
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DYGB: DYNAMIC GRADIENT BOOSTING DECISION
TREES WITH IN-PLACE UPDATES FOR EFFICIENT DATA
ADDITION AND DELETION

Anonymous authors
Paper under double-blind review

ABSTRACT

Gradient Boosting Decision Tree (GBDT) is one of the most popular machine
learning algorithm in various applications. However, in the traditional settings, all
data should be simultaneously accessed in the training procedure: it does not allow
to add or delete any data instances after training. In this paper, we propose DyGB
(Dynamic GBDT), a novel framework that enables efficient support for both in-
cremental and decremental learning within GBDT. To reduce the learning cost,
we present a collection of optimizations for DyGB, so that it can add or delete a
small fraction of data on the fly. We theoretically show the relationship between
the hyper-parameters of the proposed optimizations, which enables trading off ac-
curacy and cost on incremental and decremental learning. Empirical results on
backdoor and membership inference attacks demonstrate that DyGB can effec-
tively add and remove data from a well-trained model through incremental and
decremental learning. Furthermore, experiments on public datasets validate the
effectiveness and efficiency of the proposed DyGB framework and optimizations.

1 INTRODUCTION

Gradient Boosting Decision Tree (GBDT) has demonstrated outstanding performance across a wide
range of applications (Sudakov et al., 2019; Biau et al., 2019; Rao et al., 2019; Liu & Yu, 2007).
It outperforms deep learning models on many datasets in accuracy and provides interpretability for
the trained models. In particular, GBDT has become the de facto choice for modeling tabular and
categorical data, where it consistently achieves state-of-the-art performance. Its effectiveness has led
to widespread adoption in real-world domains such as financial risk assessment(Ji & Li, 2025; Xie,
2025), recommender systems (Yan et al., 2024; Zhao et al., 2025), and healthcare analytics (Yıldız &
Kalayci, 2025). This broad applicability further highlights the importance of improving its flexibility
in dynamic environments. However, in traditional setting, all data is simultaneously accessed in
training procedure, making its application limited.

Dynamic Learning. Incremental learning refers to the ability of a model to learn continuously from
new data as it becomes available (Tian et al., 2024; He, 2024), while decremental learning is the
ability of a model to unlearn or forget previously learned data (Liu et al., 2025; Wang et al., 2024).
We introduce the concept of dynamic learning, which combines capabilities of both incremental
learning (adding training data) and decremental learning (removing a subset of training data). This
allows the model to dynamically adapt to the latest data while removing outdated data. For example,
recommender system can incrementally learn latest user behaviors and remove outdated behaviors
without training from scratch (Wang et al., 2023; Shi et al., 2024).

Incremental Learning. There are some challenges for incremental learning in GBDT due to its
natural properties (Friedman et al., 2000). Traditional GBDT trains over an entire dataset, and each
node is trained on the data reaching it to achieve the best split for optimal accuracy. Adding unseen
data may affect node splitting results, leading to catastrophic performance changes.

Moreover, training gradient boosting models involves creating trees for each iteration, with tree
fitting based on the residual of previous iterations. More iterations create more trees, increasing
model sizes and hurting inference throughput. This also prohibits tasks like fine-tuning or transfer
learning without substantially increasing model sizes.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Recent studies have explored incremental learning on classic machine learning, such as support vec-
tor machine (SVM), random forest (RF), and gradient boosting (GB). Shilton et al. (2005); Laskov
et al. (2006); Fine & Scheinberg (2001) proposed methods to maintain SVM optimality after adding
a few training vectors. Wang et al. (2009) presented an incremental random forest for online learning
with small streaming data. Beygelzimer et al. (2015a) extended gradient boosting theory for regres-
sion to online learning. Zhang et al. (2019) proposed iGBDT for incremental learning by “lazily”
updating, but it may require retraining many trees when the new data size is large. It is important
to note that prior studies on online gradient boosting (Beygelzimer et al., 2015a; Chen et al., 2012;
Beygelzimer et al., 2015b) and incremental gradient boosting (Zhang et al., 2019; Hu et al., 2017)
do not support decremental learning.

Decremental Learning. Decremental learning is more complex and less studied than incremental
learning (Dilworth, 2025). Cauwenberghs & Poggio (2000) presented a recursive algorithm for
training SVM with efficient decremental learning. Chen et al. (2019) proposed a dynamic learning
algorithm based on variable SVM, leveraging pre-calculated results. Brophy & Lowd (2021) and
Brophy & Lowd (2020) provided dynamic methods for data addition and removal in RF. Schelter
et al. (2021) proposed robust tree node split criteria and alternative splits for low-latency unlearning.
Many works have also studied decremental learning in deep neural networks (DNN). Bourtoule et al.
(2021) introduced a framework that accelerates decremental learning by constraining individual data
points’ impact during training.

While dynamic learning has emerged as a popular topic recently, it has been barely investigated on
GBDT. Wu et al. (2023); Lin et al. (2023) are among the latest studies in decremental learning for
GBDT. Wu et al. (2023) presented DeltaBoost, a GBDT-like model enabling data deletion. Delta-
Boost divides the training dataset into several disjoint sub-datasets, training each iteration’s tree on
a different sub-dataset, reducing the inter-dependency of trees. However, this simplification may
impact model performance. Lin et al. (2023) proposed an unlearning framework in GBDT without
simplification, unlearning specific data using recorded auxiliary information from training. It opti-
mizes to reduce unlearning time, making it faster than retraining from scratch, but introduces many
hyper-parameters and performs poorly on extremely large datasets.

In this paper, we propose DyGB (Dynamic GBDT), an efficient framework for both incremental and
decremental learning in GBDT. To the best of our knowledge, DyGB is the first approach to support
in-place learning for both adding and removing data in GBDT models. Furthermore, DyGB intro-
duces a unified mechanism for incremental and decremental updates for efficient implementation.

Challenges. We identify three major challenges in enabling in-place dynamic learning for GBDT:
(1) Unlike batch training of DNN, more iterations in GBDT create more trees and parameters, lead-
ing to unbounded memory and computation costs in online learning. In-place learning on originally
constructed trees is necessary for practicality. (2) Gradient-based methods in DNN add/subtract gra-
dients for incremental and decremental learning, but GBDT is not differentiable. (3) GBDT trees are
sequentially dependent via residuals, unlike independent iterations in random forests. Changing one
tree requires modifying all subsequent trees, complicating incremental and decremental learning.

Contributions. (1) We introduce DyGB, an efficient in-place dynamic learning framework for gra-
dient boosting models supporting incremental and decremental learning. (2) We present optimiza-
tions to reduce the cost of incremental and decremental learning, making adding or deleting a small
data fraction substantially faster than retraining. (3) We theoretically show the relationship among
optimization hyper-parameters, enabling trade-offs between accuracy and cost. (4) We experimen-
tally evaluate DyGB on public datasets, confirming its effectiveness and efficiency. (5) We release
an open-source implementation of DyGB1.

2 DYNAMIC GBDT FRAMEWORK

2.1 GBDT PRELIMINARY

GBDT is an powerful ensemble technique that combines multiple decision tree to produce an accu-
rate predictive model (Friedman et al., 2000; Friedman, 2001). Given a dataset Dtr = {yi,xi}Ni=1,
where N is the size of training dataset, and xi indicates the ith data vector and yi ∈ {0, 1, ...,K−1}
1https://anonymous.4open.science/r/DyGB

2

https://anonymous.4open.science/r/DyGB

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 Robust LogitBoost Algorithm.

1: Fi,k = 0, pi,k = 1
K

, k = 0 to K − 1, i = 1 to N
2: for m = 0 to M − 1 do
3: for k = 0 to K − 1 do
4: D̂tr = {ri,k − pi,k, xi}Ni=1

5: wi,k = pi,k(1− pi,k)

6: {Rj,k,m}Jj=1 = J-terminal node regression
tree from D̂tr, with weights wi,k, using the
tree split gain formula Eq. equation 5.

7: βj,k,m = K−1
K

∑
xi∈Rj,k,m

ri,k−pi,k∑
xi∈Rj,k,m

(1−pi,k)pi,k

8: fi,k =
∑J

j=1 βj,k,m1xi∈Rj,k,m , Fi,k =
Fi,k + νfi,k

9: end for
10: pi,k = exp(Fi,k)/

∑K
s=1 exp(Fi,s)

11: end for

Algorithm 2 Online Learning in Gradient Boosting

1: D′ = Din if incremental learning else Dde

2: for m = 0 to M − 1 do
3: for k = 0 to K − 1 do
4: D̂′ = {ri,k − pi,k, xi}|D

′|
i=1

5: Compute wi,k = pi,k(1− pi,k) for D̂′ using Fi,k

6: Compute ri,k for D̂′ using Fi,k

7: if incremental learning then

8:
{
R̂j,k,m

}J

j=1
= incr({Rj,k,m}Jj=1, D̂′, wi,k, ri,k)

9: else
10:

{
R̂j,k,m

}J

j=1
= decr({Rj,k,m}Jj=1, D̂′, wi,k, ri,k)

11: end if
12: Update Fi,k with

{
R̂j,k,m

}J

j=1

13: end for
14: end for

denotes the label for the ith data point. For a GBDT model with M iteration, the probability pi,k for
ith data and class k is:

pi,k = Pr (yi = k|xi) =
eFi,k(xi)∑K
s=1 e

Fi,s(xi)
, i = 1, 2, ..., N (1)

where F is a combination of M terms:

F (M)(x) =

M−1∑
m=0

ρmh(x;am) (2)

where h(x;am) is a regression tree, and ρm and am denote the tree parameters that learned by
minimizing the negative log-likelihood:

L =

N∑
i=1

Li, Li = −
K−1∑
k=0

ri,k log pi,k (3)

where ri,k =

{
1, if yi = k

0, otherwise
. The training procedures require calculating the derivatives of loss

function L with respect to Fi,k:

gi,k =
∂Li

∂Fi,k
= − (ri,k − pi,k) , hi,k =

∂2Li

∂F 2
i,k

= pi,k (1− pi,k) . (4)

In GBDT training, to solve numerical instability problem (Friedman et al., 2000; Friedman, 2001;
Friedman et al., 2008), we apply Robust LogitBoost algorithm (Li, 2010) as shown in Algorithm 1,
which has three parameters, the number of terminal nodes J , the shrinkage ν and the number of
boosting iterations M . To find the optimal split for a decision tree node, we first sort the N data by
the feature values being considered for splitting. We then iterate through each potential split index
s, where 1 ≤ s < N , to find the best split that minimizes the weighted squared error (SE) between
the predicted and true labels. Specifically, we aim to find an split s to maximize the gain function:

Gain(s) =

(∑s
i=1 gi,k

)2∑s
i=1 hi,k

+

(∑N
i=s+1 gi,k

)2

∑N
i=s+1 hi,k

−

(∑N
i=1 gi,k

)2

∑N
i=1 hi,k

. (5)

2.2 PROBLEM SETTING

For classic GBDT, all training data must be loaded during training, and adding/deleting instances is
not allowed afterwards. This work proposes DyGB, enabling in-place addition/deletion of specific
data instances to/from a trained model through incremental/decremental learning.

Problem Statement. Given a trained gradient boosting model T (θ) on training dataset Dtr, where
θ indicates the parameters of model T , an incremental learning dataset Din, and/or a decremental
learning dataset Dde (Dde ⊆ Dtr), our goal is to find a tree model T (θ′) that fits dataset Dtr ∪Din \
Dde, where |θ| = |θ′| (the parameter size and the number of trees stay unchanged).

The most obvious way is to retrain the model from scratch on dataset Dtr ∪ Din \ Dde. However,
retraining is time-consuming and resource-intensive. Especially for dynamic learning applications,
rapid retraining is not practical. The key question of this problem is: Can we obtain the model T (θ′)
based on the learned knowledge of the original model T (θ) without retraining the entire model?

The proposed DyGB aims to find a tree model T (θ′) as close to the model retraining from scratch
as possible based on the learned knowledge of the model T (θ). In addition, this dynamic learning

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Split Candidates

Loan < 31, Gain: 26.937

…

(a)

Keep the split

Auto < 57

-0.1252 House < 19 Income < 23

-0.0165 0.1834 0.2033 -0.1728

Age < 42

Update

0.2735

Loan < 31

𝑑 = 𝐷!" = 𝐷#$ = 4

𝑑 = 1

𝑑 = 1 𝑑 = 0

𝑑 = 3

𝐷!" = {20, 21, 22, 23}

Inc.: {0, 3, 7, 10, 15, 22}

{1, 6, 14, 16, 17}

(b) 𝐷#$ = {2, 7,11,13}

Dec.: {0, 3, 7, 10, 15}
Pending Sub-tree

Pending Sub-tree

Split Candidates

Credit < 24, Gain: 17.482

…

Retrain Credit < 24

Income < 35

Auto < 17

0.1193 -0.0274

-0.0284

0.2938

{2, 4, 5, 8, 9, 11, 12, 13, 18, 19}

Best Split has shifted

Incremental Learning Decremental Learning
① Recompute gain value

Income < 5, Gain: 19.345

Split Candidates

…

Retrain Income < 5

Auto < 18 Credit < 9

-0.2831 0.8364Loan < 23 -0.6238

{2, 4, 5, 8, 9, 11, 12, 13, 18, 19, 20, 21, 23}

Best Split has shifted

-0.5639 0.7362

② Replace the original sub-tree(c)

(d) Derivatives:

Update the derivatives of {0, 3, 4, 5, 8, 9, 10, 12, 15, 18, 19}

3 4 8 9 18 1910 155 120

Decremental Learning:

2 3 4 8 9 11 13 1910 155 120 20 21 22 237 18

Incremental Learning:

Update the derivatives of {0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23}

Incremental Learning
Decremental Learning

Figure 1: An example for the incremental learning and decremental learning procedure in DyGB.
(a) For the node of Loan < 31, the current split is still the best after dynamic learning. Thus, the
split does not need to change. (b) An already well-trained tree in Dtr. (c) For the node of Auto <
57, the best split has shifted after dynamic learning. (d) Incremental update for derivatives – only
update the derivatives for those data reaching the changed terminal nodes.

algorithm is in a “warm-start” manner, because it learns a new dataset Din or removes a learned
sub-dataset Dde ⊆ Dtr on a model that is already well-trained on training dataset Dtr.

Let A denotes the initial GBDT learning algorithm , then we have A(Dtr) ∈ H, where H is the
hypothesis space. A dynamic learning algorithm L for incremental learning or decremental learning
can be used to learn dataset Din or remove dataset Dde ⊆ Dtr.

2.3 DYGB: FRAMEWORK OVERVIEW

Algorithm 3 Incr./Decr. Learning on One Tree

1: for non-terminal node in {Rj,k,m}Jj=1 with ascending
depths do

2: D̂′ = {ri,k − pi,k, xi}|D
′|

i=1

3: s = current split of node
4: s′ = compute best gain with Eq. equation 5 with ri,k

and wi,k after adding/removing D̂′

5: if s′ ̸= s then
6: Retrain the subtree rooted at node.
7: end if
8: end for
9: Update prediction value βj,k,m for all terminal nodes

The goal of this work is to propose a dynamic
GBDT framework that supports incremental and
decremental learning for any collection of data.

Dynamic Learning in GBDT. The Algorithm 2
shows the dynamic learning procedure in GBDT.
At first, the GBDT model is a well-trained model
on the training dataset Dtr. Recall that the GBDT
model is frozen and can not be changed after
training—no training data modification. In this pro-
posed framework, the user can do (1) incremental learning: update a new dataset Din to the model,
and (2) decremental learning: remove a learned dataset Dde ⊆ Dtr and its effect on the model.

As shown in Algorithm 2, it is similar to the learning process, but it only needs to compute ri,k
and pi,k(1 − pi,k) for target dataset D′ without touching the training dataset Dtr. Then, it will

call the function of incremental learning or decremental learning to obtain
{
R̂j,k,m

}J

j=1
. Finally, we

update Fi,k with new
{
R̂j,k,m

}J

j=1
. Here we use the same notion to design the function of incremen-

tal learning and decremental learning – decremental learning is the inverse process of incremental
learning for dataset D′. Therefore, we describe them in the Algorithm 3 at the same time.

Incremental & Decremental Learning on One Tree. Algorithm 3 describes the detailed process
for incremental and decremental learning, which are almost the same as decremental learning is the
inverse of incremental learning for dataset D′. The main difference is at Line 3. First, we traverse all
non-terminal nodes layer by layer from root to leaves. For each node, let s denote the current split.
We recompute the new best gain value with ri,k and pi,k(1 − pi,k) after adding D′ for incremental
learning or removing D′ for decremental learning. If the current split s matches the new best split
s′ (after adding/removing D′), we keep the current split (Figure 1(a)). Otherwise, if the current best
split has changed (s ̸= s′, Figure 1(c)), we retrain the sub-tree rooted on this node and replace it with
the new sub-tree. After testing all nodes, node splits remain on the best split. Finally, we recompute
the prediction value on all terminal nodes. Appendix E provides a detailed explanation of Figure 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 OPTIMIZING LEARNING TIME

In this section, we introduce optimizations for the proposed DyGB to reduce computation overhead
and costs. The key step is deciding whether a node should be kept or replaced: Can we design
an algorithm to quickly test whether the node should be retained or retrained without touching the
training data? Our most important optimization is to avoid touching the full training dataset. We ap-
ply incremental update and split candidates sampling concepts from (Lin et al., 2023), extend them
to support dynamic learning, and provide evidence of the relationship between hyper-parameters of
different optimizations, enabling trade-offs between accuracy and cost. Additionally, we design op-
timizations specific to DyGB: 1) adaptive lazy update for residuals and hessians to decrease dynamic
learning time; 2) adaptive split robustness tolerance to reduce the number of retrained nodes.

