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Abstract
Graph Neural Networks (GNNs) have emerged
as powerful tools for graph learning, and one key
challenge arising in GNNs is the development of
effective pooling operations for learning meaning-
ful graph representations. In this paper, we pro-
pose a novel Edge-Node Attention-based Hierar-
chical Pooling (ENAHPool) operation for GNNs.
Unlike existing cluster-based pooling methods
that suffer from ambiguous node assignments
and uniform edge-node information aggregation,
ENAHPool assigns each node exclusively to a
cluster and employs attention mechanisms to per-
form weighted aggregation of both node features
within clusters and edge connectivity strengths
between clusters, resulting in more informative
hierarchical representations. To further enhance
the model performance, we introduce a Multi-
Distance Message Passing Neural Network (MD-
MPNN) that utilizes edge connectivity strength
information to enable direct and selective message
propagation across multiple distances, effectively
mitigating the over-squashing problem in classi-
cal MPNNs. Experimental results demonstrate
the effectiveness of the proposed method.

1. Introduction
Convolutional Neural Networks (CNNs) are powerful tools
for processing grid-structured data, such as text, images,
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and time series. However, real-world data in many domains
often involve complex relationships that cannot be easily
captured by regular grid formats, such as those found in
social networks and molecular structures. To effectively
handle such irregular data, which are typically modeled as
graphs, Graph Neural Networks (GNNs) have been intro-
duced. In recent years, GNNs have been widely adopted in
various fields, including knowledge graphs (Schlichtkrull
et al., 2018), drug discovery (Sun et al., 2020), and recom-
mendation systems (Wu et al., 2023).

One challenge arising in GNNs is extracting meaningful
representations for graph-level tasks, such as graph classi-
fication (Errica et al., 2020) and graph regression (Bianchi
et al., 2020). To address this challenge, various graph pool-
ing operations have been proposed, which can generally be
categorized into two categories. The first category consists
of global pooling methods, which aggregate all node embed-
dings collectively. However, these methods fail to capture
the hierarchical structures inherent in graphs.

To address this issue, hierarchical pooling methods have
been developed to preserve the hierarchical structure of
graphs by progressively reducing their size. This reduction
is typically achieved using two strategies (Ju et al., 2024).
The first is the Top-K strategy, which ranks nodes based on a
scoring function and retains only the Top-K nodes and their
associated edges as the coarsened graph. In contrast, the
cluster-based strategy groups nodes into clusters and gener-
ates the coarsened graph by aggregating both node features
within clusters and edge connectivity strengths between clus-
ters. Since the Top-K strategy suffers from information loss
due to the direct removal of nodes and edges, the cluster-
based strategy is generally considered more effective.

Unfortunately, many cluster-based methods rely on soft
node assignment (Ying et al., 2018), where node features
are probabilistically assigned to different clusters and then
summed to form cluster representations. This approach can
lead to influential nodes being split across multiple clusters,
while less influential nodes are assigned entirely to a single
cluster, potentially causing the latter to dominate the cluster
representations. Although some alternative methods, such
as SEP-G (Wu et al., 2022), can assign nodes to single clus-
ters, they still employ simple summation for aggregation,
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Figure 1. The framework of the proposed ENAHPool operation associated with the MD-MPNN architecture.

overlooking the importance of individual nodes. To address
this limitation, several studies (Liu et al., 2022; Ye et al.,
2023) have introduced attention mechanisms to aggregate
node features within clusters. However, these approaches
are computationally expensive, due to the fact that they lack
the ability to process graphs in a parallel way.

On the other hand, when performing convolution on the
coarsened graphs generated by cluster-based methods, edge
connectivity strengths can naturally serve as attention
weights, guiding selective information aggregation. How-
ever, existing cluster-based methods typically divide each
edge into different cluster pairs based on the assignment
probabilities of its connected nodes, and aggregate the con-
nectivity strengths between identical cluster pairs via simple
summation. This overlooks the importance of individual
edges, resulting in aggregated edge connectivity strengths
that fail to accurately reflect the influence between clusters.
For example, for a social network, the edge connectivity
strengths between the leadership teams of Companies A and
B may be equal to that between the employees of Compa-
nies A and C, but the influence of B and C on A could be
significantly different. Therefore, it is essential for cluster-
based methods to accommodate the importance of edges
when aggregating their connectivity strengths.

