
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DYGB: DYNAMIC GRADIENT BOOSTING DECISION
TREES WITH IN-PLACE UPDATES FOR EFFICIENT DATA
ADDITION AND DELETION

Anonymous authors
Paper under double-blind review

ABSTRACT

Gradient Boosting Decision Tree (GBDT) is one of the most popular machine
learning algorithm in various applications. However, in the traditional settings, all
data should be simultaneously accessed in the training procedure: it does not allow
to add or delete any data instances after training. In this paper, we propose DyGB
(Dynamic GBDT), a novel framework that enables efficient support for both in-
cremental and decremental learning within GBDT. To reduce the learning cost,
we present a collection of optimizations for DyGB, so that it can add or delete a
small fraction of data on the fly. We theoretically show the relationship between
the hyper-parameters of the proposed optimizations, which enables trading off ac-
curacy and cost on incremental and decremental learning. Empirical results on
backdoor and membership inference attacks demonstrate that DyGB can effec-
tively add and remove data from a well-trained model through incremental and
decremental learning. Furthermore, experiments on public datasets validate the
effectiveness and efficiency of the proposed DyGB framework and optimizations.

1 INTRODUCTION

Gradient Boosting Decision Tree (GBDT) has demonstrated outstanding performance across a wide
range of applications (Sudakov et al., 2019; Biau et al., 2019; Rao et al., 2019; Liu & Yu, 2007).
It outperforms deep learning models on many datasets in accuracy and provides interpretability for
the trained models. In particular, GBDT has become the de facto choice for modeling tabular and
categorical data, where it consistently achieves state-of-the-art performance. However, in traditional
setting, all data is simultaneously accessed in training procedure, making its application limited. To
address this, we introduce Dynamic Learning, which combines incremental learning (adding new
data) (Tian et al., 2024; He, 2024) and decremental learning (removing outdated data) (Liu et al.,
2025; Wang et al., 2024). This is essential for applications like recommender systems, which must
dynamically adapt to the latest user behaviors (Wang et al., 2023; Shi et al., 2024).

Incremental Learning. There are some challenges for incremental learning in GBDT due to its
natural properties (Friedman et al., 2000). Traditional GBDT trains over an entire dataset, and each
node is trained on the data reaching it to achieve the best split for optimal accuracy. Adding un-
seen data may affect node splitting results, leading to catastrophic performance changes. Moreover,
training gradient boosting models involves creating trees for each iteration, with tree fitting based
on the residual of previous iterations. More iterations create more trees, increasing model sizes and
hurting inference throughput. This also prohibits tasks like fine-tuning or transfer learning without
substantially increasing model sizes.

Recent studies have explored incremental learning on random forest (RF), and gradient boosting
(GB). Wang et al. (2009) presented an incremental random forest for online learning with small
streaming data. Beygelzimer et al. (2015a) extended gradient boosting theory for regression to
online learning. Zhang et al. (2019) proposed iGBDT for incremental learning by “lazily” updating,
but it may require retraining many trees when the new data size is large. It is important to note that
prior studies on online gradient boosting (Beygelzimer et al., 2015a; Chen et al., 2012; Beygelzimer
et al., 2015b) and incremental gradient boosting (Zhang et al., 2019; Hu et al., 2017) do not support
decremental learning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Algorithm 1 Robust LogitBoost Algorithm.

1: Fi,k = 0, pi,k = 1
K

, k = 0 to K − 1, i = 1 to N
2: for m = 0 to M − 1 do
3: for k = 0 to K − 1 do
4: D̂tr = {ri,k − pi,k, xi}Ni=1

5: wi,k = pi,k(1− pi,k)

6: {Rj,k,m}Jj=1 = J-terminal node regression
tree from D̂tr, with weights wi,k, using the
tree split gain formula Eq. equation 5.

7: βj,k,m = K−1
K

∑
xi∈Rj,k,m

ri,k−pi,k∑
xi∈Rj,k,m

(1−pi,k)pi,k

8: fi,k =
∑J

j=1 βj,k,m1xi∈Rj,k,m , Fi,k =
Fi,k + νfi,k

9: end for
10: pi,k = exp(Fi,k)/

∑K
s=1 exp(Fi,s)

11: end for

Algorithm 2 Online Learning in Gradient Boosting

1: D′ = Din if incremental learning else Dde

2: for m = 0 to M − 1 do
3: for k = 0 to K − 1 do
4: Calculate pi,k, ri,k, gi,k = ri,k − pi,k, and wi,k =

pi,k(1− pi,k) for xi ∈ D′

5: Define D̂′ = {xi, gi,k, wi,k}|D
′|

i=1
6: if incremental learning then

7:
{
R̂j,k,m

}J

j=1
= incr({Rj,k,m}Jj=1, D̂′)

8: else
9:

{
R̂j,k,m

}J

j=1
= decr({Rj,k,m}Jj=1, D̂′)

10: end if
11: Update Fi,k with

{
R̂j,k,m

}J

j=1

12: end for
13: end for

Decremental Learning. Decremental learning is more complex and less studied than incremental
learning (Dilworth, 2025). Wang et al. (2025) and Brophy & Lowd (2020) provided dynamic meth-
ods for data addition and removal in RF. While dynamic learning has emerged as a popular topic
recently, it has been barely investigated on GBDT. Wu et al. (2023); Lin et al. (2023) are among the
latest studies in decremental learning for GBDT. Wu et al. (2023) presented DeltaBoost, a GBDT-
like model enabling data deletion. DeltaBoost divides the training dataset into disjoint sub-datasets,
training each iteration’s tree on a different sub-dataset, reducing the inter-dependency of trees. How-
ever, this simplification may impact model performance. Lin et al. (2023) proposed an unlearning
framework in GBDT without simplification, unlearning specific data using recorded auxiliary infor-
mation from training. It optimizes to reduce unlearning time, making it faster than retraining from
scratch, but introduces many hyper-parameters and performs poorly on extremely large datasets.

In this paper, we propose DyGB (Dynamic GBDT), an efficient framework for both incremental and
decremental learning in GBDT. To the best of our knowledge, DyGB is the first approach to support
in-place learning for both adding and removing data in GBDT models. Furthermore, DyGB intro-
duces a unified mechanism for incremental and decremental updates for efficient implementation.

Unlike incremental-only methods such as iGBDT (Zhang et al., 2019), DyGB supports both data
addition and removal within a unified framework. Furthermore, compared to DeltaBoost Wu et al.
(2023), which facilitates unlearning by restricting each tree’s training to disjoint data partitions,
DyGB performs in-place updates on the complete model structure without data partitioning. This
ensures that the model maintains high functional similarity to a model retrained from scratch, avoid-
ing structural constraints that may compromise predictive performance.

Contributions. (1) We introduce DyGB, an efficient in-place dynamic learning framework for gra-
dient boosting models supporting incremental and decremental learning. (2) We present optimiza-
tions to reduce the cost of incremental and decremental learning, making adding or deleting a small
data fraction substantially faster than retraining. (3) We theoretically show the relationship among
optimization hyper-parameters, enabling trade-offs between accuracy and cost. (4) We experimen-
tally evaluate DyGB on public datasets, confirming its effectiveness and efficiency. (5) We release
an open-source implementation of DyGB1.

2 DYNAMIC GBDT FRAMEWORK

2.1 GBDT PRELIMINARY

GBDT is an powerful ensemble technique that combines multiple decision tree to produce an accu-
rate predictive model (Friedman et al., 2000; Friedman, 2001). Given a dataset Dtr = {yi,xi}Ni=1,
where N is the size of training dataset, and xi indicates the ith data vector and yi ∈ {0, 1, ...,K−1}
denotes the label for the ith data point. For a GBDT model with M iteration, the probability pi,k for
ith data and class k is:

pi,k = Pr (yi = k|xi) =
eFi,k(xi)∑K
s=1 e

Fi,s(xi)
, i = 1, 2, ..., N (1)

where F is a combination of M terms:
F (M)(x) =

M−1∑
m=0

ρmh(x;am) (2)

1https://anonymous.4open.science/r/DyGB

2

https://anonymous.4open.science/r/DyGB

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Split Candidates

Loan < 31, Gain: 26.937

…

(a)

Keep the split

Auto < 57

-0.1252 House < 19 Income < 23

-0.0165 0.1834 0.2033 -0.1728

Age < 42

Update

0.2735

Loan < 31

𝑑 = 𝐷!" = 𝐷#$ = 4

𝑑 = 1

𝑑 = 1 𝑑 = 0

𝑑 = 3

𝐷!" = {20, 21, 22, 23}

Inc.: {0, 3, 7, 10, 15, 22}

{1, 6, 14, 16, 17}

(b) 𝐷#$ = {2, 7,11,13}

Dec.: {0, 3, 7, 10, 15}
Pending Sub-tree

Pending Sub-tree

Split Candidates

Credit < 24, Gain: 17.482

…

Retrain Credit < 24

Income < 35

Auto < 17

0.1193 -0.0274

-0.0284

0.2938

{2, 4, 5, 8, 9, 11, 12, 13, 18, 19}

Best Split has shifted

Incremental Learning Decremental Learning
① Recompute gain value

Income < 5, Gain: 19.345

Split Candidates

…

Retrain Income < 5

Auto < 18 Credit < 9

-0.2831 0.8364Loan < 23 -0.6238

{2, 4, 5, 8, 9, 11, 12, 13, 18, 19, 20, 21, 23}

Best Split has shifted

-0.5639 0.7362

② Replace the original sub-tree(c)

(d) Derivatives:

Update the derivatives of {0, 3, 4, 5, 8, 9, 10, 12, 15, 18, 19}

3 4 8 9 18 1910 155 120

Decremental Learning:

2 3 4 8 9 11 13 1910 155 120 20 21 22 237 18

Incremental Learning:

Update the derivatives of {0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23}

Incremental Learning
Decremental Learning

Figure 1: An example for the incremental learning and decremental learning procedure in DyGB.
(a) For the node of Loan < 31, the current split is still the best after dynamic learning. Thus, the
split does not need to change. (b) An already well-trained tree in Dtr. (c) For the node of Auto <
57, the best split has shifted after dynamic learning. (d) Incremental update for derivatives – only
update the derivatives for those data reaching the changed terminal nodes.

where h(x;am) is a regression tree, and ρm and am denote the tree parameters that learned by
minimizing the negative log-likelihood:

L =

N∑
i=1

Li, Li = −
K−1∑
k=0

ri,k log pi,k (3)

where ri,k =

{
1, if yi = k

0, otherwise
. The training procedures require calculating the derivatives of loss

function L with respect to Fi,k:

gi,k =
∂Li

∂Fi,k
= − (ri,k − pi,k) , hi,k =

∂2Li

∂F 2
i,k

= pi,k (1− pi,k) . (4)

In GBDT training, to solve numerical instability problem (Friedman et al., 2000; Friedman, 2001;
Friedman et al., 2008), we apply Robust LogitBoost algorithm (Li, 2010) as shown in Algorithm 1,
which has three parameters, the number of terminal nodes J , the shrinkage ν and the number of
boosting iterations M . To find the optimal split for a decision tree node, we first sort the N data by
the feature values being considered for splitting. We then iterate through each potential split index
s, where 1 ≤ s < N , to find the best split that minimizes the weighted squared error (SE) between
the predicted and true labels. Specifically, we aim to find an split s to maximize the gain function:

Gain(s) =

(∑s
i=1 gi,k

)2∑s
i=1 hi,k

+

(∑N
i=s+1 gi,k

)2

∑N
i=s+1 hi,k

−

(∑N
i=1 gi,k

)2

∑N
i=1 hi,k

. (5)

2.2 PROBLEM SETTING

For classic GBDT, all training data must be loaded during training, and adding/deleting instances is
not allowed afterwards. This work proposes DyGB, enabling in-place addition/deletion of specific
data instances to/from a trained model through incremental/decremental learning.

Problem Statement. Given a trained gradient boosting model T (θ) on training dataset Dtr, where
θ indicates the parameters of model T , an incremental learning dataset Din, and/or a decremental
learning dataset Dde (Dde ⊆ Dtr), our goal is to find a tree model T (θ′) that fits dataset Dtr ∪Din \
Dde, where |θ| = |θ′| (the parameter size and the number of trees stay unchanged).

Problem Statement. Given a trained gradient boosting model T (θ) on training dataset Dtr, where
θ indicates the parameters of model T , an incremental learning dataset Din, and/or a decremental
learning dataset Dde (Dde ⊆ Dtr), our goal is to find a tree model T (θ′) that fits dataset Dtr ∪Din \
Dde, where |θ| = |θ′| (the parameter size and the number of trees stay unchanged). We assume

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the original training dataset Dtr remains available (retrievable) and accessible by the algorithm for
potential use in conditional subtree retraining.

The most obvious way is to retrain the model from scratch on dataset Dtr ∪ Din \ Dde. However,
retraining is time-consuming and resource-intensive. Especially for dynamic learning applications,
rapid retraining is not practical. The key question of this problem is: Can we obtain the model T (θ′)
based on the learned knowledge of the original model T (θ) without retraining the entire model?

The proposed DyGB aims to find a tree model T (θ′) as close to the model retraining from scratch
as possible based on the learned knowledge of the model T (θ). In addition, this dynamic learning
algorithm is in a “warm-start” manner, because it learns a new dataset Din or removes a learned
sub-dataset Dde ⊆ Dtr on a model that is already well-trained on training dataset Dtr.

Let A denotes the initial GBDT learning algorithm , then we have A(Dtr) ∈ H, where H is the
hypothesis space. A dynamic learning algorithm L for incremental learning or decremental learning
can be used to learn dataset Din or remove dataset Dde ⊆ Dtr.

2.3 DYGB: FRAMEWORK OVERVIEW Algorithm 3 Incremental / Decremental Learning on
One Tree
Require: Tree nodes {Rj,k,m}Jj=1, updated data D′ =

{(xi, yi)}|D
′|

i=1

1: for each non-terminal node t in {Rj,k,m}Jj=1 with as-
cending depths do

2: Construct residual set D̂′ = {(ri,k − pi,k, xi)}|D
′|

i=1

3: s← current split of node t
4: s′ ← best split by Eq. equation 5 using (ri,k, wi,k)

after adding/removing D̂′

5: if s′ ̸= s then
6: Retrain the subtree rooted at t
7: end if
8: end for
9: Update prediction values {βj,k,m}Jj=1 for all terminal

nodes

The goal of this work is to propose a
dynamic GBDT framework that supports
incremental and decremental learning for
any collection of data.

Dynamic Learning in GBDT. The Al-
gorithm 2 shows the dynamic learning
procedure in GBDT. At first, the GBDT
model is a well-trained model on the train-
ing dataset Dtr. Recall that the GBDT
model is frozen and can not be changed
after training—no training data modifica-
tion. In this proposed framework, the user
can do (1) incremental learning: update
a new dataset Din to the model, and (2)
decremental learning: remove a learned dataset Dde ⊆ Dtr and its effect on the model.

As shown in Algorithm 2, it is similar to the learning process, but it only needs to compute ri,k
and pi,k(1 − pi,k) for target dataset D′ without touching the training dataset Dtr. Then, it will

call the function of incremental learning or decremental learning to obtain
{
R̂j,k,m

}J

j=1
. Finally, we

update Fi,k with new
{
R̂j,k,m

}J

j=1
. Here we use the same notion to design the function of incremen-

tal learning and decremental learning – decremental learning is the inverse process of incremental
learning for dataset D′. Therefore, we describe them in the Algorithm 3 at the same time.

Incremental & Decremental Learning on One Tree. Algorithm 3 describes the detailed process
for incremental and decremental learning, which are almost the same as decremental learning is the
inverse of incremental learning for dataset D′. The main difference is at Line 3. First, we traverse all
non-terminal nodes layer by layer from root to leaves. For each node, let s denote the current split.
We recompute the new best gain value with ri,k and pi,k(1 − pi,k) after adding D′ for incremental
learning or removing D′ for decremental learning. If the current split s matches the new best split
s′ (after adding/removing D′), we keep the current split (Figure 1(a)). Otherwise, if the current best
split has changed (s ̸= s′, Figure 1(c)), we retrain the sub-tree rooted on this node and replace it with
the new sub-tree. After testing all nodes, node splits remain on the best split. Finally, we recompute
the prediction value on all terminal nodes. Appendix E provides a detailed explanation of Figure 1.

3 OPTIMIZING LEARNING TIME

In this section, we introduce optimizations for the proposed DyGB to reduce computation overhead
and costs. The key step is deciding whether a node should be kept or replaced: Can we design
an algorithm to quickly test whether the node should be retained or retrained without touching the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

training data? Our most important optimization is to avoid touching the full training dataset. We ap-
ply incremental update and split candidates sampling concepts from (Lin et al., 2023), extend them
to support dynamic learning, and provide evidence of the relationship between hyper-parameters of
different optimizations, enabling trade-offs between accuracy and cost. Additionally, we design op-
timizations specific to DyGB: 1) adaptive lazy update for residuals and hessians to decrease dynamic
learning time; 2) adaptive split robustness tolerance to reduce the number of retrained nodes.

3.1 UPDATE WITHOUT TOUCHING TRAINING DATA

To reduce computation overhead and dynamic learning time, we target to avoid touching the original
training dataset D, and only focus on the dynamic learning dataset D′. Following the study (Lin
et al., 2023), we extend the optimization of updating statistical information to the scenarios of dy-
namic learning: (1) Maintain Best Split; (2) Recomputing Prediction Value; (3) Incremental Update
for Derivatives, and the computation cost is reduced from O(D ±D′) to O(D′) by these optimiza-
tions. The implementation of these optimizations are included in Appendix G.

3.2 ADAPTIVE LAZY UPDATE FOR DERIVATIVES

Although incremental update can substantially reduce dynamic learning time, we can take it a step
further: if no retraining occurs, the changes to the derivatives will be very small. How can we
effectively utilize the parameters already learned to reduce dynamic learning time?

Gradient Accumulation (Li et al., 2014; Goyal et al., 2017; Ruder, 2016) is widely used in DNN
training. After computing the loss and gradients for each mini-batch, the system accumulates these
gradients over multiple batches instead of updating the model parameters immediately. Inspired
by this techniques, we introduce an adaptive lazy update for the proposed DyGB. Unlike Lin et al.
(2023), which perform updates after a fixed number of batches, we update the derivatives only
when retraining occurs. This approach uses more outdated derivatives for gain computation but
significantly reduces the cost of derivative updates.

3.3 SPLIT CANDIDATES SAMPLING

From the above optimizations, if retraining is not required, we can keep the current best split. In
this case, we only need to iterate over the dynamic learning dataset D′ and update the prediction
values to accomplish dynamic learning, whether it involves adding or removing data. However, if
the sub-tree rooted in this node requires retraining, it is necessary to train the new sub-tree on the
data from the dataset Dtr ±D′ that reaches this node. It is clear that retraining incurs more resource
consumption and takes a longer execution time. In the worst case, if retraining is required in the root
node, it has to retrain the entire new tree on full dataset Dtr ±D′.

To reduce time and resource consumption of dynamic learning, a straightforward approach is to
minimize retraining frequency. Therefore, we introduce split candidate sampling to reduce frequent
retraining by limiting the number of splits, benefiting both training and dynamic learning. All fea-
tures are discretized into integers in 0, 1, · · · , B − 1, as shown in Appendix C. This discretization
process constructs the feature histograms, which is the foundational histogram-based implementa-
tion used in high-performance libraries like LightGBM (Ke et al., 2017) and the ABC-Boost (Li,
2010) framework. The original training procedure enumerates all B potential splits, then obtains the
best split with the greatest gain value. In split candidates sampling, we randomly select ⌈αB⌉ splits
as candidates and only perform gain computing on these candidates. As α decreases, the number of
split candidates decreases, resulting in larger distances between split candidates. Consequently, the
best split is less likely to change.

