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Abstract

Tool learning has generated widespread inter-001
est as a vital means of interaction between002
Large Language Models (LLMs) and the003
physical world. Current research predomi-004
nantly emphasizes LLMs’ capacity to utilize005
tools in well-structured environments while006
overlooking their stability when confronted007
with the inevitable noise of the real world.008
To bridge this gap, we introduce RoTBench,009
a multi-level benchmark for evaluating the010
robustness of LLMs in tool learning. Specifi-011
cally, we establish five external environments,012
each featuring varying levels of noise (i.e.,013
Clean, Slight, Medium, Heavy, and Union),014
providing an in-depth analysis of the model’s015
resilience across three critical phases: tool016
selection, parameter identification, and content017
filling. Experiments involving six widely-used018
models underscore the urgent necessity for019
enhancing the robustness of LLMs in tool020
learning. For instance, the performance of021
GPT-4 even drops significantly from 80.00022
to 58.10 when there is no substantial change023
in manual accuracy. More surprisingly, the024
noise correction capability inherent in the GPT025
family paradoxically impedes its adaptability in026
the face of mild noise. In light of these findings,027
we propose RoTTuning, a strategy that enriches028
the diversity of training environments to bolster029
the robustness of LLMs in tool learning.030

1 Introduction031

Tool learning has emerged as a critical032

concept for empowering large language models033

(LLMs) (Brown et al., 2020; Bai et al., 2022;034

Touvron et al., 2023a) to interact with the real035

world (Yang et al., 2023; Mialon et al., 2023;036

Qin et al., 2023a). In this context, the external037

environment of an LLM contains an ensemble of038

integrated tools. Each tool is uniquely identified by039

its name and is described by a succinct paragraph040

that explains its functionality. Similarly, every041

 Get_Weather : This tool is used for fetching information weather for 
 specified location.

 Parameters: 
    location  (string): Designated location, default is current location.

 Please tell me the weather in the New York.

 Get_Weather (location = "New York")

 ABC: This tool is used for fetching information weather for specified 
 location.

 Parameters:  
    location  (string): Designated location, default is current location.

 Please tell me the weather in the New York.

 I'm sorry, but as a language model, I don't have access to weather 
 information.

Figure 1: Example of noise affecting tool selection for
LLMs. Although the functionality of the tool remains
unaffected by its name, renaming “Get_Weather” as
“ABC” impedes LLMs from utilizing the tool properly.

parameter within these tools is characterized by 042

its name, along with a description that clarifies its 043

purpose, its optionality, and other pertinent details. 044

Recent research has centered on examining how 045

well LLMs can effectively employ tools within a 046

carefully designed and stable environment. From 047

one perspective, specific studies have scrutinized 048

the outcomes of LLMs’ tool usage, verifying both 049

the accuracy of tool selection and the efficacy of 050

the generated responses (Qin et al., 2023b; Huang 051

et al., 2023). This analysis involved evaluating 052

the relevance of the selected tools and the final 053

responses in fulfilling users’ requirements. On the 054

other hand, other investigations have delved into 055

the intricate process of tool utilization by LLMs, 056

striving for a more comprehensive assessment of 057

their performance in tool learning (Chen et al., 058

2023d; Ye et al., 2024). This includes an analysis 059

of the diverse capabilities necessary for LLMs to 060

excel in tool learning while also identifying any 061

limitations they may have in this regard. 062

However, these studies fail to account for the 063

robustness of LLMs in the face of inevitable noise 064
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in real-world scenarios (Chen et al., 2023b; Liu065

