo. From N to N+1: multiclass transfer
incremental learning. In 2013 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3358-3365, Portland, OR, 2013.

Pavel Laskov, Christian Gehl, Stefan Kriiger, and Klaus-Robert Miiller. Incremental support vector
learning: Analysis, implementation and applications. J. Mach. Learn. Res., 7:1909-1936, 2006.

Christian Leistner, Amir Saffari, Peter M. Roth, and Horst Bischof. On robustness of on-line boost-
ing - a competitive study. In 12th IEEE International Conference on Computer Vision Workshops,
(ICCV) Workshops, pp. 1362-1369, Kyoto, Japan, 2009.

Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J. Smola. Efficient mini-batch training for

stochastic optimization. In The 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 661-670, New York, NY, 2014.

12

Under review as a conference paper at ICLR 2026

Ping Li. Robust logitboost and adaptive base class (abc) logitboost. In Proceedings of the Twenty-
Sixth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI), pp. 302-311,
Catalina Island, CA, 2010.

Shuhao Li, Yajie Wang, Yuanzhang Li, and Yu-an Tan. l-leaks: Membership inference attacks with
logits. CoRR, abs/2205.06469, 2022.

Huawei Lin, Jun Woo Chung, Yingjie Lao, and Weijie Zhao. Machine unlearning in gradient boost-
ing decision trees. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD), pp. 1374-1383, Long Beach, CA, 2023.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang
Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo,
and Yang Liu. Rethinking machine unlearning for large language models. Nat. Mac. Intell., 7(2):
181-194, 2025.

Xiaoming Liu and Ting Yu. Gradient feature selection for online boosting. In IEEE 11th Interna-
tional Conference on Computer Vision (ICCV), pp. 1-8, Rio de Janeiro, Brazil, 2007.

Pawel Matuszyk, Jodo Vinagre, Myra Spiliopoulou, Alipio Mdrio Jorge, and Jodo Gama. Forgetting
methods for incremental matrix factorization in recommender systems. In Proceedings of the
30th Annual ACM Symposium on Applied Computing, Salamanca, Spain, April 13-17, 2015, pp.
947-953, 2015.

Pawel Matuszyk, Jodo Vinagre, Myra Spiliopoulou, Alipio Mario Jorge, and Jodo Gama. Forgetting
techniques for stream-based matrix factorization in recommender systems. Knowl. Inf. Syst., 55
(2):275-304, 2018.

Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin,
and Quoc Viet Hung Nguyen. A survey of machine unlearning. CoRR, abs/2209.02299, 2022.

Robi Polikar, L. Upda, S. S. Upda, and Vasant G. Honavar. Learn++: an incremental learning
algorithm for supervised neural networks. IEEE Trans. Syst. Man Cybern. Part C, 31(4):497-
508, 2001.

Samuele Poppi, Sara Sarto, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Multi-class
explainable unlearning for image classification via weight filtering. CoRR, abs/2304.02049, 2023.

Haidi Rao, Xianzhang Shi, Ahoussou Kouassi Rodrigue, Juanjuan Feng, Yingchun Xia, Mohamed
Elhoseny, Xiaohui Yuan, and Lichuan Gu. Feature selection based on artificial bee colony and
gradient boosting decision tree. Appl. Soft Comput., 74:634—-642, 2019.

Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747,
2016.

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor at-
tacks. In The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), pp. 11957-11965,
New York, NY, 2020.

Ahmed Salem, Rui Wen, Michael Backes, Shiging Ma, and Yang Zhang. Dynamic backdoor attacks
against machine learning models. In 7th IEEE European Symposium on Security and Privacy,
EuroS&P, pp. 703-718, Genoa, Italy, 2022. IEEE.

Sebastian Schelter, Stefan Grafberger, and Ted Dunning. Hedgecut: Maintaining randomised trees
for low-latency machine unlearning. In SIGMOD, pp. 1545-1557, Virtual Event, China, 2021.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 18075-18086, Virtual, 2021.

Tianhao Shi, Yang Zhang, Zhijian Xu, Chong Chen, Fuli Feng, Xiangnan He, and Qi Tian. Prelim-
inary study on incremental learning for large language model-based recommender systems. In
Proceedings of the 33rd ACM International Conference on Information and Knowledge Manage-
ment, CIKM, pp. 4051-4055, Boise, ID, 2024.

13

Under review as a conference paper at ICLR 2026

Alistair Shilton, Marimuthu Palaniswami, Daniel Ralph, and Ah Chung Tsoi. Incremental training
of support vector machines. IEEE Trans. Neural Networks, 16(1):114-131, 2005.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy, SP,
pp- 3—18, San Jose, CA, 2017.

Oleg Sudakov, Evgeny Burnaev, and Dmitry A. Koroteev. Driving digital rock towards machine
learning: Predicting permeability with gradient boosting and deep neural networks. Comput.
Geosci., 127:91-98, 2019.

Ayush K. Tarun, Vikram S. Chundawat, Murari Mandal, and Mohan S. Kankanhalli. Fast yet effec-
tive machine unlearning. CoRR, abs/2111.08947, 2021.

Rozita Tavakolian, Mohammad Taghi Hamidi Beheshti, and Nasrollah Moghaddam Charkari. An
improved recommender system based on forgetting mechanism for user interest-drifting. Inter-
national Journal of Information and Communication Technology Research, 4(4):69-77, 2012.

Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. On the necessity of auditable
algorithmic definitions for machine unlearning. In 31st USENIX Security Symposium (USENIX
Security), pp. 4007-4022, Boston, MA, 2022.

Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, and Prayag Tiwari. A survey on few-shot
class-incremental learning. Neural Networks, 169:307-324, 2024.

Boris van Breugel, Hao Sun, Zhaozhi Qian, and Mihaela van der Schaar. Membership inference
attacks against synthetic data through overfitting detection. In International Conference on Arti-
ficial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research, pp.
3493-3514, Valencia, Spain, 2023.

Gido M. van de Ven, Tinne Tuytelaars, and Andreas S. Tolias. Three types of incremental learning.
Nat. Mac. Intell., 4(12):1185-1197, 2022.

Aiping Wang, Guowei Wan, Zhi-Quan Cheng, and Sikun Li. An incremental extremely random
forest classifier for online learning and tracking. In Proceedings of the International Conference
on Image Processing (ICIP), pp. 1449-1452, Cairo, Egypt, 2009.

Weiqi Wang, Zhiyi Tian, and Shui Yu. Machine unlearning: A comprehensive survey. CoRR,
abs/2405.07406, 2024.

Yuening Wang, Yingxue Zhang, Antonios Valkanas, Ruiming Tang, Chen Ma, Jianye Hao, and
Mark Coates. Structure aware incremental learning with personalized imitation weights for rec-
ommender systems. In Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023,
Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI, pp. 4711—
4719, Washington, DC, 2023.

Zeyi Wen, Hanfeng Liu, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen. Thundergbm: Fast
gbdts and random forests on gpus. J. Mach. Learn. Res., 21:108:1-108:5, 2020.

Zhaomin Wu, Junhui Zhu, Qinbin Li, and Bingsheng He. Deltaboost: Gradient boosting decision
trees with efficient machine unlearning. In Proceedings of the ACM on Management of Data
(SIGMOD), volume 1, pp. 168:1-168:26, Seattle, WA, 2023.

Shuhong Xie. Financial risk early warning for enterprises based on the catboost algorithm. In
Proceedings of the 2025 4th International Conference on Big Data, Information and Computer
Network, pp. 239-245, 2025.

Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, and Philip S. Yu. Machine unlearning: A
survey. ACM Comput. Surv., 56(1):9:1-9:36, 2024.

Hongyang Yan, Shuhao Li, Yajie Wang, Yaoyuan Zhang, Kashif Sharif, Haibo Hu, and Yuanzhang
Li. Membership inference attacks against deep learning models via logits distribution. IEEE
Trans. Dependable Secur. Comput., 20(5):3799-3808, 2023.

14

Under review as a conference paper at ICLR 2026

Jiahuan Yan, Jintai Chen, Qianxing Wang, Danny Z. Chen, and Jian Wu. Team up gbdts and dnns:
Advancing efficient and effective tabular prediction with tree-hybrid mlps. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 3679—
3689, Barcelona, Spain, 2024.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learn-
ing: Analyzing the connection to overfitting. In 3/st IEEE Computer Security Foundations Sym-
posium, CSF, pp. 268-282, Oxford, United Kingdom, 2018.

A Yarkin Y1ldiz and Asli Kalayci. Gradient boosting decision trees on medical diagnosis over tabular
data. In 2025 IEEE International Conference on Al and Data Analytics (ICAD), pp. 1-8. IEEE,
2025.

Taebok Yoon, Seunghoon Lee, Kwang ho Yoon, Dongmoon Kim, and Jee-Hyong Lee. A person-
alized music recommendation system with a time-weighted clustering. In 2008 4th International
IEEE Conference Intelligent Systems, volume 2, pp. 10—48. IEEE, 2008.

Chongsheng Zhang, Yuan Zhang, Xianjin Shi, George Almpanidis, Gaojuan Fan, and Xiajiong Shen.
On incremental learning for gradient boosting decision trees. Neural Process. Lett., 50(1):957—
987, 2019.

Jian Zhang, Bowen Li, Jie Li, and Chentao Wu. Securecut: Federated gradient boosting decision
trees with efficient machine unlearning. CoRR, abs/2311.13174, 2023.

Bin Zhao, Wei Cao, Jiqun Zhang, Yilong Gao, Bin Li, and Fengmei Chen. Fusion of gbdt and
neural network for click-through rate estimation. Journal of Intelligent & Fuzzy Systems, 48(6):
835-847, 2025.

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma, Shiliang Pu, and De-Chuan Zhan. Forward
compatible few-shot class-incremental learning. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 9036-9046, New Orleans, LA, 2022.

15

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used in the preparation of this paper. Specifically, LLMs
were employed to aid and polish the writing, helping to refine grammar, clarity, and readability of
the text. No part of the research ideation, experimental design, implementation, or analysis relied
on LLMs. The responsibility for all content presented in this paper rests fully with the authors.

