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Abstract
This paper addresses the challenge of graph do-
main adaptation on evolving, multiple out-of-
distribution (OOD) graphs. Conventional graph
domain adaptation methods are confined to single-
step adaptation, making them ineffective in han-
dling continuous domain shifts and prone to catas-
trophic forgetting. This paper introduces the
Graph Continual Adaptive Learning (GCAL)
method, designed to enhance model sustainabil-
ity and adaptability across various graph domains.
GCAL employs a bilevel optimization strategy.
The ”adapt” phase uses an information maximiza-
tion approach to fine-tune the model with new
graph domains while re-adapting past memories
to mitigate forgetting. Concurrently, the ”gener-
ate memory” phase, guided by a theoretical lower
bound derived from information bottleneck theory,
involves a variational memory graph generation
module to condense original graphs into memo-
ries. Extensive experimental evaluations demon-
strate that GCAL substantially outperforms exist-
ing methods in terms of adaptability and knowl-
edge retention. The code of GCAL is available at
https://github.com/joe817/GCAL.

1. Introduction
Graphs are ubiquitously present in the real world, serving as
fundamental structures for representing complex systems in
a multitude of domains. Graph models, leveraging these in-
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Figure 1. (a) The challenge of continual adaptation of graph mod-
els on evolving OOD graph sequences. (b) Empirical evaluations
of the SOTA graph adaptation method across four OOD graph
datasets in a continual adaptation setting.

tricate connections, have been pivotal in advancing data min-
ing and knowledge discovery. Classic graph models such as
Graph Convolutional Networks (GCNs) (Kipf & Welling,
2016) and Graph Attention Networks (GATs) (Veličković
et al., 2017) have been successfully applied in numerous
applications ranging from social network analysis (Dong
et al., 2023; Qiao et al., 2022; Sun et al., 2024) to bioinfor-
matics (Huang et al., 2024; Wang et al., 2024c) and recom-
mendation systems (He et al., 2020; Wu et al., 2024b).

Despite the successes, the sustainability of graph models
in handling ever-increasing volumes of graph data presents
unique challenges, particularly in scenarios involving new,
unseen graphs. Such OOD scenarios commonly arise when
a model trained on one set of graph data is applied to a
different and novel set. This discrepancy underscores a
pivotal issue in graph machine learning: Domain Adaptation
in Graph Models. The objective is to enhance the model’s
inference ability to generalize across different but related
graph distributions without substantial retraining.

However, the current body of research often limits its focus
to single-step adaptations employing techniques like Max-
imum Mean Discrepancy (MMD) (Dziugaite et al., 2015)
and adversarial learning (Dan et al., 2024; Qiao et al., 2023;
Zhang et al., 2018). While useful, these techniques fall short
when the model is subjected to continual domain shifts over
time or domains: As graph datasets grow and evolve, models
encounter new domains that necessitate ongoing adaptation
but lose their ability to adapt to previous graphs, resulting
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in catastrophic forgetting. The problem is illustrated in Fig-
ure 1 (a), and as the empirical results depicted in Figure 1
(b), the state-of-the-art (SOTA) graph domain adaptation
method EERM (Wu et al., 2022b) experiences a continuous
and serious decline in performance across four evolving
OOD graph datasets.

Continual learning (Wang et al., 2024a; 2022; Zhang et al.,
2022a;b; 2023b), or lifelong learning, offers a promising so-
lution to mitigate catastrophic forgetting. A widely adopted
strategy within this paradigm is the replay mechanisms,
where the model periodically revisits selected or generated
old data to reinforce past knowledge. This practice helps in
maintaining a balance between training cost and knowledge
retention. However, existing approaches typically rely on
labeled data to select and replay memories, presenting a sub-
stantial barrier in many applications where such labels are
either unavailable or prohibitively expensive to obtain. This
introduces a significant research gap: the development of
continual adaptive methods for unsupervised memory gen-
eration and replay in graph models. Such methods would
need to autonomously identify critical features and struc-
tural patterns within graphs that are essential for the model’s
long-term adaptability and robustness.

In this paper, we introduce a novel method named Graph
Continual Adaptive Learning (GCAL), specifically designed
to tackle the challenges of catastrophic forgetting in graph
models’ continual adaptation. Our approach employs an
”adapt and generate memory” bilevel optimization strat-
egy, activated each time new graph data is introduced. For
”adapt,” we utilize an information maximization approach
to adapt the model to new domain graphs, simultaneously
re-adapting the previous memory graphs to prevent forget-
ting. For ”generate memory,” we theoretically derive a lower
bound for preserving informative and generalized memory
graphs from the current graph, leveraging the principles of
the information bottleneck. The main contributions of this
research are outlined as follows:

• We introduce the GCAL framework to effectively man-
age catastrophic forgetting and enhance the sustainable
reuse of graph models during their continual adaptation
across evolving OOD graph data.

• We derive a theoretical lower bound that ensures the
preservation of informative and generalized memory
graphs. Based on this foundation, we design a memory
graph generator equipped with three tailored losses to
effectively guide the memory graph learning process.

• We conduct extensive experiments on various graph
datasets, demonstrating that GCAL significantly out-
performs state-of-the-art across domain shifts.

2. Preliminary
We present the formulation for the continual adaptive learn-
ing on graphs. Given a graph model f(Θ0) : Gs → Y
pre-trained on one or multiple source graphs for a specific
classification task, where Θ0 represents the pre-trained pa-
rameters, Gs is the source graph and Y = {y1, y2, ..., yC}
is the set of C classes. The sequence of m target domain
graphs is defined as {G1, G2, ..., Gm}, where each graph
Gt = {At, Xt} belong to the t-th domain. At ∈ RNt×Nt

is the adjacency matrix and Nt are the numbers of nodes.
Xt ∈ RNt×d is the attribute matrices and d are the dimen-
sions of node attributes. In this scenario, the target graphs
arrive one by one sequentially, and each target graph may
exhibit a different distribution from previous ones due to
changes in the underlying data over region and time, i.e.,
p(Gi) ̸= p(Gj),∀i ̸= j, where p(·) is the data distribu-
tion. We aim at sustainable reusing of the graph model for
the continual adaptation and inference on multiple out-of-
distribution target domains within the same task in an online
fashion. As the target domain graph Gt arrives, we feed
the model on Gt to adapt the parameters Θt−1 → Θt and
make the prediction accordingly. There are two purposes
in the process of test-time training: (1) Adapting: we aim
to ensure that the model adapts effectively to new target do-
main graphs as they arise; (2) Avoid Forgetting: we aim to
retain the model’s performance on previously encountered
target graphs after each adaptation, all without the need for
complete retraining.