et al., 2023). Using Figure 1 as a reference,066

LLMs recognize the tool for querying weather067

information when named “Get_Weather,” but not068

when named “ABC,” despite the tool’s functionality069

remaining unaffected by its name. Consequently, it070

becomes imperative to investigate whether LLMs071

can proficiently identify these tools and configure072

parameters to meet user needs in noisy real-073

world environments. This research is essential to074

guarantee their reliability in practical applications.075

To fill this gap, we introduce RoTBench, a multi-076

level benchmark for evaluating the robustness077

of LLMs in tool learning. Specifically, we078

establish five external environments, which can079

be categorized as Clean, Slight, Medium, Heavy,080

and Union in ascending order of noise levels.081

By evaluating the performance of LLMs across082

three critical stages: tool selection, parameter083

identification, and content filling, we aim to offer a084

thorough and intricate analysis of the stability and085

reliability of LLMs in tool utilization.086

Through experiments conducted on six widely-087

used LLMs, we observe that the performance088

of these models is remarkably sensitive to noise.089

For instance, the performance of GPT-4 even090

drops significantly from 80.00 to 58.10 when091

there is no substantial change in manual accuracy.092

This underscores the pressing requirement to093

enhance the robustness of LLMs in tool learning.094

Interestingly, the GPT family of models’ inherent095

noise correction capability appears to hinder its096

performance in mildly noisy environments.097

In light of these findings, we introduce RoTTun-098

ing, a technique aimed at augmenting the adapt-099

ability of LLMs to a wide range of environments100

by introducing greater environmental diversity101

during the training phase. Our experimental results102

demonstrate that our approach yields an average103

performance improvement of 16.10 points across104

diverse environments.105

The main contributions of our work are sum-106

marized as follows: 1) We introduce RoTBench,107

a benchmark designed to evaluate the robustness108

of LLMs in tool learning. This benchmark109

contains five environments with different levels110

of noise, enabling a comprehensive evaluation111

of robustness throughout three pivotal phases of112

model tool learning; 2) The experimental analyses113

conducted on six widely-used models underscore114

the imperative of improving the robustness of115

LLMs in tool learning. These analyses also reveal116

conflicts between the inherent capabilities of the 117

models and their robustness; and 3) We introduce 118

RoTTuning, a training method for tool learning 119

that focuses on augmenting environmental diversity. 120

Our experiments demonstrate that this approach 121

can effectively enhance LLMs robustness. 122

2 Related Work 123

Analysis of Tool Learning Given their extensive 124

world knowledge and superior natural language 125

understanding, researchers have made attempts 126

to leverage LLMs for a wide range of everyday 127

applications (Ye et al., 2023). In order to push 128

the boundaries of their capabilities, some scholars 129

have proposed enhancing LLMs with external tools, 130

which has gained widespread acceptance (Schick 131

et al., 2023; Tang et al., 2023). As research 132

in this area has deepened, certain scholars have 133

summarized the progress made in tool learning 134

for LLMs (Mialon et al., 2023; Qin et al., 2023a), 135

sought to uncover developmental insights, and 136

trained more specialized LLMs for tool learning 137

based on these findings (Qin et al., 2023b; Zhuang 138

et al., 2023; Hao et al., 2023). Furthermore, 139

recognizing the complexity of tool learning, some 140

researchers have specialized in evaluating not only 141

the outcomes of tool learning (Huang et al., 2023) 142

but also the entire process (Chen et al., 2023d; Ye 143

et al., 2024). However, it’s worth noting that all 144

of these current efforts primarily consider LLMs’ 145

tool usage in controlled environments, neglecting 146

the inherent complexities of real-life scenarios. 147

Therefore, we have undertaken an in-depth analysis 148

of the robustness of LLMs in tool learning to 149

advance research in a real-world context. 150

Robustness Testing of LLMs Robustness is 151

a critical factor in determining the stability of 152

LLMs and plays a pivotal role in their practical 153

deployment in real-life applications, which has 154

garnered significant attention from scholars. In 155

the early stages of research, some scholars con- 156

ducted tests to assess the robustness of ChatGPT 157

across various natural language processing tasks, 158

highlighting the substantial room for improvement 159

in the current robustness of LLMs (Wang et al., 160

2023a; Chen et al., 2023c). Subsequently, other 161

researchers specialized in creating benchmarks, 162

such as PromptBench (Zhu et al., 2023), to examine 163

the consistency of LLM responses by introducing 164

noise into the prompts. Given that tool learning 165

is poised to extend the capabilities of LLMs and 166
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Figure 2: The framework of RoTBench. RoTBench encompasses five environments (i.e., Clean, Slight, Medium,
Heavy, and Union), each introduces various noise to the tool and parameters, facilitating a thorough evaluation
of the robustness performance of LLMs throughout the three stages of tool usage (i.e., tool selection, parameter
identification, and content filling).

# Sce # Query # Cat # Subcat # Tool

7 105 41 95 568

Table 1: Statistics information of the data. “# Sce”, “#
Query”, “# Cat”, “# Subcat”, and “# Tool” correspond
to the count of scenarios, user queries, tool categories,
tool subcategories, and individual tools, respectively.

its outcomes can directly impact the state of167

the physical world (Ye et al., 2024), it becomes168

imperative to thoroughly evaluate its robustness.169

3 RoTBench170

As depicted in Figure 2, RoTBench encompasses171

five environments, each characterized by varying172

levels of noise, facilitating a thorough evaluation of173

the robustness of LLMs throughout the three stages174

of tool usage.175

3.1 Data Collection176

In order to thoroughly cater to real-world require-177

ments and encompass commonly utilized tools, we178

utilize ToolEyes (Ye et al., 2024), an evaluation179

system designed for tool learning. This system180

defines seven real-world application scenarios.181

Within each of these scenarios, we randomly182

select 15 user queries for analysis. Since the raw183

data offers tool information without standardized184

invocation paths, we have manually labeled these185

paths to facilitate the evaluation process. Detailed186

statistics of the data can be found in Table 1. 187

3.2 Environments Construction 188

To comprehensively assess the resilience of LLMs 189

in tool learning, we reference the hierarchical 190

classification of noise in previous studies (Wang 191

et al., 2021; Zhu et al., 2023; Dong et al., 2023) 192

and design five distinct external environments. 193

These environments feature varying noise levels 194

that affect both the tool and its parameters. 195

Clean-level environment employs a runtime 196

framework developed by ToolEyes. This frame- 197

work furnishes essential information to LLMs for 198

comprehending tools, where the name of each 199

tool epitomizes its functionality and the names of 200

parameters signify their respective meanings. This 201

environment comprises a total of 105 test cases. 202

The remaining four environments are derivatives 203

of this primary environment, each modified by 204

incorporating distinct levels of noise. 205

Slight-level environment encompasses three 206

types of noise: insertion, omission, and substitution. 207

These correspond to real-world occurrences such 208

as an excess of characters, missing characters, and 209

character errors when naming tools or parameters. 210

Specifically, we introduce noise in the following 211

ways: 1) We randomly select half of the available 212

tools within the environment. For these selected 213

tools, a random form of noise is applied, altering up 214

to 1/3 of the characters, resulting in the creation of 215
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105 new data points. 2) For each tool, we randomly216

