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ABSTRACT

Learning meaningful representations is a core topic of deep learning. Through-
out the last decade, many strategies for learning image representations have been
proposed involving supervision and self-supervision and various data sources. In
most current work, evaluation is focused on classification tasks while neglecting
dense prediction tasks, possibly because linear probing is more challenging in the
latter case. Furthermore, dense prediction heads are often large and come with
specific inductive biases that distort performance measurement further. In this
work we propose masked cross-attention adapters (MAXA), a minimal adapter
method that is capable of dense prediction independent of the size and resolution
of the encoder output. This allows us to make dense predictions using a small
number of additional parameters (< 0.3%) while allowing for fast training using
frozen backbones. Using this adapter, we run a comprehensive evaluation assess-
ing instance awareness, local semantics and spatial representation of a diverse set
of backbones. We find that DINOv2 outperforms all other backbones tested –
including those supervised with masks and language – across all three task cate-
gories.
Code is available at https://to.be.released.

1 INTRODUCTION

Computer vision builds to a large extent on a transfer learning-based paradigm. Instead of training
specific tasks from scratch, large-scale models (foundation models) are pre-trained on a large dataset
once. These models are often called backbone or feature extractor as they are used to address
multiple specific tasks, for example through in-context learning, adapters or (often costly) fine-
tuning. For pre-training the backbone, different variants exist, including classic supervised, self-
supervised, and vision-language training. The latter two variants tend to scale better as they are
not constrained by availability of labels and can use the internet as a data source. Many factors
influence the quality of the resulting backbone: the pre-training paradigm, model architecture, the
training data. For both, computer vision scientists and practitioners, it is crucial to work out strengths
and weaknesses of individual backbones through systematic benchmarks. Established approaches
are linear and attentive probing. For (whole-image) classification performance such benchmarks are
readily available (ImageNet (Russakovsky et al., 2014), VTAB (Zhai et al., 2019)). However, for
dense tasks, where the model output has spatial dimensions (for example semantic segmentation or
monocular depth estimation) such an evaluation is more challenging: Linear and attentive probing
can be applied but the prediction has the same resolution as the feature volume which is usually low
and varies across backbones. On the other hand, using standard task heads for dense prediction adds
a large number of parameters and introduces its own inductive biases. The measure performance
would depend to a large extent on the chosen task head and not on the underlying backbone.

Here we address the problem of measuring performance of feature backbones as directly as pos-
sible by introducing a dense equivalent to attentive probing that requires only a small number of
parameters. Our goal is to obtain a holistic characterization of strengths and weaknesses of common
feature extractors. To this end, we propose a novel method that uses masked cross-attention (Fig. 1)
to extract relevant features from the backbone activations. By using cross-attention, we decouple
the size and resolution of the input image and encoder output from that of the dense output, i.e.
generate outputs at any resolution. We introduce a learnable masking radius in the cross-attention
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Figure 1: Masked cross-attention adapter (MAXA) design: Queries that consist only of positions
(bottom) attend to features extracted from an arbitrary backbone. The transformed queries are pro-
cessed by a small CNN to yield a task-specific output. Our adapter decouples the output size from
the feature volume.

layer, which allows the readout adapter to adapt to varying feature locality. Intuitively, our adapter
can be viewed as analogous to linear probing for dense prediction tasks.

We use the new adapter to characterize features along these three dimensions: (1) instance disentan-
glement, i.e. how well are individual instances recognizable from the features; (2) local semantics,
evaluating how meaningful the features are for a local classification; (3) spatial understanding, how
well is the 3d structure of the scene captured. Our main contributions are:

• MAXA, a lightweight adapter based on masked cross-attention, designed to operate on
frozen features. As features are frozen, training is fast and activations can be cached for
interactive use-cases. The adapter decouples feature resolution from output resolution.

• Characterization of several state-of-the-art feature extractors on dense prediction tasks. It
allows gaining insights into what is learned by different learning paradigms and datasets,
which can be used as a guide for practitioners and an informative signal for researchers.

