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ABSTRACT

Gradient Boosting Decision Tree (GBDT) is one of the most popular machine
learning algorithm in various applications. However, in the traditional settings, all
data should be simultaneously accessed in the training procedure: it does not allow
to add or delete any data instances after training. In this paper, we propose DyGB
(Dynamic GBDT), a novel framework that enables efficient support for both in-
cremental and decremental learning within GBDT. To reduce the learning cost,
we present a collection of optimizations for DyGB, so that it can add or delete a
small fraction of data on the fly. We theoretically show the relationship between
the hyper-parameters of the proposed optimizations, which enables trading off ac-
curacy and cost on incremental and decremental learning. Empirical results on
backdoor and membership inference attacks demonstrate that DyGB can effec-
tively add and remove data from a well-trained model through incremental and
decremental learning. Furthermore, experiments on public datasets validate the
effectiveness and efficiency of the proposed DyGB framework and optimizations.

1 INTRODUCTION

Gradient Boosting Decision Tree (GBDT) has demonstrated outstanding performance across a wide
range of applications (Sudakov et al., 2019} Biau et al., 2019} Rao et al., 2019; Liu & Yul [2007).
It outperforms deep learning models on many datasets in accuracy and provides interpretability for
the trained models. In particular, GBDT has become the de facto choice for modeling tabular and
categorical data, where it consistently achieves state-of-the-art performance. However, in traditional
setting, all data is simultaneously accessed in training procedure, making its application limited. To
address this, we introduce Dynamic Learning, which combines incremental learning (adding new
data) (Tian et al.| [2024} [Hel [2024)) and decremental learning (removing outdated data) (Liu et al.
20255 [Wang et alf [2024)). This is essential for applications like recommender systems, which must
dynamically adapt to the latest user behaviors (Wang et al.} 2023} |Shi et al.| [2024]).

Incremental Learning. There are some challenges for incremental learning in GBDT due to its
natural properties (Friedman et al.,2000). Traditional GBDT trains over an entire dataset, and each
node is trained on the data reaching it to achieve the best split for optimal accuracy. Adding un-
seen data may affect node splitting results, leading to catastrophic performance changes. Moreover,
training gradient boosting models involves creating trees for each iteration, with tree fitting based
on the residual of previous iterations. More iterations create more trees, increasing model sizes and
hurting inference throughput. This also prohibits tasks like fine-tuning or transfer learning without
substantially increasing model sizes.

Recent studies have explored incremental learning on random forest (RF), and gradient boosting
(GB). [Wang et al.| (2009) presented an incremental random forest for online learning with small
streaming data. Beygelzimer et al.| (2015a) extended gradient boosting theory for regression to
online learning. [Zhang et al.[(2019) proposed iGBDT for incremental learning by “lazily”” updating,
but it may require retraining many trees when the new data size is large. It is important to note that
prior studies on online gradient boosting (Beygelzimer et al.,[2015aj;/Chen et al., 2012} Beygelzimer
et al.| 2015b) and incremental gradient boosting (Zhang et al.| | 2019; Hu et al.,|2017) do not support
decremental learning.
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Decremental Learning. Decremental learning is more complex and less studied than incremental
learning (Dilworth, [2025). |Wang et al.|(2025) and Brophy & Lowd|(2020) provided dynamic meth-
ods for data addition and removal in RF. While dynamic learning has emerged as a popular topic
recently, it has been barely investigated on GBDT. [Wu et al|(2023)); Lin et al.|(2023)) are among the
latest studies in decremental learning for GBDT. Wu et al.| (2023)) presented DeltaBoost, a GBDT-
like model enabling data deletion. DeltaBoost divides the training dataset into disjoint sub-datasets,
training each iteration’s tree on a different sub-dataset, reducing the inter-dependency of trees. How-
ever, this simplification may impact model performance. |Lin et al.| (2023) proposed an unlearning
framework in GBDT without simplification, unlearning specific data using recorded auxiliary infor-
mation from training. It optimizes to reduce unlearning time, making it faster than retraining from
scratch, but introduces many hyper-parameters and performs poorly on extremely large datasets.

In this paper, we propose DyGB (Dynamic GBDT), an efficient framework for both incremental and
decremental learning in GBDT. To the best of our knowledge, DyGB is the first approach to support
in-place learning for both adding and removing data in GBDT models. Furthermore, DyGB intro-
duces a unified mechanism for incremental and decremental updates for efficient implementation.

Unlike incremental-only methods such as iGBDT (Zhang et al.| [2019), DyGB supports both data
addition and removal within a unified framework. Furthermore, compared to DeltaBoost [Wu et al.
(2023)), which facilitates unlearning by restricting each tree’s training to disjoint data partitions,
DyGB performs in-place updates on the complete model structure without data partitioning. This
ensures that the model maintains high functional similarity to a model retrained from scratch, avoid-
ing structural constraints that may compromise predictive performance.

Contributions. (1) We introduce DyGB, an efficient in-place dynamic learning framework for gra-
dient boosting models supporting incremental and decremental learning. (2) We present optimiza-
tions to reduce the cost of incremental and decremental learning, making adding or deleting a small
data fraction substantially faster than retraining. (3) We theoretically show the relationship among
optimization hyper-parameters, enabling trade-offs between accuracy and cost. (4) We experimen-
tally evaluate DyGB on public datasets, confirming its effectiveness and efficiency. (5) We release
an open-source implementation of DyGB[H

2 DyNAMIC GBDT FRAMEWORK
2.1 GBDT PRELIMINARY

GBDT is an powerful ensemble technique that combines multiple decision tree to produce an accu-
rate predictive model (Friedman et al., [2000; [Friedman, [2001). Given a dataset D, = {y;,x;} fil,
where N is the size of training dataset, and x; indicates the i data vector and y; € {0,1,..., K — 1}
denotes the label for the i data point. For a GBDT model with M iteration, the probability p; s, for
i™ data and class k is: oFik(xi)

pik =Pr(yi=klxi)= g%, 1=12.,N )]
K eFiata)
where I is a combination of M terms: M1
F<M)(x) = Z pmh(X; am) ()
m=0

"https://anonymous.4open.science/r/DyGB
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Figure 1: An example for the incremental learning and decremental learning procedure in DyGB.
(a) For the node of Loan < 31, the current split is still the best after dynamic learning. Thus, the
split does not need to change. (b) An already well-trained tree in D;,. (c) For the node of Auto <
57, the best split has shifted after dynamic learning. (d) Incremental update for derivatives — only
update the derivatives for those data reaching the changed terminal nodes.

where h(x;a,,) is a regression tree, and p,, and a,, denote the tree parameters that learned by
minimizing the negative log-likelihood:

N
L= ZLi, Li=- ik 10g Pi k 3)
=1 k=0

1, ify, =k .. . . L
where 7; ) = ’ Yi . . The training procedures require calculating the derivatives of loss
’ 0, otherwise
function L with respect to F; j:
OL; 9*Li
9k = e (Tik = Pik) s hik = oF?, pik (1= pik). (C))

In GBDT training, to solve numerical instability problem (Friedman et al., 2000; |Friedman, 2001}
Friedman et al.,|2008), we apply Robust LogitBoost algorithm (Li,/2010) as shown in Algorithm
which has three parameters, the number of terminal nodes J, the shrinkage v and the number of
boosting iterations M. To find the optimal split for a decision tree node, we first sort the N data by
the feature values being considered for splitting. We then iterate through each potential split index
s, where 1 < s < N, to find the best split that minimizes the weighted squared error (SE) between
the predicted and true labels. Specifically, we aim to find an split s to maximize the gain function:

) N 2 N 2
(i)’ (Eln)  (SEiow)
Gain(s) =53 + ~ - N . (5)
Zi:l hi,x Zi:s+1 ik Zi:l ik

2.2 PROBLEM SETTING

For classic GBDT, all training data must be loaded during training, and adding/deleting instances is
not allowed afterwards. This work proposes DyGB, enabling in-place addition/deletion of specific
data instances to/from a trained model through incremental/decremental learning.

Problem Statement. Given a trained gradient boosting model 7'(#) on training dataset D,,, where
6 indicates the parameters of model 7', an incremental learning dataset D;,, and/or a decremental
learning dataset Dy, (Dge € D), our goal is to find a tree model T'(0") that fits dataset D, U D;, \
Dy, where |0 = |€’| (the parameter size and the number of trees stay unchanged).

Problem Statement. Given a trained gradient boosting model 7'(#) on training dataset D,,, where
0 indicates the parameters of model 7', an incremental learning dataset D;,, and/or a decremental
learning dataset D4, (Dge C Dy,), our goal is to find a tree model T'(¢’) that fits dataset D, U D;, \
Dye, where |6 = |0'| (the parameter size and the number of trees stay unchanged). We assume
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the original training dataset D,, remains available (retrievable) and accessible by the algorithm for
potential use in conditional subtree retraining.

The most obvious way is to retrain the model from scratch on dataset D, U D;, \ D,. However,
retraining is time-consuming and resource-intensive. Especially for dynamic learning applications,
rapid retraining is not practical. The key question of this problem is: Can we obtain the model T'(6")
based on the learned knowledge of the original model T'(0) without retraining the entire model?

The proposed DyGB aims to find a tree model T'(6’) as close to the model retraining from scratch
as possible based on the learned knowledge of the model 7'(). In addition, this dynamic learning
algorithm is in a “warm-start” manner, because it learns a new dataset D;, or removes a learned
sub-dataset D, C D, on a model that is already well-trained on training dataset D;,.

Let A denotes the initial GBDT learning algorithm , then we have A(D,,) € H, where H is the
hypothesis space. A dynamic learning algorithm £ for incremental learning or decremental learning
can be used to learn dataset D;, or remove dataset D, C D,,.

2.3 DYGB: FRAMEWORK OVERVIEW Algorithm 3 Incremental / Decremental Learning on
One Tree

The goal of this work is to propose a

re: . J d =
dynamic GBDT framework that supports Require: Tree nodes {A;xm}j—1, updated data D

. . LD

incremental and decremental learning for {(xi,m) Hiza J

any collection of data. 1: for each non-terminal node ¢ in {R; k m}j—1 With as-
cending depths do

Dynamic Learning in GBDT. The Al- 2: Construct residual set D’ = {(ri.x — pi.k, xi)}l_g’l\
gorithm [2] shows the dynamic learning 3: s < current split of node ¢ ' ' =
procedure in GBDT. At first, the GBDT  4: s’ « best split by Eq. equation [5 using (741, wi,x)
model is a well-trained model on the train- after adding/removing D’

ing dataset D,. Recall that the GBDT if s’ # s then

model is frozen and can not be changed Retrain the subtree rooted at ¢

pelecilcil

after training—no training data modifica- end if

tion. In this proposed framework, the user : end for o , _

can do (1) incremental learning: update : Update prediction values {3 x,m }j=1 for all terminal
nodes

a new dataset D;, to the model, and (2)
decremental learning: remove a learned dataset Dy, C D, and its effect on the model.

As shown in Algorithm [2| it is similar to the learning process, but it only needs to compute 7; j,
and p; (1 — p; ) for target dataset D’ without touching the training dataset D;.. Then, it will

. J )
call the function of incremental learning or decremental learning to obtain {Rjﬁk,m} . Finally, we
j=1

~ ‘I . . . .
update Fj j, with new {Rj, k,m} . Here we use the same notion to design the function of incremen-
j=1

tal learning and decremental learning — decremental learning is the inverse process of incremental
learning for dataset D’. Therefore, we describe them in the Algorithm at the same time.

Incremental & Decremental Learning on One Tree. Algorithm [3|describes the detailed process
for incremental and decremental learning, which are almost the same as decremental learning is the
inverse of incremental learning for dataset D’. The main difference is at Line 3. First, we traverse all
non-terminal nodes layer by layer from root to leaves. For each node, let s denote the current split.
We recompute the new best gain value with 7; ;, and p; (1 — p; 1) after adding D’ for incremental
learning or removing D’ for decremental learning. If the current split s matches the new best split
s’ (after adding/removing D’), we keep the current split (Figure [Ifa)). Otherwise, if the current best
split has changed (s # s’, Figure c)), we retrain the sub-tree rooted on this node and replace it with
the new sub-tree. After testing all nodes, node splits remain on the best split. Finally, we recompute
the prediction value on all terminal nodes. Appendix [E|provides a detailed explanation of Figure/[T]

3  OPTIMIZING LEARNING TIME

In this section, we introduce optimizations for the proposed DyGB to reduce computation overhead
and costs. The key step is deciding whether a node should be kept or replaced: Can we design
an algorithm to quickly test whether the node should be retained or retrained without touching the
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training data? Our most important optimization is to avoid touching the full training dataset. We ap-
ply incremental update and split candidates sampling concepts from (Lin et al., 2023)), extend them
to support dynamic learning, and provide evidence of the relationship between hyper-parameters of
different optimizations, enabling trade-offs between accuracy and cost. Additionally, we design op-
timizations specific to DyGB: 1) adaptive lazy update for residuals and hessians to decrease dynamic
learning time; 2) adaptive split robustness tolerance to reduce the number of retrained nodes.

3.1 UPDATE WITHOUT TOUCHING TRAINING DATA

To reduce computation overhead and dynamic learning time, we target to avoid touching the original
training dataset D, and only focus on the dynamic learning dataset D’. Following the study (Lin
et al.,|2023), we extend the optimization of updating statistical information to the scenarios of dy-
namic learning: (1) Maintain Best Split; (2) Recomputing Prediction Value; (3) Incremental Update
for Derivatives, and the computation cost is reduced from O(D £ D’) to O(D’) by these optimiza-
tions. The implementation of these optimizations are included in Appendix [G]

3.2 ADAPTIVE LAZY UPDATE FOR DERIVATIVES

Although incremental update can substantially reduce dynamic learning time, we can take it a step
further: if no retraining occurs, the changes to the derivatives will be very small. How can we
effectively utilize the parameters already learned to reduce dynamic learning time?

Gradient Accumulation (L1 et al., 2014; |Goyal et al., 2017} Ruder, 2016) is widely used in DNN
training. After computing the loss and gradients for each mini-batch, the system accumulates these
gradients over multiple batches instead of updating the model parameters immediately. Inspired
by this techniques, we introduce an adaptive lazy update for the proposed DyGB. Unlike Lin et al.
(2023)), which perform updates after a fixed number of batches, we update the derivatives only
when retraining occurs. This approach uses more outdated derivatives for gain computation but
significantly reduces the cost of derivative updates.

3.3 SPLIT CANDIDATES SAMPLING

From the above optimizations, if retraining is not required, we can keep the current best split. In
this case, we only need to iterate over the dynamic learning dataset D’ and update the prediction
values to accomplish dynamic learning, whether it involves adding or removing data. However, if
the sub-tree rooted in this node requires retraining, it is necessary to train the new sub-tree on the
data from the dataset D, + D’ that reaches this node. It is clear that retraining incurs more resource
consumption and takes a longer execution time. In the worst case, if retraining is required in the root
node, it has to retrain the entire new tree on full dataset D,. &= D’.

