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Abstract

Batch Normalisation (BN) is widely used in con-
ventional deep neural network training to har-
monise the input-output distributions for each
batch of data. However, federated learning, a
distributed learning paradigm, faces the challenge
of dealing with non-independent and identically
distributed data among the client nodes. Due to
the lack of a coherent methodology for updating
BN statistical parameters, standard BN degrades
the federated learning performance. To this end,
it is urgent to explore an alternative normalisa-
tion solution for federated learning. In this work,
we resolve the dilemma of the BN layer in fed-
erated learning by developing a customised nor-
malisation approach, Hybrid Batch Normalisation
(HBN). HBN separates the update of statistical pa-
rameters (i.e., means and variances used for eval-
uation) from that of learnable parameters (i.e., pa-
rameters that require gradient updates), obtaining
unbiased estimates of global statistical parameters
in distributed scenarios. In contrast with the exist-
ing solutions, we emphasise the supportive power
of global statistics for federated learning. The
HBN layer introduces a learnable hybrid distribu-
tion factor, allowing each computing node to adap-
tively mix the statistical parameters of the current
batch with the global statistics. Our HBN can
serve as a powerful plugin to advance federated
learning performance. It reflects promising merits
across a wide range of federated learning settings,
especially for small batch sizes and heterogeneous
data. Code is available at https://github.
com/Hongyao-Chen/HybridBN.
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Figure 1: A comparison of our Hybrid Batch Normalisation
(HBN) with standard Batch Normalisation (BN) and Group
Normalisation (GN) in the federated learning settings. (a)
Classification error rate of Simple-CNN on CIFAR-100
vs Data heterogeneity (controlled by a Dirichlet distribu-
tion coefficient). The batch size is 16. (b) Classification
error rate of Simple-CNN on CIFAR-100 vs Batch size.
The Dirichlet distribution coefficient is 0.6. For other imple-
mentation details, please refer to Section 4.1.

1. Introduction
Federated learning (FL) is a distributed machine learning
paradigm that trains a global model on a central server,
while protecting the raw data of each client node (Yang et al.,
2019; Bharati et al., 2022). Different from data-centralised
training, in FL, data across client nodes may be non-
independently and identically distributed (Non-IID) (Zhao
et al., 2018; Li et al., 2019; 2022), which has sparked a
widespread interest in how to achieve the system-centralised
performance during distributed training.

To guarantee data privacy, only the model parameters, rather
than data, are allowed to be transferred between the central
server and local clients. Specifically, the classic Feder-
ated Averaging (FedAvg) family (McMahan et al., 2017)
performs multiple mini-batch stochastic gradient descent
(SGD) on several local clients, and then aggregates the
model parameters on the server in each communication
round.

To harmonise the use of global model parameters in con-
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junction with client specific data distributions, a suitable
Batch Normalisation (BN) (Ioffe, 2015) is required. In the
case of centralised training, samples from different batches
are rescaled and shifted to a predefined range by the BN
layer, reducing potential supervision conflicts. In general,
the function of BN is to accelerate convergence (Bjorck
et al., 2018; Karakida et al., 2019), to smooth the optimi-
sation landscape (Santurkar et al., 2018; Yong et al., 2020;
Peng et al., 2023), and to improve generalisation (Luo et al.,
2018; Lubana et al., 2021), etc. However, (Hsieh et al.,
2020) and (Du et al., 2022) found that the BN layer does
not maintain its expected merits in the FL scheme. The
underlying reason is that each local client works with a spe-
cific data distribution, resulting in heterogeneity from the
global perspective. The difference between the local statis-
tics (for training) pertaining to each client and the global
statistics (for evaluation) compromises the effectiveness of
the standard BN layer.

To effectively avoid collecting the statistics from each batch
in FL, (Hsieh et al., 2020) suggests replacing BN with Group
Normalisation (GN) (Wu & He, 2018), which performs a
normalisation along the channel dimension. (Du et al.,
2022) suggests using LN (Ba, 2016). Besides, (Kim et al.,
2023; Zhang et al., 2024) identifies that Feature Normali-
sation(FN) can be helpful for federated training. Similar
to GN, FN and LN both use the statistical information of a
single sample for normalisation, ignoring the dependency
relationships among samples. Although these normalisation
methods avoid batch dependence by relying on individual
samples, they fail to incorporate global information, which
may further exacerbate data distribution heterogeneity.

Many studies (Ioffe, 2017; Yao et al., 2021; Pham et al.,
2022) have found that the degree of heterogeneity and
the batch size are the two dominant factors causing the
global/local discrepancy for BN. As shown in Figure 1,
when the heterogeneity of the data distribution is severe
(with a smaller Dirichlet distribution coefficient) or the batch
size is tiny, BN deteriorates because of the lack of confi-
dence in the local statistics. In the decentralised training
scenario, global statistical information is crucial for ensur-
ing local consistency and synchronisation. At this point,
normalisation based on global statistics is more appropriate.
However, obtaining real-time global statistics is difficult in
FL. Drawing on this, FedTAN (Wang et al., 2023) proposes
to correct the potentially unreliable statistical parameters
of BN. However, FedTAN requires more client-server com-
munications to rectify the statistics, sacrificing ×3 times as
many BN layers in the communication rounds, compared to
FedAvg.

To date, the potential of BN in handling FL tasks has not
been sufficiently investigated. One challenging issue is how
to gauge the client distribution heterogeneity, in relation to

the global statistical parameters. While the use of historical
global statistical parameters for BN in decentralised training
is precarious, we suggest using them to recognise heteroge-
neous nodes instead. Our approach demonstrates that this
idea leads to an efficient solution for adapting the global
statistical parameters of BN, so as to mitigate the negative
impact of the distribution heterogeneity.