2 RELATED WORK

Representation learning Self-supervised representation learning was a popular research topic
with multiple approaches that can roughly be categorized into joint-embedding (Chen et al., 2020;
2021; Caron et al., 2021) and reconstruction-based (He et al., 2022). DINOv2 is based on the
iBot (Zhou et al., 2021) method which uses a joint-embedding architecture in combination with
self-distillation and reconstruction. VicRegL (Bardes et al., 2021) and many other recent methods
explicitly addresses local features by modeling losses at the token level. There has been a discussion
about which techniques leads to better and more efficient features for perception tasks (Balestriero &
LeCun, 2024). While the approaches discussed above mainly address classification, another stream
of research focused on representation learning that disentangles objects, called object-centric learn-
ing. While early methods only worked on synthetic data (Burgess et al., 2019; Locatello et al., 2020)
more recent approaches succeed on natural images (Zadaianchuk et al., 2024; Aydemir et al., 2023).
Recently, a new method for evaluating such object-centric representations was proposed: Didolkar
et al. (2024). The main difference to object-centric methods is that we assume features encode ob-
ject instances whereas object-centric methods explicitly represent objects in their architecture (e.g.
in slots). The seminal CLIP model (Radford et al., 2021) introduced another stream of research
called vision-language models, where the model is trained on aligning text-image pairs. Later, this
training paradigm was simplified to use a sigmoid-based loss function (Zhai et al., 2023) instead of
a softmax-basde loss, making the method less dependent on the batch size. Recently, the role of data
is investigated more closely in the context of vision-language models (Gadre et al., 2024; Xu et al.,
2024; Fang et al., 2024).
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Feature evaluation Evaluations on features predate the deep learning era in computer vision. Re-
cently, there have been numerous attempts at characterizing and comparing common feature back-
bones but with different objectives. The works by Bonnen et al. and El Banani et al. focus on 3d
shape understanding. Chen et al. design a zero-shot benchmark for image encoders in contrastive
vision-language pre-training setting and propose the ViTamin architecture. Goldblum et al. evaluate
classification, instance segmentation, object detection and retrieval. Our work differs in focusing
on dense prediction tasks without large heads enabling a more direct measurement of the feature
quality. Further efforts to characterize vision backbones include the timm leaderboard (Wightman,
2019) for image classification, CLIP benchmark (LAION-AI, 2022) for vision-language models and
CV-Bench for multimodal large language models (MLLMs) (Tong et al., 2024).

Adapters and parameter-efficient fine-tuning Adapters are (often small) sub-networks that are
trained to take generic features and use them to solve a specific task. For computer vision problems,
many adapters were proposed that address whole-image classification (Chen et al., 2022; Steitz &
Roth, 2024). Also, the attentive probing (or attentional pooling) used in the CoCa (Yu et al., 2022)
and V-JEPA evaluation (Bardes et al., 2023) can be considered a minimal adapter for whole image
classification. These methods are not straightforward applicable for dense prediction. Based on the
upsampling method FeatUp (Fu et al., 2024), linear evaluation can be applied in higher resolutions.
To our knowledge this has not been done before but we compare to a baseline that uses this approach.
The methods by Bhattacharjee et al. and Yang et al. adapt to dense images but address multiple tasks
at once. In both methods, the backbones are not entirely frozen.

In another research stream, learnable parameters are added inside the frozen backbone network, for
instance in Adapter (Houlsby et al., 2019), low-rank adaptation (Hu et al., 2021) and scaling-and-
shifting (Lian et al., 2022). ViT-Adapter applies this paradigm for dense prediction tasks but builds
on established task heads for segmentation (UperNet) and detection (Mask RCNN and HTC++).
Furthermore, the number of parameters introduced by the adapter depends on the backbone, ranging
from 2.5M to 23.7M parameters. For full review on adapters we refer to the survey of Yu et al..

3 MASKED CROSS-ATTENTION ADAPTER (MAXA)

In this section, we introduce MAXA. It is designed to be parameter and compute efficient adapter
model by using cross-attention to make dense predictions and operating on a frozen backbone. An
arbitrary (frozen) image backbone ϕ receives an image x of size (Hs,Ws, 3) and generates features
of size (H,W,D′) with s indicating the backbone’s stride. These features are concatenated with a
fixed positional encoding P . The resulting activations are projected to the internal dimension D and
flattened along the spatial dimensions (both by ψ), yielding F(x) of size (H,W,D):

F(x) = ψ(P (ϕ(x))) (1)

To generate a dense output, we use a cross-attention-based approach: All spatial queries Q of size
(HQWQ, 16), attend to the feature volume F, where each query Qj ∈ R16 is responsible for gen-
erating the output of a certain region. The queries Q are fixed, 16-dimensional positional encodings
of the respective output positions and thus have no learnable parameters.

We modify the cross-attention under consideration of spatial proximity by adding M(q, σ). The
computation per head is described by

q′ = softmax
(
WqQWkF(x)√

dk
+M(q, σ)

)
WvF(x) (2)

with Wv,Wk ∈ RD×D and Wq ∈ RD×16.