3. Methodology
As shown in Figure 2, our method first utilizes an infor-
mation maximization approach to adapt the current model
Θt−1 to the newly arrived graph Gt while simultaneously
conducting memory replay on the previous memory graphs
to avoid forgetting, which will be introduced in Sec. 3.1.
Then the updated model parameter Θt is used to learn the
small memory graph Ĝt for Gt, which will be introduced
in Sec. 3.2. To generate the memory graph, we develop a
variational memory graph generation module comprising
a variational GNN, a trainable selector, and a novel graph
structure learning and reparameterization technique. To
optimize the memory graph, we follow the lower bound
to introduce three learning objectives. The memory graph
learning loss uses a graph condensation technology to learn
task-related memory graphs. The regularization losses are
proposed to ensure the stability and informativeness of the
memory graph. The generation loss enhances the relevance
of the memory graph to the original graph.

3.1. Adaptation with Memory Replay

In the t-th adaptation step, the goal is to refine the current
model f(Θt−1) to make the prediction to enhance its pre-
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Figure 2. The GCAL framework involves several steps: Starting with the graph model f(Θt−1), the current graph Gt, and the accumulated
memory graph pool G = {Ĝi}t−1

i=1 , GCAL first applies the Adaptation with Memory Replay method using loss LAMR for model adaptation.
Next, a Variational Memory Generator creates a new memory graph Ĝt for Gt, which is refined using the memory graph learning loss
LMGL, the regularization losses LReg to ensure stability and informativeness, and the generation loss LGen to enhance the memory
graph’s relevance to Gt. Finally, Ĝt is added to G for future adaptation.

dictive accuracy on target domain graphs. Since there is no
label on the target graphs, the model adaptation is primar-
ily conducted self-supervised. We adopt the Information
Maximization (Liang et al., 2020) leveraged on the output
probability of the model. This approach rests on the fun-
damental premise: A model that effectively discriminates
target data will exhibit high inferential confidence, char-
acterized by output probabilities that closely resemble a
one-hot vector. With the output probability pv of each node
v encoded from pre-trained model f(Θt−1), the objective
to minimize risk (see Eq. 1) on is as follows:

LAdp(G; Θt−1) = −Ev∼V

[∑C
k=1 pv,k log(pv,k)

]
+
∑C

k=1 p̂k log p̂k,

(1)
where pi,k denotes the k-th element of pi. The expected
probability p̂k is calculated as p̂k = Ev∈V [pv,k]. The sec-
ond term introduces a diversity regularization designed to
enhance the variety of output probabilities. This regulariza-
tion helps prevent the issue where a few high integrity scores
might dominate during training, potentially causing all un-
labeled nodes to converge towards the same pseudo-label,
resulting in overfitting.

To prevent the model from forgetting previously learned
graphs while adapting to new graphs, known as memory
replay in continual learning, we apply the information max-
imization loss not only to the new graph but also to all
previous graphs. For efficient replay, we use a graph mem-
ory pool, denoted as G = {Ĝ1, Ĝ2, . . . , Ĝt−1}. This pool
contains a sequence of smaller synthetic graphs, each repre-
senting a previously encountered graph. We then perform
adaptation using memory replay, formulated as follows:

LAMR = LAdp(Gt; Θt−1) +

t−1∑
i=1

LAdp(Ĝi; Θt−1). (2)

By combining the adaptation loss on the new graph Gt with
the adaptation losses on the graphs in the memory pool G,
the model f(Θt−1) is continually refined to adapt to new
graphs while reinforcing performance on historical graphs.

3.2. Variational Memory Graph Generation

In our model, meanwhile adapting to the new graph Gt with
memory-aware replay, our goal is also to learn the memory
Ĝt corresponding to Gt, forming a series of memories Gt

that can be replayed when the next adaptation task arrives to
prevent forgetting. We consider three factors: (1) the mem-
ory size should be significantly smaller than the original
graph, (2) the memory should be informative, retaining as
much important information from the source graph as possi-
ble, and (3) the memory should be generalizable, capable
of being stored across diverse graph distributions.

3.2.1. DERIVING INFORMATION BOTTLENECK ON
MEMORY GRAPHS

To achieve the above motivations, we proposed a varia-
tional information bottleneck based memory graph genera-
tion method. Graph information bottleneck (Sun et al., 2022;
Wu et al., 2020b) usually aims to maximize the below:

Ĝt = argmax
Ĝt

[
I(Ĝt; Ŷt)− βI(Ĝt;Gt)

]
, (3)

where I(·; ·) denotes the mutual information and Ŷt repre-
sents the training signals associated with nodes in Ĝt. The
first term, I(Ĝt; Ŷt), aims to preserve task-related informa-
tion within the memory, while the second term, I(Ĝt;Gt),
focuses on compressing information from the original graph
into the smaller memory graph, effectively filtering out irrel-
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evant information. β acts as a trade-off parameter, balancing
the compression of input data with the preservation of task-
relevant information.

Despite the goal of Ĝt to preserve information from the
graph, directly generating it from Gt is challenging. Instead,
we generate Ĝt from the original graph through a varia-
tional latent representation Zt, expressed as Pg(Ĝt|Gt) =

Pg(Ĝt|Zt, Gt)Pg(Zt|Gt) where g(Φ) is the generator with
parameter Φ. Utilizing this chain rule, we can reformulate
the second term in Eq.3 as: I(Ĝt;Gt) = I(Ĝt;Gt, Zt) −
I(Ĝt;Zt|Gt). Consequently, the optimization objective for
generating Ĝt can be reformulated as follows:

L(Φ) = max
Φ

[
I(Ĝt; Ŷt)− βI(Ĝt;Gt, Zt) + βI(Ĝt;Zt|Gt)

]
.

(4)
To optimize this objective in a parameterized manner, we
derive a lower bound in the following Theorem:

Theorem 3.1. Let Ĝt be a generated graph conditioned
on the latent representation Zt of the original graph Gt.
Suppose Q(Ĝt) is a variational approximation of the true
posterior P (Ĝt), Then, the following lower bound on the
optimization objective for Φ holds:

L(Φ) ≥E[logPf (Ŷt|Ĝt)]− βE[KL(Pg(Ĝt|Gt, Zt) ∥ Q(Ĝt))]

+ βE[log(Pg(Ĝt|Gt, Zt))].
(5)

Here, KL(· ∥ ·) indicates the Kullback-Leibler divergence.
Pf is considered as the classifier f(Θt).