Definition 1 (Distance Robust). Let s be the current best split, and let λ = |D′|/|Dtr| denote the
dynamic update ratio. Let N∆ = ∥t− s∥ be the distance between s and its nearest competing split
t under the same feature. We say that s is distance robust if

N∆ > λGain(s)Cs, (6)

where the node structural coefficient Cs is defined as

Cs :=

(
1

Nls

(∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+
1

Nrs

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

)−1

. (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Here, ls and rs denote the left and right child nodes of split s, with sizes Nls = |ls| and Nrs = |rs|,
respectively. This definition implies that the expected distance E[N∆] = 1/α under split sampling
rate α. Hence a smaller sampling rate enlarges N∆ and makes the split more robust, reducing
the probability that the best split changes after dynamic updates. The same conclusion holds for
incremental updates.

Definition 2 (Robustness Split) For a best split s and an arbitrary split t, t ̸= s, and dynamic
learning data rate |D′|

|Dtr| = λ, the best split s is robust split if

Gain(s) >
1

1− λ
Gain(t) (8)

Robustness split shows that, as λ = |D′|
|Dtr| decreases, the splits are more robust, decreasing the

frequency of retraining. In conclusion, decreasing either α or λ makes the split more robust, reducing
the change occurrence in the best split, and it can significantly reduce the dynamic learning time.
We provide the proof of Distance Robust and Robustness Split in Appendix F.

3.4 ADAPTIVE SPLIT ROBUSTNESS TOLERANCE

Figure 2: Observation of distance of best split changes.
The lines represents the average changes of best split
distance, and the shaded region is the standard error.

Recall the retraining condition for a node
that we mentioned previously: we retrain
the sub-tree rooted at a node if the best
split changes. Although the best split may
have changed to another one, the gain
value might only be slightly different from
the original best split. We show the obser-
vation of the distance of best split changes
(the changes in the ranking of the best
split) in Figure 2. The top row illustrates
the distance of best split changes observed
in the Adult and Covtype datasets for in-
cremental learning, while the bottom row
depicts same in Letter and SUSY datasets
for decremental learning. Similar patterns
are observed across various other datasets.

Prior theoretical work, such as Delta-
Boost (Wu et al., 2023), has established
that the best split often remains invariant under single-point deletion. However, our empirical results
in Figure 2 extend this insight in two critical ways that distinguish DyGB from previous methods:
(1) We observe this stability holds equally for incremental learning (data addition) involving unseen
distributions; (2) Crucially, even when the invariance is broken (e.g., as |D′| increases to 1%), Fig-
ure 2 quantifies that the split index typically shifts only slightly to the 2nd or 3rd best rank rather
than jumping randomly.

This specific empirical observation, namely that split shifts are quantifiable and small, is the funda-
mental basis for our Adaptive Split Robustness Tolerance (σ). Unlike methods that trigger retraining
immediately upon any split change, Figure 2 justifies that we can safely tolerate these minor rank
shifts. To further validate this design, we explicitly examine the impact of sub-optimal splits on
model performance in Appendix T, confirming that this tolerance mechanism maintains high ac-
curacy. The distance of the best split changes is usually small. Tolerating its variation within a
certain range and continuing to use the original split significantly accelerates dynamic learning. We
propose adaptive split robustness tolerance: for a node with ⌈αB⌉ potential splits, if the current
split is among the top ⌈σαB⌉, we continue using it, where σ (0 ≤ σ ≤ 1) is the robustness toler-
ance. σ = 0 selects only the best split, while σ = 1 avoids retraining. Higher σ indicates greater
tolerance, making the split robust and less likely to retrain. We recommend setting σ to around 0.1.

4 EXPERIMENTAL EVALUATION

In this section, we compare 1) our incremental learning with OnlineGB (onl, 2014; Leistner et al.,
2009) and iGBDT (Zhang et al., 2019); 2) decremental learning with DeltaBoost (Wu et al., 2023)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1.1: Total incremental learning time (seconds) and speedup v.s. baselines.

Total Time (Seconds) Speedup v.s.Dataset |D′|
OnlineGB iGBDT Ours OnlineGB iGBDT XGBoost LightGBM CatBoost ThunderGBM

(GPU)

1 0.265 0.595 0.035 ± 0.001 7.6x 17.0x 39.4x 23.3x 43.8x 8.9x
0.1% 9.020 1.145 0.105 ± 0.003 85.9x 10.9x 13.1x 7.8x 14.6x 3.0x
0.5% 44.650 1.296 0.215 ± 0.003 207.7x 6.0x 6.4x 3.8x 7.1x 1.4xAdult

1% 98.000 1.573 0.340 ± 0.013 288.2x 4.6x 4.1x 2.4x 4.5x 0.9x

1 29.000 0.475 0.111 ± 0.008 261.3x 4.3x 22.7x 18.8x 31.1x 2,185.9x
0.1% 3,386 1.391 0.245 ± 0.012 13,821.4x 5.7x 10.3x 8.5x 14.1x 990.4x
0.5% 28,875 1.428 0.336 ± 0.010 85,937.5x 4.3x 7.5x 6.2x 10.3x 722.1xCreditInfo

1% 336,000 1.568 0.384 ± 0.026 875,000.0x 4.1x 6.6x 5.4x 9.0x 631.9x

1 OOM 12.037 1.683 ± 0.033 - 7.2x 56.8x 62.3x 64.7x 3.0x
0.1% OOM 53.460 7.990 ± 0.182 - 6.7x 12.0x 13.1x 13.6x 0.6x
0.5% OOM 55.380 13.428 ± 0.410 - 4.1x 7.1x 7.8x 8.1x 0.4xSUSY

1% OOM 57.680 20.238 ± 0.610 - 2.9x 4.7x 5.2x 5.4x 0.2x

1 OOM 45.250 5.495 ± 0.235 - 8.2x 40.9x 44.4x 55.2x 2.3x
0.1% OOM 132.460 26.651 ± 0.779 - 5.0x 8.4x 9.2x 11.4x 0.5x
0.5% OOM 165.340 43.383 ± 1.621 - 3.8x 5.2x 5.6x 7.0x 0.3xHIGGS

1% OOM 171.160 66.961 ± 1.463 - 2.6x 3.4x 3.6x 4.5x 0.2x

1 0.032 0.174 0.011 ± 0.002 2.9x 15.8x 87.7x 86.4x 16.1x 234.9x
0.1% 0.091 0.181 0.015 ± 0.003 6.1x 12.1x 64.3x 63.3x 11.8x 172.3x
0.5% 0.559 0.191 0.029 ± 0.007 19.3x 6.6x 33.3x 32.8x 6.1x 89.1xOptdigits

1% 1.403 0.196 0.044 ± 0.011 31.9x 4.5x 21.9x 21.6x 4.0x 58.7x

1 0.014 0.181 0.015 ± 0.003 0.9x 12.1x 58.7x 77.6x 12.2x 190.2x
0.1% 0.082 0.224 0.027 ± 0.006 3.0x 8.3x 32.6x 43.1x 6.8x 105.7x
0.5% 0.427 0.234 0.043 ± 0.009 9.9x 5.4x 20.5x 27.1x 4.3x 66.3xPendigits

1% 0.820 0.235 0.054 ± 0.011 15.2x 4.4x 16.3x 21.6x 3.4x 52.8x

1 0.033 0.102 0.017 ± 0.002 1.9x 6.0x 241.9x 249.3x 13.6x 381.2x
0.1% 0.551 0.167 0.039 ± 0.008 14.1x 4.3x 105.5x 108.7x 5.9x 166.2x
0.5% 2.768 0.187 0.070 ± 0.009 39.5x 2.7x 58.8x 60.5x 3.3x 92.6xLetter

1% 5.680 0.201 0.124 ± 0.014 45.8x 1.6x 33.2x 34.2x 1.9x 52.3x

1 0.090 1.321 0.290 ± 0.025 0.3x 4.6x 115.1x 64.0x 21.2x 10.6x
0.1% 21.408 6.391 0.658 ± 0.056 32.5x 9.7x 50.7x 28.2x 9.3x 4.7x
0.5% 105.688 7.765 1.051 ± 0.044 100.6x 7.4x 31.8x 17.7x 5.8x 2.9xCovtype

1% 214.188 8.088 1.732 ± 0.094 123.7x 4.7x 19.3x 10.7x 3.5x 1.8x

1 0.013 0.331 0.028 ± 0.005 0.5x 11.8x 2.6x 1.9x 19.0x 38.9x
0.1% 0.026 0.356 0.029 ± 0.006 0.9x 12.3x 2.5x 1.8x 18.4x 37.6x
0.5% 0.170 0.338 0.050 ± 0.007 3.4x 6.8x 1.5x 1.1x 10.7x 21.8xAbalone

1% 0.354 0.366 0.054 ± 0.009 6.6x 6.8x 1.4x 1.0x 9.9x 20.2x

1 0.014 0.239 0.018 ± 0.002 0.8x 13.3x 5.9x 4.0x 47.7x 44.1x
0.1% 0.057 0.262 0.027 ± 0.005 2.1x 9.7x 3.9x 2.7x 31.8x 29.4x
0.5% 0.296 0.282 0.044 ± 0.007 6.7x 6.4x 2.4x 1.6x 19.5x 18.0xWineQuality

1% 0.608 0.276 0.053 ± 0.008 11.5x 5.2x 2.0x 1.4x 16.2x 15.0x

and MUinGBDT (Lin et al., 2023); 3) training cost with popular GBDT libraries, such as XG-
Boost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), CatBoost (Dorogush et al., 2018) and
ThunderGBM (Wen et al., 2020).

Implementation Details. Experimental settings are detailed in Appendix D. We employ one thread
for all experiments to have a fair comparison, and run ThunderGBM on a NVIDIA A100 40GB
GPU, since it does not support only CPU (thu, 2018). Unless explicitly stated otherwise, our default
parameter settings are: M = 100, J = 20, B = 1024, |D′| = 0.1%× |Dtr|, α = 0.1, and σ = 0.1.

Table 2: Dataset specifications.
Dataset # Train # Test # Dim # Class

Adult 36,139 9,034 87 2
CreditInfo 105,000 45,000 10 2
SUSY 2,500,000 2,500,000 18 2
HIGGS 5,500,000 5,500,000 28 2
Optdigits 3,822 1,796 64 10
Pendigits 7,493 3,497 16 10
Letter 15,000 5,000 16 26
Covtype 290,506 290,506 54 7
Abalone 2,785 1,392 8 Reg.
WineQuality 4,332 2,165 12 Reg.

Datasets. We utilize 10 public datasets in the experiments.
The specifications of these datasets are presented in Table 2.
The smallest dataset, Optdigits, consists of 3,822 training in-
stances, while the largest dataset, HIGGS, contains a total of
11 million instances. The number of dimensions or features
varies between 8 and 87 across the datasets.

4.1 TRAINING TIME AND MEMORY OVERHEAD

Since the proposed DyGB stores statistical information during training, this impacts both the training
time and memory usage. Table 3 presents a report of the total training time and memory overhead.

Training Time. Table 3 shows the total training time across methods. DyGB is much faster than
OnlineGB, DeltaBoost, and XGBoost, and slightly slower than iGBDT. While slower than Light-
GBM on smaller datasets, it outperforms on larger ones like SUSY and HIGGS, with training times

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1.2: Total decremental learning time (seconds) and speedup v.s. baselines.

Dataset |D′|
Total Time (Seconds) Speedup v.s.

DeltaBoost MUinGBDT Ours DeltaBoost MUinGBDT XGBoost LightGBM CatBoost ThunderGBM
(GPU)

Adult

1 1.159 0.217 0.034 ± 0.001 34.1x 6.4x 40.6x 24.0x 45.1x 9.1x
0.1% 2.860 0.751 0.104 ± 0.003 27.5x 7.2x 13.3x 7.9x 14.7x 3.0x
0.5% 2.158 1.059 0.219 ± 0.008 9.9x 4.8x 6.3x 3.7x 7.0x 1.4x
1% 1.975 1.276 0.381 ± 0.014 5.2x 3.3x 3.6x 2.1x 4.0x 0.8x

CreditInfo

1 52.493 0.113 0.056 ± 0.005 937.4x 2.0x 45.0x 37.3x 61.6x 4,332.8x
0.1% 49.458 0.426 0.138 ± 0.010 358.4x 3.1x 18.3x 15.1x 25.0x 1,758.3x
0.5% 51.892 0.824 0.230 ± 0.022 225.6x 3.6x 11.0x 9.1x 15.0x 1,055.0x
1% 58.349 1.065 0.338 ± 0.036 172.6x 3.2x 7.5x 6.2x 10.2x 717.9x

SUSY

1 180.390 1.707 1.283 ± 0.159 140.6x 1.3x 74.5x 81.8x 84.9x 3.9x
0.1% 169.545 23.999 6.146 ± 0.642 27.6x 3.9x 15.6x 17.1x 17.7x 0.8x
0.5% 184.025 53.962 15.472 ± 1.122 11.9x 3.5x 6.2x 6.8x 7.0x 0.3x
1% 176.730 77.76 26.666 ± 1.241 6.6x 2.9x 3.6x 3.9x 4.1x 0.2x

HIGGS

1 OOM 4.967 3.223 ± 0.034 - 1.5x 69.7x 75.8x 94.2x 3.9x
0.1% OOM 55.265 19.402 ± 0.272 - 2.8x 11.6x 12.6x 15.6x 0.7x
0.5% OOM 152.095 49.419 ± 1.451 - 3.1x 4.5x 4.9x 6.1x 0.3x
1% OOM 251.224 79.418 ± 1.407 - 3.2x 2.8x 3.1x 3.8x 0.2x

Optdigits

1 0.286 0.015 0.010 ± 0.001 28.6x 1.5x 96.5x 95.0x 17.7x 258.4x
0.1% 0.182357 0.032 0.014 ± 0.002 13.0x 2.3x 68.9x 67.9x 12.6x 184.6x
0.5% 0.226884 0.067 0.030 ± 0.004 7.6x 2.2x 32.2x 31.7x 5.9x 86.1x
1% 0.187428 0.085 0.051 ± 0.005 3.7x 1.7x 18.9x 18.6x 3.5x 50.7x

Pendigits

1 0.171722 0.013 0.017 ± 0.001 10.1x 0.8x 51.8x 68.5x 10.8x 167.8x
0.1% 0.166171 0.022 0.025 ± 0.004 6.6x 0.9x 35.2x 46.6x 7.3x 114.1x
0.5% 0.181613 0.089 0.040 ± 0.007 4.5x 2.2x 22.0x 29.1x 4.6x 71.3x
1% 0.168511 0.129 0.055 ± 0.007 3.1x 2.3x 16.0x 21.2x 3.3x 51.9x

Letter

1 0.353374 0.017 0.012 ± 0.002 29.4x 1.4x 342.8x 353.2x 19.3x 540.0x
0.1% 0.35043 0.032 0.060 ± 0.009 5.8x 0.5x 68.6x 70.6x 3.9x 108.0x
0.5% 0.352653 0.066 0.104 ± 0.012 3.4x 0.6x 39.5x 40.8x 2.2x 62.3x
1% 0.43276 0.094 0.143 ± 0.013 3.0x 0.7x 28.8x 29.6x 1.6x 45.3x

Covtype

1 12.384 0.562 0.163 ± 0.013 76.0x 3.4x 204.7x 113.9x 37.7x 18.8x
0.1% 11.995 3.44 0.552 ± 0.040 21.7x 6.2x 60.5x 33.6x 11.1x 5.6x
0.5% 12.34 5.519 1.205 ± 0.047 10.2x 4.6x 27.7x 15.4x 5.1x 2.5x
1% 13.485 6.917 1.958 ± 0.174 6.9x 3.5x 17.0x 9.5x 3.1x 1.6x

Abalone

1 0.322 0.069 0.028 ± 0.004 11.5x 2.5x 2.6x 1.9x 19.0x 38.9x
0.1% 0.314 0.263 0.029 ± 0.005 10.8x 9.1x 2.5x 1.8x 18.4x 37.6x
0.5% 0.498 0.372 0.052 ± 0.005 9.6x 7.2x 1.4x 1.0x 10.3x 21.0x
1% 0.43 0.417 0.048 ± 0.007 9.0x 8.7x 1.5x 1.1x 11.1x 22.7x

WineQuality

1 0.354 0.022 0.015 ± 0.002 23.6x 1.5x 7.1x 4.8x 57.2x 52.9x
0.1% 0.299 0.196 0.025 ± 0.002 12.0x 7.8x 4.2x 2.9x 34.3x 31.8x
0.5% 0.492 0.298 0.040 ± 0.003 12.3x 7.5x 2.7x 1.8x 21.5x 19.9x
1% 0.435 0.333 0.051 ± 0.006 8.5x 6.5x 2.1x 1.4x 16.8x 15.6x

similar to MUinGBDT. Overall, DyGB offers achieves fast training while remaining competitive
with popular GBDT libraries.

Memory Overhead. Memory usage is crucial for practical applications. Most incremental and
decremental learning methods store auxiliary information or learned knowledge during training,
occupying significant memory. As shown in Table 3, our DyGB’s memory usage is significantly
lower than OnlineGB, iGBDT, and DeltaBoost, while OnlineGB and DeltaBoost encountered OOM.

4.2 DYNAMIC LEARNING TIME

Retraining from scratch can be time-consuming, but in some cases, the cost of dynamic learning
outweighs the benefits compared to retraining from scratch, making dynamic learning unnecessary.
Thus, evaluating the cost of dynamic learning is crucial for practical applications. Table 1.1 and
Table 1.2 shows the total dynamic learning time (s) and speedup vs. baselines, comparing OnlineGB
& iGBDT for incremental learning, and DeltaBoost & MUinGBDT for decremental learning.

In incremental learning, compared to OnlineGB and iGBDT, which also support incremental learn-
ing, adding a single data instance can be up to 261.3x faster, respectively. Furthermore, compared to
retraining from scratch on XGBoost, LightGBM, CatBoost, and ThunderGBM (GPU), it can achieve
speedups of up to 241.9x, 249.3x, 64.7x, and 2,185.9x, respectively. In decremental learning, delet-
ing a data is 937.4x and 9.1x faster than DeltaBoost and MUinGBDT, and 342.8x, 353.2x, 84.9x,
and 4,332.8x faster than XGBoost, LightGBM, CatBoost, and ThunderGBM (GPU).