3.1 UPDATE WITHOUT TOUCHING TRAINING DATA

To reduce computation overhead and dynamic learning time, we target to avoid touching the original
training dataset D, and only focus on the dynamic learning dataset D′. Following the study (Lin
et al., 2023), we extend the optimization of updating statistical information to the scenarios of dy-
namic learning: (1) Maintain Best Split; (2) Recomputing Prediction Value; (3) Incremental Update
for Derivatives, and the computation cost is reduced from O(D ±D′) to O(D′) by these optimiza-
tions. The implementation of these optimizations are included in Appendix G.

3.2 ADAPTIVE LAZY UPDATE FOR DERIVATIVES

Although incremental update can substantially reduce dynamic learning time, we can take it a step
further: if no retraining occurs, the changes to the derivatives will be very small. How can we
effectively utilize the parameters already learned to reduce dynamic learning time?

Gradient Accumulation (Li et al., 2014; Goyal et al., 2017; Ruder, 2016) is widely used in DNN
training. After computing the loss and gradients for each mini-batch, the system accumulates these
gradients over multiple batches instead of updating the model parameters immediately. Inspired
by this techniques, we introduce an adaptive lazy update for the proposed DyGB. Unlike Lin et al.
(2023), which perform updates after a fixed number of batches, we update the derivatives only
when retraining occurs. This approach uses more outdated derivatives for gain computation but
significantly reduces the cost of derivative updates.

3.3 SPLIT CANDIDATES SAMPLING

From the above optimizations, if retraining is not required, we can keep the current best split. In
this case, we only need to iterate over the dynamic learning dataset D′ and update the prediction
values to accomplish dynamic learning, whether it involves adding or removing data. However, if
the sub-tree rooted in this node requires retraining, it is necessary to train the new sub-tree on the
data from the dataset Dtr ±D′ that reaches this node. It is clear that retraining incurs more resource
consumption and takes a longer execution time. In the worst case, if retraining is required in the root
node, it has to retrain the entire new tree on full dataset Dtr ±D′.

To reduce time and resource consumption of dynamic learning, a straightforward approach is to
minimize retraining frequency. Therefore, we introduce split candidate sampling to reduce frequent
retraining by limiting the number of splits, benefiting both training and dynamic learning. All fea-
tures are discretized into integers in 0, 1, · · · , B − 1, as shown in Appendix C. The original training
procedure enumerates all B potential splits, then obtains the best split with the greatest gain value.
In split candidates sampling, we randomly select ⌈αB⌉ splits as candidates and only perform gain
computing on these candidates. As α decreases, the number of split candidates decreases, resulting
in larger distances between split candidates. Consequently, the best split is less likely to change.

Definition 1 (Distance Robust) Let s be the best split, and |D′|
|Dtr| = λ. N∆ is the distance between s

and its nearest split t with same feature, N∆ = ||t− s||. s is distance robust if

N∆ >
λGain(s)

1
Nls

(∑
xi∈ls

gi,k

)2∑
xi∈ls

hi,k
+ 1

Nrs

(∑
xi∈rs

gi,k

)2∑
xi∈rs

hi,k

(6)

where l represents the left child of split s, and it contains the samples belonging to this node, while
r represent the right child, Nls denotes |ls|, and Nrs denotes |rs|. In this definition, E(N∆) = 1/α,
where α denotes the split sampling rate, we can observe that a smaller sampling rate will result in a

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

more robust split, so we can reduce the number of retrain operations by reducing the sampling rate.
Similarly, incremental learning can get the same result.

Definition 2 (Robustness Split) For a best split s and an arbitrary split t, t ̸= s, and dynamic
learning data rate |D′|

|Dtr| = λ, the best split s is robust split if

Gain(s) >
1

1− λ
Gain(t) (7)

Robustness split shows that, as λ = |D′|
|Dtr| decreases, the splits are more robust, decreasing the

frequency of retraining. In conclusion, decreasing either α or λ makes the split more robust, reducing
the change occurrence in the best split, and it can significantly reduce the dynamic learning time.
We provide the proof of Distance Robust and Robustness Split in Appendix F.

3.4 ADAPTIVE SPLIT ROBUSTNESS TOLERANCE

Figure 2: Observation of distance of best split
changes. The lines represents the average changes
of best split distance, and the shaded region is the
standard error.

Recall the retraining condition for a node that
we mentioned previously: we retrain the sub-
tree rooted at a node if the best split changes.
Although the best split may have changed to an-
other one, the gain value might only be slightly
different from the original best split. We show
the observation of the distance of best split
changes (the changes in the ranking of the
best split) in Figure 2. The top row illustrates
the distance of best split changes observed in
the Adult and Covtype datasets for incremen-
tal learning, while the bottom row depicts same
in Letter and SUSY datasets for decremental
learning. Similar patterns are observed across
various other datasets. For adding or deleting a
single data point, the best split does not change
in most cases. As the |D′| increases to 0.1%,
0.5%, and 1%, the best split in most cases switch to the second best. If we only apply the optimal
split, it will lead to frequent retraining during online learning.

The distance of the best split changes is usually small. Tolerating its variation within a certain
range and continuing to use the original split significantly accelerates dynamic learning. We propose
adaptive split robustness tolerance: for a node with ⌈αB⌉ potential splits, if the current split is among
the top ⌈σαB⌉, we continue using it, where σ (0 ≤ σ ≤ 1) is the robustness tolerance. σ = 0
selects only the best split, while σ = 1 avoids retraining. Higher σ indicates greater tolerance,
making the split robust and less likely to retrain. We recommend setting σ to approximately 0.1.

4 EXPERIMENTAL EVALUATION

In this section, we compare 1) our incremental learning with OnlineGB (onl, 2014; Leistner et al.,
2009) and iGBDT (Zhang et al., 2019); 2) decremental learning with DeltaBoost (Wu et al., 2023)
and MUinGBDT (Lin et al., 2023); 3) training cost with popular GBDT libraries XGBoost (Chen
& Guestrin, 2016), LightGBM (Ke et al., 2017), CatBoost (Dorogush et al., 2018) and Thun-
derGBM (Wen et al., 2020). Table 1: Dataset specifications.

Dataset # Train # Test # Dim # Class

Adult 36,139 9,034 87 2
CreditInfo 105,000 45,000 10 2
SUSY 2,500,000 2,500,000 18 2
HIGGS 5,500,000 5,500,000 28 2
Optdigits 3,822 1,796 64 10
Pendigits 7,493 3,497 16 10
Letter 15,000 5,000 16 26
Covtype 290,506 290,506 54 7
Abalone 2,785 1,392 8 Reg.
WineQuality 4,332 2,165 12 Reg.

Implementation Details. Experimental settings are detailed
in Appendix D. We employ one thread for all experiments to
have a fair comparison, and run ThunderGBM on a NVIDIA
A100 40GB GPU, since it does not support only CPU (thu,
2018). Unless explicitly stated otherwise, our default param-
eter settings are: ν = 1, M = 100, J = 20, B = 1024,
|D′| = 0.1%× |Dtr|, α = 0.1, and σ = 0.1.

Datasets. We utilize 10 public datasets in the experiments. The specifications of these datasets are
presented in Table 1. The smallest dataset, Optdigits, consists of 3,822 training instances, while

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Total incremental or decremental learning time (seconds). For the methods supporting
incremental or decremental learning (OnlineGB, iGBDT, etc.), speedup = incr./decr. learning time

our online learning time , other-
wise, speedup = training time

our online learning time .

Incremental Learning Decremental Learning
Total Time (seconds) Speedup v.s. Total Time (seconds) Speedup v.s.Dataset |D′|

OnlineGB iGBDT Ours OnlineGB iGBDT XGBoost LightGBM CatBoost ThunderGBM
(GPU) DeltaBoost MU in GBDT Ours DeltaBoost MU in GBDT XGBoost LightGBM CatBoost ThunderGBM

(GPU)

1 0.265 0.595 0.035 7.6x 17x 270.5x 14.7x 43.8x 16.1x 0.923 0.217 0.034 27.1x 6.4x 278.4x 15.2x 45.1x 16.6x
0.1% 9.02 1.145 0.105 85.9x 10.9x 90.2x 4.9x 14.6x 5.4x 28.022 0.751 0.103 272.1x 7.3x 91.9x 5x 14.9x 5.5x
0.5% 44.65 1.296 0.212 210.6x 6.1x 44.7x 2.4x 7.2x 2.7x 34.461 1.059 0.222 155.2x 4.8x 42.6x 2.3x 6.9x 2.5xAdult

1% 98 1.573 0.344 284.9x 4.6x 27.5x 1.5x 4.5x 1.6x 62.124 1.276 0.379 163.9x 3.4x 25x 1.4x 4x 1.5x

1 29 0.475 0.114 254.4x 4.2x 116.8x 16.1x 30.2x 5.1x 89.097 0.113 0.055 1,619.9x 2.1x 242.1x 33.4x 62.7x 10.6x
0.1% 3,386.25 1.391 0.249 13,599.4x 5.6x 53.5x 7.4x 13.8x 2.3x 78.836 0.426 0.153 515.3x 2.8x 87x 12x 22.5x 3.8x
0.5% 28,875 1.428 0.321 89,953.3x 4.4x 41.5x 5.7x 10.7x 1.8x 80.559 0.824 0.251 321x 3.3x 53x 7.3x 13.7x 2.3xCreditInfo

1% 336,000 1.568 0.383 877,284.6x 4.1x 34.8x 4.8x 9x 1.5x 74.331 1.065 0.355 209.4x 3x 37.5x 5.2x 9.7x 1.6x

1 OOM 12.037 1.678 - 7.2x 974.3x 58.2x 64.9x 3.6x 309.19 1.707 1.303 237.3x 1.3x 1,254.7x 74.9x 83.6x 4.6x
0.1% OOM 53.46 7.972 - 6.7x 205.1x 12.2x 13.7x 0.8x 180.894 23.999 6.263 28.9x 3.8x 261x 15.6x 17.4x 1x
0.5% OOM 55.38 13.39 - 4.1x 122.1x 7.3x 8.1x 0.4x 197.86 53.962 15.438 12.8x 3.5x 105.9x 6.3x 7.1x 0.4xSUSY

1% OOM 57.68 20.093 - 2.9x 81.4x 4.9x 5.4x 0.3x 298.44 77.76 25.98 11.5x 3x 62.9x 3.8x 4.2x 0.2x

1 OOM 45.25 5.488 - 8.2x 406.3x 38.4x 55.3x 2.5x OOM 4.967 3.367 - 1.5x 662.3x 62.7x 90.2x 4.1x
0.1% OOM 132.46 26.558 - 5x 84x 7.9x 11.4x 0.5x OOM 55.265 18.926 - 2.9x 117.8x 11.1x 16x 0.7x
0.5% OOM 165.34 43.17 - 3.8x 51.7x 4.9x 7x 0.3x OOM 152.095 48.683 - 3.1x 45.8x 4.3x 6.2x 0.3xHIGGS

1% OOM 171.16 65.579 - 2.6x 34x 3.2x 4.6x 0.2x OOM 251.224 80.776 - 3.1x 27.6x 2.6x 3.8x 0.2x

1 0.032 0.174 0.011 2.9x 15.8x 68.4x 9.6x 16.1x 26.9x 0.687 0.015 0.01 68.7x 1.5x 75.2x 10.6x 17.7x 29.6x
0.1% 0.091 0.181 0.015 6.1x 12.1x 50.1x 7.1x 11.8x 19.7x 0.645 0.032 0.014 46.1x 2.3x 53.7x 7.6x 12.6x 21.1x
0.5% 0.559 0.191 0.029 19.3x 6.6x 25.9x 3.7x 6.1x 10.2x 0.563 0.067 0.029 19.4x 2.3x 25.9x 3.7x 6.1x 10.2xOptdigits

1% 1.403 0.196 0.043 32.6x 4.6x 17.5x 2.5x 4.1x 6.9x 0.638 0.085 0.046 13.9x 1.8x 16.3x 2.3x 3.8x 6.4x

1 0.014 0.181 0.014 1x 12.9x 41x 9.4x 13.1x 27.6x 0.525 0.013 0.015 35x 0.9x 38.3x 8.7x 12.2x 25.8x
0.1% 0.082 0.224 0.026 3.2x 8.6x 22.1x 5x 7x 14.9x 0.465 0.022 0.025 18.6x 0.9x 23x 5.2x 7.3x 15.5x
0.5% 0.427 0.234 0.042 10.2x 5.6x 13.7x 3.1x 4.4x 9.2x 0.531 0.089 0.041 13x 2.2x 14x 3.2x 4.5x 9.4xPendigits

1% 0.82 0.235 0.053 15.5x 4.4x 10.8x 2.5x 3.5x 7.3x 0.768 0.129 0.057 13.5x 2.3x 10.1x 2.3x 3.2x 6.8x

1 0.033 0.102 0.016 2.1x 6.4x 73.2x 12.7x 14.5x 22.9x 0.863 0.017 0.014 61.6x 1.2x 83.6x 14.5x 16.6x 26.1x
0.1% 0.551 0.167 0.04 13.8x 4.2x 29.3x 5.1x 5.8x 9.2x 0.664 0.032 0.058 11.4x 0.6x 20.2x 3.5x 4x 6.3x
0.5% 2.768 0.187 0.067 41.3x 2.8x 17.5x 3x 3.5x 5.5x 0.676 0.066 0.103 6.6x 0.6x 11.4x 2x 2.3x 3.6xLetter

1% 5.68 0.201 0.128 44.4x 1.6x 9.1x 1.6x 1.8x 2.9x 0.997 0.094 0.134 7.4x 0.7x 8.7x 1.5x 1.7x 2.7x

1 0.09 1.321 0.29 0.3x 4.6x 220.4x 15.8x 21.2x 5.1x 28.519 0.562 0.161 177.1x 3.5x 397x 28.5x 38.1x 9.2x
0.1% 21.408 6.391 0.639 33.5x 10x 100x 7.2x 9.6x 2.3x 19.61 3.44 0.546 35.9x 6.3x 117.1x 8.4x 11.2x 2.7x
0.5% 105.688 7.765 1.095 96.5x 7.1x 58.4x 4.2x 5.6x 1.3x 20.035 5.519 1.187 16.9x 4.6x 53.8x 3.9x 5.2x 1.2xCovtype

1% 214.188 8.088 1.724 124.2x 4.7x 37.1x 2.7x 3.6x 0.9x 21.864 6.917 1.963 11.1x 3.5x 32.6x 2.3x 3.1x 0.8x

1 0.013 0.331 0.027 0.5x 12.3x 6.9x 3.6x 19.7x 15.5x 0.659 0.069 0.026 25.3x 2.7x 7.2x 3.8x 20.5x 16.1x
0.1% 0.026 0.356 0.032 0.8x 11.1x 5.8x 3.1x 16.7x 13.1x 0.586 0.263 0.029 20.2x 9.1x 6.4x 3.4x 18.4x 14.4x
0.5% 0.17 0.338 0.049 3.5x 6.9x 3.8x 2x 10.9x 8.5x 1.015 0.372 0.054 18.8x 6.9x 3.4x 1.8x 9.9x 7.7xAbalone

1% 0.354 0.366 0.055 6.4x 6.7x 3.4x 1.8x 9.7x 7.6x 0.917 0.417 0.049 18.7x 8.5x 3.8x 2x 10.9x 8.5x

1 0.014 0.239 0.017 0.8x 14.1x 12.4x 5.3x 50.5x 21.5x 0.574 0.022 0.016 35.9x 1.4x 13.1x 5.6x 53.6x 22.9x
0.1% 0.057 0.262 0.027 2.1x 9.7x 7.8x 3.3x 31.8x 13.6x 0.329 0.196 0.024 13.7x 8.2x 8.8x 3.8x 35.8x 15.3x
0.5% 0.296 0.282 0.041 7.2x 6.9x 5.1x 2.2x 20.9x 8.9x 2.173 0.298 0.037 58.7x 8.1x 5.7x 2.4x 23.2x 9.9xWineQuality

1% 0.608 0.276 0.051 11.9x 5.4x 4.1x 1.8x 16.8x 7.2x 2.711 0.333 0.051 53.2x 6.5x 4.1x 1.8x 16.8x 7.2x

Table 3: Comparison of total training time (in seconds) and memory usage (total allocated, MB).
Method Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype Abalone WineQuality

Tr
ai

ni
ng

Ti
m

e
(S

ec
on

ds
) iGBDT 1.875 1.787 63.125 180.459 0.263 0.345 0.26 9.158 1.434 1.047

OnlineGB 6,736.18 330,746.80 OOM OOM 130.7 87.361 771.99 19,938.80 39.874 62.034
DeltaBoost 78.213 154.52 4,281.59 OOM 9.517 18.457 21.532 582.36 3.104 4.89

MU in GBDT 1.285 1.648 58.551 175.95 0.261 0.35 0.289 6.454 1.431 1.034
XGBoost 9.467 13.314 1,634.82 2,230.03 0.752 0.574 1.171 63.917 0.186 0.21

LightGBM 0.516 1.836 97.622 211 0.106 0.131 0.203 4.581 0.098 0.09
CatBoost 1.532 3.447 108.95 303.56 0.177 0.183 0.232 6.14 0.533 0.858

ThunderGBM (GPU) 0.564 0.583 5.993 13.708 0.296 0.387 0.366 1.474 0.418 0.366
Ours 2.673 1.818 64.935 177.1 0.276 0.368 0.352 9.336 0.582 0.427

M
em

or
y

U
sa

ge
(M

B
) iGBDT 1,153.13 2,192.13 31,320.40 31,724.40 2,161.20 3,917.61 3,370.38 18,381.10 1,767.23 1,281.08

OnlineGB 35,804.10 58,119.61 OOM OOM 7,493.97 6,488.75 13,067.75 19,699.62 582.97 345.83
DeltaBoost 43,286.70 285,608 409,850.30 OOM 2,336.79 1,173.59 3,741.46 210,409 786.53 549.64

MU in GBDT 570.78 1,095.70 16,576.50 34,380.90 1,080.49 1,959.02 1,805.22 9,637.65 1,711.02 1,194.82
XGBoost 179.13 140.88 2,093.95 7,467.32 131.11 120.93 121.59 770.3 204.74 200.91

LightGBM 150.45 149.19 1,688.57 4,109.54 121.08 135.45 161.97 542.47 215.15 214.95
CatBoost 83.02 129.09 1,503.93 3,090.55 29.41 36.64 99.79 595.27 40.97 27.91

ThunderGBM (GPU) 673.45 418.97 3,725.82 5,855.04 353.95 378.11 360.56 931.89 367.67 348.83
Ours 577.18 1,096.71 16,576.40 24,333.30 1,081.15 1,959.49 1,805.76 9,665.21 762.78 531.88

the largest dataset, HIGGS, contains a total of 11 million instances. The number of dimensions or
features varies between 8 and 87 across the datasets.