The proof can be found in Appendix A. Thus, the mem-
ory graph learning objective can be maximizing the above
lower bound. In the following sections, we first introduce
the variational memory generator. Then, we introduce the
optimization objectives for each item in Equation 5 in detail.

3.2.2. VARIATIONAL MEMORY GRAPH GENERATOR

In Theorem 3.1, we define the memory graph generator as
g(Φ) : P (Gt) → P (Ĝt). We first employ a GNN archi-
tecture to process the input graph Gt, transforming it into
latent distributions:

[µ; log σ] = TopKSelector(GNNµ,σ(At, Xt)),

TopKSelector(X) = argsort
X

(
Sigmoid

(
Xp

∥p∥

))
[: K],

(6)
where µ ∈ RK∗h and log σ ∈ RK∗h represent the mean
and variance components for each node, respectively. K ≪
Nt is the number of nodes in the generated graph, and h
is the hidden dimension. GNNµ,σ(·) is parameterized to
output a vector of dimensions 2 ∗ h, divided into mean
and variance components. To manage graph dimensionality
and emphasize significant distributions, a top-k selector
layer TopKSelector(·) reduces the number of distributions,

where p ∈ Rh is its trainable parameters. We compute the
logarithm of the standard deviation (i.e., log σ) rather than
directly calculating σ, which smoothly scales the deviation,
enhancing numerical stability and interpretability.

We first generate the latent variable of each node of the mem-
ory graph from the distribution via the reparameterization
trick:

ẑi ∼ N
(
ẑi|µi, σ

2
i

)
= µi + σ2

i ⊙ ε, (7)

where i = 1, ...,K and ε ∈ N (0, I) is a random variable
drawn from a standard normal distribution. This reparam-
eterization ensures that the sampling process remains dif-
ferentiable, allowing the gradients to be backpropagated
through the sampling step during training.

Then, we assume ẑi as the node features in the memory
graph and obtain the feature matrix via X̂t = id([ẑi]Ki=1)
where id(·) is the identity function. We further generate the
edges of the memory graph from ẑi. We assume that each
edge follows an independent Bernoulli distribution, with
each edge characterized by a binary random variable ai,j ∼
Bernoulli(wi,j) for each edge. We use ẑi to generate the
learnable Bernoulli weights for each edge. Given that ai,j is
non-differentiable to wi,j , we approximate it as a continuous
variable within the interval [0,1]. To facilitate gradient-
based optimization, the Gumbel-Max reparameterization
trick, as detailed by (Maddison et al., 2017), is employed
to update the edges as follows:

wi,j =
(MLP([ẑi; ẑj ]) + MLP([ẑj ; ẑi]))

2
,

ai,j = Sigmoid
(
(wi,j + log

δ

1− δ
)/τ

)
,

(8)

where δ ∼ Uniform(0, 1) and τ represents the temperature
hyperparameter. As τ approaches 0, ai becomes increas-
ingly binary. The reparameterization enables a well-defined
gradient, ∂ai,j

∂wi,j
, allowing for effective training of wi,j . Con-

sequently, ai,j can be obtained through the training process
and used as the edge weight in constructing the adjacency
matrix Ât for the memory graph.

In this way, by combining the above modules together, we
obtain the variational memory graph generator g(Φ) and the
memory graph is obtained by Ĝt = g(Gt,Φ) = {Ât, X̂t}.
Leveraging the variational approach not only aids in the gen-
eration of nodes and edges but also helps in managing and
optimizing the underlying distributions of these elements
efficiently.

3.2.3. MEMORY GRAPH LEARNING VIA
CONDENSATION LOSS

The first term in Eq.5, E[logPf (Ŷt|Ĝt)], involves maxi-
mizing the expected log-likelihood of the predicted out-
comes given the generated memory graphs Ĝt. This can
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be reframed as minimizing the condensation loss (Jin et al.,
2021), a novel objective that enhances the fidelity and rele-
vance of the generated graphs to downstream tasks:

min
Φ

L(f(Ĝt; Θt), Ŷt), Ĝt ∈ Gt

s.t. Θt = argmin
Θ

L(f(Gt; Θt−1), Yt),
(9)

where L is the task-related loss on the graphs and corre-
sponding training signals. As Ŷt and Yt are not directly
observable, we instead use the adaptation loss in Eq.1 with
the soft pseudo-labels as training signals. In previous ap-
proaches, the gradient matching scheme was often employed
to minimize this loss. This method aligns the gradients of
the model trained on the generated memory graph Ĝt with
the gradients from the true graph Gt with respect to the
network parameters Θt. By doing so, it ensures that the
model’s behavior on the generated data closely mirrors its
behavior on actual data, facilitating better generalization:

LMGL = min
Φ

D
(

∂LAdp(Ĝt;f(Θt))
∂Θt

,
∂LAdp(Gt;f(Θt))

∂Θt

)
,

(10)
where D(·, ·) is the sum of the distance between gradients
at each layer. Given two gradients ĝ ∈ Rd1×d2 and g ∈
Rd1×d2 at a specific layer, the distance between them is
defined as:

D(ĝ,g) =

d2∑
i=1

(
1− ĝi · gi

∥ĝi∥∥gi∥

)
, (11)

where ĝi,gi are the i-th column vectors of the gradient
matrices. With this optimization, we are able to achieve
task-related memory graph learning through the efficient
gradient-matching strategy.

3.2.4. REGULARIZATION LOSS

The second term in Eq.5, E[KL(Pg(Ĝt|Gt, Zt) ∥ Q(Ĝt))],
corresponds to the KL divergence measure the learned dis-
tribution Pg of the predicted graph Ĝt, given the actual
graph Gt and latent variables Zt, deviates from a simpler
prior Q(Ĝt). We refine the prior distribution Q(Ĝt) by dis-
tinguishing between the components of node features and
edges, i.e., Q(Ĝt) = Q(Ât, X̂t) = Q(Ât) · Q(X̂t). Thus,
the optimization objective of the term can be rewritten as
minimizing the following:

min
Φ

E[KL(Pg(Ât|Gt, Zt) ∥ Q(Ât))]

+ E[KL(Pg(X̂t|Gt, Zt) ∥ Q(X̂t))].
(12)

For the first term, as outlined in Section 3.2.2, we define
the edges to follow an independent Bernoulli distribution.
Accordingly, we specify Q(Ât) such that each edge ai,j ad-
heres to a Bernoulli distribution Bernoulli(q), where q is

the predefined probability parameter. Additionally, consis-
tent with prevailing approaches in the literature, we define
Q(X̂t) for node features as a Normal Gaussian distribution
N (0, I), where I represents the identity matrix in Rh×h.
Then, the overall regularization loss can be defined as fol-
lows:

LReg =min
Φ

1

2

K∑
i=1

h∑
j=1

(
µ2
i,j + σ2

i,j − log(σ2
i,j)− 1

)
+

K∑
i,j=1

(
wi,j log

wi,j

q
+ (1− wi,j) log

1− wi,j

1− q

)
.