Furthermore, most graph pooling operations are integrated
with Message-Passing Neural Networks (MPNNs) (Gilmer
et al., 2017), which often suffer from the notorious over-
squashing problem (Topping et al., 2022; Giovanni et al.,
2023) and influence the effectiveness of pooling methods
(e.g., Figure 2). This drawback arises because MPNNs
primarily rely on the iterative aggregation of information
from neighboring nodes to capture signals from distant parts

of the graph. As a result, the receptive field of each node
grows exponentially, incorporating a large amount of re-
dundant information from its neighbors. Eventually, the
information from such an exponentially growing receptive
field is squashed into a fixed-size representation, severely
limiting the ability of MPNNs to capture long-range infor-
mation (Alon & Yahav, 2021; Dwivedi et al., 2022).

To overcome this limitation, some graph rewiring strate-
gies have been developed. One category comprises local
rewiring methods, which allows direct message passing be-
tween nodes at different distances (Abboud et al., 2022;
Gutteridge et al., 2023; Ding et al., 2024). However, these
methods treat all nodes at the same distance equally, ignor-
ing the actual edge connectivity strength information among
them. Another strategy is based on global rewiring, such as
graph Transformers (Ying et al., 2021; Zhang et al., 2023),
which construct fully connected graphs and apply attention
mechanisms for information aggregation. However, these
approaches tend to disregard the original graph topology.

The aim of this work is to address the aforementioned short-
comings by introduce a novel Edge-Node Attention-based
Hierarchical Pooling (ENAHPool) operation, that is pro-
posed based on the Multi-Distance MPNN (MD-MPNN)
architecture. The framework of the proposed method is illus-
trated in Figure 1, and the main contributions are threefold.

First, we introduce a novel cluster-based hierarchical pool-
ing operation, namely ENAHPool, that assigns each node
exclusively to a cluster and incorporates attention mecha-
nisms to identify the importance of nodes within clusters
and edges between clusters. This design addresses the limi-
tation of uniform edge-node information aggregation aris-
ing in existing cluster-based methods and results in more
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Figure 2. An example of the expressive limitations of conventional
MPNNs, where G1 and G2 cannot be distinguished.

informative hierarchical representations. Second, we pro-
pose a Multi-Distance MPNN architecture that works in
conjunction with the proposed ENAHPool. This architec-
ture enables direct message propagation between nodes at
different shortest distances, effectively mitigating the over-
squashing problem in conventional MPNNs. Moreover, it
leverages edge connectivity strength information to selec-
tively aggregate information from equidistant nodes, further
enhancing the representational capacity of the architecture.
Third, we evaluate the classification performance of the pro-
posed ENAHPool operation associated with the MD-MPNN
architecture, the experiments demonstrate its effectiveness.

2. Related works
2.1. Graph Pooling

Graph pooling operations typically classified into two main
categories. The first category consists of global pooling
operations, which aggregate information from all node
embeddings in a single step, commonly known as read-
out functions. Such operations can be implemented using
permutation-invariant functions (Duvenaud et al., 2015; Xu
et al., 2019) or neural networks (Vinyals et al., 2016; Zhang
et al., 2018; Baek et al., 2021). However, these methods
overlook the inherent hierarchical structure characteristics
of graphs (Knyazev et al., 2019; Bianchi & Lachi, 2023).

To overcome this problem, hierarchical pooling operations
have been developed. These operations can capture the hier-
archical structures of the graph by progressively coarsening
it, which is achieved through the TopK-based strategy and
the cluster-based strategy. Nevertheless, these hierarchical
pooling methods still rely on readout functions to extract
graph representations from the coarsened graphs.

The TopK-based strategy involves learning the importance
values of nodes and selecting the Top-K nodes, along with
their corresponding edges, to form the coarsened graph
(Gao & Ji, 2019; Lee et al., 2019). However, such methods
often discard many nodes and edges, resulting in the loss of
valuable information within the graph (Liu et al., 2023).