B RELATED WORK

Incremental Learning is a technique in machine learning that involves the gradual integration of
new data into an existing model, continuously learning from the latest data to ensure performance
on new data (van de Ven et al., |2022). It has been a open problem in machine learning, and has
been studied in convolutional neural network (CNN) (Polikar et al., |2001; Kuzborskij et al.| 2013}
Zhou et al.| [2022)), DNN (Hussain et al.l 2023 [Dekhovich et al.l [2023), SVM (Chen et al., [2019;
Cauwenberghs & Poggio, [2000) and RF (Wang et al., 2009; Brophy & Lowd), 2020). In gradient
boosting, iGBDT offers incremental updates (Zhang et al.l|2019), while other methods (Beygelzimer
et al.| [2015a; |Babenko et al., 2009) extend GB to dynamic learning. However, these methods do not
support removing data.

Decremental Learning allows for the removal of trained data and eliminates their influence on
the model, which can be used to delete outdated or privacy-sensitive data (Bourtoule et al., 2021}
Nguyen et al.,[2022; |Sekhari et al.| 2021; Xu et al., 2024). It has been researched in various models,
including CNN (Poppi et al., 2023 Tarun et al.,2021), DNN (Chen et al.,|2023};|Thudi et al., |2022),
SVM (Karasuyama & Takeuchi} 2009; Cauwenberghs & Poggiol 2000), Naive Bayes (Cao & Yang,
20135), K-means (Ginart et al.,2019), RF (Schelter et al.,|2021}; Brophy & Lowd,2021), and GB (Wu
et al.}|2023;|/Zhang et al.,[2023)). In random forests, DaRE (Brophy & Lowd,2021) and a decremental
learning algorithm (Schelter et al.|[2021) are proposed for data removal with minimal retraining.

However, in GBDT, trees in subsequent iterations rely on residuals from previous iterations, making
decremental learning more complicated. DeltaBoostWu et al.| (2023)) simplified the dependency for
data deletion by dividing the dataset into disjoint sub-datasets, while a recent study |Lin et al.|(2023)
proposed an efficient unlearning framework without simplification, utilizing auxiliary information to
reduce unlearning time. Although effective, its performance on large datasets remains unsatisfactory.

C FEATURE DISCRETIZATION.

The preprocessing step of feature discretization plays a crucial role in simplifying the implemen-
tation of Eq. equation [5] and reducing the number of splits that need to be evaluated. This process
involves sorting the data points based on their feature values and assigning them to bins, taking into
account the distribution of the data, as shown in Figure @ and Algorithm] By starting with a small
bin-width (e.g., 10~®) and a predetermined maximum number of bins B (e.g., 1024). It assigns bin
numbers to the data points from the smallest to the largest, considering the presence of data points in
each bin. This iterative process continues until the number of bins exceeds the specified maximum.

SRR Icg

Figure 4: Feature discretization example. For a feature, all its values are grouped into 8 bins, i.e.,
the original feature values become integers between 0 to 7 assigned to the nearest bin.

In cases where the number of required bins surpasses the maximum limit, the bin-width is doubled,
and the entire process is repeated. This adaptive discretization approach proves particularly effec-
tive for boosted tree methods, ensuring that feature values are mapped to integers within a specific
range. Consequently, after the discretization mapping is established, each feature value is assigned
to the nearest bin. After this discretization preprocessing, all feature values are integers within
{0,1,2,--- ;B —1}.

16

Under review as a conference paper at ICLR 2026

Algorithm 4 Discretize Feature

1: vy, vy = sorted feature values, bin_width = 10710
2: while true do

3: cent =0, curriidc =0

4 for i =1to N do

5 if v; — Veyrriae > bin_width then

6: cnt =cnt+ 1, cur_idx =1

7 if cnt > B then

8: bin_width = bin_width * 2

9: break

10: end if
11: end if
12: vi = cnt
13: end for

14: if cnt <= B then break
15: end while
16: return v’ as discretized feature values

The advantage of this discretization technique becomes evident during the gain searching step. In-
stead of iterating over all N feature values, the algorithm only needs to consider a maximum of
B splits for each feature. This substantial reduction in the number of splits to evaluate leads to a
significant decrease in the computational cost, transforming it from being dependent on the dataset
size N to a manageable constant B.

D EXPERIMENT SETTING

The experiments are performed on a Linux computing node running Red Hat Enterprise Linux 7,
utilizing kernel version 5.10.155-1.el7.x86_64. The CPU employed was an Intel(R) Xeon(R) Gold
6150 CPU operating at a clock speed of 2.70GHz, featuring 18 cores and 36 threads. The system was
equipped with a total memory capacity of 376 GB. We have built a prototype of our dynamic learning
framework using C++11. The code is compiled with g++-11.2.0, utilizing the “O3” optimization.
Unless explicitly stated otherwise, our default parameter settings are: J = 20, B = 1024, |D'| =
0.1%x|Dy|, « = 0.1, and 0 = 0.1. We report the ablation study for different settings in Appendix

E FRAMEWORK OVERVIEW

Figure [I] is a visual example of incremental and decremental learning of our proposed frame-
work. Figure EKb) is one tree of the GBDT model and has been well-trained on dataset D, =
{0,1,2,3...,19}. Every rectangle in the tree represents a node, and the labels inside indicate the
splitting criteria. For instance, if the condition Age < 42 is met, the left-child node is followed;
otherwise, the right-child node is chosen. The numbers within the rectangles represent the predic-
tion value of the terminal nodes. Please note that here the feature 42 is a discretized value, instead
of the raw feature. Our dynamic learning framework has the capability to not only incrementally
learn a new dataset D;,, but also decrementally delete a learned dataset Dy, C D,,.

Example for Incremental Learning. Here, we would like to add a new dataset D' = D;, =
{20, 21, 22,23} to the original model, so we will call the function of incremental learning. |d|
denotes how many data of the D’ reach this node. As shown in Algorithm [3] we traverse all non-
terminal nodes (non-leaf nodes) in the tree at first. For example, we are going to test the node of
Loan < 31. Its current best split is Loan < 31. One of the new data instances {22} reaches
this node. After adding this data and recomputing the gain value, Loan < 31 is still best split with
the greatest gain value of 26.937, and meets s = s, as shown in Figure a). Thus, we can keep
this split and do not need to do any changes for this node. Then we are going to test the node of
Auto < 57 and the remaining three new data instances {20, 21,23} reach this node. As shown
in the left side of Figure [I[c), we recompute the gain value for this node, but the best split changes
to Income < 5. Therefore, we retrain the pending sub-tree rooted on Auto < 57 after adding
new data instances to obtain a new sub-tree rooted on Income < 5. Then we replace the pending
sub-tree with the new one. Finally, we update the prediction value on terminal nodes (leaf nodes).

17

Under review as a conference paper at ICLR 2026

For example, 0.4322 is updated to 0.2735 because of adding data {22}; —0.1252 has no change
because the data of this node are still the same.

Example for Decremental Learning. Similar to incremental learning, we would like to delete a
learned dataset Dy, = {2, 7,11, 13} and its effect on the model. The best split of node Loan < 31
does not change, so we keep the split. For Auto < 57, as shown in the right side of Figure[I]c),
after removing data instances {2, 11, 13}, the best split changes from Auto < 57 to Credit <
24, so we retrain the pending sub-tree rooted on Loan < 31 and then replace it with the new sub-
tree. For terminal nodes (leaf nodes), the prediction value changes if any data reaching this node is
removed.

F SpPLIT CANDIDATES SAMPLING

Definition 1 (Distance Robust) Let s be the best split, and % = A\. N is the distance between s
and its nearest splitt, Na = ||t — s||. s is distance robust if
AGain(s
N> “ain(s) : ®)
1 (inels gi,k) 1 (inETS gi,k)
Nis 2y, et hik Nrs D erg Mik

Proof. In decremental learning, for a fixed A\, we have
(1 =) Gain(s) — Gain(s + Na))

~(1-)) <(inels gzk) n (iners gi,k:) (inezsws gi,k))

inels hik in@"s hik inelsUrs hi k

—<<1_Nﬁ>w+<1_ﬂ)w

le inels hi,k Nrs ineTs hi,k

2
B (inelsum gik) (10)
inelsu"'s h77k

where [represents the left child of split s, and it contains the samples belonging to this node, while
r represent the right child, N;; denotes |ls|, and N,.; denotes |r|.

Let (1 — A\)Gain(s) — Gain(s + Na) > 0, we have

Na) M
Nis) D osier. hik

PET(1 — N)Gain(s) — ((1 +

2 2
+ (1 . Na) (Zx1367'5 gi’k) . (inelsum gi»k) (11)
NTS inETs hi,k inelsun hi,k
2 2
NA (ZX'EZ Gi k) NA (ZX'ET‘ 9i k) .
= T i=ts T — AGain(s) >0 (12)
le inels hi,k Nrs Exiers hi,k ()
AGai
= Na > ain(s) - (13)
1 (Zx,iezs sz) 1 (ingrs qzk)
Nis inels hik Nys inem hik
O

In the above definition, E(Na) = 1/, where o denotes the split sampling rate, we can observe
that a smaller sampling rate will result in a more robust split, so we can reduce the number of retrain
operations by reducing the sampling rate. Similarly, incremental learning can get the same result.