Interestingly, we observed that when |D′| is small, decremental learning is faster than incremental
learning. However, as |D′| increases, incremental learning becomes faster than decremental learn-
ing. For decremental learning, the data to be removed has already been learned, and their derivatives
have been stored from training. However, the deleted data often exists discretely in memory. On

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparison of total training time (in seconds) and memory usage (total allocated, MB).
Method Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype Abalone WineQuality

Tr
ai

ni
ng

Ti
m

e
(S

ec
on

ds
) iGBDT 1.88 1.79 63.13 180.46 0.26 0.35 0.26 9.16 1.43 1.05

OnlineGB 6,736.18 330,746.80 OOM OOM 130.70 87.36 771.99 19,938.80 39.87 62.03
DeltaBoost 114.64 247.44 5,494.03 OOM 12.25 25.98 43.41 724.21 4.54 6.38

MU in GBDT 1.29 1.65 58.55 175.95 0.26 0.35 0.29 6.45 1.43 1.03
XGBoost 1.38 2.52 95.63 224.59 0.97 0.88 4.11 33.37 0.07 0.11

LightGBM 0.82 2.09 104.89 244.20 0.95 1.16 4.24 18.57 0.05 0.07
CatBoost 1.53 3.45 108.95 303.56 0.18 0.18 0.23 6.14 0.53 0.86

ThunderGBM (GPU) 0.31 242.64 5.05 12.66 2.58 2.85 6.48 3.07 1.09 0.79
Ours 2.67 1.82 64.94 177.10 0.28 0.37 0.35 9.34 0.58 0.43

M
em

or
y

U
sa

ge
(M

B
) iGBDT 1,153.13 2,192.13 31,320.40 31,724.40 2,161.20 3,917.61 3,370.38 18,381.10 1,767.23 1,281.08

OnlineGB 35,804.10 58,119.61 OOM OOM 7,493.97 6,488.75 13,067.75 19,699.62 582.97 345.83
DeltaBoost 86,750.73 584,955.00 780,328.40 OOM 6,707.68 2,580.91 8,374.99 40,485.53 1,043.78 710.42

MU in GBDT 570.78 1,095.70 16,576.50 34,380.90 1,080.49 1,959.02 1,805.22 9,637.65 1,711.02 1,194.82
XGBoost 335.88 249.97 2,210.68 7,479.52 227.18 189.95 292.77 854.45 185.16 208.09

LightGBM 233.61 278.54 2,847.48 9,830.89 248.49 234.41 252.26 836.46 27.95 11.81
CatBoost 83.02 129.09 1,503.93 3,090.55 29.41 36.64 99.79 595.27 40.97 27.91

ThunderGBM (GPU) 453.30 0.90 2,122.18 7,418.06 166.13 383.26 397.30 1,299.85 373.58 368.53
Ours 577.18 1,096.71 16,576.40 24,333.30 1,081.15 1,959.49 1,805.76 9,665.21 762.78 531.88

the other hand, for incremental learning, the data to be added are unseen, and derivatives need to
be computed during the incremental learning process. Nevertheless, we append the added data at
the end, ensuring that the added data are stored contiguously in memory. With a small |D′|, deriva-
tives can be reused in decremental learning, whereas derivatives need to be computed in incremental
learning. Therefore, decremental learning is faster. However, as |D′| grows, contiguous memory
access in incremental learning becomes faster, making it more efficient.

4.3 BATCH ADDITION & REMOVAL

5 50 100 50 5

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
st

 A
c
c

(%
)

Adult

Retrain (Ours)
Add & Delete (Ours)
LightGBM
XGBoost

100 50 5 50 100

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
st

 A
cc

 (
%

)

Adult

Retrain (Ours)
Delete & Add (Ours)
LightGBM
XGBoost

5 50 100 50 5

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
st

 A
cc

 (
%

)

Letter

Retrain (Ours)
Add & Delete (Ours)
LightGBM
XGBoost

100 50 5 50 100

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
st

 A
cc

 (
%

)

Letter

Retrain (Ours)
Delete & Add (Ours)
LightGBM
XGBoost

5 50 100 50 5

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
st

 A
cc

 (
%

)

Optdigits

Retrain (Ours)
Add & Delete (Ours)
LightGBM
XGBoost

100 50 5 50 100

Trained Data Rate (%)

70

75

80

85

90

95

100

T
e
st

 A
cc

 (
%

)

Optdigits

Retrain (Ours)
Delete & Add (Ours)
LightGBM
XGBoost

Figure 3: The impact of tuning data size on the
number of retrained nodes for each iteration in in-
cremental learning.

In the traditional setting, GBDT models must
be trained in one step with access to all train-
ing data, and they cannot be modified after
training – data cannot be added or removed.
In our proposed dynamic learning framework,
DyGB support both incremental and decremen-
tal learning, allowing continual batch learning
(data addition) and batch removal, similar to
mini-batch learning in DNNs.

We conducted experiments on continual batch
addition and removal by dividing the data
into 20 equal parts, each with 5%|Dtr|. Fig-
ure 3 (left) shows a GBDT model incremen-
tally trained from 5% to 100% of the data, then
decrementally reduced back to 5%. We re-
trained models for comparison. Figure 3 (right)
depicts a model decrementally reduced from
100% to 5%, then incrementally trained back
to 100%. We also report the accuracy of XG-
Boost and LightGBM. The overlapping curves
highlight DyGB’s effectiveness. Due to space
limit, results are shown for three datasets.

4.4 VERIFYING BY BACKDOOR ATTACKING

Backdoor attacks in machine learning refers to a type of malicious manipulation of a trained model,
which is designed to modify the model’s behavior or output when it encounters a specific, predefined
trigger input pattern (Salem et al., 2022; Saha et al., 2020). In this evaluation, we demonstrate that
DyGB can successfully inject and remove backdoor in a well-trained, clean GBDT model using
incremental learning and decremental learning. The details of backdoor attack experiments are
provided in Appendix L.

In this evaluation, we randomly selected a subset of the training dataset and injected triggers into it
to create a backdoor training dataset, leaving the rest as the clean training dataset. The test dataset
was similarly divided into backdoor and clean subsets. We report the accuracy for clean test dataset

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 4: Accuracy for clean test dataset and attack successful rate for backdoor test dataset.

Dataset Train Clean Train Backdoor Add Backdoor Remove Backdoor
Clean Backdoor Clean Backdoor Clean Backdoor Clean Backdoor

Optdigits 96.21% 8.91% 96.27% 100% 95.94% 100% 95.82% 9.69%
Pendigits 96.11% 3.97% 96.43% 100% 96.48% 100% 96.51% 5.55%

Letter 93.9% 1.38% 94.08% 100% 93.62% 100% 93.78% 3.48%
Covtype 78.4% 47.83% 78.32% 100% 78.38% 100% 78.38% 51.71%

and attack successful rate (ASR) for backdoor test dataset in Table 4. Initially, we trained a model
on the clean training data (“Train Clean”), which achieved high accuracy on the clean test dataset
but low ASR on the backdoor test dataset. We then incrementally add the backdoor training data
with triggers in to the model (“Add Backdoor”). After incremental learning, the model attained
100% ASR on the backdoor test dataset, demonstrating effective learning of the backdoor data.
For comparison, training a model on the combined clean and backdoor training datasets (“Train
Backdoor”) yielded similar results to “Add Backdoor”. Finally, we removed the backdoor data
using decremental learning (“Remove Backdoor”), reducing the ASR to the level of the clean model
and confirming the successful removal of backdoor data.

4.5 ADDITIONAL EVALUATIONS

To further validate our method’s effectiveness and efficiency, we have included comprehensive ad-
ditional evaluations in the Appendix due to page limitations:

• Time Complexity Analysis: We analyze the computational complexity of our proposed frame-
work compared to retraining from scratch in Appendix H.
• Test Error Rate: We compare the test error rate between our proposed method and several base-
line approaches, with detailed results provided in Appendix I.
• Real-world Time Series Evaluation: To confirm DyGB’s performance on real-world datasets
with varying data distributions, we report the experiments on two time series datasets in Appendix J.
• Extremely High-dimensional Datasets: To confirm the scalability of DyGB, we report the ex-
periments for two extremely high-dimensional datasets in Appendix O.
• Model Functional Similarity: We evaluate the similarity between the model learned by dynamic
learning and the one retrained from scratch in Appendix K.
• Approximation Error of Leaf Scores: Since DyGB might use the outdated derivatives in the
gain computation, to assess the effect of outdated derivatives, we report the approximation error of
leaf scores in Appendix Q.
• Different Base Learners: We include the experiments on various base learners in Appendix N.
• Recommender System: We report a practical use case of recommender system in Appendix R.
• Data Addition with More Classes: DyGB supports incremental learning for previously unseen
classes. Detailed results and analysis are provided in Appendix P.
• Membership Inference Attack: We also confirm the effectiveness of our method on
adding/deleting data by membership inference attack (MIA) in Appendix M.
• Ablation Study: We report the detailed ablation study results for different hyper-parameter set-
tings and their effects in Appendix S.
• Impact of Sub-optimal Splits: To empirically validate the safety of our tolerance mechanism and
the robustness of accuracy against sub-optimal splits, we report an experiment in Appendix T.

5 CONCLUSION

In this paper, we propose DyGB, an in-place dynamic learning framework for GBDT that support
incremental and decremental learning: it enables us to dynamically add a new dataset to the model
and delete a learned dataset from the model. It support continual batch addition/removal, and data
additional with unseen classes. We present a collection of optimizations on DyGB to reduce the
cost of dynamic learning. Adding or deleting a small fraction of data is substantially faster than
retraining from scratch. Our extensive experimental results confirm the effectiveness and efficiency
of DyGB and optimizations – successfully adding or deleting data while maintaining accuracy.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research proposes a framework for dynamic gradient boosting decision trees that allows effi-
cient addition and removal of data. The work does not involve human subjects, sensitive personal
data, or proprietary datasets; all experiments are conducted using publicly available benchmark
datasets. We carefully follow applicable data usage policies to ensure compliance with privacy and
licensing requirements.

A potential ethical concern is the possibility that dynamic learning techniques could be misused for
malicious purposes, such as unauthorized data manipulation or backdoor insertion. To address this,
our study explicitly evaluates such scenarios to raise awareness of these risks and to demonstrate
how our framework can also enable secure data removal when necessary. We affirm that this work
is intended for advancing trustworthy and responsible machine learning research, and we disclose
no conflicts of interest or external influences.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure that the findings of this paper are reproducible. All datasets
used are publicly available, and their details are clearly specified. The methods are described at both
the conceptual and algorithmic levels, including hyperparameters and evaluation protocols.

For transparency, we provide an anonymized implementation of the proposed framework, along with
scripts and instructions to reproduce the reported experiments. Together with the detailed descrip-
tions in the main paper and supplementary materials, this ensures that independent researchers can
reliably replicate our results.

REFERENCES

Online boosting. https://github.com/charliermarsh/online_boosting, 2014.
URL https://github.com/charliermarsh/online_boosting.

Global temperatures. https://www.kaggle.com/datasets/berkeleyearth/
climate-change-earth-surface-temperature-data, 2017.
URL https://www.kaggle.com/datasets/berkeleyearth/
climate-change-earth-surface-temperature-data.

Thundergbm faq. https://github.com/Xtra-Computing/thundergbm/blob/
master/docs/faq.md, 2018. URL https://github.com/Xtra-Computing/
thundergbm/blob/master/docs/faq.md.

Web traffic. https://www.kaggle.com/datasets/raminhuseyn/
web-traffic-time-series-dataset, 2024. URL https://www.kaggle.
com/datasets/raminhuseyn/web-traffic-time-series-dataset.

Yossi Adi, Carsten Baum, Moustapha Cissé, Benny Pinkas, and Joseph Keshet. Turning your weak-
ness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX Secu-
rity Symposium (USENIX Security), pp. 1615–1631, Baltimore, MD, 2018.

Boris Babenko, Ming-Hsuan Yang, and Serge J. Belongie. A family of online boosting algorithms.
In 12th IEEE International Conference on Computer Vision Workshops (ICCV), pp. 1346–1353,
Kyoto, Japan, 2009.

Alina Beygelzimer, Elad Hazan, Satyen Kale, and Haipeng Luo. Online gradient boosting. In
Advances in Neural Information Processing Systems (NIPS), pp. 2458–2466, Montreal, Quebec,
Canada, 2015a.

Alina Beygelzimer, Satyen Kale, and Haipeng Luo. Optimal and adaptive algorithms for online
boosting. In Proceedings of the 32nd International Conference on Machine Learning (ICML),
volume 37 of JMLR Workshop and Conference Proceedings, pp. 2323–2331, Lille, France, 2015b.

Gérard Biau, Benoı̂t Cadre, and Laurent Rouvı̀ère. Accelerated gradient boosting. Mach. Learn.,
108(6):971–992, 2019.

11

https://github.com/charliermarsh/online_boosting
https://github.com/charliermarsh/online_boosting
https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
https://github.com/Xtra-Computing/thundergbm/blob/master/docs/faq.md
https://github.com/Xtra-Computing/thundergbm/blob/master/docs/faq.md
https://github.com/Xtra-Computing/thundergbm/blob/master/docs/faq.md
https://github.com/Xtra-Computing/thundergbm/blob/master/docs/faq.md
https://www.kaggle.com/datasets/raminhuseyn/web-traffic-time-series-dataset
https://www.kaggle.com/datasets/raminhuseyn/web-traffic-time-series-dataset
https://www.kaggle.com/datasets/raminhuseyn/web-traffic-time-series-dataset
https://www.kaggle.com/datasets/raminhuseyn/web-traffic-time-series-dataset

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 42nd IEEE
Symposium on Security and Privacy (SP), pp. 141–159, San Francisco, CA, 2021.

Jonathan Brophy and Daniel Lowd. DART: data addition and removal trees. CoRR, abs/2009.05567,
2020.

Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests. In Proceedings of
the 38th International Conference on Machine Learning (ICML), volume 139 of Proceedings of
Machine Learning Research, pp. 1092–1104, Virtual Event, 2021.

Pedro G. Campos, Fernando Dı́ez, and Iván Cantador. Time-aware recommender systems: a com-
prehensive survey and analysis of existing evaluation protocols. User Model. User Adapt. Inter-
act., 24(1-2):67–119, 2014.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE Symposium on Security and Privacy (SP), pp. 463–480, San Jose, CA, 2015.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramèr. Mem-
bership inference attacks from first principles. In 43rd IEEE Symposium on Security and Privacy,
SP, pp. 1897–1914, San Francisco, CA, 2022.

Gert Cauwenberghs and Tomaso A. Poggio. Incremental and decremental support vector machine
learning. In Advances in Neural Information Processing Systems (NIPS), pp. 409–415, Denver,
CO, 2000.

Min Chen, Weizhuo Gao, Gaoyang Liu, Kai Peng, and Chen Wang. Boundary unlearning: Rapid
forgetting of deep networks via shifting the decision boundary. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7766–7775, Vancouver,
BC, Canada, 2023.

Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. An online boosting algorithm with theoretical
justifications. In Proceedings of the 29th International Conference on Machine Learning (ICML),
Edinburgh, Scotland, UK, 2012.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp.
785–794, San Francisco, CA, 2016.

Yuantao Chen, Jie Xiong, Weihong Xu, and Jingwen Zuo. A novel online incremental and decremen-
tal learning algorithm based on variable support vector machine. Clust. Comput., 22:7435–7445,
2019.

Christopher A. Choquette-Choo, Florian Tramèr, Nicholas Carlini, and Nicolas Papernot. Label-
only membership inference attacks. In Proceedings of the 38th International Conference on
Machine Learning, ICML, volume 139 of Proceedings of Machine Learning Research, pp. 1964–
1974, Virtual Event, 2021.

Aleksandr Dekhovich, David MJ Tax, Marcel HF Sluiter, and Miguel A Bessa. Continual prune-
and-select: class-incremental learning with specialized subnetworks. Applied Intelligence, pp.
1–16, 2023.

Robert Dilworth. Privacy preservation through practical machine unlearning. CoRR,
abs/2502.10635, 2025.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting with
categorical features support. CoRR, abs/1810.11363, 2018.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189–1232, 2001.

Jerome H. Friedman, Trevor J. Hastie, and Robert Tibshirani. Additive logistic regression: a statis-
tical view of boosting. The Annals of Statistics, 28(2):337–407, 2000.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jerome H. Friedman, Trevor J. Hastie, and Robert Tibshirani. Response to evidence contrary to the
statistical view of boosting. Journal of Machine Learning Research, 9:175–180, 2008.

Antonio Ginart, Melody Y. Guan, Gregory Valiant, and James Zou. Making AI forget you: Data
deletion in machine learning. In Advances in Neural Information Processing Systems (NeurIPS),
pp. 3513–3526, Vancouver, BC, Canada, 2019.

Sergiu Gordea and Markus Zanker. Time filtering for better recommendations with small and sparse
rating matrices. In Web Information Systems Engineering - WISE 2007, 8th International Con-
ference on Web Information Systems Engineering, Nancy, France, December 3-7, 2007, Proceed-
ings, volume 4831 of Lecture Notes in Computer Science, pp. 171–183, 2007.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training ima-
genet in 1 hour. CoRR, abs/1706.02677, 2017.

Jiangpeng He. Gradient reweighting: Towards imbalanced class-incremental learning. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR, pp. 16668–16677, Seattle, WA,
2024.

Hanzhang Hu, Wen Sun, Arun Venkatraman, Martial Hebert, and J. Andrew Bagnell. Gradient
boosting on stochastic data streams. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (AISTATS), volume 54 of Proceedings of Machine Learning
Research, pp. 595–603, Fort Lauderdale, FL, 2017.

Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S. Yu, and Xuyun Zhang. Mem-
bership inference attacks on machine learning: A survey. ACM Comput. Surv., 54(11s):235:1–
235:37, 2022.

Muhammad Awais Hussain, Chun-Lin Lee, and Tsung-Han Tsai. An efficient incremental learning
algorithm for sound classification. IEEE Multim., 30(1):84–90, 2023.

Masayuki Karasuyama and Ichiro Takeuchi. Multiple incremental decremental learning of support
vector machines. In Advances in Neural Information Processing Systems (NIPS), pp. 907–915,
Vancouver, Canada, 2009.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Sys-
tems (NIPS), pp. 3146–3154, Long Beach, CA, 2017.

Ilja Kuzborskij, Francesco Orabona, and Barbara Caputo. From N to N+1: multiclass transfer
incremental learning. In 2013 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3358–3365, Portland, OR, 2013.

Christian Leistner, Amir Saffari, Peter M. Roth, and Horst Bischof. On robustness of on-line boost-
ing - a competitive study. In 12th IEEE International Conference on Computer Vision Workshops,
(ICCV) Workshops, pp. 1362–1369, Kyoto, Japan, 2009.

Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J. Smola. Efficient mini-batch training for
stochastic optimization. In The 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 661–670, New York, NY, 2014.

Ping Li. Robust logitboost and adaptive base class (abc) logitboost. In Proceedings of the Twenty-
Sixth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI), pp. 302–311,
Catalina Island, CA, 2010.

Ping Li and Weijie Zhao. Package for fast abc-boost. CoRR, abs/2207.08770, 2022.

Ping Li, Christopher J. C. Burges, and Qiang Wu. Mcrank: Learning to rank using multiple classi-
fication and gradient boosting. In Proceedings of the Twenty-First Annual Conference on Neural
Information Processing Systems, pp. 897–904, Vancouver, British Columbia, Canada, 2007.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Shuhao Li, Yajie Wang, Yuanzhang Li, and Yu-an Tan. l-leaks: Membership inference attacks with
logits. CoRR, abs/2205.06469, 2022.

Huawei Lin, Jun Woo Chung, Yingjie Lao, and Weijie Zhao. Machine unlearning in gradient boost-
ing decision trees. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD), pp. 1374–1383, Long Beach, CA, 2023.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang
Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo,
and Yang Liu. Rethinking machine unlearning for large language models. Nat. Mac. Intell., 7(2):
181–194, 2025.

Xiaoming Liu and Ting Yu. Gradient feature selection for online boosting. In IEEE 11th Interna-
tional Conference on Computer Vision (ICCV), pp. 1–8, Rio de Janeiro, Brazil, 2007.

Pawel Matuszyk, João Vinagre, Myra Spiliopoulou, Alı́pio Mário Jorge, and João Gama. Forgetting
methods for incremental matrix factorization in recommender systems. In Proceedings of the
30th Annual ACM Symposium on Applied Computing, Salamanca, Spain, April 13-17, 2015, pp.
947–953, 2015.

Pawel Matuszyk, João Vinagre, Myra Spiliopoulou, Alı́pio Mário Jorge, and João Gama. Forgetting
techniques for stream-based matrix factorization in recommender systems. Knowl. Inf. Syst., 55
(2):275–304, 2018.

Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin,
and Quoc Viet Hung Nguyen. A survey of machine unlearning. CoRR, abs/2209.02299, 2022.

Robi Polikar, L. Upda, S. S. Upda, and Vasant G. Honavar. Learn++: an incremental learning
algorithm for supervised neural networks. IEEE Trans. Syst. Man Cybern. Part C, 31(4):497–
508, 2001.

Samuele Poppi, Sara Sarto, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Multi-class
explainable unlearning for image classification via weight filtering. CoRR, abs/2304.02049, 2023.