The cluster-based strategy progressively compresses the
graph by clustering nodes while preserving the connections
between clusters. Existing cluster-based methods primarily
focus on optimizing the clustering process. For example,

DiffPool (Ying et al., 2018) employs GNNs to generate
assignment matrices, while StructPool (Yuan & Ji, 2020)
captures higher-order structural relationships to guide node
assignments. MinCutPool (Bianchi et al., 2020) applies
spectral clustering for node grouping, and SEP-G (Wu et al.,
2022) minimizes structural entropy to construct a hierarchi-
cal coding tree from nodes. DMoN (Tsitsulin et al., 2023)
leverages the modularity measure to evaluate clustering qual-
ity, whereas WGDPool (Xiao et al., 2024) introduces a dif-
ferentiable k-means clustering mechanism. However, these
methods perform uniform aggregation by summing node
features within clusters and edge connectivity strengths be-
tween clusters, without considering the varying importance
of individual nodes and edges. Although some methods,
such as ABDPool (Liu et al., 2022) and C2N-ABDP (Ye
et al., 2023), incorporate attention mechanisms for node
aggregation, they still overlook the importance of edges.

2.2. Message-Passing Neural Networks

Message-Passing Neural Networks (MPNNs) (Gilmer et al.,
2017) are a widely used framework for graph-related tasks.
The message passing process consists of two main steps: (1)
Initialization: node embeddings are initialized using their
attributes or predefined rules, such as node degrees; and
(2) Updating: node embeddings are iteratively updated by
aggregating the embeddings of their adjacent nodes. After
k iterations of message passing, corresponding to k layers
in the network, each node incorporates information from its
k-hop neighborhood. This process can be mathematically
written as (Ju et al., 2024)

h(l)
u = UPDATE(h(l−1)

u ,AGGREGATE({h(l−1)
v : v ∈ N (u)})).

where h
(l)
u is the embedding of node u after being updated

by the l-th layer, where h(0)
u is the original node feature and

N (u) denotes the set of adjacent nodes of node u. This
message-passing paradigm has been adopted in many in-
fluential works, e.g., GCN (Kipf & Welling, 2017), Graph-
SAGE (Hamilton et al., 2017) and GIN (Xu et al., 2019).

However, this iterative message-passing paradigm gives rise
to the over-squashing problem, which severely limits the
capacity of MPNNs to capture long-range dependencies
(Topping et al., 2022). To mitigate this issue, MixHop (Abu-
El-Haija et al., 2019a;b) utilizes powers of the normalized
adjacency matrix to directly aggregate information within k-
hop neighborhoods. The shortest-path-aware MPNNs, such
as SPN (Abboud et al., 2022) and GRED (Ding et al., 2024),
directly aggregate information from nodes at different short-
est path lengths, further alleviating the over-squashing issue.
In addition, graph Transformer models, such as Graphormer
(Ying et al., 2021) and GPS (Rampásek et al., 2022), can in-
herently capture global context, addressing the challenge of
long-range dependency modeling in conventional MPNNs.
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Figure 3. The process of hard node assignment and node aggregation using node-based attention mechanism.

However, these approaches generally overlook the edge con-
nectivity strength information in the graph. Notably, the
edge connectivity strengths in coarsened graphs generated
by cluster-based methods reflect the influence of information
propagation between clusters. Therefore, existing MPNNs
are not well-suited for cluster-based pooling methods, as
they fail to exploit this critical structural information.

3. The Proposed Methods
3.1. Preliminaries

We denote the input graph as G(0)(V (0), E(0)), where V
represents the nodes and E represents the edges. Since
hierarchical pooling operations alter the number of nodes
at each pooling layer, we define the graph at the l-th layer
as G(l)(V (l), E(l)). The connectivity strengths between
nodes in G(l) are represented by an adjacency matrix A(l) ∈
RNl×Nl , where Nl = |V (l)| is the number of nodes at l-th
layer. The node feature matrix is denoted as X(l) ∈ RNl×dl ,
where dl is the feature dimension at l-th layer.

3.2. The ENAHPool Operation

An overview of the proposed ENAHPool operation is il-
lustrated in Figure 1, with the computational process for
each l-th pooling layer comprising three main steps. First,
for the input graph G(l), we assign the set of nodes V (l)

completely into Nl+1 clusters, resulting in a hard node as-
signment matrix S

(l)
H ∈ RNl×Nl+1 . Second, by using the

node-based attention mechanism, we compute weights for
the nodes within each cluster and aggregate them to form the
compressed node feature matrix X(l+1) ∈ RNl+1×dl for the
coarsened graph G(l+1). Third, we apply the edge-based
attention mechanism to assign weights to each edge, produc-
ing the compressed adjacency matrix A(l+1) ∈ RNl+1×Nl+1

for the next layer. Details of each step are defined as follows.

