

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LAVIDA-O: ELASTIC LARGE MASKED DIFFUSION MODELS FOR UNIFIED MULTIMODAL UNDERSTANDING AND GENERATION

Anonymous authors

Paper under double-blind review

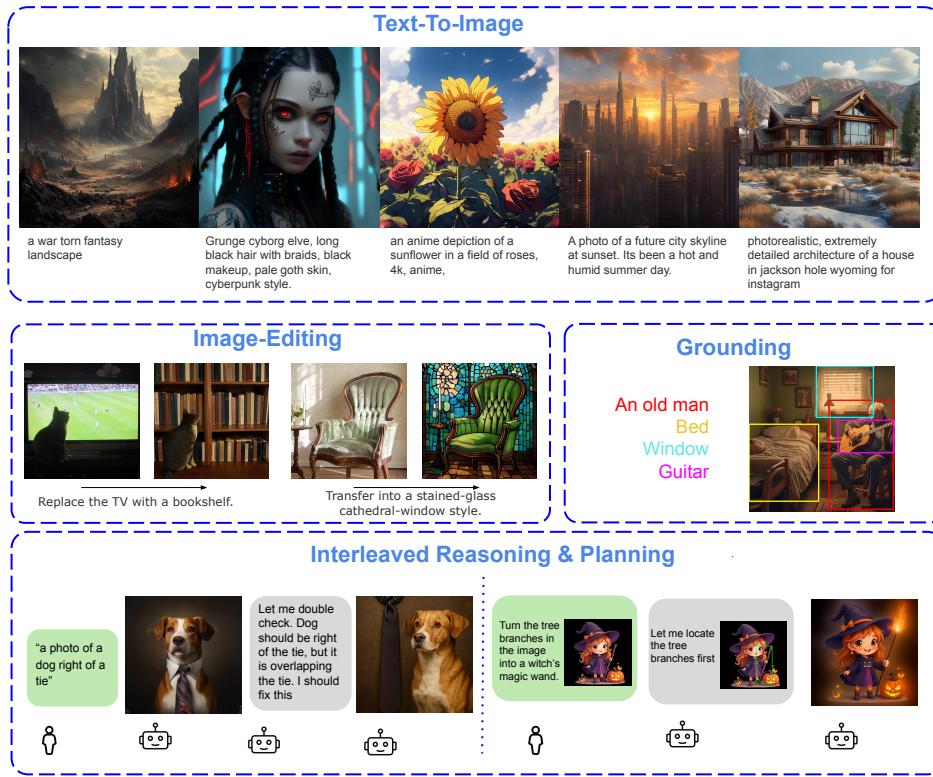


Figure 1: **We propose Lavida-O**, a unified large masked diffusion model capable of multi-modal understanding and generation.

ABSTRACT

We propose Lavida-O, a unified Masked Diffusion Model (MDM) for multi-modal understanding and generation. Unlike existing multimodal MDMs such as MMaDa and Mudit which only support simple image-level understanding tasks and low-resolution image generation, Lavida-O presents a single framework that enables image-level understanding, object grounding, image editing, and high-resolution (1024px) text-to-image synthesis. Lavida-O incorporates a novel Elastic Mixture-of-Transformers (Elastic-MoT) architecture that couples a lightweight generation branch with a larger understanding branch, supported by token compression, universal text conditioning and stratified sampling for efficient and high-quality generation. Lavida-O further incorporates planning and iterative self-reflection in image generation and editing tasks, seamlessly boosting generation quality with its understanding capabilities. Lavida-O achieves state-of-the-art performance on a wide range of benchmarks including RefCOCO object grounding, GenEval text-to-image generation, and ImgEdit image editing, outperforming

054 existing autoregressive models and continuous diffusion models such as Qwen2.5-
 055 VL and FluxKontext-dev, while offering substantial speedup at inference. These
 056 advances establish Lavida-O as a new paradigm for scalable multimodal reasoning
 057 and generation.

059 1 INTRODUCTION

060 The abilities to understand and generate images have been two essential objectives of image modeling
 061 research. Traditionally, these tasks are handled by a diverse set of specialist models, such as
 062 detection models for object localization (Liu et al., 2024b; Li et al., 2023a), Visual Question Answering
 063 (VQA) models for question-answering (Li et al., 2022), and diffusion models for text-to-image
 064 generation (Esser et al., 2024; Podell et al., 2023; Rombach et al., 2022). Recently, the rise of unified
 065 multi-modal models such as GPT-4o (OpenAI, 2024) has introduced a new paradigm: using a
 066 single generalist model to perform a wide range of image understanding and generation tasks. Not
 067 only is this unified approach more aligned with the goal of developing versatile multi-task Artificial
 068 General Intelligence (AGI), but it also demonstrates strong empirical performance by allowing under-
 069 standing and generation capabilities to mutually benefit each other (Deng et al., 2025). This is
 070 especially notable in tasks requiring both understanding and generation capabilities, such as image
 071 editing, where unified models show unparalleled advantages over generation specialists.

072 Most current unified models are built on Autoregressive (AR) large language models. Some works,
 073 such as BLIP3o (Chen et al., 2025a) and BAGEL (Deng et al., 2025), employ AR modeling for text
 074 generation and continuous diffusion modeling for image generation (AR+diff), while others, such as
 075 Janus (Chen et al., 2025c), first tokenize images into sequences of discrete tokens and then employ
 076 a unified AR next-token prediction objective for both image and text modalities.

077 Recently, Masked Diffusion Models (MDMs) (Lou et al., 2023; Sahoo et al., 2024) have emerged
 078 as a competitive alternative to AR models. Unlike AR models, MDMs treat token generation as a
 079 diffusion process over discrete tokens. In the forward process, the tokens of a sequence are gradually
 080 masked. At inference, we start with a sequence of mask tokens and gradually unmask them to obtain
 081 a sequence of meaningful tokens. Large-scale experiments in language modeling (Nie et al., 2025;
 082 Ye et al., 2025a) show that MDMs can achieve comparable performance to AR language models
 083 while offering many advantages, such as better speed-quality tradeoffs, controllability, and bidirectional
 084 context. Several recent works extend MDMs to multi-modal understanding and generation
 085 tasks (Li et al., 2025a; Yu et al., 2025b; Yang et al., 2025; Shi et al., 2025). Compared with the
 086 AR+diff setup, unified MDMs avoid the need to carefully tune the balance between AR and diffusion
 087 losses by offering a unified objective, resulting in greater simplicity and scalability. Compared
 088 with unified AR modeling, unified MDMs offer significantly faster sampling speeds by allowing
 089 parallel decoding of multiple tokens.

090 Despite these advantages, the latest unified MDMs—such as MMaDa (Yang et al., 2025) and Mudit
 091 (Shi et al., 2025)—still lag behind state-of-the-art unified AR and AR+diffusion models, both in the
 092 breadth of tasks they support and in benchmark performance. There are three main challenges
 093 in developing high-performing unified MDMs. First, unified models are expensive to train due
 094 to the large size of their language backbones. For example, to build a unified MDM with image
 095 generation capability, MMaDa pretrains an 8B model jointly on text and image generation, which is
 096 costly. This challenge is further exacerbated by the limited literature on training large-scale masked
 097 image generative models. In contrast, many open-source large-scale continuous diffusion models
 098 such as Flux (Labs, 2024) are readily available. Second, open-source resources for masked image
 099 generative models (MIGMs) are scarce, and the literature on their training techniques and sampling
 100 processes is less developed than that for continuous diffusion models. Even the best open-source
 101 MIGM, Meisisonic-1B (Bai et al., 2024), significantly underperforms continuous diffusion models
 102 of comparable size (Xie et al., 2025a). Lastly, while these models can perform both understanding
 103 and generation tasks, they lack explicit mechanisms to leverage image understanding capabilities to
 104 improve generation quality. In fact, MMaDa and Mudit cannot even perform image editing tasks,
 105 which require both understanding and generation capabilities. These models simply concatenate
 106 text-to-image data and image understanding data during training.

107 To bridge this gap, we propose Lavida-O, a unified multi-modal Masked Diffusion Model (MDM)
 108 capable of both image understanding and generation tasks. To mitigate the cost of training large

108 diffusion models, Lavida-O introduces several techniques such as Elastic Mixture-of-Transformers
 109 (Elastic-MoT), progressive upscaling (gradually increasing the image resolution during training),
 110 and token compression that enable efficient scaling. To improve generation quality, Lavida-O em-
 111 ploys stratified sampling and universal text conditioning. To fully leverage the potential of a unified
 112 multi-modal model, Lavida-O incorporates planning and self-reflection mechanisms that explicitly
 113 utilize its understanding capabilities to enhance generation outputs. We highlight Lavida-O’s capa-
 114 bilities compared with previous multi-modal MDMs in Table 1.

115 Through extensive experiments, we show that Lavida-O achieves state-of-the-art performance on a
 116 wide range of benchmarks such as RefCOCO object grounding (Kazemzadeh et al., 2014), GenEval
 117 text-to-image generation (Ghosh et al., 2023), and ImgEdit (Ye et al., 2025b) image editing, outper-
 118 forming existing autoregressive and continuous diffusion models such as Qwen2.5-VL (Bai et al.,
 119 2025) and Flux .1 Kontext dev (Labs et al., 2025), while offering up to a $6.8\times$ speedup. Overall, our
 120 contributions can be summarized as follows:

- 121 • We propose the first multi-modal MDM that achieves state-of-the-art performance on text-
 122 to-image generation, image editing, and grounding tasks, outperforming existing MDMs,
 123 AR models, and continuous diffusion models.
- 124 • We propose several efficient and effective training and inference techniques for large-scale
 125 masked image generative models and unified multi-modal models, such as the Elastic-MoT
 126 architecture, universal text conditioning, and stratified sampling, significantly advancing
 127 the literature.
- 128 • We introduce a novel paradigm that explicitly leverages the understanding capabilities of a
 129 unified model to improve its generation through planning and self-reflection.

132 **Table 1: Capabilities of different multimodal MDMs.** Lavida-O uniquely supports localized un-
 133 derstanding, high-resolution image synthesis, image editing and interleaved generation.

135 136 Model	137 138 139 140 Understanding		135 136 137 138 139 140 Generation		
	136 Image-level	136 Object-level	137 Text-to-image	137 Image-editing	138 Interleaved
137 LaViDa, Dimple, LLaDa-V	✓	✗	✗	✗	✗
138 Mudit	✓	✗	512 ²	* ¹	✗
139 MMaDa	✓	✗	512 ²	✗	✗
140 LaViDa-O	✓	✓	1024 ²	✓	✓

141 142 2 BACKGROUND AND RELATED WORKS

144 2.1 MASKED DIFFUSION MODELS

147 Masked Generative Modeling (MGM) has emerged as an alternative to AR models for modeling
 148 sequences of discrete tokens. Early works such as BERT (Devlin et al., 2019) used MGM as a rep-
 149 resentation learning objective. Later works (Chang et al., 2022; 2023) such as MaskGIT explored
 150 using MGM for generative modeling. In this setup, a sequence is initialized with only mask
 151 tokens, which are then gradually unmasked to generate the desired output. In these works, discrete
 152 tokenizers like VQGAN (esser et al., 2021) are used to convert images into discrete tokens.

153 More recently, MDMs (Austin et al., 2021; Sahoo et al., 2024; Lou et al., 2023) have further devel-
 154 oped the theory of MGM by formalizing the masking and unmasking process as the forward and
 155 reverse diffusion processes in discrete space. This provides a principled framework for training and
 156 sampling from these models. MDMs have renewed interest in masked modeling for language gen-
 157 eration, offering theoretical advantages over AR models, such as better speed-quality tradeoffs and
 158 improved controllability. Notably, LLaDa-8B and Dream-8B (Nie et al., 2025; Ye et al., 2025a)
 159 demonstrated that MDMs can achieve competitive performance compared to AR models at scale.
 160 Several follow-up works (Li et al., 2025a; Yu et al., 2025b; You et al., 2025; Yang et al., 2025)

161 ¹Mudit showed examples of simple editing through inpainting. It does not have instruction-based editing
 162 capabilities.

such as LaViDa extend MDMs to multi-modal tasks such as image understanding and text-to-image generation. Their capabilities are summarized in Table 1.

Formally, given a sequence of L discrete tokens $X_0 = [X_0^1, X_0^2, \dots, X_0^L]$, the forward process $q(X_t|X_s)$ gradually masks the tokens over the time interval $[0,1]$, with $1 \geq t \geq s \geq 0$. At $t = 1$, the sequence X_1 consists entirely of masked tokens, denoted by $[M]$. A neural network p_θ is used to model the reverse process $p(X_s|X_t)$. The masked diffusion objective is defined as:

$$\mathcal{L}_{\text{MDM}} = -\mathbb{E}_{t, X_0, X_t} \left[\frac{1}{t} \log p_\theta(X_0|X_t) \right] \quad (1)$$

where $p_\theta(X_0|X_t)$ is factorized into $\prod_{i=1}^L p_\theta(X_0^i|X_t)$ based on independence assumptions (Sahoo et al., 2024). At inference time, the model starts from a fully masked sequence $X_1 = [M, M, \dots, M]$ and progressively applies the learned reverse process $\log p_\theta(X_0|X_t)$ to recover the original tokens. We provide a more detailed formulation of MDMs in Appendix A.1.

2.2 UNIFIED MULTI-MODAL MODELS

Unified multi-modal models such as GPT-4o (OpenAI, 2024) are capable of both image understanding and generation tasks, leading to strong performance on tasks requiring both capabilities, such as image editing. Generally, there are two dominant types of unified models based on their modeling objectives. The first type, such as BAGEL (Deng et al., 2025), employs an AR objective for text generation and a diffusion objective for image generation (AR+diff). However, this design involves two different training objectives with distinct numerical scales and training dynamics, often requiring careful tuning of loss weighting and data mixtures. In contrast, the second type of models employ a unified objectives for both image and texts. Early works like Janus-Pro (Chen et al., 2025c) employ a unified AR modeling objective. Recent works like UMDD and MMaDa (Yang et al., 2025; Wang & Shi, 2008) explore a unified MDM objective. Despite some success, a significant performance gap remains between these unified MDMs and state-of-the-art unified models in the AR and AR+diff categories.

Architecturally, unified models also fall into two main categories. The first type, such as Janus and MMaDa, uses a single dense transformer to output both image and text tokens. The second type, such as BAGEL and MetaQueries (Pan et al., 2025), employs separate parameter sets for handling image and text modalities. A common design in this category is the mixture-of-transformers (MoT) architecture (Liang et al., 2024), where image and text inputs are processed by different parameter sets but can interact through joint attention mechanisms. Under this paradigm, several works such as X-Fusion and LM-Fusion (Mo et al., 2025; Shi et al., 2024) further investigated architecture designs and training recipes of MoT. These designs are illustrated in Figure 3. While being more flexible, training MoT experts can be expensive due to their large parameter counts.

3 METHOD

3.1 MODEL ARCHITECTURE

Lavida-O’s model architecture is built on LaViDa (Li et al., 2025a), a diffusion model capable of only image understanding tasks. LaViDa uses a SigLIP (Zhai et al., 2023) vision encoder to convert input images into continuous semantic embeddings C_i , which are concatenated with token embeddings of text prompts C_t to form the final conditional embeddings $C = \text{Concat}(C_i, C_p)$ for visual understanding tasks. At each inference step, the diffusion model uses the partially unmasked answer X_t and the conditional embedding C to predict the clean text answer X_0 .