Definition 2 (Robustness Split) For a best split s and an split t with the same feature, t # s, and
|D'| _

dynamic learning data rate omi A\, the best split s is robust split if

. 1 .
Gain(s) > mGam(t) (14)

18

Under review as a conference paper at ICLR 2026

Proof. Initially, we have

(inels givk)Q + (iners givk)z _ (EszZSUrs gi,k)z

Gain(s) = (15)
2oxiel, Mk > oxien, Pk D xietaur, Nk
After decremental learning, we get
2 2
Gain'(s) _ (inels ik — inelSﬁD’ gi,k) (ine’-s ik — ZX{,ET‘SPID/ gi,k’) (16)

>iet, ik = 2w cr.np Pk Y oxier Pik Do, cr.ap Pik

2
(quzelsurs 9ik — ZX;,E(Z.;UTS)QD’ giak)
inElSUrs hi7k - ine(lsUrs)ﬁD’ hi»k

For any possible split ¢ (¢ # s), the split s is robust only and only if Gain(s) > Gain(t) and
Gain'(s) > Gain'(t). First, let’s analyze the first term of Gain’(s). Suppose \lg, \ = X\, and D' is

randomly selected from D. Here we consider the leaf child I, of split s, and let the |I; N D’| to be
nys, |Ls| to be Nis. Then we have

2 — \2
(inels 9ik — inelsﬂD/ gi’k) approz (inels ik — msgls)

L (17)
Y oier ik = 2, cr.np Pk > x,er, Pik — mushis
2
= (1 _ nls) (Zx%els gz.,k) (18)
Nis) doer Pik

where g and h denote the average of the g; ,, and h; ., respectively.

Similarly, we can get all three terms for Gain(s), Gain'(s), Gain(t), and Gain’(t) in a similar
form. For Gain’(s) > Gain’(t), finally, we have Gain(s) > Gain(t) + C, where

O (nls (>Xx,cu gi,k)2 L s (Cx,er gi,k)2

le inETs hi,k Nrs ZXiETs hi,k

2 2
_ Nis + Nrs (inelSU’r's givk) o % (inelt givk)
Nis + Nps Exielsum. hiJc N inert hl}k

2 2
+ Nyt (Z&En g77k) o nit + Nyt (ineltU’l‘t gZ/k‘) (19)
Nee Dosier hik Nut+Nee Yogicr,orm Pk
The upper bound of C'is AGain(s). Further, we have
1
Gain(s) > ﬁGain(t) (20)
O
This definition shows that, as A = % decreases, the splits are more robust, leading to a reduction

in the frequency of retraining. Decreasing either o or A\ makes the split more robust, reducing the
likelihood of changes in the best split and substantially decreasing the dynamic learning time.

G UPDATE W/0 TOUCHING TRAINING DATA

Maintain Best Split. The split gain is calculated by Eq. equation[5] There are three terms: the gain
for the left-child, the gain for the right-child, and subtracting the gain before the split. Each gain is

2
computed as the sum of the squared first derivatives ([Zfil (rig — piyk)}) divided by the sum of

the second derivatives (Zi\;l D, k(1 —ps k)) for all the data in the node. To compute these terms,

19

Under review as a conference paper at ICLR 2026

it is necessary to iterate over all the data that reaches the current node. The most straightforward
way for dynamic learning to obtain the split gain is to directly compute these three terms for dataset
D, = D’. In the worst case, which is the root node, the computation cost for gain computing is
|Di| + | Din| or | Dyy| — | Dye| because the root node contains all the training data.

We calculate the split gain for D, + D’ without touching the D;,. In this optimization, during the
training process, we store the S,, = vazl (rig —pig) and Sp, = Zf\; pik(l — piy) for the
training dataset D,, for every potential split. In incremental learning process, we can only calculate
the S;p and SI’,p for D;,. To obtain the new split gain based on Eq. equation we add it to the stored
S,p and S),,. Similarly, for decremental learning, we can only calculate the S}, and S, for Dy, to
obtain the new split gain. In this manner, we successfully avoid the original training data for split
gain computation and reduce the computation cost from O(D, + D’) to O(D’).

Recomputing Prediction Value. For the terminal node (leaf node), if there are no data of D’
reaching this node, we can skip this node and do not need to change the prediction value. Otherwise,
we have to calculate a prediction value f as shown in line 5 of the Algorithm [T} Similar to split gain
computing, it is required to iterate over all the data that reaches this terminal node. Here we store
Sy = ineR,-,k,m(rivk — pik) and S, = ineRj,k,m (1 — p; i) pi i for training dataset D, in
training process. Thus, in dynamic learning process, we only need to calculate S7, and S[’,p for
dynamic learning dataset D’.

Incremental Update for Derivatives. After conducting dynamic learning on a tree, we need to
update the derivatives and residuals for learning the next tree. From the perspective of GBDT train-
ing, each tree in the ensemble is built using the residuals learned from the trees constructed in all
previous iterations: Modifying one of the trees affects all the subsequent trees. A trivial method
is to update the derivatives and residuals for all data instances of D, + D’ in every tree, but it is
time-consuming.

When performing dynamic learning on a tree, not all terminal nodes will be changed—some ter-
minal nodes remain unchanged because there is no data from D’ that reaches these terminal nodes.
Note that our goal is to find a model close to the model retraining from scratch. In the dynamic
learning scenario, all trees have already been well-trained on D,,. Intuitively, the derivative changes
for data in those unchanged terminal nodes should be minimal. Therefore, as shown in Figure Ekd),
we only update the derivatives for those data reaching the changed terminal nodes. For example,
the terminal node with a prediction value of —0.1252 does not meet any data in D’ in both incre-
mental learning and decremental learning, so the prediction value of this node does not need to be
changed. Therefore, we do not need to update the derivatives of the data {1, 6, 14, 16, 17} reaching
this terminal node.

H TiME COMPLEXITY

We compare the time complexity of retraining from scratch and our dynamic learning approach in
Table[5] Training a tree involves three key steps: Derivatives Computing, Gain Computing & Split
Finding, and Prediction Computing. Let B represent the number of bins, J the number of leaves,
|Dy-| the number of training data points, and |D’| the number of dynamic learning data points
(|D'| < |Drl).

Derivatives Computing. In retraining, each point is assigned to one of the B bins, which take
O(|| D¢ |) time. In our method, we optimize updates without touching training data, directly adding
or subtracting derivatives for the dynamic data points, which takes O(||D’||) time.

Gain Computing & Split Finding. In training, to identify the optimal split for each node, we
compute the potential split gains for each bin. As a binary tree is constructed with 2J — 1 nodes, the
total computational complexity for split finding across the entire tree is O(B(2J — 1)) = O(BJ).
In our approach, Split Candidates Sampling reduces the number of split candidates from B to aB,
where « denotes the split sample rate (0 < o < 1). Additionally, let P, represent the probability of
a split change being within the robustness tolerance, indicating the likelihood that a node does not
require retraining (with larger o, P, increases). If retraining is not required, the time complexity for
checking a node is O(|D’|). Conversely, if retraining is required, the complexity to retrain a node is
O(aB). Consequently, the total time complexity for the entire tree is O(J|D’|- P, +JaB-(1—P,)).

20

Under review as a conference paper at ICLR 2026

For P, — 1, no nodes require retraining, simplifying the complexity to O(J|D’|). Conversely, for
P, — 0, all nodes require retraining, and the complexity becomes O(JaB).

Predicted Value Computing. During training, after the tree is built, the predicted value for each leaf
is updated. This involves traversing the leaf for the data points that reach it, with the total number
being equivalent to all training data points, resulting in a complexity of O(|Dy,|). In our method,
we update the predicted value only for leaves reached by at least one dynamic data point, and adjust
by adding/subtracting the impact of dynamic data points, resulting in a complexity of O(|D’|).

Table 5: Time complexity comparison between retraining and dynamic learning.

Step Training Time ~ Optimization Dynamic Learning Time
Derivatives Computing O(|Dyy|) Update without Touching Training Data o(|D'))

Gain Computing & Split Finding O(B.J) Split Candidates Sampling, Split Robustness Tolerance ~O(aB.Jo)

Predition Computing O(|Dyy|log J) Update without Touching Training Data o(|D'|)

I TEST ERROR RATE

Table@presents the test error for different methods, defined as (1 - accuracy) for classification tasks
and Mean Squared Error (MSE) for regression tasks. We have omitted the results for OnlineGB, as
its excessively long learning time makes it relatively insignificant compared to the other methods.
Three scenarios are considered: (1) Training, reporting the test error for models trained on the full
dataset D; (2) Incremental Learning, performing incremental learning to add a randomly selected
portion D’ into a model pre-trained on D — D’; and (3) Decremental Learning, conducting decre-
mental learning to remove D’ from a model trained on the full dataset D. As shown in Table @ The
proposed DyGB achieved the best error rates in most cases.

J REAL-WORLD TIME SERIES EVALUATION

To confirm the performance of our methods on real-world datasets with varying data distributions,
we conducted experiments on two real-world time series datasets from Kaggle:

* GlobalTemperatures (Glol|[2017): This dataset records the average land temperatures from 1750
to 2015.

* WebTraffic (Web, 2024): This dataset tracks hourly web requests to a single website over five
months.

For this experiment, we constructed the input data X using the time series values from the previous
15 time steps, with the goal of predicting the corresponding output value y. Initially, we randomly
sample 10% of the data as the test dataset, with the remaining 90% used as the training dataset.
Similar to Section[4.3] we evenly divided the training data into 10 subsets, each containing 10% of
the training samples. It is important to note that we did not shuffle these time series datasets, meaning
the 10 subsets were arranged sequentially from older to more recent data. We trained an initial
model using the first subset, then incrementally added each subsequent subset one by one. After
incorporating all training data, we sequentially removed each subset in reverse order. As expected,
since the test dataset spans all time steps, the error rate decreases as more subsets are added to the
model. This is because the model learns the updated distribution from the newly added subsets.
After removing each subset, the error rate increases, reflecting the loss of information associated
with the removed data and the model’s adjustment to the remaining subsets. As shown in Table
these results confirm the effectiveness of our method in adapting to changing data distributions.

K MODEL FUNCTIONAL SIMILARITY

As mentioned in Section[2.2] the goal of the framework is to find a model close to the model retrained
from scratch. The model functional similarity is a metric to evaluate how close the model learned by
dynamic learning and the one retrained from scratch. We show the model functional similarity for
incremental learning and decremental learning in Table[8] C2W refers to the ratio of testing instances

21

Under review as a conference paper at ICLR 2026

Table 6: The test error after training, adding, and deleting.