To reduce time and resource consumption of dynamic learning, a straightforward approach is to
minimize retraining frequency. Therefore, we introduce split candidate sampling to reduce frequent
retraining by limiting the number of splits, benefiting both training and dynamic learning. All fea-
tures are discretized into integers in 0,1, --- , B — 1, as shown in Appendix [C] This discretization
process constructs the feature histograms, which is the foundational histogram-based implementa-
tion used in high-performance libraries like LightGBM (Ke et al.| [2017)) and the ABC-Boost (Li}
2010) framework. The original training procedure enumerates all B potential splits, then obtains the
best split with the greatest gain value. In split candidates sampling, we randomly select [aB] splits
as candidates and only perform gain computing on these candidates. As « decreases, the number of
split candidates decreases, resulting in larger distances between split candidates. Consequently, the
best split is less likely to change.

Definition 1 (Distance Robust). Let s be the current best split, and let A\ = |D'|/| Dy,| denote the

dynamic update ratio. Let Na = ||t — s|| be the distance between s and its nearest competing split
t under the same feature. We say that s is distance robust if
Na > AGain(s) Cs, (6)

where the node structural coefficient C's is defined as

1
A“‘\‘;ls ZXJEZS hz’.k Wrrs ZX'Z,E"S hi.]f

-1

(N
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Here, [, and r denote the left and right child nodes of split s, with sizes N;s = |l5| and N,.s = |r],
respectively. This definition implies that the expected distance E[Na] = 1/« under split sampling
rate a. Hence a smaller sampling rate enlarges Na and makes the split more robust, reducing
the probability that the best split changes after dynamic updates. The same conclusion holds for
incremental updates.

Definition 2 (Robustness Split) For a best split s and an arbitrary split t,t # s, and dynamic
learning data rate % = ), the best split s is robust split if

Gain(s) > %Gain(t) (8)
Robustness split shows that, as A = ‘lg:‘l decreases, the splits are more robust, decreasing the
frequency of retraining. In conclusion, decreasing either « or A makes the split more robust, reducing
the change occurrence in the best split, and it can significantly reduce the dynamic learning time.
We provide the proof of Distance Robust and Robustness Split in Appendix[F

3.4 ADAPTIVE SPLIT ROBUSTNESS TOLERANCE

Recall the retraining condition for a node
that we mentioned previously: we retrain
the sub-tree rooted at a node if the best
split changes. Although the best split may
have changed to another one, the gain
value might only be slightly different from -

the original best split. We show the obser- 2 “°.tera§§n 8 100 20 “°.tera§2n 80 100
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are observed across various other datasets. Figure 2: Observation of distance of best split changes.
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Prior theoretical work, such as Delta- distance, and the shaded region is the standard error.

Boost [2023), has established
that the best split often remains invariant under single-point deletion. However, our empirical results
in Figure [2] extend this insight in two critical ways that distinguish DyGB from previous methods:
(1) We observe this stability holds equally for incremental learning (data addition) involving unseen
distributions; (2) Crucially, even when the invariance is broken (e.g., as | D’| increases to 1%), Fig-
ure 2] quantifies that the split index typically shifts only slightly to the 2nd or 3rd best rank rather
than jumping randomly.

This specific empirical observation, namely that split shifts are quantifiable and small, is the funda-
mental basis for our Adaptive Split Robustness Tolerance (o). Unlike methods that trigger retraining
immediately upon any split change, Figure [] justifies that we can safely tolerate these minor rank
shifts. To further validate this design, we explicitly examine the impact of sub-optimal splits on
model performance in Appendix [T} confirming that this tolerance mechanism maintains high ac-
curacy. The distance of the best split changes is usually small. Tolerating its variation within a
certain range and continuing to use the original split significantly accelerates dynamic learning. We
propose adaptive split robustness tolerance: for a node with [«B] potential splits, if the current
split is among the top [caB], we continue using it, where o (0 < o < 1) is the robustness toler-
ance. 0 = 0 selects only the best split, while ¢ = 1 avoids retraining. Higher o indicates greater
tolerance, making the split robust and less likely to retrain. We recommend setting o to around 0.1.

4 EXPERIMENTAL EVALUATION

In this section, we compare 1) our incremental learning with OnlineGB
2009) and iGBDT (Zhang et al., 2019); 2) decremental learning with DeltaBoost (Wu et al., [2023)
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Table 1.1: Total incremental learning time (seconds) and speedup v.s. baselines.

Dataset | Total Time (Seconds) Speedup v.s. E—
OnlineGB  iGBDT Ours OnlineGB  iGBDT | XGBoost LightGBM CatBoost ”(“GITU)
1 0265 0595  0.035+0.001 7.6x 17.0x | 39.4x 233x 43.8x 8.9x
aque 0% | 9020 1145 010540003 | 859 109x | 13.1x 7.8x 14.6x 3.0x
0.5% | 44650 1296  0215+0003 | 207.7x 6.0x 6.4x 3.8x 7.1x I.4x
1% | 98000 1573 0340+£0013 | 2882x  4.6x 4.0x 24x 4.5x 0.9x
1 29.000 0475 0.111+0008 | 2613x  43x | 227x 18.8x 311X 2,185.9x
Creditinfo 0-1% | 3386 1391 024550012 | 138214x  57x 10.3x 8.5x 14.1x 990.4x
05% | 28,875 1428 03360010 | 85937.5x  4.3x 7.5x 6.2x 10.3x 722.1x
1% | 336000 1568 0384 +0026 | 875.000.0x  4.1x 6.6x 5.4x 9.0x 631.9x
1 OOM 12037 1.683 % 0.033 - 72x | 56.8x 62.3x 64.7x 3.0x
susy ~ O1% | OOM 53460  7.990 +0.182 - 6.7x 12.0x 13.1x 13.6x 0.6x
05%| OOM 55380 13.428+0.410 - 4.1x 7.1x 7.8x 8.1x 0.4x
1% | OOM  57.680 20238 +0.610 - 2.9x 4.7x 5.2x 5.4x 0.2x
1 OOM 45250 5495 + 0.235 - 82x | 40.9x 44.4x 55.2x 2.3x
HiGgs 1% | OOM 132460 26651+ 0779 - 5.0x 8.4x 9.2x 11.4x 0.5x
05% | OOM 165340 43.383+ 1.621 - 3.8x 5.2x 5.6x 7.0x 0.3x
1% | OOM  171.160 66.961 % 1.463 - 2.6x 3.4x 3.6x 4.5% 0.2x
1 0032 0174 0011 +0.002 2.9x 158x | 87.7x 86.4x 16.1x 234.9x
Ontdiis 0-1% | 0.091 0.181  0.015 £ 0.003 6.1x 12.0x | 64.3x 63.3x 11.8x 172.3x
piig 05% | 0559  0.191 0029+ 0.007 19.3x 6.6x | 333x 32.8x 6.1x 89.1x
1% | 1403 0196 0044 + 0011 31.9x 45x | 21.9x 21.6x 4.0x 58.7x
1 0014  0.181 0015+ 0.003 0.9x 12.1x | 58.7x 77.6x 12.2x 190.2x
Pendigis  O1%| 0082 0224 00270006 3.0x 83x | 32.6x 43.1x 6.8x 105.7x
05% | 0427 0234  0.043+0.009 9.9x s4x | 205x 27.1x 4.3x 66.3x
1% | 0820 0235 0054 +0011 15.2x 4.4x 16.3x 21.6x 34x 52.8x
1 0033 0102  0.017 = 0.002 1.9x 6.0x | 241.9x  2493x 13.6x 381.2x
Leter  O1% | 0SS1 0167 0.039 +0.008 14.1x 43x | 105.5x 108.7x 5.9x 166.2x
05% | 2768 0187 0.070+£0009 | 39.5x 27x | 58.8x 60.5x 3.3x 92.6x
1% | 5680 0201  0.124+0014 | 458« 1.6x | 332x 34.2x 1.9x 52.3x
1 0090 1321 0290+ 0.025 0.3x 46x | 115.1x 64.0x 21.2x 10.6x
Coviype 1% | 21408 6391 06580056 | 32.5¢ 97x | 50.7x 28.2x 9.3x 477x
0.5% | 105.688  7.765 1051 +£0044 | 100.6x  74x | 31.8x 17.7x 5.8x 2.9x
1% | 214188 8088 173240094 | 1237x  47x 19.3x 10.7x 3.5x 1.8x
1 0013 0331  0.028+0.005 0.5x 118x | 2.6x 1.9x 19.0x 38.9x
Abalone 01% | 0026 0356 0029+ 0.006 0.9x 123x | 2.5x 1.8x 18.4x 37.6x
05%| 0170 0338  0.050 + 0.007 3.4x 6.8x 1.5x 1.1x 10.7x 21.8x
1% | 0354 0366  0.054+0.009 6.6x 6.8x 1.4x 1.0x 9.9x 20.2x
1 0014 0239 0018+ 0.002 0.8x 133x | 5.9x 4.0x 47.7x 44.1x
WineQuality O1%| 0057 0262 00270005 2.1x 9.7x 3.9x 27x 31.8x 29.4x
05% | 0296 0282  0.044+0.007 6.7x 6.4x 2.4x 1.6x 19.5x 18.0x
1% | 0608 0276  0.053 +0.008 11.5% 5.2x 2.0x 1.4x 16.2x 15.0x

and MUinGBDT (Lin et al [2023)); 3) training cost with popular GBDT libraries, such as XG-

Boost (Chen & Guestrin, [2016), Light GBM 2017), CatBoost (Dorogush et al.|[2018)) and
ThunderGBM (Wen et al., [2020).

Implementation Details. Experimental settings are detailed in Appendix [D] We employ one thread
for all experiments to have a fair comparison, and run ThunderGBM on a NVIDIA A100 40GB
GPU, since it does not support only CPU 2018). Unless explicitly stated otherwise, our default
parameter settings are: M = 100, J = 20, B = 1024, |D’| = 0.1% x |D,,|, « = 0.1, and 0 = 0.1.

Datasets. We utilize 10 public datasets in the experiments. ~ Table 2: Dataset specifications.

The specifications of these datasets are presented in Table |Zl Datocr FToan ATet #Dim Closs
The smallest dataset, Optdigits, consists of 3,822 training in- Adur 36139 0034 & 2
. . CreditInf 105,000 45,000 10 2

stances, while the largest dataset, HIGGS, contains a total of  sisy 2500000 2500000 18 >
113 . : : HIGGS 5,500,000 5,500,000 28 2

11 million instances. The number of dimensions or features i 3522 179 64 0
3 Pendigits 7,493 3,497 16 10
varies between 8 and 87 across the datasets. Fendi 12000 S0 1 9
Covtype 290,506 290,506 54 7

Abalone 2,785 1,392 8 Reg.

WineQuality 4,332 2,165 12 Reg.

4.1 TRAINING TIME AND MEMORY OVERHEAD

Since the proposed DyGB stores statistical information during training, this impacts both the training
time and memory usage. Table 3] presents a report of the total training time and memory overhead.

Training Time. Table [3]shows the total training time across methods. DyGB is much faster than
OnlineGB, DeltaBoost, and XGBoost, and slightly slower than iGBDT. While slower than Light-
GBM on smaller datasets, it outperforms on larger ones like SUSY and HIGGS, with training times
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Table 1.2: Total decremental learning time (seconds) and speedup v.s. baselines.

Total Time (Seconds) Speedup v.s.
Dataset D' | 1 Boost  MUInGBDT Ours DeltaBoost MUinGBDT ‘ XGBoost LightGBM  CatBoost Th“("Gd;;JG)BM
1 1.159 0217 0.034£0001 | 34.1x 6.4x 40.6x 24.0x 45.1x 9.1x
Adae | 01% | 23860 0751 0.104£0.003 | 27.5x 7.2x 13.3x 7.9x 14.7x 3.0x
05% | 2158 1.059 0219 +0.008 9.9x 4.8x 6.3x 37x 7.0x 1.4x
1% 1.975 1276 0381 £0.014 52x 3.3x 3.6x 2.1x 40x 0.8x
1 52.493 0.113 0.056 £0.005 | 937.4x 2.0x 45.0x 37.3x 61.6x 4332.8%
Creditinfo 1% | 49458 0426 0.1384£0.010 | 358.4x 3.1x 18.3x 15.1x 25.0x 1,758.3x
05% | 51.892 0.824 0230 £0.022 | 225.6x 3.6x 11.0x 9.1x 15.0x 1,055.0x
1% | 58349 1.065 0338£0.036 | 172.6x 3.2x 7.5x 6.2x 10.2x 717.9x
1 180.390 1.707 1283 £0.159 | 140.6x 1.3x 74.5x 81.8x 84.9x 3.9x
susy  01%| 169545 23999 6.146+0642 | 27.6x 3.9x 15.6x 17.1x 17.7x 0.8x
05% | 184.025 53962 154721122 | 11.9x 3.5x 6.2x 6.8x 7.0x 0.3x
1% | 176730 7776 26666+1241 |  6.6x 2.9x 3.6x 3.9x 4.1x 0.2x
1 0OM 4967 3223 +0.034 - 1.5x 69.7x 75.8x 94.2x 3.9x
wiges 1% | ooMm 55265  19.402+0.272 - 2.8x 11.6x 12.6x 15.6x 0.7x
05% | 0OM 152005 49419 % 1.451 - 3.1x 45x 49x 6.1x 0.3x
1% | OOM 251224 79.418 % 1.407 - 32x 2.8x 3.1x 3.8x 0.2x
1 0286 0.015 0.010+£0.001 | 28.6x 1.5% 96.5x 95.0x 17.7x 258.4x
Oodigits 0% | 0182357 0.032 00140002 | 13.0x 2.3x 68.9x 67.9x 12.6x 184.6x
PIEES 059 | 0226884 0.067 0.030 + 0.004 7.6x 22x 32.2x 31.7x 5.9x 86.1x
1% | 0.187428 0.085 0.051 £0.005 3.7x 1.7x 18.9x 18.6x 3.5x 50.7x
1 | 0171722 0.013 0.017 +0.001 10.1x 0.8x 51.8x 68.5x 10.8x 167.8x
Pendigits 1% | 0166171 0.022 0.025 + 0.004 6.6x 0.9x 35.2x 46.6x 7.3x 114.1x
8 05% | 0181613 0.089 0.040 + 0.007 45x 22x 22.0x 29.1x 4.6x 71.3x
1% | 0.168511 0.129 0.055 +0.007 3.1x 23x 16.0x 21.2x 3.3x 51.9x
1 | 0353374 0.017 0.012£0.002 | 29.4x 1.4x 3428x  353.2x 19.3x 540.0x
Lotter | 01% | 035043 0.032 0.060 + 0.009 5.8x 0.5x 68.6x 70.6x 3.9x 108.0x
05% | 0352653 0.066 0.104 £0.012 3.4x 0.6x 39.5x 40.8x 22x 62.3x
1% | 043276 0.094 0.143 £0.013 3.0x 0.7x 28.8x 29.6x 1.6x 45.3x
1 12.384 0.562 0.163£0.013 |  76.0x 3.4x 2047x  1139x  37.7x 18.8x
Covtype 0% | 11995 344 055240040 | 21.7x 6.2x 60.5x 33.6x 11.1x 5.6x
P 05% | 1234 5519 12050047 | 10.2x 4.6x 27.7x 15.4x 5.1x 2.5x
1% | 13485 6.917 1.958 £ 0.174 6.9x 3.5x 17.0x 9.5x 3.1x 1.6x
1 0322 0.069 0.028+0.004 | 11.5x 2.5x 2.6x 1.9x 19.0x 38.9x
Abalone | 01% | 0314 0.263 0.029+0.005 |  10.8x 9.1x 2.5x 1.8x 18.4x 37.6x
05% | 0498 0372 0.052 £ 0.005 9.6x 7.2x 1.4x 1.0x 10.3x 21.0x
1% 043 0417 0.048 £ 0.007 9.0x 8.7x 1.5x 1.1x 11.1x 22.7x
1 0354 0.022 0.015£0.002 | 23.6x 1.5x 7.1x 48x 57.2x 52.9x
WineQuality 01% | 0299 0.196 0.025+0.002 |  12.0x 7.8x 42x 2.9x 34.3x 31.8x
Y 05% | 0492 0.298 0.040 £0.003 | 123x 7.5x 27x 1.8x 21.5x 19.9x
1% | 0435 0333 0.051 +0.006 8.5x 6.5x 2.1x 1.4x 16.8x 15.6x

similar to MUinGBDT. Overall, DyGB offers achieves fast training while remaining competitive
with popular GBDT libraries.