The attention operates over all backbone pixels for each query, hence M(q, σ) has size
(HW,HQWQ). Each element Mij depends on the euclidean distance dij between pixel i in the
feature volume and j in the output (i.e. q) through a Gaussian function

Mij =
1

σ
√
2π

exp

(
−
d2ij
2σ2

)
. (3)

Here, σ is a learned parameter per attention head. This means the size of the region around each
query position from which features are considered is adaptable for each model. In our model, we use
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Supervised

Supervised ViT-B (86M) ImageNet
SAM2 Sam B+ SA-1B

Self-supervised

MoCoV3 J ViT-B (86M) ImageNet
MAE R ViT-B (86M) ImageNet
Hiera R Hiera B+ (69M) ImageNet
DINO J ViT-B (86M) ImageNet
DINOv2 J & R ViT-B (86M) LVD-142M
DINOv2 J & R ViT-L (304M) LVD-142M

Vision-language

CLIP ViT-B (86M) CLIP
MetaCLIP ViT-B (86M) CC-400M
SigLIP ViT-B (86M) Webli
SigLIP (SO) ViT (414M) Webli
SigLIP 512 ViT-B (86M) Webli
Aim2 (300M) many
ViTamin-L2 (333M) DataComp-1
ConvNeXt-L LAION-2B
Phi3.5 ViT-L (304M) many

Table 1: Models, their backbone architectures (with parameters) and their training datasets. J and R
denote joint-embedding and reconstruction self-supervised learning methods.

two cross-attention layers, with only the first one using adaptable spatial regions while the second
layer can attend to any position.

For the final adapter, we use two cross-attention layers with masking activated only in the first one.
Instead of using a separate query for every output pixel, regions of size 8 × 8 are processed jointly
for efficiency reasons, i.e. each query q generates 64 pixels of the output. This is realized through a
small CNN operating on the output of all queries using transposed convolutions to increase spatial
size. The number of channels in this CNN is given by DCNN = max (D/4, Dout), with the number
of output channels Dout being task-dependent.

The queries only receive a position as input and can attend to all features, thus the architecture
resembles implicit networks (Mescheder et al., 2019; Park et al., 2019), especially PiFU (Saito
et al., 2019) and PixelNerf (Yu et al., 2021) which involve feature extraction. The modification of
the attention through a bias term is similar to GraphDINO (Weis et al., 2021).

4 EXPERIMENTS

Choice of models and training datasets We select a broad range of feature backbones that en-
compass different training paradigms and were trained on different datasets (Tab. 1). This enables
us to conduct controlled comparisons along several axes, for instance, datasets and pre-training task.
In general, we differentiate between three broad classes of methods: supervised (Dosovitskiy et al.,
2021; Ravi et al., 2024), self-supervised (Caron et al., 2021; He et al., 2022; Ryali et al., 2023),
and vision-language (Radford et al., 2021; Xu et al., 2024; Fini et al., 2024; Chen et al., 2024; Liu
et al., 2022). The latter involves training on image-caption pairs often obtained from the Internet,
while self-supervised training operates on images only. Most models are trained on the ImageNet
dataset (Russakovsky et al., 2014), but there are several exceptions: All SigLIP models are trained
on the Webli dataset, a Google-internal dataset of 10 billion images with 12 billion multi-lingual
text-image pairs. MetaCLIP uses a selection of the open LAION dataset (Schuhmann et al., 2021),
CLIP is trained on the unpublished CLIP dataset by OpenAI. DINOv2 (Oquab et al., 2023) is trained
on the LVD-142M, a Meta-internal dataset of 142M images which were deduplicated and curated
to be similar to ImageNet-22k images. The data mix of Aim2 Fini et al. (2024) contains DFN-2B,
COYO, the proprietary HQITP dataset and synthetic data.

We decide to mainly focus on vision transformers as many approaches share the same architecture
and checkpoints are available for a large number of training paradigms. To ensure comparability
with other work and control for model architecture, we primarily use ViT-B/16 and similarly sized
models in our experiments. We also include larger models in some cases to obtain an estimate of
how much performance can be improved simply by scaling-up model size. Pretrained-weights are
obtained from timm (Wightman, 2019).