Abalone WineQuality

Task Method Adult Creditinfo SUSY HIGGS Optdigits Pendigits Letter ~Covtype (x10-2) (x10-3)
iGBDT 0.1276 0.0629 0.1987 0.2742 0.0290 0.0295 0.0418 0.1702 5.7721 1.2085
DeltaBoost 0.1814 0.0642 0.2122 OOM 0.0652 0.0417 0.0968 0.2764 7.5905 1.3134
MU in GBDT 0.1276 0.0629 0.1987 0.2742 0.0307 0.0294 0.0418 0.1702 5.7721 1.2085
Training XGBoost 0.1270 0.0630 0.1977 0.2761 0.0418 0.0397 0.0524 0.1896 6.1472 1.1674
LightGBM 0.1277 0.0635 0.1984 02725 0.0334 0.0355 0.0374 0.1688 5.8392 1.1993
CatBoost 0.2928 0.1772 04324 0.5384 0.0618 0.0440 0.0655 0.1572 5.7265 1.2457
ThunderGMB (GPU) 0.2405 0.0659 04576 04698 0.2739 0.1155 0.1170 0.6298 8.4272 1.6953
Ours 0.1276 0.0629 0.1987 0.2742 0.0307 0.0294 0.0418 0.1702 5.7721 1.2085
Add 1 iGBDT 0.1279 0.0633 0.1987 0.2769 0.0301 0.0286 0.0418 0.1696 5.8801 1.1953
£ Ours 0.1275 0.0630 0.1988 0.2742 0.0295 0.0297 0.0404 0.1685 5.811 1.2079
T Add0.1% iGBDT 0.1267 0.0630 0.1995 02742 0.0323 0.0363 0.0446 0.1777 6.2531 1.2680
3 . Ours 0.1269 0.0626 0.1989 0.2747 0.0295 0.0297 0.0406 0.1686 5.900 1.2040
- Add 0.5% iGBDT 01287 0.0636 02012 02795 0.0390 0.0440 0.0572 0.1788 7.6510 1.2907
£ - Ours 0.1294 0.0632 0.1988 0.2734 0.0290 0.0295 0.0394 0.1681 5.7701 1.2198
= Add1% iGBDT 0.1291 0.0630 02014 02780 0.0529 0.0603 0.0875 0.I1868 8.5324 1.4462
Ours 0.1267 0.0632 0.1990 0.2740 0.0262 0.0283 0.0440 0.1683 5.8378 1.2209
DeltaBoost 0.1818 0.0642 0.2122 OOM 0.0640 0.0424 0.0974 0.2764 7.4359 1.3084
Del 1 MU in GBDT 0.1280 0.0629 0.1987 0.2742 0.0306 0.0295 0.0408 0.1702 5.8025 1.2095
Ours 0.1276 0.0628 0.1987 0.2742 0.0306 0.0295 0.0416 01702 58723 1.2143
e DeltaBoost 0.1823 0.066 02122 OOM 0.0629 0.0412° 0.0956 02764 7.3402 1.3159
E Del0.1% MU in GBDT 0.1285 0.0634 0.1988 0.2742 0.0301 0.0295 0.0444 0.1734 59727 1.2202
8 Ours 0.1284 0.0633 0.1988 0.2747 0.0295 0.0283 0.0432 0.1712 5.8744 1.2109
- DeltaBoost 0.1829 0.0642 02122 OOM 0.0663 0.0423 0.0960 0.2762 7.2955 1.3022
& Del0.5% MU in GBDT 0.1309 0.0640 0.1988 0.2751 0.0306 0.0283 0.0442 0.1727 6.3142 1.2398
] Ours 0.1295 0.0634 0.1988 0.2746 0.0301 0.0303 0.0432 0.1675 5.7733 1.2052
DeltaBoost 0.1812 0.0642 0.2123 OOM 0.0624 0.0435 0.0958 02764 7.3100 1.3163
Del 1% MU in GBDT 0.1311 0.0639 0.1988 0.2745 0.0334 0.0312 0.0460 0.1766 6.3558 1.2925
Ours 0.1295 0.0632 0.1987 0.2747 0.0273 0.0303 0.0424 0.1695 5.7620 1.2111

Table 7: Error rate after every online learning step.

Online Learning Step GlobalTemperatures ~ WebTraffic

‘ (x107%) (x1073)
Initial Train 10% | 4.1934 4.0984
Add 10%, Total 20% | 2.5431 3.8383
Add 10%. Total 30% | 2.1156 3.0296
Add 10%, Total 40% | 2.0351 3.1297
Add 10%. Total 50% | 1.9593 2.9149
Add 10%, Total 60% | 1.8940 29525
Add 10%. Total 70% | 1.8973 2.8682
Add 10%, Total 80% | 1.8532 2.9024
Add 10%. Total 90% | 1.8200 29141
Add 10%, Total 100% | 1.7850 2.9049
Del 10%, Total 90% | 1.8127 2.8432
Del 10%, Total 80% | 1.9902 3.3453
Del 10%, Total 70% | 20115 2.9007
Del 10%, Total 60% | 2.1137 3.1288
Del 10%, Total 50% | 2.0756 3.1187
Del 10%, Total 40% | 2.1654 2.9539
Del 10%, Total 30% | 2.1349 3.0132
Del 10%, Total 20% | 2.4975 3.8429
Del 10%, Total 10% | 3.6064 4.4339

that are correctly predicted during retraining but are wrongly predicted after decremental learning.
Similarly, W2C represents the testing instances that are wrongly predicted during retraining but are
correctly predicted after decremental learning. The W2W column indicates the cases where the
two models have different wrong predictions. For binary labels, W2W is not applicable. In the
|D’| column, 1 indicates that only add/remove one instance, while 0.1% corresponds to |D’| =
0.1% x |D,|. We present ¢ to evaluate the model functional similarity (adapted from the model
functionality (Adi et al., [2018))), indicating the leakage of dynamic learning:

Definition 3 (Functional Similarity) Given an input space X, a model T', a model T dynamic learned
from T, and a dataset D = {y;,a;} € X, the functional similarity ¢ between model T and T is:
¢ =1— (ryow + Twae + Te2w) ;Where ¢ is the leakage of learning.

Due to the size limitations of the table, we have omitted OnlineGB from this table because its
learning duration is excessively long, making it relatively meaningless compared to other methods.
We compared iGBDT in adding 1 and 0.1% data instances, and DeltaBoost and MUinGBDT in
deleting data. As shown in Table 8] we have a comparable model functionality in adding/deleting
both 1 and 0.1%. In most cases, DyGB reaches 98% similarity in both incremental and decremental
learning.

22

Under review as a conference paper at ICLR 2026

Table 8: Model functionality change after online learning.

iGBDT (Incr.) Ours (Incr.) DeltaBoost (Decr.) | MUinGBDT (Decr.) Ours (Decr.)
Add 1 Add0.1% | Add1 Add0.1% | Dell Del0.1% | Dell Del0.1% | Dell Del0.1%

2w | 0.40% 0.93% 0.17% 0.61% 1.17% 1.87% 0.63% 0.51% 0.55% 0.51%
Adult w2C | 0.27% 0.80% 0.18% 0.56% 0.72% 1.28% 0.60% 0.73% 0.56% 0.68%
o1 99.34% 98.27% | 99.66% 98.83% | 98.11% 96.85% | 98.77% 98.76% | 98.88% 98.82%

c2w | 0.21% 0.40% 0.16% 0.30% 0.58% 0.92% 0.10% 0.21% 0.10% 0.18%
Creditlnfo | W2C | 0.18% 0.40% 0.15% 0.29% 0.08% 0.13% 0.08% 0.23% 0.08% 0.19%
o 99.60% 99.20% | 99.70% 99.41% | 99.34% 98.96% | 99.82% 99.56% | 99.82% 99.63%

Dataset ‘ Metric

c2w | 0.25% 0.82% 0.22% 0.74% 3.50% 3.40% 0% 0.78% 0% 0.73%

SUSY w2C | 0.24% 0.78% 0.21% 0.73% 1.34% 1.14% 0% 0.79% 0% 0.76%
o1 99.51% 98.40% | 99.58% 98.53% | 95.16% 95.46% 100% 98.43% 100% 98.51%

Cc2w | 0.00% 2.52% 0% 2.64% 0% 1.92% 0% 1.92%

HIGGS w2C | 0.00% 2.56% 0% 2.63% OOM 0% 1.93% 0% 1.92%
o1 100.00% 94.92% 100% 94.73% 100% 96.14% 100% 96.17%

C2W | | 0.33% 0.56% 0.17% 0.28% 0.22% 0.56% 0.61% 0.45% 0.45% 0.61%
W2C| | 0.56% 0.61% 0.28% 0.50% 0.28% 0.22% 0.22% 0.33% 0.28% 0.39%

Optdigits W2W | | 0.06% 0.11% 0.06% 0% 0.17% 0.11% 0.06% 0.11% 0.06% 0.06%
o1 99.05% 98.72% | 99.50% 99.22% | 99.33% 99.11% | 99.11% 99.11% | 99.22% 98.94%

C2w | 0.26% 0.83% 0.14% 0.17% 0.17% 0.09% 0.29% 0.26% 0.26% 0.23%

Pendigits w2C | 0.14% 0.43% 0.11% 0.17% 0.26% 0.37% 0.17% 0.20% 0.23% 0.20%
1818) wow 1] 0.06% 0.20% 0.06% 0.03% 0.03% 0.09% 0.06% 0.09% 0.03% 0.09%

[99.54% 98.54% | 99.69% 99.63% | 99.54% 99.46% | 99.49% 99.46% | 99.49% 99.49%

2w | 0.74% 1.62% 0.64% 0.68% 0.52% 0.80% 1.24% 1.36% 1.26% 1.40%

Letter w2C | 0.82% 0.88% 0.78% 0.80% 0.58% 0.62% 1.06% 1.42% 1.06% 1.38%

W2wW | | 0.28% 0.44% 0.30% 0.30% 0.20% 0.40% 0.44% 0.24% 0.42% 0.28%
o1 98.16% 97.06% | 98.28% 98.22% | 98.70% 98.18% | 97.26% 96.98% | 97.26% 96.94%

C2W | | 0.98% 237% | 178% 178% | 0.11% 0.61% | 194% 204% | 1.94% 1.96%
Covt w2Cc | | 1.15% 210% | 177% 177% | 0.14% 070% | 180% 1.76% | 1.80% 1.71%

VP | wow | | 0.04% 0.09% | 0.07% 007% | 0.02% 0.03% | 0.06% 0.07% | 006% 0.07%
61 | 97.83% 95.44% | 9638% 9638% | 99.74% 98.66% | 96.19% 96.13% | 96.20% 96.26%

L BACKDOOR ATTACKING

Experimental Setup. In this evaluation, we randomly select a subset of the training dataset, and
set first a few features to a specific value (trigger, e.g. 0 or greatest feature value) on these data
instances, and then set the label to a target label (e.g., 0). In the testing dataset, we set all labels to
the target label to compose a backdoor test dataset. In this setting, if the model has correctly learned
the trigger and target label, it should achieve a high accuracy on backdoor test dataset.