For image understanding tasks, Lavida-O maintains this exact setup of LaViDa. To incorporate visual generation tasks, we extend LaViDa’s design by representing target images as sequences of discrete tokens using a VQ-Encoder (Esser et al., 2021). When performing these tasks, X_0 and X_t contain not only text tokens, but also VQ tokens that represent images. For image editing and interleaved generation tasks, we additionally incorporate VQ tokens of input images C_v as part of the conditional embedding $C = \text{Concat}(C_i, C_v, C_p)$, since using semantic embeddings C_i alone can degrade the low-level details needed for editing. To reduce the number of tokens and improve

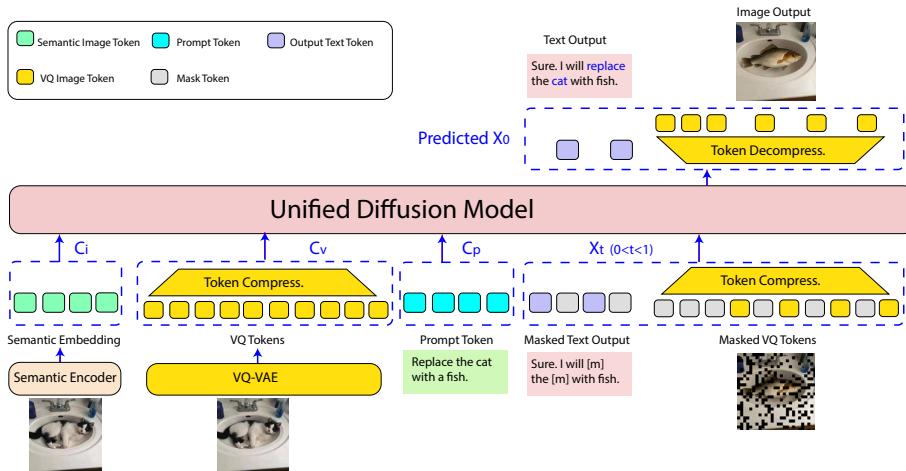


Figure 2: **Overall Pipeline of Lavida-O.** Given an input image and text prompt, we first concatenate the image semantic embedding C_i , image VQ embedding C_v , and text prompt embedding C_p to form the conditioning embedding C . The combined embedding is then passed to the model alongside the partially masked sequence X_t . The model then predicts the fully-unmasked sequence X_0 .

computational efficiency, we introduce a token compression module that reduces the number of VQ tokens by a factor of 4. The overall pipeline is illustrated in Figure 2.

3.1.1 ELASTIC MIXTURE-OF-TRANSFORMERS (ELASTICMoT)

Our goal is to find an efficient method that can equip an understanding-only diffusion model with visual generation capabilities. However, both of the existing common choices described in Section 2.2—dense models and MoT—are very expensive. Dense models use the same set of parameters for all tasks, requiring a mix of understanding and generation data during training to prevent catastrophic forgetting, which is not data-efficient. While the MoT setup allows freezing the understanding branch and training only the generation branch for image generation, its architecture doubles the total parameter count, leading to considerable computational overhead. Moreover, given an 8B base understanding model, both setups require training at least 8B parameters for generation tasks from scratch, which is prohibitively expensive.

To address these limitations, we propose Elastic-MoT, a novel architecture design that efficiently adapts an understanding-only model for image generation tasks. Compared with the vanilla MoT architecture, Elastic-MoT introduces two major modifications. First, instead of using equally sized branches, the generation branch has a smaller hidden size. This reduces the parameter count and enables efficient training. We make this design choice based on the observation that many text-to-image models can generate high-quality images with only 2–4B parameters, suggesting that generation tasks may not require as much capacity as understanding tasks (Xie et al., 2025a;b).

Second, given an N -layer model, instead of having joint attention at all layers, we only allow text and image modalities to interact in the first M layers. In the remaining $K = N - M$ layers, text and image tokens interact only within their modality through self-attention. This design activates only partial parameters for different tasks. For example, in Lavida-O’s final design, the generation branch has 2.4B new parameters and the understanding branch 8B parameters from LaViDa. With $N = 32$ layers and $M = K = 16$, image generation activates only 6.4B parameters (2.4B from generation + 4B from the first 16 understanding layers). During text-to-image pretraining, only the 2.4B generation branch is trainable, further improving the efficiency. Similarly, understanding tasks use 8B active parameters, while interleaved tasks requiring both branches use 10.4B. The full Elastic-MoT design is shown in Figure 3, with further details in Appendix A.2 and B.2.

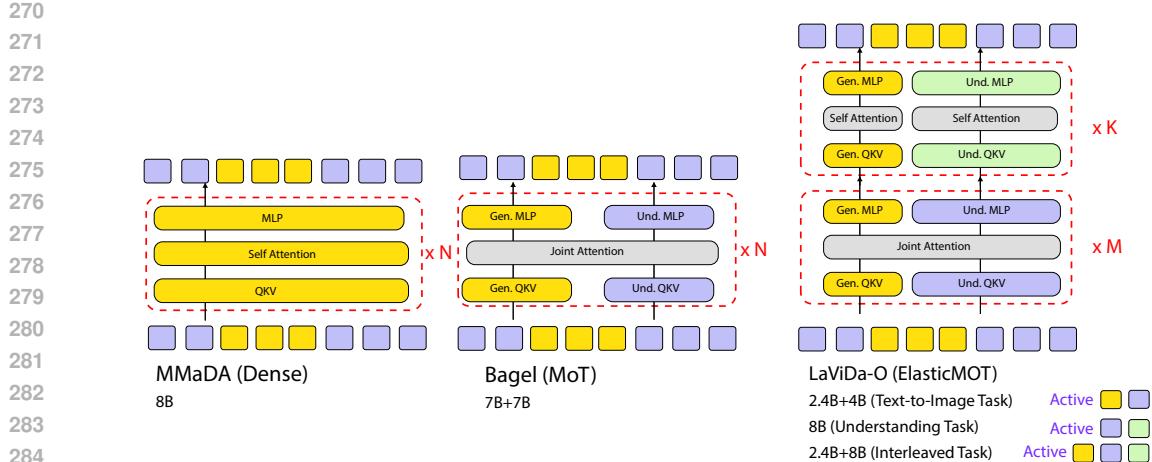


Figure 3: **Design of Elastic MoT.** Elastic-MoT introduces two major modifications to standard MoT. First, the generation branch has a smaller hidden size. Second, given an N -layer model, we only allow text and image modalities to interact in the first M layers. These two designs allow us to flexibly load only a portion of parameters depending on tasks, improving the efficiency.

3.1.2 MODALITY-AWARE MASKING

One of the challenges in adapting MoT architecture for MDMs is routing—the mechanism to determine which branch should be activated for each token. This is trivial for unified AR MoT models, where the model can simply learn to generate a special token (e.g., [img_start]) to indicate that the next token should use the generation branch. However, MDMs decode tokens in parallel and must decide in advance which mask tokens should be routed to the understanding branch and which to the generation branch. A naive solution is to let the user specify the number and location of text and image tokens, but this is difficult for interleaved generation, such as image generation with self-reflection. To address this issue, we design a modality-aware masking process.

Given a sequence of M text tokens and N image VQ tokens, the vanilla forward diffusion process gradually converts it into $M + N$ mask tokens during the time interval $[0, 1]$. By contrast, our modality-aware forward process introduces a special timestamp $t_{\text{exp}} \in [0, 1]$, at which fully masked image VQ tokens are collapsed into a special [exp] text token. This process is illustrated in Figure 4a (Bottom-up). At inference, we assume all mask tokens are text tokens at the beginning. When a [exp] token is generated, we replace it with a sequence of L_{img} mask tokens, and specify that these tokens will be processed by the generation branch for image synthesis in subsequent forward calls. This process is also illustrated in Figure 4a (Top-down). We provide additional details in Appendix A.3.

3.2 TASK-SPECIFIC DESIGNS

In this section, we describe several additional technical innovations that improve the effectiveness and efficiency on newly incorporated tasks such as image generation, image editing and grounding.

Universal Text Conditioning. A common approach to improving the quality of text-to-image models is micro-conditioning (Podell et al., 2023), which conditions the image generation process on extra parameters such as original image resolution, crop coordinates, and image quality scores. This is typically achieved via specialized embeddings. However, since a unified model has strong language understanding and reasoning capabilities, we can simply append these conditions as plain text (e.g., “SCORE: 5.40”) to the end of user prompts. In addition to common conditions, we also incorporate image luminance and contrast as micro-conditions. This simple and effective design not only improves image quality by biasing generation toward high-scoring distributions, but also gives users more refined control over outputs. We provide additional details in Appendix A.4.

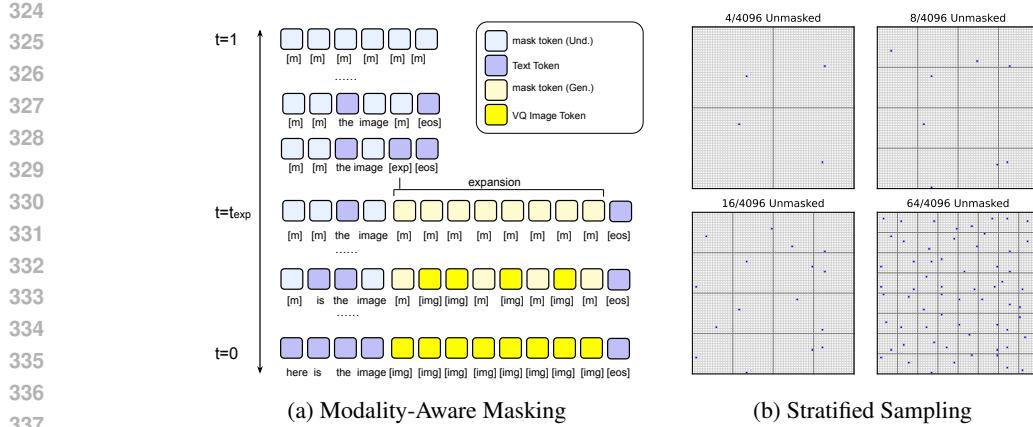


Figure 4: **Design choices of Lavida-O.** (a) Forward diffusion process with modality-aware masking. (b) Visualization of the unmasking order in the proposed stratified random sampling process.

Stratified Random Sampling. Most MDMs use confidence-based sampling, unmasking high-confidence tokens first. In image generation, high-confidence tokens tend to cluster around already unmasked tokens. This negatively affecting image quality because adjacent tokens are highly correlated, which contradicts the independence assumption of MDMs. To mitigate this, we introduced a stratified sampling process. Starting with a 2×2 grid, we unmask one token per region to ensure broad spatial coverage. Each region is then recursively subdivided into four smaller subregions, and we continue unmasking one token from each new region. This process repeats until all tokens are revealed, producing a balanced, evenly distributed unmasking pattern across the entire image. This is illustrated in Figure 4b. More details and analysis are provided in Appendix A.5 and B.3.

Planning and Reflection. While existing unified MDMs integrate image understanding and generation tasks with a single objective, they do not incorporate mechanisms that use understanding to improve generation, except for the assumption that joint training benefits both tasks. To address this, we introduce two explicit mechanisms that leverage understanding to improve generation: *planning* and *reflection*. With planning, the model first generates a layout of the image represented by bounding boxes, then creates the actual image accordingly. For image editing tasks, it first identifies the desired edit region before generating the edited image. With reflection, the model evaluates its own generation using its understanding capability and determines whether it satisfies the user’s request. If misalignment is detected, the model generates a new image correcting the error. Examples are shown in Figure 1, with additional technical results and analysis in Appendix A.7 and B.5.

Object Grounding with Coordinate Quantization. The bi-directional context of MDMs naturally allows parallel decoding of bounding box coordinates. While Lavida-O can represent numbers as plain text, we adopt a specialized scheme that normalizes all bounding box coordinates to $[0, 1]$ and quantizes them into 1025 discrete tokens representing $\frac{0}{1024}, \frac{1}{1024}, \dots, \frac{1024}{1024}$. This ensures each bounding box is represented by exactly four tokens. At inference, we construct a multiple query input with masked tokens such as “A dog [m][m][m][m]; A cat [m][m][m][m]”, and unmask all coordinates in parallel. This design allows us to decode multiple bounding boxes in as low as a single diffusion step, greatly boosting the efficiency. We provide further details in Appendix A.6

4 EXPERIMENT

4.1 SETUP

We start with LaViDa (Li et al., 2025a) and extend it with a 2.4B image generation branch using the ElasticMoT architecture described in Section 3.1.1. The training consists of three stages: **Stage 1**: We continue training the base model on object grounding and image-level understanding tasks. **Stage 2**: We incorporate an 2.4B image generation and pretrain for text-to-image generation. We start with a resolution of 256 and progressively increase it to 512 and 1024 during training. **Stage 3**: In the final stage, we jointly train the entire 2.4B + 8B model end-to-end on image understanding,

378 text-to-image generation, image editing, and interleaved generation tasks such as planning and self-
 379 reflection. More details on the training data and process are provided in Appendix B.1.
 380

381 4.2 MAIN RESULTS 382

383 **Image Understanding.** We report the performance of image understanding tasks in Table 2. Lavida-
 384 O outperforms the previous state-of-the-art unified diffusion model, MMaDa, by a considerable margin
 385 on MMMU (Yue et al., 2024), MME (Fu et al., 2023), and MMB (Liu et al., 2024c). Compared
 386 with the base model LaViDa, Lavida-O achieves substantial improvements on most benchmarks
 387 such as ChartQA (Masry et al., 2022), DocVQA (Mathew et al., 2021), ScienceQA (Lu et al., 2022),
 388 and MathVista (Lu et al., 2023), due to the scaling of the training data.
 389

390 Table 2: Quantitative results on image-level understanding tasks.*Evaluated by us.

Model	MMMU	MME-P	MME-C	MMB	ChartQA	DocVQA	InfoVQA	Sci.QA	AI2D	M.Vista	M.Verse
<i>AR Und. Only</i>											
LLaVa-1.6-7B (Liu et al., 2024a)	35.1	1519.3	323	54.6	64.9	74.4	37.1	73.2	66.6	34.4	14.3
Qwen2.5-VL-7B (Bai et al., 2025)	58.6	-	-	83.5	84.9	82.6	-	-	83.9	68.2	49.2
Intern-VL-3-8B (Li et al., 2024a)	65.6	-	-	83.4	86.6	92.7	76.8	-	85.2	75.2	39.8
<i>AR Unified Und. and Gen.</i>											
BAGEL (Deng et al., 2025)	55.3	1687	701	85	-	-	-	-	-	73.1	-
Janus-Pro-1B (Chen et al., 2025c)	36.3	1444	-	75.5	-	-	-	-	-	-	-
UniGen-1.5B (Tian et al., 2025)	32.3	-	-	-	-	-	-	79.4	67.4	44.6	-
Show-O (Xie et al., 2024)	27.4	1233	-	-	-	-	-	-	-	-	-
<i>Masked Und. Only</i>											
Dimple (Yu et al., 2025b)	45.2	1514	432	74.6	63.4	-	-	77.1	74.4	42.3	-
LaViDa (Li et al., 2025a)	43.6	1366	341	70.5	64.6	59.0	34.2	80.2	70.0	44.8	27.2
<i>Masked Unified Und. and Gen.</i>											
Mudit (Shi et al., 2025)	-	1104	-	-	-	-	-	-	-	-	-
MMaDa (Yang et al., 2025)	30.2	1410	242*	68.5	9.8*	10.9*	14.9*	55.8*	66.6*	33.7*	13.5*
LaViDa-O	45.1	1431	488	76.4	80.0	73.7	44.6	84.6	76.7	56.9	36.9

403 **Text-to-Image Generation.** We report text-to-image generation results on the GenEval (Ghosh
 404 et al., 2023) and DPG (Hu et al., 2024) benchmarks, and FID scores on 30k prompts from the
 405 MJHQ (Li et al., 2024b) dataset. We compare against text-to-image models including Flux-dev
 406 (Labs, 2024), SD3-Medium (Esser et al., 2024), Meissonic (Bai et al., 2024) and DALLE-3 (OpenAI,
 407 2023), unified models such as BAGEL (Deng et al., 2025), MMaDa (Yang et al., 2025) and Mudit
 408 (Shi et al., 2025). Lavida-O significantly outperforms the state-of-the-art Meissonic masked image
 409 generation model, as well as unified models such as MMaDa and Mudit. Planning and reflection
 410 further enhance prompt-following performance. We did not activate planning and reflection on
 411 MJHQ due to its large size and that FID does not reflect prompt-following capabilities.
 412

413 Table 3: Quantative results on text-to-image generation tasks. *Evaluated by us. † For fair
 414 comparison, we report results of UniGen after SFT stage.