Haidi Rao, Xianzhang Shi, Ahoussou Kouassi Rodrigue, Juanjuan Feng, Yingchun Xia, Mohamed
Elhoseny, Xiaohui Yuan, and Lichuan Gu. Feature selection based on artificial bee colony and
gradient boosting decision tree. Appl. Soft Comput., 74:634–642, 2019.

Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747,
2016.

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor at-
tacks. In The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), pp. 11957–11965,
New York, NY, 2020.

Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang. Dynamic backdoor attacks
against machine learning models. In 7th IEEE European Symposium on Security and Privacy,
EuroS&P, pp. 703–718, Genoa, Italy, 2022. IEEE.

Sebastian Schelter, Stefan Grafberger, and Ted Dunning. Hedgecut: Maintaining randomised trees
for low-latency machine unlearning. In SIGMOD, pp. 1545–1557, Virtual Event, China, 2021.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 18075–18086, Virtual, 2021.

Tianhao Shi, Yang Zhang, Zhijian Xu, Chong Chen, Fuli Feng, Xiangnan He, and Qi Tian. Prelim-
inary study on incremental learning for large language model-based recommender systems. In
Proceedings of the 33rd ACM International Conference on Information and Knowledge Manage-
ment, CIKM, pp. 4051–4055, Boise, ID, 2024.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy, SP,
pp. 3–18, San Jose, CA, 2017.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Oleg Sudakov, Evgeny Burnaev, and Dmitry A. Koroteev. Driving digital rock towards machine
learning: Predicting permeability with gradient boosting and deep neural networks. Comput.
Geosci., 127:91–98, 2019.

Ayush K. Tarun, Vikram S. Chundawat, Murari Mandal, and Mohan S. Kankanhalli. Fast yet effec-
tive machine unlearning. CoRR, abs/2111.08947, 2021.

Rozita Tavakolian, Mohammad Taghi Hamidi Beheshti, and Nasrollah Moghaddam Charkari. An
improved recommender system based on forgetting mechanism for user interest-drifting. Inter-
national Journal of Information and Communication Technology Research, 4(4):69–77, 2012.

Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. On the necessity of auditable
algorithmic definitions for machine unlearning. In 31st USENIX Security Symposium (USENIX
Security), pp. 4007–4022, Boston, MA, 2022.

Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, and Prayag Tiwari. A survey on few-shot
class-incremental learning. Neural Networks, 169:307–324, 2024.

Boris van Breugel, Hao Sun, Zhaozhi Qian, and Mihaela van der Schaar. Membership inference
attacks against synthetic data through overfitting detection. In International Conference on Arti-
ficial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research, pp.
3493–3514, Valencia, Spain, 2023.

Gido M. van de Ven, Tinne Tuytelaars, and Andreas S. Tolias. Three types of incremental learning.
Nat. Mac. Intell., 4(12):1185–1197, 2022.

Aiping Wang, Guowei Wan, Zhi-Quan Cheng, and Sikun Li. An incremental extremely random
forest classifier for online learning and tracking. In Proceedings of the International Conference
on Image Processing (ICIP), pp. 1449–1452, Cairo, Egypt, 2009.

Shurong Wang, Zhuoyang Shen, Xinbao Qiao, Tongning Zhang, and Meng Zhang. Dynfrs: An
efficient framework for machine unlearning in random forest. In The Thirteenth International
Conference on Learning Representations, ICLR, Singapore, 2025.

Weiqi Wang, Zhiyi Tian, and Shui Yu. Machine unlearning: A comprehensive survey. CoRR,
abs/2405.07406, 2024.

Yuening Wang, Yingxue Zhang, Antonios Valkanas, Ruiming Tang, Chen Ma, Jianye Hao, and
Mark Coates. Structure aware incremental learning with personalized imitation weights for rec-
ommender systems. In Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023,
Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI, pp. 4711–
4719, Washington, DC, 2023.

Zeyi Wen, Hanfeng Liu, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen. Thundergbm: Fast
gbdts and random forests on gpus. J. Mach. Learn. Res., 21:108:1–108:5, 2020.

Zhaomin Wu, Junhui Zhu, Qinbin Li, and Bingsheng He. Deltaboost: Gradient boosting decision
trees with efficient machine unlearning. In Proceedings of the ACM on Management of Data
(SIGMOD), volume 1, pp. 168:1–168:26, Seattle, WA, 2023.

Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, and Philip S. Yu. Machine unlearning: A
survey. ACM Comput. Surv., 56(1):9:1–9:36, 2024.

Hongyang Yan, Shuhao Li, Yajie Wang, Yaoyuan Zhang, Kashif Sharif, Haibo Hu, and Yuanzhang
Li. Membership inference attacks against deep learning models via logits distribution. IEEE
Trans. Dependable Secur. Comput., 20(5):3799–3808, 2023.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learn-
ing: Analyzing the connection to overfitting. In 31st IEEE Computer Security Foundations Sym-
posium, CSF, pp. 268–282, Oxford, United Kingdom, 2018.

Taebok Yoon, Seunghoon Lee, Kwang ho Yoon, Dongmoon Kim, and Jee-Hyong Lee. A person-
alized music recommendation system with a time-weighted clustering. In 2008 4th International
IEEE Conference Intelligent Systems, volume 2, pp. 10–48. IEEE, 2008.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Chongsheng Zhang, Yuan Zhang, Xianjin Shi, George Almpanidis, Gaojuan Fan, and Xiajiong Shen.
On incremental learning for gradient boosting decision trees. Neural Process. Lett., 50(1):957–
987, 2019.

Jian Zhang, Bowen Li, Jie Li, and Chentao Wu. Securecut: Federated gradient boosting decision
trees with efficient machine unlearning. CoRR, abs/2311.13174, 2023.

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma, Shiliang Pu, and De-Chuan Zhan. Forward
compatible few-shot class-incremental learning. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 9036–9046, New Orleans, LA, 2022.

APPENDIX

Table of Contents

• A The Use of Large Language Models . 17

• B Related Work . 17
– Incremental Learning
– Decremental Learning

• C Feature Discretization . 17

• D Experiment Setting . 18

• E Framework Overview . 19

• F Split Candidates Sampling: Theoretical Analysis .19
– Definition 1 (Distance Robust)
– Lemma 1 (Gain Perturbation Bound)
– Definition 2 (Robustness Split)
– Lemma 2 (Upper Bound on the Correction Term C)
– Proposition 1 (Margin Condition for Robustness)

• G Update without Touching Training Data . 24

• H Time Complexity . 24

• I Test Error Rate . 25

• J Real-world Time Series Evaluation . 25

• K Model Functional Similarity . 27
– Definition 3 (Functional Similarity)

• L Backdoor Attacking . 27

• M Membership Inference Attack (MIA) . 28

• N Different Base Learner . 28

• O Extremely High-dimensional Datasets . 29

• P Data Addition with More Classes .29

• Q Approximation Error of Leaf Scores .30

• R DyGB on Recommender Systems . 31

• S Ablation Study . 34
– Size of Dynamic Dataset |D′|.
– Split Random Sampling
– Split Robustness Tolerance
– Number of Bins and Leaves
– Number of Iterations
– Ablation Study Summary

• T Impact of Sub-optimal Splits: Stochastic Splitting Experiment . 37

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used in the preparation of this paper. Specifically, LLMs
were employed to aid and polish the writing, helping to refine grammar, clarity, and readability of
the text. No part of the research ideation, experimental design, implementation, or analysis relied
on LLMs. The responsibility for all content presented in this paper rests fully with the authors.

B RELATED WORK

Incremental Learning is a technique in machine learning that involves the gradual integration of
new data into an existing model, continuously learning from the latest data to ensure performance
on new data (van de Ven et al., 2022). It has been a open problem in machine learning, and has
been studied in convolutional neural network (CNN) (Polikar et al., 2001; Kuzborskij et al., 2013;
Zhou et al., 2022), DNN (Hussain et al., 2023; Dekhovich et al., 2023), SVM (Chen et al., 2019;
Cauwenberghs & Poggio, 2000) and RF (Wang et al., 2009; Brophy & Lowd, 2020). In gradient
boosting, iGBDT offers incremental updates (Zhang et al., 2019), while other methods (Beygelzimer
et al., 2015a; Babenko et al., 2009) extend GB to dynamic learning. However, these methods do not
support removing data.

Decremental Learning allows for the removal of trained data and eliminates their influence on
the model, which can be used to delete outdated or privacy-sensitive data (Bourtoule et al., 2021;
Nguyen et al., 2022; Sekhari et al., 2021; Xu et al., 2024). It has been researched in various models,
including CNN (Poppi et al., 2023; Tarun et al., 2021), DNN (Chen et al., 2023; Thudi et al., 2022),
SVM (Karasuyama & Takeuchi, 2009; Cauwenberghs & Poggio, 2000), Naive Bayes (Cao & Yang,
2015), K-means (Ginart et al., 2019), RF (Schelter et al., 2021; Brophy & Lowd, 2021), and GB (Wu
et al., 2023; Zhang et al., 2023). In random forests, DaRE (Brophy & Lowd, 2021) and a decremental
learning algorithm (Schelter et al., 2021) are proposed for data removal with minimal retraining.

However, in GBDT, trees in subsequent iterations rely on residuals from previous iterations, making
decremental learning more complicated. DeltaBoost Wu et al. (2023) simplified the dependency for
data deletion by dividing the dataset into disjoint sub-datasets, while a recent study Lin et al. (2023)
proposed an efficient unlearning framework without simplification, utilizing auxiliary information to
reduce unlearning time. Although effective, its performance on large datasets remains unsatisfactory.

C FEATURE DISCRETIZATION.

The preprocessing step of feature discretization plays a crucial role in simplifying the implemen-
tation of Eq. equation 5 and reducing the number of splits that need to be evaluated. This process
involves sorting the data points based on their feature values and assigning them to bins, taking into
account the distribution of the data, as shown in Figure 4 and Algorithm 4.

Our implementation explicitly adopts the adaptive histogram construction method from the Fast
ABC-Boost package (Li & Zhao, 2022), utilizing its specific adaptive bin-width doubling mech-
anism (Li et al., 2007). While this approach shares the foundational histogram-based philosophy
found in LightGBM (Ke et al., 2017) and other baselines, it dynamically adjusts granularity to fit
the data distribution.

As detailed in Algorithm 4, the process starts with a small initial bin-width (e.g., 10−10) and a
predetermined maximum number of bins B (e.g., 1024). It assigns bin numbers to the data points
from the smallest to the largest, considering the presence of data points in each bin.

0 1 2 3 4 5 6 7

Figure 4: Feature discretization example. For a feature, all its values are grouped into 8 bins, i.e.,
the original feature values become integers between 0 to 7 assigned to the nearest bin.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 4 Discretize Feature
1: v{1..N} = sorted feature values, bin width = 10−10

2: while true do
3: cnt = 0, curr idx = 0
4: for i = 1 to N do
5: if vi − vcurr idx > bin width then
6: cnt = cnt + 1, cur idx = i
7: if cnt > B then
8: bin width = bin width ∗ 2
9: break

10: end if
11: end if
12: v′i = cnt
13: end for
14: if cnt <= B then break
15: end while
16: return v′ as discretized feature values

In cases where the number of required bins surpasses the maximum limit, the bin-width is doubled,
and the entire process is repeated. This adaptive discretization approach proves particularly effec-
tive for boosted tree methods, ensuring that feature values are mapped to integers within a specific
range. Consequently, after the discretization mapping is established, each feature value is assigned
to the nearest bin. After this discretization preprocessing, all feature values are integers within
{0, 1, 2, · · · , B − 1}.

The advantage of this discretization technique becomes evident during the gain searching step. In-
stead of iterating over all N feature values, the algorithm only needs to consider a maximum of
B splits for each feature. This substantial reduction in the number of splits to evaluate leads to a
significant decrease in the computational cost, transforming it from being dependent on the dataset
size N to a manageable constant B.

Table 5: Hyper-parameters for experiments. (∗ indicates the parameter is default or recommended
from original sources).

Methods Learning Rate Iterations Max Leaf Num Depth Num Bins Others

OnlineGB - 100 - - - The tree grown automatically.
iGBDT 0.1 100 - 5 -

DeltaBoost 1* 100 - 5 100* All other parameters remain default
MU in GBDT 0.1* 100 20 - 1024* update freq = 20, sample rate = 0.1, Lr = 0

XGBoost 0.1 100 20 - 128
LightGBM 0.1 100 20 - 128
CatBoost 0.1 100 20 - -

ThunderGMB (GPU) 0.1 100 - 5 128 A100 40GB GPU * 1
Ours 1 100 20 - 1024 Sampling Rate = 0.1, Robustness Tolerance = 0.1

D EXPERIMENT SETTING

The experiments are performed on a Linux computing node running Red Hat Enterprise Linux 7,
utilizing kernel version 5.10.155-1.el7.x86 64. The CPU employed was an Intel(R) Xeon(R) Gold
6150 CPU operating at a clock speed of 2.70GHz, featuring 18 cores and 36 threads. The system was
equipped with a total memory capacity of 376 GB. We have built a prototype of our dynamic learning
framework using C++11. The code is compiled with g++-11.2.0, utilizing the “O3” optimization.

Hyper-parameter Configuration. To ensure a fair and reproducible comparison, we detail the
hyper-parameter settings for all methods in Table 5. Unless explicitly stated otherwise, our default
parameter settings are: J = 20, B = 1024, |D′| = 0.1%×|Dtr|, α = 0.1, and σ = 0.1. For baseline
methods, including OnlineGB, iGBDT, DeltaBoost, MU in GBDT, XGBoost, LightGBM, CatBoost,
and ThunderGBM, we adopted either their default parameters or the specific values recommended
in their respective original papers (denoted by ∗ in the table). Specifically, for standard GBDT
libraries (XGBoost, LightGBM, ThunderGBM), we set the max bin size to 128 to optimize their
training efficiency as per common practice, while maintaining a higher resolution (B = 1024)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

for our method to demonstrate its efficiency even under more demanding discretization. For our
DyGB’s incremental and decremental learning scenarios, we additionally run five independent trials
and report the mean and variance to ensure statistical robustness. We report the ablation study for
different settings in Appendix S.

E FRAMEWORK OVERVIEW

Figure 1 is a visual example of incremental and decremental learning of our proposed frame-
work. Figure 1(b) is one tree of the GBDT model and has been well-trained on dataset Dtr =
{0, 1, 2, 3..., 19}. Every rectangle in the tree represents a node, and the labels inside indicate the
splitting criteria. For instance, if the condition Age < 42 is met, the left-child node is followed;
otherwise, the right-child node is chosen. The numbers within the rectangles represent the predic-
tion value of the terminal nodes. Please note that here the feature 42 is a discretized value, instead
of the raw feature. Our dynamic learning framework has the capability to not only incrementally
learn a new dataset Din, but also decrementally delete a learned dataset Dde ⊆ Dtr.

Example for Incremental Learning. Here, we would like to add a new dataset D′ = Din =
{20, 21, 22, 23} to the original model, so we will call the function of incremental learning. |d|
denotes how many data of the D′ reach this node. As shown in Algorithm 3, we traverse all non-
terminal nodes (non-leaf nodes) in the tree at first. For example, we are going to test the node of
Loan < 31. Its current best split is Loan < 31. One of the new data instances {22} reaches
this node. After adding this data and recomputing the gain value, Loan < 31 is still best split with
the greatest gain value of 26.937, and meets s = s′, as shown in Figure 1(a). Thus, we can keep
this split and do not need to do any changes for this node. Then we are going to test the node of
Auto < 57 and the remaining three new data instances {20, 21, 23} reach this node. As shown
in the left side of Figure 1(c), we recompute the gain value for this node, but the best split changes
to Income < 5. Therefore, we retrain the pending sub-tree rooted on Auto < 57 after adding
new data instances to obtain a new sub-tree rooted on Income < 5. Then we replace the pending
sub-tree with the new one. Finally, we update the prediction value on terminal nodes (leaf nodes).
For example, 0.4322 is updated to 0.2735 because of adding data {22}; −0.1252 has no change
because the data of this node are still the same.

Example for Decremental Learning. Similar to incremental learning, we would like to delete a
learned dataset Dde = {2, 7, 11, 13} and its effect on the model. The best split of node Loan < 31
does not change, so we keep the split. For Auto < 57, as shown in the right side of Figure 1(c),
after removing data instances {2, 11, 13}, the best split changes from Auto < 57 to Credit <
24, so we retrain the pending sub-tree rooted on Loan < 31 and then replace it with the new
sub-tree. For terminal nodes, the prediction value changes if any data reaching this node is removed.

F SPLIT CANDIDATES SAMPLING: THEORETICAL ANALYSIS

All symbols used in the theoretical analysis are defined in Table 6.

F.1 ROBUSTNESS VIA DISTANCE AND GAIN MARGIN

Definition 1 (Distance Robust). Let s be the current best split and let λ = |D′|/|Dtr| denote the
dynamic update ratio. Let N∆ be the distance between s and its nearest alternative split t. We say
that s is distance robust if

N∆ > λGain(s)Cs, (9)

where the node structural coefficient Cs is defined as

Cs :=

(
1

Nls

(∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+
1

Nrs

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

)−1

. (10)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Notation table used throughout the theoretical analysis.