Memory Overhead. Memory usage is crucial for practical applications. Most incremental and
decremental learning methods store auxiliary information or learned knowledge during training,
occupying significant memory. As shown in Table 3] our DyGB’s memory usage is significantly
lower than OnlineGB, iGBDT, and DeltaBoost, while OnlineGB and DeltaBoost encountered OOM.

4.2 DYNAMIC LEARNING TIME

Retraining from scratch can be time-consuming, but in some cases, the cost of dynamic learning
outweighs the benefits compared to retraining from scratch, making dynamic learning unnecessary.
Thus, evaluating the cost of dynamic learning is crucial for practical applications. Table and
Table[I.2]shows the total dynamic learning time (s) and speedup vs. baselines, comparing OnlineGB
& iGBDT for incremental learning, and DeltaBoost & MUinGBDT for decremental learning.

In incremental learning, compared to OnlineGB and iGBDT, which also support incremental learn-
ing, adding a single data instance can be up to 261.3x faster, respectively. Furthermore, compared to
retraining from scratch on XGBoost, LightGBM, CatBoost, and ThunderGBM (GPU), it can achieve
speedups of up to 241.9x, 249.3x, 64.7x, and 2,185.9x, respectively. In decremental learning, delet-
ing a data is 937.4x and 9.1x faster than DeltaBoost and MUinGBDT, and 342.8x, 353.2x, 84.9x,
and 4,332.8x faster than XGBoost, LightGBM, CatBoost, and ThunderGBM (GPU).

Interestingly, we observed that when |D’| is small, decremental learning is faster than incremental
learning. However, as | D’| increases, incremental learning becomes faster than decremental learn-
ing. For decremental learning, the data to be removed has already been learned, and their derivatives
have been stored from training. However, the deleted data often exists discretely in memory. On
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Table 3: Comparison of total training time (in seconds) and memory usage (total allocated, MB).

Method Adult CreditInfo SUSY HIGGS  Optdigits Pendigits Letter Covtype  Abalone  WineQuality

%\ iGBDT 1.88 1.79 63.13 180.46 0.26 0.35 0.26 9.16 143 1.05

g OnlineGB 6,736.18  330,746.80 OOM OOM 130.70 87.36 771.99 19,938.80 39.87 62.03
2 DeltaBoost 114.64 247.44 5,494.03 OOM 12.25 25.98 43.41 724.21 4.54 6.38
2 MU in GBDT 1.29 1.65 58.55 175.95 0.26 0.35 0.29 6.45 143 1.03
QE) XGBoost 1.38 2.52 95.63 224.59 0.97 0.88 4.11 33.37 0.07 0.11
=] LightGBM 0.82 2.09 104.89 24420 0.95 1.16 4.24 18.57 0.05 0.07
2 CatBoost 1.53 345 108.95 303.56 0.18 0.18 0.23 6.14 0.53 0.86
‘£ ThunderGBM (GPU) 0.31 242.64 5.05 12.66 2.58 2.85 6.48 3.07 1.09 0.79
E Ours 2.67 1.82 64.94 177.10 0.28 0.37 0.35 9.34 0.58 0.43
—~ iGBDT 1,153.13 2,192.13 31,32040 31,724.40 2,161.20 3,917.61 3,370.38 18,381.10 1,767.23 1,281.08
g OnlineGB 35,804.10  58,119.61 OOM OOM 749397 648875 13,067.75 19,699.62  582.97 345.83
= DeltaBoost 86,750.73  584,955.00 780,328.40 OOM 6,707.68  2,580.91 8,374.99  40,485.53 1,043.78 710.42
qbr:ﬁ MU in GBDT 570.78 1,095.70 16,576.50  34,380.90 1,080.49  1,959.02 1,805.22 9,637.65 1,711.02 1,194.82
3 XGBoost 335.88 249.97 2,210.68 7,479.52 227.18 189.95 292.77 854.45 185.16 208.09
= LightGBM 233.61 278.54 2,847.48 9,830.89 248.49 234.41 252.26 836.46 27.95 11.81
g CatBoost 83.02 129.09 1,503.93 3,090.55 2941 36.64 99.79 595.27 40.97 27.91

S  ThunderGBM (GPU) 453.30 0.90 2,122.18 7.418.06 166.13 383.26 397.30 1,299.85 373.58 368.53
= Ours 577.18 1,096.71 16,576.40  24,333.30 1,081.15  1,959.49 1,805.76 9,665.21 762.78 531.88

the other hand, for incremental learning, the data to be added are unseen, and derivatives need to
be computed during the incremental learning process. Nevertheless, we append the added data at
the end, ensuring that the added data are stored contiguously in memory. With a small | D’|, deriva-
tives can be reused in decremental learning, whereas derivatives need to be computed in incremental
learning. Therefore, decremental learning is faster. However, as |D’| grows, contiguous memory
access in incremental learning becomes faster, making it more efficient.

4.3 BATCH ADDITION & REMOVAL

In the traditional setting, GBDT models must
be trained in one step with access to all train-
ing data, and they cannot be modified after
training — data cannot be added or removed.

Test Acc (%)

80| Adult

In our proposed dynamic learning framework,
DyGB support both incremental and decremen-

tal learning, allowing continual batch learning
(data addition) and batch removal, similar to
mini-batch learning in DNNs.

Test Ace (%)
Test Ace (%)

Letter o} Letter

We conducted experiments on continual batch
addition and removal by dividing the data

into 20 equal parts, each with 5%|Dy|. Fig-
ure [3] (left) shows a GBDT model incremen-

tally trained from 5% to 100% of the data, then
decrementally reduced back to 5%. We re-
trained models for comparison. Figure 3] (right)
depicts a model decrementally reduced from
100% to 5%, then incrementally trained back

Test Acc (%)

s Optdigits

to 100%. We also report the accuracy of XG-
Boost and LightGBM. The overlapping curves
highlight DyGB’s effectiveness. Due to space
limit, results are shown for three datasets.

5 50
Trained Data Rate (%)

E) 100 50
Trained Data Rate (%)

Figure 3: The impact of tuning data size on the
number of retrained nodes for each iteration in in-

cremental learning.
4.4 VERIFYING BY BACKDOOR ATTACKING

Backdoor attacks in machine learning refers to a type of malicious manipulation of a trained model,
which is designed to modify the model’s behavior or output when it encounters a specific, predefined
trigger input pattern (Salem et al., |2022; Saha et al., 2020). In this evaluation, we demonstrate that
DyGB can successfully inject and remove backdoor in a well-trained, clean GBDT model using
incremental learning and decremental learning. The details of backdoor attack experiments are
provided in Appendix [[

In this evaluation, we randomly selected a subset of the training dataset and injected triggers into it
to create a backdoor training dataset, leaving the rest as the clean training dataset. The test dataset
was similarly divided into backdoor and clean subsets. We report the accuracy for clean test dataset
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Table 4: Accuracy for clean test dataset and attack successful rate for backdoor test dataset.

Train Clean Train Backdoor Add Backdoor Remove Backdoor
Clean  Backdoor | Clean  Backdoor | Clean Backdoor | Clean  Backdoor

Optdigits | 96.21% 8.91% 96.27% 100% 95.94% 100% 95.82% 9.69%
Pendigits | 96.11% 3.97% 96.43% 100% 96.48% 100% 96.51% 5.55%

Letter 93.9% 1.38% 94.08% 100% 93.62% 100% 93.78% 3.48%
Covtype | 78.4% 47.83% | 78.32% 100% 78.38% 100% 78.38%  51.71%

Dataset

and attack successful rate (ASR) for backdoor test dataset in Table E] Initially, we trained a model
on the clean training data (“Train Clean”), which achieved high accuracy on the clean test dataset
but low ASR on the backdoor test dataset. We then incrementally add the backdoor training data
with triggers in to the model (“Add Backdoor”). After incremental learning, the model attained
100% ASR on the backdoor test dataset, demonstrating effective learning of the backdoor data.
For comparison, training a model on the combined clean and backdoor training datasets (“Train
Backdoor”) yielded similar results to “Add Backdoor”. Finally, we removed the backdoor data
using decremental learning (“Remove Backdoor”), reducing the ASR to the level of the clean model
and confirming the successful removal of backdoor data.

4.5 ADDITIONAL EVALUATIONS

To further validate our method’s effectiveness and efficiency, we have included comprehensive ad-
ditional evaluations in the Appendix due to page limitations:

* Time Complexity Analysis: We analyze the computational complexity of our proposed frame-
work compared to retraining from scratch in Appendix

* Test Error Rate: We compare the test error rate between our proposed method and several base-
line approaches, with detailed results provided in Appendix [T}

* Real-world Time Series Evaluation: To confirm DyGB’s performance on real-world datasets
with varying data distributions, we report the experiments on two time series datasets in Appendix [}

* Extremely High-dimensional Datasets: To confirm the scalability of DyGB, we report the ex-
periments for two extremely high-dimensional datasets in Appendix

* Model Functional Similarity: We evaluate the similarity between the model learned by dynamic
learning and the one retrained from scratch in Appendix [K]

» Approximation Error of Leaf Scores: Since DyGB might use the outdated derivatives in the
gain computation, to assess the effect of outdated derivatives, we report the approximation error of
leaf scores in Appendix [Q]

* Different Base Learners: We include the experiments on various base learners in Appendix
* Recommender System: We report a practical use case of recommender system in Appendix [R]

» Data Addition with More Classes: DyGB supports incremental learning for previously unseen
classes. Detailed results and analysis are provided in Appendix [P}

* Membership Inference Attack: We also confirm the effectiveness of our method on
adding/deleting data by membership inference attack (MIA) in Appendix [M]

» Ablation Study: We report the detailed ablation study results for different hyper-parameter set-
tings and their effects in Appendix

* Impact of Sub-optimal Splits: To empirically validate the safety of our tolerance mechanism and
the robustness of accuracy against sub-optimal splits, we report an experiment in Appendix [T}

5 CONCLUSION

In this paper, we propose DyGB, an in-place dynamic learning framework for GBDT that support
incremental and decremental learning: it enables us to dynamically add a new dataset to the model
and delete a learned dataset from the model. It support continual batch addition/removal, and data
additional with unseen classes. We present a collection of optimizations on DyGB to reduce the
cost of dynamic learning. Adding or deleting a small fraction of data is substantially faster than
retraining from scratch. Our extensive experimental results confirm the effectiveness and efficiency
of DyGB and optimizations — successfully adding or deleting data while maintaining accuracy.

10
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ETHICS STATEMENT

This research proposes a framework for dynamic gradient boosting decision trees that allows effi-
cient addition and removal of data. The work does not involve human subjects, sensitive personal
data, or proprietary datasets; all experiments are conducted using publicly available benchmark
datasets. We carefully follow applicable data usage policies to ensure compliance with privacy and
licensing requirements.

A potential ethical concern is the possibility that dynamic learning techniques could be misused for
malicious purposes, such as unauthorized data manipulation or backdoor insertion. To address this,
our study explicitly evaluates such scenarios to raise awareness of these risks and to demonstrate
how our framework can also enable secure data removal when necessary. We affirm that this work
is intended for advancing trustworthy and responsible machine learning research, and we disclose
no conflicts of interest or external influences.

REPRODUCIBILITY STATEMENT

‘We have made extensive efforts to ensure that the findings of this paper are reproducible. All datasets
used are publicly available, and their details are clearly specified. The methods are described at both
the conceptual and algorithmic levels, including hyperparameters and evaluation protocols.

For transparency, we provide an anonymized implementation of the proposed framework, along with
scripts and instructions to reproduce the reported experiments. Together with the detailed descrip-
tions in the main paper and supplementary materials, this ensures that independent researchers can
reliably replicate our results.
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A THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used in the preparation of this paper. Specifically, LLMs
were employed to aid and polish the writing, helping to refine grammar, clarity, and readability of
the text. No part of the research ideation, experimental design, implementation, or analysis relied
on LLMs. The responsibility for all content presented in this paper rests fully with the authors.

B RELATED WORK

Incremental Learning is a technique in machine learning that involves the gradual integration of
new data into an existing model, continuously learning from the latest data to ensure performance
on new data (van de Ven et al, [2022)). It has been a open problem in machine learning, and has
been studied in convolutional neural network (CNN) (Polikar et al., 2001}, [Kuzborskij et al., 2013}

Zhou et al.} [2022), DNN (Hussain et al.| 2023} [Dekhovich et al., [2023), SVM (Chen et al., 2019;

Cauwenberghs & Poggiol [2000) and RF (Wang et al, 2009; Brophy & Lowd, 2020). In gradient
boosting, iGBDT offers incremental updates (Zhang et al.,2019), while other methods (Beygelzimer

et al} 2015a; [Babenko et al.,[2009) extend GB to dynamic learning. However, these methods do not
support removing data.

Decremental Learning allows for the removal of trained data and eliminates their influence on
the model, which can be used to delete outdated or privacy-sensitive data (Bourtoule et all, 2021}
[Nguyen et al 2022} [Sekhari et al, 2021} [Xu et al.L [2024). It has been researched in various models,

including CNN (Poppi et al., [2023} Tarun et al., [2021), DNN (Chen et al.,[2023} [Thudi et al.| 2022),

SVM (Karasuyama & Takeuchil, 2009} |Cauwenberghs & Poggiol [2000), Naive Bayes (Cao & Yang,
2015), K-means (Ginart et al.,[2019), RF (Schelter et al.,[2021; Brophy & Lowd,[2021)), and GB
et al.}[2023;Zhang et al.,[2023). In random forests, DaRE (Brophy & Lowd}2021) and a decremental

learning algorithm (Schelter et al.,|2021])) are proposed for data removal with minimal retraining.

However, in GBDT, trees in subsequent iterations rely on residuals from previous iterations, making
decremental learning more complicated. DeltaBoostWu et al.| (2023) simplified the dependency for
data deletion by dividing the dataset into disjoint sub-datasets, while a recent study
proposed an efficient unlearning framework without simplification, utilizing auxiliary information to
reduce unlearning time. Although effective, its performance on large datasets remains unsatisfactory.

C FEATURE DISCRETIZATION.