4.1 TRAINING TIME AND MEMORY OVERHEAD

Since the proposed DyGB stores statistical information during training, this impacts both the training
time and memory usage. Table 3 presents a report of the total training time and memory overhead.

Training Time. Table 3 shows the total training time across methods. DyGB is much faster than
OnlineGB, DeltaBoost, and XGBoost, and slightly slower than iGBDT. While slower than Light-
GBM on smaller datasets, it outperforms on larger ones like SUSY and HIGGS, with training times
similar to MUinGBDT. Overall, DyGB offers achieves fast training while remaining competitive
with popular GBDT libraries.

Memory Overhead. Memory usage is crucial for practical applications. Most incremental and
decremental learning methods store auxiliary information or learned knowledge during training,
occupying significant memory. As shown in Table 3, our DyGB’s memory usage is significantly
lower than OnlineGB, iGBDT, and DeltaBoost, while OnlineGB and DeltaBoost encountered OOM.

4.2 DYNAMIC LEARNING TIME

Retraining from scratch can be time-consuming, but in some cases, the cost of dynamic learning
outweighs the benefits compared to retraining from scratch, making dynamic learning unnecessary.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Thus, evaluating the cost of dynamic learning is crucial for practical applications. Table 2 shows
the total dynamic learning time (s) and speedup vs. baselines, comparing OnlineGB & iGBDT for
incremental learning, and DeltaBoost & MUinGBDT for decremental learning.

In incremental learning, compared to OnlineGB and iGBDT, which also support incremental learn-
ing, adding a single data instance can be up to 254.4x and 17x faster, respectively. Furthermore,
compared to retraining from scratch on XGBoost, LightGBM, CatBoost, and ThunderGBM (GPU),
it can achieve speedups of up to 974.3x, 58.2x, 64.9x, and 27.6x, respectively. In decremental learn-
ing, deleting a data is 1,619.9× and 6.4× faster than DeltaBoost and MUinGBDT, and 1,254.7×,
74.9×, 90.2×, and 29.6× faster than XGBoost, LightGBM, CatBoost, and ThunderGBM (GPU),
respectively.

5 50 100 50 5

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
s
t
A

c
c
 (

%
)

Adult

Retrain (Ours)

Add & Delete (Ours)

LightGBM

XGBoost

100 50 5 50 100

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
s
t
A

c
c
 (

%
)

Adult

Retrain (Ours)

Delete & Add (Ours)

LightGBM

XGBoost

5 50 100 50 5

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
s
t
A

c
c
 (

%
)

Letter

Retrain (Ours)

Add & Delete (Ours)

LightGBM

XGBoost

100 50 5 50 100

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
s
t
A

c
c
 (

%
)

Letter

Retrain (Ours)

Delete & Add (Ours)

LightGBM

XGBoost

5 50 100 50 5

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
s
t
A

c
c
 (

%
)

Optdigits

Retrain (Ours)

Add & Delete (Ours)

LightGBM

XGBoost

100 50 5 50 100

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
s
t
A

c
c
 (

%
)

Optdigits

Retrain (Ours)

Delete & Add (Ours)

LightGBM

XGBoost

Figure 3: The impact of tuning data size on the
number of retrained nodes for each iteration in in-
cremental learning.

Our method is substantially faster than other
methods both in incremental and decremental
learning, especially on large datasets. For ex-
ample, in HIGGS, the largest dataset in exper-
iments, on removing (adding) 1% data, we are
3.1x faster than MUinGBDT (2.6x faster than
iGBDT), while OnlineGB and DeltaBoost en-
counter OOM.

Interestingly, we observed that when |D′| is
small, decremental learning is faster than incre-
mental learning. However, as |D′| increases, in-
cremental learning becomes faster than decre-
mental learning. For decremental learning, the
data to be removed has already been learned,
and their derivatives have been stored from
training. However, the deleted data often exists
discretely in memory. On the other hand, for
incremental learning, the data to be added are
unseen, and derivatives need to be computed
during the incremental learning process. Nev-
ertheless, we append the added data at the end,
ensuring that the added data are stored contigu-
ously in memory. With a small |D′|, derivatives
can be reused in decremental learning, whereas
derivatives need to be computed in incremental learning. Therefore, decremental learning is faster.
However, as |D′| grows, contiguous memory access in incremental learning becomes faster, making
it more efficient.

4.3 BATCH ADDITION & REMOVAL

In the traditional setting, GBDT models must be trained in one step with access to all training data,
and they cannot be modified after training – data cannot be added or removed. In our proposed
dynamic learning framework, DyGB support both incremental and decremental learning, allowing
continual batch learning (data addition) and batch removal, similar to mini-batch learning in DNNs.

We conducted experiments on continual batch addition and removal by dividing the data into 20
equal parts, each with 5%|Dtr|. Figure 3 (left) shows a GBDT model incrementally trained from 5%
to 100% of the data, then decrementally reduced back to 5%. We retrained models for comparison.
Figure 3 (right) depicts a model decrementally reduced from 100% to 5%, then incrementally trained
back to 100%. We also report the accuracy of XGBoost and LightGBM. The overlapping curves
highlight DyGB’s effectiveness. Due to space limit, results are shown for three datasets.

4.4 VERIFYING BY BACKDOOR ATTACKING

Backdoor attacks in machine learning refers to a type of malicious manipulation of a trained model,
which is designed to modify the model’s behavior or output when it encounters a specific, predefined
trigger input pattern (Salem et al., 2022; Saha et al., 2020). In this evaluation, we demonstrate that
DyGB can successfully inject and remove backdoor in a well-trained, clean GBDT model using

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

incremental learning and decremental learning. The details of backdoor attack experiments are
provided in Appendix L.

Table 4: Accuracy for clean test dataset and attack
successful rate for backdoor test dataset.

Dataset Train Clean Train Backdoor Add Backdoor Remove Backdoor
Clean Backdoor Clean Backdoor Clean Backdoor Clean Backdoor

Optdigits 96.21% 8.91% 96.27% 100% 95.94% 100% 95.82% 9.69%
Pendigits 96.11% 3.97% 96.43% 100% 96.48% 100% 96.51% 5.55%

Letter 93.9% 1.38% 94.08% 100% 93.62% 100% 93.78% 3.48%
Covtype 78.4% 47.83% 78.32% 100% 78.38% 100% 78.38% 51.71%

In this evaluation, we randomly selected a sub-
set of the training dataset and injected triggers
into it to create a backdoor training dataset,
leaving the rest as the clean training dataset.
The test dataset was similarly divided into
backdoor and clean subsets. We report the ac-
curacy for clean test dataset and attack successful rate (ASR) for backdoor test dataset in Table 4.
Initially, we trained a model on the clean training data (“Train Clean”), which achieved high accu-
racy on the clean test dataset but low ASR on the backdoor test dataset. We then incrementally add
the backdoor training data with triggers in to the model (“Add Backdoor”). After incremental learn-
ing, the model attained 100% ASR on the backdoor test dataset, demonstrating effective learning of
the backdoor data. For comparison, training a model on the combined clean and backdoor training
datasets (“Train Backdoor”) yielded similar results to “Add Backdoor”. Finally, we removed the
backdoor data using decremental learning (“Remove Backdoor”), reducing the ASR to the level of
the clean model and confirming the successful removal of backdoor data.

4.5 ADDITIONAL EVALUATIONS

To further validate our method’s effectiveness and efficiency, we have included comprehensive ad-
ditional evaluations in the Appendix due to page limitations:

• Time Complexity Analysis: We analyze the computational complexity of our proposed frame-
work compared to retraining from scratch in Appendix H.
• Test Error Rate: We compare the test error rate between our proposed method and several base-
line approaches, with detailed results provided in Appendix I.
• Real-world Time Series Evaluation: To confirm DyGB’s performance on real-world datasets
with varying data distributions, we report the experiments on two time series datasets in Appendix J.
• Extremely High-dimensional Datasets: To confirm the scalability of DyGB, we report the ex-
periments for two extremely high-dimensional datasets in Appendix O.
• Model Functional Similarity: We evaluate the similarity between the model learned by dynamic
learning and the one retrained from scratch in Appendix K.
• Approximation Error of Leaf Scores: Since DyGB might use the outdated derivatives in the
gain computation, to assess the effect of outdated derivatives, we report the approximation error of
leaf scores in Appendix Q.
• Different Base Learners: We include the experiments on various base learners in Appendix N.
• Recommender System: We report a practical use case of recommender system in Appendix R.
• Data Addition with More Classes: DyGB supports incremental learning for previously unseen
classes. Detailed results and analysis are provided in Appendix P.
• Membership Inference Attack: We also confirm the effectiveness of our method on
adding/deleting data by membership inference attack (MIA) in Appendix M.
• Ablation Study: We report the detailed ablation study results for different hyper-parameter set-
tings and their effects in Appendix S.

5 CONCLUSION

In this paper, we propose DyGB, an in-place dynamic learning framework for GBDT that support
incremental and decremental learning: it enables us to dynamically add a new dataset to the model
and delete a learned dataset from the model. It support continual batch addition/removal, and data
additional with unseen classes. We present a collection of optimizations on DyGB to reduce the
cost of dynamic learning. Adding or deleting a small fraction of data is substantially faster than
retraining from scratch. Our extensive experimental results confirm the effectiveness and efficiency
of DyGB and optimizations – successfully adding or deleting data while maintaining accuracy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research proposes a framework for dynamic gradient boosting decision trees that allows effi-
cient addition and removal of data. The work does not involve human subjects, sensitive personal
data, or proprietary datasets; all experiments are conducted using publicly available benchmark
datasets. We carefully follow applicable data usage policies to ensure compliance with privacy and
licensing requirements.

A potential ethical concern is the possibility that dynamic learning techniques could be misused for
malicious purposes, such as unauthorized data manipulation or backdoor insertion. To address this,
our study explicitly evaluates such scenarios to raise awareness of these risks and to demonstrate
how our framework can also enable secure data removal when necessary. We affirm that this work
is intended for advancing trustworthy and responsible machine learning research, and we disclose
no conflicts of interest or external influences.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure that the findings of this paper are reproducible. All datasets
used are publicly available, and their details are clearly specified. The methods are described at both
the conceptual and algorithmic levels, including hyperparameters and evaluation protocols.

For transparency, we provide an anonymized implementation of the proposed framework, along with
scripts and instructions to reproduce the reported experiments. Together with the detailed descrip-
tions in the main paper and supplementary materials, this ensures that independent researchers can
reliably replicate our results.

REFERENCES

Online boosting. https://github.com/charliermarsh/online_boosting, 2014.
URL https://github.com/charliermarsh/online_boosting.

Global temperatures. https://www.kaggle.com/datasets/berkeleyearth/
climate-change-earth-surface-temperature-data, 2017.
URL https://www.kaggle.com/datasets/berkeleyearth/
climate-change-earth-surface-temperature-data.

Thundergbm faq. https://github.com/Xtra-Computing/thundergbm/blob/
master/docs/faq.md, 2018. URL https://github.com/Xtra-Computing/
thundergbm/blob/master/docs/faq.md.

Web traffic. https://www.kaggle.com/datasets/raminhuseyn/
web-traffic-time-series-dataset, 2024. URL https://www.kaggle.
com/datasets/raminhuseyn/web-traffic-time-series-dataset.

Yossi Adi, Carsten Baum, Moustapha Cissé, Benny Pinkas, and Joseph Keshet. Turning your weak-
ness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX Secu-
rity Symposium (USENIX Security), pp. 1615–1631, Baltimore, MD, 2018.

Boris Babenko, Ming-Hsuan Yang, and Serge J. Belongie. A family of online boosting algorithms.
In 12th IEEE International Conference on Computer Vision Workshops (ICCV), pp. 1346–1353,
Kyoto, Japan, 2009.

Alina Beygelzimer, Elad Hazan, Satyen Kale, and Haipeng Luo. Online gradient boosting. In
Advances in Neural Information Processing Systems (NIPS), pp. 2458–2466, Montreal, Quebec,
Canada, 2015a.

Alina Beygelzimer, Satyen Kale, and Haipeng Luo. Optimal and adaptive algorithms for online
boosting. In Proceedings of the 32nd International Conference on Machine Learning (ICML),
volume 37 of JMLR Workshop and Conference Proceedings, pp. 2323–2331, Lille, France, 2015b.

Gérard Biau, Benoı̂t Cadre, and Laurent Rouvı̀ère. Accelerated gradient boosting. Mach. Learn.,
108(6):971–992, 2019.

10

https://github.com/charliermarsh/online_boosting
https://github.com/charliermarsh/online_boosting
https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
https://github.com/Xtra-Computing/thundergbm/blob/master/docs/faq.md
https://github.com/Xtra-Computing/thundergbm/blob/master/docs/faq.md
https://github.com/Xtra-Computing/thundergbm/blob/master/docs/faq.md
https://github.com/Xtra-Computing/thundergbm/blob/master/docs/faq.md
https://www.kaggle.com/datasets/raminhuseyn/web-traffic-time-series-dataset
https://www.kaggle.com/datasets/raminhuseyn/web-traffic-time-series-dataset
https://www.kaggle.com/datasets/raminhuseyn/web-traffic-time-series-dataset
https://www.kaggle.com/datasets/raminhuseyn/web-traffic-time-series-dataset

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 42nd IEEE
Symposium on Security and Privacy (SP), pp. 141–159, San Francisco, CA, 2021.

Jonathan Brophy and Daniel Lowd. DART: data addition and removal trees. CoRR, abs/2009.05567,
2020.

Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests. In Proceedings of
the 38th International Conference on Machine Learning (ICML), volume 139 of Proceedings of
Machine Learning Research, pp. 1092–1104, Virtual Event, 2021.

Pedro G. Campos, Fernando Dı́ez, and Iván Cantador. Time-aware recommender systems: a com-
prehensive survey and analysis of existing evaluation protocols. User Model. User Adapt. Inter-
act., 24(1-2):67–119, 2014.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE Symposium on Security and Privacy (SP), pp. 463–480, San Jose, CA, 2015.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramèr. Mem-
bership inference attacks from first principles. In 43rd IEEE Symposium on Security and Privacy,
SP, pp. 1897–1914, San Francisco, CA, 2022.

Gert Cauwenberghs and Tomaso A. Poggio. Incremental and decremental support vector machine
learning. In Advances in Neural Information Processing Systems (NIPS), pp. 409–415, Denver,
CO, 2000.

Min Chen, Weizhuo Gao, Gaoyang Liu, Kai Peng, and Chen Wang. Boundary unlearning: Rapid
forgetting of deep networks via shifting the decision boundary. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7766–7775, Vancouver,
BC, Canada, 2023.

Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. An online boosting algorithm with theoretical
justifications. In Proceedings of the 29th International Conference on Machine Learning (ICML),
Edinburgh, Scotland, UK, 2012.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp.
785–794, San Francisco, CA, 2016.

Yuantao Chen, Jie Xiong, Weihong Xu, and Jingwen Zuo. A novel online incremental and decremen-
tal learning algorithm based on variable support vector machine. Clust. Comput., 22:7435–7445,
2019.

Christopher A. Choquette-Choo, Florian Tramèr, Nicholas Carlini, and Nicolas Papernot. Label-
only membership inference attacks. In Proceedings of the 38th International Conference on
Machine Learning, ICML, volume 139 of Proceedings of Machine Learning Research, pp. 1964–
1974, Virtual Event, 2021.