M MEMBERSHIP INFERENCE ATTACK

The membership inference attack (MIA) aims to predict whether a data sample is part of the training
dataset (Shokri et al.| 2017;Hu et al.| [2022; |Choquette-Choo et al.,[2021)). Therefore, the goal of this
experiments is to determine if “deleted” data can still be identified as training data after decremental
learning. However, in our experiment with default hyper-parameter setting, the predictions made by
MIA are nearly random guesses.

Experimental Setup. Previous studies demonstrate that overfitting can make machine learning
models more vulnerable to MIA (Yeom et al., 2018 van Breugel et al., [2023} [Hu et al., [2022). To
further validate our approach, we apply a smaller model with the number of iterations M = 5,
which can be easily overfitted. For overfitting the model, we split each dataset into three subsets:
base dataset Dy, (49.9%), dynamic dataset D’ (0.1%), and test dataset Dies; (50%). We first train a
base model on Dy, + D’. For this base model, the MIA should identify the data in D’ as part of the
training dataset. Next, we perform decremental learning to delete D’ from the base model. After this
process, the MIA should no longer identify the data in D’ as part of the training dataset, confirming
that our approach effectively deletes the data from the model. Finally, we add D’ back to the model
by incremental learning. Following this, the MIA should once again identify the data in D’ as part of
the training dataset. These experiments are conducted on multi-class datasets: Optdigits, Pendigits,
Letter, and Covtype.

MIA Model. By following the existing MIA methods (Yan et al, 2023} [Li et al., 2022} |Carlini
et al., 2022)), we train an MIA model (binary classification) on the prediction probabilities of each
class. Since the GBDT model is overfitted, the probability distributions of the training data should
substantially differ from those of the unseen data (test data). Therefore, the MIA model can predict

23

Under review as a conference paper at ICLR 2026

whether a data sample is part of the training dataset based on its probability distribution. We sample
50% of Dyase and 50% of Dieg, to train the MIA model. Then remaining 50% of Dy, the entire D’
and 50% of Dy are used for evaluation.

Table 9: Membership Inference Attack.

Base Model After decremetal learning | After incremetal learning
Dbase D’ Dles(Dbase D’ Dlesl Dbase D’ Dlesl

Optdigits | 100% 100% 43.59% | 100% 33.93% 42.19% | 100% 100% 43.82%
Pendigits | 100% 100% 56.09% | 100% 55.04% 46.15% | 100% 100% 56.63%
Letter 100% 100% 26.31% | 100% 13.33% 47.37% | 100% 100% 36.84%
Covtype | 100% 100% 38.89% | 100% 152% 38.89% | 100% 100% 44.31%

Dataset

Results. Table 0] presents the average probability of data samples being identified as part of the
training dataset at different stages. For the base model, MIA identifies 100% of the data in Dy, and
D’ as part of the training dataset, while the data in D has a low probability of being identified as
part of the training dataset. After decremental learning, the probability for Dy,s. remains unchanged,
while the probability for D’ drops to a level almost identical to Di. This confirms that D’ has been
effectively deleted from the base model. After incremental learning, the probability for D’ increases
to 100% again, indicating that the model has successfully relearned D’. The probability for D in
the incremental model remains almost the same as in the base model. This result confirms that our
decremental/incremental learning approach can indeed delete/add data from/to the model.

N DIFFERENT BASE LEARNER

Since the proposed method is designed for decision trees, we conducted an experiment to compare
it with the boosted linear regression (linear model). For the linear model, we set the maximum
number of iterations to 1,000 and enabled early stopping. As shown in Table[I0] our method consis-
tently demonstrates superior accuracy, achieving lower error rates across all datasets. Although our
method requires more memory and longer training time than the linear model, its incremental and
decremental learning on a single data point is substantially faster than retraining from scratch.

Table 10: Comparison with linear model as base learner (max_iteration = 1,000, early_stop =
True).

Metrics Method Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype
Memory (MB) Linear Model 167.78 22.44 3,671.12 12,144.70 162.11 160.03 161.97 1,192.70
Y Ours 577.18 1,096.71 16,576.40 2433330 1,081.15 1,959.49 1,805.76 9,665.21
Error Rate Linear Model 0.1877 0.0657 0.2119 0.358 0.0557 0.1075 0.3582 0.2876
Ours 0.1276 0.0629 0.1987 0.2742 0.0307 0.0294 0.0418 0.1702
Linear Model 0.163 0.203 7.94 13.314 0.091 0.088 0.421 6.174
Time (s) Ours (Training) 2.673 1.818 64.935 177.1 0.276 0.368 0.352 9.336
Add 1 0.035 0.114 1.678 5.488 0.011 0.014 0.016 0.29
Del 1 0.034 0.055 1.303 3.367 0.01 0.015 0.014 0.161

O EXTREMELY HIGH-DIMENSIONAL DATASETS

We include two dataset with more features / high dimensional: RCV1 and News20, which have
47,236 and 1,355,191 features respectively. For News20 dataset, the substantial high dimension
causes segmentation fault on CatBoost and GPU out of memory (OOM) on thunderGBM. We omit
the results from the other incremental/decremental method because infeasible running time and mas-
sive occupied memory. Table[I2] shows the comparison of the training time and memory usage for
our methods and other popular methods. Table[T3]illustrates the incremental and decremental learn-
ing time of our method for two high dimensional dataset.

24

Under review as a conference paper at ICLR 2026

Table 12: Comparison of the training time consumption

Table 11: Dataset specifications. and memory usage for RCV1 and News20.

Dataset # Train # Test #Dim # Class Dataset XGBoost LightGBM CatBoost Th“(“Gd;rUG)MB Ours
News20 5,000 14,996 1,355,191 2 Training Time () RCVL 459.75 50.63 33570 49.44 295.43
RCVI1 20242 677,399 47,236 > aining News20 637.02 2842 Seg. Fault 00M 2573
Memory (5 RCVI 300828 292232 26363 191305 18585172
ry ¢ News20 306199 250929 Seg. Fault 0OM 128,131.43

Table 13: The incremental/decremental learning time of the proposed method for RCV1 and
News20. (ms, per tree, incre./decre.)

Incremental Learning Decremental Learning
Dataset |D’| | Learning Time Speedup v.s. Learning Time Speedup v.s.
(Ours) . i .. ThunderGBM (Ours) . . ThunderGBM
XGBoost LightGBM CatBoost (GPU) XGBoost LightGBM CatBoost (GPU)
1 21.431 214.5x 27.8x 156.6x 23.1x 19.268 238.6x 30.9x 174.2x 25.7x
RCVI 0.1% 37.707 121.9x 15.8x 89.0x 13.1x 29.232 157.3x 20.4x 114.8x 16.9x
0.5% 39.428 116.6x 15.1x 85.1x 12.5x 48.218 95.3x 12.4x 69.6x 10.3x
1% 43.901 104.7x 13.6x 76.5x 11.3x 70.666 65.1x 8.4x 47.5x 7.0x
1 11.76 541.7x 24.2x - 7.718 825.4x 36.8x
News20 0.1% 17.113 372.2x 16.6x - 12.363 515.3x 23.0x
0.5% 22.261 286.2x 12.8x - 30.076 211.8x 9.5x
1% 23.469 271.4x 12.1x - 37.825 168.4x 7.5x

Table 14: The approximation error of leave’s score between the model after addition/delection and

i abs — Dretrai .
the model retrained from scratch. Appr. Error = 2 all sees 2 ol eaves 408 (Paddrdel = Pretrin) , where paael is the
all trees Zal] leaves abs(prelrain)

leave’s score after adding/deleting, Prewrain i the leave’s score of the model retraining from scratch.

Adult Creditinfo SUSY HIGGS Optdigits Pendigits Letter Covtype

Add 1 2.42% 1.18% 0.24% 0.00% 2.69% 2.23% 1.31% 0.17%
Add0.1% 4.59% 6.57% 273% 1.63% 3.48% 4.12% 5.78% 9.47%
Add0.5% 5.10% 7.44% 227% 3.05% 5.12% 4.50% 10.45% 11.68%
Add 1% 5.30% 7.43% 3.07% 3.89% 5.92% 4.70% 11.75% 10.01%
Add 10% 4.25% 8.33% 1.07% 1.73% 4.64% 4.42% 13.34% 4.96%
Add 50% 3.55% 0.00% 0.00% 1.51% 0.00% 0.00% 6.26% 0.01%
Add 80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Del 1 1.21% 0.00% 0.00% 0.00% 0.01% 0.19% 0.57% 0.28%
Del 0.1% 3.63% 3.80% 0.79% 0.72% 1.40% 0.50% 1.88% 431%
Del 0.5% 3.58% 3.76% 0.18% 0.56% 2.52% 1.15% 3.49% 6.04%
Del 1% 3.40% 3.16% 0.15% 0.65% 3.07% 1.73% 3.74% 4.48%
Del 10% 0.27% 0.39% 0.00% 0.16% 1.67% 0.97% 1.35% 0.46%
Del 50% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Del 80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

P DATA ADDITION WITH MORE CLASSES

DyGB can update data with unseen classes. We divide the dataset into sub-datasets based on labels
(e.g., Optdigits has 10 labels, so we divide it into 10 sub-datasets). We train a model on the first
sub-dataset and test it on two test datasets: 1) the original full test dataset with all labels, and 2)
the partial test dataset with only the learned labels. We fine-tune the model with a new sub-dataset
through incremental learning until learning the full dataset, testing the model on both test datasets
after each training. Figure[5]shows that the accuracy of incremental learning and retraining is nearly
identical on both the full and partial datasets. Note that the decrease in accuracy on the partial dataset
is likely due to the increasing complexity of the learned data, which leads to a decrease in accuracy.