select half of the parameters and introduce noise217

into their names using the method described above,218

generating an additional 105 new data entries.219

By combining these two approaches, we create220

a Slight-level environmental test set consisting of221

210 test cases.222

Medium-level environment introduces two223

types of noise: reversal and nonsense. These224

mirror real-world scenarios where names are225

reversed or replaced with random strings, rendering226

the information meaningless. To apply noise, we227

follow these procedures: 1) We randomly select228

half of the available tools. For these tools, there229

is a 50% probability that their names will be230

substituted with random strings, each containing231

up to 10 characters. Additionally, there is a232

50% chance that the names of these tools will be233

reversed. This process yields 105 test cases. 2)234

For each tool, half of the parameters are randomly235

chosen. These parameters may undergo a 50%236

chance of having their names substituted with237

random strings, each containing up to 5 characters,238

or a 50% chance of being reversed. This leads239

to 105 test cases. It is worth noting that if the240

reversal process does not alter the name, it will be241

replaced with a random string. Consequently, we242

have successfully generated 210 test cases for the243

Medium-level environment.244

Heavy-level environment encompasses two dis-245

ruptive types of noise: exchange and addendum,246

reflecting real-world occurrences of name swap-247

ping and information supplementation. Noise is248

introduced as follows: 1) All tool names within the249

environment are randomly shuffled. This shuffling250

disrupts the association between a tool’s name and251

its functional description, challenging LLMs to252

accurately comprehend the tool’s function despite253

the disorganized name. This process yields 105 test254

cases. 2) Half of the tools are randomly chosen,255

and a new mandatory parameter is introduced256

with a 50% probability. This parameter is given257

a name consisting of a random string of up to258

5 characters. LLMs are tasked with providing259

a specific string of up to 3 characters for the260

parameter based on its descriptive meaning. The261

names of these parameters are randomly shuffled262

with a 50% probability. For tools with fewer than263

two parameters, noise is introduced by directly264

adding new parameters. This process also results265

in 105 test cases. In total, 210 Heavy-level266

environmental test cases have been generated.267

Union-level environment encompasses all previ- 268

ously mentioned noise categories. Given that the 269

prior noise environments already include noise for 270

both tools and parameters, we randomly choose 271

one noise generation method that impacts tool 272

names and another method that affects parameters 273

from the three previous environment levels. These 274

selected methods are simultaneously applied to 275

generate 105 test cases where both tool names and 276

parameters are subjected to noise injection. 277

3.3 Staged Evaluation 278

We evaluate the robustness performance of LLMs 279

at each of stages in tool learning and analyze their 280

respective variations. 281

Tool selection marks the initial phase of tool us- 282

age by LLMs. During this process, LLMs identify 283

suitable tools for addressing the user’s query by 284

interpreting the functional descriptions offered by 285

the external environment and subsequently output 286

the names of these tools. It should be emphasized 287

that the name of the tool is essentially a label; the 288

practical deployment of the tool is governed by its 289

functional description. In evaluating a test case, the 290

score for its tool selection is defined as follows: 291

sTS = I(t = t̂) (1) 292

Here, I(x) equals 1 if the condition x is true, and 293

0 otherwise. In this context, t represents the tool 294

chosen by the LLMs, while t̂ denotes the tool that 295

needs to be selected. 296

Parameter identification involves recognizing 297

the required parameters and outputting their re- 298

spective names based on their specified needs, 299

following the selection of the appropriate tool. 300

This process necessitates choosing the mandatory 301

parameters, while the optional ones are selected 302

based on actual requirements. Similar to tool 303

selection, the name of the parameter serves as 304

an identifier; however, it is the description of the 305

parameter that truly defines its meaning. For each 306

given test case, its parameter identification score is 307

defined as follows: 308

sPI = sTS · I(P = P̂ ) (2) 309

In this equation, P denotes the set of parameters 310

identified by LLMs, and P̂ represents the set of 311

parameters that should be identified. 312

Content filling constitutes the concluding phase 313

in the tool usage process. Once the tool and 314

its corresponding parameters have been selected, 315
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Models
Open-Source LLMs Closed-Source LLMs

HumanToolLLaMA-
2-7B-v1

ToolLLaMA-
2-7B-v2

NexusRaven-
13B-v1

NexusRaven-
13B-v2

GPT-3.5-
turbo GPT-4

Tool Selection

Clean 66.67 70.48 55.24 73.33 75.24 80.00 88.57
Slight 57.62 65.71 52.86 76.19 59.05 77.14 88.57
Medium 56.67 59.52 53.33 72.38 69.52 84.29 88.57
Heavy 43.33 46.67 44.29 62.38 56.19 60.00 85.71
Union 44.76 43.81 42.86 56.19 53.33 58.10 85.71

Parameter Identification

Clean 45.71 43.81 15.24 56.19 47.62 52.38 88.57
Slight 40.95 40.00 17.14 56.67 28.10 44.29 85.71
Medium 38.10 35.71 14.76 50.48 44.29 53.81 82.86
Heavy 28.10 27.14 10.00 37.62 24.29 32.86 80.00
Union 35.24 27.62 11.43 37.14 27.62 39.05 82.86

Content Filling

Clean 28.57 25.71 1.90 37.14 30.48 40.00 74.29
Slight 24.29 23.81 3.33 39.05 20.00 35.71 74.29
Medium 22.38 20.95 1.90 33.81 30.48 46.19 71.43
Heavy 14.29 14.76 0.95 30.00 16.19 25.24 68.57
Union 16.19 16.19 1.90 22.86 18.10 30.48 71.43

Table 2: Performance of various LLMs in different environments, with the best performance in each environment
highlighted in bold. “Human” signifies the average level of human performance.

LLMs are tasked with breaking down the user-316

provided information for populating the content317

of these parameters. Upon accomplishing this318

step, LLMs formally conclude the entire tool usage319

cycle, paving the way to receive the tool’s output320

phase and initiate a new interaction. For each test321

case, we define a content filling score as follows:322

sCF = sPI ·
N∏
i=1

I(ci = ĉi) (3)323

Here, N represents the total number of parameters324

required to be filled. ci is the content filled by325

LLMs for the ith parameter, and ĉi refers to the326

correct content for that parameter.327

4 Experiments328

4.1 Model Selection329

To evaluate the robustness of widely-used LLMs330

with tool-use capabilities, we opt for testing331

four open-source models (i.e., ToolLLaMA-2-332

7B-v1 (Qin et al., 2023b), ToolLLaMA-2-7B-v2333

(Qin et al., 2023b), NexusRaven-13B-v1 (team,334

2023a), NexusRaven-13B-v2 (team, 2023b)) and335

two closed-source models (i.e., GPT-3.5-turbo1,336

GPT-4 (OpenAI, 2023)).2337

1https://platform.openai.com/docs/models/
gpt-3-5

2The details of LLMs can be found in Appendix A.

Source Models F Statistic P Value

Open-
Source

ToolLLaMA-2-7B-v1 2.47 4.36× 10−2

ToolLLaMA-2-7B-v2 3.28 1.10× 10−2

NexusRaven-13B-v1 0.76 5.55× 10−1

NexusRaven-13B-v2 6.01 9.13× 10−5

Closed-
Source

GPT-3.5-turbo 6.76 2.33× 10−5

GPT-4 5.31 3.19× 10−4

Human – 0.04 1 .00

Table 3: Welch’s ANOVA for sCF across the five
enviroments for various LLMs. A p-value below 0.05
indicate significant differences in the data.

4.2 Main Results 338

As tool learning involves multiple turns of interac- 339

tion between LLMs and the environment (Qin et al., 340

2023a; Ye et al., 2024), with intricate intermediate 341

trajectories that cannot be easily compared, our 342

emphasis lies on evaluating the robustness of 343

various LLMs during their initial use of the tool 344

and present the results in Table 2.3 The resulting 345

data reveals intriguing observations. 346

The robustness of current LLMs in tool 347

learning presents considerable scope for en- 348

hancement. While human performance remains 349

relatively stable across different environments, 350

3The results presented are averages across various
scenarios, with specific outcomes for each scenario detailed
in Appendix C.
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Figure 3: Absolute difference between the average per-
formance of LLMs in various noisy environments and
their average performance in Clean-level environment.

the performance of LLMs exhibits significant351

fluctuations. For instance, when transitioning from352

Clean-level environment to Union-level, human353

performance in tool selection only decreases by354

2.86 points, whereas the average performance355

of all LLMs decreases by approximately 20.32356

points. To gain a clearer understanding, we357

employ Welch’s ANOVA (Bl, 1947) to analyze358

the significance of LLMs’ performance during the359

content-filling stage across various environments.360

As illustrated in Table 3, our findings underscore361

the consistency of human performance and the362

noteworthy disparities in LLMs’ performance363

across different environments. Consequently,364

enhancing the robustness of LLMs in tool learning365

is an area that requires significant attention.366

Noise affecting tool names has a more pro-367

nounced impact on LLM performance than368

noise introduced to parameters. We compute the369

absolute difference in average LLMs performance370

for each type of noise added to tool names371

or parameters, relative to their performance in372

the Clean-level environment, respectively. The373

results depicted in Figure 3 show that tool name374

noise significantly affects LLMs’ tool learning375

performance throughout the entire process. In376

contrast, noise in the parameters has minimal377

impact on the robustness of LLMs during the378

tool selection stage and exerts less influence on379

subsequent stages compared to tool name noise.380

Notably, LLMs exhibit greater robustness in the381

Union-level environment than in the Heavy (Tool)382

environment, underscoring the substantial impact383

of tool naming on model robustness.384

Offering LLMs interactive examples385

enhances their tool learning performance, yet386

0

20

40

60

80
Clean

Slight

MediumHeavy

Union

First Turn Third Turn

Figure 4: The performance of GPT-4 during the content
filling phase in the first and third rounds of interaction.