Aleksandr Dekhovich, David MJ Tax, Marcel HF Sluiter, and Miguel A Bessa. Continual prune-
and-select: class-incremental learning with specialized subnetworks. Applied Intelligence, pp.
1–16, 2023.

Robert Dilworth. Privacy preservation through practical machine unlearning. CoRR,
abs/2502.10635, 2025.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting with
categorical features support. CoRR, abs/1810.11363, 2018.

Shai Fine and Katya Scheinberg. Incremental learning and selective sampling via parametric opti-
mization framework for SVM. In Advances in Neural Information Processing Systems (NIPS),
pp. 705–711, Vancouver, British Columbia, Canada, 2001.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189–1232, 2001.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jerome H. Friedman, Trevor J. Hastie, and Robert Tibshirani. Additive logistic regression: a statis-
tical view of boosting. The Annals of Statistics, 28(2):337–407, 2000.

Jerome H. Friedman, Trevor J. Hastie, and Robert Tibshirani. Response to evidence contrary to the
statistical view of boosting. Journal of Machine Learning Research, 9:175–180, 2008.

Antonio Ginart, Melody Y. Guan, Gregory Valiant, and James Zou. Making AI forget you: Data
deletion in machine learning. In Advances in Neural Information Processing Systems (NeurIPS),
pp. 3513–3526, Vancouver, BC, Canada, 2019.

Sergiu Gordea and Markus Zanker. Time filtering for better recommendations with small and sparse
rating matrices. In Web Information Systems Engineering - WISE 2007, 8th International Con-
ference on Web Information Systems Engineering, Nancy, France, December 3-7, 2007, Proceed-
ings, volume 4831 of Lecture Notes in Computer Science, pp. 171–183, 2007.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training ima-
genet in 1 hour. CoRR, abs/1706.02677, 2017.

Jiangpeng He. Gradient reweighting: Towards imbalanced class-incremental learning. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR, pp. 16668–16677, Seattle, WA,
2024.

Hanzhang Hu, Wen Sun, Arun Venkatraman, Martial Hebert, and J. Andrew Bagnell. Gradient
boosting on stochastic data streams. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (AISTATS), volume 54 of Proceedings of Machine Learning
Research, pp. 595–603, Fort Lauderdale, FL, 2017.

Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S. Yu, and Xuyun Zhang. Mem-
bership inference attacks on machine learning: A survey. ACM Comput. Surv., 54(11s):235:1–
235:37, 2022.

Muhammad Awais Hussain, Chun-Lin Lee, and Tsung-Han Tsai. An efficient incremental learning
algorithm for sound classification. IEEE Multim., 30(1):84–90, 2023.

Lin Ji and Shenglu Li. A dynamic financial risk prediction system for enterprises based on gradient
boosting decision tree algorithm. Systems and Soft Computing, 7:200189, 2025.

Masayuki Karasuyama and Ichiro Takeuchi. Multiple incremental decremental learning of support
vector machines. In Advances in Neural Information Processing Systems (NIPS), pp. 907–915,
Vancouver, Canada, 2009.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Sys-
tems (NIPS), pp. 3146–3154, Long Beach, CA, 2017.

Ilja Kuzborskij, Francesco Orabona, and Barbara Caputo. From N to N+1: multiclass transfer
incremental learning. In 2013 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3358–3365, Portland, OR, 2013.

Pavel Laskov, Christian Gehl, Stefan Krüger, and Klaus-Robert Müller. Incremental support vector
learning: Analysis, implementation and applications. J. Mach. Learn. Res., 7:1909–1936, 2006.

Christian Leistner, Amir Saffari, Peter M. Roth, and Horst Bischof. On robustness of on-line boost-
ing - a competitive study. In 12th IEEE International Conference on Computer Vision Workshops,
(ICCV) Workshops, pp. 1362–1369, Kyoto, Japan, 2009.

Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J. Smola. Efficient mini-batch training for
stochastic optimization. In The 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 661–670, New York, NY, 2014.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ping Li. Robust logitboost and adaptive base class (abc) logitboost. In Proceedings of the Twenty-
Sixth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI), pp. 302–311,
Catalina Island, CA, 2010.

Shuhao Li, Yajie Wang, Yuanzhang Li, and Yu-an Tan. l-leaks: Membership inference attacks with
logits. CoRR, abs/2205.06469, 2022.

Huawei Lin, Jun Woo Chung, Yingjie Lao, and Weijie Zhao. Machine unlearning in gradient boost-
ing decision trees. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD), pp. 1374–1383, Long Beach, CA, 2023.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang
Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo,
and Yang Liu. Rethinking machine unlearning for large language models. Nat. Mac. Intell., 7(2):
181–194, 2025.

Xiaoming Liu and Ting Yu. Gradient feature selection for online boosting. In IEEE 11th Interna-
tional Conference on Computer Vision (ICCV), pp. 1–8, Rio de Janeiro, Brazil, 2007.

Pawel Matuszyk, João Vinagre, Myra Spiliopoulou, Alı́pio Mário Jorge, and João Gama. Forgetting
methods for incremental matrix factorization in recommender systems. In Proceedings of the
30th Annual ACM Symposium on Applied Computing, Salamanca, Spain, April 13-17, 2015, pp.
947–953, 2015.

Pawel Matuszyk, João Vinagre, Myra Spiliopoulou, Alı́pio Mário Jorge, and João Gama. Forgetting
techniques for stream-based matrix factorization in recommender systems. Knowl. Inf. Syst., 55
(2):275–304, 2018.

Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin,
and Quoc Viet Hung Nguyen. A survey of machine unlearning. CoRR, abs/2209.02299, 2022.

Robi Polikar, L. Upda, S. S. Upda, and Vasant G. Honavar. Learn++: an incremental learning
algorithm for supervised neural networks. IEEE Trans. Syst. Man Cybern. Part C, 31(4):497–
508, 2001.

Samuele Poppi, Sara Sarto, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Multi-class
explainable unlearning for image classification via weight filtering. CoRR, abs/2304.02049, 2023.

Haidi Rao, Xianzhang Shi, Ahoussou Kouassi Rodrigue, Juanjuan Feng, Yingchun Xia, Mohamed
Elhoseny, Xiaohui Yuan, and Lichuan Gu. Feature selection based on artificial bee colony and
gradient boosting decision tree. Appl. Soft Comput., 74:634–642, 2019.

Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747,
2016.

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor at-
tacks. In The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), pp. 11957–11965,
New York, NY, 2020.

Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang. Dynamic backdoor attacks
against machine learning models. In 7th IEEE European Symposium on Security and Privacy,
EuroS&P, pp. 703–718, Genoa, Italy, 2022. IEEE.

Sebastian Schelter, Stefan Grafberger, and Ted Dunning. Hedgecut: Maintaining randomised trees
for low-latency machine unlearning. In SIGMOD, pp. 1545–1557, Virtual Event, China, 2021.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 18075–18086, Virtual, 2021.

Tianhao Shi, Yang Zhang, Zhijian Xu, Chong Chen, Fuli Feng, Xiangnan He, and Qi Tian. Prelim-
inary study on incremental learning for large language model-based recommender systems. In
Proceedings of the 33rd ACM International Conference on Information and Knowledge Manage-
ment, CIKM, pp. 4051–4055, Boise, ID, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Alistair Shilton, Marimuthu Palaniswami, Daniel Ralph, and Ah Chung Tsoi. Incremental training
of support vector machines. IEEE Trans. Neural Networks, 16(1):114–131, 2005.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy, SP,
pp. 3–18, San Jose, CA, 2017.

Oleg Sudakov, Evgeny Burnaev, and Dmitry A. Koroteev. Driving digital rock towards machine
learning: Predicting permeability with gradient boosting and deep neural networks. Comput.
Geosci., 127:91–98, 2019.

Ayush K. Tarun, Vikram S. Chundawat, Murari Mandal, and Mohan S. Kankanhalli. Fast yet effec-
tive machine unlearning. CoRR, abs/2111.08947, 2021.

Rozita Tavakolian, Mohammad Taghi Hamidi Beheshti, and Nasrollah Moghaddam Charkari. An
improved recommender system based on forgetting mechanism for user interest-drifting. Inter-
national Journal of Information and Communication Technology Research, 4(4):69–77, 2012.

Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. On the necessity of auditable
algorithmic definitions for machine unlearning. In 31st USENIX Security Symposium (USENIX
Security), pp. 4007–4022, Boston, MA, 2022.

Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, and Prayag Tiwari. A survey on few-shot
class-incremental learning. Neural Networks, 169:307–324, 2024.

Boris van Breugel, Hao Sun, Zhaozhi Qian, and Mihaela van der Schaar. Membership inference
attacks against synthetic data through overfitting detection. In International Conference on Arti-
ficial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research, pp.
3493–3514, Valencia, Spain, 2023.

Gido M. van de Ven, Tinne Tuytelaars, and Andreas S. Tolias. Three types of incremental learning.
Nat. Mac. Intell., 4(12):1185–1197, 2022.

Aiping Wang, Guowei Wan, Zhi-Quan Cheng, and Sikun Li. An incremental extremely random
forest classifier for online learning and tracking. In Proceedings of the International Conference
on Image Processing (ICIP), pp. 1449–1452, Cairo, Egypt, 2009.

Weiqi Wang, Zhiyi Tian, and Shui Yu. Machine unlearning: A comprehensive survey. CoRR,
abs/2405.07406, 2024.

Yuening Wang, Yingxue Zhang, Antonios Valkanas, Ruiming Tang, Chen Ma, Jianye Hao, and
Mark Coates. Structure aware incremental learning with personalized imitation weights for rec-
ommender systems. In Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023,
Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI, pp. 4711–
4719, Washington, DC, 2023.

Zeyi Wen, Hanfeng Liu, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen. Thundergbm: Fast
gbdts and random forests on gpus. J. Mach. Learn. Res., 21:108:1–108:5, 2020.

Zhaomin Wu, Junhui Zhu, Qinbin Li, and Bingsheng He. Deltaboost: Gradient boosting decision
trees with efficient machine unlearning. In Proceedings of the ACM on Management of Data
(SIGMOD), volume 1, pp. 168:1–168:26, Seattle, WA, 2023.

Shuhong Xie. Financial risk early warning for enterprises based on the catboost algorithm. In
Proceedings of the 2025 4th International Conference on Big Data, Information and Computer
Network, pp. 239–245, 2025.

Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, and Philip S. Yu. Machine unlearning: A
survey. ACM Comput. Surv., 56(1):9:1–9:36, 2024.

Hongyang Yan, Shuhao Li, Yajie Wang, Yaoyuan Zhang, Kashif Sharif, Haibo Hu, and Yuanzhang
Li. Membership inference attacks against deep learning models via logits distribution. IEEE
Trans. Dependable Secur. Comput., 20(5):3799–3808, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jiahuan Yan, Jintai Chen, Qianxing Wang, Danny Z. Chen, and Jian Wu. Team up gbdts and dnns:
Advancing efficient and effective tabular prediction with tree-hybrid mlps. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD, pp. 3679–
3689, Barcelona, Spain, 2024.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learn-
ing: Analyzing the connection to overfitting. In 31st IEEE Computer Security Foundations Sym-
posium, CSF, pp. 268–282, Oxford, United Kingdom, 2018.

A Yarkın Yıldız and Asli Kalayci. Gradient boosting decision trees on medical diagnosis over tabular
data. In 2025 IEEE International Conference on AI and Data Analytics (ICAD), pp. 1–8. IEEE,
2025.

Taebok Yoon, Seunghoon Lee, Kwang ho Yoon, Dongmoon Kim, and Jee-Hyong Lee. A person-
alized music recommendation system with a time-weighted clustering. In 2008 4th International
IEEE Conference Intelligent Systems, volume 2, pp. 10–48. IEEE, 2008.

Chongsheng Zhang, Yuan Zhang, Xianjin Shi, George Almpanidis, Gaojuan Fan, and Xiajiong Shen.
On incremental learning for gradient boosting decision trees. Neural Process. Lett., 50(1):957–
987, 2019.

Jian Zhang, Bowen Li, Jie Li, and Chentao Wu. Securecut: Federated gradient boosting decision
trees with efficient machine unlearning. CoRR, abs/2311.13174, 2023.

Bin Zhao, Wei Cao, Jiqun Zhang, Yilong Gao, Bin Li, and Fengmei Chen. Fusion of gbdt and
neural network for click-through rate estimation. Journal of Intelligent & Fuzzy Systems, 48(6):
835–847, 2025.

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma, Shiliang Pu, and De-Chuan Zhan. Forward
compatible few-shot class-incremental learning. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 9036–9046, New Orleans, LA, 2022.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used in the preparation of this paper. Specifically, LLMs
were employed to aid and polish the writing, helping to refine grammar, clarity, and readability of
the text. No part of the research ideation, experimental design, implementation, or analysis relied
on LLMs. The responsibility for all content presented in this paper rests fully with the authors.

B RELATED WORK

Incremental Learning is a technique in machine learning that involves the gradual integration of
new data into an existing model, continuously learning from the latest data to ensure performance
on new data (van de Ven et al., 2022). It has been a open problem in machine learning, and has
been studied in convolutional neural network (CNN) (Polikar et al., 2001; Kuzborskij et al., 2013;
Zhou et al., 2022), DNN (Hussain et al., 2023; Dekhovich et al., 2023), SVM (Chen et al., 2019;
Cauwenberghs & Poggio, 2000) and RF (Wang et al., 2009; Brophy & Lowd, 2020). In gradient
boosting, iGBDT offers incremental updates (Zhang et al., 2019), while other methods (Beygelzimer
et al., 2015a; Babenko et al., 2009) extend GB to dynamic learning. However, these methods do not
support removing data.

Decremental Learning allows for the removal of trained data and eliminates their influence on
the model, which can be used to delete outdated or privacy-sensitive data (Bourtoule et al., 2021;
Nguyen et al., 2022; Sekhari et al., 2021; Xu et al., 2024). It has been researched in various models,
including CNN (Poppi et al., 2023; Tarun et al., 2021), DNN (Chen et al., 2023; Thudi et al., 2022),
SVM (Karasuyama & Takeuchi, 2009; Cauwenberghs & Poggio, 2000), Naive Bayes (Cao & Yang,
2015), K-means (Ginart et al., 2019), RF (Schelter et al., 2021; Brophy & Lowd, 2021), and GB (Wu
et al., 2023; Zhang et al., 2023). In random forests, DaRE (Brophy & Lowd, 2021) and a decremental
learning algorithm (Schelter et al., 2021) are proposed for data removal with minimal retraining.

However, in GBDT, trees in subsequent iterations rely on residuals from previous iterations, making
decremental learning more complicated. DeltaBoost Wu et al. (2023) simplified the dependency for
data deletion by dividing the dataset into disjoint sub-datasets, while a recent study Lin et al. (2023)
proposed an efficient unlearning framework without simplification, utilizing auxiliary information to
reduce unlearning time. Although effective, its performance on large datasets remains unsatisfactory.

C FEATURE DISCRETIZATION.

The preprocessing step of feature discretization plays a crucial role in simplifying the implemen-
tation of Eq. equation 5 and reducing the number of splits that need to be evaluated. This process
involves sorting the data points based on their feature values and assigning them to bins, taking into
account the distribution of the data, as shown in Figure 4 and Algorithm 4. By starting with a small
bin-width (e.g., 10−8) and a predetermined maximum number of bins B (e.g., 1024). It assigns bin
numbers to the data points from the smallest to the largest, considering the presence of data points in
each bin. This iterative process continues until the number of bins exceeds the specified maximum.

0 1 2 3 4 5 6 7

Figure 4: Feature discretization example. For a feature, all its values are grouped into 8 bins, i.e.,
the original feature values become integers between 0 to 7 assigned to the nearest bin.

In cases where the number of required bins surpasses the maximum limit, the bin-width is doubled,
and the entire process is repeated. This adaptive discretization approach proves particularly effec-
tive for boosted tree methods, ensuring that feature values are mapped to integers within a specific
range. Consequently, after the discretization mapping is established, each feature value is assigned
to the nearest bin. After this discretization preprocessing, all feature values are integers within
{0, 1, 2, · · · , B − 1}.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 4 Discretize Feature
1: v{1..N} = sorted feature values, bin width = 10−10

2: while true do
3: cnt = 0, curr idx = 0
4: for i = 1 to N do
5: if vi − vcurr idx > bin width then
6: cnt = cnt + 1, cur idx = i
7: if cnt > B then
8: bin width = bin width ∗ 2
9: break

10: end if
11: end if
12: v′i = cnt
13: end for
14: if cnt <= B then break
15: end while
16: return v′ as discretized feature values

The advantage of this discretization technique becomes evident during the gain searching step. In-
stead of iterating over all N feature values, the algorithm only needs to consider a maximum of
B splits for each feature. This substantial reduction in the number of splits to evaluate leads to a
significant decrease in the computational cost, transforming it from being dependent on the dataset
size N to a manageable constant B.

D EXPERIMENT SETTING

The experiments are performed on a Linux computing node running Red Hat Enterprise Linux 7,
utilizing kernel version 5.10.155-1.el7.x86 64. The CPU employed was an Intel(R) Xeon(R) Gold
6150 CPU operating at a clock speed of 2.70GHz, featuring 18 cores and 36 threads. The system was
equipped with a total memory capacity of 376 GB. We have built a prototype of our dynamic learning
framework using C++11. The code is compiled with g++-11.2.0, utilizing the “O3” optimization.
Unless explicitly stated otherwise, our default parameter settings are: J = 20, B = 1024, |D′| =
0.1%×|Dtr|, α = 0.1, and σ = 0.1. We report the ablation study for different settings in Appendix S.