The preprocessing step of feature discretization plays a crucial role in simplifying the implemen-
tation of Eq. equation [5] and reducing the number of splits that need to be evaluated. This process
involves sorting the data points based on their feature values and assigning them to bins, taking into
account the distribution of the data, as shown in Figure @ and Algorithm []

Our implementation explicitly adopts the adaptive histogram construction method from the Fast
ABC-Boost package (Li & Zhao| [2022)), utilizing its specific adaptive bin-width doubling mech-
anism [2007). While this approach shares the foundational histogram-based philosophy
found in LightGBM (Ke et al] and other baselines, it dynamically adjusts granularity to fit
the data distribution.

As detailed in Algorithm El the process starts with a small initial bin-width (e.g., 107'°) and a
predetermined maximum number of bins B (e.g., 1024). It assigns bin numbers to the data points
from the smallest to the largest, considering the presence of data points in each bin.

SRR IcRg

Figure 4: Feature discretization example. For a feature, all its values are grouped into 8 bins, i.e.,
the original feature values become integers between 0 to 7 assigned to the nearest bin.
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Algorithm 4 Discretize Feature

1: vy Ny = sorted feature values, bin_width = 1010

2: while true do

3: cent =0, curriidc =0

4: fori=1to N do

5: if v; — Veyrriae > bin_width then
6: cnt =cnt+ 1, cur_idx =1
7: if cnt > B then

8: bin_width = bin_width * 2
9: break
10: end if
11: end if

12: vi = cnt

13:  end for

14:  if cnt <= B then break
15: end while
16: return v’ as discretized feature values

In cases where the number of required bins surpasses the maximum limit, the bin-width is doubled,
and the entire process is repeated. This adaptive discretization approach proves particularly effec-
tive for boosted tree methods, ensuring that feature values are mapped to integers within a specific
range. Consequently, after the discretization mapping is established, each feature value is assigned
to the nearest bin. After this discretization preprocessing, all feature values are integers within
{0,1,2,---,B—1}.

The advantage of this discretization technique becomes evident during the gain searching step. In-
stead of iterating over all N feature values, the algorithm only needs to consider a maximum of
B splits for each feature. This substantial reduction in the number of splits to evaluate leads to a
significant decrease in the computational cost, transforming it from being dependent on the dataset
size N to a manageable constant B.

Table 5: Hyper-parameters for experiments. (x indicates the parameter is default or recommended
from original sources).

Methods Learning Rate  Iterations Max Leaf Num Depth Num Bins Others

OnlineGB - 100 - - - The tree grown automatically.

iGBDT 0.1 100 - 5 -
DeltaBoost 115 100 - 5 100* All other parameters remain default
MU in GBDT 0.1% 100 20 - 1024+ update_freq = 20, sample_rate = 0.1, L, =0

XGBoost 0.1 100 20 - 128

LightGBM 0.1 100 20 - 128
CatBoost 0.1 100 20 - -

ThunderGMB (GPU) 0.1 100 - 5 128 A100 40GB GPU * 1
Ours 1 100 20 - 1024 Sampling Rate = 0.1, Robustness Tolerance = 0.1

D EXPERIMENT SETTING

The experiments are performed on a Linux computing node running Red Hat Enterprise Linux 7,
utilizing kernel version 5.10.155-1.e17.x86_64. The CPU employed was an Intel(R) Xeon(R) Gold
6150 CPU operating at a clock speed of 2.70GHz, featuring 18 cores and 36 threads. The system was
equipped with a total memory capacity of 376 GB. We have built a prototype of our dynamic learning
framework using C++11. The code is compiled with g++-11.2.0, utilizing the “O3” optimization.

Hyper-parameter Configuration. To ensure a fair and reproducible comparison, we detail the
hyper-parameter settings for all methods in Table[5} Unless explicitly stated otherwise, our default
parameter settings are: J = 20, B = 1024, |D’| = 0.1% x| D,,|, « = 0.1, and ¢ = 0.1. For baseline
methods, including OnlineGB, iGBDT, DeltaBoost, MU in GBDT, XGBoost, LightGBM, CatBoost,
and ThunderGBM, we adopted either their default parameters or the specific values recommended
in their respective original papers (denoted by * in the table). Specifically, for standard GBDT
libraries (XGBoost, LightGBM, ThunderGBM), we set the max bin size to 128 to optimize their
training efficiency as per common practice, while maintaining a higher resolution (B = 1024)
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for our method to demonstrate its efficiency even under more demanding discretization. For our
DyGB’s incremental and decremental learning scenarios, we additionally run five independent trials
and report the mean and variance to ensure statistical robustness. We report the ablation study for
different settings in Appendix[S]

E FRAMEWORK OVERVIEW

Figure [T is a visual example of incremental and decremental learning of our proposed frame-
work. Figure |Ikb) is one tree of the GBDT model and has been well-trained on dataset D, =
{0,1,2,3...,19}. Every rectangle in the tree represents a node, and the labels inside indicate the
splitting criteria. For instance, if the condition Age < 42 is met, the left-child node is followed;
otherwise, the right-child node is chosen. The numbers within the rectangles represent the predic-
tion value of the terminal nodes. Please note that here the feature 42 is a discretized value, instead
of the raw feature. Our dynamic learning framework has the capability to not only incrementally
learn a new dataset D;,, but also decrementally delete a learned dataset D, C D;,.

Example for Incremental Learning. Here, we would like to add a new dataset D' = D;, =
{20,21, 22,23} to the original model, so we will call the function of incremental learning. |d|
denotes how many data of the D’ reach this node. As shown in Algorithm [3] we traverse all non-
terminal nodes (non-leaf nodes) in the tree at first. For example, we are going to test the node of
Loan < 31. Its current best split is Loan < 31. One of the new data instances {22} reaches
this node. After adding this data and recomputing the gain value, Loan < 31 is still best split with
the greatest gain value of 26.937, and meets s = s’, as shown in Figure a). Thus, we can keep
this split and do not need to do any changes for this node. Then we are going to test the node of
Auto < 57 and the remaining three new data instances {20, 21,23} reach this node. As shown
in the left side of Figure[I[c), we recompute the gain value for this node, but the best split changes
to Income < 5. Therefore, we retrain the pending sub-tree rooted on Auto < 57 after adding
new data instances to obtain a new sub-tree rooted on Income < 5. Then we replace the pending
sub-tree with the new one. Finally, we update the prediction value on terminal nodes (leaf nodes).
For example, 0.4322 is updated to 0.2735 because of adding data {22}; —0.1252 has no change
because the data of this node are still the same.

Example for Decremental Learning. Similar to incremental learning, we would like to delete a
learned dataset Dg, = {2, 7,11, 13} and its effect on the model. The best split of node Loan < 31
does not change, so we keep the split. For Auto < 57, as shown in the right side of Figure [I[c),
after removing data instances {2, 11, 13}, the best split changes from Auto < 57 to Credit <
24, so we retrain the pending sub-tree rooted on Loan < 31 and then replace it with the new
sub-tree. For terminal nodes, the prediction value changes if any data reaching this node is removed.

F SpPLIT CANDIDATES SAMPLING: THEORETICAL ANALYSIS

All symbols used in the theoretical analysis are defined in Table[6}

F.1 ROBUSTNESS VIA DISTANCE AND GAIN MARGIN
Definition 1 (Distance Robust). Let s be the current best split and let X\ = |D’|/|Dy,| denote the
dynamic update ratio. Let Na be the distance between s and its nearest alternative split t. We say
that s is distance robust if

Na > AGain(s) Cs, 9)
where the node structural coefficient Cl is defined as

o Egziéﬂigﬁfli_+ 1 gézfﬁagfﬁfgi
S. Nis Zfﬂiels hix Nrs Zmérs R

-1

(10)
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Table 6: Notation table used throughout the theoretical analysis.

Symbol Meaning

Dy, Training dataset before dynamic update

D’ Added/removed subset during dynamic update

A = |D'|/| Dy Dynamic update ratio

] Current best split candidate

t A competing split under the same feature

Na = ||t — s Distance between split s and nearest competitor ¢
U s Left / right child regions of split s

Nig, Nys Number of samples in [ and 7

Gi ks ik First-order and second-order gradients of sample : at iteration k
GrL =) ... 9k Gradient sum of left child

Gr =) e, ik Gradient sum of right child

Hp = inels hi, ~ Hessian sum of left child

Hp = Zm,- cr, Pi,x  Hessian sum of right child

Gain(s) Split gain of split s

Gain'(s) Split gain after dynamic update

Nsy Mg Number of removed samples in [, and 7

Tias his Average gradient / Hessian in [

a Split sampling rate

o Robustness tolerance threshold

Proof. In decremental learning, for a fixed A\, we have
(1 = X) Gain(s) — Gain(s + Na) (11
2 2 2
~ (1 - )\) <(inels gz,k) + (iners glvk) (inEZSUrs gi,k) )

Z:xielS hi7k EXiE’I"S hi:k inelSUrs hi,k

<<1NA)W+<1M)<ZWW

Exiels hi7k Nrs ZXiETs hi:k

2
. (inelSU’l‘s gi»k)
inGZSUrS hi,k

12)

where [ represents the left child of split s, and it contains the samples belonging to this node, while
r represent the right child, N5 denotes |I5|, and N,.; denotes |rg].

Let (1 — A)Gain(s) — Gain(s + Na) > 0, we have

NA) (ZXiGls gi’k)2
Nis) D sier. hisk

+ (1 _ NA) (inET‘S givk)2 _ (qujGZSU’r‘S gi,k))2 (13)
Nes szﬂ'@“s hik inelsUTs hi

Na (Ceci 9i8)”  Na (Zeer i)’

PR — N\)Gain(s) — ((1 +

— AGain(s) >0 (14)
le ZXiEls hzk Nrs inerps h”Lk ( )
AGai
= Na > ain(s) - (15)
1 (ExielS gbk) 1 (iners 9b’v)
Nis Exiels hik Ny iners hik

where [ represents the left child of split s, and it contains the samples belonging to this node, while
r represents the right child, NV;; denotes |ls|, and N,.; denotes |r]|.
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Solving for N yields

1 (Zx-el 9i k)z 1 (ZX'ET 9i k)2 -
Na > AGain(s) e 4 A n . (16)
Nis inels Rk Nes inETs hik
To simplify notation, we define the node structural coefficient
2 2\ 1
C. = 1 (inels gi,k) 4 1 (iners gz%k) a7
T\ N Xen hin Nes Yger, hi ’
so that the distance-robustness condition takes the clean and compact form
Na > AGain(s) Cs. (18)
]

The above expression characterizes when the best split s cannot be overtaken by its nearest competi-
tor ¢ after removing a random subset D’. To further simplify the analysis, we next derive a general
bound on the gain perturbation.

Lemma 1 (Gain Perturbation Bound). For any fixed split s, removing a random subset D’ with rate
A = |D'|/|Dy.| changes its gain by at most O(\):

2 2
(X r.cr. Gik) (X cr Gik)
Gain'(s) — Gain(s)| < X\ Xi€e ThT 4 XiEre T =0(N). (19)
(Gain(s) (s)] < ( SR TP Ay )
Proof. For the left child of split s, after deleting n;s samples,
GL=> gik— Y, Gr~ Gr—ns7 (20)
x;Els xr; €lsND’
H; = Z R g — Z hig ~ Hp —ns his. (21)
x; €l z; ElsND’
Then
7 \2 = 32 2
(GL)  Crmmadn)” _ Cp (1 - m) +O(ms> ~ (22)
HL HL - nlshls HL le le
Because random deletion implies
Nis Nys
A A, 23
le ' Nrs : ( )
we obtain
) el )2 (G/ )2 (G/ +G/ )2
Gain/(s) = (L + =R L i 24)
Hj Hy, Hi + Hp
G2 G2 (G + GR>2
~(1-N(=L2+L)-1-N——r——TL A). 25
(-3 (G4 8) - -0 S 4 ooy 25)
= (1 = N)Gain(s) + O(X). (26)
Thus,
G2  G*
|Gain'(s) — Gain(s)| < A (L + R) =0(\). (27)
Hy, Hg
]

We next analyze a complementary notion of robustness based on the gain margin between competing
splits, which captures how large the gain advantage of the current best split must be in order to
remain stable under dynamic updates.
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Definition 2 (Robustness Split). For the best split s and any other splitt # s under the same feature,
s is a robust split under deletion rate A = |D’|/| D¢, if

Gain(s) > %Gain(t). (28)

Proof. Initially, we have

(ZXiGZS givk)g (ZXiGTS gi,k>2 _ (inelsurs gi»k)Q

Gain(s) = + (29)
inels hi»k inETS hi,k inelsum hi,k
After decremental learning, we get
2 2
GCLZ‘n,(S) _ (inels gz,k inelsﬁD’ givk‘) + (inErS gz7k inErsﬂD’ gl,k) (30)

inels hi,k - inelsﬂD’ hi,k iners hi,k inersﬁD’ hi,k

2
(inelsum ik — inE(ZSUrS)ﬁD’ gi,k)
inGZSUrs hi7k - inG(ZSUrs)OD’ hi,k

For any possible split ¢ (¢ # s), the split s is robust only and only if Gain(s) > Gain(t) and
o] =\, and D’ is
[ Dy ’
randomly selected from D. Here we consider the leaf child [, of split s, and let the |I; N D’| to be
nys, |Ls| to be Nis. Then we have

Gain'(s) > Gain/(t). First, let’s analyze the first term of Gain’(s). Suppose

2 2
(inels Gik = Dox,el.nD 9ik)  approx (inels Jik = sG1s)

/L. 31)
inels hivk - inelsﬁD' hivk inels hi,k — ushis
2
Nis (Zx-el\ gi,k)
= (1- Aeaxi€ls TR 32)
( Nl5> z:xielS h’ivk

where g and h denote the average of the g; 1, and h; j, respectively.

Similarly, we can get all three terms for Gain(s), Gain'(s), Gain(t), and Gain’(t) in a similar
form. For Gain/(s) > Gain'(t), finally, we have Gain(s) > Gain(t) + C, where

C = (nls (Exiels givk)z + Trs (inE’l‘s givk)2

Nis Doxier, hik Nos Yier, hik

2 2
st s (Cxenon, 9k) "\ (e (g, 9ik)”
Nis + Nps inGZSUTS hi’k Nig in@"t hi’k

L (inen gi,k)Q o Tu Mg (ineltun gi,k)2> (33)
Net Doyier, hik Nig+ Nt Yy er,ur, Mik
The upper bound of C' is AGain(s). Further, we have
Gain(s) > %Gain(t) (34)
]

In order to connect Definition 2 with a margin condition, we first upper-bound the correction term
C arising from the removal of D’.

Lemma 2 (Upper Bound on the Correction Term C'). Let C' be the correction term defined in the
proof of Definition 2. Under random deletion with rate )\,

C < AGain(s). (35)
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Proof. From the approximation in the proof of Definition 2, each gain term takes the form

(e, 00 = Soernpr9ia)” <1 - ms) % (36)
inels hik — inelst' ik Ny ) Hp’
and similarly for the right child and the merged node. Thus the perturbation satisfies
_ s G} nes G s +nps (Gp 4 Gr)? a7
Nis H, Ny Hr Nis+ N.s Hp+ Hg

U B ey &

= AGain(s). (39)

O

We are now ready to provide a clean robustness condition.
Proposition 1 (Margin Condition for Robustness). Let s be the best split and t any competitor. If

Gain(s) — Gain(t) > A Gain(s), (40)
then after deleting D’ with rate \, we still have
Gain'(s) > Gain(t). 41)
Moreover,
Gain(s) — Gain(t) > A\Gain(s) <= Guain(s) > %Gain(t)7 (42)

i.e., this margin condition is equivalent to Definition 2.