Models Tool Selection Parameter Identification

GPT-3.5-turbo 33.72 33.85
GPT-4 29.17 22.83

Table 4: The percentage of error caused by noise
correction at different stages in GPT family of models.

it does not bolster their robustness. As tool 387

learning entails multiple turns of interaction 388

between LLMs and external environments, we 389

initially provide the first two turns of interactions 390

for the test cases in each environment to evaluate 391

LLMs’ performance during the third turn of 392

interactions. Upon comparing GPT-4’s results in 393

the first and third turns of interactions (Figure 4), it 394

becomes evident that the provision of two turns 395

of interaction examples leads to a consistent 396

performance boost for GPT-4, resulting in an 397

average performance improvement of 22.91 points 398

across various environments. However, when 399

examining the performance variation values, 400

it is noteworthy that the standard deviation of 401

its performance across environments increased 402

from 8.14 in the first turn to 12.56 in the third 403

turn. This observation suggests that while its 404

performance improves, its robustness does not see 405

a corresponding enhancement. 406

4.3 Why do GPT family of models NOT 407

perform well in Slight-level environment? 408

A particularly intriguing finding is that, in contrast 409

to other LLMs, the GPT family of models exhibits 410

a lower performance in Slight-level environment 411

compared to Medium-level, despite the limited 412

validity of the information provided by the latter. 413

Our thorough investigation into the model outputs 414

has revealed that this phenomenon can be attributed 415

to the inherent noise correction capability of the 416

GPT family of models. For instance, when the 417
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Figure 5: Illustration of RoTTuning. RoTTuning encompasses four phases, aiming at bolstering the robustness of
LLMs in tool learning through increased environmental diversity.

GPT family of models selects the tool labeled as418

“predOict_aTge,” it automatically corrects the noise419

within it and generates “predict_age” as the output,420

consequently leading to an error. 4421

Table 4 illustrates the proportions of total422

error attributed to noise correction for the tool423

selection and parameter identification phases of424

the GPT family of models within the Slight-425

level environment. Notably, these proportions are426

exceptionally high, exceeding one-third for GPT-427

3.5-turbo. Consequently, addressing the challenge428

of mitigating capability degradation stemming429

from the model’s inherent characteristics remains a430

pressing research concern.431

5 RoTTuning432

It is evident that enhancing the robustness of LLMs433

in tool learning is imperative. To tackle this434

issue, we introduce RoTTuning, a novel approach435

aimed at bolstering the robustness of LLMs through436

increased environmental diversity.437

5.1 Method438

RoTTuning encompasses four phases: query439

expansion, trajectory generation, environment aug-440

mentation, and generalizability training (Figure 5).441

4For more detailed examples, please refer to Appendix D.

Query Expansion To efficiently generate high- 442

quality user queries on a large scale, we employ 443

the self-instruct (Wang et al., 2023b) technique, 444

drawing from the 105 existing user queries.5 445

Specifically, we instruct GPT-4 to create seven 446

fresh user queries within the context of a subset of 447

tools, accompanied by three existing user queries 448

and two model-generated queries. To ensure 449

diversity in our dataset, we scrutinize the new 450

data for redundancy in relation to each provided 451

example and eliminate queries with Rouge-L 452

values surpassing 0.55. This process yields a total 453

of 4,077 new user queries. 454

Trajectory Generation Upon obtaining high- 455

quality user queries, we employ GPT-4 to produce 456

tool learning trajectories. To ensure the accuracy 457

of the generated trajectories, we leverage the 458

specifically designed function call feature of GPT- 459

4. Simultaneously, we guide GPT-4 in generating 460

the associated thought process by incorporating 461

a system prompt.6 Furthermore, we specify that 462

GPT-4’s tool usage is limited to a maximum of nine 463

turns. By considering each turn of interaction as a 464

distinct data point, this process results in a total of 465

5The specific prompt can be found in Appendix G.
6The specific prompt can be found in Appendix H.

7



Level Clean Slight Medium Heavy Union

sTS 76.19 72.38 70.48 65.24 63.81
sPI 55.24 50.00 50.48 39.05 44.76
sCF 42.86 36.19 34.29 28.10 28.57

Table 5: The score in different stages (%) of
RoTLLaMA in various Environments.

12,247 pieces of training data.466

Environment Augmentation To enhance the467

variety of environments, we modify the trajectories468

generated in the Clean-level environment to align469

with the characteristics of noisy environments.470

This strategy ensures data quality while addressing471

the challenges of working in noisy settings. To472

mitigate the potential drawbacks of data coupling,473

we introduce randomness by augmenting 3000474

trajectories for each of the Slight-, Medium-,475

and Heavy-level environments, along with 1500476

trajectories for Union-level environments. When477

combined with the data from the Clean-level478

environment, this approach yields a total of479

22,747 trajectories, representing a diverse range480

of environmental conditions.481

Generalizability Training Utilizing the482

diversity trajectories generated, we proceed with483

the fine-tuning of LLaMA-2-7B-base (Touvron484

et al., 2023b) and implement a position485

interpolation (Chen et al., 2023a) technique486

to extend its context length to 8096. Based on487

previous research indicating that fine-tuning488

with LoRA (Hu et al., 2022) achieves superior489

generalization compared to full parametric490

fine-tuning (Zeng et al., 2023), we opt for the491

LoRA fine-tuning approach. We conduct 5492

epochs of training to derive the ultimate model,493

RoTLLaMA, which exhibits robust generalization494

across multiple environments.495

5.2 Experimental Results496

We carry out a series of experimental analyses with497

RoTLLaMA on RoTBench to verify its advantages498

when facing various noise environments.499

Performance We analyze the performance of500

RoTLLaMA in various environments, and the501

results are presented in Table 5. The results reveal502

that RoTLLaMA’s performance stability across503

different environments significantly surpasses that504

of GPT-4. Specifically, in the tool selection505

phase, the extreme performance difference is only506

12.38, whereas GPT-4 demonstrates a much higher507

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Tool Selection Parameter Identification Content Filling