E FRAMEWORK OVERVIEW

Figure 1 is a visual example of incremental and decremental learning of our proposed frame-
work. Figure 1(b) is one tree of the GBDT model and has been well-trained on dataset Dtr =
{0, 1, 2, 3..., 19}. Every rectangle in the tree represents a node, and the labels inside indicate the
splitting criteria. For instance, if the condition Age < 42 is met, the left-child node is followed;
otherwise, the right-child node is chosen. The numbers within the rectangles represent the predic-
tion value of the terminal nodes. Please note that here the feature 42 is a discretized value, instead
of the raw feature. Our dynamic learning framework has the capability to not only incrementally
learn a new dataset Din, but also decrementally delete a learned dataset Dde ⊆ Dtr.

Example for Incremental Learning. Here, we would like to add a new dataset D′ = Din =
{20, 21, 22, 23} to the original model, so we will call the function of incremental learning. |d|
denotes how many data of the D′ reach this node. As shown in Algorithm 3, we traverse all non-
terminal nodes (non-leaf nodes) in the tree at first. For example, we are going to test the node of
Loan < 31. Its current best split is Loan < 31. One of the new data instances {22} reaches
this node. After adding this data and recomputing the gain value, Loan < 31 is still best split with
the greatest gain value of 26.937, and meets s = s′, as shown in Figure 1(a). Thus, we can keep
this split and do not need to do any changes for this node. Then we are going to test the node of
Auto < 57 and the remaining three new data instances {20, 21, 23} reach this node. As shown
in the left side of Figure 1(c), we recompute the gain value for this node, but the best split changes
to Income < 5. Therefore, we retrain the pending sub-tree rooted on Auto < 57 after adding
new data instances to obtain a new sub-tree rooted on Income < 5. Then we replace the pending
sub-tree with the new one. Finally, we update the prediction value on terminal nodes (leaf nodes).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

For example, 0.4322 is updated to 0.2735 because of adding data {22}; −0.1252 has no change
because the data of this node are still the same.

Example for Decremental Learning. Similar to incremental learning, we would like to delete a
learned dataset Dde = {2, 7, 11, 13} and its effect on the model. The best split of node Loan < 31
does not change, so we keep the split. For Auto < 57, as shown in the right side of Figure 1(c),
after removing data instances {2, 11, 13}, the best split changes from Auto < 57 to Credit <
24, so we retrain the pending sub-tree rooted on Loan < 31 and then replace it with the new sub-
tree. For terminal nodes (leaf nodes), the prediction value changes if any data reaching this node is
removed.

F SPLIT CANDIDATES SAMPLING

Definition 1 (Distance Robust) Let s be the best split, and |D′|
|Dtr| = λ. N∆ is the distance between s

and its nearest split t, N∆ = ||t− s||. s is distance robust if

N∆ >
λGain(s)

1
Nls

(∑
xi∈ls

gi,k

)2∑
xi∈ls

hi,k
+ 1

Nrs

(∑
xi∈rs

gi,k

)2∑
xi∈rs

hi,k

(8)

Proof. In decremental learning, for a fixed λ, we have
(1− λ)Gain(s)−Gain(s+N∆) (9)

≈ (1− λ)

((∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

−
(∑

xi∈ls∪rs
gi,k
)2∑

xi∈ls∪rs
hi,k

)

−

((
1− N∆

Nls

) (∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+

(
1− N∆

Nrs

) (∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

−
(∑

xi∈ls∪rs
gi,k
)2∑

xi∈ls∪rs
hi,k

)
(10)

where l represents the left child of split s, and it contains the samples belonging to this node, while
r represent the right child, Nls denotes |ls|, and Nrs denotes |rs|.
Let (1− λ)Gain(s)−Gain(s+N∆) > 0, we have

approx⇒ (1− λ)Gain(s)−

((
1 +

N∆

Nls

) (∑
xi∈ls

gi,k
)2∑

xi∈rs
hi,k

+

(
1− N∆

Nrs

) (∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

−
(∑

xi∈ls∪rs
gi,k
)2∑

xi∈ls∪rs
hi,k

)
(11)

⇒ N∆

Nls

(∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+
N∆

Nrs

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

− λGain(s) > 0 (12)

⇒ N∆ >
λGain(s)

1
Nls

(∑
xi∈ls

gi,k

)2∑
xi∈ls

hi,k
+ 1

Nrs

(∑
xi∈rs

gi,k

)2∑
xi∈rs

hi,k

(13)

□

In the above definition, E(N∆) = 1/α, where α denotes the split sampling rate, we can observe
that a smaller sampling rate will result in a more robust split, so we can reduce the number of retrain
operations by reducing the sampling rate. Similarly, incremental learning can get the same result.

Definition 2 (Robustness Split) For a best split s and an split t with the same feature, t ̸= s, and
dynamic learning data rate |D′|

|Dtr| = λ, the best split s is robust split if

Gain(s) >
1

1− λ
Gain(t) (14)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. Initially, we have

Gain(s) =

(∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

−
(∑

xi∈ls∪rs
gi,k
)2∑

xi∈ls∪rs
hi,k

(15)

After decremental learning, we get

Gain′(s) =

(∑
xi∈ls

gi,k −
∑

xi∈ls∩D′ gi,k
)2∑

xi∈ls
hi,k −

∑
xi∈ls∩D′ hi,k

+

(∑
xi∈rs

gi,k −
∑

xi∈rs∩D′ gi,k
)2∑

xi∈rs
hi,k

∑
xi∈rs∩D′ hi,k

(16)

−

(∑
xi∈ls∪rs

gi,k −
∑

xi∈(ls∪rs)∩D′ gi,k

)2
∑

xi∈ls∪rs
hi,k −

∑
xi∈(ls∪rs)∩D′ hi,k

For any possible split t (t ̸= s), the split s is robust only and only if Gain(s) > Gain(t) and

Gain′(s) > Gain′(t). First, let’s analyze the first term of Gain′(s). Suppose |D′|
|Dtr| = λ, and D′ is

randomly selected from D. Here we consider the leaf child ls of split s, and let the |ls ∩D′| to be
nls, |ls| to be Nls. Then we have(∑

xi∈ls
gi,k −

∑
xi∈ls∩D′ gi,k

)2∑
xi∈ls

hi,k −
∑

xi∈ls∩D′ hi,k

approx⇒
(∑

xi∈ls
gi,k − nlsgls

)2∑
xi∈ls

hi,k − nlshls

(17)

⇒
(
1− nls

Nls

) (∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

(18)

where g and h denote the average of the gi,k and hi,k respectively.

Similarly, we can get all three terms for Gain(s), Gain′(s), Gain(t), and Gain′(t) in a similar
form. For Gain′(s) > Gain′(t), finally, we have Gain(s) > Gain(t) + C, where

C =

(
nls

Nls

(∑
xi∈ls

gi,k
)2∑

xi∈rs
hi,k

+
nrs

Nrs

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

− nls + nrs

Nls +Nrs

(∑
xi∈ls∪rs

gi,k
)2∑

xi∈ls∪rs
hi,k

)
−

(
nlt

Nlt

(∑
xi∈lt

gi,k
)2∑

xi∈rt
hi,k

+
nrt

Nrt

(∑
xi∈rt

gi,k
)2∑

xi∈rt
hi,k

− nlt + nrt

Nlt +Nrt

(∑
xi∈lt∪rt

gi,k
)2∑

xi∈lt∪rt
hi,k

)
(19)

The upper bound of C is λGain(s). Further, we have

Gain(s) >
1

1− λ
Gain(t) (20)

□

This definition shows that, as λ = |D′|
|Dtr| decreases, the splits are more robust, leading to a reduction

in the frequency of retraining. Decreasing either α or λ makes the split more robust, reducing the
likelihood of changes in the best split and substantially decreasing the dynamic learning time.

G UPDATE W/O TOUCHING TRAINING DATA

Maintain Best Split. The split gain is calculated by Eq. equation 5. There are three terms: the gain
for the left-child, the gain for the right-child, and subtracting the gain before the split. Each gain is

computed as the sum of the squared first derivatives
([∑N

i=1 (ri,k − pi,k)
]2)

divided by the sum of

the second derivatives
(∑N

i=1 pi,k(1− pi,k)
)

for all the data in the node. To compute these terms,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

it is necessary to iterate over all the data that reaches the current node. The most straightforward
way for dynamic learning to obtain the split gain is to directly compute these three terms for dataset
Dtr ± D′. In the worst case, which is the root node, the computation cost for gain computing is
|Dtr|+ |Din| or |Dtr| − |Dde| because the root node contains all the training data.

We calculate the split gain for Dtr ± D′ without touching the Dtr. In this optimization, during the
training process, we store the Srp =

∑N
i=1 (ri,k − pi,k) and Spp =

∑N
i=1 pi,k(1 − pi,k) for the

training dataset Dtr for every potential split. In incremental learning process, we can only calculate
the S′

rp and S′
pp for Din. To obtain the new split gain based on Eq. equation 5, we add it to the stored

Srp and Spp. Similarly, for decremental learning, we can only calculate the S′
rp and S′

pp for Dde to
obtain the new split gain. In this manner, we successfully avoid the original training data for split
gain computation and reduce the computation cost from O(Dtr ±D′) to O(D′).

Recomputing Prediction Value. For the terminal node (leaf node), if there are no data of D′

reaching this node, we can skip this node and do not need to change the prediction value. Otherwise,
we have to calculate a prediction value f as shown in line 5 of the Algorithm 1. Similar to split gain
computing, it is required to iterate over all the data that reaches this terminal node. Here we store
Srp =

∑
xi∈Rj,k,m

(ri,k − pi,k) and Spp =
∑

xi∈Rj,k,m
(1− pi,k) pi,k for training dataset Dtr in

training process. Thus, in dynamic learning process, we only need to calculate S′
rp and S′

pp for
dynamic learning dataset D′.

Incremental Update for Derivatives. After conducting dynamic learning on a tree, we need to
update the derivatives and residuals for learning the next tree. From the perspective of GBDT train-
ing, each tree in the ensemble is built using the residuals learned from the trees constructed in all
previous iterations: Modifying one of the trees affects all the subsequent trees. A trivial method
is to update the derivatives and residuals for all data instances of Dtr ± D′ in every tree, but it is
time-consuming.

When performing dynamic learning on a tree, not all terminal nodes will be changed—some ter-
minal nodes remain unchanged because there is no data from D′ that reaches these terminal nodes.
Note that our goal is to find a model close to the model retraining from scratch. In the dynamic
learning scenario, all trees have already been well-trained on Dtr. Intuitively, the derivative changes
for data in those unchanged terminal nodes should be minimal. Therefore, as shown in Figure 1(d),
we only update the derivatives for those data reaching the changed terminal nodes. For example,
the terminal node with a prediction value of −0.1252 does not meet any data in D′ in both incre-
mental learning and decremental learning, so the prediction value of this node does not need to be
changed. Therefore, we do not need to update the derivatives of the data {1, 6, 14, 16, 17} reaching
this terminal node.

H TIME COMPLEXITY

We compare the time complexity of retraining from scratch and our dynamic learning approach in
Table 5. Training a tree involves three key steps: Derivatives Computing, Gain Computing & Split
Finding, and Prediction Computing. Let B represent the number of bins, J the number of leaves,
|Dtr| the number of training data points, and |D′| the number of dynamic learning data points
(|D′| ≪ |Dtr|).
Derivatives Computing. In retraining, each point is assigned to one of the B bins, which take
O(∥Dtr∥) time. In our method, we optimize updates without touching training data, directly adding
or subtracting derivatives for the dynamic data points, which takes O(∥D′∥) time.

Gain Computing & Split Finding. In training, to identify the optimal split for each node, we
compute the potential split gains for each bin. As a binary tree is constructed with 2J − 1 nodes, the
total computational complexity for split finding across the entire tree is O(B(2J − 1)) = O(BJ).
In our approach, Split Candidates Sampling reduces the number of split candidates from B to αB,
where α denotes the split sample rate (0 < α ≤ 1). Additionally, let Pσ represent the probability of
a split change being within the robustness tolerance, indicating the likelihood that a node does not
require retraining (with larger σ, Pσ increases). If retraining is not required, the time complexity for
checking a node is O(|D′|). Conversely, if retraining is required, the complexity to retrain a node is
O(αB). Consequently, the total time complexity for the entire tree is O(J |D′|·Pσ+JαB ·(1−Pσ)).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

For Pσ → 1, no nodes require retraining, simplifying the complexity to O(J |D′|). Conversely, for
Pσ → 0, all nodes require retraining, and the complexity becomes O(JαB).

Predicted Value Computing. During training, after the tree is built, the predicted value for each leaf
is updated. This involves traversing the leaf for the data points that reach it, with the total number
being equivalent to all training data points, resulting in a complexity of O(|Dtr|). In our method,
we update the predicted value only for leaves reached by at least one dynamic data point, and adjust
by adding/subtracting the impact of dynamic data points, resulting in a complexity of O(|D′|).

Table 5: Time complexity comparison between retraining and dynamic learning.

Step Training Time Optimization Dynamic Learning Time

Derivatives Computing O(|Dtr|) Update without Touching Training Data O(|D′|)
Gain Computing & Split Finding O(BJ) Split Candidates Sampling, Split Robustness Tolerance O(αBJσ)
Predition Computing O(|Dtr| log J) Update without Touching Training Data O(|D′|)

I TEST ERROR RATE

Table 6 presents the test error for different methods, defined as (1 - accuracy) for classification tasks
and Mean Squared Error (MSE) for regression tasks. We have omitted the results for OnlineGB, as
its excessively long learning time makes it relatively insignificant compared to the other methods.
Three scenarios are considered: (1) Training, reporting the test error for models trained on the full
dataset D; (2) Incremental Learning, performing incremental learning to add a randomly selected
portion D′ into a model pre-trained on D − D′; and (3) Decremental Learning, conducting decre-
mental learning to remove D′ from a model trained on the full dataset D. As shown in Table 6, The
proposed DyGB achieved the best error rates in most cases.

J REAL-WORLD TIME SERIES EVALUATION

To confirm the performance of our methods on real-world datasets with varying data distributions,
we conducted experiments on two real-world time series datasets from Kaggle:

• GlobalTemperatures (Glo, 2017): This dataset records the average land temperatures from 1750
to 2015.
• WebTraffic (Web, 2024): This dataset tracks hourly web requests to a single website over five
months.

For this experiment, we constructed the input data X using the time series values from the previous
15 time steps, with the goal of predicting the corresponding output value y. Initially, we randomly
sample 10% of the data as the test dataset, with the remaining 90% used as the training dataset.
Similar to Section 4.3, we evenly divided the training data into 10 subsets, each containing 10% of
the training samples. It is important to note that we did not shuffle these time series datasets, meaning
the 10 subsets were arranged sequentially from older to more recent data. We trained an initial
model using the first subset, then incrementally added each subsequent subset one by one. After
incorporating all training data, we sequentially removed each subset in reverse order. As expected,
since the test dataset spans all time steps, the error rate decreases as more subsets are added to the
model. This is because the model learns the updated distribution from the newly added subsets.
After removing each subset, the error rate increases, reflecting the loss of information associated
with the removed data and the model’s adjustment to the remaining subsets. As shown in Table 7,
these results confirm the effectiveness of our method in adapting to changing data distributions.

K MODEL FUNCTIONAL SIMILARITY

As mentioned in Section 2.2, the goal of the framework is to find a model close to the model retrained
from scratch. The model functional similarity is a metric to evaluate how close the model learned by
dynamic learning and the one retrained from scratch. We show the model functional similarity for
incremental learning and decremental learning in Table 8. C2W refers to the ratio of testing instances

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: The test error after training, adding, and deleting.