Method	Parms.	Type	GenEval \uparrow	DPG-Bench \uparrow	FID-30k \downarrow
<i>Gen. Only</i>					
Flux-dev (Labs, 2024)	12B	Continuous	0.68	84.0	10.15
SD3-Medium (Esser et al., 2024)	2B	Continuous	0.74	84.1	11.92
DALLE-3 (OpenAI, 2023)	-	Continuous	0.67	83.5	-
Meissonic (Bai et al., 2024)	1B	Masked	0.54	-	-
<i>Unified Und. and Gen.</i>					
BAGEL (Deng et al., 2025)	7B+7B	Continuous	0.82	-	-
Janus-Pro-1B (Chen et al., 2025c)	1B	AR	0.73	82.6	-
UniGen-1.5B (Tian et al., 2025)	1B	AR	0.63†	82.8†	-
OmniFlow (Li et al., 2024c)	3.4B	Continuous	0.62	-	-
Show-o (Xie et al., 2024)	1.3B	Masked	0.67	-	15.18
Mudit (Shi et al., 2025)	1B	Masked	0.61	-	-
MMaDa (Yang et al., 2025)	8B	Masked	0.63	53.4*	32.85*
LaViDa-O	4B+2.4B	Masked	0.77	81.8	6.68
+Planning	8B+2.4B	Masked	0.85	82.9	-
+Reflection	8B+2.4B	Masked	0.89	83.2	-

428 **Object Grounding.** We evaluate the object grounding capabilities of Lavida-O on RefCOCO Refer-
 429 ing Expression Comprehension (REC) tasks (Yu et al., 2016; Mao et al., 2016), reporting the Preci-
 430 sion@0.5 metric. Lavida-O outperforms autoregressive vision-language models such as Qwen2.5-
 431 VL-7B (Bai et al., 2025) and InternVL3-8B (Zhu et al., 2025), as well as specialist models such as
 Grounding-DINO-L (Liu et al., 2024b) and SegLLM-7B (Wang et al., 2025a).

432 Table 4: Precision@0.5 on RefCOCO, RefCOCO+, and RefCOCOg REC tasks.
433

Model	RefCOCO			↑	RefCOCO+			↑	RefCOCOg		↑
	val	testA	testB		val	testA	testB		val	test	
SegLLM-7B(Wang et al., 2025a)	90.0	92.1	86.2	82.2	85.5	76.1	83.9	85.9			
Qwen2.5-VL-7B (Bai et al., 2025)	90.0	92.5	85.4	84.2	89.1	76.9	87.2	87.2			
GroundingDINO (Liu et al., 2024b)	90.6	93.2	88.2	88.2	89.0	75.9	86.1	87.0			
InternVL3-8B (Zhu et al., 2025)	92.5	94.6	88.0	88.2	92.5	81.8	89.6	90.0			
LaViDa-O (4-step)	92.3	94.8	89.0	88.7	92.5	83.3	90.0	90.6			
LaViDa-O (1-step)	91.9	94.6	88.4	87.4	91.7	82.2	89.5	89.8			

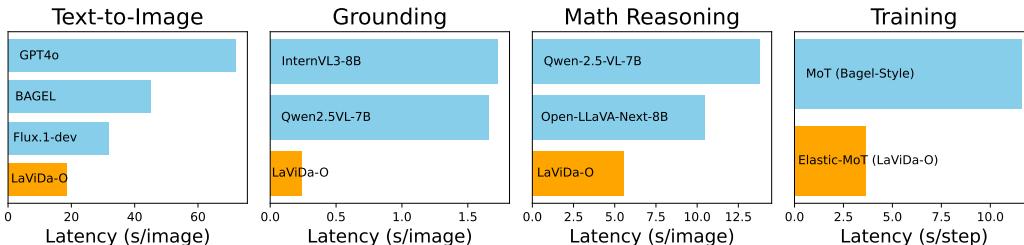
440
441
442 **Image Editing.** We report image editing results on ImgEdit benchmark (Ye et al., 2025b) in Table 5.
443 Lavida-O outperforms state-of-the-art unified models such as BAGEL and specialized models like
444 FluxKontext-dev. Most notably, Lavida-O even outperforms the state-of-the-art closed-source model
445 GPT4-o(OpenAI, 2024) on replacing and removing objects, which requires localized understanding.
446 This underscores the effectiveness of Lavida-O’s design in integrating object-grounding capabilities.
447

448 Table 5: Per-Category and overall scores on ImgEdit benchmark.
449

Model	Add	Adjust	Extract	Replace	Remove	Background	Style	Hybrid	Action	Overall
GPT4o (OpenAI, 2024)	4.61	4.33	2.90	4.35	3.66	4.57	4.93	3.96	4.89	4.20
Qwen2.5VL+Flux (Wang et al., 2025b)	4.07	3.79	2.04	4.13	3.89	3.90	4.84	3.04	4.52	3.80
FluxKontext dev (Labs et al., 2025)	3.76	3.45	2.15	3.98	2.94	3.78	4.38	2.96	4.26	3.52
OmniGen2 (Wu et al., 2025b)	3.57	3.06	1.77	3.74	3.20	3.57	4.81	2.52	4.68	3.44
UniWorld-V1 (Lin et al., 2025)	3.82	3.64	2.27	3.47	3.24	2.99	4.21	2.96	2.74	3.26
BAGEL (Deng et al., 2025)	3.56	3.31	1.70	3.30	2.62	3.24	4.49	2.38	4.17	3.20
Step1X-Edit (Liu et al., 2025)	3.88	3.14	1.76	3.40	2.41	3.16	4.63	2.64	2.52	3.06
OmniGen (Xiao et al., 2025)	3.47	3.04	1.71	2.94	2.43	3.21	4.19	2.24	3.38	2.96
UltraEdit (Zhao et al., 2024)	3.44	2.81	2.13	2.96	1.45	2.83	3.76	1.91	2.98	2.70
AnyEdit (Yu et al., 2025a)	3.18	2.95	1.88	2.47	2.23	2.24	2.85	1.56	2.65	2.45
InstructAny2Pix(Li et al., 2023b)	2.55	1.83	2.10	2.54	1.17	2.01	3.51	1.42	1.98	2.12
MagicBrush (Zhang et al., 2023)	2.84	1.58	1.51	1.97	1.58	1.75	2.38	1.62	1.22	1.90
Instruct-Pix2Pix(Brooks et al., 2023)	2.45	1.83	1.44	2.01	1.50	1.44	3.55	1.20	1.46	1.88
LaViDa-O	4.04	3.62	2.01	4.39	3.98	4.06	4.82	2.94	3.54	3.71
+ Planning	4.11	3.67	2.04	4.40	4.05	4.00	4.75	3.10	4.04	3.80

461
462 4.3 TRAINING AND INFERENCE SPEED
463

464 In Figure 5, we benchmark the inference efficiency of Lavida-O across three tasks: text-to-image
465 generation, object grounding, and math reasoning. We measure end-to-end latency in seconds per
466 image. Lavida-O is significantly faster than autoregressive models. Notably, we achieve a $6.8\times$
467 speedup on object grounding tasks compared to Qwen2.5-VL-7B (Bai et al., 2025). We also re-
468 port the training efficiency measured by per-step latency and compare our Elastic-MoT design with
469 BAGEL-style standard MoT design, Elastic-MoT improves the training speed by $3.17\times$. Specif-
470 ically, reducing the size of generation branch leads to a speedup of $2.23\times$, and decoupling the
471 attention operation in the last 16 layers lead to an additional speedup of $1.44\times$. We provide addi-
472 tional analysis on the speed-quality tradeoff at inference time in Appendix B.7 and analysis on the
473 training efficiency of Elastic-MoT design in B.2.
474

484 Figure 5: Training and Inference Speed of Lavida-O. We compare the end-to-end inference
485 latency of Lavida-O on three tasks, as well as pretraining efficiency measured by per-step latency.
486

486 5 CONCLUSION
487

488 In summary, we proposed Lavida-O, the first multi-modal masked diffusion model that
489 achieves state-of-the-art performance on text-to-image generation, image editing, and grounding
490 tasks—competitive with the best specialist models and autoregressive unified models. We also
491 introduced a novel paradigm of interleaved generation, which explicitly leverages understanding
492 capabilities to improve generation results in a unified multi-modal model through planning and self-
493 reflection. In developing Lavida-O, we proposed several efficient training and inference techniques,
494 including the ElasticMoT architecture, universal text conditioning, and stratified random sampling,
495 providing valuable insights for future work in masked diffusion models and unified multi-modal
496 systems.

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
543 denoising diffusion models in discrete state-spaces. *Advances in neural information processing*
544 *systems*, 34:17981–17993, 2021.

545 Jinbin Bai, Tian Ye, Wei Chow, Enxin Song, Xiangtai Li, Zhen Dong, Lei Zhu, and Shuicheng
546 Yan. Meis sonic: Revitalizing masked generative transformers for efficient high-resolution text-
547 to-image synthesis. *arXiv preprint arXiv:2410.08261*, 2024.

548

549 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
550 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
551 2025.

552

553 Victor Besnier, Mickael Chen, David Hurých, Eduardo Valle, and Matthieu Cord. Halton scheduler
554 for masked generative image transformer. *arXiv preprint arXiv:2503.17076*, 2025.

555

556 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
557 editing instructions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
558 *recognition*, pp. 18392–18402, 2023.

559

560 Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, and Saehoon
561 Kim. Coyo-700m: Image-text pair dataset. [https://github.com/kakaobrain/](https://github.com/kakaobrain/coyo-dataset)
562 coyo-dataset, 2022.

563

564 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
565 image transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
566 *recognition*, pp. 11315–11325, 2022.

567

568 Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan
569 Yang, Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image gen-
570 eration via masked generative transformers. *arXiv preprint arXiv:2301.00704*, 2023.

571

572 Jiupei Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
573 Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal
574 models-architecture, training and dataset. *arXiv preprint arXiv:2505.09568*, 2025a.

575

576 Junying Chen, Zhenyang Cai, Pengcheng Chen, Shunian Chen, Ke Ji, Xidong Wang, Yunjin Yang,
577 and Benyou Wang. Sharegpt-4o-image: Aligning multimodal models with gpt-4o-level image
578 generation. *arXiv preprint arXiv:2506.18095*, 2025b.

579

580 Lin Chen and Long Xing. Open-llava-next: An open-source implementation of llava-next se-
581 ries for facilitating the large multi-modal model community. <https://github.com/>
582 xiaochen98/Open-LLAVA-NeXT, 2024.

583

584 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
585 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
586 scaling. *arXiv preprint arXiv:2501.17811*, 2025c.

587

588 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
589 Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv*
590 *preprint arXiv:2505.14683*, 2025.

591

592 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
593 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
594 *the North American chapter of the association for computational linguistics: human language*
595 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

596

597 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
598 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-*
599 *tion*, pp. 12873–12883, 2021.

594 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 595 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 596 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 597 2024.

598 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
 599 Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal
 600 large language models. *arXiv preprint arXiv:2306.13394*, 2023.

602 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
 603 for evaluating text-to-image alignment. *Advances in Neural Information Processing Systems*, 36:
 604 52132–52152, 2023.

605 Jarvis Guo, Tuney Zheng, Yuelin Bai, Bo Li, Yubo Wang, King Zhu, Yizhi Li, Graham Neubig,
 606 Wenhua Chen, and Xiang Yue. Mammoth-vl: Eliciting multimodal reasoning with instruction
 607 tuning at scale. *arXiv preprint arXiv:2412.05237*, 2024.

609 Minghui Hu, Chuanxia Zheng, Heliang Zheng, Tat-Jen Cham, Chaoyue Wang, Zuopeng Yang,
 610 Dacheng Tao, and Ponnuthurai N Suganthan. Unified discrete diffusion for simultaneous vision-
 611 language generation. *arXiv*, 2022.

612 Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu Ella. Equip diffusion models
 613 with llm for enhanced semantic alignment. *arXiv preprint arXiv:2403.05135*, 5(7):16, 2024.

614

615 Kaiyi Huang, Chengqi Duan, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench++:
 616 An enhanced and comprehensive benchmark for compositional text-to-image generation. *IEEE*
 617 *Transactions on Pattern Analysis and Machine Intelligence*, 2025.

618 Yiming Jia, Jiachen Li, Xiang Yue, Bo Li, Ping Nie, Kai Zou, and Wenhua Chen. Visualwebinstruct:
 619 Scaling up multimodal instruction data through web search. *arXiv preprint arXiv:2503.10582*,
 620 2025.

621

622 Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. Referitgame: Referring to
 623 objects in photographs of natural scenes. In *Proceedings of the 2014 conference on empirical*
 624 *methods in natural language processing (EMNLP)*, pp. 787–798, 2014.

625 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 626 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
 627 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

628

629 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

630

631 Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
 632 Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, Sumith Kulal, Kyle Lacey,
 633 Yam Levi, Cheng Li, Dominik Lorenz, Jonas Müller, Dustin Podell, Robin Rombach, Harry Saini,
 634 Axel Sauer, and Luke Smith. Flux.1 kontext: Flow matching for in-context image generation and
 635 editing in latent space, 2025. URL <https://arxiv.org/abs/2506.15742>.

636

637 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 638 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 639 *arXiv:2408.03326*, 2024a.

640

641 Chenliang Li, Haiyang Xu, Junfeng Tian, Wei Wang, Ming Yan, Bin Bi, Jiabo Ye, Hehong Chen,
 642 Guohai Xu, Zheng Cao, et al. mplug: Effective and efficient vision-language learning by cross-
 643 modal skip-connections. *arXiv preprint arXiv:2205.12005*, 2022.

644

645 Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground
 646 v2.5: Three insights towards enhancing aesthetic quality in text-to-image generation, 2024b.