RobusTLLaMA w/o LoRA w/o Augmentation w/o Both

Figure 6: The means and standard deviations of our
model’s performance in the five environments.

extreme difference of 21.90. Furthermore, in the 508

parameter recognition and content filling phases, 509

the extreme performance differences are 16.19 and 510

14.76, respectively, both of which are smaller than 511

GPT-4’s corresponding values of 20.95 and 20.95. 512

Ablation Study To evaluate the effectiveness of 513

various components within our approach, we con- 514

ducted ablation studies on RoTLLaMA. As shown 515

in Figure 6, when substituting full-parameter fine- 516

tuning for LoRA fine-tuning (i.e., w/o LoRA), 517

there is a slight decrease in model performance, 518

and standard deviations across environments re- 519

main largely unchanged. This suggests that 520

employing LoRA enhances model performance 521

without significantly impacting its robustness. 522

On the other hand, if we omit environment 523

augmentation (i.e., w/o Augmentation), there is 524

a notable decrease in both mean performance and 525

a significant increase in standard deviation within 526

each environment. This underscores the crucial role 527

of environment augmentation in enhancing both 528

model performance and robustness. Furthermore, 529

exclusively utilizing full-parameter fine-tuning on 530

the model (i.e., w/o Both) leads to a degradation of 531

16.10 points in model performance. 532

6 Conclusion 533

In this paper, we introduce RoTBench, a multi- 534

level benchmark for evaluating the robustness of 535

LLMs in tool learning. RoTBench contains five 536

environments, each characterized by varying noise 537

levels, shedding light on the pressing need to 538

bolster the robustness of LLMs. Furthermore, we 539

present RoTTuning, an innovative approach that 540

significantly improves the robustness of LLMs 541

in tool learning by increasing the diversity of 542

environments during the training phase. 543
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Limitations544

While we introduce a multi-level benchmark545

for evaluating the robustness of LLMs in tool546

learning and a training method aimed at increasing547

environmental diversity, our work does have some548

limitations. On one hand, our primary focus is549

on assessing the robustness of LLMs in a single550

tool-use round, and we do not delve into whether551

LLMs are able to self-correct their behavior in552

response to environmental feedback. However, we553

analyze the performance of GPT-4 based on the554

interaction trajectories in the first two rounds and555

find that this does not enhance model robustness.556

On the other hand, While tool descriptions are557

undoubtedly crucial for understanding tools, our558

analysis centers on the noise present in tool names559

and parameters. This choice is driven by our560

discovery that LLMs’ comprehension of tools561

primarily relies on tool and parameter names rather562

than a nuanced understanding of the meanings563

conveyed in tool documentation. Within this564

framework, evaluating LLMs through RoTBench565

can effectively measure their tolerance to noise in566

these additional details, thus propelling research567

endeavors aimed at improving LLMs’ tool learning568

capabilities.569
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A Details of LLMs812

To evaluate the robustness of widely-used LLMs813

with tool-use capabilities, we opt for testing four814

open-source models and two closed-source models.815

A.1 Open-Source LLMs816

Among open-source LLMs, we have chosen four817

models that have undergone dedicated training for818

tool learning.819

ToolLLaMA-2-7B-v1 ToolLLaMA-2-7B-v1, de- 820

veloped by Tsinghua University, is a tool-oriented 821

LLM that harnesses the power of 126,000 data 822

samples, including more than 16,000 APIs, through 823

supervised fine-tuning on LLaMA-2-7B-base. This 824

enables ToolLLaMA-2-7B-v1 to effectively utilize 825

various tools to meet diverse user requirements. 826

ToolLLaMA-2-7B-v2 ToolLLaMA-2-7B-v2 has 827

undergone fine-tuning from LLaMA-2-7B-base, by 828

assimilating an expansive dataset comprising over 829

120,000 solution paths and annotated chains of 830

thought. To the best of our knowledge, this model 831

stands as the most extensively trained tool-oriented 832

LLM, utilizing the largest dataset and the broadest 833

spectrum of tools among all available options. 834

NexusRaven-13B-v1 NexusRaven-13B-v1 is a 835

tool-oriented model that underwent fine-tuning 836

based on CodeLLaMA-13B. Distinguishing itself 837

from prior models, NexusRaven-13B-v1 employs 838

code nesting to invoke tools, generating the entire 839

inference path simultaneously instead of following 840

a step-by-step approach. 841

NexusRaven-13B-v2 NexusRaven-13B-v2 en- 842

hances the performance of NexusRaven-13B-v1 843

by generating single, nested, and parallel function 844

calls in various complex scenarios. Additionally, 845

NexusRaven-13B-v2 can generate inference paths 846

for the function calls it creates, thereby improving 847

overall generalization. 848

A.2 Closed-Source LLMs 849

Among closed-source LLMs, we have opted for 850

two of the most representative models from the 851

GPT family. 852

GPT-3.5-turbo GPT-3.5-turbo stands out as the 853

most potent and cost-efficient model within the 854

GPT-3.5 series. Tailored for conversations, it excels 855

in comprehending and generating natural language. 856

Furthermore, it exhibits strong tool invocation 857

capabilities. 858

GPT-4 GPT-4 represents OpenAI’s most robust 859

LLM, surpassing its predecessor in delivering safer 860

and more beneficial responses. Additionally, GPT- 861

4 offers formal support for multimodal inputs and 862

has an expanded capability to address a broader 863

spectrum of social requirements. 864
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B Experimental Setup865