Symbol Meaning
Dtr Training dataset before dynamic update
D′ Added/removed subset during dynamic update
λ = |D′|/|Dtr| Dynamic update ratio
s Current best split candidate
t A competing split under the same feature
N∆ = ∥t− s∥ Distance between split s and nearest competitor t
ls, rs Left / right child regions of split s
Nls, Nrs Number of samples in ls and rs
gi,k, hi,k First-order and second-order gradients of sample i at iteration k
GL =

∑
xi∈ls

gi,k Gradient sum of left child
GR =

∑
xi∈rs

gi,k Gradient sum of right child
HL =

∑
xi∈ls

hi,k Hessian sum of left child
HR =

∑
xi∈rs

hi,k Hessian sum of right child
Gain(s) Split gain of split s
Gain′(s) Split gain after dynamic update
nls, nrs Number of removed samples in ls and rs
gls, hls Average gradient / Hessian in ls
α Split sampling rate
σ Robustness tolerance threshold

Proof. In decremental learning, for a fixed λ, we have

(1− λ)Gain(s)−Gain(s+N∆) (11)

≈ (1− λ)

((∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

−
(∑

xi∈ls∪rs
gi,k
)2∑

xi∈ls∪rs
hi,k

)

−

((
1− N∆

Nls

) (∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+

(
1− N∆

Nrs

) (∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

−
(∑

xi∈ls∪rs
gi,k
)2∑

xi∈ls∪rs
hi,k

)
(12)

where l represents the left child of split s, and it contains the samples belonging to this node, while
r represent the right child, Nls denotes |ls|, and Nrs denotes |rs|.
Let (1− λ)Gain(s)−Gain(s+N∆) > 0, we have

approx⇒ (1− λ)Gain(s)−

((
1 +

N∆

Nls

) (∑
xi∈ls

gi,k
)2∑

xi∈rs
hi,k

+

(
1− N∆

Nrs

) (∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

−
(∑

xi∈ls∪rs
gi,k
)2∑

xi∈ls∪rs
hi,k

)
(13)

⇒ N∆

Nls

(∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+
N∆

Nrs

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

− λGain(s) > 0 (14)

⇒ N∆ >
λGain(s)

1
Nls

(∑
xi∈ls

gi,k

)2∑
xi∈ls

hi,k
+ 1

Nrs

(∑
xi∈rs

gi,k

)2∑
xi∈rs

hi,k

(15)

where l represents the left child of split s, and it contains the samples belonging to this node, while
r represents the right child, Nls denotes |ls|, and Nrs denotes |rs|.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Solving for N∆ yields

N∆ > λGain(s)

(
1

Nls

(∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+
1

Nrs

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

)−1

. (16)

To simplify notation, we define the node structural coefficient

Cs :=

(
1

Nls

(∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+
1

Nrs

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

)−1

, (17)

so that the distance-robustness condition takes the clean and compact form

N∆ > λGain(s)Cs. (18)

□

The above expression characterizes when the best split s cannot be overtaken by its nearest competi-
tor t after removing a random subset D′. To further simplify the analysis, we next derive a general
bound on the gain perturbation.
Lemma 1 (Gain Perturbation Bound). For any fixed split s, removing a random subset D′ with rate
λ = |D′|/|Dtr| changes its gain by at most O(λ):

∣∣Gain′(s)−Gain(s)
∣∣ ≤ λ

((∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

)
= O(λ). (19)

Proof. For the left child of split s, after deleting nls samples,

G′
L =

∑
xi∈ls

gi,k −
∑

xi∈ls∩D′

gi,k ≈ GL − nls gls, (20)

H ′
L =

∑
xi∈ls

hi,k −
∑

xi∈ls∩D′

hi,k ≈ HL − nls hls. (21)

Then

(G′
L)

2

H ′
L

≈ (GL − nlsgls)
2

HL − nlshls

=
G2

L

HL

(
1− nls

Nls

)
+O

(
nls

Nls

)
. (22)

Because random deletion implies
nls

Nls
≈ λ,

nrs

Nrs
≈ λ, (23)

we obtain

Gain′(s) =
(G′

L)
2

H ′
L

+
(G′

R)
2

H ′
R

− (G′
L +G′

R)
2

H ′
L +H ′

R

(24)

≈ (1− λ)

(
G2

L

HL
+

G2
R

HR

)
− (1− λ)

(GL +GR)
2

HL +HR
+O(λ). (25)

= (1− λ)Gain(s) +O(λ). (26)

Thus,

|Gain′(s)−Gain(s)| ≤ λ

(
G2

L

HL
+

G2
R

HR

)
= O(λ). (27)

□

We next analyze a complementary notion of robustness based on the gain margin between competing
splits, which captures how large the gain advantage of the current best split must be in order to
remain stable under dynamic updates.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Definition 2 (Robustness Split). For the best split s and any other split t ̸= s under the same feature,
s is a robust split under deletion rate λ = |D′|/|Dtr| if

Gain(s) >
1

1− λ
Gain(t). (28)

Proof. Initially, we have

Gain(s) =

(∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

+

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

−
(∑

xi∈ls∪rs
gi,k
)2∑

xi∈ls∪rs
hi,k

(29)

After decremental learning, we get

Gain′(s) =

(∑
xi∈ls

gi,k −
∑

xi∈ls∩D′ gi,k
)2∑

xi∈ls
hi,k −

∑
xi∈ls∩D′ hi,k

+

(∑
xi∈rs

gi,k −
∑

xi∈rs∩D′ gi,k
)2∑

xi∈rs
hi,k

∑
xi∈rs∩D′ hi,k

(30)

−

(∑
xi∈ls∪rs

gi,k −
∑

xi∈(ls∪rs)∩D′ gi,k

)2
∑

xi∈ls∪rs
hi,k −

∑
xi∈(ls∪rs)∩D′ hi,k

For any possible split t (t ̸= s), the split s is robust only and only if Gain(s) > Gain(t) and

Gain′(s) > Gain′(t). First, let’s analyze the first term of Gain′(s). Suppose |D′|
|Dtr| = λ, and D′ is

randomly selected from D. Here we consider the leaf child ls of split s, and let the |ls ∩D′| to be
nls, |ls| to be Nls. Then we have(∑

xi∈ls
gi,k −

∑
xi∈ls∩D′ gi,k

)2∑
xi∈ls

hi,k −
∑

xi∈ls∩D′ hi,k

approx⇒
(∑

xi∈ls
gi,k − nlsgls

)2∑
xi∈ls

hi,k − nlshls

(31)

⇒
(
1− nls

Nls

) (∑
xi∈ls

gi,k
)2∑

xi∈ls
hi,k

(32)

where g and h denote the average of the gi,k and hi,k respectively.

Similarly, we can get all three terms for Gain(s), Gain′(s), Gain(t), and Gain′(t) in a similar
form. For Gain′(s) > Gain′(t), finally, we have Gain(s) > Gain(t) + C, where

C =

(
nls

Nls

(∑
xi∈ls

gi,k
)2∑

xi∈rs
hi,k

+
nrs

Nrs

(∑
xi∈rs

gi,k
)2∑

xi∈rs
hi,k

− nls + nrs

Nls +Nrs

(∑
xi∈ls∪rs

gi,k
)2∑

xi∈ls∪rs
hi,k

)
−

(
nlt

Nlt

(∑
xi∈lt

gi,k
)2∑

xi∈rt
hi,k

+
nrt

Nrt

(∑
xi∈rt

gi,k
)2∑

xi∈rt
hi,k

− nlt + nrt

Nlt +Nrt

(∑
xi∈lt∪rt

gi,k
)2∑

xi∈lt∪rt
hi,k

)
(33)

The upper bound of C is λGain(s). Further, we have

Gain(s) >
1

1− λ
Gain(t) (34)

□

In order to connect Definition 2 with a margin condition, we first upper-bound the correction term
C arising from the removal of D′.
Lemma 2 (Upper Bound on the Correction Term C). Let C be the correction term defined in the
proof of Definition 2. Under random deletion with rate λ,

C ≤ λGain(s). (35)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Proof. From the approximation in the proof of Definition 2, each gain term takes the form(∑
xi∈ls

gi,k −
∑

xi∈ls∩D′ gi,k
)2∑

xi∈ls
hi,k −

∑
xi∈ls∩D′ hi,k

≈
(
1− nls

Nls

)
G2

L

HL
, (36)

and similarly for the right child and the merged node. Thus the perturbation satisfies

C =
nls

Nls

G2
L

HL
+

nrs

Nrs

G2
R

HR
− nls + nrs

Nls +Nrs

(GL +GR)
2

HL +HR
(37)

≤ λ

(
G2

L

HL
+

G2
R

HR
− (GL +GR)

2

HL +HR

)
(38)

= λGain(s). (39)

□

We are now ready to provide a clean robustness condition.
Proposition 1 (Margin Condition for Robustness). Let s be the best split and t any competitor. If

Gain(s)−Gain(t) > λGain(s), (40)

then after deleting D′ with rate λ, we still have

Gain′(s) > Gain′(t). (41)

Moreover,

Gain(s)−Gain(t) > λGain(s) ⇐⇒ Gain(s) >
1

1− λ
Gain(t), (42)

i.e., this margin condition is equivalent to Definition 2.

Proof. By Lemma 2,

Gain′(s) ≥ Gain(s)− λGain(s) = (1− λ)Gain(s), (43)

Gain′(t) ≤ Gain(t). (44)

Thus

Gain′(s) > Gain′(t) ⇐ (1− λ)Gain(s) > Gain(t), (45)

which is equivalent to

Gain(s) >
1

1− λ
Gain(t). (46)

□

Discussion. Definitions 1 and 2, together with Lemmas 1 and 2 and Proposition 1, establish that:
(i) the gain of any fixed split changes only by O(λ) under dynamic updates, and (ii) if the original
gain margin exceeds this perturbation, the best split remains stable. This explains both the empirical
robustness of DyGB under small data modifications and the reduced retraining frequency when
either λ or the sampling rate α decreases.

Summary. Our robustness analysis consists of five complementary components. (1) Distance
Robustness characterizes the stability of a split based on how far its nearest competing split lies in
the sorted feature space: a split remains stable when the neighbor distance exceeds the perturbation-
scaled threshold N∆ > λGain(s)Cs. (2) Gain Perturbation Bound shows that dynamic updates
modify the gain of any fixed split by at most O(λ), providing a quantitative limit on how much
the split metric can drift. (3) Robustness Split formalizes the requirement that the best split must
retain a higher gain than any competitor even after the update. (4) Using our perturbation analysis,
we upper bound the total correction term C and show that its worst-case effect is no more than
λGain(s). (5) These results together yield the Margin Condition for Robustness, which states that
a split remains optimal if and only if its original gain margin exceeds the maximum perturbation:
Gain(s)−Gain(t) > λGain(s), or equivalently, Gain(s) > Gain(t)/(1− λ).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G UPDATE W/O TOUCHING TRAINING DATA

Maintain Best Split. The split gain is calculated by Eq. equation 5. There are three terms: the gain
for the left-child, the gain for the right-child, and subtracting the gain before the split. Each gain is

computed as the sum of the squared first derivatives
([∑N

i=1 (ri,k − pi,k)
]2)

divided by the sum of

the second derivatives
(∑N

i=1 pi,k(1− pi,k)
)

for all the data in the node. To compute these terms,
it is necessary to iterate over all the data that reaches the current node. The most straightforward
way for dynamic learning to obtain the split gain is to directly compute these three terms for dataset
Dtr ± D′. In the worst case, which is the root node, the computation cost for gain computing is
|Dtr|+ |Din| or |Dtr| − |Dde| because the root node contains all the training data.

We calculate the split gain for Dtr ± D′ without touching the Dtr. In this optimization, during the
training process, we store the Srp =

∑N
i=1 (ri,k − pi,k) and Spp =

∑N
i=1 pi,k(1 − pi,k) for the

training dataset Dtr for every potential split. In incremental learning process, we can only calculate
the S′

rp and S′
pp for Din. To obtain the new split gain based on Eq. equation 5, we add it to the stored

Srp and Spp. Similarly, for decremental learning, we can only calculate the S′
rp and S′

pp for Dde to
obtain the new split gain. In this manner, we successfully avoid the original training data for split
gain computation and reduce the computation cost from O(Dtr ±D′) to O(D′).

Recomputing Prediction Value. For the terminal node (leaf node), if there are no data of D′

reaching this node, we can skip this node and do not need to change the prediction value. Otherwise,
we have to calculate a prediction value f as shown in line 5 of the Algorithm 1. Similar to split gain
computing, it is required to iterate over all the data that reaches this terminal node. Here we store
Srp =

∑
xi∈Rj,k,m

(ri,k − pi,k) and Spp =
∑

xi∈Rj,k,m
(1− pi,k) pi,k for training dataset Dtr in

training process. Thus, in dynamic learning process, we only need to calculate S′
rp and S′

pp for
dynamic learning dataset D′.

Incremental Update for Derivatives. After conducting dynamic learning on a tree, we need to
update the derivatives and residuals for learning the next tree. From the perspective of GBDT train-
ing, each tree in the ensemble is built using the residuals learned from the trees constructed in all
previous iterations: Modifying one of the trees affects all the subsequent trees. A trivial method
is to update the derivatives and residuals for all data instances of Dtr ± D′ in every tree, but it is
time-consuming.

When performing dynamic learning on a tree, not all terminal nodes will be changed—some ter-
minal nodes remain unchanged because there is no data from D′ that reaches these terminal nodes.
Note that our goal is to find a model close to the model retraining from scratch. In the dynamic
learning scenario, all trees have already been well-trained on Dtr. Intuitively, the derivative changes
for data in those unchanged terminal nodes should be minimal. Therefore, as shown in Figure 1(d),
we only update the derivatives for those data reaching the changed terminal nodes. For example,
the terminal node with a prediction value of −0.1252 does not meet any data in D′ in both incre-
mental learning and decremental learning, so the prediction value of this node does not need to be
changed. Therefore, we do not need to update the derivatives of the data {1, 6, 14, 16, 17} reaching
this terminal node.

H TIME COMPLEXITY

We compare the time complexity of retraining from scratch and our dynamic learning approach in
Table 7. Training a tree involves three key steps: Derivatives Computing, Gain Computing & Split
Finding, and Prediction Computing. Let B represent the number of bins, J the number of leaves,
|Dtr| the number of training data points, and |D′| the number of dynamic learning data points
(|D′| ≪ |Dtr|).
Derivatives Computing. In retraining, each point is assigned to one of the B bins, which take
O(∥Dtr∥) time. In our method, we optimize updates without touching training data, directly adding
or subtracting derivatives for the dynamic data points, which takes O(∥D′∥) time.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Gain Computing & Split Finding. In training, to identify the optimal split for each node, we
compute the potential split gains for each bin. As a binary tree is constructed with 2J − 1 nodes, the
total computational complexity for split finding across the entire tree is O(B(2J − 1)) = O(BJ).
In our approach, Split Candidates Sampling reduces the number of split candidates from B to αB,
where α denotes the split sample rate (0 < α ≤ 1). Additionally, let Pσ represent the probability of
a split change being within the robustness tolerance, indicating the likelihood that a node does not
require retraining (with larger σ, Pσ increases). If retraining is not required, the time complexity for
checking a node is O(|D′|). Conversely, if retraining is required, the complexity to retrain a node is
O(αB). Consequently, the total time complexity for the entire tree is O(J |D′|·Pσ+JαB ·(1−Pσ)).
For Pσ → 1, no nodes require retraining, simplifying the complexity to O(J |D′|). Conversely, for
Pσ → 0, all nodes require retraining, and the complexity becomes O(JαB).

Predicted Value Computing. During training, after the tree is built, the predicted value for each leaf
is updated. This involves traversing the leaf for the data points that reach it, with the total number
being equivalent to all training data points, resulting in a complexity of O(|Dtr|). In our method,
we update the predicted value only for leaves reached by at least one dynamic data point, and adjust
by adding/subtracting the impact of dynamic data points, resulting in a complexity of O(|D′|).

Table 7: Time complexity comparison between retraining and dynamic learning.

Step Training Time Optimization Dynamic Learning Time

Derivatives Computing O(|Dtr|) Update without Touching Training Data O(|D′|)
Gain Computing & Split Finding O(BJ) Split Candidates Sampling, Split Robustness Tolerance O(αBJσ)
Predition Computing O(|Dtr| log J) Update without Touching Training Data O(|D′|)

I TEST ERROR RATE

Table 8 presents the test error for different methods, defined as (1 - accuracy) for classification tasks
and Mean Squared Error (MSE) for regression tasks. We have omitted the results for OnlineGB, as
its excessively long learning time makes it relatively insignificant compared to the other methods.
Three scenarios are considered: (1) Training, reporting the test error for models trained on the full
dataset D; (2) Incremental Learning, performing incremental learning to add a randomly selected
portion D′ into a model pre-trained on D − D′; and (3) Decremental Learning, conducting decre-
mental learning to remove D′ from a model trained on the full dataset D. As shown in Table 8, The
proposed DyGB achieved the best error rates in most cases.

J REAL-WORLD TIME SERIES EVALUATION

To confirm the performance of our methods on real-world datasets with varying data distributions,
we conducted experiments on two real-world time series datasets from Kaggle:

• GlobalTemperatures (Glo, 2017): This dataset records the average land temperatures from 1750
to 2015.
• WebTraffic (Web, 2024): This dataset tracks hourly web requests to a single website over five
months.

For this experiment, we constructed the input data X using the time series values from the previous
15 time steps, with the goal of predicting the corresponding output value y. Initially, we randomly
sample 10% of the data as the test dataset, with the remaining 90% used as the training dataset.
Similar to Section 4.3, we evenly divided the training data into 10 subsets, each containing 10% of
the training samples. It is important to note that we did not shuffle these time series datasets, meaning
the 10 subsets were arranged sequentially from older to more recent data. We trained an initial
model using the first subset, then incrementally added each subsequent subset one by one. After
incorporating all training data, we sequentially removed each subset in reverse order. As expected,
since the test dataset spans all time steps, the error rate decreases as more subsets are added to the
model. This is because the model learns the updated distribution from the newly added subsets.
After removing each subset, the error rate increases, reflecting the loss of information associated

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 8: The test error after training, adding, and deleting.

Task Method Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype Abalone
(×10−3)

WineQuality
(×10−2)

Test Error

iGBDT 0.1276 0.0629 0.1987 0.2742 0.0290 0.0295 0.0418 0.1702 5.7721 1.2085
DeltaBoost 0.1938 0.1830 0.2428 OOM 0.0830 0.0824 0.1704 0.3024 8.3571 1.3475

MU in GBDT 0.1276 0.0629 0.1987 0.2742 0.0307 0.0294 0.0418 0.1702 5.7721 1.2085
XGBoost 0.1375 0.0659 0.1976 0.2676 0.0395 0.0355 0.0384 0.1717 5.7657 1.1193

LightGBM 0.1287 0.0631 0.1985 0.2726 0.0334 0.0355 0.0374 0.1700 5.9304 1.1995
CatBoost 0.2928 0.1772 0.4324 0.5384 0.0618 0.0440 0.0655 0.1572 5.7265 1.2457

ThunderGBM (GPU) 0.2405 0.0660 0.4576 0.4698 0.0546 0.0515 0.0940 0.2135 8.1791 1.6482
Ours 0.1276 0.0629 0.1987 0.2742 0.0307 0.0294 0.0418 0.1702 5.7721 1.2085

Incre.
Learning

1 iGBDT 0.1279 0.0633 0.1987 0.2769 0.0301 0.0286 0.0418 0.1696 5.8801 1.1953
Ours 0.1275 0.0630 0.1988 0.2742 0.0295 0.0297 0.0404 0.1685 5.8110 1.2079

0.10% iGBDT 0.1267 0.0630 0.1995 0.2742 0.0323 0.0363 0.0446 0.1777 6.2531 1.2680
Ours 0.1269 0.0626 0.1989 0.2747 0.0295 0.0297 0.0406 0.1686 5.9000 1.2040

0.50% iGBDT 0.1287 0.0636 0.2012 0.2795 0.0390 0.0440 0.0572 0.1788 7.6510 1.2907
Ours 0.1294 0.0632 0.1988 0.2734 0.0290 0.0295 0.0394 0.1681 5.7701 1.2198

1% iGBDT 0.1291 0.0630 0.2014 0.2780 0.0529 0.0603 0.0875 0.1868 8.5324 1.4462
Ours 0.1267 0.0632 0.1990 0.2740 0.0262 0.0283 0.0440 0.1683 5.8378 1.2209

Decre.
Learning

1
DeltaBoost 0.1971 0.1852 0.2460 OOM 0.0837 0.0812 0.1755 0.3103 8.5831 1.3380

MU in GBDT 0.1280 0.0629 0.1987 0.2742 0.0306 0.0295 0.0408 0.1702 5.8025 1.2095
Ours 0.1276 0.0628 0.1987 0.2742 0.0306 0.0295 0.0416 0.1702 5.8723 1.2143

0.10%
DeltaBoost 0.2003 0.1788 0.2387 OOM 0.0848 0.0835 0.1690 0.2966 8.5054 1.3681

MU in GBDT 0.1285 0.0634 0.1988 0.2742 0.0301 0.0295 0.0444 0.1734 5.9727 1.2202
Ours 0.1284 0.0633 0.1988 0.2747 0.0295 0.0283 0.0432 0.1712 5.8744 1.2109

0.50%
DeltaBoost 0.1920 0.1870 0.2476 OOM 0.0821 0.0843 0.1728 0.2998 8.4328 1.3227

MU in GBDT 0.1309 0.0640 0.1988 0.2751 0.0306 0.0283 0.0442 0.1727 6.3142 1.2398
Ours 0.1295 0.0634 0.1988 0.2746 0.0301 0.0303 0.0432 0.1675 5.7733 1.2052

1%
DeltaBoost 0.2012 0.1814 0.2519 OOM 0.0861 0.0830 0.1761 0.3135 8.7275 1.3590

MU in GBDT 0.1311 0.0639 0.1988 0.2745 0.0334 0.0312 0.0460 0.1766 6.3558 1.2925
Ours 0.1295 0.0632 0.1987 0.2747 0.0273 0.0303 0.0424 0.1695 5.7620 1.2111

Table 9: Error rate after every online learning step.