Experiment design We provide images in the native resolution of the respective backbones to
prevent out-of-distribution input. For generating predictions, we make use of the capability of our
model to decouple input and output resolution (see Sec. 3): The output size is fixed to 224× 224 for
all models, ensuring a fair comparison across models and limiting the advantage of large input sizes
for the backbone. In the masked cross attention we use a dimension D = 32 and eight attention
heads (i.e. four dimensions per head). Although the adapter could attend to backbone tokens at
different levels we opt for using only the last layer, motivation by the simple pyramid from Li et al..
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We pursue a straightforward approach to comparison: We freeze the backbone features, train the
small readout adapter in a supervised way and evaluate on a hold-out test set. The rationale is that
the low expressivity and capacity of the adapter forces the adapter to directly rely on the features
volume for making a dense prediction. This is different from conventional task heads (e.g. in
detection) which are able to execute more complex computations on the features. For example,
Faster R-CNN with a ResNet50 backbone add around 18 million parameters to the backbone 1

4.1 EVALUATION TASKS

To characterize a broad spectrum of traits of the features we implement the following tasks:

Instance awareness In this task we evaluate how well the features are able to disentangle indi-
vidual instances. In the field of object-centric machine learning (Burgess et al., 2019) models are
designed to disentangle instances, here we ask to which degree this is already achieved in different
backbones. Individual instances can be encoded in various ways in the features. We consider the
following three notions of how instances are encoded (Fig. 2):

• Instance boundaries: The objective is to outline individual objects in the image. We frame
this problem as a binary segmentation and consequently use an output dimension Dout = 1
as well as the binary cross-entropy loss function on the adapter output.

• Distance Transform: This is similar to boundaries but computes a single dense map (Dout =
1) of normalized distances to the instance boundaries. Here we apply the mean squared
error as loss and metric.

• Instance discrimination: Another way to encode instances is to generate a latent space
where features within instances are the same (or similar) while being different to all other
instances. If this works perfectly, clustering the latent vectors of all pixels would yield
instances. This task is sometimes also called coloring (Novotny et al., 2018). We train
on only 8,000 sample images and treat every instance as an individual class (resulting
in a around 60,000 classes). The dense adapter maps the features to a latent space (in
our case 32, Dout = 32). Then, a linear layer maps each local 32-dimensional feature
to a probability over all instances in the dataset. Thus, the problem is essentially framed
as semantic segmentation with 60,000 classes. This way, the latent features before the
classification head learn to discriminate instances. For testing, we cluster these features
obtained from unseen images. For clustering we use k-means and provide the ground-
truth number of instances as well as a foreground mask. Then we compare the predicted
foreground instances with the ground truth instance segmentation based on the adjusted
rand index.

Image Distance transform

Boundaries Colorization

Figure 2: We use three tasks
to probe instance awareness.
Top-left: input image.

For these experiments, we use the COCO dataset (Lin et al., 2014),
with the 5,000 images from the validation set being used for testing.
For instance discrimination, we consider only images with at least
three large objects (resulting in a subset of 754 images). Note, these
tasks do not involve classifying the instances into object categories,
unlike typically done in instance segmentation (this is assessed be-
low in “local semantics”).

Local semantics A natural choice for evaluating local semantics
is a semantic segmentation task. Here we rely on two benchmarks:
Pascal VOC 2012 (Everingham et al., 2015) and COCO Stuff (Cae-
sar et al., 2018). The Pascal VOC 2012 encompasses a fairly small
set of only 1,464 training images. For COCO Stuff, we train on
100,000 images. We account for the larger number of classes in COCO stuff by setting the internal
dimension of the CNN, DCNN, to 64.

Spatial understanding To assess how well the features capture the 3D structure of the scene, we
implement the well-known monocular depth estimation task: The adapter needs to infer the depth

1These calculations were obtained using the Faster R-CNN implementation in PyTorch vision (Paszke et al.,
2019), in more detail FPN: 3.3M, RPN: 0.6M, ROI heads: 14.3M parameters.
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Inst. Disc. Boundaries Distance Transform
0 Backbone I F P ARI Plearn CE IoU Plearn MSE Plearn