Q APPROXIMATION ERROR OF LEAF SCORES

As mentioned in Section[3.2] outdated derivatives are used in gain computation to reduce the cost of
updating derivatives. However, these outdated derivatives are only applied to nodes where the best

25

Under review as a conference paper at ICLR 2026

Optdigits Pendigits Covtype

Test Acc (%)
Test Acc (%)
Test Acc (%)
Test Acc (%)

Letter
5 Additon: Parta Tes! Data —5—Addiion: Partial Test Data = Addilon: Partal Test Data —— Addion: Partal Test Data
—A— Adition: Full Test Data 20 —A— Addition: Full Test Data 20 —A— Addition: Full Test Data 20 ~Ae- Addifon: Full Test Data

- + - Retrain: Partial Test Data - + ~Retrain: Partal Test Data - + - Retrain: Partial Test Data etrin: Partal Test Data

|- © - Retrain: Full Test Data |- @ ~Retrain: Full Test Data |- © - Retrain: Ful Test Data = © - Retrain: Ful Test Data.

4 6 8 10 2 4 6 8 10 5 10 15 20 25 1 2 3 4 5
Added Label Added Label Added Label Added Label

6 7

Figure 5: The impact of tuning data size on the number of retrained nodes for each iteration in
incremental learning.

100 —

95 (— 88

7

Test Acc (%)
/)

E= Train 100%
EZ8 Train 5% + Add 95%

E A Train 10% + Add 90%
= Train 20% + Add 80%
rain 50% + Add 50%
rain 95% + Add 5% u
N R Train 99% + Add 1%

N NN NN / AT T/ B AT TR
Adult CreditInfo Susy HIGGS Optdigits Pendigits Letter Covtype

v

//
//
/

v
v

//
//

v

T 97.21

T 97
\ 97.

7 7 Y v 7, 71 97.
SRR 97
e S e e 97

T T 87,30

7, 77, 7] 93
IR 93
WWH#%MWHHWW st e 93

|

Figure 6: Different fine-tuning ratio.

split remains unchanged. When a sub-tree requires retraining, the derivatives are updated. Therefore,
using outdated derivatives typically occurs when | D’| is small, as fewer data modifications result in
fewer changes to the best splits. Conversely, when more data is added or deleted, |D’| becomes
larger, increasing the likelihood of changes to the best splits in some nodes. As a result, the sub-
trees are retrained, and the derivatives for the data reaching those nodes are updated.

To confirm the effect of using outdated derivatives during dynamic learning, we report the result

zal] trees Za]l leaves abs(pﬂdd/del _preltain)
1 : . . Zall trees Zall leaves abs (prelmin) .
where p,qq/del 1S the leaf score after adding/deleting, and preyrain 1S the leaf score of the model retrain-

ing from scratch. Please note that the retrained model has the same structure and split in all nodes
of all trees as the model after adding/deleting, and we only update the latest residual and hessian
to calculate the latest leaf score. When the number of added/deleted data increases, the error will
increase because our method uses outdated derivatives if the best splits remain unchanged. When
the number of add/delete is large enough, almost all nodes in the model will be retrained because
their best splits have changed, so the error becomes 0.

for the approximation error of leaf scores in Table Appr. Error =

bl

R DYGB ON RECOMMENDER SYSTEMS

In the paper, we mention that a potential use case is recommendation systems. In this experiment,
we show how the proposed method improves the performance of recommendation systems through
incremental and decremental learning on GBDT.

Interest-drift in Recommender Systems. Interest drift refers to the evolution of a user’s pref-
erences over time. In recommendation systems, this means that past interactions may no longer
accurately represent a user’s current interests. As a result, relying on outdated data can degrade the
performance of the system. To address this issue, previous studies have proposed time-weighted
methods that gradually reduce the influence of older interactions (Yoon et al., [2008; Campos et al.,
2014). However, instead of reducing their impact, completely removing outdated data can lead to
better recommendation performance (Matuszyk et al.,[2018}; 2015} Tavakolian et al., [2012} |Gordea
& Zanker, 2007). Since the proposed GBDT supports both decremental learning and incremental

26

Under review as a conference paper at ICLR 2026

MovieLens-10M 057 MovieLens-20M

0.56

0.55
[}
2054
<

%
0.53 re-#

052}

051t L L L L L
N {73;\“ rb@\“ bP?\e o,"?\% b@\“ 6@\“ «Q\Q q?“\e osf\“ @@\“

@ L
°

S R R U N
RN S I N R S 4

e oo

& @@\e
Learned Dataset Ratio Learned Dataset Ratio
MovieLens-10M MovieLens-20M

0475

0.445 -

R S S PR MRS RS SRS S S S ST LR OB SN L SO SRS SR S S
&wf],efﬁ’%bbyﬁq’boéb’\@%b‘@/,\/bg DQ@,&%QQ%Q@Q@«Q%DQ’L@Q

Learned Dataset Ratio Learned Dataset Ratio
MovieLens-10M MovieLens-20M

0.148

0.147 |5y
3 0.146
Qo.

0.145

0.144

RS
® P

S

W

Learned Dataset Ratio Learned Dataset Ratio

(”,ﬁP Q}00\“ ég\“ (”,ﬁ\“‘ Q)00\“ ég\“ «@\“‘ %S’\“ e g

o
VAN
RN

Yo
%
%,

SOJINC S R
PSR O ¥

[~e—LightGBM —=—XGBoost —&—Ours|

Figure 7: (Incremental Learning) Performance (AUC, Log Loss, and MSE) of the recommender
system on different dataset ratios. We first sort the entire dataset by timestamp, from oldest to most
recent. Then, we partition the oldest 80% as the training dataset and the most recent 20% as the
testing dataset. To evaluate our proposed method, we initially train a model on the oldest 4% of
the training data, then gradually learn every additional 4% via incremental learning until the full
training dataset (100%) is used. These results illustrate that more recent data can positively impact
the performance of the recommender system.

learning, it naturally works on such recommender system, which can incrementally learn latest user
behaviors and remove outdated behaviors without training from scratch.

Datasets. We use two large-scale datasets that include timestamps spanning long time periods: (1)
MovieLens-10M: contains about 10 million ratings from 72,000 users on 10,000 movies from 1995
to 2009. (2) MovieLens-20M: contains about 20 million ratings from 138,000 users on 27,000
movies from 1995 to 2015. For each dataset, we sort the entire dataset by timestamps, from oldest
to most recent. Then, we partition the oldest 80% as the training dataset and the remaining latest
20% as the testing dataset.

Experimental Settings. This experiment aims to answer the question: Can the proposed method
improve the performance of recommendation systems through incremental and decremental learning
on GBDT? To this end, we design two experiments to demonstrate the effectiveness of our approach
through two key capabilities: (1) incrementally learning from the latest user behaviors, and (2)
removing outdated behaviors without retraining the model from scratch.

Incremental Learning. This experiments is to confirm that incrementally learn the latest user
behaviors improves the performance of the recommendation system. Our goal is to predict the
Click-Through Rate (CTR) using LightGBM, XGBoost and our proposed GBDT. Recall the dataset
processing, we partition the oldest 80% as the training dataset and the remaining latest 20% as the
testing dataset. We further divide the training data into 25 segments, each accounting for 4% of
the data. Our approach begins by training the model on the first (oldest) 4% of the data and in-
crementally incorporates each subsequent 4% partition in order. After each incremental update, we
evaluate the model on the testing set using AUC, Log Loss, and MSE, as illustrated in Figure [7}
For LightGBM and XGBoost, which do not support incremental learning natively, we retrain the
models from scratch using the accumulated data up to the current partition at each step. Across

27

Under review as a conference paper at ICLR 2026

MovieLens-10M MovieLens-20M

0.575

—— i 0.56 L L1 |
O NP SO R o RN SIS SRR SRS
S o 5 s S & G P

o S o S o s
S F e S ® S F S S S
Learned Dataset Ratio Learned Dataset Ratio
MovieLens-10M MovieLens-20M

8
— 0.4615

0.461

0.4605

e S S ISP P T e e P SN SRR R SR R SR
@QQ S F FF S S F S P \9@ S P S F P S S PN
Learned Dataset Ratio Learned Dataset Ratio
MovieLens-10M MovieLens-20M

0.1448
01446
0.1444
9 0.1422
2o.
0144

0.1438

0.1436

S R N R S S S SR S S
RO R SR A G P AL E G P P

Learned Dataset Ratio Learned Dataset Ratio

[—e—LightcBM —=—xGBoost —&—Ours|

Figure 8: (Decremental Learning) Performance (AUC, Log Loss, and MSE) of the recommender
system on different dataset ratios. We first sort the entire dataset by timestamp, from oldest to
most recent. Then, we partition the oldest 80% as the training dataset and the remaining latest
20% as the testing dataset. To evaluate our proposed method, we initially train a model on the full
training dataset (100%), then gradually remove 4% of the oldest data from the model via decremental
learning until only 4% of the data remains. These results illustrate that outdated (oldest) data can
negatively impact the performance of the recommender system.

both MovieLens-10M and MovieLens-20M datasets, all models improve as more recent data is in-
crementally learned. This demonstrates that learning from the latest user behaviors can improve
recommendation effectiveness.