Recognising that the negative impact is produced during
the update stage of statistics, where the local statistical pa-
rameters and learnable parameters are jointly updated, we
propose to separate the update stage into sequential steps,
i.e., collecting the local statistical parameters, followed by
updating the learnable parameters. In this way, our sequen-
tial update strategy recovers unbiased estimates of the last
round’s global statistics, without explicitly changing the
communication transmission process. In the subsequent nor-
malisation stage, we perform Hybrid Batch Normalisation
(HBN) to balance the global statistical parameters and the
statistical parameters from the current batch. In Figure 1,
we compare HBN with standard BN and GN configured
with the FedAvg baseline. Intuitively, HBN outperforms its
contenders regardless of the actual degree of heterogeneity
and batch size, achieving consistent normalisation for fed-
erated learning in diverse scenarios. We demonstrate that
the proposed HBN can be used effectively in conjunction
with several federated learning frameworks, resolving the
dilemma of batch normalisation, and delivering consistently
outstanding performance.

The main contributions of our work are as follows:

• We address the dilemma of batch normalisation for the
federated learning framework, and show how to derive
unbiased global statistical parameters from inconsistent
local distributions.

• We develop a hybrid batch normalisation (HBN) layer,
harmonising local batch statistics and global statistical
parameters for each local client.

• We demonstrate the superiority of HBN by extensive
experimental comparisons with several existing FL nor-
malisation solutions. The experimental results show
that HBN exhibits excellent merits under heteroge-
neous and small batch sizes scenarios.

• We verify the consistent compatibility of HBN with
existing federated learning schemes and classic deep
neural network architectures.

2. Related Work
Learning Model Parameters in Federated Setting. Com-
pared to traditional distributed training, data heterogeneity
among various local clients is a fundamental challenge in
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federated learning (Kairouz et al., 2021; Vahidian et al.,
2023; Mendieta et al., 2022). Due to privacy constraints,
local clients cannot address this challenge by sharing data.

Since FedAvg (McMahan et al., 2017) was proposed to
aggregate model parameters from multiple local clients,
setting up a baseline for federated learning, recent stud-
ies typically focus on handling heterogeneous client data
distributions. For instance, to alleviate oscillated aggrega-
tion at the central server end across different iterations, Fe-
dAvgM (Hsu et al., 2019) proposes to introduce momentum
in the aggregation stage, aligning the entire model param-
eters. To achieve adaptive moment estimation (Kingma,
2014), FedAdam (Reddi et al., 2020) was developed to as-
sign a suitable combination ratio between the previous and
current parameters. To stabilise the local training phase, Fed-
Prox (Li et al., 2020) adds a proximal regularization term to
local models. In terms of explicit anti-heterogeneous mod-
elling, Scaffold (Karimireddy et al., 2020) reduces the vari-
ance of local updates by introducing a correction term for
local gradients. In order to further collectorate the local and
global models, FedCM (Xu et al., 2021) and FedSAM (Qu
et al., 2022) introduce client-level momentum and client-
level optimiser to enhance the generalisation power at the
local end.

The above solutions harmonise the server-client parame-
ters from the updating perspective of learnable parameters,
achieving promising performance against heterogeneous
distributions. On the contrary, in this paper, we focus on
alleviating the negative impact of heterogeneity by design-
ing a hybrid batch normalisation module, emphasising the
update of statistical parameters, which can further boost the
performance accompanied by the above solutions parallelly.

Updating Statistical Parameters in Federated Setting.
Normalisation based on input statistics has been widely
studied in deep learning, e.g., batch normalisation, layer nor-
malisation, and group normalisation. However, endowing
federated learning solutions with the above normalisation ap-
proaches cannot deliver the expected improvement, remain-
ing a concern on how to collect and update the statistical
parameters in federated learning. For instance, batch normal-
isation relies on batch statistics to normalise data, which can
be easily misled by the Non-IID clients’ data (Ioffe, 2017).
Drawing on this, Group Normalisation and Layer Normali-
sation are used for federated learning, avoiding collecting
statistics across the batch dimension. Feature Normalisa-
tion alleviates the representation norm differences between
federated learning clients, which is functionally similar to
LN. However, GN, LN, and FN rely only on the statistics of
each individual sample, representing significant difference
compared to global statistics, which cannot maintain their
advantages in heterogeneous FL. To preserve the statisti-
cal stability at the client end, FedBN (Li et al., 2021b) and

SiloBN (Andreux et al., 2020) limit certain BN parameters
on each local client. The above approaches avoid relying
on server-side statistical parameters and focus exclusively
on local client normalisation, which are suitable for person-
alised federated learning but incapable of obtaining a global
model.

To achieve server-client statistical parameters interaction
and aggregation within the batch scope, recent studies
have explored how to optimise BN in the FL setting.
FixBN (Zhong et al., 2023), exploiting a straightforward
strategy, proposes a two-stage training approach, where
the statistical parameters are updated in the first stage and
frozen to replace batch statistics during normalisation in
the second stage. To involve historical statistics, Feder-
ated Batch Normalisation (FBN) (Guerraoui et al., 2024)
proposes to normalise batch data using running average.
However, FixBN and FBN neglect the diversity of statistics
in each local client, which is a challenging issue in Non-IID
scenarios. To simultaneously maintain the local data char-
acteristics, FedTAN (Wang et al., 2023) uploads the local
means and variances layer by layer to the server. Then, the
global statistical parameters are sent to each client to update
the local learnable parameters. Despite the improved ac-
curacy in collecting statistics, FedTAN sacrifices 3× times
the communication cost for each BN layer compared to
FedAvg.

Although existing attempts optimise the normalisation al-
gorithms for FL, the potential value of BN statistics is not
sufficiently explored during training. On the contrary, in
this paper, we propose to harmonise the BN statistics with
an unbiased estimator at the global server, which can endow
a global perspective to each local training phase, unifying
the task supervision thereby.