Random (untrained) 224 14 86.0 20.7 0.221 0.3021 2.6 0.184 0.0708 0.184

ImageNet 224 14 86.0 35.5 0.221 0.1951 20.7 0.184 0.0173 0.184

SAM V2 B+ 1024 64 80.8 50.4 0.151 0.1644 28.9 0.115 0.0155 0.115

MoCo V3 224 14 86.0 40.9 0.221 0.1759 24.9 0.184 0.0158 0.184

Dino 224 28 86.0 44.5 0.225 0.1607 29.1 0.188 0.0145 0.188

Dino V2 518 37 86.8 54.5 0.230 0.1461 33.3 0.193 0.0109 0.193

Dino V2 (ViT-L) 518 37 304.6 55.0 0.280 0.1450 33.8 0.243 0.0108 0.243

MAE 224 14 86.0 48.3 0.221 0.1657 28.9 0.184 0.0150 0.184

Hiera B+ 224 7 69.2 46.5 0.244 0.1880 21.1 0.208 0.0159 0.208

CLIP 224 14 86.0 40.6 0.221 0.1820 23.1 0.184 0.0153 0.184

CLIP (ViT-L) 336 24 303.8 44.0 0.274 0.1697 27.7 0.237 0.0137 0.237

MetaCLIP 224 14 86.0 41.0 0.221 0.1816 22.8 0.184 0.0153 0.184

SigLIP-224 224 14 86.0 39.1 0.221 0.1862 22.0 0.184 0.0153 0.184

SigLIP-384 384 24 86.3 40.4 0.224 0.1711 26.5 0.187 0.0139 0.187

SigLIP-512 512 32 86.6 41.2 0.227 0.1645 28.4 0.190 0.0134 0.190

SigLIP-SO 512 36 413.9 44.5 0.305 0.1639 28.8 0.268 0.0131 0.268

Aim2 336 24 309.8 42.5 0.274 0.1706 26.9 0.237 0.0134 0.237

ViTamin 384 24 333.2 40.5 0.274 0.1682 27.2 0.237 0.0134 0.237

ConvNeXt 320 10 196.6 33.9 0.370 0.1897 20.0 0.333 0.0152 0.333

ConvNeXt (2 layers) 320 20 196.7 32.6 0.523 0.1723 25.8 0.486 0.0131 0.486

Phi-3.5V 336 24 303.8 43.8 0.274 0.1630 28.9 0.237 0.0133 0.237

Table 2: Instance awareness results in all three categories. I denotes image size, F denotes feature
volume size, P and Plearn refer to all and only learnable parameters. Metrics are intersection over
union (IoU), cross-entropy (CE), mean-squared error (MSE) and adjusted rand index (ARI).

(i.e. position along the z-axis) for every pixel of the visible scene based on the features provided by
the backbone. We frame this as a depth map problem, i. e. Dout = 1, relying on the NYUv2 dataset
(Nathan Silberman & Fergus, 2012) for training and testing the adapter.

4.2 COMPARISON ON BACKBONES

Results (Tab. 2) indicate that DINOv2 has the best instance awareness. The backbone of SAM2
shows a fairly low performance despite being trained for instance discrimination. This sug-
gest that objects are not disentangled before SAM2’s mask decoder. Despite following the same
reconstruction-based training, MAE performs better than Hiera which could potentially be due to
the more intensive spatial compression in Hiera. Among the vision-language models CLIP, Meta-
CLIP and SigLIP we did not find meaningful differences. The evaluation on spatial understanding
shows mixed results. Larger backbones tend to perform better, with exception of Hiera-B+. Again,
DINOv2 performs best, in this case by a large margin. Vison-language tend to show stronger local
semantics (Tab. 3). While all VLM 224px models show similar performance, the larger versions
of SigLIP (i.e. 384 and SO) perform better but at a higher cost. Also in this evaluation, DINOv2
achieves the best scores. All things considered, possibly the most striking finding is the dominance
of DINOv2. While one might argue that this is due to large image sizes and feature volumes, the
mediocre performance of SigLIP-512 and Hiera-B+ show that cannot be the only factor.

4.3 ADAPTER DESIGN

We next explore design choices of MAXA by varying relevant hyperparameters of our readout
adapter (Tab. 4). The two-layer cross-attention and the introduction of the σ parameter are cru-
cial for good performance. The latter suggests that information is organized locally in the feature
volume. Reducing the dimensionality impacts instance discrimination, possibly as space is scarce
for embedding 60,000 instances. Thus, an even smaller adapter could be used for the other tasks.
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Pascal VOC2012 COCO Stuff Depth
0 Backbone I F P CE IoU Plearn CE IoU Plearn MSE Plearn