(13)

This approach acts as the regularization term that ensures
that the variability introduced during the generation of new
memory graphs is effectively controlled, leading to more
stable adaptations over successive domains.

3.2.5. GENERATION LOSS

For the last terms Eq.5, the objective becomes minimiz-
ing −E[log(Pg(Ĝt|Gt, Zt))], the likelihood of generating
the graph Ĝt. In conventional methods, the original graph
usually serves as a reference for optimizing the generated
graph, typically employing a reconstruction-based discrep-
ancy loss to quantify the differences between the generated
and the original graphs. However, our approach deviates
from traditional methods due to the reduced size of the gen-
erated graph, challenging direct structural and feature-based
comparisons. To address this, we adopt a distribution-based
discrepancy measure, specifically designed to assess differ-
ences in the aggregate properties of the graphs:

LGen = min
Φ

Dis(Ĝt, Gt) =
∣∣∣∣∣∣ K∑

i=1

ûi(Θ)−
Nt∑
i=1

ui(Θ)
∣∣∣∣∣∣
2
,

(14)
where Dis(·) means the discrepancy between the memory
graph and the original graph, ûi(Θ), ui(Θ) ∈ Rh′

are the
hidden representations of nodes encoded from the model
f(Θ) before the final classification head. Note that the node
representations are different from those in Eq.7, which are
encoded by the variational generator. ∥ · ∥2 denotes the L2
normalization distance. We did not use MMD or adversarial
alignment methods but a more concise measure to minimize
the distribution discrepancy because the detailed distribution
learning has already been effectively optimized in the former
modules, and additionally, our method is more efficient and
robust.

3.3. Optimization

Combining the loss of adaptation with memory replay and
the three losses in memory generation, we can establish the
overall learning objective as a bi-level optimization frame-
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work. When the t-th graph Gt arrives, the learning contains
two stages, the inner loop aims to adapt the model f(Θt−1)
on Gt while the outer loop aims to learn a memory graph
Ĝt based on the adapted model f(Θt):

min
Ĝt,Φ

LMGL(Gt,Θt; Φ) + λ1LReg(Gt; Φ) + λ2LGen(Gt,Θt; Φ),

s.t. Θt = argmin
Θ

LAMR(Gt, {Ĝi}t−1
i=1; Θt−1),

(15)
where λ1, λ2 are the loss weights. For the generator, for each
timestep, a new generator is utilized to create the memory
graph, and only the memory graphs are preserved in the
memory buffer. We also use an exponential moving average
(EMA) strategy (Wang et al., 2022) to update the mode
parameters to smooth the parameter updates.

4. Experiments
4.1. Experimental Setup

Datasets Our paper involves two primary categories of
graph datasets, differentiated by regional and temporal shifts.
For regional shifts, Facebook-100(Traud et al., 2012) and
Twitch-Explicit(Rozemberczki et al., 2021) datasets consist
of multiple social networks from different regions. For tem-
poral shifts, OGB-Arxiv(Hu et al., 2020) is a paper citation
network dataset, and Elliptic(Pareja et al., 2020) is a Bitcoin
transactions network dataset, both of which include graphs
from different time steps. In these datasets, each graph is
treated as a separate domain. We select certain domains to
pre-train a graph model and then adapt it continuously using
the remaining graphs.

Baselines. We evaluate the performance of our continual
adaptive learning framework against a diverse set of base-
line methods. Test employs a pretrained graph model to
perform direct inference on the target dataset without any
adaptation, serving as the lower bound. The category ”No
Rehearsal Based Test-Time Adaptation” comprises one-step
test-time adaptation methods, including DANN (Ganin et al.,
2016), Tent (Wang et al., 2021), BN Stats Adapt (Li et al.,
2016), EERM (Wu et al., 2022b), and GTRANS (Jin et al.,
2022). The category ”Continual Test Time Adaptation”
refers to continual test-time training methods, including
CoTTA (Wang et al., 2022) and EATA (Niu et al., 2022).
For baselines not originally designed for graphs, their archi-
tectures have been adapted to GCNs to ensure consistency
in evaluation.

Evaluation Metrics. We report the performance matrix
M result ∈ RT×T , which is a lower triangular matrix where
M result

i,j (for i ≥ j) represents the performance on the do-
main j after training on the domain i. Specifically, similar to
(Jin et al., 2022; Wu et al., 2022b), for the Twitch-Explicit
and Facebook-100 datasets, the results are measured us-
ing ROC-AUC and Accuracy, respectively. For the Ellip-

Table 1. The statistics of datasets with distribution shifts, where #
denotes ”the number of”.

Category Datasets #Nodes #Edges #Domains

Regional
Shifts

Twitch-explicit 1,912 - 9,498 31,299 - 153,138 7
Facebook-100 769 - 41,554 33,312 - 2,724,458 12

Temporal
Shifts

Elliptic 1,089 - 7,880 1,168 - 9,164 41
OGB-Arxiv 4,427 - 39,711 1,225 - 38,735 11

tic dataset, the metric used is the F1 Score, while for the
OGB-Arxiv dataset, Accuracy is used. To compute a single
numeric value upon completing all domains, we calculate
the Average Performance (AP) as 1

T

∑T
i=1 M

result
T,i , primar-

ily assessing adaptation ability, and the Average Forgetting
(AF) as 1

T−1

∑T−1
i=1 (M result

T,i −M result
i,i ), primarily evaluating

the ability to avoid forgetting. Each experiment is repeated
five times, with results reported as the mean and standard
deviation. Detailed introduction for datasets, baselines, and
experimental settings is in Appendix B.

4.2. Experimental Results

4.2.1. OVERALL PERFORMANCE COMPARISON.(RQ1)

This experiment aims to answer: How does GCAL perform
in the unsupervised continual adaptation setting across
evolving graph data? We compare GCAL with various
baselines divided by different domain adaptation strategies
and report the experimental results in Table 2. Note that
Test does not involve modifying the model; EERM and
GTrans train a new parameter at each graph, inapplicable to
previous ones. Thus, their AF results are not applicable. Ob-
viously, we observe that GCAL sets a new state-of-the-art,
surpassing all baseline methods across all datasets.