Online Learning Step GlobalTemperatures
(×10−3)

WebTraffic
(×10−3)

Initial Train 10% 4.1934 4.0984

Add 10%, Total 20% 2.5431 3.8383

Add 10%, Total 30% 2.1156 3.0296

Add 10%, Total 40% 2.0351 3.1297

Add 10%, Total 50% 1.9593 2.9149

Add 10%, Total 60% 1.8940 2.9525

Add 10%, Total 70% 1.8973 2.8682

Add 10%, Total 80% 1.8532 2.9024

Add 10%, Total 90% 1.8200 2.9141

Add 10%, Total 100% 1.7850 2.9049

Del 10%, Total 90% 1.8127 2.8432

Del 10%, Total 80% 1.9902 3.3453

Del 10%, Total 70% 2.0115 2.9007

Del 10%, Total 60% 2.1137 3.1288

Del 10%, Total 50% 2.0756 3.1187

Del 10%, Total 40% 2.1654 2.9539

Del 10%, Total 30% 2.1349 3.0132

Del 10%, Total 20% 2.4975 3.8429

Del 10%, Total 10% 3.6064 4.4339

with the removed data and the model’s adjustment to the remaining subsets. As shown in Table 9,
these results confirm the effectiveness of our method in adapting to changing data distributions.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 10: Model functionality change after online learning.

Dataset Metric iGBDT (Incr.) Ours (Incr.) DeltaBoost (Decr.) MUinGBDT (Decr.) Ours (Decr.)
Add 1 Add 0.1% Add 1 Add 0.1% Del 1 Del 0.1% Del 1 Del 0.1% Del 1 Del 0.1%

Adult
C2W ↓ 0.40% 0.93% 0.17% 0.61% 1.17% 1.87% 0.63% 0.51% 0.55% 0.51%
W2C ↓ 0.27% 0.80% 0.18% 0.56% 0.72% 1.28% 0.60% 0.73% 0.56% 0.68%
ϕ ↑ 99.34% 98.27% 99.66% 98.83% 98.11% 96.85% 98.77% 98.76% 98.88% 98.82%

CreditInfo
C2W ↓ 0.21% 0.40% 0.16% 0.30% 0.58% 0.92% 0.10% 0.21% 0.10% 0.18%
W2C ↓ 0.18% 0.40% 0.15% 0.29% 0.08% 0.13% 0.08% 0.23% 0.08% 0.19%
ϕ ↑ 99.60% 99.20% 99.70% 99.41% 99.34% 98.96% 99.82% 99.56% 99.82% 99.63%

SUSY
C2W ↓ 0.25% 0.82% 0.22% 0.74% 3.50% 3.40% 0% 0.78% 0% 0.73%
W2C ↓ 0.24% 0.78% 0.21% 0.73% 1.34% 1.14% 0% 0.79% 0% 0.76%
ϕ ↑ 99.51% 98.40% 99.58% 98.53% 95.16% 95.46% 100% 98.43% 100% 98.51%

HIGGS
C2W ↓ 0.00% 2.52% 0% 2.64%

OOM
0% 1.92% 0% 1.92%

W2C ↓ 0.00% 2.56% 0% 2.63% 0% 1.93% 0% 1.92%
ϕ ↑ 100.00% 94.92% 100% 94.73% 100% 96.14% 100% 96.17%

Optdigits

C2W ↓ 0.33% 0.56% 0.17% 0.28% 0.22% 0.56% 0.61% 0.45% 0.45% 0.61%
W2C ↓ 0.56% 0.61% 0.28% 0.50% 0.28% 0.22% 0.22% 0.33% 0.28% 0.39%
W2W ↓ 0.06% 0.11% 0.06% 0% 0.17% 0.11% 0.06% 0.11% 0.06% 0.06%
ϕ ↑ 99.05% 98.72% 99.50% 99.22% 99.33% 99.11% 99.11% 99.11% 99.22% 98.94%

Pendigits

C2W ↓ 0.26% 0.83% 0.14% 0.17% 0.17% 0.09% 0.29% 0.26% 0.26% 0.23%
W2C ↓ 0.14% 0.43% 0.11% 0.17% 0.26% 0.37% 0.17% 0.20% 0.23% 0.20%
W2W ↓ 0.06% 0.20% 0.06% 0.03% 0.03% 0.09% 0.06% 0.09% 0.03% 0.09%
ϕ ↑ 99.54% 98.54% 99.69% 99.63% 99.54% 99.46% 99.49% 99.46% 99.49% 99.49%

Letter

C2W ↓ 0.74% 1.62% 0.64% 0.68% 0.52% 0.80% 1.24% 1.36% 1.26% 1.40%
W2C ↓ 0.82% 0.88% 0.78% 0.80% 0.58% 0.62% 1.06% 1.42% 1.06% 1.38%
W2W ↓ 0.28% 0.44% 0.30% 0.30% 0.20% 0.40% 0.44% 0.24% 0.42% 0.28%
ϕ ↑ 98.16% 97.06% 98.28% 98.22% 98.70% 98.18% 97.26% 96.98% 97.26% 96.94%

Covtype

C2W ↓ 0.98% 2.37% 1.78% 1.78% 0.11% 0.61% 1.94% 2.04% 1.94% 1.96%
W2C ↓ 1.15% 2.10% 1.77% 1.77% 0.14% 0.70% 1.80% 1.76% 1.80% 1.71%
W2W ↓ 0.04% 0.09% 0.07% 0.07% 0.02% 0.03% 0.06% 0.07% 0.06% 0.07%
ϕ ↑ 97.83% 95.44% 96.38% 96.38% 99.74% 98.66% 96.19% 96.13% 96.20% 96.26%

K MODEL FUNCTIONAL SIMILARITY

As mentioned in Section 2.2, the goal of the framework is to find a model close to the model re-
trained from scratch. The model functional similarity is a metric to evaluate how close the model
learned by dynamic learning and the one retrained from scratch. We show the model functional
similarity for incremental learning and decremental learning in Table 10. C2W refers to the ratio of
testing instances that are correctly predicted during retraining but are wrongly predicted after decre-
mental learning. Similarly, W2C represents the testing instances that are wrongly predicted during
retraining but are correctly predicted after decremental learning. The W2W column indicates the
cases where the two models have different wrong predictions. For binary labels, W2W is not appli-
cable. In the |D′| column, 1 indicates that only add/remove one instance, while 0.1% corresponds
to |D′| = 0.1%× |Dtr|. We present ϕ to evaluate the model functional similarity (adapted from the
model functionality (Adi et al., 2018)), indicating the leakage of dynamic learning:

Definition 3 (Functional Similarity) Given an input space X , a model T , a model T̂ dynamic learned
from T , and a dataset D = {yi,ai} ∈ X , the functional similarity ϕ between model T and T̂ is:
ϕ = 1− (rw2w + rw2c + rc2w) ,where ϕ is the leakage of learning.

Due to the size limitations of the table, we have omitted OnlineGB from this table because its
learning duration is excessively long, making it relatively meaningless compared to other methods.
We compared iGBDT in adding 1 and 0.1% data instances, and DeltaBoost and MUinGBDT in
deleting data. As shown in Table 10, we have a comparable model functionality in adding/deleting
both 1 and 0.1%. In most cases, DyGB reaches 98% similarity in both incremental and decremental
learning.

L BACKDOOR ATTACKING

Experimental Setup. In this evaluation, we randomly select a subset of the training dataset, and
set first a few features to a specific value (trigger, e.g. 0 or greatest feature value) on these data
instances, and then set the label to a target label (e.g., 0). In the testing dataset, we set all labels to
the target label to compose a backdoor test dataset. In this setting, if the model has correctly learned
the trigger and target label, it should achieve a high accuracy on backdoor test dataset.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

M MEMBERSHIP INFERENCE ATTACK

The membership inference attack (MIA) aims to predict whether a data sample is part of the training
dataset (Shokri et al., 2017; Hu et al., 2022; Choquette-Choo et al., 2021). Therefore, the goal of this
experiments is to determine if ”deleted” data can still be identified as training data after decremental
learning. However, in our experiment with default hyper-parameter setting, the predictions made by
MIA are nearly random guesses.

Experimental Setup. Previous studies demonstrate that overfitting can make machine learning
models more vulnerable to MIA (Yeom et al., 2018; van Breugel et al., 2023; Hu et al., 2022). To
further validate our approach, we apply a smaller model with the number of iterations M = 5,
which can be easily overfitted. For overfitting the model, we split each dataset into three subsets:
base dataset Dbase (49.9%), dynamic dataset D′ (0.1%), and test dataset Dtest (50%). We first train a
base model on Dbase +D′. For this base model, the MIA should identify the data in D′ as part of the
training dataset. Next, we perform decremental learning to delete D′ from the base model. After this
process, the MIA should no longer identify the data in D′ as part of the training dataset, confirming
that our approach effectively deletes the data from the model. Finally, we add D′ back to the model
by incremental learning. Following this, the MIA should once again identify the data in D′ as part of
the training dataset. These experiments are conducted on multi-class datasets: Optdigits, Pendigits,
Letter, and Covtype.

MIA Model. By following the existing MIA methods (Yan et al., 2023; Li et al., 2022; Carlini
et al., 2022), we train an MIA model (binary classification) on the prediction probabilities of each
class. Since the GBDT model is overfitted, the probability distributions of the training data should
substantially differ from those of the unseen data (test data). Therefore, the MIA model can predict
whether a data sample is part of the training dataset based on its probability distribution. We sample
50% of Dbase and 50% of Dtest to train the MIA model. Then remaining 50% of Dbase, the entire D′

and 50% of Dtest are used for evaluation.

Table 11: Membership Inference Attack.

Dataset Base Model After decremetal learning After incremetal learning
Dbase D′ Dtest Dbase D′ Dtest Dbase D′ Dtest

Optdigits 100% 100% 43.59% 100% 33.93% 42.19% 100% 100% 43.82%
Pendigits 100% 100% 56.09% 100% 55.04% 46.15% 100% 100% 56.63%
Letter 100% 100% 26.31% 100% 13.33% 47.37% 100% 100% 36.84%
Covtype 100% 100% 38.89% 100% 15.2% 38.89% 100% 100% 44.31%

Results. Table 11 presents the average probability of data samples being identified as part of the
training dataset at different stages. For the base model, MIA identifies 100% of the data in Dbase and
D′ as part of the training dataset, while the data in Dtest has a low probability of being identified as
part of the training dataset. After decremental learning, the probability for Dbase remains unchanged,
while the probability for D′ drops to a level almost identical to Dtest. This confirms that D′ has been
effectively deleted from the base model. After incremental learning, the probability for D′ increases
to 100% again, indicating that the model has successfully relearned D′. The probability for Dtest in
the incremental model remains almost the same as in the base model. This result confirms that our
decremental/incremental learning approach can indeed delete/add data from/to the model.

N DIFFERENT BASE LEARNER

Since the proposed method is designed for decision trees, we conducted an experiment to compare
it with the boosted linear regression (linear model). For the linear model, we set the maximum
number of iterations to 1,000 and enabled early stopping. As shown in Table 12, our method consis-
tently demonstrates superior accuracy, achieving lower error rates across all datasets. Although our
method requires more memory and longer training time than the linear model, its incremental and
decremental learning on a single data point is substantially faster than retraining from scratch.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 12: Comparison with linear model as base learner (max iteration = 1, 000, early stop =
True).

Metrics Method Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype

Linear Model 167.78 22.44 3,671.12 12,144.70 162.11 160.03 161.97 1,192.70Memory (MB) Ours 577.18 1,096.71 16,576.40 24,333.30 1,081.15 1,959.49 1,805.76 9,665.21

Linear Model 0.1877 0.0657 0.2119 0.358 0.0557 0.1075 0.3582 0.2876Error Rate Ours 0.1276 0.0629 0.1987 0.2742 0.0307 0.0294 0.0418 0.1702

Linear Model 0.163 0.203 7.94 13.314 0.091 0.088 0.421 6.174
Ours (Training) 2.673 1.818 64.935 177.1 0.276 0.368 0.352 9.336
Add 1 0.035 0.114 1.678 5.488 0.011 0.014 0.016 0.29Time (s)

Del 1 0.034 0.055 1.303 3.367 0.01 0.015 0.014 0.161

O EXTREMELY HIGH-DIMENSIONAL DATASETS

We include two dataset with more features / high dimensional: RCV1 and News20, which have
47,236 and 1,355,191 features respectively. For News20 dataset, the substantial high dimension
causes segmentation fault on CatBoost and GPU out of memory (OOM) on thunderGBM. We omit
the results from the other incremental/decremental method because infeasible running time and mas-
sive occupied memory. Table 14 shows the comparison of the training time and memory usage for
our methods and other popular methods. Table 15 illustrates the incremental and decremental learn-
ing time of our method for two high dimensional dataset.

Table 13: Dataset specifications.

Dataset # Train # Test # Dim # Class

News20 5,000 14,996 1,355,191 2
RCV1 20,242 677,399 47,236 2

Table 14: Comparison of the training time consumption
and memory usage for RCV1 and News20.

Dataset XGBoost LightGBM CatBoost ThunderGMB
(GPU) Ours

Training Time (s) RCV1 459.75 59.63 335.70 49.44 295.43
News20 637.02 28.42 Seg. Fault OOM 225.73

Memory (MB) RCV1 3,008.28 2,922.32 263.63 1,913.05 185,851.72
News20 3,061.99 2,509.29 Seg. Fault OOM 128,131.43

Table 15: The incremental/decremental learning time of the proposed method for RCV1 and
News20. (ms, per tree, incre./decre.)

Dataset |D′|
Incremental Learning Decremental Learning

Learning Time
(Ours)

Speedup v.s. Learning Time
(Ours)

Speedup v.s.

XGBoost LightGBM CatBoost ThunderGBM
(GPU) XGBoost LightGBM CatBoost ThunderGBM

(GPU)

RCV1

1 21.431 214.5x 27.8x 156.6x 23.1x 19.268 238.6x 30.9x 174.2x 25.7x
0.1% 37.707 121.9x 15.8x 89.0x 13.1x 29.232 157.3x 20.4x 114.8x 16.9x
0.5% 39.428 116.6x 15.1x 85.1x 12.5x 48.218 95.3x 12.4x 69.6x 10.3x
1% 43.901 104.7x 13.6x 76.5x 11.3x 70.666 65.1x 8.4x 47.5x 7.0x

News20

1 11.76 541.7x 24.2x - - 7.718 825.4x 36.8x - -
0.1% 17.113 372.2x 16.6x - - 12.363 515.3x 23.0x - -
0.5% 22.261 286.2x 12.8x - - 30.076 211.8x 9.5x - -
1% 23.469 271.4x 12.1x - - 37.825 168.4x 7.5x - -

P DATA ADDITION WITH MORE CLASSES

DyGB can update data with unseen classes. We divide the dataset into sub-datasets based on labels
(e.g., Optdigits has 10 labels, so we divide it into 10 sub-datasets). We train a model on the first
sub-dataset and test it on two test datasets: 1) the original full test dataset with all labels, and 2)
the partial test dataset with only the learned labels. We fine-tune the model with a new sub-dataset
through incremental learning until learning the full dataset, testing the model on both test datasets
after each training. Figure 5 shows that the accuracy of incremental learning and retraining is nearly
identical on both the full and partial datasets. Note that the decrease in accuracy on the partial dataset
is likely due to the increasing complexity of the learned data, which leads to a decrease in accuracy.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 16: The approximation error of leave’s score between the model after addition/delection and
the model retrained from scratch. Appr. Error =

∑
all trees

∑
all leaves abs(padd/del−pretrain)∑

all trees
∑

all leaves abs(pretrain)
, where padd/del is the

leave’s score after adding/deleting, pretrain is the leave’s score of the model retraining from scratch.

Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype

Add 1 2.42% 1.18% 0.24% 0.00% 2.69% 2.23% 1.31% 0.17%
Add 0.1% 4.59% 6.57% 2.73% 1.63% 3.48% 4.12% 5.78% 9.47%
Add 0.5% 5.10% 7.44% 2.27% 3.05% 5.12% 4.50% 10.45% 11.68%
Add 1% 5.30% 7.43% 3.07% 3.89% 5.92% 4.70% 11.75% 10.01%
Add 10% 4.25% 8.33% 1.07% 1.73% 4.64% 4.42% 13.34% 4.96%
Add 50% 3.55% 0.00% 0.00% 1.51% 0.00% 0.00% 6.26% 0.01%
Add 80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Del 1 1.21% 0.00% 0.00% 0.00% 0.01% 0.19% 0.57% 0.28%
Del 0.1% 3.63% 3.80% 0.79% 0.72% 1.40% 0.50% 1.88% 4.31%
Del 0.5% 3.58% 3.76% 0.18% 0.56% 2.52% 1.15% 3.49% 6.04%
Del 1% 3.40% 3.16% 0.15% 0.65% 3.07% 1.73% 3.74% 4.48%
Del 10% 0.27% 0.39% 0.00% 0.16% 1.67% 0.97% 1.35% 0.46%
Del 50% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Del 80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2 4 6 8 10

Added Label

0

20

40

60

80

100

T
e
s
t
A

c
c
 (

%
)

Optdigits

Addition: Partial Test Data

Addition: Full Test Data

Retrain: Partial Test Data

Retrain: Full Test Data

2 4 6 8 10

Added Label

0

20

40

60

80

100

T
e
s
t
A

c
c
 (

%
)

Pendigits

Addition: Partial Test Data

Addition: Full Test Data

Retrain: Partial Test Data

Retrain: Full Test Data

5 10 15 20 25

Added Label

0

20

40

60

80

100

T
e
s
t
A

c
c
 (

%
)

Letter

Addition: Partial Test Data

Addition: Full Test Data

Retrain: Partial Test Data

Retrain: Full Test Data

1 2 3 4 5 6 7

Added Label

0

20

40

60

80

100

T
e
s
t
A

c
c
 (

%
)

Covtype

Addition: Partial Test Data

Addition: Full Test Data

Retrain: Partial Test Data

Retrain: Full Test Data

Figure 5: The impact of tuning data size on the number of retrained nodes for each iteration in
incremental learning.

Q APPROXIMATION ERROR OF LEAF SCORES

As mentioned in Section 3.2, outdated derivatives are used in gain computation to reduce the cost of
updating derivatives. However, these outdated derivatives are only applied to nodes where the best
split remains unchanged. When a sub-tree requires retraining, the derivatives are updated. Therefore,
using outdated derivatives typically occurs when |D′| is small, as fewer data modifications result in
fewer changes to the best splits. Conversely, when more data is added or deleted, |D′| becomes
larger, increasing the likelihood of changes to the best splits in some nodes. As a result, the sub-
trees are retrained, and the derivatives for the data reaching those nodes are updated.