Task Method Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype Abalone
(×10−2)

WineQuality
(×10−3)

Training

iGBDT 0.1276 0.0629 0.1987 0.2742 0.0290 0.0295 0.0418 0.1702 5.7721 1.2085
DeltaBoost 0.1814 0.0642 0.2122 OOM 0.0652 0.0417 0.0968 0.2764 7.5905 1.3134

MU in GBDT 0.1276 0.0629 0.1987 0.2742 0.0307 0.0294 0.0418 0.1702 5.7721 1.2085
XGBoost 0.1270 0.0630 0.1977 0.2761 0.0418 0.0397 0.0524 0.1896 6.1472 1.1674

LightGBM 0.1277 0.0635 0.1984 0.2725 0.0334 0.0355 0.0374 0.1688 5.8392 1.1993
CatBoost 0.2928 0.1772 0.4324 0.5384 0.0618 0.0440 0.0655 0.1572 5.7265 1.2457

ThunderGMB (GPU) 0.2405 0.0659 0.4576 0.4698 0.2739 0.1155 0.1170 0.6298 8.4272 1.6953
Ours 0.1276 0.0629 0.1987 0.2742 0.0307 0.0294 0.0418 0.1702 5.7721 1.2085

In
cr

e.
L

ea
rn

in
g Add 1 iGBDT 0.1279 0.0633 0.1987 0.2769 0.0301 0.0286 0.0418 0.1696 5.8801 1.1953

Ours 0.1275 0.0630 0.1988 0.2742 0.0295 0.0297 0.0404 0.1685 5.811 1.2079

Add 0.1% iGBDT 0.1267 0.0630 0.1995 0.2742 0.0323 0.0363 0.0446 0.1777 6.2531 1.2680
Ours 0.1269 0.0626 0.1989 0.2747 0.0295 0.0297 0.0406 0.1686 5.900 1.2040

Add 0.5% iGBDT 0.1287 0.0636 0.2012 0.2795 0.0390 0.0440 0.0572 0.1788 7.6510 1.2907
Ours 0.1294 0.0632 0.1988 0.2734 0.0290 0.0295 0.0394 0.1681 5.7701 1.2198

Add 1% iGBDT 0.1291 0.0630 0.2014 0.2780 0.0529 0.0603 0.0875 0.1868 8.5324 1.4462
Ours 0.1267 0.0632 0.1990 0.2740 0.0262 0.0283 0.0440 0.1683 5.8378 1.2209

D
ec

re
.L

ea
rn

in
g

Del 1
DeltaBoost 0.1818 0.0642 0.2122 OOM 0.0640 0.0424 0.0974 0.2764 7.4359 1.3084

MU in GBDT 0.1280 0.0629 0.1987 0.2742 0.0306 0.0295 0.0408 0.1702 5.8025 1.2095
Ours 0.1276 0.0628 0.1987 0.2742 0.0306 0.0295 0.0416 0.1702 5.8723 1.2143

Del 0.1%
DeltaBoost 0.1823 0.066 0.2122 OOM 0.0629 0.0412 0.0956 0.2764 7.3402 1.3159

MU in GBDT 0.1285 0.0634 0.1988 0.2742 0.0301 0.0295 0.0444 0.1734 5.9727 1.2202
Ours 0.1284 0.0633 0.1988 0.2747 0.0295 0.0283 0.0432 0.1712 5.8744 1.2109

Del 0.5%
DeltaBoost 0.1829 0.0642 0.2122 OOM 0.0663 0.0423 0.0960 0.2762 7.2955 1.3022

MU in GBDT 0.1309 0.0640 0.1988 0.2751 0.0306 0.0283 0.0442 0.1727 6.3142 1.2398
Ours 0.1295 0.0634 0.1988 0.2746 0.0301 0.0303 0.0432 0.1675 5.7733 1.2052

Del 1%
DeltaBoost 0.1812 0.0642 0.2123 OOM 0.0624 0.0435 0.0958 0.2764 7.3100 1.3163

MU in GBDT 0.1311 0.0639 0.1988 0.2745 0.0334 0.0312 0.0460 0.1766 6.3558 1.2925
Ours 0.1295 0.0632 0.1987 0.2747 0.0273 0.0303 0.0424 0.1695 5.7620 1.2111

Table 7: Error rate after every online learning step.

Online Learning Step GlobalTemperatures
(×10−3)

WebTraffic
(×10−3)

Initial Train 10% 4.1934 4.0984

Add 10%, Total 20% 2.5431 3.8383

Add 10%, Total 30% 2.1156 3.0296

Add 10%, Total 40% 2.0351 3.1297

Add 10%, Total 50% 1.9593 2.9149

Add 10%, Total 60% 1.8940 2.9525

Add 10%, Total 70% 1.8973 2.8682

Add 10%, Total 80% 1.8532 2.9024

Add 10%, Total 90% 1.8200 2.9141

Add 10%, Total 100% 1.7850 2.9049

Del 10%, Total 90% 1.8127 2.8432

Del 10%, Total 80% 1.9902 3.3453

Del 10%, Total 70% 2.0115 2.9007

Del 10%, Total 60% 2.1137 3.1288

Del 10%, Total 50% 2.0756 3.1187

Del 10%, Total 40% 2.1654 2.9539

Del 10%, Total 30% 2.1349 3.0132

Del 10%, Total 20% 2.4975 3.8429

Del 10%, Total 10% 3.6064 4.4339

that are correctly predicted during retraining but are wrongly predicted after decremental learning.
Similarly, W2C represents the testing instances that are wrongly predicted during retraining but are
correctly predicted after decremental learning. The W2W column indicates the cases where the
two models have different wrong predictions. For binary labels, W2W is not applicable. In the
|D′| column, 1 indicates that only add/remove one instance, while 0.1% corresponds to |D′| =
0.1% × |Dtr|. We present ϕ to evaluate the model functional similarity (adapted from the model
functionality (Adi et al., 2018)), indicating the leakage of dynamic learning:

Definition 3 (Functional Similarity) Given an input space X , a model T , a model T̂ dynamic learned
from T , and a dataset D = {yi,ai} ∈ X , the functional similarity ϕ between model T and T̂ is:
ϕ = 1− (rw2w + rw2c + rc2w) ,where ϕ is the leakage of learning.

Due to the size limitations of the table, we have omitted OnlineGB from this table because its
learning duration is excessively long, making it relatively meaningless compared to other methods.
We compared iGBDT in adding 1 and 0.1% data instances, and DeltaBoost and MUinGBDT in
deleting data. As shown in Table 8, we have a comparable model functionality in adding/deleting
both 1 and 0.1%. In most cases, DyGB reaches 98% similarity in both incremental and decremental
learning.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 8: Model functionality change after online learning.

Dataset Metric iGBDT (Incr.) Ours (Incr.) DeltaBoost (Decr.) MUinGBDT (Decr.) Ours (Decr.)
Add 1 Add 0.1% Add 1 Add 0.1% Del 1 Del 0.1% Del 1 Del 0.1% Del 1 Del 0.1%

Adult
C2W ↓ 0.40% 0.93% 0.17% 0.61% 1.17% 1.87% 0.63% 0.51% 0.55% 0.51%
W2C ↓ 0.27% 0.80% 0.18% 0.56% 0.72% 1.28% 0.60% 0.73% 0.56% 0.68%
ϕ ↑ 99.34% 98.27% 99.66% 98.83% 98.11% 96.85% 98.77% 98.76% 98.88% 98.82%

CreditInfo
C2W ↓ 0.21% 0.40% 0.16% 0.30% 0.58% 0.92% 0.10% 0.21% 0.10% 0.18%
W2C ↓ 0.18% 0.40% 0.15% 0.29% 0.08% 0.13% 0.08% 0.23% 0.08% 0.19%
ϕ ↑ 99.60% 99.20% 99.70% 99.41% 99.34% 98.96% 99.82% 99.56% 99.82% 99.63%

SUSY
C2W ↓ 0.25% 0.82% 0.22% 0.74% 3.50% 3.40% 0% 0.78% 0% 0.73%
W2C ↓ 0.24% 0.78% 0.21% 0.73% 1.34% 1.14% 0% 0.79% 0% 0.76%
ϕ ↑ 99.51% 98.40% 99.58% 98.53% 95.16% 95.46% 100% 98.43% 100% 98.51%

HIGGS
C2W ↓ 0.00% 2.52% 0% 2.64%

OOM
0% 1.92% 0% 1.92%

W2C ↓ 0.00% 2.56% 0% 2.63% 0% 1.93% 0% 1.92%
ϕ ↑ 100.00% 94.92% 100% 94.73% 100% 96.14% 100% 96.17%

Optdigits

C2W ↓ 0.33% 0.56% 0.17% 0.28% 0.22% 0.56% 0.61% 0.45% 0.45% 0.61%
W2C ↓ 0.56% 0.61% 0.28% 0.50% 0.28% 0.22% 0.22% 0.33% 0.28% 0.39%
W2W ↓ 0.06% 0.11% 0.06% 0% 0.17% 0.11% 0.06% 0.11% 0.06% 0.06%
ϕ ↑ 99.05% 98.72% 99.50% 99.22% 99.33% 99.11% 99.11% 99.11% 99.22% 98.94%

Pendigits

C2W ↓ 0.26% 0.83% 0.14% 0.17% 0.17% 0.09% 0.29% 0.26% 0.26% 0.23%
W2C ↓ 0.14% 0.43% 0.11% 0.17% 0.26% 0.37% 0.17% 0.20% 0.23% 0.20%
W2W ↓ 0.06% 0.20% 0.06% 0.03% 0.03% 0.09% 0.06% 0.09% 0.03% 0.09%
ϕ ↑ 99.54% 98.54% 99.69% 99.63% 99.54% 99.46% 99.49% 99.46% 99.49% 99.49%

Letter

C2W ↓ 0.74% 1.62% 0.64% 0.68% 0.52% 0.80% 1.24% 1.36% 1.26% 1.40%
W2C ↓ 0.82% 0.88% 0.78% 0.80% 0.58% 0.62% 1.06% 1.42% 1.06% 1.38%
W2W ↓ 0.28% 0.44% 0.30% 0.30% 0.20% 0.40% 0.44% 0.24% 0.42% 0.28%
ϕ ↑ 98.16% 97.06% 98.28% 98.22% 98.70% 98.18% 97.26% 96.98% 97.26% 96.94%

Covtype

C2W ↓ 0.98% 2.37% 1.78% 1.78% 0.11% 0.61% 1.94% 2.04% 1.94% 1.96%
W2C ↓ 1.15% 2.10% 1.77% 1.77% 0.14% 0.70% 1.80% 1.76% 1.80% 1.71%
W2W ↓ 0.04% 0.09% 0.07% 0.07% 0.02% 0.03% 0.06% 0.07% 0.06% 0.07%
ϕ ↑ 97.83% 95.44% 96.38% 96.38% 99.74% 98.66% 96.19% 96.13% 96.20% 96.26%

L BACKDOOR ATTACKING

Experimental Setup. In this evaluation, we randomly select a subset of the training dataset, and
set first a few features to a specific value (trigger, e.g. 0 or greatest feature value) on these data
instances, and then set the label to a target label (e.g., 0). In the testing dataset, we set all labels to
the target label to compose a backdoor test dataset. In this setting, if the model has correctly learned
the trigger and target label, it should achieve a high accuracy on backdoor test dataset.

M MEMBERSHIP INFERENCE ATTACK

The membership inference attack (MIA) aims to predict whether a data sample is part of the training
dataset (Shokri et al., 2017; Hu et al., 2022; Choquette-Choo et al., 2021). Therefore, the goal of this
experiments is to determine if ”deleted” data can still be identified as training data after decremental
learning. However, in our experiment with default hyper-parameter setting, the predictions made by
MIA are nearly random guesses.

Experimental Setup. Previous studies demonstrate that overfitting can make machine learning
models more vulnerable to MIA (Yeom et al., 2018; van Breugel et al., 2023; Hu et al., 2022). To
further validate our approach, we apply a smaller model with the number of iterations M = 5,
which can be easily overfitted. For overfitting the model, we split each dataset into three subsets:
base dataset Dbase (49.9%), dynamic dataset D′ (0.1%), and test dataset Dtest (50%). We first train a
base model on Dbase +D′. For this base model, the MIA should identify the data in D′ as part of the
training dataset. Next, we perform decremental learning to delete D′ from the base model. After this
process, the MIA should no longer identify the data in D′ as part of the training dataset, confirming
that our approach effectively deletes the data from the model. Finally, we add D′ back to the model
by incremental learning. Following this, the MIA should once again identify the data in D′ as part of
the training dataset. These experiments are conducted on multi-class datasets: Optdigits, Pendigits,
Letter, and Covtype.

MIA Model. By following the existing MIA methods (Yan et al., 2023; Li et al., 2022; Carlini
et al., 2022), we train an MIA model (binary classification) on the prediction probabilities of each
class. Since the GBDT model is overfitted, the probability distributions of the training data should
substantially differ from those of the unseen data (test data). Therefore, the MIA model can predict

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

whether a data sample is part of the training dataset based on its probability distribution. We sample
50% of Dbase and 50% of Dtest to train the MIA model. Then remaining 50% of Dbase, the entire D′

and 50% of Dtest are used for evaluation.

Table 9: Membership Inference Attack.

Dataset Base Model After decremetal learning After incremetal learning
Dbase D′ Dtest Dbase D′ Dtest Dbase D′ Dtest

Optdigits 100% 100% 43.59% 100% 33.93% 42.19% 100% 100% 43.82%
Pendigits 100% 100% 56.09% 100% 55.04% 46.15% 100% 100% 56.63%
Letter 100% 100% 26.31% 100% 13.33% 47.37% 100% 100% 36.84%
Covtype 100% 100% 38.89% 100% 15.2% 38.89% 100% 100% 44.31%

Results. Table 9 presents the average probability of data samples being identified as part of the
training dataset at different stages. For the base model, MIA identifies 100% of the data in Dbase and
D′ as part of the training dataset, while the data in Dtest has a low probability of being identified as
part of the training dataset. After decremental learning, the probability for Dbase remains unchanged,
while the probability for D′ drops to a level almost identical to Dtest. This confirms that D′ has been
effectively deleted from the base model. After incremental learning, the probability for D′ increases
to 100% again, indicating that the model has successfully relearned D′. The probability for Dtest in
the incremental model remains almost the same as in the base model. This result confirms that our
decremental/incremental learning approach can indeed delete/add data from/to the model.

N DIFFERENT BASE LEARNER

Since the proposed method is designed for decision trees, we conducted an experiment to compare
it with the boosted linear regression (linear model). For the linear model, we set the maximum
number of iterations to 1,000 and enabled early stopping. As shown in Table 10, our method consis-
tently demonstrates superior accuracy, achieving lower error rates across all datasets. Although our
method requires more memory and longer training time than the linear model, its incremental and
decremental learning on a single data point is substantially faster than retraining from scratch.

Table 10: Comparison with linear model as base learner (max iteration = 1, 000, early stop =
True).

Metrics Method Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype

Linear Model 167.78 22.44 3,671.12 12,144.70 162.11 160.03 161.97 1,192.70Memory (MB) Ours 577.18 1,096.71 16,576.40 24,333.30 1,081.15 1,959.49 1,805.76 9,665.21

Linear Model 0.1877 0.0657 0.2119 0.358 0.0557 0.1075 0.3582 0.2876Error Rate Ours 0.1276 0.0629 0.1987 0.2742 0.0307 0.0294 0.0418 0.1702

Linear Model 0.163 0.203 7.94 13.314 0.091 0.088 0.421 6.174
Ours (Training) 2.673 1.818 64.935 177.1 0.276 0.368 0.352 9.336
Add 1 0.035 0.114 1.678 5.488 0.011 0.014 0.016 0.29Time (s)

Del 1 0.034 0.055 1.303 3.367 0.01 0.015 0.014 0.161

O EXTREMELY HIGH-DIMENSIONAL DATASETS

We include two dataset with more features / high dimensional: RCV1 and News20, which have
47,236 and 1,355,191 features respectively. For News20 dataset, the substantial high dimension
causes segmentation fault on CatBoost and GPU out of memory (OOM) on thunderGBM. We omit
the results from the other incremental/decremental method because infeasible running time and mas-
sive occupied memory. Table 12 shows the comparison of the training time and memory usage for
our methods and other popular methods. Table 13 illustrates the incremental and decremental learn-
ing time of our method for two high dimensional dataset.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 11: Dataset specifications.

Dataset # Train # Test # Dim # Class

News20 5,000 14,996 1,355,191 2
RCV1 20,242 677,399 47,236 2

Table 12: Comparison of the training time consumption
and memory usage for RCV1 and News20.

Dataset XGBoost LightGBM CatBoost ThunderGMB
(GPU) Ours

Training Time (s) RCV1 459.75 59.63 335.70 49.44 295.43
News20 637.02 28.42 Seg. Fault OOM 225.73

Memory (MB) RCV1 3,008.28 2,922.32 263.63 1,913.05 185,851.72
News20 3,061.99 2,509.29 Seg. Fault OOM 128,131.43

Table 13: The incremental/decremental learning time of the proposed method for RCV1 and
News20. (ms, per tree, incre./decre.)

Dataset |D′|
Incremental Learning Decremental Learning

Learning Time
(Ours)

Speedup v.s. Learning Time
(Ours)

Speedup v.s.

XGBoost LightGBM CatBoost ThunderGBM
(GPU) XGBoost LightGBM CatBoost ThunderGBM

(GPU)

RCV1

1 21.431 214.5x 27.8x 156.6x 23.1x 19.268 238.6x 30.9x 174.2x 25.7x
0.1% 37.707 121.9x 15.8x 89.0x 13.1x 29.232 157.3x 20.4x 114.8x 16.9x
0.5% 39.428 116.6x 15.1x 85.1x 12.5x 48.218 95.3x 12.4x 69.6x 10.3x
1% 43.901 104.7x 13.6x 76.5x 11.3x 70.666 65.1x 8.4x 47.5x 7.0x

News20

1 11.76 541.7x 24.2x - - 7.718 825.4x 36.8x - -
0.1% 17.113 372.2x 16.6x - - 12.363 515.3x 23.0x - -
0.5% 22.261 286.2x 12.8x - - 30.076 211.8x 9.5x - -
1% 23.469 271.4x 12.1x - - 37.825 168.4x 7.5x - -

Table 14: The approximation error of leave’s score between the model after addition/delection and
the model retrained from scratch. Appr. Error =

∑
all trees

∑
all leaves abs(padd/del−pretrain)∑

all trees
∑

all leaves abs(pretrain)
, where padd/del is the

leave’s score after adding/deleting, pretrain is the leave’s score of the model retraining from scratch.

Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype

Add 1 2.42% 1.18% 0.24% 0.00% 2.69% 2.23% 1.31% 0.17%
Add 0.1% 4.59% 6.57% 2.73% 1.63% 3.48% 4.12% 5.78% 9.47%
Add 0.5% 5.10% 7.44% 2.27% 3.05% 5.12% 4.50% 10.45% 11.68%
Add 1% 5.30% 7.43% 3.07% 3.89% 5.92% 4.70% 11.75% 10.01%
Add 10% 4.25% 8.33% 1.07% 1.73% 4.64% 4.42% 13.34% 4.96%
Add 50% 3.55% 0.00% 0.00% 1.51% 0.00% 0.00% 6.26% 0.01%
Add 80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Del 1 1.21% 0.00% 0.00% 0.00% 0.01% 0.19% 0.57% 0.28%
Del 0.1% 3.63% 3.80% 0.79% 0.72% 1.40% 0.50% 1.88% 4.31%
Del 0.5% 3.58% 3.76% 0.18% 0.56% 2.52% 1.15% 3.49% 6.04%
Del 1% 3.40% 3.16% 0.15% 0.65% 3.07% 1.73% 3.74% 4.48%
Del 10% 0.27% 0.39% 0.00% 0.16% 1.67% 0.97% 1.35% 0.46%
Del 50% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Del 80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

P DATA ADDITION WITH MORE CLASSES

DyGB can update data with unseen classes. We divide the dataset into sub-datasets based on labels
(e.g., Optdigits has 10 labels, so we divide it into 10 sub-datasets). We train a model on the first
sub-dataset and test it on two test datasets: 1) the original full test dataset with all labels, and 2)
the partial test dataset with only the learned labels. We fine-tune the model with a new sub-dataset
through incremental learning until learning the full dataset, testing the model on both test datasets
after each training. Figure 5 shows that the accuracy of incremental learning and retraining is nearly
identical on both the full and partial datasets. Note that the decrease in accuracy on the partial dataset
is likely due to the increasing complexity of the learned data, which leads to a decrease in accuracy.

Q APPROXIMATION ERROR OF LEAF SCORES

As mentioned in Section 3.2, outdated derivatives are used in gain computation to reduce the cost of
updating derivatives. However, these outdated derivatives are only applied to nodes where the best

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

2 4 6 8 10

Added Label

0

20

40

60

80

100

T
e
s
t
A

c
c
 (

%
)

Optdigits

Addition: Partial Test Data

Addition: Full Test Data

Retrain: Partial Test Data

Retrain: Full Test Data

2 4 6 8 10

Added Label

0

20

40

60

80

100

T
e
s
t
A

c
c
 (

%
)

Pendigits

Addition: Partial Test Data

Addition: Full Test Data

Retrain: Partial Test Data

Retrain: Full Test Data

5 10 15 20 25

Added Label

0

20

40

60

80

100

T
e
s
t
A

c
c
 (

%
)

Letter

Addition: Partial Test Data

Addition: Full Test Data

Retrain: Partial Test Data

Retrain: Full Test Data

1 2 3 4 5 6 7

Added Label

0

20

40

60

80

100

T
e
s
t
A

c
c
 (

%
)

Covtype

Addition: Partial Test Data

Addition: Full Test Data

Retrain: Partial Test Data

Retrain: Full Test Data

Figure 5: The impact of tuning data size on the number of retrained nodes for each iteration in
incremental learning.

8
7
.2

3

9
3
.7

1

8
0
.1

3

7
2
.5

7

9
6
.9

3

9
7
.0

5

9
5
.8

2

8
2
.9

7

8
7
.2

5

9
3
.7

4

8
0
.1

4

7
2
.6

3

9
7
.6

6

9
7
.0

2

9
5
.7

4

8
3
.1

1

8
7
.3

8

9
3
.7

5

8
0
.1

4

7
2
.5

6

9
7
.1

6

9
7
.1

9

9
5
.7

6

8
3
.2

68
7
.2

1

9
3
.7

1

8
0
.1

2

7
2
.6

0

9
7
.1

6

9
7
.1

1

9
6
.1

6

8
3
.0

4

8
7
.4

2

9
3
.7

0

8
0
.1

1

7
2
.6

1

9
7
.3

8

9
7
.0

2

9
6
.0

4

8
2
.9

9

8
7
.1

7

9
3
.7

2

8
0
.0

9

7
2
.6

3

9
7
.1

0

9
7
.1

4

9
5
.9

8

8
2
.8

4

8
7
.3

0

9
3
.7

2

8
0
.1

2

7
2
.5

1

9
7
.2

1

9
7
.0

5

9
5
.7

4

8
3
.1

4

Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype
60

65

70

75

80

85

90

95

100

T
e
s
t
A

c
c
 (

%
)

Train 100%

Train 5% + Add 95%

Train 10% + Add 90%

Train 20% + Add 80%

Train 50% + Add 50%

Train 95% + Add 5%

Train 99% + Add 1%

Figure 6: Different fine-tuning ratio.

split remains unchanged. When a sub-tree requires retraining, the derivatives are updated. Therefore,
using outdated derivatives typically occurs when |D′| is small, as fewer data modifications result in
fewer changes to the best splits. Conversely, when more data is added or deleted, |D′| becomes
larger, increasing the likelihood of changes to the best splits in some nodes. As a result, the sub-
trees are retrained, and the derivatives for the data reaching those nodes are updated.

To confirm the effect of using outdated derivatives during dynamic learning, we report the result
for the approximation error of leaf scores in Table 14. Appr. Error =

∑
all trees

∑
all leaves abs(padd/del−pretrain)∑

all trees
∑

all leaves abs(pretrain)
,

where padd/del is the leaf score after adding/deleting, and pretrain is the leaf score of the model retrain-
ing from scratch. Please note that the retrained model has the same structure and split in all nodes
of all trees as the model after adding/deleting, and we only update the latest residual and hessian
to calculate the latest leaf score. When the number of added/deleted data increases, the error will
increase because our method uses outdated derivatives if the best splits remain unchanged. When
the number of add/delete is large enough, almost all nodes in the model will be retrained because
their best splits have changed, so the error becomes 0.

R DYGB ON RECOMMENDER SYSTEMS

In the paper, we mention that a potential use case is recommendation systems. In this experiment,
we show how the proposed method improves the performance of recommendation systems through
incremental and decremental learning on GBDT.

Interest-drift in Recommender Systems. Interest drift refers to the evolution of a user’s pref-
erences over time. In recommendation systems, this means that past interactions may no longer
accurately represent a user’s current interests. As a result, relying on outdated data can degrade the
performance of the system. To address this issue, previous studies have proposed time-weighted
methods that gradually reduce the influence of older interactions (Yoon et al., 2008; Campos et al.,
2014). However, instead of reducing their impact, completely removing outdated data can lead to
better recommendation performance (Matuszyk et al., 2018; 2015; Tavakolian et al., 2012; Gordea
& Zanker, 2007). Since the proposed GBDT supports both decremental learning and incremental

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

4% 12
%

20
%

28
%

36
%

44
%

52
%

60
%

68
%

76
%

84
%

92
%

10
0%

Learned Dataset Ratio

0.5

0.52

0.54

0.56

0.58

A
U

C

MovieLens-10M

4% 12
%

20
%

28
%

36
%

44
%

52
%

60
%

68
%

76
%

84
%

92
%

10
0%

Learned Dataset Ratio

0.51

0.52

0.53

0.54

0.55

0.56

0.57

A
U

C

MovieLens-20M

4% 12
%

20
%

28
%

36
%

44
%

52
%

60
%

68
%

76
%

84
%

92
%

10
0%

Learned Dataset Ratio

0.46

0.465

0.47

0.475

Lo
gL

os
s

MovieLens-10M

4% 12
%

20
%

28
%

36
%

44
%

52
%

60
%

68
%

76
%

84
%

92
%

10
0%

Learned Dataset Ratio

0.445

0.45

0.455

0.46

Lo
gL

os
s

MovieLens-20M

4% 12
%

20
%

28
%

36
%

44
%

52
%

60
%

68
%

76
%

84
%

92
%

10
0%

Learned Dataset Ratio

0.144

0.145

0.146

0.147

0.148

M
S

E

MovieLens-10M

4% 12
%

20
%

28
%

36
%

44
%

52
%

60
%

68
%

76
%

84
%

92
%

10
0%

Learned Dataset Ratio

0.137

0.138

0.139

0.14

0.141

M
S

E

MovieLens-20M

LightGBM XGBoost Ours

Figure 7: (Incremental Learning) Performance (AUC, Log Loss, and MSE) of the recommender
system on different dataset ratios. We first sort the entire dataset by timestamp, from oldest to most
recent. Then, we partition the oldest 80% as the training dataset and the most recent 20% as the
testing dataset. To evaluate our proposed method, we initially train a model on the oldest 4% of
the training data, then gradually learn every additional 4% via incremental learning until the full
training dataset (100%) is used. These results illustrate that more recent data can positively impact
the performance of the recommender system.

learning, it naturally works on such recommender system, which can incrementally learn latest user
behaviors and remove outdated behaviors without training from scratch.

Datasets. We use two large-scale datasets that include timestamps spanning long time periods: (1)
MovieLens-10M: contains about 10 million ratings from 72,000 users on 10,000 movies from 1995
to 2009. (2) MovieLens-20M: contains about 20 million ratings from 138,000 users on 27,000
movies from 1995 to 2015. For each dataset, we sort the entire dataset by timestamps, from oldest
to most recent. Then, we partition the oldest 80% as the training dataset and the remaining latest
20% as the testing dataset.

Experimental Settings. This experiment aims to answer the question: Can the proposed method
improve the performance of recommendation systems through incremental and decremental learning
on GBDT? To this end, we design two experiments to demonstrate the effectiveness of our approach
through two key capabilities: (1) incrementally learning from the latest user behaviors, and (2)
removing outdated behaviors without retraining the model from scratch.

Incremental Learning. This experiments is to confirm that incrementally learn the latest user
behaviors improves the performance of the recommendation system. Our goal is to predict the
Click-Through Rate (CTR) using LightGBM, XGBoost and our proposed GBDT. Recall the dataset
processing, we partition the oldest 80% as the training dataset and the remaining latest 20% as the
testing dataset. We further divide the training data into 25 segments, each accounting for 4% of
the data. Our approach begins by training the model on the first (oldest) 4% of the data and in-
crementally incorporates each subsequent 4% partition in order. After each incremental update, we
evaluate the model on the testing set using AUC, Log Loss, and MSE, as illustrated in Figure 7.
For LightGBM and XGBoost, which do not support incremental learning natively, we retrain the
models from scratch using the accumulated data up to the current partition at each step. Across

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

10
0% 92

%
84

%
76

%
68

%
60

%
52

%
44

%
36

%
28

%
20

%
12

% 4%

Learned Dataset Ratio

0.574

0.576

0.578

0.58

0.582

0.584

0.586

A
U

C

MovieLens-10M

10
0% 92

%
84

%
76

%
68

%
60

%
52

%
44

%
36

%
28

%
20

%
12

% 4%

Learned Dataset Ratio

0.56

0.565

0.57

0.575

A
U

C

MovieLens-20M

10
0% 92

%
84

%
76

%
68

%
60

%
52

%
44

%
36

%
28

%
20

%
12

% 4%

Learned Dataset Ratio

0.4605

0.461

0.4615

0.462

0.4625

0.463

0.4635

Lo
gL

os
s

MovieLens-10M

10
0% 92

%
84

%
76

%
68

%
60

%
52

%
44

%
36

%
28

%
20

%
12

% 4%

Learned Dataset Ratio

0.445

0.446

0.447

0.448

0.449

0.45

Lo
gL

os
s

MovieLens-20M

10
0% 92

%
84

%
76

%
68

%
60

%
52

%
44

%
36

%
28

%
20

%
12

% 4%

Learned Dataset Ratio

0.1436

0.1438

0.144

0.1442

0.1444

0.1446

0.1448

M
S

E

MovieLens-10M

10
0% 92

%
84

%
76

%
68

%
60

%
52

%
44

%
36

%
28

%
20

%
12

% 4%

Learned Dataset Ratio

0.137

0.1375

0.138

0.1385

0.139

M
S

E

MovieLens-20M

LightGBM XGBoost Ours

Figure 8: (Decremental Learning) Performance (AUC, Log Loss, and MSE) of the recommender
system on different dataset ratios. We first sort the entire dataset by timestamp, from oldest to
most recent. Then, we partition the oldest 80% as the training dataset and the remaining latest
20% as the testing dataset. To evaluate our proposed method, we initially train a model on the full
training dataset (100%), then gradually remove 4% of the oldest data from the model via decremental
learning until only 4% of the data remains. These results illustrate that outdated (oldest) data can
negatively impact the performance of the recommender system.

both MovieLens-10M and MovieLens-20M datasets, all models improve as more recent data is in-
crementally learned. This demonstrates that learning from the latest user behaviors can improve
recommendation effectiveness.

Decremental Learning. This experiment investigates whether removing outdated user behaviors
can improve the performance of the recommendation system. Similar to the previous setup, we
aim to predict the Click-Through Rate (CTR) using LightGBM, XGBoost, and our proposed GBDT
model. We partition the dataset chronologically, using the oldest 80% as the training set and the latest
20% as the testing set. We start by training each model on the full training dataset (100%) and then
gradually remove the oldest 4% of the data at each step. After each removal, we evaluate the model’s
performance on the fixed testing set using AUC, Log Loss, and MSE, as shown in Figure 8. For
LightGBM and XGBoost, which lack native support for decremental updates, we retrain the models
from scratch using the remaining data at each step. Across both MovieLens-10M and MovieLens-
20M datasets, we observe a clear trend: model performance initially improves as stale (outdated)
data is removed, but begins to degrade once too much data is discarded. This indicates that while
removing outdated user behavior can help reduce noise and improve generalization, excessive data
removal eventually harms performance due to loss of useful historical patterns.

Conclusion. The experimental results demonstrate that our proposed method can effectively im-
prove recommender system performance by incrementally learning recent user behaviors and re-
moving outdated data without the need to retrain from scratch. This highlights the model’s adapt-
ability and efficiency in capturing evolving user preferences over time.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

20 40 60 80 100

Iteration

0

0.5

1

1.5

2

2.5

3

A
v
g

 T
im

e
 (

m
s
/p

e
r

tr
e

e
)

Pendigits (Incr.) Sampling Rate: 5%

Sampling Rate: 10%

Sampling Rate: 50%

Sampling Rate: 100%

20 40 60 80 100

Iteration

0

0.5

1

1.5

2

2.5

3

A
v
g

 T
im

e
 (

m
s
/p

e
r

tr
e

e
)

Pendigits (Decr.) Sampling Rate: 5%

Sampling Rate: 10%

Sampling Rate: 50%

Sampling Rate: 100%

20 40 60 80 100

Iteration

0

200

400

600

800

1000

1200

1400

#
 R

e
tr

a
in

e
d

 N
o

d
e

s
Pendigits (Incr.)

Sampling Rate: 5%

Sampling Rate: 10%

Sampling Rate: 50%

Sampling Rate: 100%

20 40 60 80 100

Iteration

0

200

400

600

800

1000

1200

1400

#
 R

e
tr

a
in

e
d

 N
o

d
e

s

Pendigits (Decr.)

Sampling Rate: 5%

Sampling Rate: 10%

Sampling Rate: 50%

Sampling Rate: 100%

9
7
.2

5

9
7
.0

5

9
6
.6

8

9
6
.4

2

9
7
.2

8

9
7
.1

1

9
6
.5

9

9
6
.4

8

Pendigits (Incr.)

5% 10% 50% 100%

Sampling Rate

60

70

80

90

100

T
e

s
t

A
c
c
 (

%
)

Train

Add 1.0%

9
7

.3
9

9
7
.0

8

9
6

.5
9

9
6

.4
8

9
7

.2
5

9
6

.9
9

9
6

.6
2

9
6

.4
2

Pendigits (Decr.)

5% 10% 50% 100%

Sampling Rate

60

70

80

90

100

T
e

s
t

A
c
c
 (

%
)

Train

Del 1.0%

Figure 9: The impact of sampling rate on time, number of retrain nodes, and test accuracy during
incremental/decremental learning.

S ABLATION STUDY

In this section, we discuss the impact of different hyper-parameter settings on the performance of
DyGB, e.g., time and accuracy.

S.1 SIZE OF DYNAMIC DATASET |D′|.

Different sizes of dynamic learning dataset D′ can have varying impacts on both the accuracy and
time of the dynamic learning process. Figure 6 shows the impact of different data addition settings
on test accuracy. Across all datasets, DyGB achieved nearly the same test accuracy, which validates
the effectiveness of our dynamic learning framework. Decremental learning also has similar results.

Figure 10 shows the influence of |Din| on incremental/decremental learning time. We only present
the experiment on 2 datasets each for incremental/decremental learning, due to the results on other
datasets show a similar trend. These results show that the dynamic learning time increase when the
size of Din increase. The reason is straightforward: as the size of Din increases, the model undergoes
more significant changes, resulting in unstable splits. This leads to a greater number of sub-trees
that require retraining, ultimately consuming more time. Figure 11 provides evidence to support this
observation. It illustrates the accumulated number of retrained nodes – how many nodes need to
be retrained. As the size of Din increases, the number of nodes that need to be retrained increases,
leading to longer learning times.