Random (untrained) 224 14 86.0 2.2651 2.2 0.200 6.1879 0.2 0.337 416.9 0.184

ImageNet 224 14 86.0 0.3468 62.7 0.200 1.3855 31.8 0.337 54.4 0.184

SAM V2 B+ 1024 64 80.8 0.6209 35.5 0.130 1.8030 18.0 0.267 52.7 0.115

MoCo V3 224 14 86.0 0.2938 67.0 0.200 1.3256 32.0 0.337 49.6 0.184

Dino 224 28 86.0 0.2756 70.2 0.204 1.2134 35.2 0.341 44.1 0.188

Dino V2 518 37 86.8 0.1263 85.3 0.209 0.9766 45.6 0.346 22.8 0.193

Dino V2 (ViT-L) 518 37 304.6 0.1152 86.1 0.259 0.9572 47.2 0.396 21.1 0.243

MAE 224 14 86.0 0.3649 62.2 0.200 1.3326 30.9 0.337 40.9 0.184

Hiera B+ 224 7 69.2 0.3589 63.6 0.223 1.3565 30.6 0.360 33.0 0.208

CLIP 224 14 86.0 0.2416 71.6 0.200 1.2182 36.5 0.337 45.4 0.184

CLIP (ViT-L) 336 24 303.8 0.2043 77.1 0.253 1.1294 40.7 0.390 32.9 0.237

MetaCLIP 224 14 86.0 0.2404 70.8 0.200 1.2215 36.5 0.337 42.2 0.184

SigLIP-224 224 14 86.0 0.2908 70.4 0.200 1.2149 37.5 0.337 42.2 0.184

SigLIP-384 384 24 86.3 0.2023 76.4 0.203 1.1498 39.8 0.340 38.6 0.187

SigLIP-512 512 32 86.6 0.1973 78.2 0.206 1.1381 39.8 0.343 36.8 0.190

SigLIP-SO 512 36 413.9 0.1764 80.4 0.284 1.0680 43.3 0.421 31.5 0.268

Aim2 336 24 309.8 0.2029 77.4 0.253 1.0870 41.7 0.390 31.3 0.237

ViTamin 384 24 333.2 0.1834 79.2 0.253 1.0738 42.7 0.390 30.6 0.237

ConvNeXt 320 10 196.6 0.3077 68.0 0.349 1.2153 37.3 0.486 35.8 0.333

ConvNeXt (2 layers) 320 20 196.7 0.2409 74.5 0.502 1.1222 40.8 0.639 29.7 0.486

Phi-3.5V 336 24 303.8 0.2353 76.1 0.253 1.1475 40.1 0.390 37.1 0.237

Table 3: Local semantics results on Pascal and COCO Stuff as well as spatial understanding on
NYUv2 (right). I denotes image size, F denotes feature volume size, P and Plearn refer to all and
only learnable parameters.

Inst. Disc. Semseg Depth ↓

Dino V2 SigLIP-384 MAE Dino V2 SigLIP-384 MAE Dino V2 SigLIP-384 MAE

base (our) 0.5287 0.4180 0.4832 85.5 77.1 60.9 0.2330 0.3850 0.4051

D = 16 0.4777 0.3650 0.3799 83.7 74.5 60.1 0.2284 0.3887 0.4156
no σ 0.3303 0.2833 0.3744 64.3 46.5 53.5 0.3039 0.4391 0.4409
no indiv. σ 0.4887 0.3699 0.4360 85.0 75.3 62.6 0.2488 0.4091 0.4175
single MCA layer 0.4581 0.3755 0.4301 85.0 75.5 61.4 0.2296 0.4025 0.4077

Table 4: Ablation. The base model is the variant we use in all other experiments in this work.

Oquab et al. report scores for different readout methods in the depth prediction task. As this is a
dense prediction tasks, we can directly compare against their scores. They compare against a 1-
layer, a 4-layer readout as well as the DPT method (Ranftl et al., 2021). Our scores are consistently
better, even when comparing ViT-H with ViT-B features of MAE.

A natural approach for dense prediction is to employ a convolutional neural network with transposed
convolutional layers on top of the feature volume. We implement such a baseline that first applies
self-attention on the feature volume to enable context integration and then uses a convolutional
neural network to generate the output. Furthermore, we employ FeatUp (Fu et al., 2024) for image-
aware feature volume upsampling and then apply linear probing. The results (Fig. 3) show that
MAXA is more parameter efficient and achieves better scores than this baseline in all three tasks.
An additional advantage of our method over CNNs is decoupling input and output resolution, in a
CNN, a higher feature volume size would cause a larger output. FeatUp is highly parameter efficient
has high memory demands and requires long computation times (factor 4 compared to MAXA).

Variable output size To ensure a fair comparison, the readout size is fixed in the previous exper-
iments. However, it is possible to generate outputs at an arbitrary resolution, because the adapter

7
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lin. 1 lin. 4 DPT ours

MAE ViT-H 0.52 0.48 0.42 -
MAE ViT-B - - - 0.41
DINO 0.56 0.54 0.49 0.44
DINOv2 0.40 0.36 0.32 0.23

Table 5: MSE comparison against
readouts on depth prediction. Scores
for other models are taken from from
Oquab et al. (2023).