Specifically, certain baseline methods, especially traditional
domain adaptation methods, demonstrate poor results. This
can be attributed to the difficulty of the problem, which
involves various timesteps of unsupervised continual adap-
tation. This setting requires the model to dynamically adapt
to new domains while concurrently retaining knowledge of
previous ones. Specifically, when a model fails to preserve
knowledge from the current domain, accumulating errors
may disrupt performance in future domains and even cause
the model to degrade over time. Our approach mitigates this
challenge and collectively enhances the sustainable reuse
of graph models and effectively alleviates catastrophic for-
getting across evolving graph data via the Adaptation with
Memory Replay framework. Among the advanced base-
lines, the most comparable method to GCAL is CoTTA.
Our method outperforms CoTTA primarily by integrating
the variational memory graph generation module. Instead of
solely using EMA for model updates, we employ the Varia-
tional Memory Generator to generate previous graphs that
enhance knowledge transfer. This strategy not only lever-
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Table 2. Data performance comparison across four datasets, evaluated against eight baseline methods and GCAL. Test represents the
lower bound, while Full indicates the upper bound. N/A: Not Applicable.

Methods Twitch-explicit Facebook-100 Elliptic OGB-Arxiv
AP-AUC/%↑ AF/%↑ AP-ACC/%↑ AF/%↑ AP-F1/%↑ AF/%↑ AP-ACC/%↑ AF/%↑

Test 53.88±0.00 N/A 50.55±0.00 N/A 53.97±0.00 N/A 42.43±0.00 N/A
DANN 51.50±0.39 0.19±0.55 50.63±0.64 0.38±1.13 53.84±0.56 -0.95±0.54 42.62±0.23 -1.28±0.16
Norm 52.65±0.00 -2.30±0.00 47.62±0.00 0.53±0.00 54.67±0.00 0.02±0.00 40.21±0.00 0.11±0.00
TENT 52.84±0.98 -1.83±1.05 46.63±0.00 0.61±0.00 46.54±0.00 0.55±0.00 36.72±0.37 -0.02±0.18
EERM 52.08±0.00 N/A 49.70±0.03 N/A 46.51±0.00 N/A 36.26±0.00 N/A
GTrans 53.55±0.29 N/A OOM N/A 54.25±0.02 N/A 39.69±0.04 N/A
CoTTA 53.94±0.36 0.34±0.41 50.12±0.16 0.59±0.12 54.08±0.05 -1.92±0.06 40.28±0.01 -1.96±0.01
EATA 53.56±0.10 -0.72±0.07 49.02±3.16 -0.57±0.03 50.48±0.07 -0.76±0.06 40.91±0.70 -1.35±0.59

GCAL 55.65±0.09 0.42±0.13 52.72±0.36 0.72±0.19 56.57±0.14 0.88±0.13 45.22±0.17 0.76±0.05
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Figure 3. Dynamics of the average performance during continual adaptation on evolving OOD graphs.

ages past insights for improved adaptation but also enriches
the training process, boosting the model’s adaptability and
robustness across evolving domains. DANN achieves rela-
tively high performance among the baselines as it uses the
source graph to guide the adaptation, while others only use
the target graph data. Notably, our method surpasses DANN
in four datasets, particularly in AP. This improvement is
attributed to GCAL’s enhanced ability to adapt effectively
to new target domains, leverage knowledge from past ex-
periences for better adaptation, and maintain performance
on previously encountered domains, all without the need
for complete retraining. This novel approach significantly
bolsters the model’s performance and adaptability.

4.2.2. IN-DEPTH ANALYSIS OF CONTINUOUS
PERFORMANCE.(RQ2)

This experiment aims to answer: How does GCAL’s fine-
grained performance evolve after continuously learning
each domain? To present a more fine-grained demonstration
of the model’s performance in continual adaptive learning
on graphs, we analyzed the average performance across
all previously encountered domains each time a new do-
main was learned. The comparative results of Test, DANN,
GCAL, and the top-performing baseline are depicted in Fig-
ure 3. The curve represents the model’s performance after t
in terms of AP on all previous t tasks. Also, we visualize the

accuracy matrices of GCAL and CoTTA on the Twitch and
Elliptic datasets. The results are presented in Figure 4. In
these matrices, each row represents the performance across
all domains upon learning a new one, while each column
captures the evolving performance of a specific domain as
all domains are learned sequentially. In the visual repre-
sentation, darker shades signify better performance, while
lighter hues indicate inferior outcomes.

From the results, we observed that as the number of do-
mains increases, the learning objectives grow increasingly
complex, resulting in a reduction in performance across all
examined methods. That is because as domains accumulate
and the learning objectives become multifaceted, it becomes
challenging for models to maintain optimal performance
across all domains. Notably, most baselines experienced
a substantial decline, with the model collapsing with the
arrival of merely a few new domains, demonstrating that
catastrophic forgetting occurs almost immediately when
the model fails to access previous domain data. This rein-
forces the need for effective continual learning techniques
on the sequential graphs where new domains frequently
emerge. While the performance drop was observed across
all methods, GCAL demonstrated resilience and outper-
formed the top-performing baseline CoTTA. Also, GCAL
predominantly displays lighter shades across the majority
of blocks compared to CoTTA in Figure 4. Moreover, its
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Figure 4. Performance matrices of GCAL and CoTTA in different datasets.

Table 3. The results of the ablation study.
Methods Twitch-explicit Facebook-100 Elliptic OGB-Arxiv

w/o LReg & LGen 54.03±2.63 52.05±0.31 46.53±0.01 44.70±0.06
w/o LReg 55.34±0.41 52.37±0.56 55.23±0.32 44.76±0.48
w/o LGen 55.37±0.33 52.14±0.32 55.64±0.57 44.91±0.11
w/o EMA 54.79±0.04 47.66±0.06 53.83±0.20 43.19±0.08

GCAL 55.65±0.09 52.72±0.36 56.57±0.14 45.22±0.17

competitive performance in specific datasets signifies its
robustness and capability. This could be attributed to the
”adapt and generate memory” framework, which not only re-
tains critical knowledge from previous tasks but also adapts
to new ones.