Decremental Learning. This experiment investigates whether removing outdated user behaviors
can improve the performance of the recommendation system. Similar to the previous setup, we
aim to predict the Click-Through Rate (CTR) using LightGBM, XGBoost, and our proposed GBDT
model. We partition the dataset chronologically, using the oldest 80% as the training set and the latest
20% as the testing set. We start by training each model on the full training dataset (100%) and then
gradually remove the oldest 4% of the data at each step. After each removal, we evaluate the model’s
performance on the fixed testing set using AUC, Log Loss, and MSE, as shown in Figure [§] For
LightGBM and XGBoost, which lack native support for decremental updates, we retrain the models
from scratch using the remaining data at each step. Across both MovieLens-10M and MovieLens-
20M datasets, we observe a clear trend: model performance initially improves as stale (outdated)
data is removed, but begins to degrade once too much data is discarded. This indicates that while
removing outdated user behavior can help reduce noise and improve generalization, excessive data
removal eventually harms performance due to loss of useful historical patterns.

Conclusion. The experimental results demonstrate that our proposed method can effectively im-
prove recommender system performance by incrementally learning recent user behaviors and re-
moving outdated data without the need to retrain from scratch. This highlights the model’s adapt-
ability and efficiency in capturing evolving user preferences over time.

28

Under review as a conference paper at ICLR 2026

w
w

Pendigits (Incr.) |—©—Sampling Rate: 5% Pendigits (Decr.) [~©—Sampling Rate: 5%
25 —A—Sampling Rate: 10% 25 —A— Sampling Rate: 10%
= —+— Sampling Rate: 50% > —+— Sampling Rate: 50%
g, —p— Sampling Rate: 100% g, |—P— Sampling Rate: 100%
] 3
o o
] @
2 [S S S S e B 1.5
g g o
E =t + [+)
o o
Z05 Z05
0 0
20 40 60 80 100 20 40 60 80 100
lteration Iteration
1400 1400
—6—Sampling Rate: 5% —o6—Sampling Rate: 5%
1200 ||—A—Sampling Rate: 10% 1200 |{—A—Sampling Rate: 10%
—+—Sampling Rate: 50% —+—Sampling Rate: 50%
© 1000 ||——Sampling Rate: 100% 1000 H—P—Sampling Rate: 100%

800 | Pendigits (Incr.) 800 | Pendigits (Decr.)

20 40 60 80 100 20 40 60 80 100
Iteration Iteration

90

Test Acc (%)
Test Acc (%)
8

Decr.)

Pendigits
¥ o == I i == £:
10% % 5% 10% 50% 100%
Sampling Rate Sampling Rate

Figure 9: The impact of sampling rate on time, number of retrain nodes, and test accuracy during
incremental/decremental learning.

S ABLATION STUDY

In this section, we discuss the impact of different hyper-parameter settings on the performance of
DyGB, e.g., time and accuracy.

S.1 SIZE OF DYNAMIC DATASET |D’|.

Different sizes of dynamic learning dataset D’ can have varying impacts on both the accuracy and
time of the dynamic learning process. Figure [6] shows the impact of different data addition settings
on test accuracy. Across all datasets, DyGB achieved nearly the same test accuracy, which validates
the effectiveness of our dynamic learning framework. Decremental learning also has similar results.

Figure [10| shows the influence of | D;,| on incremental/decremental learning time. We only present
the experiment on 2 datasets each for incremental/decremental learning, due to the results on other
datasets show a similar trend. These results show that the dynamic learning time increase when the
size of D, increase. The reason is straightforward: as the size of D;, increases, the model undergoes
more significant changes, resulting in unstable splits. This leads to a greater number of sub-trees
that require retraining, ultimately consuming more time. Figure[IT|provides evidence to support this
observation. It illustrates the accumulated number of retrained nodes — how many nodes need to
be retrained. As the size of D;, increases, the number of nodes that need to be retrained increases,
leading to longer learning times.

S.2 SPLIT RANDOM SAMPLING

Split random sampling is designed to reduce the frequency of retraining by limiting the number of
splits. As mentioned in Section[3.3] a smaller sampling rate leads to more stable splits, resulting in
fewer nodes that require retraining and shorter dynamic learning time. Figure [9] shows the impact
of sampling rate « in split random sampling. The figures at the top demonstrate that when the
sample rate is reduced, a smaller number of split candidates are taken into account, leading to an
expected decrease in dynamic learning time. However, there is no significant difference between
5% and 10% in the Pendigits dataset. The figures in the second row show the accumulated number
of retrained nodes. It also shows that as the sample rate decreases, the splits become more stable,

29

Under review as a conference paper at ICLR 2026

3 1200

77777 . I o —©—Add 1
F--- SereeallL r-- l lataiiat Bl sty —A—Add 0.1% 300
C] 25 1000 | |——Add 0.5%
3 3 —6—Add 1 " |[—>—Add 1.0% 4 250
g g A % 8 8
= | Adut —o—Add 1 < 2| Letier Add0.1% § 800 £
815 —&—Add 0.1% g ——Add 0.5% 2 P
5 —+— Add 052 S5 —b—Add 1.0% 3 o0 H
£ |—p—Add 1.0% E |- = = Train 2 Adult 2 450 | Letter
210 |- - - Train 2 s g
£ £ 5 5
5 5 W & o & 100
gs 2 = -
< W <05 m 200 50
AAh A o
20) 60 80 100 20 0 60 80 100 20 0 60 80 100 20 40 0 80 100
Iteration Iteration Iteration Iteration
2000
T soof T
100 N el el | O il IR R St el 1500 —6—Del 1 —6—Del 1
& . Del1 —A—Del 0.1 1500 —4—Del 0.1%
& —o—Del 1 8 600 —A—Del 0.1% 2 —+—Del0st 2 —+—Del 05%
T 801 Covtype —A—Del 0.1% < susy o B |—>—Del 1.0¢ < |—>—Del 1.0%
5 g 5 500 ——Del 0.5% 8 1000 8
z ——oel05% E > pel 0% 2 3 1000
2 |—>—Del 1.0% 2 |= == 153 o
g e g £ 400 Train g Covtype 2 susy
2 2 g]
E 40 £ 300 NS S S e S oS 3 500 3
£ = & <
I 9200 - = = 500
20,
< < 100 ADDDA DB B AD DA AA
20 4 60 80 100 20 40 60 80 100 20 40 60 80 100 20 P 60 80 100
Iteration Iteration Iteration Iteration

Figure 10: The impact of |D’| on average Figure 11: The impact of |D’| on the accumu-
learning time in incremental/decremental learn- lated number of retrained nodes for each iteration

ing (top/bottom row). in incr./decr. learning (top/bottom row).
100
15 - Adult e S S —tr 4
5 10 - B-Pendigits R %
Qo L
> —7— Letter 8 80 T 9
E < —o-Adult 5 AT
o 5 D @ Incr. Learning —4—Creditinfo ® —A-Creditinfo
E ko 2 70 : —+Optdigits S 94| |—+Optdigits
= bl il el bt - P-Pendigits B - B-Pendigits Incr. Learnin v
2 Y 60 —7—Letter S - Letter or. Learning
< w92
0 01 02 03 04 0 01 02 03 04 0 01 02 03 04
Robustness Tolerance Robustness Tolerance Robustness Tolerance

Figure 12: The impact of split robustness tolerance on the learning time, test accuracy, and model
functional similarity ¢ in incremental learning.

resulting in fewer nodes that require retraining. In Pendigits, since the number of nodes that require
retraining is similar for 5% and 10%, it results in a minimal difference in the dynamic learning time,
as mentioned above. However, interestingly, for example in 100% sampling rate, although there
are fewer retraining in incremental learning, it take more time during learning process, because
incremental learning does not have derivatives of the data to be added. Therefore, more time is
needed to calculate their derivatives. On the contrary, decremental learning can reuse the stored
derivatives of the training process, resulting in less time. The bottom row shows the impact of the
sampling rate on the test accuracy. The test accuracy remains almost identical across all sampling
rates. Similar results can be observed in other datasets.

S.3 SPLIT ROBUSTNESS TOLERANCE

Split robustness tolerance aims to enhance the robustness of a split in dynamic learning. As the
observation in Figure [2] most best splits will be changed to second-best. Although the best split
may change, we can avoid frequent retraining if we allow the split to vary within a certain range.
For a node with [aB] potential splits, if the current split remains within the top [caB|, we will
continue using it. Here o (0 < o < 1) is the robustness tolerance. Figure illustrates the

120 o Adut -9~ 9-0-8-0-5—-0—0-F—0~¢
A Groditnfo 150 H|-A—Creditinto e
i %
100 susy susY g o0&
- B-Hicas 90 B nices 90t -
< Opicigits 5 ¢p—o—6—6—6—F Optigis Incr. Learning = Ve—e—g—g-e—e—e—e—e-e—e
o 80| Incr. Learning I~ &-pondigts S o |[7Z-0euus £ B
E P e A Al = 7y 3 100 |=Q 7 Penduits > P e ——Adul
§ 8005 ___ -©-Conype b3l I S S - 5o T 2 & 80— ——————H_& cudino
& b S - P - % SusY & g ’ B b D DB §hiaes
40 R S - |- B-HIGGS 3 >be N
b Ly e > P 7 Optdigits Y S e |~ Optdigits
20 A A A———B—A |-© -Pendigits f?fte‘r:dwgwls
4 B -+ -Letler
- - Fmfo--- Incr. Learning 7675\‘%9 Incr. Learning S e
o 60 0 60
128 256 512 1024 2048 4096 128 256 512 1024 2048 4096 4 20 60 100 140 180 4 20 60 100 140 180
#Bins #Bins # Leaves # Leaves

Figure 13: The impact of the # bins and # leaves on the acceleration factor of incremental learning
(adding 1 data point).

30

Under review as a conference paper at ICLR 2026

Table 15: The test error rate after training, adding and deleting on GDBT with various iterations.