Inference In accordance with Ye et al. (2024),866

we adopt the ReAct (Yao et al., 2023) format867

for inference, employing a consistent prompt868

template for both the ToolLLaMA-2-7B family of869

models and the GPT family of models. However,870

as NexusRaven-13B fmaily of models utilize871

nested functions for output, we adhere to the872

guidelines outlined on their official website, which873

necessitate the use of a distinct set of template.7874

Meanwhile, to evaluate human performance across875

environments with different noise levels, we enlist876

three university students. Each student receives877

identical tool documentation and task descriptions.878

Independently, they completes the questions and879

the average score derived from their responses880

served as the human performance benchmark.881

Evaluation We score the performance of LLMs882

and Human using the evaluation methods defined883

in Section 3.3. In this system, each data point is884

scored as 0 or 1 at each stage. This is because,885

in the context of tool learning, tool calls either886

succeed or fail, and even small errors can cause887

the entire process to fail. In particular, In the888

tool selection phase, an error in tool selection can889

lead to overall failure, independent of parameter890

accuracy. In the parameter identification phase,891

missing necessary parameters or wrong parameter892

selection can lead to failure. In the content893

filling phase, incorrect content input can lead to894

undesirable tool execution results.895

C Results in Different Scenarios896

We show the performance of each model in897

different scenarios and document the results from898

Table 6 to Table 12. From the results, we have the899

following observations.900

The variance in average performance of LLMs901

across various study scenarios can be attributed902

to the relevance of specific features of available903

tools to each scenario. For instance, in both904

application operations and personal life scenarios,905

LLMs may err due to the strict sequential order906

in which tools are called (e.g., obtaining parame-907

ter values for “list_properties” necessitates prior908

execution of “search_locations”).909

It’s notable that the model’s perception of910

environmental complexity may diverge from911

7The specific prompt can be found in Appendix F.

human intentions. For instance, in information 912

retrieval scenarios, LLMs exhibit inferior aver- 913

age performance in the slight-level environment 914

compared to the medium-level and heavy-level 915

environments, primarily due to limitations in noise 916

correction capabilities (Section 4.3). 917

Regarding the model itself, variations in train- 918

ing methods and data can lead to unexpected 919

performances in certain scenarios. For in- 920

stance, ToolLLaMA-7B-v1 demonstrates a per- 921

formance discrepancy between the clean-level 922

and union-level environments in the application 923

manipulation scenario, scoring 20 and 40, respec- 924

tively. This disparity arises from its ability to 925

perform better when only two tools are available 926

alongside “ask_to_user” and “finish,” whereas 927

GPT4 consistently prompts for API keys even when 928

unnecessary. 929

D Examples for Noise Correction 930

In Table 13, we present instances of noise cor- 931

rection observed during the tool selection and 932

parameter identification phases of the GPT family 933

of models. 934

E Further Studies about RoTTuning 935

We conduct additional comparative analysis to 936

further validate the effectiveness of RoTTuning 937

in improving the stability of LLMs in noisy 938

environments. 939

The Number of Tool Hallucinations We com- 940

pare the number of tool hallucinations for each 941

LLM in all environments and find that our model 942

has significantly fewer hallucinations compared to 943

the GPT family of models (Table 14). This demon- 944

strates the effectiveness of our method in mitigating 945

interference from various sources of noise while 946

accurately acquiring environmental information. 947

It’s worth noting that the NexusRaven family of 948

models, which relies on CodeLLaMA (Rozière 949

et al., 2023) as a base, also exhibits low tool 950

hallucinations, suggesting that utilizing code-based 951

approaches for tool learning is a viable direction. 952

Performance of RoTToolLLaMA To confirm 953

the robustness of our method for enhancing 954

established tool-oriented LLMs, we proceed to 955

fine-tune ToolLLaMA-2-7B using our generated 956

trajectories and obtain RoTToolLLaMA. The 957

corresponding results presented in Table 15 illus- 958

trate that our method’s fine-tuning significantly 959
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Models
Open-Source LLMs Closed-Source LLMs

ToolLLaMA-
2-7B-v1

ToolLLaMA-
2-7B-v2

NexusRaven-
13B-v1

NexusRaven-
13B-v2

GPT-3.5-
turbo GPT-4

Tool Selection

Clean 60.00 73.33 20.00 53.33 86.67 86.67
Slight 46.67 60.00 30.00 56.67 73.33 83.33
Medium 36.67 50.00 30.00 70.00 73.33 90.00
Heavy 36.67 43.33 20.00 40.00 53.33 70.00
Union 40.00 26.67 26.67 46.67 60.00 46.67

Parameter Identification

Clean 60.00 60.00 6.67 40.00 60.00 73.33
Slight 40.00 46.67 13.33 40.00 36.67 53.33
Medium 33.33 40.00 10.00 50.00 40.00 63.33
Heavy 36.67 30.00 6.67 13.33 23.33 40.00
Union 40.00 13.33 13.33 40.00 26.67 33.33

Content Filling

Clean 26.67 26.67 6.67 33.33 60.00 73.33
Slight 16.67 13.33 10.00 33.33 36.67 53.33
Medium 13.33 10.00 6.67 36.67 40.00 63.33
Heavy 16.67 13.33 3.33 13.33 20.00 36.67
Union 20.00 0.00 6.67 33.33 26.67 33.33

Table 6: Performance of various LLMs in the text generation scenario, with the best performance in each environment
highlighted in bold.

Models
Open-Source LLMs Closed-Source LLMs

ToolLLaMA-
2-7B-v1

ToolLLaMA-
2-7B-v2

NexusRaven-
13B-v1

NexusRaven-
13B-v2

GPT-3.5-
turbo GPT-4

Tool Selection

Clean 80.00 80.00 80.00 80.00 86.67 86.67
Slight 63.33 80.00 70.00 83.33 63.33 73.33
Medium 60.00 73.33 66.67 80.00 83.33 93.33
Heavy 46.67 56.67 50.00 60.00 56.67 56.67
Union 40.00 53.33 46.67 60.00 60.00 86.67

Parameter Identification

Clean 60.00 40.00 26.67 33.33 40.00 66.67
Slight 50.00 43.33 26.67 36.67 26.67 60.00
Medium 50.00 46.67 16.67 30.00 40.00 66.67
Heavy 33.33 40.00 10.00 26.67 13.33 26.67
Union 20.00 46.67 6.67 20.00 13.33 60.00

Content Filling

Clean 46.67 33.33 0.00 20.00 26.67 53.33
Slight 33.33 40.00 0.00 23.33 16.67 53.33
Medium 30.00 40.00 0.00 16.67 30.00 56.67
Heavy 13.33 20.00 0.00 23.33 10.00 20.00
Union 13.33 40.00 0.00 13.33 6.67 46.67

Table 7: Performance of various LLMs in the data understanding scenario, with the best performance in each
environment highlighted in bold.
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Models
Open-Source LLMs Closed-Source LLMs

ToolLLaMA-
2-7B-v1

ToolLLaMA-
2-7B-v2

NexusRaven-
13B-v1

NexusRaven-
13B-v2

GPT-3.5-
turbo GPT-4

Tool Selection

Clean 66.67 60.00 40.00 86.67 73.33 93.33
Slight 60.00 50.00 36.67 80.00 60.00 80.00
Medium 63.33 46.67 43.33 76.67 73.33 90.00
Heavy 46.67 36.67 36.67 73.33 46.67 56.67
Union 53.33 46.67 26.67 66.67 60.00 73.33

Parameter Identification

Clean 60.00 46.67 6.67 73.33 53.33 53.33
Slight 53.33 43.33 6.67 66.67 36.67 40.00
Medium 46.67 40.00 10.00 60.00 53.33 53.33
Heavy 30.00 30.00 6.67 43.33 16.67 23.33
Union 40.00 33.33 6.67 40.00 33.33 40.00

Content Filling

Clean 33.33 20.00 0.00 33.33 20.00 33.33
Slight 30.00 20.00 0.00 30.00 20.00 30.00
Medium 16.67 10.00 0.00 26.67 30.00 40.00
Heavy 6.67 20.00 0.00 26.67 10.00 20.00
Union 13.33 13.33 0.00 6.67 26.67 40.00

Table 8: Performance of various LLMs in the real-time search scenario, with the best performance in each
environment highlighted in bold.