Proof. By Lemma[2]

Gain/(s) > Gain(s) — AGain(s) = (1 — N\)Gain(s), (43)
Gain'(t) < Gain(t). (44)
Thus
Gain'(s) > Gain'(t) <= (1 — X\)Gain(s) > Gain(t), (45)
which is equivalent to
Gain(s) > %Gain(t). (46)
|

Discussion. Definitions 1 and 2, together with Lemmas [T] and 2] and Proposition[I} establish that:
(i) the gain of any fixed split changes only by O(\) under dynamic updates, and (ii) if the original
gain margin exceeds this perturbation, the best split remains stable. This explains both the empirical
robustness of DyGB under small data modifications and the reduced retraining frequency when
either A or the sampling rate a decreases.

Summary. Our robustness analysis consists of five complementary components. (1) Distance
Robustness characterizes the stability of a split based on how far its nearest competing split lies in
the sorted feature space: a split remains stable when the neighbor distance exceeds the perturbation-
scaled threshold Nao > A Gain(s) Cs. (2) Gain Perturbation Bound shows that dynamic updates
modify the gain of any fixed split by at most O(\), providing a quantitative limit on how much
the split metric can drift. (3) Robustness Split formalizes the requirement that the best split must
retain a higher gain than any competitor even after the update. (4) Using our perturbation analysis,
we upper bound the total correction term C' and show that its worst-case effect is no more than
A Gain(s). (5) These results together yield the Margin Condition for Robustness, which states that
a split remains optimal if and only if its original gain margin exceeds the maximum perturbation:
Gain(s) — Gain(t) > X Gain(s), or equivalently, Gain(s) > Gain(t)/(1 — \).
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G UPDATE W/0 TOUCHING TRAINING DATA

Maintain Best Split. The split gain is calculated by Eq. equation[5] There are three terms: the gain
for the left-child, the gain for the right-child, and subtracting the gain before the split. Each gain is

2
computed as the sum of the squared first derivatives < [Zf;l (rix — pi,k)} ) divided by the sum of

the second derivatives (Zivzl D, k(1 —ps k)) for all the data in the node. To compute these terms,

it is necessary to iterate over all the data that reaches the current node. The most straightforward
way for dynamic learning to obtain the split gain is to directly compute these three terms for dataset
D, + D'. In the worst case, which is the root node, the computation cost for gain computing is
|Ds| + | Din| or | Dyy| — | Dge| because the root node contains all the training data.

We calculate the split gain for D, + D’ without touching the D,,. In this optimization, during the
training process, we store the S,, = vazl (rig — pig) and Sp, = Zfil Dik(1 — pig) for the
training dataset D,, for every potential split. In incremental learning process, we can only calculate
the S;p and Sl’,p for D;,. To obtain the new split gain based on Eq. equation we add it to the stored
S,y and S,,. Similarly, for decremental learning, we can only calculate the S}, and S, for Dy, to
obtain the new split gain. In this manner, we successfully avoid the original training data for split
gain computation and reduce the computation cost from O(D,. £ D") to O(D’).

Recomputing Prediction Value. For the terminal node (leaf node), if there are no data of D’
reaching this node, we can skip this node and do not need to change the prediction value. Otherwise,
we have to calculate a prediction value f as shown in line 5 of the Algorithm [I] Similar to split gain
computing, it is required to iterate over all the data that reaches this terminal node. Here we store
Sy = ineRj,k,m(rivk — pik) and S,, = ineRj,k,m (1 — p; i) pi i for training dataset D,, in
training process. Thus, in dynamic learning process, we only need to calculate S;p and SI’,p for
dynamic learning dataset D’.

Incremental Update for Derivatives. After conducting dynamic learning on a tree, we need to
update the derivatives and residuals for learning the next tree. From the perspective of GBDT train-
ing, each tree in the ensemble is built using the residuals learned from the trees constructed in all
previous iterations: Modifying one of the trees affects all the subsequent trees. A trivial method
is to update the derivatives and residuals for all data instances of D,, 4+ D’ in every tree, but it is
time-consuming.

When performing dynamic learning on a tree, not all terminal nodes will be changed—some ter-
minal nodes remain unchanged because there is no data from D’ that reaches these terminal nodes.
Note that our goal is to find a model close to the model retraining from scratch. In the dynamic
learning scenario, all trees have already been well-trained on D,,. Intuitively, the derivative changes
for data in those unchanged terminal nodes should be minimal. Therefore, as shown in Figure d),
we only update the derivatives for those data reaching the changed terminal nodes. For example,
the terminal node with a prediction value of —0.1252 does not meet any data in D’ in both incre-
mental learning and decremental learning, so the prediction value of this node does not need to be
changed. Therefore, we do not need to update the derivatives of the data {1, 6, 14, 16, 17} reaching
this terminal node.

H TiME COMPLEXITY

We compare the time complexity of retraining from scratch and our dynamic learning approach in
Table[/| Training a tree involves three key steps: Derivatives Computing, Gain Computing & Split
Finding, and Prediction Computing. Let B represent the number of bins, J the number of leaves,
|Dy| the number of training data points, and |D’| the number of dynamic learning data points
(| D] < [Dgr]).

Derivatives Computing. In retraining, each point is assigned to one of the B bins, which take
O(|| D¢r||) time. In our method, we optimize updates without touching training data, directly adding
or subtracting derivatives for the dynamic data points, which takes O(]|D’||) time.
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Gain Computing & Split Finding. In training, to identify the optimal split for each node, we
compute the potential split gains for each bin. As a binary tree is constructed with 2J — 1 nodes, the
total computational complexity for split finding across the entire tree is O(B(2J — 1)) = O(BJ).
In our approach, Split Candidates Sampling reduces the number of split candidates from B to aB,
where o denotes the split sample rate (0 < o < 1). Additionally, let P, represent the probability of
a split change being within the robustness tolerance, indicating the likelihood that a node does not
require retraining (with larger o, P, increases). If retraining is not required, the time complexity for
checking a node is O(|D’|). Conversely, if retraining is required, the complexity to retrain a node is
O(aB). Consequently, the total time complexity for the entire tree is O(J|D’|- P, +JaB-(1—P,)).
For P, — 1, no nodes require retraining, simplifying the complexity to O(J|D’|). Conversely, for
P, — 0, all nodes require retraining, and the complexity becomes O(JaB).

Predicted Value Computing. During training, after the tree is built, the predicted value for each leaf
is updated. This involves traversing the leaf for the data points that reach it, with the total number
being equivalent to all training data points, resulting in a complexity of O(|Dy,.|). In our method,
we update the predicted value only for leaves reached by at least one dynamic data point, and adjust
by adding/subtracting the impact of dynamic data points, resulting in a complexity of O(|D’|).

Table 7: Time complexity comparison between retraining and dynamic learning.

Step Training Time  Optimization Dynamic Learning Time
Derivatives Computing O(|Dyr) Update without Touching Training Data o(|D'|)

Gain Computing & Split Finding  O(B.J) Split Candidates Sampling, Split Robustness Tolerance ~O(aB.Jo)

Predition Computing O(|Dyr|logJ)  Update without Touching Training Data o(|D'|)

I TEST ERROR RATE

Table[§] presents the test error for different methods, defined as (1 - accuracy) for classification tasks
and Mean Squared Error (MSE) for regression tasks. We have omitted the results for OnlineGB, as
its excessively long learning time makes it relatively insignificant compared to the other methods.
Three scenarios are considered: (1) Training, reporting the test error for models trained on the full
dataset D; (2) Incremental Learning, performing incremental learning to add a randomly selected
portion D’ into a model pre-trained on D — D’; and (3) Decremental Learning, conducting decre-
mental learning to remove D’ from a model trained on the full dataset D. As shown in Table @ The
proposed DyGB achieved the best error rates in most cases.

J REAL-WORLD TIME SERIES EVALUATION

To confirm the performance of our methods on real-world datasets with varying data distributions,
we conducted experiments on two real-world time series datasets from Kaggle:

* GlobalTemperatures (Glo, 2017): This dataset records the average land temperatures from 1750
to 2015.

* WebTraffic (Web, 2024): This dataset tracks hourly web requests to a single website over five
months.

For this experiment, we constructed the input data X using the time series values from the previous
15 time steps, with the goal of predicting the corresponding output value y. Initially, we randomly
sample 10% of the data as the test dataset, with the remaining 90% used as the training dataset.
Similar to Section[#.3] we evenly divided the training data into 10 subsets, each containing 10% of
the training samples. It is important to note that we did not shuffle these time series datasets, meaning
the 10 subsets were arranged sequentially from older to more recent data. We trained an initial
model using the first subset, then incrementally added each subsequent subset one by one. After
incorporating all training data, we sequentially removed each subset in reverse order. As expected,
since the test dataset spans all time steps, the error rate decreases as more subsets are added to the
model. This is because the model learns the updated distribution from the newly added subsets.
After removing each subset, the error rate increases, reflecting the loss of information associated
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Table 8: The test error after training, adding, and deleting.

Abalone  WineQuality

Task Method Adult  Creditinfo SUSY HIGGS Optdigits Pendigits Letter ~Covtype (x10-%) (x10-2)
iGBDT 01276 00629  0.1987 02742 00290 00295 00418 0.1702  5.772I 1.2085

DeltaBoost 0.1938  0.1830 02428 OOM  0.0830 00824 0.1704 03024 83571 1.3475

MU in GBDT 0.1276  0.0629  0.1987 02742  0.0307 00294 00418 0.1702  5.7721 1.2085

TestE XGBoost 0.1375 00659  0.1976 02676  0.0395  0.0355 00384 0.1717 57657 1.1193

est bror LightGBM 0.1287  0.0631  0.1985 02726  0.0334 00355 0.0374 0.1700  5.9304 1.1995
CatBoost 02928  0.1772 04324 05384 00618  0.0440 0.0655 0.1572 57265 1.2457

ThunderGBM (GPU) 02405  0.0660 04576 04698 00546  0.0515 00940 02135  8.1791 1.6482

Ours 0.1276  0.0629  0.1987 02742  0.0307  0.0294 00418 0.1702  5.7721 1.2085

| iGBDT 0.1279 00633  0.1987 02769  0.0301  0.0286 0.0418 0.1696  5.8801 1.1953

Ours 0.1275 00630  0.1988 02742  0.0295  0.0297 0.0404 0.1685 5.8110 1.2079

| 0.10% iGBDT 0.1267 00630  0.1995 02742 00323  0.0363 0.0446 0.1777  6.2531 1.2680
Le'a‘f;ig : Ours 0.1269 00626  0.1989 02747  0.0295  0.0297 0.0406 0.1686  5.9000 1.2040
0.50% iGBDT 0.1287  0.0636 02012 02795  0.0390  0.0440 0.0572 0.1788  7.6510 1.2907

e Ours 0.1294 00632  0.1988 02734  0.0290  0.0295 00394 0.1681 57701 1.2198

1% iGBDT 0.1291 00630 02014 02780  0.0529  0.0603 0.0875 0.1868  8.5324 1.4462

° Ours 0.1267 00632  0.1990 02740  0.0262  0.0283 0.0440 0.1683  5.8378 1.2209

DeltaBoost 0.1971  0.1852 02460 OOM 00837 00812 0.1755 03103 85831 1.3380

1 MU in GBDT 0.1280  0.0629  0.1987 02742  0.0306  0.0295 0.0408 0.1702  5.8025 1.2095

Ours 0.1276  0.0628  0.1987 02742  0.0306  0.0295 00416 0.1702 58723 12143

DeltaBoost 02003 0.1788 02387 OOM 00848 00835 01690 02966  8.5054 13681

b 0.10% MU in GBDT 0.1285  0.0634  0.1988 02742 00301  0.0295 0.0444 0.1734 59727 1.2202
Le:}f;;g Ours 0.1284  0.0633  0.1988 02747  0.0295  0.0283 0.0432 0.1712 58744 1.2109
DeltaBoost 0.1920 0.1870 02476 OOM  0.0821  0.0843 0.1728 02998 84328 1.3227

0.50% MU in GBDT 0.1309 00640 0.1988 02751 00306 00283 00442 0.1727 63142 1.2398

Ours 0.1295  0.0634  0.1988 02746  0.0301 00303 00432 01675 57733 1.2052

DeltaBoost 02012  0.1814 02519 OOM 0081 00830 0.1761 03135 87275 1.3590

1% MU in GBDT 0.1311 00639  0.1988 02745 00334 00312 0.0460 0.1766  6.3558 1.2925

Ours 0.1295 00632  0.1987 02747  0.0273  0.0303 0.0424 0.1695  5.7620 12111

Table 9: Error rate after every online learning step.

Online Learning Step GlobalTemperatures ~ WebTraffic

(x1073) (x1073)
Initial Train 10% \ 4.1934 4.0984
Add 10%, Total 20% | 2.5431 3.8383
Add 10%, Total 30% | 2.1156 3.0296
Add 10%, Total 40% | 2.0351 3.1297
Add 10%, Total 50% | 1.9593 2.9149
Add 10%, Total 60% | 1.8940 2.9525
Add 10%, Total 70% | 1.8973 2.8682
Add 10%, Total 80% | 1.8532 2.9024
Add 10%, Total 90% | 1.8200 29141
Add 10%, Total 100% | 1.7850 2.9049
Del 10%, Total 90% | 1.8127 2.8432
Del 10%, Total 80% | 1.9902 3.3453
Del 10%, Total 70% | 2.0115 2.9007
Del 10%, Total 60% | 2.1137 3.1288
Del 10%, Total 50% | 2.0756 3.1187
Del 10%, Total 40% | 2.1654 2.9539
Del 10%, Total 30% | 2.1349 3.0132
Del 10%, Total 20% | 2.4975 3.8429
Del 10%, Total 10% | 3.6064 4.4339

with the removed data and the model’s adjustment to the remaining subsets. As shown in Table [9]
these results confirm the effectiveness of our method in adapting to changing data distributions.
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Table 10: Model functionality change after online learning.

iGBDT (Incr.) Ours (Incr.) DeltaBoost (Decr.) | MUinGBDT (Decr.) Ours (Decr.)
Add 1 Add0.1% | Add1 Add0.1% | Dell Del0.1% | Dell Del0.1% | Dell  Del0.1%

2w | 0.40% 0.93% 0.17% 0.61% 1.17% 1.87% 0.63% 0.51% 0.55% 0.51%
Adult w2C | 0.27% 0.80% 0.18% 0.56% 0.72% 1.28% 0.60% 0.73% 0.56% 0.68%
o1 99.34% 98.27% | 99.66%  98.83% | 98.11%  96.85% | 98.77%  98.76% | 98.88%  98.82%

c2w | 0.21% 0.40% 0.16% 0.30% 0.58% 0.92% 0.10% 0.21% 0.10% 0.18%
Creditlnfo | W2C | 0.18% 0.40% 0.15% 0.29% 0.08% 0.13% 0.08% 0.23% 0.08% 0.19%
o 99.60% 99.20% | 99.70%  99.41% | 99.34%  98.96% | 99.82%  99.56% | 99.82%  99.63%