3. Approach
3.1. Formulation

Batch Normalisation. Batch Normalisation is widely
used in deep neural networks to reduce internal covariate
shift (Ioffe, 2015). Given an input feature {xi}Bi=1 of batch
size B, BN calculates the means µb and variances σ2

b of the
current batch and normalises them.

µb =
1

B

B∑
i=1

xi ; σ
2
b =

1

B

B∑
i=1

(xi − µb)
2. (1)

In general, BN estimates global statistical parameters for
evaluation by employing the exponential moving average to
update the running statistics.

In the current deep learning community, the estimated sta-
tistical parameters from the training phase are frozen in the
evaluation phase. The vitality of these statistical parameters
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holds only if the data share a similar distribution. Intu-
itively, independent and identically distributed (IID) data is
expected. However, this assumption always conflicts with
the federated learning setting, where heterogeneous data
distributions are assigned to different local clients.

Federated Learning with Batch Normalisation. In the
context of federated learning, handling non-IID data among
local clients is a typical challenging issue. A direct solution
is passing data, which is forbidden in the federated learning
setting. Therefore, other local clients can access only model
parameters to protect data privacy. Taking the classic Fe-
dAvg as an example, the goal of FL is to learn a global model
that can perform well on all clients. Specifically, assuming
that set Dg = {Dk}k∈[K] contains the datasets distributed
across all K clients. Considering a deep neural network
with the BN layer, the model parameters include learnable
parameters ω and BN’s statistical parameters, which are
means µ and variances σ2. FL aims to minimise the follow-
ing empirical risk:

min
ω,µ,σ2

L(ω, µ, σ2) =

K∑
k=1

Nk

N
Lk(ω, µ, σ

2), (2)

where Nk is the size of the k-th client dataset Dk, N is the
total size of data and Lk(·) is the empirical risk of the k-th
client. However, the above Equation (2) cannot be directly
optimised because the central server cannot access the client
data. For this purpose, FL iteratively aggregates the model
parameters trained locally by the clients. On both global
learnable parameters ωg and global statistical parameters
µg, σ

2
g , FedAvg performs the following operations:

{ωg, µg, σ
2
g} =

K∑
k=1

Nk

N
{ωk, µk, σ

2
k}, (3)

where ωk, µk and σ2
k are all updated by the k-th client on

local data.

The Dilemma of Batch Normalisation. Next, we focus on
analysing the statistical parameters µ, σ2. We use

µ, σ2 = S(ω;D), (4)

to represent the statistical parameters µ, σ2 obtained by the
model parameters ω on input data D.

The dilemma of BN layer in federated learning mainly lies
in our expectation of obtaining ideal global statistical param-
eters µ̂g, σ̂

2
g during the training phase, which can be used

for evaluation, i.e.,

µ̂g, σ̂
2
g = S(ωg;Dg). (5)

Unfortunately, previous methods approximate this process
by averaging the local statistical parameters, i.e.,

µg, σ
2
g =

K∑
k=1

Nk

N
S(ωk;Dk) ̸= S(ωg;Dg). (6)

Algorithm 1 Workflow of Federated Learning with HBN

Input: the number of communication rounds T ; the num-
ber of clients K; the datasets of clients {Dk}k∈[K]; the
datasize of clients {Nk}k∈[K]; the initial global model
parameters {ωg, µg,σ

2
g}0 for the server; the initial hybrid

distribution factor {αk = 0}0 for each client k;
for t = 1→ T + 1 do

for each client k in parallel do
download {ωg, µg, σ

2
g}t−1 from server;

// without backpropagation
compute µt

k, (σ
2)tk according to Equation (7);

// with backpropagation
ωt
k, α

t
k ← SGD({ωg, µg, σ

2
g , αk}t−1,Dk);

upload {ωk, µk, σ
2
k}t to server;

end for
compute µt

g, (σ
2)tg according to Equation (8);

if t == T + 1 then
set ωT+1

g = ωT
g ;

else
update ωt

g =
∑K

k=1
Nk

N ωt
k;

end if
end for
Output: {ωg, µg, σ

2
g}T+1

This method obviously cannot accurately approximate ideal
global statistical parameters. We provide a more detailed
derivation in Appendix A.1. Firstly, the main reason is that
the calculation of local statistical parameters is not based
on the same global model, but on each local models, which
would lead to external covariate shift (Du et al., 2022). Sec-
ondly, the direct average local variance may deviate from
the actual global variance, and this error may accumulate
during the forward propagation of deep neural networks.
Furthermore, even if we restore the ideal statistical param-
eter estimation of BN, these statistical parameters cannot
guarantee a positive impact on federated training. During lo-
cal training, they still use batch data statistical parameters to
normalise the input, losing awareness of global distribution.
Driven by these issues, we propose a novel BN solution,
Hybrid Batch Normalisation (HBN), for federated learning.

3.2. Global Server End: Obtaining Unbiased Statistical
Parameters

To harmonise the distribution, obtaining an ideal global sta-
tistical estimation is a prerequisite for our hybrid batch nor-
malisation. In order to ensure that the statistical parameters
are not affected by the model (learnable parameters) trans-
formation during each client training process, we propose
an update strategy that separates the statistical parameters
from the learnable parameters. As shown in Algorithm 1,
after downloading the global model from the server, the
local client calculates the statistical parameters of the local
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Figure 2: Normalisation methods for two toy FL clusters.

data based on the current global learnable parameters before
starting training. So in the t-th round, client-k can get:

µt
k, (σ

2)tk = S(ωt−1
g ;Dk). (7)

After obtaining the statistical parameters of the last global
model, each client optimises the local learnable parameters
based on standard stochastic gradient descent (SGD) with
mini-batch. Usually, if local statistics are independent and
randomly sampled from the entire data, then averaging them
is reasonable, but in federated learning, this assumption
does not hold. Drawing on this, we consider client data
as a certain group of the entire population. According to
distributed statistical analysis, we can use the following
approach to calculate unbiased estimates of the population
mean and variance:

µt
g =

K∑
k=1

Nk

N
µt
k;

(σ2)tg =

K∑
k=1

Nk

[
(σ2)tk + (µt

k − µt
g)

2
]

N − 1
.