Adult Creditlnfo Opudigits, Pendigits Letter
100iter 200iter 500iter 1000 iter | 100iter 200 iter 500 iter 1000 iter | 100 iter 200iter 500iter 1000iter | 100iter 200iter 500iter 1000 iter | 100iter 200iter 500 iter 1000 iter
XGBoost | 01270 01319 01379 01430 | 00630 00648 00663 00676 | 0.0418 00390 00412 00395 | 00397 00355 00352 00346 | 00524 00364 00356 00358
LighGBM | 0.1277 01293 01260 0.1318 | 00635 00636 00644 00654 | 0.0334 00317 00334 00329 | 0.0355 00343 00340 00340 | 0.0374 00310 00296 00298

Method

Training CaBoost | 02928 02887 02854 02843 | 01772 01765 01765 0.1765 | 0.0618 0.0396 00293 00248 | 0.0440 0.0365 00281 00257 | 0.0655 0.0406 0.0252 0.0186
Ours 01276 01265 01294 0.1325 | 0.0629 0.0632 0.0639 0.0648 | 0.0307 00251 0.0239 0.0239 | 00294 0.0280 0.0277 00277 | 0.0418 00318 00256 0.0246

Add 1 01275 01271 01287 0323 | 0063 00635 00638 00644 | 00295 00262 00239 00239 | 00297 00275 00275 00275 | 0.0404 00330 00266 0.0260

Ours Add0.1% | 01269 0.1287 01313 01325 | 00626 00633 00631 00638 | 00295 00256 00256 00256 | 00297 00275 00277 00277 | 0.0406 00322 00250 0.0240

(Incr. Leaning) ~ Add 0.5% | 01294 0.1276 0.1298 01316 | 0.0632 00629 00633 00648 | 0029 00262 00256 00256 | 00295 00266 00283 00283 | 0.0394 00326 00270 0.0256
Add1% | 01267 01279 0.1287 0.1337 | 0.0632 00630 00639 00646 | 00262 00228 00228 00228 | 0.0283 00272 00275 00277 | 0.044 00310 00246 0.0242

Del | 01276 0.1266 0.1294 0.1324 | 00628 0.0632 0.0640 0.0647 | 0.0306 00251 00239 00239 | 0.0295 0.0283 00280 0.0280 | 0.0416 0.0318 00260 0.0242

Ours Del0.1% | 01284 0273 0.1288 0.1321 | 00633 00634 00640 00648 | 0.0295 00256 00245 00245 | 0.0283 0.0280 00280 00280 | 0.0432 00336 00272 0.0246
(Decr. Learning) ~ Del 0.5% | 0.1295 01266 0.1280 0.1327 | 00634 00631 00644 00646 | 00301 00245 00239 00239 | 0.0303 00289 00283 00283 | 0.0432 00320 00258 0.0244
Del 1% | 01295 01281 0290 01313 | 00632 00633 00638 00654 | 00273 00239 00234 00234 | 00303 00292 00280 00280 | 0.0424 00328 00270 0.0252

Table 16: The Total training, incremental or decremental learning time (in seconds).

Method Adult Creditlnfo Opudigits, Pendigits Letter
A 100iter 200iter 500iter 1000 iter | 100iter 200iter 500 iter 1000 iter | 100iter 200iter S500iter 1000iter | 100iter 200iter 500iter 1000iter | 100iter 200iter 500 iter 1000 iter
XGBoost | 9467 19.128 43064 103767 | 13314 34619 77706 78845 | 0752 1385 2598 5271 | 0574 1743 3225 5976 | LI71 3647 8097 14597
LighGBM | 0516 0926 1859 3775 | 1.836 2081 4737 8504 | 0106 0164 0248 0462 | 031 0196 0351 0516 | 0203 0376 0758 1342
Training CaBoost | 1532 2646 5805 10974 | 3447 5467 12002 13339 | 0.077 0458 1160 2360 | 0.183 0399 1104 1986 | 0232 0524 1475 3.19%
Ours 2673 3289 7466 14500 | L8I8 3005 5391 14122 | 0276 0573 1444 2874 | 0368 0592 1978 3990 | 0352 0357 1284 1798
Add 1 0035 0071 0167 0328 | 0014 0125 0244 0616 | 0011 0031 OII§ 0285 | 0014 0045 0142 0227 | 0016 0018 0206 0464
Ours Add01% | 0105 0167 0402 0859 | 0249 0307 0661 2402 | 0015 0031 0106 0311 | 0026 0059 0187 0347 | 0040 0070 0483 0807
(Incr. Learning) Add 0.5% 0212 0.383 0.937 2.463 0.321 0.593 1.502 4.670 0.029 0.039 0.137 0.335 0.042 0.062 0.194 0411 0.067 0.127 0.537 0.979
Add1% | 0344 0670 1747 3904 | 0383 0789 2255 6369 | 0.043 0042 0.046 0344 | 0053 0067 0202 0435 | 0128 0176 0657 1.207
Del | 0034 0128 0077 0179 | 0055 0265 0359 0342 | 0010 0007 0037 0092 | 0015 0012 0067 0165 | 0.014 0007 0007 0011
Ours Del0.1% | 0103 0305 0541 0549 | 053 0595 0729 0665 | 0014 0011 0045 0115 | 0025 0020 0089 0185 | 0058 0017 0021 0021
(Decr. Leaning) Del05% | 0222 0753 1481 1467 | 0251 0941 1217 1220 | 0029 0024 0065 0123 | 0041 0038 0106 0198 | 0103 0035 0041 0038
Dell% | 0379 1297 2033 2464 | 0355 1375 2556 2694 | 0046 0035 0075 0132 | 0057 0050 0119 0209 | 0134 0051 0060 0056

impact of split robustness tolerance o on learning time, test accuracy, and functional similarity ¢ in
incremental learning. To obtain more pronounced experimental results, in this experiment, we set
|D’'| = 1% x| D,,|. The figure on the left shows that the learning time decreases as the tolerance level
increases. Although test accuracy changes only slightly (middle figure), the functional similarity ¢
drops significantly (right figure). For example, in the Letter dataset, ¢ drops about 5% from o = 0
to o = 0.5. This demonstrates that higher tolerance levels result in faster learning by avoiding
retraining, but with a trade-off of decreased functional similarity. Therefore, we suggest o should
not be greater than 0.15. Similar results can be obtained on decremental learning.

Table 17: Accuracy for clean test dataset and attack successful rate for backdoor test dataset.

Train Clean Train Backdoor Add Backdoor Remove Backdoor
Clean Backdoor | Clean Backdoor | Clean Backdoor Clean Backdoor

Optdigits | 97.49% 8.85% 97.55% 100.00% | 97.27% 100.00% | 97.49% 8.80%
200 Pendigits | 97.28% 5.06% 97.25% 100.00% | 97.25% 100.00% | 100.00% 11.67%
Letter 96.82% 2.90% 96.64% 100.00% | 96.56% 100.00% | 96.74% 2.56%

Optdigits | 97.61% 8.63% 97.49% 100.00% | 97.72% 100.00% | 97.66% 8.57%
500 Pendigits | 97.23% 5.06% 97.14% 100.00% | 97.28% 100.00% | 97.25% 5.63%
Letter 97.44% 5.18% 97.36% 100.00% | 97.14% 100.00% | 97.14% 3.56%

Optdigits | 97.61% 8.63% 97.77% 100.00% | 97.72% 100.00% | 97.83% 10.30%
1000 Pendigits | 97.23% 5.00% 97.11% 100.00% | 97.28% 100.00% | 97.25% 4.46%
Letter 97.66% 5.18% 97.38% 100.00% | 97.52% 100.00% | 97.42% 11.18%

#Iteration Dataset

S.4 NUMBER OF BINS AND LEAVES

In dynamic learning procedure, the number of bins and leaves also affects the dynamic learn-
ing time. We report the impact of varying the number of bins (128,256, --- , 4096) and leaves
(4,10,20,40,60, - - - ,200) on the acceleration factor of incremental learning (adding 1 data point)
in Figure[I3] The number of bins has few effect on both accuracy and the speed of dynamic learning
as shown in the top row of the figures. In terms of the number of leaves, when it exceeds 20, the ac-
curacy tends to stabilize, except for Covtype, as shown in the bottom row of the figures. For smaller
datasets (Adult, Optdigits, Pendigits, Letter), the more the number of leaves, the lower the accel-
eration factor for incremental learning. However, for larger datasets (CreditInfo, SUSY, HIGGS,
Covtype), the more the number of leaves, the greater the acceleration is. Especially for HIGGS, the
largest dataset in our experiments, the acceleration can be more than 100x.

S.5 NUMBER OF ITERATIONS
The number of base learners is important in practical applications. We provide additional results

for different numbers of base learners in Tables [T3] and [I6] Table [T3]reports the test error rate
after training, adding, and deleting base learners in GBDT models with varying iterations, demon-

31

Under review as a conference paper at ICLR 2026

strating that DyGB achieves a comparable error rate across different iterations. Table [16] shows
the time consumption for incremental and decremental learning, illustrating that DyGB are substan-
tially faster than retraining a model from scratch, particularly in cases where a single data sample is
added/deleted.

Additionally, to confirm that our method can effectively add and delete data samples across various
iterations, we report results on backdoor attacks for different iterations, as shown in Table These
results confirm that our method successfully adds and removes data samples from the model across
different numbers of iterations.

32

	Introduction
	Dynamic GBDT Framework
	GBDT Preliminary
	Problem Setting
	DyGB: Framework Overview

	Optimizing Learning Time
	Update without Touching Training Data
	Adaptive Lazy Update for Derivatives
	Split Candidates Sampling
	Adaptive Split Robustness Tolerance

	Experimental Evaluation
	Training Time and Memory Overhead
	Dynamic Learning Time
	Batch Addition & Removal
	Verifying by Backdoor Attacking
	Additional Evaluations

	Conclusion
	The Use of Large Language Models
	Related Work
	Feature Discretization.
	Experiment Setting
	Framework Overview
	Split Candidates Sampling
	Update w/o Touching Training Data
	Time Complexity
	Test Error Rate
	Real-world Time Series Evaluation
	Model Functional Similarity
	Backdoor Attacking
	Membership Inference Attack
	Different Base Learner
	Extremely High-dimensional Datasets
	Data Addition with More Classes
	Approximation Error of Leaf Scores
	DyGB on Recommender Systems
	Ablation Study
	Size of Dynamic Dataset |D'|.
	Split Random Sampling
	Split Robustness Tolerance
	Number of Bins and Leaves
	Number of Iterations