4.2.3. ABLATION STUDIES.(RQ3)

This experiment aims to answer: Do all the proposed compo-
nents of GCAL contribute effectively to continual adaptation
on graphs? For that, we design four variant methods for
GCAL to verify the EMA in the model parameter updat-
ing module, regularization loss, and generation loss in the
variational memory graph generation module: w/o LReg &
LGen, w/o LReg, w/o LGen, and w/o EMA, where ”w/o”
means ”without” the corresponding losses or components
in model continual adapting. The results are presented in
Table 3. Firstly, we can observe that when each of the losses
or components is removed, the model’s performance de-
creases across all datasets; while combining all modules, the
method achieves the best results, providing straightforward
evidence that all the proposed techniques contribute to our
method. For w/o LGen the generation loss, the method still
achieves remarkable results, primarily due to regularization
loss and EMA updates. These components help optimize
the latent space representation and ensure smooth model
updates, thereby enhancing generalization across diverse
data distributions.

4.2.4. HYPERPARAMETER EXPERIMENTS.(RQ4)

This experiment aims to answer: How do synthetic ra-
tio impact the performance of GCAL? With the Varia-
tional Memory Generator, we generate synthesized graphs
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Figure 5. The model performance with different synthetic ratios.

with K nodes for memory replay, where K is much
less than the number of nodes in the initial graph.
Thus, we set K as 0.01, 0.03, 0.05, 0.07, 0.09 of the num-
ber of nodes for the datasets Facebook-100 and OGB-
Arxiv , and as 0.01, 0.02, 0.03, 0.04, 0.05 for Elliptic, and
0.09, 0.10, 0.11, 0.12, 0.13 for Twitch, respectively. From
the results in Figure 5, we observe that even with a low
ratio of synthetic nodes, our model performs well across all
datasets. In particular, for Facebook-100 and OGB-Arxiv,
which have a larger number of nodes, the model continues to
achieve promising results even at lower synthetic node ratios.
This demonstrates that our method effectively preserves the
information from previous source distributions, as captured
by µ and σ, highlighting its efficiency and robustness.

5. Conclusion
In conclusion, GCAL addresses the critical challenge of un-
supervised continual adaptation to out-of-distribution graph
sequences. By employing a bilevel optimization strategy,
GCAL effectively manages domain shifts and prevents catas-
trophic forgetting. The method fine-tunes models on new
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domain graphs while reinforcing past memories through the
adaptation phase, and generates informative and relevant
memory graphs guided by a theoretical framework rooted in
information bottleneck theory. Experimental results indicate
significant improvements over existing methods in terms of
adaptability and knowledge retention, enhancing model sus-
tainability and adaptability. A potential limitation of GCAL
is its lack of improvement in the graph model architecture
itself. This could potentially hinder performance when the
base model itself is less capable or inadequate for complex
graph data scenarios.
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A. Proof of Theorem 3.1.
In the section of Variational Memory Graph Generation, we give Theorem 1 to define a lower bound of the information
bottleneck for generating memory graphs Ĝt from the original graph Gt:
Theorem A.1. Let Ĝt be a generated graph conditioned on the latent representation Zt of the original graph Gt. Suppose
Q(Ĝt) is a variational approximation of the true posterior P (Ĝt), Then, the following lower bound on the optimization
objective for Φ holds:

L(Φ) ≥ E[logPf (Ŷt|Ĝt)]− βE[KL(Pg(Ĝt|Gt, Zt) ∥ Q(Ĝt))] + βE[log(Pg(Ĝt|Gt, Zt))] (16)

Here, KL(· ∥ ·) indicates the Kullback-Leibler divergence. Pf is considered as the classifier f(Θt).

Here we provide the proof of Theorem 3.1:

Proof. We start by decomposing the objective function L(Φ) in 4 and using variational approximations and known
inequalities to make the optimization tractable.

First, the mutual information term I(Ĝt; Ŷt) quantifies the information shared between Ĝt and Ŷt, which is defined as:

I(Ĝt; Ŷt) = EĜt,Ŷt

[
log

P (Ŷt|Ĝt)

P (Ŷt)

]
. (17)

Expanding and simplifying this using the definitions of expectation and entropy, we get the following:

I(Ĝt; Ŷt) = EĜt,Ŷt
[logP (Ŷt|Ĝt)]− EŶt

[logP (Ŷt)]

= EĜt,Ŷt
[logP (Ŷt|Ĝt)] +H(Ŷt)

≥ EĜt,Ŷt
[logPf (Ŷt|Ĝt)].

(18)

The inequality holds because H(Ŷt), the entropy of Ŷt, is always non-negative.

Second, the mutual information I(Ĝt;Gt, Zt) measures the amount of information gained about Ĝt by observing Gt and
Zt. It is defined as:

I(Ĝt;Gt, Zt) = EĜt,Gt,Zt

[
log

P (Ĝt|Gt, Zt)

P (Ĝt)

]
. (19)

We introduce a variational approximation Q(Ĝt) to the true posterior P (Ĝt). Then, the negative mutual information is
defined as:

−I(Ĝt;Gt, Zt) =− EĜt,Gt,Zt

[
log

P (Ĝt|Gt, Zt)

Q(Ĝt)

]
+ KL(P (Ĝt) ∥ Q(Ĝt))

≥− EĜt,Gt,Zt

[
log

P (Ĝt|Gt, Zt)

Q(Ĝt)

]
=− E[KL(Pg(Ĝt|Gt, Zt) ∥ Q(Ĝt))].

(20)

Third, the conditional mutual information I(Ĝt;Zt|Gt) quantifies the additional information about Ĝt obtained from Zt

given Gt. It is defined by the equation:

I(Ĝt;Zt|Gt) = EĜt,Zt,Gt

[
log

P (Ĝt, Zt|Gt)

P (Ĝt|Gt)P (Zt|Gt)

]

= EĜt,Zt,Gt

[
log

P (Ĝt|Zt, Gt)

P (Ĝt|Gt)

]
= EĜt,Zt,Gt

[
logP (Ĝt|Zt, Gt)

]
+H(Ĝt|Gt)

≥ EĜt,Zt,Gt

[
logP (Ĝt|Zt, Gt)

]
.

(21)

13



GCAL: Adapting Graph Models to Evolving Domain Shifts

The inequality holds because the entropy H(Ĝt|Gt) is always non-negative.

By combining these results, we can derive the lower bound for the objective L(Φ):

L(Φ) ≥ E[logPf (Ŷt|Ĝt)]− βE[KL(Pg(Ĝt|Gt, Zt) ∥ Q(Ĝt))] + βE[log(Pg(Ĝt|Gt, Zt))] (22)

This completes the proof.