647

Feng Li, Hao Zhang, Huaijhe Xu, Shilong Liu, Lei Zhang, Lionel M Ni, and Heung-Yeung Shum.
 648 Mask dino: Towards a unified transformer-based framework for object detection and segmenta-
 649 tion. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 650 pp. 3041–3050, 2023a.

648 Shufan Li, Harkanwar Singh, and Aditya Grover. Instructany2pix: Flexible visual editing via mul-
 649 timodal instruction following. *arXiv preprint arXiv:2312.06738*, 2023b.
 650

651 Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Zichun Liao, Yusuke Kato, Kazuki Kozuka,
 652 and Aditya Grover. Omnidflow: Any-to-any generation with multi-modal rectified flows. *arXiv*
 653 *preprint arXiv:2412.01169*, 2024c.

654 Shufan Li, Konstantinos Kallidromitis, Hritik Bansal, Akash Gokul, Yusuke Kato, Kazuki Kozuka,
 655 Jason Kuen, Zhe Lin, Kai-Wei Chang, and Aditya Grover. Lavida: A large diffusion language
 656 model for multimodal understanding. *arXiv preprint arXiv:2505.16839*, 2025a.
 657

658 Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Arsh Koneru, Yusuke Kato, Kazuki Kozuka,
 659 and Aditya Grover. Reflect-dit: Inference-time scaling for text-to-image diffusion transformers
 660 via in-context reflection. *arXiv preprint arXiv:2503.12271*, 2025b.

661 Weixin Liang, Lili Yu, Liang Luo, Srinivasan Iyer, Ning Dong, Chunting Zhou, Gargi Ghosh, Mike
 662 Lewis, Wen-tau Yih, Luke Zettlemoyer, et al. Mixture-of-transformers: A sparse and scalable
 663 architecture for multi-modal foundation models. *arXiv preprint arXiv:2411.04996*, 2024.
 664

665 Bin Lin, Zongjian Li, Xinhua Cheng, Yuwei Niu, Yang Ye, Xianyi He, Shenghai Yuan, Wangbo Yu,
 666 Shaodong Wang, Yunyang Ge, et al. Uniworld: High-resolution semantic encoders for unified
 667 visual understanding and generation. *arXiv preprint arXiv:2506.03147*, 2025.

668 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 669 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024a. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.
 670

672 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 673 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
 674 for open-set object detection. In *European conference on computer vision*, pp. 38–55. Springer,
 675 2024b.

676 Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming
 677 Wang, Honghao Fu, Chunrui Han, et al. Step1x-edit: A practical framework for general image
 678 editing. *arXiv preprint arXiv:2504.17761*, 2025.

680 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 681 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 682 player? In *European conference on computer vision*, pp. 216–233. Springer, 2024c.
 683

684 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
 685 of the data distribution. *arXiv preprint arXiv:2310.16834*, 2023.

686 Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 687 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 688 science question answering. In *The 36th Conference on Neural Information Processing Systems*
 689 (*NeurIPS*), 2022.

691 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
 692 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
 693 foundation models in visual contexts. *arXiv preprint arXiv:2310.02255*, 2023.

694 Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy.
 695 Generation and comprehension of unambiguous object descriptions. In *Proceedings of the IEEE*
 696 *conference on computer vision and pattern recognition*, pp. 11–20, 2016.
 697

698 Ahmed Masry, Do Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A bench-
 699 mark for question answering about charts with visual and logical reasoning. In *Findings of the*
 700 *Association for Computational Linguistics: ACL 2022*, pp. 2263–2279, Dublin, Ireland, May
 701 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.177. URL
<https://aclanthology.org/2022.findings-acl.177>.

702 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
 703 images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*,
 704 pp. 2200–2209, 2021.

705

706 Sicheng Mo, Thao Nguyen, Xun Huang, Siddharth Srinivasan Iyer, Yijun Li, Yuchen Liu, Abhishek
 707 Tandon, Eli Shechtman, Krishna Kumar Singh, Yong Jae Lee, et al. X-fusion: Introducing new
 708 modality to frozen large language models. *arXiv preprint arXiv:2504.20996*, 2025.

709

710 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
 711 Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint*
 712 *arXiv:2502.09992*, 2025.

713 OpenAI. Dall-e 3. <https://openai.com/index/dall-e-3/>, 2023.

714

715 OpenAI. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024. URL <https://arxiv.org/abs/2410.21276>.

716

717 Xichen Pan, Satya Narayan Shukla, Aashu Singh, Zhuokai Zhao, Shlok Kumar Mishra, Jialiang
 718 Wang, Zhiyang Xu, Juhai Chen, Kunpeng Li, Felix Juefei-Xu, et al. Transfer between modalities
 719 with metaqueries. *arXiv preprint arXiv:2504.06256*, 2025.

720

721 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 722 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 723 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

724

725 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 726 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 727 models from natural language supervision. In *International conference on machine learning*, pp.
 728 8748–8763. PMLR, 2021.

729

730 Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrahman Shaker, Salman Khan, Hisham
 731 Cholakkal, Rao M. Anwer, Eric Xing, Ming-Hsuan Yang, and Fahad S. Khan. Glamm: Pixel
 732 grounding large multimodal model. *The IEEE/CVF Conference on Computer Vision and Pattern
 Recognition*, 2024.

733

734 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 735 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 736 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

737

738 Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
 739 Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
 740 models. *Advances in Neural Information Processing Systems*, 37:130136–130184, 2024.

741

742 Christoph Schuhmann. Laion-aesthetics. <https://laion.ai/blog/laion-aesthetics/>, 2022. Accessed: 2024 - 03 - 06.

743

744 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 745 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 746 open large-scale dataset for training next generation image-text models. *Advances in neural in-
 747 formation processing systems*, 35:25278–25294, 2022.

748

749 Qingyu Shi, Jinbin Bai, Zhuoran Zhao, Wenhao Chai, Kaidong Yu, Jianzong Wu, Shuangyong Song,
 750 Yunhai Tong, Xiangtai Li, Xuelong Li, et al. Muddit: Liberating generation beyond text-to-image
 751 with a unified discrete diffusion model. *arXiv preprint arXiv:2505.23606*, 2025.

752

753 Weijia Shi, Xiaochuang Han, Chunting Zhou, Weixin Liang, Xi Victoria Lin, Luke Zettlemoyer,
 754 and Lili Yu. Lmfusion: Adapting pretrained language models for multimodal generation. *arXiv
 755 preprint arXiv:2412.15188*, 2024.

756

757 Stability AI. Stable diffusion 2.0 release. <https://stability.ai/news/stable-diffusion-v2-release>, November 24 2022. Accessed: 2025-11-16.

756 Keqiang Sun, Junting Pan, Yuying Ge, Hao Li, Haodong Duan, Xiaoshi Wu, Renrui Zhang, Aojun
 757 Zhou, Zipeng Qin, Yi Wang, et al. Journeydb: A benchmark for generative image understanding.
 758 *Advances in neural information processing systems*, 36:49659–49678, 2023.

759

760 Rui Tian, Mingfei Gao, Mingze Xu, Jiaming Hu, Jiasen Lu, Zuxuan Wu, Yinfei Yang, and Afshin
 761 Dehghan. Unigen: Enhanced training & test-time strategies for unified multimodal understanding
 762 and generation. *arXiv preprint arXiv:2505.14682*, 2025.

763 Xiaochun Wang and Yuanchun Shi. Umdd: User model driven software development. In *2008*
 764 *IEEE/IFIP International Conference on Embedded and Ubiquitous Computing*, volume 1, pp.
 765 477–483. IEEE, 2008.

766

767 XuDong Wang, Shaolun Zhang, Shufan Li, Kehan Li, Konstantinos Kallidromitis, Yusuke Kato,
 768 Kazuki Kozuka, and Trevor Darrell. Segllm: Multi-round reasoning segmentation with large lan-
 769 guage models. In *The Thirteenth International Conference on Learning Representations*, 2025a.

770 Yuhang Wang, Siwei Yang, Bingchen Zhao, Letian Zhang, Qing Liu, Yuyin Zhou, and Cihang
 771 Xie. Gpt-image-edit-1.5 m: A million-scale, gpt-generated image dataset. *arXiv preprint*
 772 *arXiv:2507.21033*, 2025b.

773

774 Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
 775 Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
 776 and parallel decoding. *arXiv preprint arXiv:2505.22618*, 2025a.

777 Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
 778 Jiang, Yexin Liu, Junjie Zhou, et al. Omnigen2: Exploration to advanced multimodal generation.
 779 *arXiv preprint arXiv:2506.18871*, 2025b.

780 Wei Wu, Kecheng Zheng, Shuailei Ma, Fan Lu, Yuxin Guo, Yifei Zhang, Wei Chen, Qingpei Guo,
 781 Yujun Shen, and Zha Zheng-Jun. Lotlip: Improving language-image pre-training for long text
 782 understanding. In *arXiv*, 2024.

783

784 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 785 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 786 image synthesis. *arXiv preprint arXiv:2306.09341*, 2023.

787

788 Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li,
 789 Shuting Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. In *Proceed-
 790 ings of the Computer Vision and Pattern Recognition Conference*, pp. 13294–13304, 2025.

791

792 Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang
 793 Li, Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution text-to-image synthesis with linear
 794 diffusion transformers. In *The Thirteenth International Conference on Learning Representations*,
 2025a.

795

796 Enze Xie, Junsong Chen, Yuyang Zhao, Jincheng Yu, Ligeng Zhu, Yujun Lin, Zhekai Zhang,
 797 Muyang Li, Junyu Chen, Han Cai, et al. Sana 1.5: Efficient scaling of training-time and inference-
 798 time compute in linear diffusion transformer, 2025b. URL <https://arxiv.org/abs/2501.18427>.

799

800 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 801 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 802 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

803

804 Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Multi-
 805 modal large diffusion language models. *arXiv preprint arXiv:2505.15809*, 2025.

806

807 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
 Kong. Dream 7b, 2025a. URL <https://hkunlp.github.io/blog/2025/dream>.

808

809 Yang Ye, Xianyi He, Zongjian Li, Bin Lin, Shenghai Yuan, Zhiyuan Yan, Bohan Hou, and Li Yuan.
 810 Imgedit: A unified image editing dataset and benchmark. *arXiv preprint arXiv:2505.20275*,
 2025b.

810
 811 Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan
 812 Li. Llada-v: Large language diffusion models with visual instruction tuning. *arXiv preprint*
 813 *arXiv:2505.16933*, 2025.

814
 815 Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context
 816 in referring expressions. In *European conference on computer vision*, pp. 69–85. Springer, 2016.

817
 818 Qifan Yu, Wei Chow, Zhongqi Yue, Kaihang Pan, Yang Wu, Xiaoyang Wan, Juncheng Li, Siliang
 819 Tang, Hanwang Zhang, and Yuetong Zhuang. Anyedit: Mastering unified high-quality image
 820 editing for any idea. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 821 pp. 26125–26135, 2025a.

822
 823 Runpeng Yu, Xinyin Ma, and Xinchao Wang. Dimple: Discrete diffusion multimodal large language
 824 model with parallel decoding. *arXiv preprint arXiv:2505.16990*, 2025b.

825
 826 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens,
 827 Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
 828 Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
 829 Wenhui Chen. Mmmu: A massive multi-discipline multimodal understanding and reasoning
 830 benchmark for expert agi. In *Proceedings of CVPR*, 2024.

831
 832 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 833 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 834 pp. 11975–11986, 2023.

835
 836 Kai Zhang, Lingbo Mo, Wenhui Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
 837 dataset for instruction-guided image editing. *Advances in Neural Information Processing Systems*,
 838 36:31428–31449, 2023.

839
 840 Haozhe Zhao, Xiaojian Shawn Ma, Liang Chen, Shuzheng Si, Ruijie Wu, Kaikai An, Peiyu Yu,
 841 Minjia Zhang, Qing Li, and Baobao Chang. Ultraedit: Instruction-based fine-grained image
 842 editing at scale. *Advances in Neural Information Processing Systems*, 37:3058–3093, 2024.

843
 844 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Yuchen Duan, Hao
 845 Tian, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 846 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

847
 848 Le Zhuo, Liangbing Zhao, Sayak Paul, Yue Liao, Renrui Zhang, Yi Xin, Peng Gao, Mohamed
 849 Elhoseiny, and Hongsheng Li. From reflection to perfection: Scaling inference-time optimization
 850 for text-to-image diffusion models via reflection tuning. *arXiv preprint arXiv:2504.16080*, 2025.

851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 **A ADDITIONAL TECHNICAL DETAILS**865 **A.1 FORMULATION OF MASKED DIFFUSION MODELS**

866 Masked Diffusion Models (MDMs) model the generation process of discrete token sequences
 867 through a continuous-time Markov chain (CMT). Formally, given a sequence of discrete tokens
 868 $X_0 = [X_0^1, X_0^2, \dots, X_0^L]$ of length L , the forward process $q(X_t | X_s)$ gradually converts it into a se-
 869 quence of mask tokens $[M]$, denoted by $X_1 = [X_1^1, X_1^2, \dots, X_1^L]$, over the continuous time interval
 870 $[0, 1]$, with $1 \geq t \geq s \geq 0$. Each token X_t^i belongs to a fixed-size vocabulary set V . In our setup, V
 871 consists of text tokens, image VQ tokens, and the special mask token $[M]$. This forward process is
 872 formally defined as
 873

$$874 q(X_t^i | X_s^i) = \begin{cases} \text{Cat}(X_t^i; \mathbf{M}), & \text{if } X_s^i = [M] \\ \text{Cat}(X_t^i; \frac{1-t}{1-s} \mathbf{X}_s^i + \frac{t-s}{1-s} \mathbf{M}), & \text{if } X_s^i \neq [M], \end{cases} \quad (2)$$

875 where $\text{Cat}(\cdot)$ denotes a categorical distribution, and $\mathbf{M}, \mathbf{X}_0^i, \mathbf{X}_s^i \in \mathbb{R}^{|V|}$ are probability vectors, with
 876 $|V|$ denoting the vocabulary size. In particular, \mathbf{M} is a one-hot vector representing the mask token
 877 $[M]$. This forward process yields the following marginal distribution:
 878

$$879 q(X_t^i | X_0^i) = \text{Cat}(X_t^i; (1-t)\mathbf{X}_0^i + t\mathbf{M}). \quad (3)$$

880 MDLM (Sahoo et al., 2024) demonstrated that the posterior of the reverse process $p(X_s | X_t, X_0)$
 881 has the following form:
 882

$$883 p(X_s^i | X_t^i, X_0^i) = \begin{cases} \text{Cat}(X_s^i; \mathbf{X}_t^i), & \text{if } X_s^i \neq [M] \\ \text{Cat}(X_s^i; \frac{t-s}{t} \mathbf{X}_0^i + \frac{s}{t} \mathbf{M}), & \text{if } X_s^i = [M]. \end{cases} \quad (4)$$

884 In practice, we replace \mathbf{X}_0^i with the neural network prediction $p_\theta(X_0^i | X_t)$ when sampling from the
 885 reverse process, which gives the following transition:
 886

$$887 p_\theta(X_s^i | X_t) = \begin{cases} \text{Cat}(X_s^i; \mathbf{X}_t^i), & \text{if } X_s^i \neq [M] \\ \text{Cat}(X_s^i; \frac{t-s}{t} p_\theta(X_0^i | X_t) + \frac{s}{t} \mathbf{M}), & \text{if } X_s^i = [M]. \end{cases} \quad (5)$$