8
7
.2

3

9
3
.7

1

8
0
.1

3

7
2
.5

7

9
6
.9

3

9
7
.0

5

9
5
.8

2

8
2
.9

7

8
7
.2

5

9
3
.7

4

8
0
.1

4

7
2
.6

3

9
7
.6

6

9
7
.0

2

9
5
.7

4

8
3
.1

1

8
7
.3

8

9
3
.7

5

8
0
.1

4

7
2
.5

6

9
7
.1

6

9
7
.1

9

9
5
.7

6

8
3
.2

68
7
.2

1

9
3
.7

1

8
0
.1

2

7
2
.6

0

9
7
.1

6

9
7
.1

1

9
6
.1

6

8
3
.0

4

8
7
.4

2

9
3
.7

0

8
0
.1

1

7
2
.6

1

9
7
.3

8

9
7
.0

2

9
6
.0

4

8
2
.9

9

8
7
.1

7

9
3
.7

2

8
0
.0

9

7
2
.6

3

9
7
.1

0

9
7
.1

4

9
5
.9

8

8
2
.8

4

8
7
.3

0

9
3
.7

2

8
0
.1

2

7
2
.5

1

9
7
.2

1

9
7
.0

5

9
5
.7

4

8
3
.1

4

Adult CreditInfo SUSY HIGGS Optdigits Pendigits Letter Covtype
60

65

70

75

80

85

90

95

100

T
e
s
t
A

c
c
 (

%
)

Train 100%

Train 5% + Add 95%

Train 10% + Add 90%

Train 20% + Add 80%

Train 50% + Add 50%

Train 95% + Add 5%

Train 99% + Add 1%

Figure 6: Different fine-tuning ratio.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

4% 12
%

20
%

28
%

36
%

44
%

52
%

60
%

68
%

76
%

84
%

92
%

10
0%

Learned Dataset Ratio

0.5

0.52

0.54

0.56

0.58

A
U

C

MovieLens-10M

4% 12
%

20
%

28
%

36
%

44
%

52
%

60
%

68
%

76
%

84
%

92
%

10
0%

Learned Dataset Ratio

0.51

0.52

0.53

0.54

0.55

0.56

0.57

A
U

C

MovieLens-20M

4% 12
%

20
%

28
%

36
%

44
%

52
%

60
%

68
%

76
%

84
%

92
%

10
0%

Learned Dataset Ratio

0.46

0.465

0.47

0.475

Lo
gL

os
s

MovieLens-10M

4% 12
%

20
%

28
%

36
%

44
%

52
%

60
%

68
%

76
%

84
%

92
%

10
0%

Learned Dataset Ratio

0.445

0.45

0.455

0.46

Lo
gL

os
s

MovieLens-20M

4% 12
%

20
%

28
%

36
%

44
%

52
%

60
%

68
%

76
%

84
%

92
%

10
0%

Learned Dataset Ratio

0.144

0.145

0.146

0.147

0.148

M
S

E

MovieLens-10M

4% 12
%

20
%

28
%

36
%

44
%

52
%

60
%

68
%

76
%

84
%

92
%

10
0%

Learned Dataset Ratio

0.137

0.138

0.139

0.14

0.141

M
S

E

MovieLens-20M

LightGBM XGBoost Ours

Figure 7: (Incremental Learning) Performance (AUC, Log Loss, and MSE) of the recommender
system on different dataset ratios. We first sort the entire dataset by timestamp, from oldest to most
recent. Then, we partition the oldest 80% as the training dataset and the most recent 20% as the
testing dataset. To evaluate our proposed method, we initially train a model on the oldest 4% of
the training data, then gradually learn every additional 4% via incremental learning until the full
training dataset (100%) is used. These results illustrate that more recent data can positively impact
the performance of the recommender system.

To confirm the effect of using outdated derivatives during dynamic learning, we report the result
for the approximation error of leaf scores in Table 16. Appr. Error =

∑
all trees

∑
all leaves abs(padd/del−pretrain)∑

all trees
∑

all leaves abs(pretrain)
,

where padd/del is the leaf score after adding/deleting, and pretrain is the leaf score of the model retrain-
ing from scratch. Please note that the retrained model has the same structure and split in all nodes
of all trees as the model after adding/deleting, and we only update the latest residual and hessian
to calculate the latest leaf score. When the number of added/deleted data increases, the error will
increase because our method uses outdated derivatives if the best splits remain unchanged. When
the number of add/delete is large enough, almost all nodes in the model will be retrained because
their best splits have changed, so the error becomes 0.

R DYGB ON RECOMMENDER SYSTEMS

In the paper, we mention that a potential use case is recommendation systems. In this experiment,
we show how the proposed method improves the performance of recommendation systems through
incremental and decremental learning on GBDT.

Interest-drift in Recommender Systems. Interest drift refers to the evolution of a user’s pref-
erences over time. In recommendation systems, this means that past interactions may no longer
accurately represent a user’s current interests. As a result, relying on outdated data can degrade the
performance of the system. To address this issue, previous studies have proposed time-weighted
methods that gradually reduce the influence of older interactions (Yoon et al., 2008; Campos et al.,
2014). However, instead of reducing their impact, completely removing outdated data can lead to
better recommendation performance (Matuszyk et al., 2018; 2015; Tavakolian et al., 2012; Gordea
& Zanker, 2007). Since the proposed GBDT supports both decremental learning and incremental

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

10
0% 92

%
84

%
76

%
68

%
60

%
52

%
44

%
36

%
28

%
20

%
12

% 4%

Learned Dataset Ratio

0.574

0.576

0.578

0.58

0.582

0.584

0.586

A
U

C

MovieLens-10M

10
0% 92

%
84

%
76

%
68

%
60

%
52

%
44

%
36

%
28

%
20

%
12

% 4%

Learned Dataset Ratio

0.56

0.565

0.57

0.575

A
U

C

MovieLens-20M

10
0% 92

%
84

%
76

%
68

%
60

%
52

%
44

%
36

%
28

%
20

%
12

% 4%

Learned Dataset Ratio

0.4605

0.461

0.4615

0.462

0.4625

0.463

0.4635

Lo
gL

os
s

MovieLens-10M

10
0% 92

%
84

%
76

%
68

%
60

%
52

%
44

%
36

%
28

%
20

%
12

% 4%

Learned Dataset Ratio

0.445

0.446

0.447

0.448

0.449

0.45

Lo
gL

os
s

MovieLens-20M

10
0% 92

%
84

%
76

%
68

%
60

%
52

%
44

%
36

%
28

%
20

%
12

% 4%

Learned Dataset Ratio

0.1436

0.1438

0.144

0.1442

0.1444

0.1446

0.1448

M
S

E

MovieLens-10M

10
0% 92

%
84

%
76

%
68

%
60

%
52

%
44

%
36

%
28

%
20

%
12

% 4%

Learned Dataset Ratio

0.137

0.1375

0.138

0.1385

0.139

M
S

E

MovieLens-20M

LightGBM XGBoost Ours

Figure 8: (Decremental Learning) Performance (AUC, Log Loss, and MSE) of the recommender
system on different dataset ratios. We first sort the entire dataset by timestamp, from oldest to
most recent. Then, we partition the oldest 80% as the training dataset and the remaining latest
20% as the testing dataset. To evaluate our proposed method, we initially train a model on the full
training dataset (100%), then gradually remove 4% of the oldest data from the model via decremental
learning until only 4% of the data remains. These results illustrate that outdated (oldest) data can
negatively impact the performance of the recommender system.

learning, it naturally works on such recommender system, which can incrementally learn latest user
behaviors and remove outdated behaviors without training from scratch.

Datasets. We use two large-scale datasets that include timestamps spanning long time periods: (1)
MovieLens-10M: contains about 10 million ratings from 72,000 users on 10,000 movies from 1995
to 2009. (2) MovieLens-20M: contains about 20 million ratings from 138,000 users on 27,000
movies from 1995 to 2015. For each dataset, we sort the entire dataset by timestamps, from oldest
to most recent. Then, we partition the oldest 80% as the training dataset and the remaining latest
20% as the testing dataset.

Experimental Settings. This experiment aims to answer the question: Can the proposed method
improve the performance of recommendation systems through incremental and decremental learning
on GBDT? To this end, we design two experiments to demonstrate the effectiveness of our approach
through two key capabilities: (1) incrementally learning from the latest user behaviors, and (2)
removing outdated behaviors without retraining the model from scratch.

Incremental Learning. This experiments is to confirm that incrementally learn the latest user
behaviors improves the performance of the recommendation system. Our goal is to predict the
Click-Through Rate (CTR) using LightGBM, XGBoost and our proposed GBDT. Recall the dataset
processing, we partition the oldest 80% as the training dataset and the remaining latest 20% as the
testing dataset. We further divide the training data into 25 segments, each accounting for 4% of
the data. Our approach begins by training the model on the first (oldest) 4% of the data and in-
crementally incorporates each subsequent 4% partition in order. After each incremental update, we
evaluate the model on the testing set using AUC, Log Loss, and MSE, as illustrated in Figure 7.
For LightGBM and XGBoost, which do not support incremental learning natively, we retrain the
models from scratch using the accumulated data up to the current partition at each step. Across

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

20 40 60 80 100

Iteration

0

0.5

1

1.5

2

2.5

3

A
v
g

 T
im

e
 (

m
s
/p

e
r

tr
e

e
)

Pendigits (Incr.) Sampling Rate: 5%

Sampling Rate: 10%

Sampling Rate: 50%

Sampling Rate: 100%

20 40 60 80 100

Iteration

0

0.5

1

1.5

2

2.5

3

A
v
g

 T
im

e
 (

m
s
/p

e
r

tr
e

e
)

Pendigits (Decr.) Sampling Rate: 5%

Sampling Rate: 10%

Sampling Rate: 50%

Sampling Rate: 100%

20 40 60 80 100

Iteration

0

200

400

600

800

1000

1200

1400

#
 R

e
tr

a
in

e
d

 N
o

d
e

s
Pendigits (Incr.)

Sampling Rate: 5%

Sampling Rate: 10%

Sampling Rate: 50%

Sampling Rate: 100%

20 40 60 80 100

Iteration

0

200

400

600

800

1000

1200

1400

#
 R

e
tr

a
in

e
d

 N
o

d
e

s

Pendigits (Decr.)

Sampling Rate: 5%

Sampling Rate: 10%

Sampling Rate: 50%

Sampling Rate: 100%

9
7
.2

5

9
7
.0

5

9
6
.6

8

9
6
.4

2

9
7
.2

8

9
7
.1

1

9
6
.5

9

9
6
.4

8

Pendigits (Incr.)

5% 10% 50% 100%

Sampling Rate

60

70

80

90

100

T
e

s
t

A
c
c
 (

%
)

Train

Add 1.0%

9
7

.3
9

9
7
.0

8

9
6

.5
9

9
6

.4
8

9
7

.2
5

9
6

.9
9

9
6

.6
2

9
6

.4
2

Pendigits (Decr.)

5% 10% 50% 100%

Sampling Rate

60

70

80

90

100

T
e

s
t

A
c
c
 (

%
)

Train

Del 1.0%

Figure 9: The impact of sampling rate on time, number of retrain nodes, and test accuracy during
incremental/decremental learning.

both MovieLens-10M and MovieLens-20M datasets, all models improve as more recent data is in-
crementally learned. This demonstrates that learning from the latest user behaviors can improve
recommendation effectiveness.

Decremental Learning. This experiment investigates whether removing outdated user behaviors
can improve the performance of the recommendation system. Similar to the previous setup, we
aim to predict the Click-Through Rate (CTR) using LightGBM, XGBoost, and our proposed GBDT
model. We partition the dataset chronologically, using the oldest 80% as the training set and the latest
20% as the testing set. We start by training each model on the full training dataset (100%) and then
gradually remove the oldest 4% of the data at each step. After each removal, we evaluate the model’s
performance on the fixed testing set using AUC, Log Loss, and MSE, as shown in Figure 8. For
LightGBM and XGBoost, which lack native support for decremental updates, we retrain the models
from scratch using the remaining data at each step. Across both MovieLens-10M and MovieLens-
20M datasets, we observe a clear trend: model performance initially improves as stale (outdated)
data is removed, but begins to degrade once too much data is discarded. This indicates that while
removing outdated user behavior can help reduce noise and improve generalization, excessive data
removal eventually harms performance due to loss of useful historical patterns.

Conclusion. The experimental results demonstrate that our proposed method can effectively im-
prove recommender system performance by incrementally learning recent user behaviors and re-
moving outdated data without the need to retrain from scratch. This highlights the model’s adapt-
ability and efficiency in capturing evolving user preferences over time.

R.1 VARIANCE ANALYSIS AND STATISTICAL CONSISTENCY

To validate the reliability and consistency of our speedup claims, we conducted a variance analysis.
The 5 independent runs were performed with different random seeds to measure the stability of
the algorithm’s complexity profile across diverse execution paths (e.g., initial splits and sampling
choices). As shown in Table 17, the empirical results confirm the high statistical consistency of the
DyGB algorithm. The standard deviation is consistently low (typically less than 3% of the mean
runtime), demonstrating that the massive speedup margins reported are reliable across stochastic
execution paths.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 17: The table reports the mean execution time (seconds) and standard deviation (±σ) over
5 independent runs for incremental and decremental learning on Adult and HIGGS datasets with
varying update sizes (|D′|).

Dataset ∥D′∥ Incremental Learning (s) Decremental Learning (s)

Adult

1 0.035± 0.001 0.034± 0.001
0.1% 0.105± 0.003 0.104± 0.003
0.5% 0.215± 0.003 0.219± 0.008
1% 0.340± 0.013 0.381± 0.014

HIGGS

1 5.495± 0.235 3.223± 0.034
0.1% 26.651± 0.779 19.402± 0.272
0.5% 43.383± 1.621 49.419± 1.451
1% 66.961± 1.463 79.418± 1.407

20 40 60 80 100

Iteration

0

5

10

15

20

25

A
v
g
 T

im
e
 (

m
s
/p

e
r

tr
e
e
)

Adult Add 1

Add 0.1%

Add 0.5%

Add 1.0%

Train

20 40 60 80 100

Iteration

0

0.5

1

1.5

2

2.5

3

A
v
g
 T

im
e
 (

m
s
/p

e
r

tr
e
e
)

Letter

Add 1

Add 0.1%

Add 0.5%

Add 1.0%

Train

20 40 60 80 100

Iteration

0

20

40

60

80

100

120

A
v
g

 T
im

e
 (

m
s
/p

e
r

tr
e

e
)

Covtype

Del 1

Del 0.1%

Del 0.5%

Del 1.0%

Train

20 40 60 80 100

Iteration

0

100

200

300

400

500

600

700

800

A
v
g
 T

im
e
 (

m
s
/p

e
r

tr
e
e
)

SUSY

Del 1

Del 0.1%

Del 0.5%

Del 1.0%

Train

Figure 10: The impact of |D′| on average
learning time in incremental/decremental learn-
ing (top/bottom row).

20 40 60 80 100

Iteration

0

200

400

600

800

1000

1200

#
 R

e
tr

a
in

e
d
 N

o
d
e
s

Adult

Add 1

Add 0.1%

Add 0.5%

Add 1.0%

20 40 60 80 100

Iteration

0

50

100

150

200

250

300

#
 R

e
tr

a
in

e
d
 N

o
d
e
s

Letter

Add 1

Add 0.1%

Add 0.5%

Add 1.0%

20 40 60 80 100

Iteration

0

500

1000

1500

#
 R

e
tr

a
in

e
d

 N
o

d
e

s

Covtype

Del 1

Del 0.1%

Del 0.5%

Del 1.0%

20 40 60 80 100

Iteration

0

500

1000

1500

2000

#
 R

e
tr

a
in

e
d

 N
o

d
e

s

SUSY

Del 1

Del 0.1%

Del 0.5%

Del 1.0%

Figure 11: The impact of |D′| on the accumu-
lated number of retrained nodes for each iteration
in incr./decr. learning (top/bottom row).

S ABLATION STUDY

In this section, we discuss the impact of different hyper-parameter settings on the performance of
DyGB, e.g., time and accuracy.

S.1 SIZE OF DYNAMIC DATASET |D′|.

Different sizes of dynamic learning dataset D′ can have varying impacts on both the accuracy and
time of the dynamic learning process. Figure 6 shows the impact of different data addition settings
on test accuracy. Across all datasets, DyGB achieved nearly the same test accuracy, which validates
the effectiveness of our dynamic learning framework. Decremental learning also has similar results.

Figure 10 shows the influence of |Din| on incremental/decremental learning time. We only present
the experiment on 2 datasets each for incremental/decremental learning, due to the results on other
datasets show a similar trend. These results show that the dynamic learning time increase when the
size of Din increase. The reason is straightforward: as the size of Din increases, the model undergoes
more significant changes, resulting in unstable splits. This leads to a greater number of sub-trees
that require retraining, ultimately consuming more time. Figure 11 provides evidence to support this
observation. It illustrates the accumulated number of retrained nodes – how many nodes need to
be retrained. As the size of Din increases, the number of nodes that need to be retrained increases,
leading to longer learning times.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

0 0.1 0.2 0.3 0.4

Robustness Tolerance

0

5

10

15

A
v
g
 T

im
e
 (

m
s
/p

e
r

tr
e
e
)

Incr. Learning

Adult

CreditInfo

Optdigits

Pendigits

Letter

0 0.1 0.2 0.3 0.4

Robustness Tolerance

60

70

80

90

100

T
e
s
t
A

c
c
 (

%
)

Incr. Learning

Adult

CreditInfo

Optdigits

Pendigits

Letter

0 0.1 0.2 0.3 0.4

Robustness Tolerance

92

94

96

98

100

F
u

n
c
ti
o

n
a

l
S

im
ila

ri
ty

 (
%

)

Incr. Learning

Adult

CreditInfo

Optdigits

Pendigits

Letter

1 1.5 2 2.5

Avg Time (ms/per tree)

90

92

94

96

T
e
st

 A
cc

 (
%

)

Letter

= 0.0
= 0.1
= 0.2
= 0.3
= 0.4
= 0.5

Robustness Tol.

Figure 12: The impact of split robustness tolerance on the learning time, test accuracy, and model
functional similarity ϕ in incremental learning.

128 256 512 1024 2048 4096

Bins

0

20

40

60

80

100

120

S
p
e
e
d
u
p Incr. Learning

Adult

CreditInfo

SUSY

HIGGS

Optdigits

Pendigits

Letter

Covtype

128 256 512 1024 2048 4096

Bins

60

70

80

90

100
T

e
s
t

A
c
c
 (

%
)

Incr. Learning

Adult

CreditInfo

SUSY

HIGGS

Optdigits

Pendigits

Letter

Covtype

4 20 60 100 140 180

Leaves

0

50

100

150

S
p
e
e
d
u
p

Incr. Learning

Adult

CreditInfo

SUSY

HIGGS

Optdigits

Pendigits

Letter

Covtype

4 20 60 100 140 180

Leaves

60

70

80

90

100

T
e
s
t
A

c
c
 (

%
)

Incr. Learning

Adult

CreditInfo

SUSY

HIGGS

Optdigits

Pendigits

Letter

Covtype

Figure 13: The impact of the # bins and # leaves on the acceleration factor of incremental learning
(adding 1 data point).

S.2 SPLIT RANDOM SAMPLING

Split random sampling is designed to reduce the frequency of retraining by limiting the number of
splits. As mentioned in Section 3.3, a smaller sampling rate leads to more stable splits, resulting in
fewer nodes that require retraining and shorter dynamic learning time. Figure 9 shows the impact
of sampling rate α in split random sampling. The figures at the top demonstrate that when the
sample rate is reduced, a smaller number of split candidates are taken into account, leading to an
expected decrease in dynamic learning time. However, there is no significant difference between
5% and 10% in the Pendigits dataset. The figures in the second row show the accumulated number
of retrained nodes. It also shows that as the sample rate decreases, the splits become more stable,
resulting in fewer nodes that require retraining. In Pendigits, since the number of nodes that require
retraining is similar for 5% and 10%, it results in a minimal difference in the dynamic learning time,
as mentioned above. However, interestingly, for example in 100% sampling rate, although there
are fewer retraining in incremental learning, it take more time during learning process, because
incremental learning does not have derivatives of the data to be added. Therefore, more time is
needed to calculate their derivatives. On the contrary, decremental learning can reuse the stored
derivatives of the training process, resulting in less time. The bottom row shows the impact of the
sampling rate on the test accuracy. The test accuracy remains almost identical across all sampling
rates. Similar results can be observed in other datasets.