(8)

By separately calculating local statistical parameters,
the server can obtain ideal global statistical parameters
S(ωt−1

g ;Dg). We provide the detailed derivation in Ap-
pendix A.2. It should be noted that after using this asyn-
chronous strategy to update between the statistical param-
eters and the learnable parameters, we need to perform an
additional round of statistical parameters update for syn-
chronisation at the end.

3.3. Local Client End: Performing Hybrid Batch
Normalisation

In heterogeneous FL, local mini-batches sampled by each
client reflect only their local data distribution, often differ-
ing substantially from the global distribution. As shown
in Figure 2, two toy clusters follow Gaussian distributions,
simulating the activation output of two clients in federated
learning. Intuitively, after applying local normalisation to

each cluster separately using local statistics, the normalised
data exhibits indistinguishable overlap compared to globally
normalised data. Most local normalisation methods (BN,
GN, LN, etc.) cannot produce satisfactory results in such
cases. Compared to local normalisation, global normalisa-
tion can better maintain consistency among local clients.
However, real-time global normalisation is impractical, par-
ticularly in federated learning, where models undergo mul-
tiple local updates before communication. This means the
ideal global statistics are inherently dynamic. We usually
only have access to historical global statistics, whose time-
liness is constrained by intermittent communication and
partial client participation. Using only historical global
statistics will yield a suboptimal result. But historical global
statistics still retain valuable global structural information.
Especially since we have addressed the dilemma of global
statistical parameter bias for BN, we can use these ready
parameters more efficiently. Therefore, we propose a hybrid
normalisation method that is more suitable for handling fed-
erated learning tasks, coined as hybrid batch normalisation
(HBN). As shown in Figure 2 (d), this hybrid normalisation
combines global statistics with local statistics, which can
standardise the size of two clusters while maintaining the
global structure.

Specifically, HBN adds a hybrid distribution factor α in the
base BN layer to adaptively learn the balance between batch
and global normalisation. Typically, the hybrid distribution
factor α is a learnable parameter with the same size as the
number of input channels. For a layer input {xi}Bi=1 over a
mini-batch, we calculate the normalisation parameters for
each input as follows:

µ̂ =
e−α

1 + e−α
µb +

1

1 + e−α
µg;

σ̂2 =
e−α

1 + e−α
σ2

b +
1

1 + e−α
σ2

g ,

(9)

where µb, σ
2
b are the current batch statistics calculated ac-

cording to Equation (1), and µg, σ
2
g are the global statistics

stored in HBN according to Equation (8). In particular, the
global statistic is frozen during the gradient update process.
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Like other normalisation methods, HBN also learns a per-
channel linear transform to compensate for the possible loss
of representative power:

yi = γ
xi − µ̂√
σ̂2 + ϵ

+ β ≡ HBNα,γ,β(xi), (10)

where ϵ is a small positive constant that prevents the de-
nominator from being zero and γ, β are trainable scale and
offset.

Due to the varying degrees of distribution differences be-
tween clients and the global server, the hybrid distribution
factor is configured for each local client, which does not
participate in communication. To clarify this process, in
Algorithm 1, we distinguish the hybrid distribution factor
α from other learnable parameters ω. In the training phase,
the learnable parameters and local statistical parameters are
updated separately and do not affect each other. In the eval-
uation phase, normalisation parameters use global statistical
parameters {µg, σ

2
g} and do not require the participation of

hybrid factor.

3.4. Implementation

Comparison of parameters with BN. For HBN, we can
easily implement programming codes based on BN. HBN
needs to store both local and global statistical parameters,
but only one of them needs to participate in each communi-
cation round. Local statistics can be directly calculated on
each client, while global statistics are obtained by aggregat-
ing local statistics on the server. In addition, we need to add
trainable hybrid distribution factor parameters per channel
and discard the moving average momentum. In the forward
passing, HBN normalises the batch input in the order of
Equations (1), (9) and (10).

Communication with stragglers. In situations where there
are a large number of stragglers, inevitably, we are unable
to calculate statistical measures for all data. We empirically
recommend using the moving average to update the global
statistical parameters for each server stage:

µt
g = (1− λ)µt−1

g + λµt
g;

(σ2)tg = (1− λ)(σ2)t−1
g + λ(σ2)tg,

(11)

where λ ∈ (0, 1] is the moving average momentum. For
more stragglers, small momentum can provide more smooth
estimates which is beneficial for training.

4. Experiments
4.1. Implementation Details

Baselines. Six normalisation baselines are considered, in-
cluding Batch Normalisation (BN), Group Normalisation

Figure 3: Different Dirichlet coefficients ϕ(0.6, 0.1) to label
distribution on CIFAR-10 with 100 clients.

(GN), Layer Normalisation (LN), FedFN, FixBN, and Fed-
erated Batch Normalisation (FBN), For fairness, we default
to combining all normalisation methods with the baseline
FedAvg.

Benchmark. All experiments are conducted on the classic
image classification datasets, including CIFAR-10/CIFAR-
100 (Krizhevsky, 2009) and Tiny-ImageNet (100K images
with 200 classes) (Chrabaszcz et al., 2017), which are widely
adopted in FL research (Chen & Zhang, 2024). We use a
customised Simple-CNN network on CIFAR-10/CIFAR-
100, which has a representativeness in computer vision do-
main. Simple-CNN mainly consists of three convolutional
blocks and two fully connected layers. Each convolutional
block contains a convolutional layer, a normalisation layer,
a ReLU activation layer, and a max-pooling layer (LeCun
et al., 1998; Maas et al., 2013; Ioffe, 2015). We replace the
normalisation layer with different normalisation methods,
except for FN, which is added before the input of the classi-
fication head. We also use the classic ResNet-18 (He et al.,
2016) on the large-scale dataset Tiny-ImageNet.