B. Detialed Experimental Setup
B.1. Datasets

Our paper involves two primary categories of graph datasets, Regional Shifts and Temporal Shifts, utilizing continual
learning principles to effectively manage adaptations across different regions and temporal variations. The datasets used
include Facebook-100(Traud et al., 2012), Twitch-Explicit(Rozemberczki et al., 2021), OGB-Arxiv(Hu et al., 2020), and
Elliptic(Pareja et al., 2020). The statistical details of the datasets are shown in Table 1.

Regional Shifts: The Facebook-100 dataset comprises 100 snapshots of Facebook friendship networks from 2005, each
representing users from a specific American university. These networks vary greatly in size, density, and degree distribution.
Additionally, the Twitch-Explicit dataset includes seven networks, where nodes are Twitch users and edges denote mutual
friendships. Each network originates from one of the following regions: DE, ENGB, ES, FR, PTBR, RU, and TW.

Temporal Shifts: The OGB-Arxiv dataset contains 169,343 Arxiv CS papers from 40 subject areas, detailing their citation
relationships, and is suitable for analyzing the evolution of scientific collaboration networks. The Elliptic dataset includes 49
sequential graph snapshots of Bitcoin transaction networks, where nodes represent transactions and edges represent payment
flows. Around 20% of transactions are labeled as licit or illicit, with the objective of detecting future illegal transactions.

B.2. Baselines

We evaluate the performance of our continual adaptive learning framework against a diverse set of baseline methods. Test
employs a pretrained graph model to perform direct inference on the target dataset without any adaptation, serving as the
lower bound. DANN (Ganin et al., 2016), a traditional domain adaptation method, utilizes the source graph and adversarial
training to minimize domain discrepancies at each step. The category ”No Rehearsal Based Test-Time Adaptation”
comprises one-step test-time adaptation methods. Tent (Wang et al., 2021), which minimizes entropy of test samples; BN
Stats Adapt (Li et al., 2016), which adjusts network weights and Batch Normalization statistics based on current input data
for prediction; EERM (Wu et al., 2022b), tailored for graph datasets, maximizing risk variance to manage domain shifts and
out-of-distribution challenges; and GTRANS (Jin et al., 2022), enhancing test-time performance by refining graph structure
and node features through a contrastive surrogate loss. The category ”Continual Test Time Adaptation” is continual test-time
training methods, including CoTTA and EATA. CoTTA (Wang et al., 2022) combines weight-averaged predictions with
partial neuron restoration to mitigate error accumulation and catastrophic forgetting. EATA (Niu et al., 2022) enhances
adaptation efficiency through entropy minimization and employs a Fisher-based regularizer to maintain performance across
domain shifts. For baselines not originally designed for graphs, their architectures have been adapted to GCNs to ensure
consistency in evaluation.

B.3. Experimental Setting

To effectively evaluate our model’s adaptability across varying domains and over time, we have introduced a continual
adaptive learning framework across evolving graph data. For academic and social networks, initial training is conducted
on three university graphs from the Facebook-100 dataset: Amherst41, Caltech36, and Johns Hopkins55. We continually
extend the domain adaptation to the remaining eleven university graphs without labels. This data selection sequence requires
the model to handle different graph structures from training/validation to testing data(Wu et al., 2022b). For Twitch-explicit,
the model is initially trained on the DE network and later tested for adaptability across regional networks, including ENGB,
ES, FR, PTBR, RU, and TW, also without labels. In addressing temporal shifts, the OGB-Arxiv dataset is employed, using
data prior to 2011 to pretrain the model, while data from 2011 and later is used for continual adaptation, exposing the model
to evolving scientific collaborations. For the Elliptic dataset, we utilize snapshots 7 through 9 for initial training, avoiding
the first six due to their extreme class imbalance, with the remaining data employed for continual adaptation. This approach
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Figure 6. Visualized comparison of the original graphs (the first line) and generative graphs (the second line) of GCAL in the Twitch
dataset.

reflects the dynamic and challenging nature of financial transactions. Our training strategy begins by pretraining the model
on selected graphs from each dataset, then continually adapting to the remaining unlabeled graph datasets in an online
manner.

We use a 2-layer GCN as the backbone for three datasets, except for OGB-Arxiv, where we use GraphSAGE (Hamilton
et al., 2017). The training, validation, and test rates for pretrain datasets are set at 60%, 20%, and 20% respectively. During
the train and adapt periods, the learning rates and weight decays are set as follows: lr = 0.0001 and wd = 5× 10−4 for
training, and lr = 0.001 and wd = 5× 10−4 for adaptation. The number of epochs for pre-training is set between 100 and
200, while the adaptation phase involves a relatively smaller number of epochs, ranging from 1 to 10, for these four datasets.
The detailed hyper-parameter settings are provided in the accompanying code. For the evaluation metric, we present the
accuracy matrix Macc ∈ RT×T , which is a lower triangular matrix where Macc,i,j (for i ≥ j) represents the accuracy on the
domain j after training on the domain i. Specifically, similar to (Jin et al., 2022; Wu et al., 2022b), for the Twitch-Explicit
and Facebook-100 datasets, the results are measured using ROC-AUC and Accuracy, respectively. For the Elliptic dataset,
the metric used is the F1 Score, while for the OGB-Arxiv dataset, Accuracy is used. To compute a single numeric value
upon completing all domains, we calculate the Average Performance (AP) as 1

T

∑T
i=1 M

acc
T,i, primarily assessing adaptation

ability, and the Average Forgetting (AF) as 1
T−1

∑T−1
i=1 (M acc

T,i −M acc
i,i ), primarily evaluating the ability to avoid forgetting.

Each experiment is repeated five times, with results reported as the mean and standard deviation.

C. Additional Experiments
C.1. Visualization of Generated Memory Graph.

This experiment aims to answer: How do the structure of memory graphs generated by GCAL look like compared with
the original ones? To demonstrate the effectiveness of the memory graphs we generated, we conducted an experiment to
visualize the graph structures. The experimental results are shown in Figure 6, where we used the networks python library as
a tool on the Twitch dataset to display the generated effects on six continuous domain graphs. The top row shows the original
graphs, while the bottom row displays the generated graphs. From this, we can observe that (1) the generated memory
graphs significantly reduce the number and density of the graphs, making them more lightweight, and (2) the structure of the
generated graphs is not random but shows a coherent structure, verifying the reliability and authenticity of the generated
graphs. This visualization confirms the capability of GCAL to produce streamlined yet structurally meaningful graphs.