Dataset ‘ Metric

c2w | 0.25% 0.82% 0.22% 0.74% 3.50% 3.40% 0% 0.78% 0% 0.73%

SUSY w2C | 0.24% 0.78% 0.21% 0.73% 1.34% 1.14% 0% 0.79% 0% 0.76%
o1 99.51% 98.40% | 99.58%  98.53% | 95.16%  95.46% 100% 98.43% 100% 98.51%

Cc2w | 0.00% 2.52% 0% 2.64% 0% 1.92% 0% 1.92%

HIGGS w2C | 0.00% 2.56% 0% 2.63% OOM 0% 1.93% 0% 1.92%
o1 100.00%  94.92% 100% 94.73% 100% 96.14% 100% 96.17%

Cc2w | 0.33% 0.56% 0.17% 0.28% 0.22% 0.56% 0.61% 0.45% 0.45% 0.61%
w2C | 0.56% 0.61% 0.28% 0.50% 0.28% 0.22% 0.22% 0.33% 0.28% 0.39%
W2W | | 0.06% 0.11% 0.06% 0% 0.17% 0.11% 0.06% 0.11% 0.06% 0.06%

o1 99.05% 98.72% | 99.50%  99.22% | 99.33%  99.11% | 99.11%  99.11% | 99.22%  98.94%

C2w | 0.26% 0.83% 0.14% 0.17% 0.17% 0.09% 0.29% 0.26% 0.26% 0.23%
Pendigits w2C | 0.14% 0.43% 0.11% 0.17% 0.26% 0.37% 0.17% 0.20% 0.23% 0.20%

W2W | | 0.06% 0.20% 0.06% 0.03% 0.03% 0.09% 0.06% 0.09% 0.03% 0.09%
[ 99.54% 98.54% | 99.69%  99.63% | 99.54%  99.46% | 99.49%  99.46% | 99.49%  99.49%

2w | 0.74% 1.62% 0.64% 0.68% 0.52% 0.80% 1.24% 1.36% 1.26% 1.40%
w2C | 0.82% 0.88% 0.78% 0.80% 0.58% 0.62% 1.06% 1.42% 1.06% 1.38%
W2wW | | 0.28% 0.44% 0.30% 0.30% 0.20% 0.40% 0.44% 0.24% 0.42% 0.28%

o1 98.16% 97.06% | 98.28%  98.22% | 98.70%  98.18% | 97.26%  96.98% | 97.26%  96.94%

C2W | | 0.98% 237% | 178%  178% | 0.11%  0.61% | 194%  204% | 1.94%  1.96%
Covt w2Cc | | 1.15% 210% | 177%  177% | 0.14%  070% | 180%  1.76% | 1.80%  1.71%

VP | wow | | 0.04% 0.09% | 0.07%  007% | 0.02%  0.03% | 0.06%  0.07% | 006%  0.07%
61 | 97.83%  95.44% | 9638% 96.38% | 99.74% 98.66% | 96.19%  96.13% | 96.20%  96.26%

Optdigits

Letter

K MODEL FUNCTIONAL SIMILARITY

As mentioned in Section [2.2] the goal of the framework is to find a model close to the model re-
trained from scratch. The model functional similarity is a metric to evaluate how close the model
learned by dynamic learning and the one retrained from scratch. We show the model functional
similarity for incremental learning and decremental learning in Table[T0] C2W refers to the ratio of
testing instances that are correctly predicted during retraining but are wrongly predicted after decre-
mental learning. Similarly, W2C represents the testing instances that are wrongly predicted during
retraining but are correctly predicted after decremental learning. The W2W column indicates the
cases where the two models have different wrong predictions. For binary labels, W2W is not appli-
cable. In the |D’| column, 1 indicates that only add/remove one instance, while 0.1% corresponds
to |D’| = 0.1% x |D,,|. We present ¢ to evaluate the model functional similarity (adapted from the
model functionality (Adi et al.,2018)), indicating the leakage of dynamic learning:

Definition 3 (Functional Similarity) Given an input space X, a model T', a model T dynamic learned
from T, and a dataset D = {y;,a;} € X, the functional similarity ¢ between model T and T is:
® =1 — (Tyaw + Twae + Te2w) Where ¢ is the leakage of learning.

Due to the size limitations of the table, we have omitted OnlineGB from this table because its
learning duration is excessively long, making it relatively meaningless compared to other methods.
We compared iGBDT in adding 1 and 0.1% data instances, and DeltaBoost and MUinGBDT in
deleting data. As shown in Table we have a comparable model functionality in adding/deleting
both 1 and 0.1%. In most cases, DyGB reaches 98% similarity in both incremental and decremental
learning.

L BACKDOOR ATTACKING

Experimental Setup. In this evaluation, we randomly select a subset of the training dataset, and
set first a few features to a specific value (trigger, e.g. O or greatest feature value) on these data
instances, and then set the label to a target label (e.g., 0). In the testing dataset, we set all labels to
the target label to compose a backdoor test dataset. In this setting, if the model has correctly learned
the trigger and target label, it should achieve a high accuracy on backdoor test dataset.
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M MEMBERSHIP INFERENCE ATTACK

The membership inference attack (MIA) aims to predict whether a data sample is part of the training
dataset (Shokri et al.| | 2017;Hu et al.| [2022; |Choquette-Choo et al.,[2021). Therefore, the goal of this
experiments is to determine if “deleted” data can still be identified as training data after decremental
learning. However, in our experiment with default hyper-parameter setting, the predictions made by
MIA are nearly random guesses.

Experimental Setup. Previous studies demonstrate that overfitting can make machine learning
models more vulnerable to MIA (Yeom et al.l 2018} ivan Breugel et al.l [2023; Hu et al., 2022)). To
further validate our approach, we apply a smaller model with the number of iterations M = 5,
which can be easily overfitted. For overfitting the model, we split each dataset into three subsets:
base dataset Dy,se (49.9%), dynamic dataset D’ (0.1%), and test dataset Dieg, (50%). We first train a
base model on Dy, + D’. For this base model, the MIA should identify the data in D’ as part of the
training dataset. Next, we perform decremental learning to delete D’ from the base model. After this
process, the MIA should no longer identify the data in D’ as part of the training dataset, confirming
that our approach effectively deletes the data from the model. Finally, we add D’ back to the model
by incremental learning. Following this, the MIA should once again identify the data in D’ as part of
the training dataset. These experiments are conducted on multi-class datasets: Optdigits, Pendigits,
Letter, and Covtype.

MIA Model. By following the existing MIA methods (Yan et al, 2023} [Li et al. 2022} |Carlini
et al., 2022)), we train an MIA model (binary classification) on the prediction probabilities of each
class. Since the GBDT model is overfitted, the probability distributions of the training data should
substantially differ from those of the unseen data (test data). Therefore, the MIA model can predict
whether a data sample is part of the training dataset based on its probability distribution. We sample
50% of Dyase and 50% of Dieg, to train the MIA model. Then remaining 50% of Dy, the entire D’
and 50% of Dy are used for evaluation.

Table 11: Membership Inference Attack.

‘ Base Model After decremetal learning | After incremetal learning
Dataset

/ U /
Diase D Diest ‘ Diase D Diest Diase D Diest

100% 100% 43.59% | 100% 33.93% 42.19% | 100% 100% 43.82%
100% 100% 56.09% | 100% 55.04% 46.15% | 100% 100% 56.63%
100% 100% 26.31% | 100% 13.33% 47.37% | 100% 100% 36.84%
100% 100% 38.89% | 100% 152%  38.89% | 100% 100% 44.31%

Optdigits
Pendigits
Letter
Covtype

Results. Table [TT] presents the average probability of data samples being identified as part of the
training dataset at different stages. For the base model, MIA identifies 100% of the data in Dy, and
D’ as part of the training dataset, while the data in Dy has a low probability of being identified as
part of the training dataset. After decremental learning, the probability for Dy,s remains unchanged,
while the probability for D’ drops to a level almost identical to Dis. This confirms that D’ has been
effectively deleted from the base model. After incremental learning, the probability for D’ increases
to 100% again, indicating that the model has successfully relearned D’. The probability for D in
the incremental model remains almost the same as in the base model. This result confirms that our
decremental/incremental learning approach can indeed delete/add data from/to the model.

N DIFFERENT BASE LEARNER

Since the proposed method is designed for decision trees, we conducted an experiment to compare
it with the boosted linear regression (linear model). For the linear model, we set the maximum
number of iterations to 1,000 and enabled early stopping. As shown in Table[I2] our method consis-
tently demonstrates superior accuracy, achieving lower error rates across all datasets. Although our
method requires more memory and longer training time than the linear model, its incremental and
decremental learning on a single data point is substantially faster than retraining from scratch.
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Table 12: Comparison with linear model as base learner (max_iteration = 1,000, early_stop =
True).

Metrics Method Adult  CreditInfo SUSY HIGGS  Optdigits Pendigits  Letter Covtype
M (Mp) LinearModel 16778 2244 367112 12,14470  162.11  160.03  161.97 1,192.70
emory Ours 577.18 109671 16,576.40 2433330 1,081.15 195949 1,805.76 9,665.21
Error Rate Linear Model ~ 0.1877  0.0657 0.2119 0.358 0.0557  0.1075 03582  0.2876
Ours 0.1276  0.0629 0.1987 02742 00307  0.0294 00418  0.1702
Linear Model ~ 0.163 0.203 7.94 13314 0.091 0.088 0.421 6.174
Time ) Ours (Training) ~ 2.673 1.818 64.935 177.1 0.276 0.368 0.352 9.336
: Add 1 0.035 0.114 1.678 5.488 0.011 0.014 0.016 0.29
Del 1 0.034 0.055 1.303 3.367 0.01 0.015 0.014 0.161

O EXTREMELY HIGH-DIMENSIONAL DATASETS

We include two dataset with more features / high dimensional: RCV1 and News20, which have
47,236 and 1,355,191 features respectively. For News20 dataset, the substantial high dimension
causes segmentation fault on CatBoost and GPU out of memory (OOM) on thunderGBM. We omit
the results from the other incremental/decremental method because infeasible running time and mas-
sive occupied memory. Table [14]shows the comparison of the training time and memory usage for
our methods and other popular methods. Table[I5]illustrates the incremental and decremental learn-
ing time of our method for two high dimensional dataset.

Table 14: Comparison of the training time consumption

Table 13: Dataset specifications. and memory usage for RCV1 and News20.
Dataset # Train # Test #Dim #Class Dataset XGBoost LightGBM  CatBoost ThuFGd;rUG)MB Ours
News20 5,000 14,996 1,355,191 2 Training Ti RCVI 45975 59.63 33570 49.44 29543
RCV1 20,242 677,399 47,236 2 raining Time () - Nowo0  637.02 2842 Seg. Fault 0OM 22573
Memory (5 RCVL 300828 292232 26363 191305  185851.72
emory News20 306199 250929  Seg. Fault 0OM 128,131.43

Table 15: The incremental/decremental learning time of the proposed method for RCV1 and
News20. (ms, per tree, incre./decre.)

Incremental Learning Decremental Learning
Dataset  |D’| | Learning Time Speedup v.s. Learning Time Speedup v.s.
(Ours) XGBoost  LightGBM  CatBoost Thu(nGd;lSBM (Ours) XGBoost  LightGBM  CatBoost Thl.l(ng;rUG)BM
1 21.431 214.5x 27.8x 156.6x 23.1x 19.268 238.6x 30.9x 174.2x 25.7x
RCVI 0.1% 37.707 121.9x 15.8x 89.0x 13.1x 29.232 157.3x 20.4x 114.8x 16.9x
0.5% 39.428 116.6x 15.1x 85.1x 12.5x 48.218 95.3x 12.4x 69.6x 10.3x
1% 43.901 104.7x 13.6x 76.5x 11.3x 70.666 65.1x 8.4x 47.5x 7.0x
1 11.76 541.7x 24.2x - 7.718 825.4x 36.8x
News20 0.1% 17.113 372.2x 16.6x - 12.363 515.3x 23.0x
WS 05% 22.261 286.2x 12.8x - 30.076 211.8x 9.5x
1% 23.469 271.4x 12.1x - 37.825 168.4x 7.5x

P DATA ADDITION WITH MORE CLASSES

DyGB can update data with unseen classes. We divide the dataset into sub-datasets based on labels
(e.g., Optdigits has 10 labels, so we divide it into 10 sub-datasets). We train a model on the first
sub-dataset and test it on two test datasets: 1) the original full test dataset with all labels, and 2)
the partial test dataset with only the learned labels. We fine-tune the model with a new sub-dataset
through incremental learning until learning the full dataset, testing the model on both test datasets
after each training. Figure[5]shows that the accuracy of incremental learning and retraining is nearly
identical on both the full and partial datasets. Note that the decrease in accuracy on the partial dataset
is likely due to the increasing complexity of the learned data, which leads to a decrease in accuracy.

29



Under review as a conference paper at ICLR 2026

Table 16: The approximation error of leave’s score between the model after addition/delection and

the model retrained from scratch. Appr. Error =

Zz\ll trees Zall leaves abs(pudd/dcl 7prctmi")

2 allrees 2l teayes A0S (Pretrain)

, where Padasdel 18 the

leave’s score after adding/deleting, Preirain 1S the leave’s score of the model retraining from scratch.

Adult Creditinfo SUSY HIGGS Optdigits Pendigits Letter  Covtype
Add 1 2.42% 1.18% 0.24%  0.00% 2.69% 2.23% 1.31%  0.17%
Add0.1% 4.59% 6.57% 273% 1.63% 3.48% 4.12% 578%  9.47%
Add0.5% 5.10% 7.44% 227%  3.05% 5.12% 4.50% 10.45% 11.68%
Add 1% 5.30% 7.43% 3.07%  3.89% 5.92% 4.70% 11.75% 10.01%
Add 10%  4.25% 8.33% 1.07% 1.73% 4.64% 4.42% 13.34%  4.96%
Add 50%  3.55% 0.00% 0.00% 1.51% 0.00% 0.00% 6.26%  0.01%
Add 80%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 0.00%  0.00%
Del 1 1.21% 0.00% 0.00%  0.00% 0.01% 0.19% 057%  0.28%
Del0.1%  3.63% 3.80% 0.79%  0.72% 1.40% 0.50% 1.88%  4.31%
Del 0.5%  3.58% 3.76% 0.18%  0.56% 2.52% 1.15% 3.49% 6.04%
Del 1% 3.40% 3.16% 0.15% 0.65% 3.07% 1.73% 374%  4.48%
Del 10%  0.27% 0.39% 0.00%  0.16% 1.67% 0.97% 1.35%  0.46%
Del 50%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 0.00%  0.00%
Del 80%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 0.00%  0.00%

Optdigits

Test Acc (%)

jal
—A— Ad I Test Dat
- + - Retrain: Partial Test Data
|- © - Retrain: Full Test Data

Test Acc (%)

Pendigits

Letter.

e

Test Acc (%)
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Figure 5: The impact of tuning data size on the number of retrained nodes for each iteration in

incremental learning.

Q APPROXIMATION ERROR OF LEAF SCORES

As mentioned in Section[3.2] outdated derivatives are used in gain computation to reduce the cost of
updating derivatives. However, these outdated derivatives are only applied to nodes where the best
split remains unchanged. When a sub-tree requires retraining, the derivatives are updated. Therefore,
using outdated derivatives typically occurs when | D’| is small, as fewer data modifications result in
fewer changes to the best splits. Conversely, when more data is added or deleted, |D’| becomes
larger, increasing the likelihood of changes to the best splits in some nodes. As a result, the sub-
trees are retrained, and the derivatives for the data reaching those nodes are updated.