Similar to existing works (Wang et al., 2024; Tian et al.,
2024; Zhuang et al., 2024), we use Dirichlet distribu-
tion (Hsu et al., 2019) to model the data distribution, which
controls the degree of statistical heterogeneity through a
coefficient ϕ. The smaller the ϕ, the more severe the label
distribution heterogeneity across clients becomes. As shown
in Figure 3, we visualise the label distribution of 100 clients
on the CIFAR-10 with different ϕ(0.6, 0.1).

Hyper-parameters. For CIFAR-10/CIFAR-100/Tiny-
ImageNet, unless otherwise specifie, we set the total num-
ber of clients K = 100/100/500, the activation rate of each
round of clients C = 0.1/0.1/0.02 (i.e., 10 clients partic-
ipate in per round), the local training epoch E = 1, the
optimiser is SGD optimiser with a momentum of 0.9. The
communication rounds T for CIFAR-10/CIFAR-100/Tiny-
ImageNet are 500/1000/1000, respectively. For all algo-
rithms, we select the appropriate initial learning rate from
{0.02, 0.01, 0.005, 0.002, 0.001} when batchsize is 4. The
learning rates decay quadratically with 0.998. In particular,
we adopt the linear learning rate scaling rule (Krizhevsky,
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Table 1: Top-1 Test Accuracy (%) of different FL normalisation solutions on CIFAR-10/CIFAR-100/Tiny-ImageNet with
batchsize 4/4/64.

Setting
(FedAvg+)

CIFAR-10 CIFAR-100 Tiny-ImageNet
ϕ = 0.6 ϕ = 0.3 ϕ = 0.1 ϕ = 0.6 ϕ = 0.3 ϕ = 0.1 ϕ = 0.1 ϕ = 0.05

BN (Ioffe, 2015) 75.82 73.85 69.61 45.84 45.15 43.40 23.95 21.55
GN (Wu & He, 2018) 75.74 74.10 68.76 47.11 46.33 43.38 19.71 14.89

LN (Ba, 2016) 74.08 72.50 66.22 46.90 45.65 42.08 19.72 14.84
FedFN (Kim et al., 2023) 75.51 74.30 67.96 46.29 45.15 43.80 20.05 17.30

FixBN (Zhong et al., 2023) 77.34 74.51 70.36 46.05 45.54 42.15 24.71 23.42
FBN (Guerraoui et al., 2024) 73.91 71.94 66.13 45.35 43.72 41.61 4.90 3.76

HBN (ours) 78.22 76.53 71.56 49.88 48.93 46.52 25.59 24.69

Figure 4: The sensitivity of different normalisation methods to batch size on CIFAR-100 with ϕ = 0.6 by Simple-CNN.

Table 2: Test Accuracy (%) of different normalisation meth-
ods to batch size on CIFAR-100 with ϕ = 0.6/0.3 by
Simple-CNN.

ϕ = 0.6 ϕ = 0.3
BN GN HBN BN GN HBN

B=32 49.63 45.82 51.05 48.33 44.66 49.83
B=16 48.30 46.84 50.75 49.52 45.65 49.84
B=8 46.86 46.33 50.06 48.54 45.39 49.79
B=4 45.84 47.11 49.88 45.15 46.33 48.93
B=2 43.89 45.72 48.86 42.97 45.32 48.75

Avg. 46.90 46.36 50.12 46.90 45.46 49.42
±2.21 ±0.61 ±0.85 ±2.74 ±0.60 ±0.54

2014; Goyal et al., 2019) to adapt to batch size changes. For
specific learning rate settings, please refer to the Appendix.
The batch size B and Dirichlet distribution coefficient ϕ
will be specified in each experiment. For the moving aver-
age momentum in BN and FBN, we set it to 0.9. For GN,
we set the number of groups to 2. For FixBN, we set the
first half of the total number of rounds as the first stage and
the rest as the second stage. For HBN, we set λ to 0.01 in
Equation (11).

Due to the mismatch between the statistical parameters and
the learnable parameters of HBN in each communication
round, we test the statistical parameters of the same client
subset for accuracy evaluation.

4.2. Performance Comparison

Influence of Data Heterogeneity. Table 1 reports the
test accuracy of all compared FL normalisation methods
on CIFAR-10, CIFAR-100 and Tiny-ImageNet with var-
ious heterogeneous settings. We conduct experiments in
two computing resource scenarios, Simple-CNN with batch
size 4 on CIFAR-10/CIFAR-100 and ResNet-18 with batch
size 64 on Tiny-ImageNet. Accordingly, although GN, LN
and FN avoid dependence on global statistical parameters,
they do not demonstrate outstanding performance in deal-
ing with data heterogeneity. We find that traditional BN
remains competitive in most scenarios. We believe that
this is due to the moving average mechanism of BN, which
prevents the locally obtained statistics from deviating too
much from the population. FixBN and FBN employ shared
global statistics for normalisation at different stages. When
these global statistics are reliable, they benefit local train-
ing. Conversely, when the global statistics are unreliable,
they exhibit detrimental effects. Our experimental scenario
in Table 1 is deliberately challenging——featuring strong
heterogeneity, numerous clients, restricted batchsize and
frequent stragglers. In such conditions, FixBN and FBN fail
to judge whether the local statistics, which are derived from
diverse local models, can directly be aggregated, resulting
in unreliable global statistics. Our proposed hybrid batch
normalisation adaptively combines historical global statis-
tics with real-time local statistics. Analogous to augmenting
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Table 3: Experiments on CIFAR-10 across varying client
numbers with B = 4 and ϕ = 0.6 by Simple-CNN.