Definition 1 (The Hard Node Assignment). To assign
each node exclusively to a single cluster, we first employ
the MD-MPNN model (as shown in Eq.(16)) to compute
the assignment matrix S(l) ∈ RNl×Nl+1 as

S(l) = MD-MPNNl,pool(A
(l), X(l)). (1)

where S
(l)
ij represents the probability that the i-th node is

assigned to the j-th cluster. Subsequently, we transform
this matrix by setting the maximum value in each row of
S(l) to 1 and all other values to 0, resulting in the hard
assignment matrix S

(l)
H ∈ {0, 1}Nl×Nl+1 , which ensures

that each node is uniquely assigned to the cluster with the
highest probability. The (i, j)-th entry S

(l)
H (i, j) satisfies

loc
(l)
i = argmaxj(S

(l)
i ), (2)

and

S
(l)
H (i, j) =

{
1 if j = loc

(l)
i ;

0 otherwise.
(3)

It is important to note that for these non-differentiable oper-
ations, we apply the straight-through estimator (STE) algo-
rithm (Yin et al., 2019) to enable gradient backpropagation.

Definition 2 (The Node-based Attention Mechanism).
The process of this computational step is illustrated in Fig-
ure 3. Specifically, we first calculate the importance of each
node in the entire graph G(l). The input consists of a set
of node embeddings Z(l) = {z⃗1(l), z⃗2(l), ..., z⃗Nl

(l)}, which
are also computed by a specified MD-MPNN architecture
in Eq.(16) as

Z(l) = MD-MPNNl,embed(A
(l), X(l)), (4)

where z⃗i
(l) ∈ Rdl . To obtain sufficient expressive power,

we commence by transforming the input embeddings Z(l)

into more meaningful representations. This is achieved by
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Figure 4. The aggregation of edge connectivity strengths via edge-based attention mechanism.

applying a shared linear transformation to every node, pa-
rameterized by the weight matrix W

(l)
m ∈ Rdl

′×dl , where
dl

′ denotes the dimensionality of the transformed embed-
dings. To introduce nonlinearity, the high-level embeddings
are then passed through a LeakyReLU activation function
with a negative input slope of α = 0.2. Subsequently, a
self-attention mechanism is employed, which can be im-
plemented using a fully connected layer parameterized by
a⃗
(l)
m ∈ Rdl

′
. Accordingly, the importance of the i-th node

in the entire graph m
(l)
i can be calculated as

m
(l)
i = a⃗(l)Tm LeakyReLU(W(l)

m z⃗i
(l)). (5)

Then, we normalize the importance of nodes assigned to the
same cluster by applying the softmax function as

α
(l)
i = softmaxp(m

(l)
i ). (6)

where p denotes the p-th cluster, and i represents the i-th
node assigned to that cluster. Finally, we obtain the p-th
cluster representation z⃗p

(l+1) of the coarsened graph G(l+1)

by computing the weighted sum of the node embeddings
within the p-th cluster, using their attention coefficients α(l)

i

z⃗p
(l+1) =

∑
i∈p

α
(l)
i z⃗i

(l). (7)

The resulting cluster representation matrix, i.e., node feature
matrix X(l+1) ∈ RNl+1×dl of the coarsened graph G(l+1)

can be computed by row-wisely concatenating all the coars-
ened node features as

X(l+1) = ||Nl+1

p=1 z⃗p
(l+1) = ||Nl+1

p=1

∑
i∈p

α
(l)
i z⃗i

(l). (8)

Definition 3 (The Edge-based Attention Mechanism).
The process of this computational step is shown in Figure 4.
Specifically, we first utilize a weight matrix W

(l)
e ∈ Rdl

′×dl

and a self-attention mechanism a
(l)
e to calculate the attention

between each pair of nodes e(l) ∈ RNl×Nl as

e
(l)
ij = a(l)e (W(l)

e z⃗i
(l),W(l)

e z⃗j
(l)). (9)