100

Test Acc (%)
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Figure 7: (Incremental Learning) Performance (AUC, Log Loss, and MSE) of the recommender
system on different dataset ratios. We first sort the entire dataset by timestamp, from oldest to most
recent. Then, we partition the oldest 80% as the training dataset and the most recent 20% as the
testing dataset. To evaluate our proposed method, we initially train a model on the oldest 4% of
the training data, then gradually learn every additional 4% via incremental learning until the full
training dataset (100%) is used. These results illustrate that more recent data can positively impact
the performance of the recommender system.

To confirm the effect of using outdated derivatives during dynamic learning, we report the result
Zall trees Zall leaves abs(pﬂdd/dﬂl _Prelmin)

for the approximation error of leaf scores in Table Appr. Error = > Fosa Pramn)
all trees all leaves retrain

where p,qq/del 15 the leaf score after adding/deleting, and preirain 1S the leaf score of the model retrain-
ing from scratch. Please note that the retrained model has the same structure and split in all nodes
of all trees as the model after adding/deleting, and we only update the latest residual and hessian
to calculate the latest leaf score. When the number of added/deleted data increases, the error will
increase because our method uses outdated derivatives if the best splits remain unchanged. When
the number of add/delete is large enough, almost all nodes in the model will be retrained because
their best splits have changed, so the error becomes 0.

R DYGB ON RECOMMENDER SYSTEMS

In the paper, we mention that a potential use case is recommendation systems. In this experiment,
we show how the proposed method improves the performance of recommendation systems through
incremental and decremental learning on GBDT.

Interest-drift in Recommender Systems. Interest drift refers to the evolution of a user’s pref-
erences over time. In recommendation systems, this means that past interactions may no longer
accurately represent a user’s current interests. As a result, relying on outdated data can degrade the
performance of the system. To address this issue, previous studies have proposed time-weighted
methods that gradually reduce the influence of older interactions (Yoon et al., [2008; Campos et al.,
2014). However, instead of reducing their impact, completely removing outdated data can lead to
better recommendation performance (Matuszyk et al.,[2018}; 2015} Tavakolian et al., [2012} |Gordea
& Zanker, 2007). Since the proposed GBDT supports both decremental learning and incremental
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Figure 8: (Decremental Learning) Performance (AUC, Log Loss, and MSE) of the recommender
system on different dataset ratios. We first sort the entire dataset by timestamp, from oldest to
most recent. Then, we partition the oldest 80% as the training dataset and the remaining latest
20% as the testing dataset. To evaluate our proposed method, we initially train a model on the full
training dataset (100%), then gradually remove 4% of the oldest data from the model via decremental
learning until only 4% of the data remains. These results illustrate that outdated (oldest) data can
negatively impact the performance of the recommender system.

learning, it naturally works on such recommender system, which can incrementally learn latest user
behaviors and remove outdated behaviors without training from scratch.

Datasets. We use two large-scale datasets that include timestamps spanning long time periods: (1)
MovieLens-10M: contains about 10 million ratings from 72,000 users on 10,000 movies from 1995
to 2009. (2) MovieLens-20M: contains about 20 million ratings from 138,000 users on 27,000
movies from 1995 to 2015. For each dataset, we sort the entire dataset by timestamps, from oldest
to most recent. Then, we partition the oldest 80% as the training dataset and the remaining latest
20% as the testing dataset.

Experimental Settings. This experiment aims to answer the question: Can the proposed method
improve the performance of recommendation systems through incremental and decremental learning
on GBDT? To this end, we design two experiments to demonstrate the effectiveness of our approach
through two key capabilities: (1) incrementally learning from the latest user behaviors, and (2)
removing outdated behaviors without retraining the model from scratch.

Incremental Learning. This experiments is to confirm that incrementally learn the latest user
behaviors improves the performance of the recommendation system. Our goal is to predict the
Click-Through Rate (CTR) using LightGBM, XGBoost and our proposed GBDT. Recall the dataset
processing, we partition the oldest 80% as the training dataset and the remaining latest 20% as the
testing dataset. We further divide the training data into 25 segments, each accounting for 4% of
the data. Our approach begins by training the model on the first (oldest) 4% of the data and in-
crementally incorporates each subsequent 4% partition in order. After each incremental update, we
evaluate the model on the testing set using AUC, Log Loss, and MSE, as illustrated in Figure [7}
For LightGBM and XGBoost, which do not support incremental learning natively, we retrain the
models from scratch using the accumulated data up to the current partition at each step. Across

32



Under review as a conference paper at ICLR 2026

w
w

Pendigits (Incr.) |—©—Sampling Rate: 5% Pendigits (Decr.) [~©—Sampling Rate: 5%

25 —A—Sampling Rate: 10% 25 —A— Sampling Rate: 10%
& —+— Sampling Rate: 50% = —— Sampling Rate: 50%
g, —p— Sampling Rate: 100% g, |—P— Sampling Rate: 100%
3 3
o o
] 3
g TG S S S S A g1s
g 1 g o
E =t + S + )
o o
Z05 Z05

0 0

20 40 60 80 100 20 40 60 80 100
Iteration Iteration

—6—Sampling Rate: 5%
1200 | |-A—Sampling Rate: 10% 1200
—— Sampling Rate: 50%
» 1000 ||—>—Sampling Rate: 100% » 1000

—o—Sampling Rate: 5%
—A—Sampling Rate: 10%
—+—Sampling Rate: 50%
—>—Sampling Rate: 100%

800 | Pendigits (incr.) 8 o0 | Pendigits (Decr.)

20 40 60 80 100 20 40 60 80 100
Iteration Iteration

90

Test Acc (%)
Test Acc (%)
8

Z=
Decr.)

¥ Lo £:
5% 10% 50% 100% 10% 50% 100%
Sampling Rate Sampling Rate

Figure 9: The impact of sampling rate on time, number of retrain nodes, and test accuracy during
incremental/decremental learning.

both MovieLens-10M and MovieLens-20M datasets, all models improve as more recent data is in-
crementally learned. This demonstrates that learning from the latest user behaviors can improve
recommendation effectiveness.

Decremental Learning. This experiment investigates whether removing outdated user behaviors
can improve the performance of the recommendation system. Similar to the previous setup, we
aim to predict the Click-Through Rate (CTR) using LightGBM, XGBoost, and our proposed GBDT
model. We partition the dataset chronologically, using the oldest 80% as the training set and the latest
20% as the testing set. We start by training each model on the full training dataset (100%) and then
gradually remove the oldest 4% of the data at each step. After each removal, we evaluate the model’s
performance on the fixed testing set using AUC, Log Loss, and MSE, as shown in Figure 8] For
LightGBM and XGBoost, which lack native support for decremental updates, we retrain the models
from scratch using the remaining data at each step. Across both MovieLens-10M and MovieLens-
20M datasets, we observe a clear trend: model performance initially improves as stale (outdated)
data is removed, but begins to degrade once too much data is discarded. This indicates that while
removing outdated user behavior can help reduce noise and improve generalization, excessive data
removal eventually harms performance due to loss of useful historical patterns.

Conclusion. The experimental results demonstrate that our proposed method can effectively im-
prove recommender system performance by incrementally learning recent user behaviors and re-
moving outdated data without the need to retrain from scratch. This highlights the model’s adapt-
ability and efficiency in capturing evolving user preferences over time.

R.1 VARIANCE ANALYSIS AND STATISTICAL CONSISTENCY

To validate the reliability and consistency of our speedup claims, we conducted a variance analysis.
The 5 independent runs were performed with different random seeds to measure the stability of
the algorithm’s complexity profile across diverse execution paths (e.g., initial splits and sampling
choices). As shown in Table[T7] the empirical results confirm the high statistical consistency of the
DyGB algorithm. The standard deviation is consistently low (typically less than 3% of the mean
runtime), demonstrating that the massive speedup margins reported are reliable across stochastic
execution paths.
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Table 17: The table reports the mean execution time (seconds) and standard deviation (£0) over
5 independent runs for incremental and decremental learning on Adult and HIGGS datasets with
varying update sizes (| D’|).

Dataset || D’|| Incremental Learning (s) Decremental Learning (s)

1 0.035 £ 0.001 0.034 & 0.001
Adult 0.1% 0.105 £ 0.003 0.104 £ 0.003
0.5% 0.215 £ 0.003 0.219 £ 0.008
1% 0.340 £+ 0.013 0.381 £+ 0.014
1 5.495 £ 0.235 3.223 £ 0.034
HIGGS 0.1% 26.651 £+ 0.779 19.402 £ 0.272
0.5% 43.383 + 1.621 49.419 + 1.451
1% 66.961 + 1.463 79.418 £+ 1.407
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S ABLATION STUDY

In this section, we discuss the impact of different hyper-parameter settings on the performance of
DyGB, e.g., time and accuracy.

S.1 SIZE OF DYNAMIC DATASET |D’|.

Different sizes of dynamic learning dataset D’ can have varying impacts on both the accuracy and
time of the dynamic learning process. Figure [6] shows the impact of different data addition settings
on test accuracy. Across all datasets, DyGB achieved nearly the same test accuracy, which validates
the effectiveness of our dynamic learning framework. Decremental learning also has similar results.

Figure [10] shows the influence of | D;,| on incremental/decremental learning time. We only present
the experiment on 2 datasets each for incremental/decremental learning, due to the results on other
datasets show a similar trend. These results show that the dynamic learning time increase when the
size of D, increase. The reason is straightforward: as the size of D;, increases, the model undergoes
more significant changes, resulting in unstable splits. This leads to a greater number of sub-trees
that require retraining, ultimately consuming more time. Figure[T|provides evidence to support this
observation. It illustrates the accumulated number of retrained nodes — how many nodes need to
be retrained. As the size of D;, increases, the number of nodes that need to be retrained increases,
leading to longer learning times.
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Figure 12: The impact of split robustness tolerance on the learning time, test accuracy, and model
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Figure 13: The impact of the # bins and # leaves on the acceleration factor of incremental learning
(adding 1 data point).

S.2  SPLIT RANDOM SAMPLING

Split random sampling is designed to reduce the frequency of retraining by limiting the number of
splits. As mentioned in Section[3.3] a smaller sampling rate leads to more stable splits, resulting in
fewer nodes that require retraining and shorter dynamic learning time. Figure [J] shows the impact
of sampling rate « in split random sampling. The figures at the top demonstrate that when the
sample rate is reduced, a smaller number of split candidates are taken into account, leading to an
expected decrease in dynamic learning time. However, there is no significant difference between
5% and 10% in the Pendigits dataset. The figures in the second row show the accumulated number
of retrained nodes. It also shows that as the sample rate decreases, the splits become more stable,
resulting in fewer nodes that require retraining. In Pendigits, since the number of nodes that require
retraining is similar for 5% and 10%, it results in a minimal difference in the dynamic learning time,
as mentioned above. However, interestingly, for example in 100% sampling rate, although there
are fewer retraining in incremental learning, it take more time during learning process, because
incremental learning does not have derivatives of the data to be added. Therefore, more time is
needed to calculate their derivatives. On the contrary, decremental learning can reuse the stored
derivatives of the training process, resulting in less time. The bottom row shows the impact of the
sampling rate on the test accuracy. The test accuracy remains almost identical across all sampling
rates. Similar results can be observed in other datasets.

S.3 SPLIT ROBUSTNESS TOLERANCE

Split robustness tolerance aims to enhance the robustness of a split in dynamic learning. As the
observation in Figure [2] most best splits will be changed to second-best. Although the best split
may change, we can avoid frequent retraining if we allow the split to vary within a certain range.
For a node with [aB] potential splits, if the current split remains within the top [caB], we will
continue using it. Here ¢ (0 < o < 1) is the robustness tolerance. Figure [12] illustrates the
impact of split robustness tolerance o on learning time, test accuracy, and functional similarity ¢ in
incremental learning. To obtain more pronounced experimental results, in this experiment, we set
|D'| = 1% X | Dy.

The figure on the left shows that the learning time decreases as the tolerance level increases. Al-
though test accuracy changes only slightly (middle figure), the functional similarity ¢ drops signif-
icantly (right figure). For example, in the Letter dataset, ¢ drops about 5% from ¢ = 0 to o = 0.5.
This demonstrates that higher tolerance levels result in faster learning by avoiding retraining, but
with a trade-off of decreased functional similarity. Therefore, we suggest o should not be greater
than 0.15. Similar results can be obtained on decremental learning.
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Table 18: The test error rate after training, adding and deleting on GDBT with various iterations.