888 **Sampling process.** At inference time, we initialize X_1 as a sequence of mask tokens, with $X_1^1 =$
 889 $X_1^2 = \dots = X_1^L = [M]$. We discretize the continuous time interval $[0, 1]$ into discrete timesteps $0 =$
 890 $t_0 < t_1 < \dots < t_K = 1$, and iteratively sample $X_{t_{k-1}} \sim p_\theta(X_{t_{k-1}} | X_{t_k})$ using Equation 5. We start
 891 with $k = K$ and end when we obtain a mask-free sequence X_0 . At each step, we sample each token
 892 position independently, assuming that $p_\theta(X_{t_{k-1}} | X_{t_k})$ factorizes as $\prod_{i=1}^L p_\theta(X_{t_{k-1}}^i | X_{t_k})$, following
 893 previous works (Nie et al., 2025; Sahoo et al., 2024; Lou et al., 2023).
 894

895 **Training process.** At each training step, given a clean sequence X_0 , we sample a random timestep
 896 $t \in [0, 1]$ and obtain $X_t \sim q(X_t | X_0)$ through the forward process defined in Equation 3. The loss is
 897 then computed using Equation 1 from Section 2.1.
 898

899 In this section, we have documented the standard training and inference process for typical MDMs.
 900 Our modality-aware masking design introduces several modifications to the above processes, which
 901 are described in Section 3.1.2 of the main paper. Additional details are provided in Appendix A.3.
 902

903 **A.2 ELASTIC-MoT ARCHITECTURE**

904 In this section, we document the detailed design of the Elastic-MoT architecture described in Section
 905 3.1.1. As discussed in the main paper, the proposed Elastic-MoT architecture has two key differences
 906 compared to standard MoT: a generation branch with variable size and decoupled joint attention in
 907 the later layers.
 908

909 **Variable-sized generation branch.** In standard MoT models such as BAGEL (Deng et al., 2025),
 910 the generation branch is initialized as an exact copy of the understanding branch. For models in the
 911

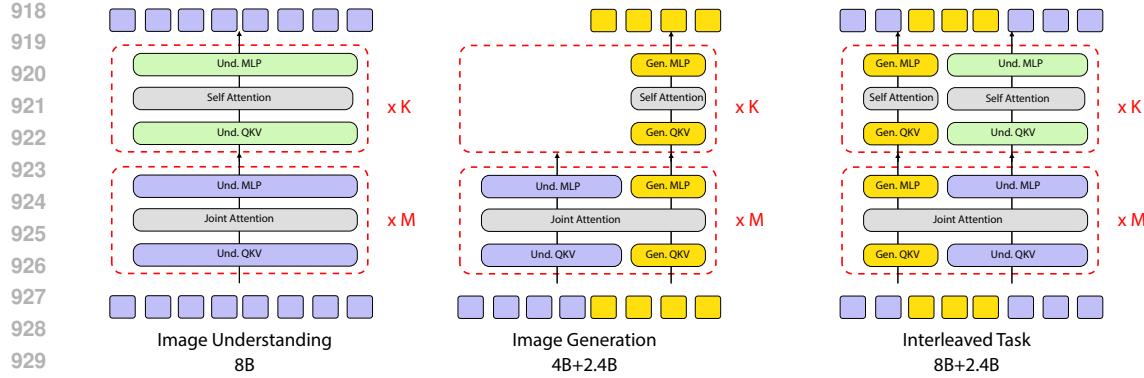


Figure 6: **Activated parameters of Lavida-O under different task settings.** Elastic-MoT Design allow Lavida-O to dynamically loads its parameters depending on the tasks. For understanding-only tasks, we only load the 8B generation branch. For text-to-image generation tasks, we load the first $M = 16$ layers of the understanding branch, which consists of 4B parameters, and the full 2.4B generation branch. For interleaved tasks, we load all 2.4B+8B parameters.

7–10B scale, this leads to a substantial increase in parameter count and compute overhead, limiting the scalability of MoT models. Motivated by the success of many medium-sized, high-quality text-to-image generation models, we explore using a smaller generation branch in the Elastic-MoT design. Since we still want the modalities to interact with each other through the joint attention mechanism, it is important to keep the dimensions of the query and the key vectors consistent. We provide a detailed breakdown of the parameter sizes in Table 6. To initialize the generation branch with dimensions smaller than the understanding branch, we truncate the weights of the understanding branch and copy them to the generation branch.

Table 6: **Comparison of understanding (Und) branch and generation (Gen) branch configurations.** The projection sizes are in the format [output_size, input_size].

	Und Branch	Gen Branch
<i>Attention</i>		
norm	4096	2048
q_proj_size	[4096, 4096]	[4096, 2048]
k_proj_size	[4096, 4096]	[4096, 2048]
v_proj_size	[4096, 4096]	[4096, 2048]
attn_out	[4096, 4096]	[4096, 2048]
<i>MLP</i>		
norm	4096	2048
input_size	4096	2048
hidden_size	12288	8192
output_size	4096	2048

Decoupled attention. In standard MoT, understanding and generation tokens can interact with each other in all N transformer layers through the joint attention mechanism. We decouple attention in the last K layers and only allow tokens of the same type to interact with each other. In the first $M = N - K$ layers, all tokens can still interact with each other as in the standard MoT architecture. This design is motivated by two factors. First, it prevents text and image tokens from interfering with each other’s representations in the later stages of generation. Second, and more importantly, it allows us to load only 4B out of 8B parameters for text-to-image generation tasks, greatly improving the scalability of pretraining while also reducing compute cost at inference time. We visualize the activated parameters for different tasks in Figure 6. For understanding-only tasks, we activate only the understanding branch in all $N = M + K$ layers. For generation-only tasks, we activate the understanding branch in the first M layers and the generation branch in all $N = M + K$ layers.

972 For interleaved tasks with both text and image outputs, we activate all parameters. In our setup, we
 973 choose $M = K = 16$, which yields $N = 32$ layers in total.
 974

975 **A.3 MODALITY-AWARE MASKING**
 976

977 In this section, we provide details of the changes to the training and sampling process introduced by
 978 modality-aware masking, as described in Section 3.1.2. Recall that in adapting the MoT architecture
 979 for MDMs, one of the main challenges is routing tokens. In particular, while we can easily decide
 980 which branch should process unmasked tokens based on whether they are image VQ tokens or text
 981 tokens, it is difficult to make such decisions for masked tokens, especially in interleaved generation
 982 tasks where the final output contains both images and text. Modality-aware masking addresses this
 983 problem by processing all tokens with the understanding branch by default and dynamically deciding
 984 when and where to invoke the generation branch during the sampling process.
 985

986 **Sampling Process.** For convenience, we denote masked tokens that will be processed by the un-
 987 derstanding branch as M_{und} and masked tokens that will be processed by the generation branch
 988 as M_{gen} . With this distinction, the routing policy becomes simple: all text tokens plus M_{und} are
 989 processed by the understanding branch, while all image VQ tokens plus M_{gen} are processed by the
 990 generation branch. We introduce a special text token $[\text{exp}]$ to indicate when an image should be
 991 generated. When a $[\text{exp}]$ token is generated in the unmasking process, it is automatically replaced
 992 with a sequence of M_{gen} tokens. The number of M_{gen} tokens representing each image is deter-
 993 mined by prespecified output resolution. These tokens are then processed by the generation branch
 994 in subsequent rounds. For example, each 1024×1024 image is represented by 1024 VQ tokens.
 995 This process is documented in Algorithm 1 and illustrated in Figure 7 (Left).
 996

995 **Algorithm 1** Interleaved Generation with Modality-Aware Masking

996 **Input:** Initial Generation Length L , discrete timestamps $0 = t_0 < t_1 < \dots < t_K = 1$, prompt C
 997 1: Initialize $t \leftarrow K$
 998 2: Initialize $X_t^{1:L} \leftarrow M_{und}$
 999 3: **for** $i = T$ to 1 **do**
 1000 4: Sample $X_{t_{i-1}} \sim p_\theta(X_{t_{i-1}} \mid X_{t_k}, C)$ // Eq. 5
 1001 5: **if** a $[\text{exp}]$ token is generated in $X_{t_{i-1}}$ **then**
 1002 6: Replace it with a sequence of M_{gen} tokens
 1003 7: // These M_{gen} will be routed to the generation branch in subsequent rounds
 1004 8: **end if**
 1005 9: **end for**
 1006 10: **return** Fully unmasked sequence X_0

1007 **Training.** A consequence of modality-aware masking is that the partially masked sequence X_t will
 1008 have varying length depending on t , making the loss described in Equation 1 not directly applicable.
 1009 In particular, when sampling from the forward process $q(X_t \mid X_0)$, there is a special timestep t_{exp}
 1010 at which a sequence of VQ image tokens is collapsed into a single $[\text{exp}]$ text token. As illustrated
 1011 in Figure 7 (Right), when $t < t_{\text{exp}}$, X_t has a shorter sequence length than X_0 . To apply the loss
 1012 properly, we construct a new sequence X'_0 by collapsing all sequences of image VQ tokens into
 1013 $[\text{exp}]$ tokens in X_0 . We then modify the loss in Equation 1 to the following:
 1014

$$\mathcal{L}_{\text{MDM}} = -\mathbb{E}_{t, X_0, X_t} \left[\frac{1}{t} \sum_{\{i \mid X_t^i = [M]\}} \log p_\theta(\hat{X}_0^i \mid X_t) \right], \quad (6)$$

$$\text{where } \hat{X}_0 = \begin{cases} X_0, & \text{if } t \in (t_{\text{exp}}, 1) \\ X'_0, & \text{if } t \in (0, t_{\text{exp}}) \end{cases} \quad (7)$$

1019 This change is also highlighted in blue in Figure 7 (Right).
 1020

1021 **Understanding-Only and Generation-Only Tasks.** We activate modality-aware masking only
 1022 for interleaved tasks, since these require both the understanding and generation branches in our
 1023 Elastic-MoT architecture. For computational efficiency, we do not use modality-aware masking for

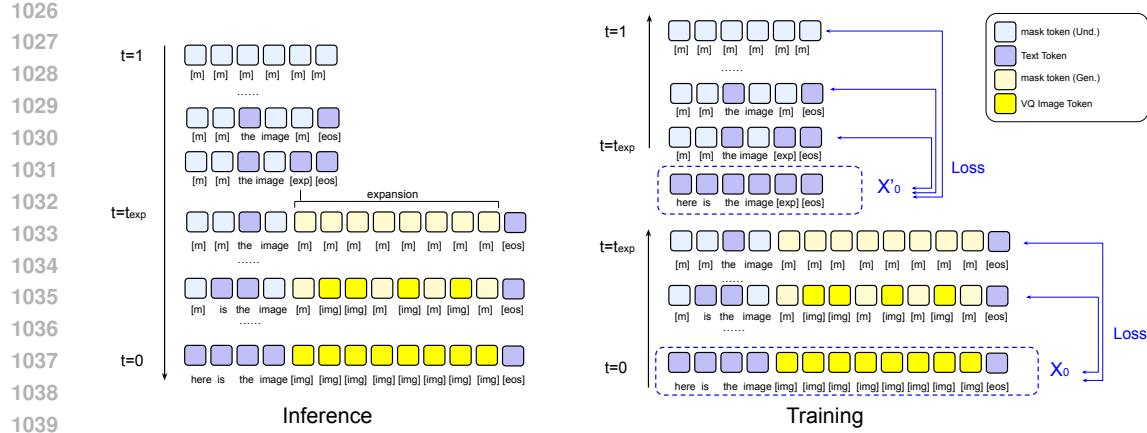


Figure 7: **Training and inference with modality-aware masking.** We visualize the sampling process with modality-aware masking on the left and the training process on the right. During the training, the loss is applied on either X_0 or X'_0 depending on the value of t with respect to t_{exp} .

Figure 8: Effect of Universal Text Conditioning. On the left side, we visualize the text format used in Universal Text Conditioning. On the right side, we visualize generation results under different choices of universal text conditioning.

understanding-only tasks such as image captioning, or for generation-only tasks such as text-to-image generation (without planning and reflection). This allows us to best utilize the flexibility of Elastic-MoT and avoid loading unnecessary model parameters.

A.4 UNIVERSAL TEXT CONDITIONING

Universal text conditioning is inspired by the micro-conditioning approach (Podell et al., 2023) employed in many text-to-image models. These models interoperate special conditioning embeddings to incorporate non-text conditions such as the original image resolution or aesthetic score. Since Lavida-O is a unified model with mathematical reasoning capabilities, we can represent these conditions directly as plain text. In particular, we include source image resolution, crop coordinates, aesthetic scores (Schuhmann, 2022), and HPS scores (Wu et al., 2023), following existing works (Podell et al., 2023; Bai et al., 2024). Additionally, we incorporate luminance (brightness) and contrast to give users greater control over the generated images. Each condition is represented as a simple string of the form “[KEY] : [VALUE]”. During training, each condition is randomly dropped with some probability. At inference, users may specify all conditions or only a subset.

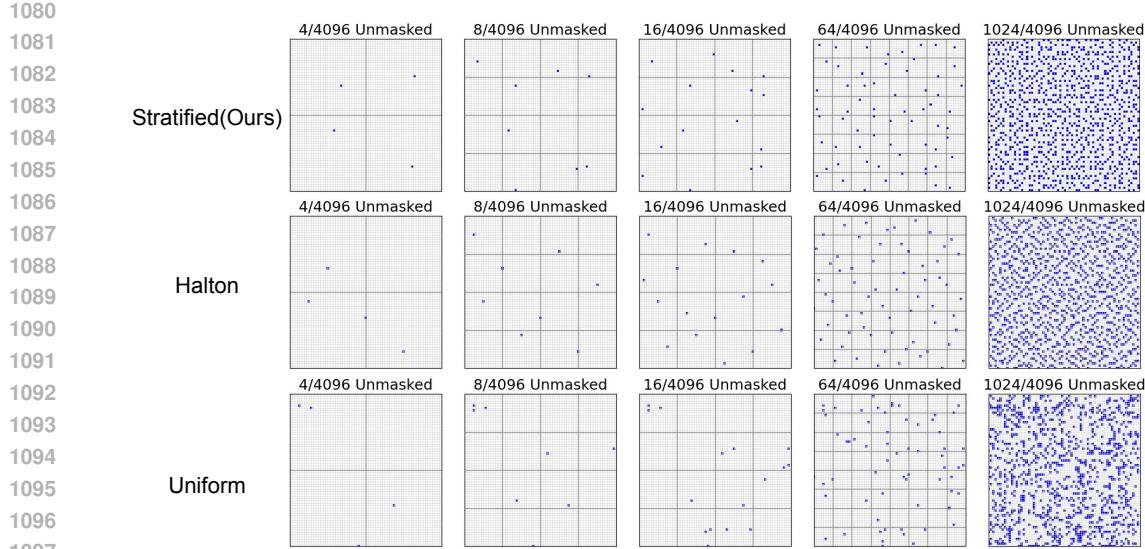


Figure 9: **Visualization of different sampling processes.** We compare the unmasking order of the stratified sampler, Halton sampler, and uniform random sampler. Uniform random sampler produces the least desirable spatial pattern, with many unmasked tokens clustered together. Halton sampler is less ideal than stratified sampler because it does not guarantee perfectly stratified coverage. For example, when the number of unmasked tokens is 4, the upper-right quadrant remains unoccupied.