Subsequently, we treat these values as edge attention co-
efficients and normalize the coefficients of actual edges
belonging to the same pair of clusters as

E
(l)
ij = softmaxpq(e

(l)
ij ) =

exp(e
(l)
ij )∑

x∈p,y∈q exp(e
(l)
xy)

, (10)

where the i-th and j-th nodes belong to the p-th and q-th
clusters, respectively. Since the attention mechanism a

(l)
e

can be implemented as a fully connected layer, parameter-
ized by a weight vector a⃗(l)e ∈ R2dl

′
. The resulting edge

attention coefficients E(l)
ij can be defined as

E
(l)
ij =

exp
(
LeakyReLU

(
a⃗
(l)T
e [W(l)

e z⃗i
(l)∥W(l)

e z⃗j
(l)]

))
∑

x∈p,y∈q exp
(
LeakyReLU

(
a⃗
(l)T
e [W(l)

e z⃗x
(l)∥W(l)

e z⃗y
(l)]

)) .
(11)

Finally, we utilize these edge attention coefficients as
weights to aggregate the edge connectivity strengths be-
tween each pair of clusters, resulting in the adjacency matrix
A(l+1) of the coarsened graph G(l+1) as

A(l+1) = S
(l)
H

T
(E(l) ⊙A(l))S

(l)
H . (12)

Moreover, it is crucial to mention that we intentionally avoid
using the edge-based attention mechanism in the first pool-
ing layer. The reason for this is that applying it would result
in the connectivity strengths of all edges being consistently
1 after each pooling step, which will lead to the loss of
valuable information contained in the edges.

3.3. The MD-MPNN Architecture

Graph pooling operations function in conjunction with
MPNNs, as they rely on the node embeddings generated
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Figure 6. (a) An illustration of the graph rewiring process. Each
color representing a different shortest distance from node 0. For
SD=n Message-Passing, direct connections are established be-
tween the target node and all nodes whose shortest distance to it is
n, whose connectivity strength is the number of shortest paths. (b)
The strength of a direct connection is determined by the number
of shortest paths. In this example, the shortest distance between
nodes 0 and 1 is 3, because there are three different shortest paths
from node 0 to node 1, highlighted in red, green, and purple.

by MPNNs. To address the over-squashing issue in conven-
tional MPNNs and to effectively leverage the edge connec-
tivity strength information in the coarsened graphs produced
by ENAHPool, we propose a novel MD-MPNN architecture.
The architecture of MD-MPNN is illustrated in Figure 5,
and the graph rewiring process is shown in Figure 6.

Specifically, A(l)h is obtained by raising A(l) to the power
of h, where A(l)h(i, j) represents the number of h-step
random walk paths from the i-th node to the j-th node in the
graph. In order to propagate message on nodes at different
shortest distances, we introduce a mask mechanism to filter
the connections in A(l)h. To this end, we commence by
computing a family of binary matrices R(l)

h ∈ {0, 1}Nl×Nl ,
where the (i, j)-th entry R

(l)
h (i, j) satisfies

R
(l)
h (i, j) =

{
1 if A(l)h(i, j) > 0;
0 otherwise.

(13)

where h varies from 0 to H , and H is a hyperparameter that
represents the number of MD-MPNN layers. Rh(i, j) = 1

indicates that the random walk departing from the i-th node
can arrive at the j-th node within h steps, i.e., may also
include less than h steps. Moreover, we compute another
family of binary matrices U (l)

h ∈ {0, 1}Nl×Nl as

U
(l)
h = CLIP[R

(l)
h − Σh−1

x=0R
(l)
x ], (14)

where the function CLIP[∗] is used to restrict the values in
Uh to the range [0, 1]. Specifically, Uh(i, j) = 1 indicates
that there exists a random walk from the i-th node to the
j-th node with a walk length of at least h. In other words,
it means that there are paths with a shortest distance of h
between the i-th and j-th nodes. With U

(l)
h available, we

construct the new topology structures T
(l)
h for G(l) using

U
(l)
h as masks for A(l)h, i.e.,

T
(l)
h = U

(l)
h ⊙A(l)h. (15)

As a result, Th contains only the edges between node pairs
with a shortest path distance of h, where the edge connec-
tivity strength reflects the number of such paths between
them. A greater number of paths suggests a stronger influ-
ence on information propagation between nodes. With T

(l)
h

(0 ≤ h ≤ H) available, the MD-MPNN architecture can
be defined in terms of the node feature matrix X(l) and the
adjacency matrix A(l) as

MD-MPNN(A(l), X(l)) = ||Hh=0 MPNN(T
(l)
h , X(l)). (16)

where the backbone of MPNN must aggregate neighbor-
hood information directly from the adjacency matrix (e.g.,
GCN and GIN). Other variants, such as GAT, tend to ig-
nore the edge connectivity strength information in the graph
structure, potentially leading to suboptimal performance.