Method Adult CreditInfo Opdigits Pendigits Letter
o 100 iter 200 iter 500 iter 1000 iter | 100 iter 200 iter 500 iter 1000 iter | 100 iter 200 iter 500 iter 1000 iter | 100 iter 200 iter 500 iter 1000 iter | 100 iter 200 iter 500 iter 1000 iter
XGBoost | 0.1270  0.1319 0.1379  0.1430 | 0.0630 0.0648 0.0663 0.0676 | 0.0418 0.0390 0.0412 0.0395 | 0.0397 0.0355 0.0352 0.0346 | 0.0524 0.0364 0.0356 0.0358
Trainin, LightGBM | 0.1277 0.1293 0.1260 0.1318 | 0.0635 0.0636 0.0644 0.0654 | 0.0334 0.0317 0.0334 0.0329 | 0.0355 0.0343 0.0340 0.0340 | 0.0374 0.0310 0.0296 0.0298
o CatBoost | 0.2928 0.2887 0.2854 0.2843 | 0.1772 0.1765 0.1765 0.1765 | 0.0618 0.0396 0.0293 0.0248 | 0.0440 0.0365 0.0281 0.0257 |0.0655 0.0406 0.0252 0.0186
Ours 0.1276 0.1265 0.1294 0.1325 | 0.0629 0.0632 0.0639 0.0648 | 0.0307 0.0251 0.0239 0.0239 | 0.0294 0.0280 0.0277 0.0277 | 0.0418 0.0318 0.0256 0.0246
Add 1 0.1275 0.1271 0.1287 0.1323 | 0.063 0.0635 0.0638 0.0644 | 0.0295 0.0262 0.0239 0.0239 | 0.0297 0.0275 0.0275 0.0275 | 0.0404 0.0330 0.0266 0.0260
Ours Add 0.1% | 0.1269 0.1287 0.1313  0.1325 | 0.0626 0.0633 0.0631 0.0638 | 0.0295 0.0256 0.0256 0.0256 | 0.0297 0.0275 0.0277 0.0277 | 0.0406 0.0322 0.0250 0.0240
(Incr. Learning) Add 0.5% | 0.1294 0.1276 0.1298 0.1316 | 0.0632 0.0629 0.0633 0.0648 | 0.029 0.0262 0.0256 0.0256 | 0.0295 0.0266 0.0283 0.0283 | 0.0394 0.0326 0.0270 0.0256
Add 1% | 0.1267 0.1279 0.1287 0.1337 | 0.0632 0.0630 0.0639 0.0646 | 0.0262 0.0228 0.0228 0.0228 | 0.0283 0.0272 0.0275 0.0277 | 0.044 0.0310 0.0246 0.0242
Del 1 0.1276  0.1266 0.1294  0.1324 | 0.0628 0.0632 0.0640 0.0647 | 0.0306 0.0251 0.0239 0.0239 | 0.0295 0.0283 0.0280 0.0280 | 0.0416 0.0318 0.0260 0.0242
Ours Del 0.1% | 0.1284 0.1273 0.1288 0.1321 | 0.0633 0.0634 0.0640 0.0648 | 0.0295 0.0256 0.0245 0.0245 | 0.0283 0.0280 0.0280 0.0280 | 0.0432 0.0336 0.0272 0.0246
(Decr. Learning) Del 0.5% | 0.1295 0.1266 0.1280 0.1327 | 0.0634 0.0631 0.0644 0.0646 | 0.0301 0.0245 0.0239 0.0239 | 0.0303 0.0289 0.0283 0.0283 | 0.0432 0.0320 0.0258 0.0244
Del 1% | 0.1295 0.1281 0.1290 0.1313 | 0.0632 0.0633 0.0638 0.0654 | 0.0273 0.0239 0.0234 0.0234 | 0.0303 0.0292 0.0280 0.0280 | 0.0424 0.0328 0.0270 0.0252
Table 19: The Total training, incremental or decremental learning time (in seconds).
Method Adult CreditInfo Optdigits Pendigits Letter
100 iter 200 iter 500 iter 1000 iter | 100 iter 200 iter 500 iter 1000 iter | 100 iter 200 iter 500 iter 1000 iter | 100 iter 200 iter 500 iter 1000 iter | 100 iter 200 iter 500 iter 1000 iter
XGBoost | 9.467 19.128 43.064 103.767 | 13.314 34.619 77.706 78.845 | 0.752 1385 2.598 5.271 0574 1.743 3225 5976 1171 3.647 8.097 14.597
L LightGBM| 0.516  0.926 1.859  3.775 1.836  2.081 4.737 8504 | 0.106 0.164 0.248 0462 | 0.131 0.196 0.351 0.516 | 0.203 0.376  0.758 1.342
Training CatBoost | 1.532  2.646 5.805 10.974 | 3447 5467 12002 13.339 | 0.177 0458 1.160 2360 | 0.183 0.399 1.104 1.986 | 0232 0.524 1475 3.196
Ours 2.673 3289 7466 14509 | 1.818 3.005 5391 14.122 | 0276 0573 1444 2874 | 0368 0592 1978 3990 | 0352 0357 1.284 1.798
Add 1 0.035 0071 0.167 0328 | 0.114 0.125 0244 0616 | 0.011 0.031 0.118 0285 | 0.014 0.045 0.142 0227 | 0.016 0.018 0.206  0.464
Ours Add0.1% | 0.105  0.167 0402 0859 | 0249 0307 0.661 2402 | 0015 0.031 0.106 0311 | 0026 0.059 0.187 0347 | 0.040 0.070 0483  0.807
(Incr. Learning) Add 0.5% | 0.212  0.383 0.937 2463 | 0321 0593 1.502  4.670 | 0.029 0.039 0.137 0335 | 0.042 0.062 0.194 0411 0.067 0.127 0.537  0.979
Add 1% | 0344 0.670 1.747 3904 | 0383 0.789 2255 6369 | 0.043 0.042 0.146 0344 | 0.053 0.067 0202 0435 0.128 0.176  0.657 1.207
Del 1 0.034 0.128 0177 0179 | 0.055 0265 0359 0342 | 0.010 0.007 0037 0092 | 0.015 0012 0067 0.165 | 0.014 0.007 0007 0.011
Ours Del 0.1% | 0.103 0305  0.541 0.549 | 0.153 0595 0729  0.665 | 0.014 0011 0.045 0.115 | 0.025 0.020 0.089 0.185 | 0.058 0.017 0.021 0.021
(Decr. Learning) Del 0.5% | 0.222  0.753  1.481 1467 | 0251 0941 1217 1.220 | 0.029 0.024 0.065 0.123 | 0.041 0.038 0.106 0.198 | 0.103 0.035 0.041 0.038
Del 1% | 0379 1297 2033 2464 | 0355 1375 2556 2694 | 0046 0.035 0075 0.132 | 0057 0050 0.119 0209 | 0.134 0.051 0.060 0.056

To further illustrate this tradeoff, the fourth subfigure presents the detailed time—accuracy relation-
ship on the Letter dataset under six representative tolerance values (o = {0,0.1,0.2,0.3,0.4,0.5}).
As the tolerance increases, the learning time decreases consistently due to reduced retraining, ac-
companied by a gradual decline in test accuracy. This dataset-level visualization highlights how
tolerance directly shifts the balance between efficiency and accuracy.

Although the fourth subfigure shows the results for the Letter dataset, the other datasets exhibit the
same qualitative pattern: larger tolerance values consistently reduce learning time while slightly
compromising model accuracy. This confirms that the observed tradeoff is a general behavior across
datasets, not an artifact of a particular domain.

Table 20: Accuracy for clean test dataset and attack successful rate for backdoor test dataset.

#Tteration  Dataset Train Clean Train Backdoor Add Backdoor Remove Backdoor
Clean  Backdoor | Clean  Backdoor | Clean  Backdoor Clean Backdoor

Optdigits | 97.49% 8.85% 97.55% 100.00% | 97.27% 100.00% | 97.49% 8.80%

200 Pendigits | 97.28% 5.06% 97.25%  100.00% | 97.25% 100.00% | 100.00%  11.67%

Letter 96.82% 2.90% 96.64%  100.00% | 96.56%  100.00% | 96.74% 2.56%

Optdigits | 97.61% 8.63% 97.49%  100.00% | 97.72%  100.00% | 97.66% 8.57%

500 Pendigits | 97.23% 5.06% 97.14% 100.00% | 97.28%  100.00% | 97.25% 5.63%

Letter 97.44% 5.18% 97.36% 100.00% | 97.14% 100.00% | 97.14% 3.56%

Optdigits | 97.61% 8.63% 97.77%  100.00% | 97.72%  100.00% | 97.83% 10.30%

1000 Pendigits | 97.23% 5.00% 97.11% 100.00% | 97.28%  100.00% | 97.25% 4.46%

Letter 97.66% 5.18% 97.38% 100.00% | 97.52%  100.00% | 97.42% 11.18%

S.4 NUMBER OF BINS AND LEAVES

In dynamic learning procedure, the number of bins and leaves also affects the dynamic learn-
ing time. We report the impact of varying the number of bins (128,256, --- , 4096) and leaves
(4,10, 20,40, 60, - - - ,200) on the acceleration factor of incremental learning (adding 1 data point)
in Figure[I3] The number of bins has few effect on both accuracy and the speed of dynamic learning
as shown in the top row of the figures. In terms of the number of leaves, when it exceeds 20, the ac-
curacy tends to stabilize, except for Covtype, as shown in the bottom row of the figures. For smaller
datasets (Adult, Optdigits, Pendigits, Letter), the more the number of leaves, the lower the accel-
eration factor for incremental learning. However, for larger datasets (CreditInfo, SUSY, HIGGS,
Covtype), the more the number of leaves, the greater the acceleration is. Especially for HIGGS, the
largest dataset in our experiments, the acceleration can be more than 100x.
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S.5 NUMBER OF ITERATIONS

The number of base learners is important in practical applications. We provide additional results
for different numbers of base learners in Tables [I8 and [I9] Table [I8]reports the test error rate
after training, adding, and deleting base learners in GBDT models with varying iterations, demon-
strating that DyGB achieves a comparable error rate across different iterations. Table [I9] shows
the time consumption for incremental and decremental learning, illustrating that DyGB are substan-

tially faster than retraining a model from scratch, particularly in cases where a single data sample is
added/deleted.

Additionally, to confirm that our method can effectively add and delete data samples across various
iterations, we report results on backdoor attacks for different iterations, as shown in Table @ These
results confirm that our method successfully adds and removes data samples from the model across
different numbers of iterations.

S.6 ABLATION STUDY SUMMARY

The efficiency and accuracy of DyGB result from the synergistic relationship among our key opti-
mizations. This ablation study clarifies the contribution of each component and establishes practical
parameter guidelines.

Primary Efficiency Lever (0): The Adaptive Split Robustness Tolerance (o) is the critical mech-
anism for balancing speed and accuracy, as it directly controls the frequency of costly subtree re-
training. Our analysis shows that this mechanism achieves massive time reduction, provided the
functional similarity (¢) remains within acceptable bounds.

Guideline for o: For optimal trade-off, we recommend setting o ~ 0.1. Higher tolerance levels
(e.g., o0 > 0.15) result in faster learning but with a significant risk of decreased functional similarity.

Foundational Speedup («): The Split Candidate Sampling («) provides the foundational speedup
by drastically limiting the search space during both initial training and subsequent dynamic checks.
Empirically, reducing « to 0.1 is sufficient to achieve near-optimal time reductions without com-
promising test accuracy.

Structural Scalability (/): The Number of Leaves (.J) is crucial for handling high-volume data.
While accuracy stabilizes around J = 20, optimizing the number of leaves is essential for maxi-
mizing the acceleration factor on large datasets (CreditInfo, SUSY, HIGGS), where speedups can
exceed 100x.

The comprehensive analysis of DyGB’s hyperparameters confirms that the framework successfully
achieves a robust balance between time-efficiency and structural stability. The core mechanism lies
in the synergy between the Adaptive Split Robustness Tolerance (o), which serves as the primary
lever for minimizing costly retraining events, and the Split Candidate Sampling («), which reduces
the baseline computational cost of each check. This combination validates DyGB’s ability to per-
form continuous dynamic updates efficiently and reliably, ensuring that the necessary speedups are
achieved without compromising the functional integrity of the trained model.

T IMPACT OF SUB-OPTIMAL SPLITS: STOCHASTIC SPLITTING EXPERIMENT

Motivation. A potential concern regarding the proposed Adaptive Split Robustness Tolerance (o) is
that allowing sub-optimal splits might lead to imbalanced tree structures or an inability to properly
distinguish samples in large bins, thereby compromising model accuracy. To empirically verify
the safety of our tolerance mechanism and refute the necessity of “perfect” greedy splitting, we
conducted a Stochastic Splitting experiment.

Methodology. We trained the DyGB model from scratch with a modified splitting criterion: instead
of deterministically selecting the split with the maximum gain (Rank 1), the algorithm forces each
node to randomly select a split from the top X' = [0 B] candidates. This deliberately introduces
structural sub-optimality. We evaluated the resulting test error rates across varying tolerance levels
(o € {0,0.05,0.10,0.20}).
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Table 21: Stochastic Splitting Experiment. Baselines. “Avg Selected Idx” denotes the average rank
of the chosen split (0 is optimal).

Absolute Tolerance

Dataset Method (Top K Splits) Avg Selected Idx  Test Error Rate
XGBoost - - 0.1375
LightGBM - - 0.1287
ThunderGBM - - 0.2405
Adult Ours, o = 0 (Greedy) 1 0 0.1276
Ours, 0 = 5% 10 4.74 0.1284
Ours, 0 = 10% 20 9.56 0.1321
Ours, o0 = 20% 40 20.61 0.1375
XGBoost - - 0.0659
LightGBM - - 0.0631
ThunderGBM - - 0.0660
CreditInfo  Ours, o = 0 (Greedy) 1 0 0.0629
QOurs, o0 = 5% 11 5.25 0.0627
Ours, 0 = 10% 23 10.58 0.0636
Ours, 0 = 20% 46 23.23 0.0644
XGBoost - - 0.1976
LightGBM - - 0.1985
ThunderGBM - - 0.4576
SUSY Ours, o = 0 (Greedy) 1 0 0.1987
Ours, 0 = 5% 64 31.87 0.2007
Ours, 0 = 10% 129 65.07 0.2022
Ours, 0 = 20% 258 127.91 0.2067
XGBoost - - 0.2676
LightGBM - - 0.2726
ThunderGBM - - 0.4698
HIGGS Ours, o = 0 (Greedy) 1 0 0.2742
Ours, 0 = 5% 92 46.71 0.2736
Ours, o0 = 10% 185 95.58 0.2937
Ours, 0 = 20% 371 189.31 0.3082
XGBoost - - 0.0395
LightGBM - - 0.0334
ThunderGBM - - 0.0546
Optdigits ~ Ours, o = 0 (Greedy) 1 0 0.0307
Ours, 0 = 5% 2 0.53 0.0290
Ours, 0 = 10% 5 2.08 0.0284
Ours, 0 = 20% 11 4.38 0.0278
XGBoost - - 0.0355
LightGBM - - 0.0355
ThunderGBM - - 0.0515
Pendigits  Ours, 0 = 0 (Greedy) 1 0 0.0294
Ours, 0 = 5% 7 3.23 0.0260
Ours, 0 = 10% 15 7.25 0.0246
Ours, 0 = 20% 31 14.66 0.0240
XGBoost - - 0.0384
LightGBM - - 0.0374
ThunderGBM - - 0.0940
Letter Ours, o = 0 (Greedy) 1 0 0.0418
Ours, 0 = 5% 1 0 0.0418
Ours, 0 = 10% 1 0 0.0418
Ours, o = 20% 3 1.17 0.0526
XGBoost - - 0.1717
LightGBM - - 0.1700
ThunderGBM - - 0.2135
Covtype Ours, 0 = 0 (Greedy) 1 0 0.1702
Ours, 0 = 5% 27 13.31 0.1890
Ours, 0 = 10% 55 25.76 0.2030
Ours, 0 = 20% 110 56.46 0.2184

Experimental Control. To ensure a strictly fair comparison regarding feature granularity, all base-
line methods (XGBoost, LightGBM, and ThunderGBM) were explicitly configured with B = 128
bins. This eliminates discretization resolution as a confounding variable, ensuring that any differ-
ence in performance is attributed to the split selection strategy.
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Results and Analysis. The results are presented in Table The column Absolute Tolerance
indicates the size of the candidate pool (K), and Avg Selected Idx reports the average rank of the
actual split selected across all nodes (where O is the best). For example, an average index of 4.74
implies that, on average, the model selected the ~5th best split rather than the optimal one.

Our findings are summarized as follows:

1.

Negligible Impact at Practical Tolerance (o < 10%): The performance degradation is statisti-
cally insignificant at our recommended setting (o ~ 0.1). For instance, on the CreditInfo dataset,
the error rate shifted marginally from 0.0629 (Greedy) to 0.0636 (o = 10%), a difference of only
0.07%. This demonstrates that the perfect” split is not a strict requirement for high accuracy.

Competitiveness with Baselines: Even when deliberately handicapped with o = 10% (selecting
roughly the 10th best split on average), DyGB often retains accuracy superior to or competitive
with standard baselines. On Adult, the o = 10% result (0.1321) outperforms the optimized
XGBoost (0.1375).

. Implicit Regularization: Interestingly, on datasets such as Optdigits and Pendigits, increasing

the tolerance actually reduced the test error (e.g., Optdigits improved from 0.0307 to 0.0290
with o = 5%). We hypothesize that stochastic split selection acts as a form of regularization,
preventing the model from overfitting to specific noise in the training data.

Conclusion. This experiment confirms that GBDT accuracy is highly robust to split selection. The
proposed tolerance mechanism operates well within the model’s safety margin, trading a negligible
amount of theoretical split gain for significant improvements in update efficiency without compro-
mising predictive power.
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