K=100 K=200 K=500 K=1000
BN 75.82 73.88 68.94 61.25
GN 75.74 67.93 60.31 52.24
LN 74.08 69.08 61.22 51.55
FedFN 75.51 70.71 62.02 53.75
FixBN 75.65 71.67 69.07 63.08
FBN 73.91 68.21 59.22 50.73
HBN 78.22 75.76 72.49 64.95

local client training with global statistics, HBN dynami-
cally integrates global information into the normalisation of
current batches, achieving more effective normalisation.

Sensitivity to Batch Sizes. We collect the experimental
results in terms of batch size in Table 2. We find that GN
can alleviate the impact of batch size in federated learning
as expected, but its generalisation power is worse than BN
in large batch sizes. A larger batch size does not necessarily
deliver better performance for GN, as it reduces the number
of local updates. When the batch size is small, the perfor-
mance of BN is greatly affected. For example, when the
batch size is reduced from 32 to 2, the accuracy of BN drops
by 5.74 percentage points, whereas HBN shows a smaller
drop of only 2.19 percentage points. It is worth noting that
even with a batch size of 2, the accuracy of HBN exceeds
BN with a batch size of 32 and the optimal GN. Because
HBN adaptively coordinate the global normalisation and
the batch normalisation, HBN not only maintains the con-
vergence speed of BN at appropriate batch sizes, but also
reduces the sensitivity to small batch size. We provide a
more intuitive visualisation in Figure 4.

Different Number of Clients. When the number of clients
increases, methods based on local statistics are difficult to
reflect the distribution of global data, and methods based on
global statistics are difficult to obtain reliable global statis-
tics under communication limitations. We conduct compar-
ative experiments on CIFAR-10 (β = 0.6, B = 4) across
varying client numbers (10 clients sampled per round). As
shown in Table 3, HBN consistently outperforms baselines
on all scales (K = 100 to K = 1000) through adaptive bal-
ance of these two factors.

Consistent Boosting Power with Advanced FL Solutions.
As HBN belongs to the normalisation paradigm, it should
act as a plug-in layer to other advanced FL solutions. We
attempt to configure HBN on several advanced FL solu-
tions, including FedProx, FedAdam, Moon, Scaffold, Fed-
SAM, FedACG and Fedwon. FedAdam adds first-order
and second-order moment estimates during global updates.
FedProx and Scaffold alleviate local model bias by intro-
ducing additional constraint terms in local updates. Moon
optimises local feature representation based on contrastive

Table 4: Test Accuracy (%) of different advanced FL solu-
tions combined with HBN. The experiments are conducted
on CIFAR-10 with B = 4 and ϕ = 0.6 by Simple-CNN.

Method +BN/GN/- +HBN
FedAvg (McMahan et al., 2017) 75.82 78.22

FedProx (Li et al., 2020) 76.08 78.44
FedAdam (Reddi et al., 2020) 75.67 78.17

Scafflod (Karimireddy et al., 2020) 77.63 78.65
Moon (Li et al., 2021a) 75.77 78.48

FedSAM (Qu et al., 2022) 76.39 78.40
FedACG (Kim et al., 2024) 76.01 79.19

Fedwon (Zhuang & Lyu, 2024) 78.85 79.93

learning. FedSAM performs Sharpness Aware Minimisa-
tion local optimiser for local training. FedACG initialises
local models using global momentum. Fedwon modifies the
convolution layers directly to adjust the distribution, without
using the standard normalisation layer. Because the update
stage of FedAdam and FedACG conflicts with the statisti-
cal parameters in BN, resulting in a performance crash, we
use GN for these two methods. We have not equipped any
normalisation layer for Fedwon. For other methods, BN
is used. Table 4 lists their basic test accuracy (+BN/GN/-)
of Simple-CNN on CIFAR-10 with B = 4 and ϕ = 0.6,
as well as the test accuracy combined with HBN (+HBN).
HBN obtains consistent gains in performance regardless of
the federated learning approaches. The results demonstrate
the potential of our HBN in delivering additional boosting
power for the federated learning community.

Table 5: Test accuracy (%) of different model architectures
with different normalisation layers on CIFAR-100 with ϕ =
0.1 and B = 64.

Model +BN +GN +HBN
MobilenetV2 40.19 41.50 44.40

ResNet-18 51.51 52.38 55.69
ResNet-50 54.97 55.37 60.74
VGG-11 62.74 59.47 63.45
VGG-19 64.09 61.39 64.56

Consistent Compatibility with Classical Deep Networks
Architectures. In heterogeneous federated learning sce-
narios, deeper networks are more challenging in terms of
training and convergence. Moreover, for vanilla BN statisti-
cal parameters, the variance obtained by directly weighted
averaging is smaller than the true variance. For networks
with more BN layers, this will result in more offset in the
model output. We assemble HBN into deeper networks to
verify its compatibility. We conduct experiments on CIFAR-
100 with ϕ = 0.1, adjusting the batch size to 64 while
keeping all other settings the same as before. We mainly
verify the compatibility of HBN in five pretrained network
architectures, including MobilenetV2 (Sandler et al., 2018),
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ResNet-18/50 (He et al., 2016) and VGG-11/19 (Simonyan
& Zisserman, 2014). Usually, their original networks are
assembled with BN. We replace BN with GN and HBN, and
remove the dropout layer from the original network, which
had no positive effect in our experiment. As shown in Ta-
ble 5, HBN is suitable for most classic deep convolutional
neural network architectures, achieving significant perfor-
mance improvements in heterogeneous federated learning
scenarios compared to BN and GN.

4.3. Ablation Study

Component Analysis. Compared with the vanilla BN,
HBN modifies the operation in two aspects, calculating
accurate statistical parameters (Equations (7) and (8)) and
achieving adaptive normalisation (Equation (9)).

Table 6: Test Accuracy (%) of different configurations for
HBN’s each component. The experiments are conducted on
CIFAR-10 with B = 4 and ϕ = 0.6 by Simple-CNN.