3.4. The Computational Complexity

In our proposed method, the complexity of the MD-MPNN
is O(N3), primarily due to adjacency matrix multiplica-
tions. The complexities of the node and edge attention
mechanisms are both O(N), as they are computed based
on node embeddings. The pooling operation incurs a time
complexity of O(KN2), where K is the number of nodes in
the next pooling layer, typically set to rN , with r denoting
the pooling ratio. Overall, the method maintains a computa-
tional complexity of O(N3), which is comparable to that of
existing cluster-based hierarchical pooling approaches.

4. Experiments
We empirically compare the proposed method with other
deep learning approaches for graph classification across
eight benchmark datasets: D&D (Dobson & Doig, 2003),
PROTEINS (Borgwardt et al., 2005), NCI1 (Wale et al.,
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Table 1. Dataset Statistics.
Dataset Graphs Classes Vertices(Avg.) Edges(Avg.) Diameter(Avg.) Clustering coefficient(Avg) Labels/Attributes Domain

D&D 1178 2 284.32 715.66 18.73 0.480 Labels Biochemical
PROTEINS 1113 2 39.06 72.82 11.59 0.513 Labels Biochemical

NCI1 4110 2 29.87 32.30 13.43 0.003 Labels Biochemical
FRANKENSTEIN 4337 2 16.90 17.88 8.45 0.011 Attributes Biochemical

IMDB-B 1000 2 19.77 96.53 1.86 0.947 - Social
IMDB-M 1500 3 13.00 65.94 1.47 0.969 - Social
COLLAB 5000 3 74.49 2457.78 1.86 0.891 - Social

REDDIT-B 2000 2 429.63 497.75 8.49 0.059 - Social

Table 2. Classification Accuracy (In % ± Standard Error) for Comparisons.①

D&D PROTEINS NCI1 FRANKENSTEIN IMDB-B IMDB-M COLLAB REDDIT-B

Set2Set 71.94 ± 0.56 73.27 ± 0.85 68.55 ± 1.92 61.46 ± 0.47 72.90 ± 0.75 50.19 ± 0.39 79.55 ± 0.39 -
SortPool 75.58 ± 0.72 73.17 ± 0.88 73.82 ± 1.96 63.44 ± 0.65 72.12 ± 1.12 48.18 ± 0.83 77.87 ± 0.47 76.02 ± 1.73
SAGPool(G) 71.54 ± 0.91 72.02 ± 1.08 74.18 ± 1.20 62.57 ± 0.60 72.16 ± 0.88 49.47 ± 0.56 78.85 ± 0.56 74.45 ± 1.73
GMT 78.72 ± 0.59 75.09 ± 0.59 76.35 ± 2.62 62.69 ± 0.25 73.48 ± 0.76 50.66 ± 0.82 80.74 ± 0.54 -