S.3 SPLIT ROBUSTNESS TOLERANCE

Split robustness tolerance aims to enhance the robustness of a split in dynamic learning. As the
observation in Figure 2, most best splits will be changed to second-best. Although the best split
may change, we can avoid frequent retraining if we allow the split to vary within a certain range.
For a node with ⌈αB⌉ potential splits, if the current split remains within the top ⌈σαB⌉, we will
continue using it. Here σ (0 ≤ σ ≤ 1) is the robustness tolerance. Figure 12 illustrates the
impact of split robustness tolerance σ on learning time, test accuracy, and functional similarity ϕ in
incremental learning. To obtain more pronounced experimental results, in this experiment, we set
|D′| = 1%× |Dtr|.
The figure on the left shows that the learning time decreases as the tolerance level increases. Al-
though test accuracy changes only slightly (middle figure), the functional similarity ϕ drops signif-
icantly (right figure). For example, in the Letter dataset, ϕ drops about 5% from σ = 0 to σ = 0.5.
This demonstrates that higher tolerance levels result in faster learning by avoiding retraining, but
with a trade-off of decreased functional similarity. Therefore, we suggest σ should not be greater
than 0.15. Similar results can be obtained on decremental learning.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 18: The test error rate after training, adding and deleting on GDBT with various iterations.

Method Adult CreditInfo Optdigits Pendigits Letter
100 iter 200 iter 500 iter 1000 iter 100 iter 200 iter 500 iter 1000 iter 100 iter 200 iter 500 iter 1000 iter 100 iter 200 iter 500 iter 1000 iter 100 iter 200 iter 500 iter 1000 iter

Training

XGBoost 0.1270 0.1319 0.1379 0.1430 0.0630 0.0648 0.0663 0.0676 0.0418 0.0390 0.0412 0.0395 0.0397 0.0355 0.0352 0.0346 0.0524 0.0364 0.0356 0.0358
LightGBM 0.1277 0.1293 0.1260 0.1318 0.0635 0.0636 0.0644 0.0654 0.0334 0.0317 0.0334 0.0329 0.0355 0.0343 0.0340 0.0340 0.0374 0.0310 0.0296 0.0298
CatBoost 0.2928 0.2887 0.2854 0.2843 0.1772 0.1765 0.1765 0.1765 0.0618 0.0396 0.0293 0.0248 0.0440 0.0365 0.0281 0.0257 0.0655 0.0406 0.0252 0.0186

Ours 0.1276 0.1265 0.1294 0.1325 0.0629 0.0632 0.0639 0.0648 0.0307 0.0251 0.0239 0.0239 0.0294 0.0280 0.0277 0.0277 0.0418 0.0318 0.0256 0.0246

Ours
(Incr. Learning)

Add 1 0.1275 0.1271 0.1287 0.1323 0.063 0.0635 0.0638 0.0644 0.0295 0.0262 0.0239 0.0239 0.0297 0.0275 0.0275 0.0275 0.0404 0.0330 0.0266 0.0260
Add 0.1% 0.1269 0.1287 0.1313 0.1325 0.0626 0.0633 0.0631 0.0638 0.0295 0.0256 0.0256 0.0256 0.0297 0.0275 0.0277 0.0277 0.0406 0.0322 0.0250 0.0240
Add 0.5% 0.1294 0.1276 0.1298 0.1316 0.0632 0.0629 0.0633 0.0648 0.029 0.0262 0.0256 0.0256 0.0295 0.0266 0.0283 0.0283 0.0394 0.0326 0.0270 0.0256
Add 1% 0.1267 0.1279 0.1287 0.1337 0.0632 0.0630 0.0639 0.0646 0.0262 0.0228 0.0228 0.0228 0.0283 0.0272 0.0275 0.0277 0.044 0.0310 0.0246 0.0242

Ours
(Decr. Learning)

Del 1 0.1276 0.1266 0.1294 0.1324 0.0628 0.0632 0.0640 0.0647 0.0306 0.0251 0.0239 0.0239 0.0295 0.0283 0.0280 0.0280 0.0416 0.0318 0.0260 0.0242
Del 0.1% 0.1284 0.1273 0.1288 0.1321 0.0633 0.0634 0.0640 0.0648 0.0295 0.0256 0.0245 0.0245 0.0283 0.0280 0.0280 0.0280 0.0432 0.0336 0.0272 0.0246
Del 0.5% 0.1295 0.1266 0.1280 0.1327 0.0634 0.0631 0.0644 0.0646 0.0301 0.0245 0.0239 0.0239 0.0303 0.0289 0.0283 0.0283 0.0432 0.0320 0.0258 0.0244
Del 1% 0.1295 0.1281 0.1290 0.1313 0.0632 0.0633 0.0638 0.0654 0.0273 0.0239 0.0234 0.0234 0.0303 0.0292 0.0280 0.0280 0.0424 0.0328 0.0270 0.0252

Table 19: The Total training, incremental or decremental learning time (in seconds).

Adult CreditInfo Optdigits Pendigits LetterMethod 100 iter 200 iter 500 iter 1000 iter 100 iter 200 iter 500 iter 1000 iter 100 iter 200 iter 500 iter 1000 iter 100 iter 200 iter 500 iter 1000 iter 100 iter 200 iter 500 iter 1000 iter
XGBoost 9.467 19.128 43.064 103.767 13.314 34.619 77.706 78.845 0.752 1.385 2.598 5.271 0.574 1.743 3.225 5.976 1.171 3.647 8.097 14.597

LightGBM 0.516 0.926 1.859 3.775 1.836 2.081 4.737 8.504 0.106 0.164 0.248 0.462 0.131 0.196 0.351 0.516 0.203 0.376 0.758 1.342
CatBoost 1.532 2.646 5.805 10.974 3.447 5.467 12.002 13.339 0.177 0.458 1.160 2.360 0.183 0.399 1.104 1.986 0.232 0.524 1.475 3.196Training

Ours 2.673 3.289 7.466 14.509 1.818 3.005 5.391 14.122 0.276 0.573 1.444 2.874 0.368 0.592 1.978 3.990 0.352 0.357 1.284 1.798
Add 1 0.035 0.071 0.167 0.328 0.114 0.125 0.244 0.616 0.011 0.031 0.118 0.285 0.014 0.045 0.142 0.227 0.016 0.018 0.206 0.464

Add 0.1% 0.105 0.167 0.402 0.859 0.249 0.307 0.661 2.402 0.015 0.031 0.106 0.311 0.026 0.059 0.187 0.347 0.040 0.070 0.483 0.807
Add 0.5% 0.212 0.383 0.937 2.463 0.321 0.593 1.502 4.670 0.029 0.039 0.137 0.335 0.042 0.062 0.194 0.411 0.067 0.127 0.537 0.979

Ours
(Incr. Learning)

Add 1% 0.344 0.670 1.747 3.904 0.383 0.789 2.255 6.369 0.043 0.042 0.146 0.344 0.053 0.067 0.202 0.435 0.128 0.176 0.657 1.207
Del 1 0.034 0.128 0.177 0.179 0.055 0.265 0.359 0.342 0.010 0.007 0.037 0.092 0.015 0.012 0.067 0.165 0.014 0.007 0.007 0.011

Del 0.1% 0.103 0.305 0.541 0.549 0.153 0.595 0.729 0.665 0.014 0.011 0.045 0.115 0.025 0.020 0.089 0.185 0.058 0.017 0.021 0.021
Del 0.5% 0.222 0.753 1.481 1.467 0.251 0.941 1.217 1.220 0.029 0.024 0.065 0.123 0.041 0.038 0.106 0.198 0.103 0.035 0.041 0.038

Ours
(Decr. Learning)

Del 1% 0.379 1.297 2.033 2.464 0.355 1.375 2.556 2.694 0.046 0.035 0.075 0.132 0.057 0.050 0.119 0.209 0.134 0.051 0.060 0.056

To further illustrate this tradeoff, the fourth subfigure presents the detailed time–accuracy relation-
ship on the Letter dataset under six representative tolerance values (σ = {0, 0.1, 0.2, 0.3, 0.4, 0.5}).
As the tolerance increases, the learning time decreases consistently due to reduced retraining, ac-
companied by a gradual decline in test accuracy. This dataset-level visualization highlights how
tolerance directly shifts the balance between efficiency and accuracy.

Although the fourth subfigure shows the results for the Letter dataset, the other datasets exhibit the
same qualitative pattern: larger tolerance values consistently reduce learning time while slightly
compromising model accuracy. This confirms that the observed tradeoff is a general behavior across
datasets, not an artifact of a particular domain.

Table 20: Accuracy for clean test dataset and attack successful rate for backdoor test dataset.

Train Clean Train Backdoor Add Backdoor Remove Backdoor# Iteration Dataset Clean Backdoor Clean Backdoor Clean Backdoor Clean Backdoor

Optdigits 97.49% 8.85% 97.55% 100.00% 97.27% 100.00% 97.49% 8.80%
Pendigits 97.28% 5.06% 97.25% 100.00% 97.25% 100.00% 100.00% 11.67%200

Letter 96.82% 2.90% 96.64% 100.00% 96.56% 100.00% 96.74% 2.56%

Optdigits 97.61% 8.63% 97.49% 100.00% 97.72% 100.00% 97.66% 8.57%
Pendigits 97.23% 5.06% 97.14% 100.00% 97.28% 100.00% 97.25% 5.63%500

Letter 97.44% 5.18% 97.36% 100.00% 97.14% 100.00% 97.14% 3.56%

Optdigits 97.61% 8.63% 97.77% 100.00% 97.72% 100.00% 97.83% 10.30%
Pendigits 97.23% 5.00% 97.11% 100.00% 97.28% 100.00% 97.25% 4.46%1000

Letter 97.66% 5.18% 97.38% 100.00% 97.52% 100.00% 97.42% 11.18%

S.4 NUMBER OF BINS AND LEAVES

In dynamic learning procedure, the number of bins and leaves also affects the dynamic learn-
ing time. We report the impact of varying the number of bins (128, 256, · · · , 4096) and leaves
(4, 10, 20, 40, 60, · · · , 200) on the acceleration factor of incremental learning (adding 1 data point)
in Figure 13. The number of bins has few effect on both accuracy and the speed of dynamic learning
as shown in the top row of the figures. In terms of the number of leaves, when it exceeds 20, the ac-
curacy tends to stabilize, except for Covtype, as shown in the bottom row of the figures. For smaller
datasets (Adult, Optdigits, Pendigits, Letter), the more the number of leaves, the lower the accel-
eration factor for incremental learning. However, for larger datasets (CreditInfo, SUSY, HIGGS,
Covtype), the more the number of leaves, the greater the acceleration is. Especially for HIGGS, the
largest dataset in our experiments, the acceleration can be more than 100x.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

S.5 NUMBER OF ITERATIONS

The number of base learners is important in practical applications. We provide additional results
for different numbers of base learners in Tables 18 and 19. Table 18 reports the test error rate
after training, adding, and deleting base learners in GBDT models with varying iterations, demon-
strating that DyGB achieves a comparable error rate across different iterations. Table 19 shows
the time consumption for incremental and decremental learning, illustrating that DyGB are substan-
tially faster than retraining a model from scratch, particularly in cases where a single data sample is
added/deleted.

Additionally, to confirm that our method can effectively add and delete data samples across various
iterations, we report results on backdoor attacks for different iterations, as shown in Table 20. These
results confirm that our method successfully adds and removes data samples from the model across
different numbers of iterations.

S.6 ABLATION STUDY SUMMARY

The efficiency and accuracy of DyGB result from the synergistic relationship among our key opti-
mizations. This ablation study clarifies the contribution of each component and establishes practical
parameter guidelines.

Primary Efficiency Lever (σ): The Adaptive Split Robustness Tolerance (σ) is the critical mech-
anism for balancing speed and accuracy, as it directly controls the frequency of costly subtree re-
training. Our analysis shows that this mechanism achieves massive time reduction, provided the
functional similarity (ϕ) remains within acceptable bounds.

Guideline for σ: For optimal trade-off, we recommend setting σ ≈ 0.1. Higher tolerance levels
(e.g., σ > 0.15) result in faster learning but with a significant risk of decreased functional similarity.

Foundational Speedup (α): The Split Candidate Sampling (α) provides the foundational speedup
by drastically limiting the search space during both initial training and subsequent dynamic checks.
Empirically, reducing α to 0.1 is sufficient to achieve near-optimal time reductions without com-
promising test accuracy.

Structural Scalability (J): The Number of Leaves (J) is crucial for handling high-volume data.
While accuracy stabilizes around J = 20, optimizing the number of leaves is essential for maxi-
mizing the acceleration factor on large datasets (CreditInfo, SUSY, HIGGS), where speedups can
exceed 100x.

The comprehensive analysis of DyGB’s hyperparameters confirms that the framework successfully
achieves a robust balance between time-efficiency and structural stability. The core mechanism lies
in the synergy between the Adaptive Split Robustness Tolerance (σ), which serves as the primary
lever for minimizing costly retraining events, and the Split Candidate Sampling (α), which reduces
the baseline computational cost of each check. This combination validates DyGB’s ability to per-
form continuous dynamic updates efficiently and reliably, ensuring that the necessary speedups are
achieved without compromising the functional integrity of the trained model.

T IMPACT OF SUB-OPTIMAL SPLITS: STOCHASTIC SPLITTING EXPERIMENT

Motivation. A potential concern regarding the proposed Adaptive Split Robustness Tolerance (σ) is
that allowing sub-optimal splits might lead to imbalanced tree structures or an inability to properly
distinguish samples in large bins, thereby compromising model accuracy. To empirically verify
the safety of our tolerance mechanism and refute the necessity of ”perfect” greedy splitting, we
conducted a Stochastic Splitting experiment.

Methodology. We trained the DyGB model from scratch with a modified splitting criterion: instead
of deterministically selecting the split with the maximum gain (Rank 1), the algorithm forces each
node to randomly select a split from the top K = ⌈σB⌉ candidates. This deliberately introduces
structural sub-optimality. We evaluated the resulting test error rates across varying tolerance levels
(σ ∈ {0, 0.05, 0.10, 0.20}).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 21: Stochastic Splitting Experiment. Baselines. “Avg Selected Idx” denotes the average rank
of the chosen split (0 is optimal).

Dataset Method
Absolute Tolerance

(Top K Splits) Avg Selected Idx Test Error Rate

Adult

XGBoost - - 0.1375
LightGBM - - 0.1287
ThunderGBM - - 0.2405
Ours, σ = 0 (Greedy) 1 0 0.1276
Ours, σ = 5% 10 4.74 0.1284
Ours, σ = 10% 20 9.56 0.1321
Ours, σ = 20% 40 20.61 0.1375

CreditInfo

XGBoost - - 0.0659
LightGBM - - 0.0631
ThunderGBM - - 0.0660
Ours, σ = 0 (Greedy) 1 0 0.0629
Ours, σ = 5% 11 5.25 0.0627
Ours, σ = 10% 23 10.58 0.0636
Ours, σ = 20% 46 23.23 0.0644

SUSY

XGBoost - - 0.1976
LightGBM - - 0.1985
ThunderGBM - - 0.4576
Ours, σ = 0 (Greedy) 1 0 0.1987
Ours, σ = 5% 64 31.87 0.2007
Ours, σ = 10% 129 65.07 0.2022
Ours, σ = 20% 258 127.91 0.2067

HIGGS

XGBoost - - 0.2676
LightGBM - - 0.2726
ThunderGBM - - 0.4698
Ours, σ = 0 (Greedy) 1 0 0.2742
Ours, σ = 5% 92 46.71 0.2736
Ours, σ = 10% 185 95.58 0.2937
Ours, σ = 20% 371 189.31 0.3082

Optdigits

XGBoost - - 0.0395
LightGBM - - 0.0334
ThunderGBM - - 0.0546
Ours, σ = 0 (Greedy) 1 0 0.0307
Ours, σ = 5% 2 0.53 0.0290
Ours, σ = 10% 5 2.08 0.0284
Ours, σ = 20% 11 4.38 0.0278

Pendigits

XGBoost - - 0.0355
LightGBM - - 0.0355
ThunderGBM - - 0.0515
Ours, σ = 0 (Greedy) 1 0 0.0294
Ours, σ = 5% 7 3.23 0.0260
Ours, σ = 10% 15 7.25 0.0246
Ours, σ = 20% 31 14.66 0.0240

Letter

XGBoost - - 0.0384
LightGBM - - 0.0374
ThunderGBM - - 0.0940
Ours, σ = 0 (Greedy) 1 0 0.0418
Ours, σ = 5% 1 0 0.0418
Ours, σ = 10% 1 0 0.0418
Ours, σ = 20% 3 1.17 0.0526

Covtype

XGBoost - - 0.1717
LightGBM - - 0.1700
ThunderGBM - - 0.2135
Ours, σ = 0 (Greedy) 1 0 0.1702
Ours, σ = 5% 27 13.31 0.1890
Ours, σ = 10% 55 25.76 0.2030
Ours, σ = 20% 110 56.46 0.2184

Experimental Control. To ensure a strictly fair comparison regarding feature granularity, all base-
line methods (XGBoost, LightGBM, and ThunderGBM) were explicitly configured with B = 128
bins. This eliminates discretization resolution as a confounding variable, ensuring that any differ-
ence in performance is attributed to the split selection strategy.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Results and Analysis. The results are presented in Table 21. The column Absolute Tolerance
indicates the size of the candidate pool (K), and Avg Selected Idx reports the average rank of the
actual split selected across all nodes (where 0 is the best). For example, an average index of 4.74
implies that, on average, the model selected the ≈5th best split rather than the optimal one.

Our findings are summarized as follows:

1. Negligible Impact at Practical Tolerance (σ ≤ 10%): The performance degradation is statisti-
cally insignificant at our recommended setting (σ ≈ 0.1). For instance, on the CreditInfo dataset,
the error rate shifted marginally from 0.0629 (Greedy) to 0.0636 (σ = 10%), a difference of only
0.07%. This demonstrates that the ”perfect” split is not a strict requirement for high accuracy.

2. Competitiveness with Baselines: Even when deliberately handicapped with σ = 10% (selecting
roughly the 10th best split on average), DyGB often retains accuracy superior to or competitive
with standard baselines. On Adult, the σ = 10% result (0.1321) outperforms the optimized
XGBoost (0.1375).

3. Implicit Regularization: Interestingly, on datasets such as Optdigits and Pendigits, increasing
the tolerance actually reduced the test error (e.g., Optdigits improved from 0.0307 to 0.0290
with σ = 5%). We hypothesize that stochastic split selection acts as a form of regularization,
preventing the model from overfitting to specific noise in the training data.

Conclusion. This experiment confirms that GBDT accuracy is highly robust to split selection. The
proposed tolerance mechanism operates well within the model’s safety margin, trading a negligible
amount of theoretical split gain for significant improvements in update efficiency without compro-
mising predictive power.

39

	Introduction
	Dynamic GBDT Framework
	GBDT Preliminary
	Problem Setting
	DyGB: Framework Overview

	Optimizing Learning Time
	Update without Touching Training Data
	Adaptive Lazy Update for Derivatives
	Split Candidates Sampling
	Adaptive Split Robustness Tolerance

	Experimental Evaluation
	Training Time and Memory Overhead
	Dynamic Learning Time
	Batch Addition & Removal
	Verifying by Backdoor Attacking
	Additional Evaluations

	Conclusion
	The Use of Large Language Models
	Related Work
	Feature Discretization.
	Experiment Setting
	Framework Overview
	Split Candidates Sampling: Theoretical Analysis
	Robustness via Distance and Gain Margin

	Update w/o Touching Training Data
	Time Complexity
	Test Error Rate
	Real-world Time Series Evaluation
	Model Functional Similarity
	Backdoor Attacking
	Membership Inference Attack
	Different Base Learner
	Extremely High-dimensional Datasets
	Data Addition with More Classes
	Approximation Error of Leaf Scores
	DyGB on Recommender Systems
	Variance Analysis and Statistical Consistency

	Ablation Study
	Size of Dynamic Dataset |D'|.
	Split Random Sampling
	Split Robustness Tolerance
	Number of Bins and Leaves
	Number of Iterations
	Ablation Study Summary

	Impact of Sub-optimal Splits: Stochastic Splitting Experiment