Index Ablation Setting Acc (%)
(1) Equation (7)← moving average 72.25
(2) Equation (8)← weighted average 77.90
(3) Equation (9)← only global statistics 76.87
(4) Equation (9)← only batch statistics 76.33
(5) Equation (9)← fix ratio at 1:1 77.49

FedAvg+HBN 78.22

Table 6 displays the performance of using other candidates
to replace each of our designed components. In principle,
we freeze the other parts and only modify the following
for each ablation experiment: (1) update local statistics
based on moving average without separation, (2) summarise
local statistics based on weighted average, (3) normalise
only using global statistics, (4) normalise only using batch
statistics, and (5) fix an equal hybridization ratio for global
statistics and batch statistics.

We can see that replacing any component causes a negative
impact on the performance of HBN. It is worth mention-
ing that in experiment (1), we do not separate the updates
of the statistical parameters and the learnable parameters,
which results in HBN being unable to benefit from unstable
global statistical parameters and potentially exacerbating
the shift of local statistics. In experiment (4), we only use
batch statistics for normalisation, which is consistent with
the vanilla BN. The improved performance indicates that
separating the calculation of statistical parameters can com-
pensate for the accuracy loss caused by the deviation of the
vanilla BN statistical parameters.

Selection of Hyper-parameters. Figure 5 measures the
impact of the choice of λ in Equation (11) under different
client activation ratios C. We select C from [1, 0.7, 0.4, 0.1]
and λ from [1, 0.1, 0.01]. We conduct this experiment on

Figure 5: Impact of the hyper-parameter λ under different
client activation ratios C.

CIFAR-10 with ϕ = 0.6, using Simple-CNN with a batch
size of 32. We keep other settings consistent with those in
Section 4.1. When the client activation rate is low, adding a
moving average can alleviate the oscillation of global statis-
tics and improve the performance of HBN. When the client
activation rate is high, it is not sensitive to the selection of
λ. According to our experiments, we recommend using a
smaller λ, which usually performs satisfactorily.

5. Discussion
Communication and Computation Overhead. For feder-
ated learning, communication overhead is worth considering
and is proportional to the parameter quantity. Compared to
other methods, HBN only increases the communication cost
for one round, which is negligible compared to the large
number of communication rounds required for training. In
terms of computational cost, HBN requires additional cal-
culation of local statistics on the clients, but this part is
much lower than the cost of model training. In addition, we
find that using partial data to calculate local statistics on
the client produces a marginally negative impact on model
performance, as the client’s local data usually follows the
same distribution. For example, when we compute local
statistics from randomly sampled 128 images per client, the
final model performance decreases by only 0.13 percentage
points.

6. Conclusion
In this work, we propose a targeted improvement for batch
normalisation in federated learning, Hybrid Batch Nor-
malisation. The Hybrid Batch Normalisation resolve the
dilemma of batch normalisation statistical parameter mis-
match in Federated Learning. In order to leverage the po-
tential of global statistical parameters in solving Non-IID
problems, Hybrid Batch Normalisation combines global nor-
malisation and batch normalisation adaptively, alleviating
vanilla batch normalisation limitations in small batch size
and heterogeneous data. Extensive experiments validate the
effectiveness of Hybrid Batch Normalisation. Our HBN
extends the current batch normalisation scope in terms of
the federated learning tasks.
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A. Problem Formulation
A.1. Statistical Bias of Vanilla BN in FL

In centralised training scenarios, internal covariate shift (Ioffe, 2015) refers to the change in the input distribution of each
layer during the training of deep neural networks due to updates in model parameters. BN can effectively solve this problem
under centralised training. However, in the context of federated learning, the changes in model parameters also occurs
during the global aggregation stage. This results in the statistical measures obtained locally no longer being applicable
globally, a phenomenon known as external covariate shift (Du et al., 2022). We can deduce that this statistical bias is caused
by the heterogeneity of the distribution.

Let us consider the statistical bias of BN during one server-client communication caused by FedAvg. Assuming ωt−1
g is

the initial model of the server in round t− 1. Each client k ∈ [K] downloads the global model as the initialisation of the
local model, and trains it on local dataset Dk. Due to the fact that the statistical parameters in vanilla BN are updated
synchronously with the learnable parameters, the statistical parameters obtained in each locality are approximate estimates
of ωt

k = ωt−1
g − η∇L(ωt−1

g ,Dk) on Dk, i.e.,

µt
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1
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Nk∑
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2,

(12)

where f(·) is the output of model ω before normalising all layers of the sample x.

Then, the server aggregates the parameters of each client model, including the statistical parameters of BN. Ideally, we
would like to obtain the following global statistics:
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where ωt
g = Nk

N

∑K
k=1 ω

t
k.

However, there is a deviation between the average of local statistics and the ideal global statistics. We consider the difference
between the mean µt

g = Nk
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k and the ideal mean µ̂t
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It can be seen that the deviation of the mean is caused by the inconsistency between the local updates (∇L(ωt−1
g ,Dk)) and

the global updates (Nk

N

∑K
k=1∇L(ωt−1

g ,Dk)). Only when the data of each local client follows the same distribution will
the local updates be consistent with the global updates, which contradicts the non-independent and identically distributed
(Non-IID) in federated learning. Therefore, the greater the difference in data distribution, the greater the offset of statistical
parameters.
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A.2. Obtain Unbiased Global Statistics

Recognising that statistical bias is produced during the update stage, where the local statistical parameters and learnable
parameters are jointly updated, we have sufficient motivation to separate their updates. In the stage of calculating local
statistics, we freeze the learnable parameters to get:

µt
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g , xi

k);

(σ2)tk =
1
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2.

(15)

Then in the server stage, we can use distributed methods to aggregate these statistics to obtain an unbiased estimate of the
population according to Equation (8):
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Therefore, we can obtain unbiased estimates of model ωt−1
g on the overall data without being affected by heterogeneous

data distributions.