DiffPool 77.56 ± 0.41 73.03 ± 1.00 62.32 ± 1.90 60.60 ± 1.62 73.14 ± 0.70 51.31 ± 0.72 78.68 ± 0.43 82.12 ± 1.06
SAGPool(H) 74.72 ± 0.82 71.56 ± 1.49 67.45 ± 1.11 61.73 ± 0.76 72.55 ± 1.28 50.23 ± 0.44 78.03 ± 0.31 75.53 ± 3.53
TopKPool 73.63 ± 0.55 70.48 ± 1.01 67.02 ± 2.25 61.46 ± 0.84 71.58 ± 0.95 48.59 ± 0.72 77.58 ± 0.85 85.12 ± 0.34
ASAP 76.58 ± 1.04 73.92 ± 0.63 71.48 ± 0.42 66.26 ± 0.47 72.81 ± 0.50 50.78 ± 0.75 78.64 ± 0.50 -
StructPool 78.45 ± 0.40 75.16 ± 0.86 78.64 ± 1.53 - 72.06 ± 0.64 50.23 ± 0.53 77.27 ± 0.51 -
MinCutPool 78.22 ± 0.54 74.72 ± 0.48 74.25 ± 0.86 61.65 ± 0.72 72.65 ± 0.75 51.04 ± 0.70 80.87 ± 0.34 -
SEP-G 77.98 ± 0.57 76.42 ± 0.39 78.35 ± 0.33 - 74.12 ± 0.56 51.53 ± 0.65 81.28 ± 0.15 -
ABDPool 74.13 ± 0.52 73.24 ± 0.91 71.54 ± 1.28 - 70.58 ± 0.71 50.63 ± 1.47 - 82.75 ± 0.82

ENAHPool(-MD)② 79.21 ± 0.51 77.06 ± 0.09 78.93 ± 0.47 65.43 ± 0.21 74.44 ± 0.23 51.26 ± 0.38 78.37 ± 0.24 85.60 ± 1.06
ENAHPool 79.91 ± 0.25 77.12 ± 0.15 79.34 ± 0.31 67.68 ± 0.13 74.54 ± 0.42 51.74 ± 0.16 81.09 ± 0.51 88.56 ± 0.25
① The best and second-best results on each dataset in bold and underlined respectively.
② ENAHPool(-MD) indicates the use of conventional MPNNs for computing node embeddings and assignment matrices.

Table 3. The Grid Search Space for the Hyperparameters.

Hyperparameter Range

Pooling ratio 0.125, 0.25, 0.5
Pooling layer 1, 2, 3
MPNN layer 3, 4, 5, 6, 7

2008), FRANKENSTEIN (Orsini et al., 2015), IMDB-B,
IMDB-M, COLLAB, and REDDIT-B (Yanardag & Vish-
wanathan, 2015). Detailed statistics for these datasets are
provided in Table 1. Note that when nodes in a graph lack
labels or attributes, the node degree can be used as the label.

4.1. Baselines and Experimental Settings

We adopt eight hierarchical pooling methods as baselines for
comparison, including DiffPool (Ying et al., 2018), SAG-
Pool(H) (Lee et al., 2019), TopKPool (Gao & Ji, 2019),
ASAP (Ranjan et al., 2020), StructPool (Yuan & Ji, 2020),
MinCutPool (Bianchi et al., 2020), SEP-G (Wu et al., 2022),
and ABDPool (Liu et al., 2022). Moreover, we consider four
global pooling methods for comparison: Set2Set (Vinyals
et al., 2016), SortPool (Zhang et al., 2018), SAGPool(G)
(Lee et al., 2019), and GMT (Baek et al., 2021).

In our experiments, we employ 10-fold cross-validation for
evaluation and report the average accuracy along with the

standard deviation over 10 runs. For the proposed model, we
perform hyperparameter tuning using a grid search strategy,
as detailed in Table 3. Moreover, to ensure a fair comparison
with other methods, the backbone of MPNNs is GCN.

4.2. Results and Discussions

Table 2 demonstrates that the proposed ENAHPool oper-
ation associated with the MD-MPNN architecture outper-
forms all alternative methods on seven of the eight datasets.
Additionally, even when the MD-MPNN architecture is
omitted and conventional MPNNs are used to compute node
embeddings and assignment matrices, the single ENAHPool
operation still performs better than most alternative methods.
The effectiveness can be attributed to two key factors.

First, ENAHPool is the first cluster-based hierarchical pool-
ing method to introduce a novel attention mechanism that si-
multaneously captures the importance of both nodes within
clusters and edges between clusters. This effectively ad-
dresses the limitation of uniform edge-node information ag-
gregation in existing approaches, resulting in more informa-
tive hierarchical representations. Second, the MD-MPNN
architecture not only alleviates the notorious over-squashing
problem in conventional MPNNs, but also leverages the
edge connectivity strength information computed by the
edge attention mechanism, further enhancing the represen-
tational power of the model.
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Table 4. Classification Accuracy (In % ± Standard Error) for validating the effectiveness of node assignment strategy.
Strategy D&D PROTEINS NCI1 FRANK. IMDB-B IMDB-M COLLAB REDDIT-B