Models
Open-Source LLMs Closed-Source LLMs

ToolLLaMA-
2-7B-v1

ToolLLaMA-
2-7B-v2

NexusRaven-
13B-v1

NexusRaven-
13B-v2

GPT-3.5-
turbo GPT-4

Tool Selection

Clean 86.67 73.33 73.33 66.67 80.00 73.33
Slight 80.00 80.00 73.33 70.00 66.67 73.33
Medium 83.33 80.00 73.33 66.67 80.00 86.67
Heavy 60.00 50.00 70.00 66.67 70.00 63.33
Union 80.00 53.33 73.33 66.67 66.67 53.33

Parameter Identification

Clean 40.00 40.00 6.67 60.00 53.33 46.67
Slight 56.67 46.67 10.00 60.00 36.67 46.67
Medium 53.33 46.67 6.67 53.33 56.67 46.67
Heavy 36.67 20.00 13.33 50.00 40.00 43.33
Union 73.33 40.00 13.33 53.33 40.00 33.33

Content Filling

Clean 20.00 13.33 0.00 20.00 20.00 20.00
Slight 33.33 20.00 0.00 20.00 16.67 13.33
Medium 40.00 26.67 0.00 16.67 26.67 23.33
Heavy 20.00 6.67 0.00 26.67 16.67 13.33
Union 40.00 26.67 0.00 13.33 20.00 6.67

Table 9: Performance of various LLMs in the application manipulation scenatio, with the best performance in each
environment highlighted in bold.
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Models
Open-Source LLMs Closed-Source LLMs

ToolLLaMA-
2-7B-v1

ToolLLaMA-
2-7B-v2

NexusRaven-
13B-v1

NexusRaven-
13B-v2

GPT-3.5-
turbo GPT-4

Tool Selection

Clean 53.33 60.00 40.00 66.67 73.33 66.67
Slight 46.67 63.33 43.33 73.33 50.00 70.00
Medium 50.00 53.33 50.00 63.33 60.00 73.33
Heavy 23.33 40.00 43.33 50.00 50.00 50.00
Union 40.00 53.33 53.33 46.67 40.00 46.67

Parameter Identification

Clean 26.67 40.00 13.33 53.33 26.67 40.00
Slight 30.00 26.67 13.33 53.33 10.00 26.67
Medium 26.67 26.67 13.33 36.67 40.00 40.00
Heavy 6.67 16.67 3.33 30.00 16.67 26.67
Union 26.67 20.00 6.67 26.67 26.67 40.00

Content Filling

Clean 20.00 26.67 0.00 40.00 13.33 33.33
Slight 16.67 20.00 0.00 43.33 10.00 23.33
Medium 13.33 23.33 0.00 33.33 30.00 40.00
Heavy 6.67 10.00 0.00 26.67 10.00 26.67
Union 6.67 20.00 0.00 26.67 6.67 26.67

Table 10: Performance of various LLMs in the personal life scenario, with the best performance in each environment
highlighted in bold.

Models
Open-Source LLMs Closed-Source LLMs

ToolLLaMA-
2-7B-v1

ToolLLaMA-
2-7B-v2

NexusRaven-
13B-v1

NexusRaven-
13B-v2

GPT-3.5-
turbo GPT-4

Tool Selection

Clean 60.00 80.00 73.33 73.33 46.67 73.33
Slight 50.00 63.33 66.67 83.33 43.33 73.33
Medium 43.33 56.67 63.33 76.67 53.33 73.33
Heavy 50.00 53.33 53.33 80.00 53.33 56.67
Union 26.67 33.33 46.67 53.33 40.00 40.00

Parameter Identification

Clean 26.67 33.33 26.67 53.33 40.00 40.00
Slight 16.67 20.00 23.33 60.00 30.00 36.67
Medium 16.67 16.67 30.00 60.00 43.33 50.00
Heavy 23.33 26.67 16.67 56.67 33.33 36.67
Union 20.00 13.33 20.00 40.00 40.00 40.00

Content Filling

Clean 20.00 26.67 0.00 46.67 26.67 33.33
Slight 13.33 16.67 6.67 56.67 23.33 30.00
Medium 16.67 13.33 3.33 53.33 33.33 46.67
Heavy 23.33 16.67 3.33 53.33 26.67 30.00
Union 13.33 6.67 0.00 33.33 33.33 33.33

Table 11: Performance of various LLMs in the information retrieval scenario, with the best performance in each
environment highlighted in bold.
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Models
Open-Source LLMs Closed-Source LLMs

ToolLLaMA-
2-7B-v1

ToolLLaMA-
2-7B-v2

NexusRaven-
13B-v1

NexusRaven-
13B-v2

GPT-3.5-
turbo GPT-4

Tool Selection

Clean 46.67 53.33 53.33 73.33 66.67 66.67
Slight 43.33 50.00 43.33 73.33 43.33 73.33
Medium 46.67 43.33 40.00 66.67 50.00 70.00
Heavy 26.67 36.67 36.67 53.33 50.00 53.33
Union 20.00 26.67 26.67 46.67 33.33 46.67

Parameter Identification

Clean 33.33 33.33 20.00 66.67 60.00 40.00
Slight 26.67 40.00 23.33 66.67 20.00 46.67
Medium 26.67 23.33 16.67 56.67 36.67 50.00
Heavy 16.67 16.67 13.33 33.33 26.67 23.33
Union 13.33 13.33 13.33 33.33 13.33 26.67

Content Filling

Clean 33.33 33.33 6.67 60.00 46.67 33.33
Slight 26.67 36.67 6.67 60.00 16.67 46.67
Medium 26.67 23.33 3.33 46.67 23.33 46.67
Heavy 13.33 16.67 0.00 33.33 20.00 23.33
Union 6.67 6.67 6.67 26.67 6.67 26.67