B. More Experiments
B.1. Model architecture of Simple-CNN

As shown in Table 7, Simple-CNN mainly consists of three convolutional blocks and two fully connected layers. Each
convolutional block contains a convolutional layer, a norm layer, a ReLU activation layer, and a max-pooling layer. We
replace the norm layer with different normalisation methods, except for FedFN. For FedFN, we normalise the input before
the fully connected layer according to (Zhang et al., 2024).
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Table 7: Model architecture of Simple-CNN with different normalisation layers (BN/GN/LN/FixBN/FBN/FedFN/HBN).

Simple-CNN +BN +GN +LN +FixBN +FBN +FedFN +HBN

Block 1

Conv2D(3,16,3,1,1)
BN GN LN FixBN FBN - HBN

ReLU
MaxPool2D(2,2)

Block 2
Conv2D(16,32,3,1,1)

BN GN LN FixBN FBN - HBN
ReLU

MaxPool2D(2,2)

Block 3

Conv2D(32,64,3,1,1)
BN GN LN FixBN FBN - HBN

ReLU
MaxPool2D(2,2)

- - - - - FedFN -

Block 4 FC(1024,128)
ReLU

Block 5 FC(128,n)

B.2. Datasets

We mainly evaluate our algorithm on three image classification datasets:

• CIFAR-10: CIFAR-10 It consists of 60,000 32x32 color images, divided into 10 classes with 6,000 images per class.

• CIFAR-100: CIFAR-100 consists of 60,000 32x32 color images, divided into 100 classes with 6,00 images per class.

• Tiny-ImageNet: A smaller version of the ImageNet dataset. Tiny-ImageNet consists of 100,000 64x64 color images,
divided into 200 classes with 5,00 images per class.

B.3. Convergence Curves of Different Model Architectures

Figure 6: Convergence curves of HBN under different model architectures on CIFAR-100 with ϕ = 0.1 and B = 64.

As shown in Figure 6, we plot the convergence curves of the above three normalisation methods under different model
architectures, and HBN is significantly better than the other two normalisation methods in terms of convergence.
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B.4. Learning Rate Grid Search

Since different normalisation techniques operate on distinct dimensions (e.g., batch, layer, or group), they induce varying
scale transformations in the data. This necessitates tuning of learning rates to match their respective normalisation. We
present the learning rate grid search results on three datasets in Table 8.

Table 8: Learning rate grid search results on three datasets

CIFAR-10 (β = 0.6, B = 4)
Methods Search range Accuracy
BN [0.02, 0.01, 0.005, 0.001] [75.36, 75.83, 74.29, 73.37]
GN [0.01, 0.005, 0.002, 0.001, 0.0005] [74.08, 75.74, 73.47, 73.10, 70.01]
LN [0.01, 0.005, 0.002, 0.001] [N/A, 74.55, 74.34, 74.0]
FedFN [0.01, 0.005, 0.002, 0.001, 0.0005] [75.33, 75.51, 75.49, 75.44, 74.30]
FixBN [0.01, 0.005, 0.002, 0.001] [75.65, 76.91, 77.34, 75.30]
FBN [0.01, 0.005, 0.002, 0.001] [73.91, 73.05, 72.44, 68.16]
HBN [0.02, 0.01, 0.005, 0.001] [78.08, 78.22, 77.90, 69.30]

CIFAR-100 (β = 0.6, B = 4)
Methods Search range Accuracy
BN [0.05, 0.02, 0.01, 0.005, 0.001] [N/A, 45.77, 45.84, 45.54, 45.13]
GN [0.02, 0.01, 0.005, 0.002, 0.001, 0.0005] [N/A, 44.47, 46.70, 46.99, 47.11, 39.25]
LN [0.01, 0.005, 0.002, 0.001, 0.0005] [N/A, 42.43, 46.90, 45.04, 31.48]
FedFN [0.01, 0.005, 0.002, 0.001, 0.0005] [N/A, 43.75, 44.15, 46.29, 35.15]
FixBN [0.01, 0.005, 0.002, 0.001, 0.0005] [43.72, 46.05, 43.90, 32.47, 32.48]
FBN [0.02, 0.01, 0.005, 0.002, 0.001] [45.35, 43.68, 43.33, 39.11, 35.47]
HBN [0.02, 0.01, 0.005, 0.001] [44.93, 49.88, 49.36, 49.11]

Tiny-ImageNet (β = 0.1, B = 64)
Methods Search range Accuracy
BN [0.32, 0.16, 0.08, 0.032, 0.016] [23.45, 23.95, 21.92, 20.07, 15.39]
GN [0.32, 0.16, 0.08, 0.032, 0.016] [16.56, 18.43, 19.71, 18.40, 15.71]
LN [0.32, 0.16, 0.08, 0.032, 0.016] [16.28, 18.07, 19.72, 18.53, 15.31]
FedFN [0.32, 0.16, 0.08, 0.032, 0.016] [14.92, 20.05, 19.38, 18.61, 16.17]
FixBN [0.32, 0.16, 0.08, 0.032, 0.016] [24.71, 24.62, 22.95, 20.38, 15.65]
FBN [0.32, 0.16, 0.08, 0.032, 0.016] [N/A, N/A, 4.90, 3.40, 2.32]
HBN [0.32, 0.16, 0.08, 0.032, 0.016] [25.59, 24.79, 23.76, 22.0, 17.21]

Figure 7: Experiments on CIFAR-100 (β = 0.6, B = 32) across varying local epochs by Simple-CNN.

B.5. Different local training epochs

Figure 7 shows the changes in model accuracy with increasing local epochs for three normalisation methods. HBN maintains
its advantage within an appropriate range of local epochs. When the number of epochs reaches 10, different normalisation
methods no longer have a significant impact on model performance, as the primary limiting factor at this stage becomes the
excessive divergence among local model parameters.
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