Soft assignment 77.33 ± 0.43 75.49 ± 0.03 77.08 ± 0.38 63.80 ± 0.04 72.73 ± 0.49 51.13 ± 0.35 76.67 ± 0.14 82.12 ± 1.06
Hard assignment 78.34 ± 0.62 76.54 ± 0.13 78.22 ± 0.91 65.24 ± 0.18 73.92 ± 0.05 51.18 ± 0.07 78.06 ± 0.25 83.31 ± 1.01

Table 5. Classification Accuracy (In % ± Standard Error) for validating the effectiveness of attention mechanisms.
Node Att. Edge Att. D&D PROTEINS NCI1 FRANK. IMDB-B IMDB-M COLLAB REDDIT-B

× × 79.20 ± 0.48 76.63 ± 0.21 78.68 ± 0.65 65.32 ± 0.62 74.21 ± 0.64 51.27 ± 0.09 78.29 ± 0.49 88.15 ± 0.15
✓ × 79.50 ± 0.52 76.73 ± 0.33 78.85 ± 0.42 66.09 ± 0.58 74.31 ± 1.80 51.60 ± 1.00 79.38 ± 0.13 88.21 ± 0.51
× ✓ 79.88 ± 0.16 76.79 ± 0.09 79.22 ± 0.51 66.03 ± 0.16 74.29 ± 0.08 51.43 ± 0.09 78.80 ± 0.17 88.38 ± 0.41
✓ ✓ 79.91 ± 0.25 77.12 ± 0.15 79.34 ± 0.31 67.38 ± 0.13 74.54 ± 0.42 51.74 ± 0.16 81.09 ± 0.51 88.56 ± 0.25
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Figure 7. Sensitivity analysis of the number of pooling layers and
the pooling ratio.

4.3. The Ablation Study

To further evaluate the effectiveness of each module in the
proposed ENAHPool operation, we conduct ablation studies
on all datasets and report the average accuracy and standard
deviation over 5 runs of 10-fold cross-validation.

Specifically, Table 4 presents the impact of the hard node
assignment strategy (note that neither setting employs atten-
tion mechanisms), and the results demonstrate its effective-
ness. Table 5 evaluates the contributions of both the node
and edge attention mechanisms. The results indicate that
each mechanism individually improves performance, with
the best results achieved when they are combined.

4.4. Hyperparameter Sensitivity Analysis

In this section, we perform three sensitivity analyses to
evaluate the impact of hyperparameters on the proposed
ENAHPool operation associated with the MD-MPNN ar-
chitecture, using two representative datasets: D&D (from
the biochemical domain with node labels) and REDDIT-B
(from the social domain without node labels or attributes).

First, we examine the effect of the number of pool-
ing layers (L ∈ {1, 2, 3}) and the pooling ratios (k ∈
{0.125, 0.25, 0.5}). The results in Figure 7 indicate that
model performance slightly deteriorates when more than
two pooling layers are used, likely due to overfitting. Fur-
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Figure 8. Sensitivity Analysis of the number of MD-MPNN layers.

thermore, both excessively large and small pooling ratios
negatively affect performance. Over-compression leads to a
loss of structural information, whereas insufficient compres-
sion results in redundancy.

Additionally, we examine the effect of the number of MD-
MPNN layers (H ∈ {3, 4, 5, 6, 7}). The results in Figure 8
suggest that increasing the number of MD-MPNN layers
improves model performance, indicating its effectiveness in
alleviating the over-squashing issue in MPNNs. However,
beyond a certain threshold, performance begins to decline
slightly, which could be attributed to overfitting. Moreover,
the optimal number of MD-MPNN layers depends on the
graph size, larger graphs require more layers to capture
long-range node information.

5. Conclusion
In this paper, we have proposed a novel cluster-based hier-
archical pooling operation (i.e., ENAHPool) for graph clas-
sification. Our method employs attention mechanisms to
aggregate node features within clusters and edge connectiv-
ity strengths between clusters, resulting in more informative
hierarchical representations. Moreover, we develop a new
MD-MPNN architecture to effectively alleviate the over-
squashing problem arising in MPNNs, further enhancing
the model performance. Experimental results indicate the
effectiveness of the proposed method.
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