This design is illustrated in Figure 8. By modifying these universal text conditioning parameters at inference time, users can flexibly control various image properties such as brightness. Notably, when brightness and contrast are set to very high values, the generated images become highly stylized in order to satisfy the constraints.

A.5 STRATIFIED RANDOM SAMPLING

In this section, we provide detailed descriptions of the stratified random sampling process introduced in Section 3.2. In the vanilla sampling process described in Equation 5, each token is unmasked independently. In practice, this often leads to suboptimal generation quality. Instead of unmasking tokens randomly, several works adopt alternative sampling strategies in which the unmasking order of tokens is determined by heuristics such as the model’s confidence at each token position (Nie et al., 2025; Ye et al., 2025a; Chang et al., 2022).

In image generation, tokens with high confidence are frequently adjacent to one another. As a result, confidence-based unmasking tends to reveal many adjacent tokens in a single step. Since tokens that are spatially adjacent are often highly correlated, this violates the independence assumption $p_\theta(X_{t_{k-1}}|X_{t_k}) = \prod_{i=1}^L p_\theta(X_{t_{k-1}}^i|X_{t_k})$ stated in Section A.1. To address this, we design a stratified sampling process that ensures the unmasked tokens are spatially dispersed. Specifically, we enforce that the first 4 unmasked tokens occupy the four quadrants of the image; the first 16 unmasked tokens occupy all 16 subregions obtained by dividing the image into a 4×4 grid; and so forth. The algorithm is formally described below:

Our design is inspired by the stratified sampling process commonly used in numerical integration and computer graphics. It also follows a similar motivation to the recent Halton mask scheduler, which uses the low-discrepancy Halton sequence to ensure that unmasked tokens are spatially dispersed (Besnier et al., 2025). We illustrate the differences among stratified sampling, Halton sampling, and uniform random sampling in Figure 9. As shown in the figure, uniform random sampling produces the least desirable spatial pattern, with many unmasked tokens clustered together. Compared with our proposed stratified sampling process, Halton sampling is less ideal because it does not guarantee perfectly stratified coverage. For example, when the number of unmasked tokens is 4, the upper-right quadrant remains unoccupied. The benefits of stratified sampling are also reflected in FID scores, which we document in Section B.3.

1134 **Algorithm 2** Stratified Unmasking Order
 1135
 1136 **Input:** Image size $N \times N$
 1137 **Output:** a list \mathcal{O} of coordinates (i, j) indicating unmasking order
 1138 1: Initialize an empty list \mathcal{O}
 1139 2: **for** $d = 1, 2, \dots, \log_2 N$ **do**
 1140 3: Partition the image into $2^d \times 2^d$ grid cells
 1141 4: **for** each grid cell g in random order **do**
 1142 5: **if** $\mathcal{O} \cap g = \emptyset$ **then**
 1143 6: Sample (i_g, j_g) uniformly within cell g
 1144 7: Append (i_g, j_g) to \mathcal{O}
 1145 8: **end if**
 1146 9: **end for**
 1147 10: **end for**
 1148 11: **return** \mathcal{O}

1150 A.6 OBJECT GROUNDING WITH COORDINATE QUANTIZATION

1151
 1152 In this section, we provide detailed descriptions of Lavida-O’s design for object grounding tasks.
 1153 Given an image and a referring expression describing an object, the grounding task requires locating
 1154 the described object in the image by predicting its bounding box coordinates. In autoregressive
 1155 vision-language models such as Qwen2.5-VL (Bai et al., 2025), bounding boxes are represented
 1156 as plain text strings, such as “[123, 232, 300, 1021]”. At inference, the coordinates are generated
 1157 sequentially from left to right. This design has several limitations. First, since the model only sees
 1158 a padded and resized image, it is difficult for the model to predict absolute pixel coordinates that
 1159 depend on the original resolution of the input image. Second, the sequential generation order is slow
 1160 and inefficient.

1161 To address these issues, we normalize the bounding box coordinates and quantize them into dis-
 1162 crete bins. Specifically, given an image of size $H \times W$, we first pad it to a square image of size
 1163 $D \times D$, where $D = \max(H, W)$, and normalize the bounding boxes in the padded image to the
 1164 range $[0, 1]$ by dividing the raw pixel coordinates by D . This step makes the coordinates indepen-
 1165 dent of the original input resolution. We then round each coordinate into 1025 bins representing
 1166 $\frac{0}{1024}, \frac{1}{1024}, \frac{2}{1024}, \dots, \frac{1024}{1024}$ and represent them with special tokens. This reduces the number of tokens
 1167 needed to represent each bounding box to exactly 4. Finally, since Lavida-O is a masked diffu-
 1168 sion model with a bi-directional attention mask and parallel decoding capabilities, we can predict
 1169 multiple bounding boxes simultaneously. For example, if we want to obtain the bounding boxes of
 1170 both “a cute dog” and “a boy,” we can initialize a text sequence “a cute dog [m][m][m][m]; a boy
 1171 [m][m][m][m]” and perform parallel unmasking of multiple bounding box coordinates. This design
 1172 is illustrated in Figure 10.

1173 A.7 REFLECTION AND PLANNING

1174 The unique advantage of unified understanding and generation models is that they can leverage their
 1175 understanding capabilities to improve generation results. Several works on unified models show that
 1176 simple joint training on a combination of understanding and generation tasks improves performance
 1177 on generation tasks (Xie et al., 2024; Deng et al., 2025), particularly in instruction-following capa-
 1178 bilities. Lavida-O pushes this paradigm further by introducing two explicit mechanisms to exploit
 1179 understanding capabilities: planning and reflection. At inference, these capabilities are invoked via
 1180 specialized prompts, such as “please generate a layout design before creating the final image”.

1181 **Planning.** To improve prompt-following capabilities in text-to-image generation, we ask the model
 1182 to first generate a layout design of objects, which consists of (object, bounding box) pairs, before
 1183 generating the final image. Such interleaved generation is achieved through the modality-aware
 1184 masking process described in Section A.3. We illustrate this process in Figure 11 (Top). As shown,
 1185 planning enables Lavida-O to follow challenging and unintuitive prompts, such as “a horse *above*
 1186 an astronaut.”

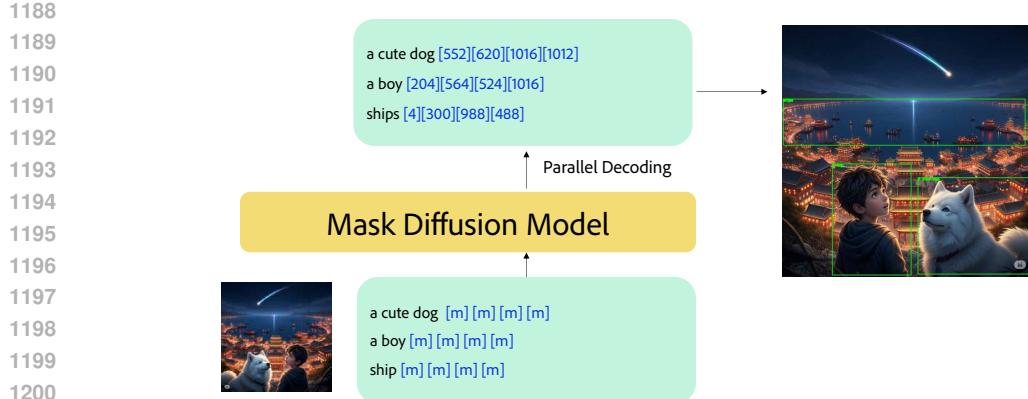


Figure 10: **Coordinate Quantization.** We normalize bounding box coordinates into the range [0,1] and discretize them into 1025 bins. This ensures that each bounding box is represented by exactly 4 tokens, allowing efficient parallel decoding of multiple bounding boxes in a single step.

Similarly, we can adopt planning for image editing tasks. Given an input image and an edit instruction, the model can first leverage its grounding capabilities to identify the regions that need to be edited before generating the edited image. This process is illustrated in Figure 11 (Bottom).

Reflection. We can improve text-to-image generation performance by leveraging Lavida-O’s understanding capability to achieve self-critique and iterative self-improvement. Given an input prompt, the model first generates an image, then performs a self-critique step to evaluate whether the generated image matches the prompt. If it does, the generation process terminates. Otherwise, the model generates a revised image and attempts to fix the identified issues. This cycle is repeated until an image passes the self-critique process or the maximum number of rounds is reached. At each round, we also invoke the planning capability. Since Lavida-O’s context length is limited to 8192 tokens, we truncate the history when necessary to include at most three rounds. This process is illustrated in Figure 11 (Middle). Formally, the reflection process is defined by the following algorithm

Algorithm 3 Iterative Image Refinement with Self-Reflection Loop

Input: Text prompt P , Unified Model Θ , Max Iterations N

Output: Output image I

```

1: Initialize  $I_1 \leftarrow \text{GenerateWithPlanning}(\Theta, P)$                                  $\triangleright$  Generate an initial image
2:  $F_1 \leftarrow \text{GetTextFeedback}(\Theta, P, I_1)$                                           $\triangleright$  Obtain initial feedback
3: for  $i = 2$  to  $N$  do
4:    $\mathcal{H}_i \leftarrow \{(I_j, F_j) \mid j = 1, 2, \dots, i-1\}$                                  $\triangleright$  Construct History Context
5:   if Run out of context limit of model  $\Theta$  then
6:     Truncate  $\mathcal{H}_i$  by removing early rounds
7:   end if
8:    $I_i \leftarrow \text{GenerateWithPlanning}(\Theta, P, \mathcal{H}_i)$                                  $\triangleright$  Generate a new image
9:    $F_i \leftarrow \text{GetTextFeedback}(\Theta, P, I_i)$                                           $\triangleright$  Obtain new feedback
10:  if  $F_i = \text{" "}$  then
11:    return  $I_i$ 
12:  end if
13: end for
14: return  $I_N$ 

```

Similar designs and algorithms have been explored for generation-only models in the context of inference-time scaling, such as Reflect-DiT (Li et al., 2025b) and ReflectionFlow (Zhuo et al., 2025). However, unlike these works, which require an external vision-language model as a reward model, Lavida-O uniquely unifies layout planning, self-critique, and iterative self-improvement in a single model through a unified generation process.

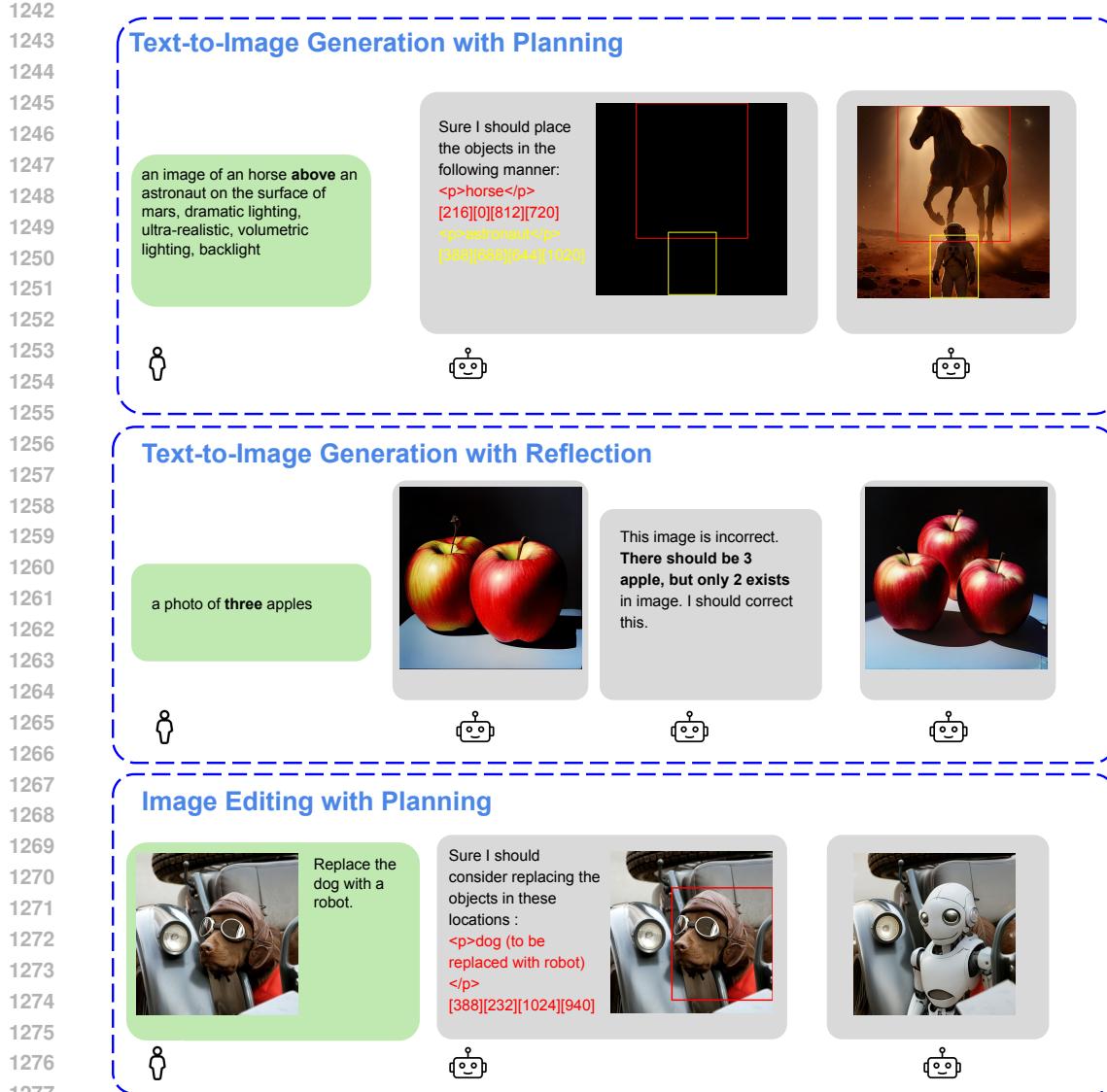


Figure 11: **Interleaved Generation with Planning and Reflection.** We provide visual examples of interleaved generation, including text-to-image generation with planning (Top), text-to-image generation with reflection (Middle), and image editing with planning (Bottom). We always enable planning during the reflection process. The layout traces is omitted in the middle figure for clarity and better presentation.

B ADDITIONAL EXPERIMENT DETAILS AND RESULTS

In this section, we document the details of the experiments for better reproducibility, including data pipeline, training hyperparameters, and compute cost. In addition, we also provide additional experimental results on the effectiveness of various design choices used by Lavida-O, such as the Elastic-MoT design, stratified sampling, and the data pipeline.

B.1 SETUP

Pretrained Weights. We use LaViDa (Li et al., 2025a) to initialize the understanding branch and semantic encoder. For the VQ encoder, we adopt the Meissonic encoder (Bai et al., 2024). The

1296 image generation branch is initialized from the truncated weights of the understanding branch, as
 1297 described in Section A.2.