Figure 3: Comparison between a CNN-based readout and
our adapter (instances: ↑ = better; depth ↓, semantic seg. ↑).

Figure 4: After training, our adapter can be queried to output different resolutions from the same
backbone. Here we use a DINOv2 backbone trained on Pascal VOC.

takes positions as inputs (similar to implicit neural fields). Instead of using the standard query posi-
tion grid for a 224 px output, we can sample different query coordinates at test time (Fig. 4).

4.4 ADAPTER RESULT CORRELATE WITH DOWNSTREAM TASKS

To assess the reliability of our findings, we consider previous work in object-centric representation
learning and a classification-based evaluation (Fig. 5 left and middle). Object-centric learning shares
the goal of disentangling instances but tries to achieve this through specific model architectures
whereas we evaluate model-agnostic features for instance-specific signals. Relating to the instance
clustering performance by Aydemir et al. we find an almost linear relationship between their and
our scores. Comparing with DINOSAUR (Seitzer et al., 2023), we find the ordering of the scores
to be consistent. Note, no statement regarding better performance can be made since the evaluation
protocols do not match. The evaluation of Goldblum et al. shares the goal of characterizing current
backbones with our work but put more emphasis on out-of-distribution and backbone architecture.
We found our results (Fig. 5, right) to be consistent with their COCO fine-tuning scores, except
for DINO. Note, to obtain their scores, a resource-intensive object detection training is required.
Summed up, our method can be used to obtain similar insights on relative backbone performance to
more complex evaluations, but much faster.

Figure 5: Our findings are consistent with previous work where object-centric learning is used (left
and middle) and on fine-tuned Faster R-CNN detection heads (right).

8
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Figure 6: Inference speed over performance on three tasks, relative to the ViT-B/16 with 224px
image input (the fastest and most frequent architecture in our evaluation).

4.5 SPEED-PERFORMANCE TRADEOFF

In Fig. 8 we report inference speed over performance. We measure the time to ran ten batches with
eight samples each in inference mode (i.e. without gradient computation). The fastest model in our
evaluation set is the ViT-B/16 at a resolution of 224, therefore we indicate the factor by which the
runtime is extended with respect to this model. For example, the slowest model, SigLIP-SO requires
26 times as long as the reference model.

5 DISCUSSION

In this work we proposed the masked cross-attention adapter, a fast and parameter-efficient method
for evaluating backbones. For example, our standard training for an adapter on a ViT-B/16 224 pixel
backbone on Pascal VOC adds less than 200,000 parameters and takes less than 16 minutes (us-
ing a single Nvidia RXT2080 GPU). We use this method to systematically analyze common vision
backbones with respect to the three complementary aspects: instance awareness, depth and local se-
mantics. Our results suggest that DINOv2 is a highly capable backbone, it is the best ViT-B model
across all experiments. Using DINOv2 with a ViT-L backbone performs improves performance
further but at a three times longer runtime. Classic supervised pre-training on ImageNet results in
fairly poor performance. Based on our results, a promising direction would be to use DINOv2-like
objective function for pre-training in object detection, where ImageNet is currently the standard.
Also VLMs and MLLMs could benefit from adopting the DINOv2 loss into their training algo-
rithms. We identified a trend that local semantics is better captured by language-vision models
while reconstruction-based self-supervised learning appears to have better instance awareness. We
also found the input image resolution to play a significant role, despite decoupling input and output
resolution.

For practitioners, DINOv2 is a natural choice if enough compute is available. For compute-
constrained cases the decision is more complex. Vision-language models generally perform well
on tasks that require local semantics, while for instance discrimination reconstruction-based self-
supervised learning methods excel. We plan to retain an online leaderboard where new backbones
can easily be incorporated to help tracking future progress of dense prediction performance.

Limitations While we use a fairly small decoder (in terms of parameters), even this decoder can
have inductive biases and favor certain backbones such that results might get distorted. Using more
complex task heads would enable more complex feature processing. In fact, this could be the reason
why SAM performs comparably poorly in instance awareness in our hands. A more direct com-
parison to object-centric approaches would be interesting, but is challenging as these approaches
explicitly encode objects (e.g. in attention slots) which can be compared to ground truth. The cur-
rent selection of tasks we evaluated is limited to three broad categories and a few instances of those.
Adding additional task categories (e.g. as in Taskonomy (Zamir et al., 2018)) would be desirable for
a more detailed characterization of backbones.