S.2 SPLIT RANDOM SAMPLING

Split random sampling is designed to reduce the frequency of retraining by limiting the number of
splits. As mentioned in Section 3.3, a smaller sampling rate leads to more stable splits, resulting in
fewer nodes that require retraining and shorter dynamic learning time. Figure 9 shows the impact
of sampling rate α in split random sampling. The figures at the top demonstrate that when the
sample rate is reduced, a smaller number of split candidates are taken into account, leading to an
expected decrease in dynamic learning time. However, there is no significant difference between
5% and 10% in the Pendigits dataset. The figures in the second row show the accumulated number
of retrained nodes. It also shows that as the sample rate decreases, the splits become more stable,

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

20 40 60 80 100

Iteration

0

5

10

15

20

25

A
v
g
 T

im
e
 (

m
s
/p

e
r

tr
e
e
)

Adult Add 1

Add 0.1%

Add 0.5%

Add 1.0%

Train

20 40 60 80 100

Iteration

0

0.5

1

1.5

2

2.5

3

A
v
g
 T

im
e
 (

m
s
/p

e
r

tr
e
e
)

Letter

Add 1

Add 0.1%

Add 0.5%

Add 1.0%

Train

20 40 60 80 100

Iteration

0

20

40

60

80

100

120

A
v
g

 T
im

e
 (

m
s
/p

e
r

tr
e

e
)

Covtype

Del 1

Del 0.1%

Del 0.5%

Del 1.0%

Train

20 40 60 80 100

Iteration

0

100

200

300

400

500

600

700

800

A
v
g
 T

im
e
 (

m
s
/p

e
r

tr
e
e
)

SUSY

Del 1

Del 0.1%

Del 0.5%

Del 1.0%

Train

Figure 10: The impact of |D′| on average
learning time in incremental/decremental learn-
ing (top/bottom row).

20 40 60 80 100

Iteration

0

200

400

600

800

1000

1200

#
 R

e
tr

a
in

e
d
 N

o
d
e
s

Adult

Add 1

Add 0.1%

Add 0.5%

Add 1.0%

20 40 60 80 100

Iteration

0

50

100

150

200

250

300

#
 R

e
tr

a
in

e
d
 N

o
d
e
s

Letter

Add 1

Add 0.1%

Add 0.5%

Add 1.0%

20 40 60 80 100

Iteration

0

500

1000

1500

#
 R

e
tr

a
in

e
d

 N
o

d
e

s

Covtype

Del 1

Del 0.1%

Del 0.5%

Del 1.0%

20 40 60 80 100

Iteration

0

500

1000

1500

2000

#
 R

e
tr

a
in

e
d

 N
o

d
e

s

SUSY

Del 1

Del 0.1%

Del 0.5%

Del 1.0%

Figure 11: The impact of |D′| on the accumu-
lated number of retrained nodes for each iteration
in incr./decr. learning (top/bottom row).

0 0.1 0.2 0.3 0.4

Robustness Tolerance

0

5

10

15

A
v
g

 T
im

e
 (

m
s
/p

e
r

tr
e

e
)

Incr. Learning

Adult

CreditInfo

Optdigits

Pendigits

Letter

0 0.1 0.2 0.3 0.4

Robustness Tolerance

60

70

80

90

100

T
e

s
t

A
c
c
 (

%
)

Incr. Learning

Adult

CreditInfo

Optdigits

Pendigits

Letter

0 0.1 0.2 0.3 0.4

Robustness Tolerance

92

94

96

98

100

F
u

n
c
ti
o

n
a

l
S

im
ila

ri
ty

 (
%

)

Incr. Learning

Adult

CreditInfo

Optdigits

Pendigits

Letter

Figure 12: The impact of split robustness tolerance on the learning time, test accuracy, and model
functional similarity ϕ in incremental learning.

resulting in fewer nodes that require retraining. In Pendigits, since the number of nodes that require
retraining is similar for 5% and 10%, it results in a minimal difference in the dynamic learning time,
as mentioned above. However, interestingly, for example in 100% sampling rate, although there
are fewer retraining in incremental learning, it take more time during learning process, because
incremental learning does not have derivatives of the data to be added. Therefore, more time is
needed to calculate their derivatives. On the contrary, decremental learning can reuse the stored
derivatives of the training process, resulting in less time. The bottom row shows the impact of the
sampling rate on the test accuracy. The test accuracy remains almost identical across all sampling
rates. Similar results can be observed in other datasets.

S.3 SPLIT ROBUSTNESS TOLERANCE

Split robustness tolerance aims to enhance the robustness of a split in dynamic learning. As the
observation in Figure 2, most best splits will be changed to second-best. Although the best split
may change, we can avoid frequent retraining if we allow the split to vary within a certain range.
For a node with ⌈αB⌉ potential splits, if the current split remains within the top ⌈σαB⌉, we will
continue using it. Here σ (0 ≤ σ ≤ 1) is the robustness tolerance. Figure 12 illustrates the

128 256 512 1024 2048 4096

Bins

0

20

40

60

80

100

120

S
p
e
e
d
u
p Incr. Learning

Adult

CreditInfo

SUSY

HIGGS

Optdigits

Pendigits

Letter

Covtype

128 256 512 1024 2048 4096

Bins

60

70

80

90

100

T
e

s
t

A
c
c
 (

%
)

Incr. Learning

Adult

CreditInfo

SUSY

HIGGS

Optdigits

Pendigits

Letter

Covtype

4 20 60 100 140 180

Leaves

0

50

100

150

S
p
e
e
d
u
p

Incr. Learning

Adult

CreditInfo

SUSY

HIGGS

Optdigits

Pendigits

Letter

Covtype

4 20 60 100 140 180

Leaves

60

70

80

90

100

T
e
s
t
A

c
c
 (

%
)

Incr. Learning

Adult

CreditInfo

SUSY

HIGGS

Optdigits

Pendigits

Letter

Covtype

Figure 13: The impact of the # bins and # leaves on the acceleration factor of incremental learning
(adding 1 data point).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 15: The test error rate after training, adding and deleting on GDBT with various iterations.

Method Adult CreditInfo Optdigits Pendigits Letter
100 iter 200 iter 500 iter 1000 iter 100 iter 200 iter 500 iter 1000 iter 100 iter 200 iter 500 iter 1000 iter 100 iter 200 iter 500 iter 1000 iter 100 iter 200 iter 500 iter 1000 iter

Training

XGBoost 0.1270 0.1319 0.1379 0.1430 0.0630 0.0648 0.0663 0.0676 0.0418 0.0390 0.0412 0.0395 0.0397 0.0355 0.0352 0.0346 0.0524 0.0364 0.0356 0.0358
LightGBM 0.1277 0.1293 0.1260 0.1318 0.0635 0.0636 0.0644 0.0654 0.0334 0.0317 0.0334 0.0329 0.0355 0.0343 0.0340 0.0340 0.0374 0.0310 0.0296 0.0298
CatBoost 0.2928 0.2887 0.2854 0.2843 0.1772 0.1765 0.1765 0.1765 0.0618 0.0396 0.0293 0.0248 0.0440 0.0365 0.0281 0.0257 0.0655 0.0406 0.0252 0.0186

Ours 0.1276 0.1265 0.1294 0.1325 0.0629 0.0632 0.0639 0.0648 0.0307 0.0251 0.0239 0.0239 0.0294 0.0280 0.0277 0.0277 0.0418 0.0318 0.0256 0.0246

Ours
(Incr. Learning)

Add 1 0.1275 0.1271 0.1287 0.1323 0.063 0.0635 0.0638 0.0644 0.0295 0.0262 0.0239 0.0239 0.0297 0.0275 0.0275 0.0275 0.0404 0.0330 0.0266 0.0260
Add 0.1% 0.1269 0.1287 0.1313 0.1325 0.0626 0.0633 0.0631 0.0638 0.0295 0.0256 0.0256 0.0256 0.0297 0.0275 0.0277 0.0277 0.0406 0.0322 0.0250 0.0240
Add 0.5% 0.1294 0.1276 0.1298 0.1316 0.0632 0.0629 0.0633 0.0648 0.029 0.0262 0.0256 0.0256 0.0295 0.0266 0.0283 0.0283 0.0394 0.0326 0.0270 0.0256
Add 1% 0.1267 0.1279 0.1287 0.1337 0.0632 0.0630 0.0639 0.0646 0.0262 0.0228 0.0228 0.0228 0.0283 0.0272 0.0275 0.0277 0.044 0.0310 0.0246 0.0242

Ours
(Decr. Learning)

Del 1 0.1276 0.1266 0.1294 0.1324 0.0628 0.0632 0.0640 0.0647 0.0306 0.0251 0.0239 0.0239 0.0295 0.0283 0.0280 0.0280 0.0416 0.0318 0.0260 0.0242
Del 0.1% 0.1284 0.1273 0.1288 0.1321 0.0633 0.0634 0.0640 0.0648 0.0295 0.0256 0.0245 0.0245 0.0283 0.0280 0.0280 0.0280 0.0432 0.0336 0.0272 0.0246
Del 0.5% 0.1295 0.1266 0.1280 0.1327 0.0634 0.0631 0.0644 0.0646 0.0301 0.0245 0.0239 0.0239 0.0303 0.0289 0.0283 0.0283 0.0432 0.0320 0.0258 0.0244
Del 1% 0.1295 0.1281 0.1290 0.1313 0.0632 0.0633 0.0638 0.0654 0.0273 0.0239 0.0234 0.0234 0.0303 0.0292 0.0280 0.0280 0.0424 0.0328 0.0270 0.0252

Table 16: The Total training, incremental or decremental learning time (in seconds).

Adult CreditInfo Optdigits Pendigits LetterMethod 100 iter 200 iter 500 iter 1000 iter 100 iter 200 iter 500 iter 1000 iter 100 iter 200 iter 500 iter 1000 iter 100 iter 200 iter 500 iter 1000 iter 100 iter 200 iter 500 iter 1000 iter

XGBoost 9.467 19.128 43.064 103.767 13.314 34.619 77.706 78.845 0.752 1.385 2.598 5.271 0.574 1.743 3.225 5.976 1.171 3.647 8.097 14.597
LightGBM 0.516 0.926 1.859 3.775 1.836 2.081 4.737 8.504 0.106 0.164 0.248 0.462 0.131 0.196 0.351 0.516 0.203 0.376 0.758 1.342
CatBoost 1.532 2.646 5.805 10.974 3.447 5.467 12.002 13.339 0.177 0.458 1.160 2.360 0.183 0.399 1.104 1.986 0.232 0.524 1.475 3.196Training

Ours 2.673 3.289 7.466 14.509 1.818 3.005 5.391 14.122 0.276 0.573 1.444 2.874 0.368 0.592 1.978 3.990 0.352 0.357 1.284 1.798
Add 1 0.035 0.071 0.167 0.328 0.114 0.125 0.244 0.616 0.011 0.031 0.118 0.285 0.014 0.045 0.142 0.227 0.016 0.018 0.206 0.464

Add 0.1% 0.105 0.167 0.402 0.859 0.249 0.307 0.661 2.402 0.015 0.031 0.106 0.311 0.026 0.059 0.187 0.347 0.040 0.070 0.483 0.807
Add 0.5% 0.212 0.383 0.937 2.463 0.321 0.593 1.502 4.670 0.029 0.039 0.137 0.335 0.042 0.062 0.194 0.411 0.067 0.127 0.537 0.979

Ours
(Incr. Learning)

Add 1% 0.344 0.670 1.747 3.904 0.383 0.789 2.255 6.369 0.043 0.042 0.146 0.344 0.053 0.067 0.202 0.435 0.128 0.176 0.657 1.207

Del 1 0.034 0.128 0.177 0.179 0.055 0.265 0.359 0.342 0.010 0.007 0.037 0.092 0.015 0.012 0.067 0.165 0.014 0.007 0.007 0.011
Del 0.1% 0.103 0.305 0.541 0.549 0.153 0.595 0.729 0.665 0.014 0.011 0.045 0.115 0.025 0.020 0.089 0.185 0.058 0.017 0.021 0.021
Del 0.5% 0.222 0.753 1.481 1.467 0.251 0.941 1.217 1.220 0.029 0.024 0.065 0.123 0.041 0.038 0.106 0.198 0.103 0.035 0.041 0.038

Ours
(Decr. Learning)

Del 1% 0.379 1.297 2.033 2.464 0.355 1.375 2.556 2.694 0.046 0.035 0.075 0.132 0.057 0.050 0.119 0.209 0.134 0.051 0.060 0.056

impact of split robustness tolerance σ on learning time, test accuracy, and functional similarity ϕ in
incremental learning. To obtain more pronounced experimental results, in this experiment, we set
|D′| = 1%×|Dtr|. The figure on the left shows that the learning time decreases as the tolerance level
increases. Although test accuracy changes only slightly (middle figure), the functional similarity ϕ
drops significantly (right figure). For example, in the Letter dataset, ϕ drops about 5% from σ = 0
to σ = 0.5. This demonstrates that higher tolerance levels result in faster learning by avoiding
retraining, but with a trade-off of decreased functional similarity. Therefore, we suggest σ should
not be greater than 0.15. Similar results can be obtained on decremental learning.

Table 17: Accuracy for clean test dataset and attack successful rate for backdoor test dataset.

Train Clean Train Backdoor Add Backdoor Remove Backdoor# Iteration Dataset Clean Backdoor Clean Backdoor Clean Backdoor Clean Backdoor

Optdigits 97.49% 8.85% 97.55% 100.00% 97.27% 100.00% 97.49% 8.80%
Pendigits 97.28% 5.06% 97.25% 100.00% 97.25% 100.00% 100.00% 11.67%200

Letter 96.82% 2.90% 96.64% 100.00% 96.56% 100.00% 96.74% 2.56%

Optdigits 97.61% 8.63% 97.49% 100.00% 97.72% 100.00% 97.66% 8.57%
Pendigits 97.23% 5.06% 97.14% 100.00% 97.28% 100.00% 97.25% 5.63%500

Letter 97.44% 5.18% 97.36% 100.00% 97.14% 100.00% 97.14% 3.56%

Optdigits 97.61% 8.63% 97.77% 100.00% 97.72% 100.00% 97.83% 10.30%
Pendigits 97.23% 5.00% 97.11% 100.00% 97.28% 100.00% 97.25% 4.46%1000

Letter 97.66% 5.18% 97.38% 100.00% 97.52% 100.00% 97.42% 11.18%

S.4 NUMBER OF BINS AND LEAVES

In dynamic learning procedure, the number of bins and leaves also affects the dynamic learn-
ing time. We report the impact of varying the number of bins (128, 256, · · · , 4096) and leaves
(4, 10, 20, 40, 60, · · · , 200) on the acceleration factor of incremental learning (adding 1 data point)
in Figure 13. The number of bins has few effect on both accuracy and the speed of dynamic learning
as shown in the top row of the figures. In terms of the number of leaves, when it exceeds 20, the ac-
curacy tends to stabilize, except for Covtype, as shown in the bottom row of the figures. For smaller
datasets (Adult, Optdigits, Pendigits, Letter), the more the number of leaves, the lower the accel-
eration factor for incremental learning. However, for larger datasets (CreditInfo, SUSY, HIGGS,
Covtype), the more the number of leaves, the greater the acceleration is. Especially for HIGGS, the
largest dataset in our experiments, the acceleration can be more than 100x.

S.5 NUMBER OF ITERATIONS

The number of base learners is important in practical applications. We provide additional results
for different numbers of base learners in Tables 15 and 16. Table 15 reports the test error rate
after training, adding, and deleting base learners in GBDT models with varying iterations, demon-

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

strating that DyGB achieves a comparable error rate across different iterations. Table 16 shows
the time consumption for incremental and decremental learning, illustrating that DyGB are substan-
tially faster than retraining a model from scratch, particularly in cases where a single data sample is
added/deleted.

Additionally, to confirm that our method can effectively add and delete data samples across various
iterations, we report results on backdoor attacks for different iterations, as shown in Table 17. These
results confirm that our method successfully adds and removes data samples from the model across
different numbers of iterations.

32

	Introduction
	Dynamic GBDT Framework
	GBDT Preliminary
	Problem Setting
	DyGB: Framework Overview

	Optimizing Learning Time
	Update without Touching Training Data
	Adaptive Lazy Update for Derivatives
	Split Candidates Sampling
	Adaptive Split Robustness Tolerance

	Experimental Evaluation
	Training Time and Memory Overhead
	Dynamic Learning Time
	Batch Addition & Removal
	Verifying by Backdoor Attacking
	Additional Evaluations

	Conclusion
	The Use of Large Language Models
	Related Work
	Feature Discretization.
	Experiment Setting
	Framework Overview
	Split Candidates Sampling
	Update w/o Touching Training Data
	Time Complexity
	Test Error Rate
	Real-world Time Series Evaluation
	Model Functional Similarity
	Backdoor Attacking
	Membership Inference Attack
	Different Base Learner
	Extremely High-dimensional Datasets
	Data Addition with More Classes
	Approximation Error of Leaf Scores
	DyGB on Recommender Systems
	Ablation Study
	Size of Dynamic Dataset |D'|.
	Split Random Sampling
	Split Robustness Tolerance
	Number of Bins and Leaves
	Number of Iterations