1298 **Data Pipeline.** Unlike many frontier models, our model does not make use of proprietary images or
 1299 documents. Our training data consists of the following components:

- 1301 • *A: Text-to-Image Pairs.* We source data from LAION-2B (Schuhmann et al., 2022) and
 1302 COYO-700M (Byeon et al., 2022). We additionally include SA-1B (Kirillov et al., 2023),
 1303 JourneyDB (Sun et al., 2023), BLIP3o-60k (Chen et al., 2025a), and ShareGPT4o-Image
 1304 (Chen et al., 2025b). Each dataset is heavily filtered to remove NSFW prompts, low CLIP
 1305 scores (Radford et al., 2021), low aesthetic scores (Schuhmann, 2022), and low-resolution
 1306 images. This results in 200M images in our final mix. Where available, we use captions
 1307 generated by VLMs instead of raw alt-texts. These captions are sourced from existing
 1308 work including Recap-LAION, Recap-COYO (Wu et al., 2024), and BLIP-3o (Chen et al.,
 1309 2025a).
- 1310 • *B: Image-level Understanding Data.* We include LLaVA-OneVision (Li et al., 2024a),
 1311 Open-LLaVA-Next (Chen & Xing, 2024), MAmmoth-VL (Guo et al., 2024), and Visual-
 1312 WebInstruct (Jia et al., 2025).
- 1313 • *C: Region-level Understanding Data.* We include GranD (Rasheed et al., 2024) and Ref-
 1314 COCO (Kazemzadeh et al., 2014).
- 1315 • *D: Image Editing Data.* We include ShareGPT4o-Image (Chen et al., 2025b), GPT-Edit-
 1316 1.5M (Wang et al., 2025b), and the image editing subset of UniWorld-V1 (Hu et al., 2022).
- 1317 • *E: Interleaved Planning and Reflection Data.* For planning data, we manually construct a
 1318 layout dataset by running an open-vocabulary object detector, GroundingDino-L (Liu et al.,
 1319 2024b), on the outputs of image generation and editing datasets, including BLIP-3o (Chen
 1320 et al., 2025a), ShareGPT4o-Image (Chen et al., 2025b), and GPT-Edit-1.5M (Wang et al.,
 1321 2025b). For reflection data, we leverage existing datasets including ReflectDiT (Li et al.,
 1322 2025b) and ReflectionFlow (Zhuo et al., 2025).

1324 **Training Setup.** Training consists of three stages. In the first stage, we extend LaViDa to region-
 1325 level tasks such as grounding. In the second stage, we perform large-scale pretraining on text-to-
 1326 image generation tasks. In the final stage, we jointly train the model on a mix of understanding,
 1327 generation, and interleaved tasks. We document the training hyperparameters, the datasets used, the
 1328 active parameter count, and other relevant details in Table 7.

1329 In addition, we implement a dataset mix scheduler that dynamically adjusts the sampling weight of
 1330 each dataset throughout training to address data imbalance. Specifically, we assign a high weight to
 1331 new capabilities at the beginning of each training stage and gradually decay the weight over time.
 1332 For example, in Stage 1 we have fewer than 1M grounding samples but more than 10M image-level
 1333 understanding samples. To enable efficient acquisition of grounding capability while preventing
 1334 overfitting, we initially set the grounding-to-understanding ratio to 3:1, which is gradually decreased
 1335 to 1:3. We provide further analysis of the scheduler in Section B.4.

1337 B.2 ABLATION STUDIES ON ELASTIC-MOT DESIGN

1338 In this section, we report ablation results of the Elastic-MoT design, including the size of the gener-
 1339 ation branch and the number of joint attention layers.

1341 **Size of Generation Branch.** We report the performance of Lavida-O with different sizes of the
 1342 generation branch during text-to-image pretraining (Stage 2) in Table 8. The results are obtained
 1343 after 50k training steps with a global batch size of 1024. We also document the maximum per-GPU
 1344 batch size, the gradient accumulation steps, and the training latency to measure efficiency. The
 1345 results show that models of different sizes achieve comparable performance after 50k steps. Smaller
 1346 models (1B, 2B) converge slightly faster and achieve marginally higher performance than larger
 1347 models (4B, 8B). Larger models (4B, 8B) are harder to optimize as they need more steps, data,
 1348 and tuning to realize their full capacity. In terms of latency, smaller models are considerably faster.
 1349 The 2B model achieves the best balance between performance and efficiency, attaining the highest
 GenEval and DPG scores while being 3.17 \times faster.

1350 Table 7: **Training configurations across three stages.** We use letters A-E to represent different
 1351 dataset following Section B.1.

	Stage 1	Stage 2	Stage 3
Learning Rate	5×10^{-6}	1×10^{-4}	2×10^{-5}
Steps	80k	400k	100k
β_1	0.99	0.99	0.99
β_2	0.999	0.999	0.999
optimizer	AdamW	AdamW	AdamW
Dataset Used	B,C	A	A,B,C,D,E
Loaded Parameters	8B	6.4B	10.4B
Trainable Parameters	8B	2.4B	10.4B
Und. resolution	$384 \times \{(1, 3), (2, 2)\}$	$384 \times \{(1, 3), (2, 2)\}$	$384 \times \{(1, 3), (2, 2)\}$
Gen. resolution	-	$256 \rightarrow 512 \rightarrow 1024$	1024
Semantic Encoder	Trainable	Not Loaded	Trainable
VQ Encoder	Not Loaded	Loaded	Loaded
Gen. Branch	Not Loaded	Trainable	Trainable
Und. Branch	Trainable	Partially Loaded	Trainable

1369 Table 8: **Comparison of different model sizes on GenEval, DPG, and training efficiency.** We
 1370 report the performance of Lavida-O with different sizes of the generation branch during the text-
 1371 to-image pretraining (Stage-2) after 50k training steps. We also report the per-GPU batch size and
 1372 training latency.

Architecture	Performance			Efficiency		
	Parm.	Hidden Size	GenEval \uparrow	DPG \uparrow	Batch Size	Accum. Step
4B+1B	1536	0.56	60.8	16	1	1.98
4B+2B	2048	0.57	63.1	16	1	3.67
4B+4B	3072	0.48	55.3	8	2	8.42
4B+8B	4096	0.55	58.6	8	2	11.64

1381
 1382
 1383 **Number of Joint Attention Layers.** To study the effect of varying the number of joint attention
 1384 layers, we conducted two ablation experiments. The first experiment was performed during Stage 2
 1385 pretraining. We started with the Stage 1 checkpoint with $N = 32$ layers in the understanding branch
 1386 and fixed the generation branch size to 4B. We then varied M , the number of layers with joint
 1387 attention, among $\{8, 16, 24, 32\}$. The number of non-joint layers, K , is automatically determined
 1388 by $K = N - M$. The results after 100k training steps are shown in Table 9. Among the four
 1389 choices, $M = \{16, 24, 32\}$ yields a comparable performance, while $M = 8$ shows a substantial
 1390 drop. This suggests that a sufficient number of joint attention layers is necessary for strong text-to-
 1391 image performance, but additional layers beyond a threshold provide little benefit. Training latency
 1392 also decreases when M is smaller (i.e., larger K), as fewer joint layers must be loaded. $M = 16$
 1393 achieves the best balance of speed and performance.

1394 Table 9: **Effect of varying choices of M and K in partially-decoupled attention design.** Efficiency
 1395 is measured in Stage-2 training. For stage-3 training, we need to load all layers since the data contain
 1396 a mix of text, image, and interleaved generation tasks.

M	K	Pretraining (Stage-2)		SFT (Stage-3)			Efficiency
		GenEval \uparrow	DPG \uparrow	GenEval \uparrow	DPG \uparrow	ImageEdit \uparrow	Latency (s/it) \downarrow
8	24	0.57	69.3	-	-	-	2.45
16	16	0.63	75.0	0.89	83.2	3.66	3.67
24	8	0.63	73.3	0.81	83.0	3.60	4.12
32	0	0.61	71.2	0.85	83.2	3.55	5.20

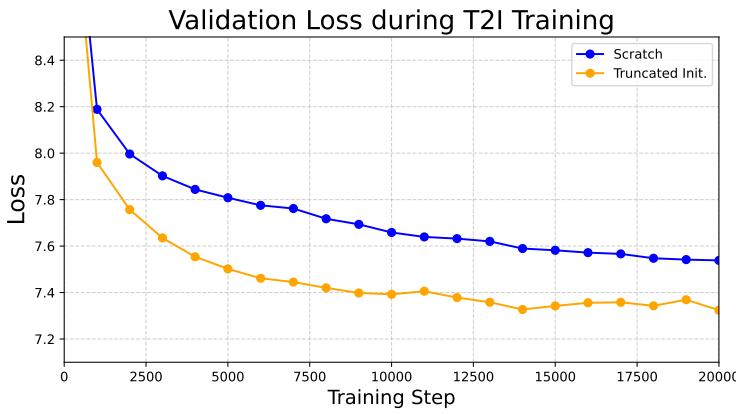


Figure 12: **Effect of truncated initialization.** Validation loss comparison of truncated initialization vs. training from scratch during Stage 2. Truncated initialization converges faster and achieves lower loss.

We conducted a second experiment in Stage 3, where interleaved generation and editing tasks may benefit more from joint attention. Starting from a Stage 2 checkpoint pretrained with $M = 16$ layers for 400k steps, we trained for 50k steps under $M = \{16, 24, 32\}$. The results show two key observations: (1) text-to-image tasks converge faster than image-editing tasks, reaching near-final performance after 50k steps, while editing tasks lag behind; (2) increasing M does not significantly improve performance, even for interleaved editing. This may be due to token interference at later layers or the Stage 2 model being optimized with only 16 joint layers. Due to compute constraints, we were unable to retrain Stage 2 with alternative values of M . Nevertheless, keeping $M = 16$ is a reasonable choice given our setup. Finally, in Stage 3 the efficiency difference is less pronounced, since all 10.4B parameters must be loaded for interleaved training and inference.

Weight Initialization. We initialized the 2.4B generation branch with truncated weights from the understanding branch (Section A.2). We also explored initializing from scratch. Figure 12 shows the validation loss during the first 20k steps of Stage 2. Truncated initialization converges faster and yields lower loss.

B.3 ABLATION STUDIES ON STRATIFIED SAMPLING

We compared image generation quality under different sampling strategies on the MJHQ-30k dataset (Li et al., 2024b) with 64 sampling steps. We evaluate the proposed stratified sampler against confidence-based sampling (Chang et al., 2022), uniform random sampling, and Halton sampling (Besnier et al., 2025). The results are reported in Table 10. The stratified sampler achieves the best performance.

Table 10: **Performance of Different Samplers in Text-to-Image Generation Tasks.** We report the FID scores on MJHQ-30K dataset using different samplers. The proposed stratified sampler achieves the best outcome.

Method	FID-30k \downarrow
Confidence	11.42
Uniform	8.22
Halton	7.38
Stratified	6.68

B.4 ABLATION STUDIES ON DATA PIPELINE

Effect of Task Scheduler. To study the effect of the dataset scheduler described in Section B.1, we compare three dataset mixing strategies in Stage 1 training. The goal of Stage 1 is to equip

1458 LaViDa with region-level understanding capabilities such as grounding. At this stage, training data
 1459 includes fewer than 1M grounding samples but over 10M image-level understanding samples. To
 1460 mitigate imbalance, we employ a scheduler that dynamically adjusts the sampling weights for new
 1461 (grounding) and existing (image-level) capabilities. Each batch is drawn from a single dataset. For
 1462 example, when New:Old=1:3, on average $\frac{1}{4}$ of batches contain grounding data and $\frac{3}{4}$ contain image-
 1463 level data.

1464 We initialize the ratio as New:Old=3:1 and gradually reduce it to 1:3. We compare against fixed
 1465 ratios of 1:3 and 3:1, reporting results after 20k steps in Table 11. Fixing New:Old=1:3 under-trains
 1466 grounding, while fixing New:Old=3:1 improves grounding but causes forgetting on image-level un-
 1467 derstanding. In contrast, the dynamic scheduler achieves strong performance on both. Notably,
 1468 it even outperforms the fixed 3:1 setup on image-level understanding, suggesting it also mitigates
 1469 overfitting caused by the small grounding dataset.

1470
 1471 **Table 11: Comparison of different task scheduling during Stage 1 Training.** We compare the
 1472 performance under different dataset sampling weights of new capabilities (grounding) and old capa-
 1473 bilities (image-level understanding). We explored two fixed sampling ratio 1:3 and 3:1 for New:Old.
 1474 For the dynamic scheduler, the New:Old ratio is initialized as 3:1 and gradually decreased to 1:3.

Method	New Capabilities			Existing Capabilities		
	RefCOCO	RefCOCO+	RefCOCOg	MME	ChartQA	ScienceQA
New:Old = 1:3	83.2	74.6	78.3	449	72.6	84.3
New:Old = 3:1	88.8	82.4	85.7	349	65.0	75.8
Dynamic	92.0	86.9	89.3	436	73.4	86.4

1481
 1482 **Does understanding data help generation tasks?** To examine whether incorporating understand-
 1483 ing data benefits generation, we experimented with removing all grounding data from Stage 3. The
 1484 results are shown in Table 12. Even without explicit planning, incorporating grounding data en-
 1485 hances both text-to-image generation and editing, highlighting an inherent synergy between the
 1486 tasks. When planning is enabled, these benefits compound, leading to even greater improvements.

1487 **Table 12: Effect of Grounding Data in Stage 3 Training.** To analyze the impact of the synergy
 1488 between understanding and generation tasks, we explored removing object grounding in Stage 3
 1489 Training. This leads to worse overall performance. This demonstrates that jointly training on both
 1490 understanding (grounding) and generation tasks is helpful for generation.

Method	GenEval	DPG	ImgEdit
w/o grounding data	0.74	82.0	3.60
w/ grounding data	0.77	81.8	3.71
+ planning	0.85	82.9	3.80

1498 B.5 ABLATION STUDIES ON REFLECTION AND PLANNING

1501 **Breakdown of Performance Improvements.** We provide a detailed breakdown of the gains in-
 1502 troduced by planning and reflection. Table 13 shows results on GenEval. Planning yields large
 1503 improvements in object positioning (+0.19), while reflection additionally improves counting and at-
 1504 tribution. **To further examine the behavior of planning, we conducted additional text-to-image eval-
 1505 uations on categories of T2I-Compbench++ (Huang et al., 2025) that are not covered by GenEval
 1506 benchmark, including 3D spatial constraints and object texture attribution. We report these results
 1507 in Table 14.** We observe that Lavida-O consistently demonstrate strong performance, with planning
 1508 mechanism offering a significant performance boost. Notably, while our planning process use only
 1509 2D bounding boxes, we observe that it also improves satisfaction of 3D positional constraints by
 1510 properly designing the size of relevant objects to reflect the distance.

1511 On Image-Edit (Table 15), planning improves adding/removing objects, subject actions, and hybrid
 1512 instructions. The largest gains are in action (+0.50) and hybrid (+0.16). However, global edits (e.g.,

style, background) degrade slightly, as these tasks are less aligned with grounding. A promising direction for future is to let the model dynamically decide whether to invoke planning.

Table 13: **Breakdown of performance improvements on GenEval Dataset.** We report the improvements of the planning and reflection mechanism on each category of the text-to-image generation tasks from GenEval Dataset.

	Single	Two	Position	Counting	Color	Attribution	Overall
Baseline	0.99	0.85	0.65	0.71	0.86	0.58	0.77
+Planning	0.99	0.94	0.84	0.75	0.90	0.68	0.85
Δ vs. Baseline	=	+0.09	+0.19	+0.04	+0.04	+0.10	+0.08
+Reflection	1.00	0.95	0.89	0.85	0.90	0.74	0.89
Δ vs. Baseline	+0.01	+0.10	+0.24	+0.14	+0.04	+0.16	+0.12

Table 14: **Additional Text-to-Generation results on T2I-Compbench-++ Benchmark.** We report results on categories not included in GenEval benchmark, such as 3D spatial constraints and texture attribution.