9
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Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. arXiv preprint arXiv:2408.00714, 2024.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge. International Journal of Computer Vision,
115:211–252, 2014.

Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, Po-Yao Huang, Vaibhav
Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed, Judy Hoffman, et al. Hiera: A hierarchical
vision transformer without the bells-and-whistles. International Conference on Machine Learning
(ICML), 2023.

Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Morishima, Angjoo Kanazawa, and Hao Li.
Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 2304–2314, 2019.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun Xiao, Carl-Johann
Simon-Gabriel, Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox, et al. Bridging the
gap to real-world object-centric learning. 2023.

Jan-Martin O Steitz and Stefan Roth. Adapters strike back. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 23449–23459, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, et al. Cambrian-1: A fully open,
vision-centric exploration of multimodal llms. arXiv preprint arXiv:2406.16860, 2024.
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A APPENDIX

A.1 IMPLEMENTATION

We use the Adam optimier with a learning rate of 0.001, except for boundary prediction and depth
where it is set to 0.002. We use 8 attention heads in all models. On COCO and Pascal we use the
validation sets for testing, while model selection is carried out on a separate part of the training set
via validation loss.

A.2 COMPARISON WITH OPEN-VOCABULARY SEGMENTATION

We report the performance of our method and state-of-the-art open vocabulary segmentation meth-
ods on Pascal VOC2012 (with background, also called VOC-21) in Tab. 6. Please note, this is not a
fair comparison as our method was trained on Pascal VOC2012.

Pascal VOC-21 COCO-Stuff

CaR 67.6 -
SCLIP 61.7 22.4
MaskCLIP 38.8 16.7

MAXA-ImageNet 62.7 31.8
MAXA-DinoV2 85.5 45.6

Table 6: Comparison with open-vocabulary segmentation.

A.3 RELATION SEMANTIC SEGMENTATION AND IMAGE CLASSIFICATION PERFORMANCE

In Fig. 7 we show the semantic segmentation performance in relation to timm leaderboard? Ima-
geNet accuracy.

Figure 7: Comparison of semantic segmentation with ImageNet accuracy.

A.4 INFERENCE SPEED

In Fig. 8 we show the inference speeds relative to the fastest model (ViT-B/16).

A.5 FEATURE VISUALIZATION

We visualize the backbones output features (Fig. 9 by reducing the number of feature dimensions to
three and interpreting these three dimensions as RGB color.

A.6 CNN CODE

Below the source code of the CNN baseline in the adapter is shown. DCNN is referred to by
dim internal.

def __init__(self):
...
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Figure 8: Inference speed of selected methods. Light bars on the top represent runtime of the MAXA
adapter.
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 256 / 64

MoCo V3:
 768 / 14

Dino:
 768 / 28

Dino V2:
 768 / 37

Dino V2 (ViT-L):
 1024 / 37

MAE:
 768 / 14

Hiera B+:
 896 / 7

CLIP:
 768 / 14

CLIP (ViT-L):
 1024 / 24

MetaCLIP:
 768 / 14

SigLIP-224:
 768 / 14

SigLIP-384:
 768 / 24

SigLIP-512:
 768 / 32

SigLIP-SO:
 1152 / 36

Aim2:
 1024 / 24

ViTamin:
 1024 / 24

ConvNeXt:
 1536 / 10

ConvNeXt (2 layers):
 2304 / 20

Phi-3.5V:
 1024 / 24

Figure 9: PCA Visualization of the backbone features. The numbers below the backbone names
denote feature dimension / spatial size of the feature volume.

self.cnn = nn.Sequential(
nn.Conv3d(p.dim, dim_interm, kernel_size=(1,3,3), padding=(0,1,1)),
nn.ReLU(),
nn.ConvTranspose3d(dim_interm, dim_interm, kernel_size=(1, p.up[0], p.up[0]), stride=(1,p.up[0],p.up[0])),
nn.ReLU(),
nn.Conv3d(dim_interm, dim_interm, kernel_size=(1,3,3), padding=(0,1,1)),
nn.ReLU(),
nn.ConvTranspose3d(dim_interm, dim_interm, kernel_size=(1, p.up[1], p.up[1]), stride=(1,p.up[1],p.up[1])),
nn.ReLU(),
nn.Conv3d(dim_interm, n_classes, kernel_size=1)

)
self.skip_cnn = nn.Sequential(

InterpolateFac(8, bilinear=True),
nn.Conv3d(p.dim, n_classes, kernel_size=1),

)

def forward(self, x):
...
x = self.skip_cnn(x) + self.cnn(x)
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