C.2. Performance Matrices.

To present a more fine-grained demonstration of the model’s performance in continual adaptive learning on graphs, we
analyzed the average performance across all previously encountered domains each time a new domain was learned. We
have visualized the performance matrix of the Twitch and Elliptic datasets in Figure. 4. Here, we further report the results
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Figure 7. Performance matrices of GCAL and CoTTA in different datasets.
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Figure 8. The model performance with different GNN backbones.

of the Facebook and Ogbn-arxiv datasets in Figure 7. In these matrices, each row represents the performance across all
domains upon learning a new one, while each column captures the evolving performance of a specific domain as all domains
are learned sequentially. In the visual representation, darker shades signify better performance, while lighter hues indicate
inferior outcomes. GCAL predominantly displays lighter shades across the majority of blocks compared to CoTTA in Figure
7, which has similar experimental phenomena as before, further proving the effectiveness of GCAL in the continual graph
model adaptation problem.

C.3. Backbone Analysis.

This experiment aims to answer: How do different GNN backbones compare within GCAL for continual adaptation? We
select representative GNN models, including GCN, GSAGE, GAT, and GIN. These GNN models serve as the foundational
backbones for integrating with GCAL. The results are presented in Figure 8. We compare the results of incorporating these
GNN backbones within our framework versus utilizing them individually as standalone models. Using our framework
demonstrates remarkable enhancements, showing the effectiveness of our proposed techniques. Lastly, it is important to
note that the consistent use of different backbones significantly enhances results, thereby demonstrating the robustness and
adaptability of our proposed method across various datasets. This is in contrast to the Test method, which directly infers
from subsequent data without continuous domain adaptation. For Facebook-100, the GAT model encounters an Out Of
Memory (OOM) issue and is therefore not included in the backbone comparison for this dataset.

D. Related Work
D.1. Graph Continual Learning.

Existing graph continual learning (GCL) methodologies are typically divided into three main categories: regularization,
parameter isolation, and memory replay approaches. Regularization-based methods primarily aim to preserve parameters
crucial to previous tasks, thereby minimizing disruptions (Cai et al., 2022; Liu et al., 2021; Sun et al., 2023a; Xu et al., 2020).
Examples include topology-aware weight preserving (TWP) (Liu et al., 2021) and RieGrace (Sun et al., 2023a), which focus
on maintaining essential parameters and structural topologies. Parameter isolation techniques allocate distinct parameters
for new tasks to maintain those relevant to prior tasks (Niu et al.; Zhang et al., 2023a; 2022a), as seen in HPNs (Zhang et al.,
2022a). In contrast, memory replay strategies(Li et al., 2024; Qiao et al., 2025) archive and revisit representative data from
past tasks to alleviate the critical issue of catastrophic forgetting, as exemplified by ER-GNN (Zhou & Cao, 2021), SSM
(Zhang et al., 2022b), SEM-curvature (Zhang et al., 2023b), PDGNNs (Zhang et al., 2024), and CaT (Liu et al., 2023b).
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GCL has garnered increasing interest due to its practical applications, with each approach offering distinct strategies for
handling task progression in graph-based models(Wu et al., 2024a). Our approach, which belongs to the memory replay
category, uniquely preserves critical topological structures while minimizing memory usage. Notably, while existing GCL
methods are confined to supervised learning settings, our work introduces an unsupervised approach to graph continual
learning, marking a pioneering step in this direction.

D.2. Graph Domain Adaptation.

Unlike traditional domain adaptation, which typically assumes a static target domain, Continual Domain Adaptation
addresses evolving target data. Traditional methods, including Maximum Mean Discrepancy (MMD) (Dziugaite et al., 2015)
and adversarial techniques (Dan et al., 2024; Qiao et al., 2023; Tzeng et al., 2017; Zhang et al., 2018), form the basis of this
field. In graph-based domain adaptation, a variety of methods have been proposed (Ding et al., 2018; Jin et al., 2022; Liu
et al., 2023a; Ma et al., 2019; Qiao et al., 2024; Wu et al., 2022a; Xiao et al., 2022). For instance, UDA-GCN (Wu et al.,
2020a) and AdaGCN (Dai et al., 2022) leverage graph topology to improve adaptability, reducing discrepancies between
source and target graphs via local and global consistencies and a graph domain discriminated loss, respectively. Continual
Test-Time Adaptation (CTTA), a critical facet of Continual Domain Adaptation, addresses the unique demands of non-static
domains. Unlike traditional Test-Time Adaptation (TTA), CTTA incorporates advanced strategies such as bi-average pseudo
labels and stochastic weight resets, as implemented in CoTTA (Wang et al., 2022). Innovations like VDP (Gan et al., 2023),
with visual domain prompts to counter error accumulation, and RMT (Döbler et al., 2023), which employs symmetric
cross-entropy for enhanced robustness, further refine CTTA. Additional strategies, including entropy minimization by Tent
and EATA (Niu et al., 2022) and meta-networks in EcoTTA (Song et al., 2023), contribute to improved model normalization
and adaptability. Despite these advancements, challenges such as noisy pseudo-labels and calibration issues persist, and a
notable gap remains in unsupervised graph continual domain adaptation research.

D.3. Graph Condensation

Graph condensation(Sun et al.) has become increasingly prominent for its ability to create compact synthetic datasets
that closely approximate the performance of full datasets (Hashemi et al., 2024). Classical techniques like GCond (Jin
et al., 2021) and MCond (Gao et al., 2024) utilize gradient alignment to synthesize representative samples that maintain the
statistical properties of the original data, drawing from principles of traditional sampling (Sener & Savarese, 2017). Among
recent innovations, GCDM (Liu et al., 2022), introduce graph-specific distribution alignment to enhance condensation
effectiveness. SFGC (Zheng et al., 2024) further refines this by distilling large graphs into structure-free node sets using
meta-matching and dynamic feature scoring, resulting in compact, highly generalizable data. Additionally, techniques such
as CaT (Liu et al., 2023b) and PUMA (Liu et al., 2023c) extend graph condensation to continual learning, demonstrating
these methods’ adaptability for dynamic graph-based applications. In parallel, Graph prompt learning based method(Sun
et al., 2023b;c; Wang et al., 2024b; Zhao et al., 2024) also condenses knowledge into a compact graph-based prompt, which
is typically used to fine-tune pre-trained graph models on specific downstream tasks. However, most of these method rely on
supervised signals for knowledge condensation. In contrast, our work addresses a more challenging task by condensing
graphs into memory in an unsupervised manner.
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