Table 12: Performance of various LLMs in the financial transactions scenario, with the best performance in each
environment highlighted in bold.

enhances the model’s tool learning capability960

across all stages, while also bolstering its overall961

robustness. For instance, across the three stages,962

our method demonstrates performance extremes963

of 12.33/13.33/9.53 in various environments, com-964

pared to ToolLLaMA-2-7B-v2’s 26.67/16.67/10.95.965

This further underscores the efficacy of our pro-966

posed approach.967

F Prompt Template for Inference968

In the context of inference, both the ToolLLaMA-969

2-7B family of models and the GPT family of970

models utilize the same prompt (See Table 16),971

whereas NexusRaven-13B-v1 and NexusRaven-972

13B-v2 employ distinct prompts (See Table 17 and973

Table 18).974

G Prompt Template for Query Expansion975

We use GPT-4 for query expansion based on976

prompt in Table 19.977

H Prompt Template for Trajectory 978

Generation 979

We use GPT-4 for trajectory generation based on 980

prompt in Table 20. 981
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Models Stage Query Noisy Part Model Output

GPT-3.5-
turbo Tool Selection

I have a list of names:
Maria, Juan, and Car-
los. Can you predict
their ages?

Tool: predOict_aTge
Description: Predicts the ages
of one or more people given
their names.
Parameters: ...

Tool: predict_age

GPT-3.5-
turbo

Parameter
Identification

I want to know
what will be the
output if we run these
commands sequentially
in bash: ‘cd
/home/user/documents’,
‘ls -a.’

Tool: execute_bash_code
Description: ...
Parameters: Nommands (Re-
quired)
Param Description: The com-
mand string to be executed.

Parameters: commands

GPT-4 Tool Selection

Is there any social
event available which
requires high accessi-
bility and is free of
cost?

Tool: get_activty_by_ye
Description: Find a random
activity with a given type.
Parameters: ...

Tool: get_activity_by_type

GPT-4 Parameter
Identification

Get me quotes for
symbols AAPL, MSFT,
and GOOGL from US.

Tool: get_quotes
Description: ...
Parameters: ymbols (Re-
quired)
Param Description: The value
of symbol field returned in
auto-complete endpoint. Sep-
arated by comma for multiple
entities.

Parameters: symbols

Table 13: Examples for noise correction of GPT family of models.

ToolLLaMA-2- NexusRaven- GPT- RoTLLaMA7B-v1 7B-v2 13B-v1 13B-v2 3.5-turbo 4

53 65 6 0 50 23 3

Table 14: The number of tool hallucinations for each LLM in all environments.

Level Clean Slight Medium Heavy Union

sTS 69.52 69.05 70.95 64.76 56.19
sPI 52.38 45.24 50.95 40.95 39.05
sCF 38.10 32.38 34.76 31.43 28.57

Table 15: The score in different stages (%) of RoTToolLLaMA in various Environments.
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System
You are an expert in using tools to handle real-time queries from users.
First I will give you the task description, and your task start.
At each step, your task is to give your thought to analyze the current state, decide the next step, with a
function call to actually execute your step.
After the call, you will get the call result, and you are now in a new state.
Then you will analyze your status now, then decide what to do next...
After many (Thought-call) pairs, you finally perform the task, then you can give your final answer.

Desired format:
Thought: ⟨ The thought⟩
Action: ⟨ The tool you decide to use⟩
Action Input: ⟨ The parameters for the tool⟩

Remember:
1. You should ALWAYS think about what to do, but all the thought is short, at most in 3 sentences.
2. The action to take should be one of the given tools below.
3. The “Action Input” needs to provide a dict similar to {parameter_1: value_1, parameter_2: value_2} to
call action.
4. Always use the “finish” tool upon task completion. The final answer should be comprehensive enough
for the user. If the task is unmanageable, use the “finish” tool and respond with “I cannot handle the task.”

Task description: You should use tools to help handle the real time user queries. Specifically, you have
access of the following tools:
{Tool Document}

Let’s Begin!

User
{Query}
Begin!

Table 16: The prompt used for ToolLLaMA-2-7B family of models and GPT family of models, where “{Tool
Document}” represents the tool documentation given to LLMs and “{Query}” represents the query given by the
user.

User
{Tool Document}

User Query: Question: {Query}

Please pick a function from the above options that best answers the user query and fill in the appropriate
arguments.

Table 17: The prompt used for NexusRaven-13B-v1, where “{Tool Document}” represents the tool documentation
given to LLMs and “{Query}” represents the query given by the user.

User
{Tool Document}

User Query: {Query}

Table 18: The prompt used for NexusRaven-13B-v2, where “{Tool Document}” represents the tool documentation
given to LLMs and “{Query}” represents the query given by the user.

18



System
As an expert, your assignment is to utilize the comprehensive documentation of various tools to develop
a series of problem scenarios that these tools can resolve. Ideally, each scenario should necessitate the
sequential use of multiple tools for its resolution.

Remember:
1. The tools employed to address a problem should be a subset of the tools detailed in the provided
documentation; ideally, each problem should require the use of more than one tool.
2. The parameter values needed by each tool can either be directly extracted from the query or obtained
by invoking the specified other tool.
3. The problem scenario should be expressed in a way that is understandable to humans, while also
showcasing the diverse functions of the provided tools and their interrelationships.

Here is the documentation of various tools: {Tool Document}

User
Please generate 12 diverse queries according to the documentation.

Examples:
{Examples}

Table 19: The prompt for query expansion, where “{Tool Document}” represents the tool documentation given to
LLMs and “{Examples}” represents the examples for LLMs.

System
You are an expert in using tools to handle real-time queries from users.
At each step, your task is to give your thought to analyze the current state, decide the next step, with a
function call to actually execute your step.
After the call, you will get the call result, and you are now in a new state.
Then you will analyze your status now, then decide what to do next...
After a series of these thought-action pairs, you will complete the task and provide the final answer.

Remember:
1. You must ALWAYS select a specific function to execute your idea at each step.
2. Before calling any function, you should ALWAYS give your thought, but limit it to a maximum of three
sentences.
3. ALWAYS use the “finish” tool upon task completion. The final answer should be comprehensive
enough for the user. If the task is unmanageable, use the “finish” tool and respond with “I cannot handle
the task”.

Let’s begin!

User
{Query}
Begin!

Table 20: The prompt for trajectory generation, where “{Query}” represents the query given by the user.
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