Model	3D	2D	Texture
Stable Diffusion 2 (Stability AI, 2022)	0.323	0.134	0.492
Janus-Pro-7B(Chen et al., 2025c)	0.323	0.157	0.407
FLUX.1 Dev(Labs, 2024)	0.387	0.286	0.692
LaViDa-O	0.414	0.388	0.613
+Planning	0.442	0.390	0.715

Table 15: **Breakdown of performance improvements on Image-Edit Dataset.** We report the improvements of the planning mechanism on each category of the image editing tasks from Image-Edit Dataset.

Model	Add	Adjust	Extract	Replace	Remove	Background	Style	Hybrid	Action	Overall
Baseline	4.04	3.62	2.01	4.39	3.98	4.06	4.82	2.94	3.54	3.71
+ Planning	4.11	3.67	2.04	4.40	4.05	4.00	4.75	3.10	4.04	3.80
Δ vs. Baseline	+0.07	+0.05	+0.03	+0.01	+0.07	-0.06	-0.07	+0.16	+0.50	+0.09

Table 16: **Performance and Latency at different numbers of reflection rounds N .** When $N = 1$, we only perform planning.

Num. of Reflection Rounds	N=1	N=2	N=4	N=8	N=12	N=16	N=20
GenEval Score \uparrow	0.848	0.864	0.875	0.882	0.890	0.886	0.886
Latency (s/image) \downarrow	27.2	32.6	39.3	47.1	53.4	58.3	62.2

Effect of Inference-time Scaling. We evaluate reflection scaling by varying N , the maximum number of images generated per prompt. Table 16 shows results. Even one reflection step ($N = 2$) improves performance. Gains saturate at $N = 8$, with little benefit beyond. Latency grows sublinearly with N since simple prompts often trigger early stopping. For example, when $N = 20$, the model may obtain a satisfactory output and terminate the generation process after generating just two images.

B.6 ABLATION STUDIES ON UNIVERSAL TEXT CONDITIONING.

To examine the effectiveness of universal conditioning, we perform a user study and ask human evaluators to compare image generation with and without universal text conditioning. We curated a

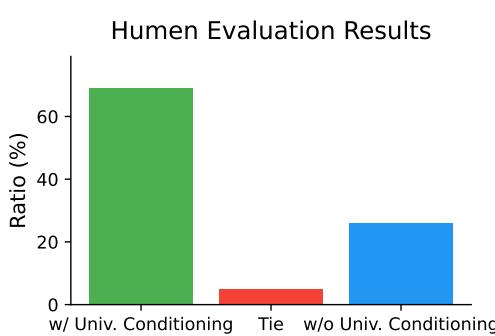


Figure 13: **Human Evaluation of Image Quality.** We conduct user study on image quality and compare text-to-image generations with and without universal text conditioning. Results show that universal text conditioning with aesthetic scores greatly improves image quality.

total of 300 human response on image pairs generated with randomly selected prompts from MJHQ-30k dataset. The human evaluators are provided with the following instruction:

Instructions

Both of these images were generated by AI models trained to create an image from a text prompt. Which image do you prefer given the associated text?

Example criteria could include: detail, art quality, aesthetics, how well the text prompt is reflected, lack of distortions/irregularities (e.g. extra limbs, objects). In general, choose which image you think you would consider to be "better".

We report the results in Figure 13. Results show that human evaluators exhibit a strong preference towards images generated with universal text conditioning, suggesting that conditioning the image generation with quality scores through our proposed universal text conditions method can effectively improve image quality.

B.7 SPEED–QUALITY TRADEOFF

A key advantage of masked diffusion models over autoregressive models is the speed–quality trade-off enabled by parallel decoding. We study this in the unified setting by evaluating Lavida-O on MJHQ-30k text-to-image generation (Li et al., 2024b), RefCOCO grounding (Kazemzadeh et al., 2014), and MathVista reasoning (Lu et al., 2023).

For MJHQ and RefCOCO, we vary the number of diffusion steps. For MathVista, we employ Fast-DLLM (Wu et al., 2025a), which adaptively unmasks multiple tokens per step. The tradeoff is controlled via its threshold hyperparameter. Results are shown in Figure 14. For MJHQ we report FID (lower is better), for RefCOCO Precision@0.5 (higher is better), and for MathVista accuracy (higher is better).

We compare against several baselines: Flux (Labs, 2024) on T2I, Qwen2.5-VL-7B (Bai et al., 2025) on grounding, and Qwen2.5-VL/Open-LLaVA-Next-8B (Chen & Xing, 2024) on reasoning. Lavida-O achieves faster inference and stronger quality on image generation and grounding. For grounding, it reaches up to $6.8\times$ speedup while surpassing Qwen2.5-VL-7B in precision. On MathVista, while less accurate than state-of-the-art AR models, Lavida-O is much faster, and still stronger than popular AR baselines such as Open-LLaVA-Next-8B. Performance also exceeds the base LaViDa (56.9 vs. 44.8).

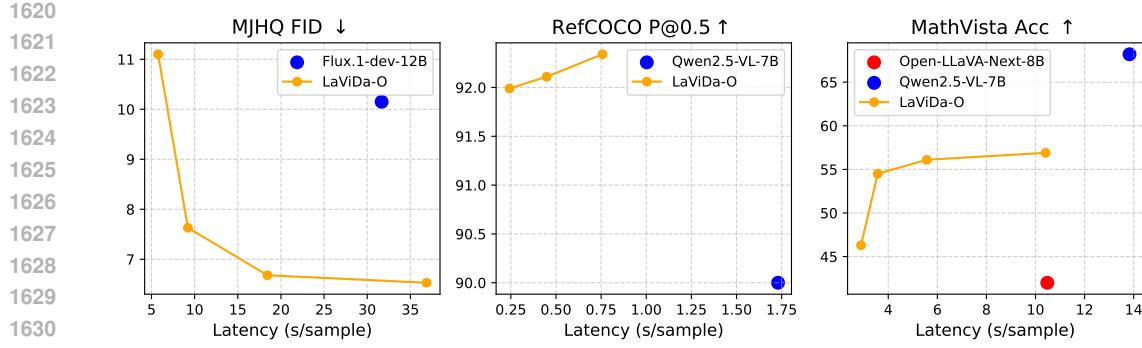


Figure 14: **Speed–quality tradeoff on generation, grounding, and reasoning.** Latency (s/sample) and benchmark scores are shown. For MJHQ: FID (lower is better). For RefCOCO: Precision@0.5 (higher is better). For MathVista: accuracy (higher is better). On MathVista, the maximum generation length is capped at 256 tokens.

B.8 ADDITIONAL QUALITATIVE RESULTS

Finally, we provide additional qualitative examples demonstrating Lavida-O’s capabilities on diverse prompts and editing instructions. Figure 15 shows text-to-image generation, and Figure 16 shows image editing results.

C COMPUTE COST

All experiments are conducted on 8 nodes, each equipped with 8 A100 GPUs. The total training amounts to 34.2 days measured by wall clock time, or 53k GPU hours.

D LIMITATIONS

In this section, we discuss several limitations of Lavida-O.

Text Rendering. Since the image generation branch is trained from scratch and we did not explicitly include datasets for text rendering, Lavida-O’s capability to render and edit text is very limited. We also find that the VQ image tokenizer we use cannot faithfully reconstruct small texts. We aim to address this issue in future work by incorporating additional text rendering data and finetune the VQ image tokenizer on screenshots of documents.

Pixel Shift. Our image editing datasets, such as GPT-Image-Edit-1.5M (Wang et al., 2025b) contains images distilled from generative models like GPT-4o, which is known to have “pixel shift” problems. Specifically, even if the instruction only requires editing a specific region, the other regions may still experience small but noticeable changes. As a consequence, Lavida-O inherit this problem. We aim to mitigate this by obtaining more clean and high-quality image-editing data.

Math Reasoning. The focus of Lavida-O is to build a unified multi-modal MDMs capable of both understanding and generation tasks. Although its math reasoning capabilities has improved from the base model LaViDa thanks to additional training, there remains a considerable gap when compared against state-of-the-art models. We leave further improvements on math reasoning tasks to future work.

Hallucination. Like all generative models, ours may occasionally produce inaccurate or fabricated information. We recommend using model outputs as guidance rather than unquestioned truth, and validating them where accuracy is critical.

1674 **E BOARDER IMPACT**
16751676 Lavida-O has strong text-to-image generation capabilities and image-editing capabilities, which may
1677 be abused to create various harmful and offensive content. We strongly caution the community
1678 against such use cases. Additonally, our model may inherit the biases embedded in the base model
1679 LaViDa, as well as biases incorporated in the images and texts of the training data. Our model is
1680 intended to be used by researchers to build a strong diffusion model for multi-modal applications
1681 and explore methods of building future multi-modal foundational models. We do not recommend
1682 that it be used for any other purposes.
16831684 **F LLM USAGE**
16851686 We use LLM to correct typos and grammatical errors only.
16871688 **G REPRODUCIBILITY STATEMENT**
16891690 We will include links to model weights and code in the final version. We will release both the
1691 training and evaluation code.
16921693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

1728				
1729				
1730				
1731	lush garden in the middle of a dimly lit old library, fantasy, realistic, 4k	A portrait of a young woman with striking green eyes and freckles, wearing a flowing green scarf in a windy meadow	Close-up of a kitten with playful eyes, wicker basket in background, ultra HD	cute winter dragon baby, kawaii, Pixar, ultra detailed, glacial background, extremely realistic
1732				
1733				
1734				
1735				
1736				
1737				
1738				
1739				
1740				
1741				
1742	up close swamp monster, big scary smile, sea weed on the head, dark bog with fog	2023 land rover defender black, camping in the forest, ultra realistis, foggy morning	A close-up portrait of an elderly African man with a wise expression, wearing a traditional Kente cloth, ultra HD, photorealistic.	artificial intelligence,future, robot, humanoid, realistic, detailed, dramatic lighting, hyper realistic
1743				
1744				
1745				
1746				
1747				
1748				
1749				
1750				
1751				
1752				
1753				
1754	Magical forest, flower meadow, golden light shining through the tress, castle in the distance, photo realistic	beautiful hibiscus flower, 8k, realistic, octane render, artstation, cinematic, ultra hd	A handsome queen fairy goddess with green eyes and charismatic face, offering water of life, lush forest background,	spicy food, ultra realistic style. With cinematic lighting, closeup shot, 75 mm lens, production quality, depth of field.
1755				
1756				
1757				
1758				
1759				
1760				
1761				
1762				
1763				
1764				
1765				
1766	a little boy in sunglasses and colorful sparkles, in the style of made of wire, solarpunk, claireobscure lighting	A fallen angel, with wings engulfed in flames, kneels in despair as embers flicker around her.	Beautiful woman with perfect face with long black hair, woman is wearing ancient Chinese dress with flower in her hair, woman is standing next to a mythical Tiamat dragon	a beautiful little girl, big soulful eyes, sweet smile, 8k, anime, background hdr, portrait, closeup portrait, violet eyes and hair, image in violet and turquoise tones
1767				
1768				
1769				
1770				
1771				
1772				
1773				
1774				
1775				
1776				
1777				
1778				
1779	Figure 15: Qualitative examples of text-to-image generation. We provide additional examples of text-to-image generation outputs on diverse prompts.			
1780				
1781				

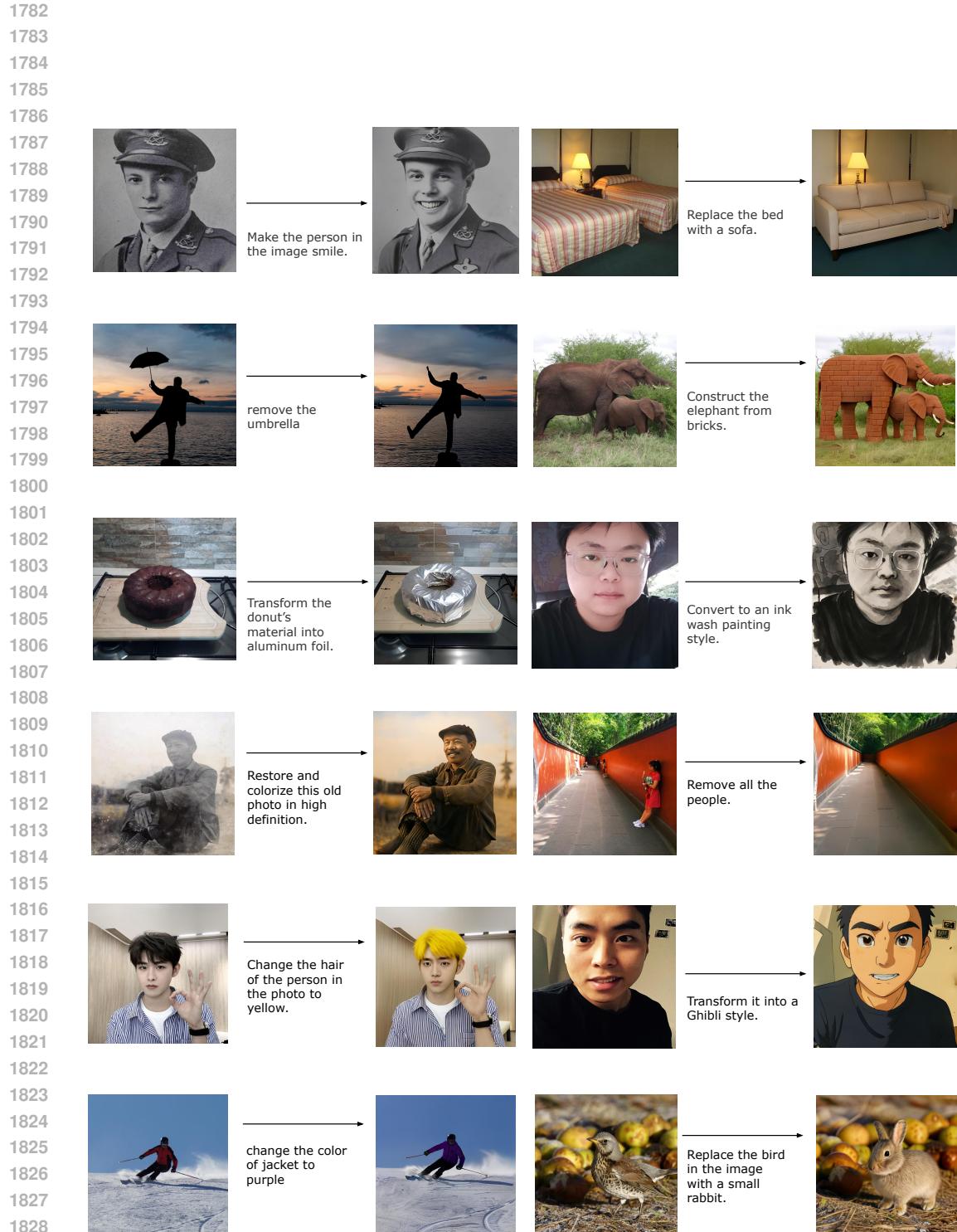


Figure 16: **Qualitative examples of image editing.** We provide additional examples of image editing outputs on diverse instructions.