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Abstract

Hopfield networks are associative memory systems, designed for storing and re-
trieving specific patterns as local minima of an energy landscape. In the classical
Hopfield model, an interesting phenomenon occurs when the model’s memoriza-
tion capacity reaches its critical memory load —spurious states, or unintended
stable points, emerge at the end of the retrieval dynamics. These particular states
often appear as mixtures of the stored patterns, leading to incorrect recall. In this
work, we propose that these spurious states are not necessarily a negative feature
of retrieval dynamics, but rather that they serve as the onset of generalization. We
employ diffusion models, commonly used in generative modeling, to demonstrate
that their generalization stems from a phase transition which occurs as the number
of training samples is increased. In the low data regime, the model exhibits a
strong memorization phase, where the network creates a distinct basin of attraction
for each sample in the training set, akin to the Hopfield model below the critical
memory load. In the large data regime, a different phase appears where an increase
in the training set size fosters the creation of new attractor states that correspond to
manifolds of the generated samples. Spurious states appear at the boundary of this
transition, and correspond to emergent attractor states, which are absent in the train-
ing set, but, at the same time, still have a distinct basin of attraction around them.
From the perspective of Hopfield description these spurious states correspond to
mixtures of “fundamental memories” which facilitate generalization through the
superposition of underlying features, resulting in the creation of novel samples.
Our findings provide a novel perspective on the memorization-generalization phe-
nomenon in diffusion models via the lens of Hopfield networks, which illuminates
the previously underappreciated view of diffusion models as Hopfield networks
above the critical memory load.

1 Introduction

Originally introduced in [Hop82, Hop84], Hopfield networks have seen a resurgence in interest
due to advances in their memorization capacity. Notably, Dense Associative Memories, which are
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Figure 1: Illustration contrasting memorized, spurious, and generalized patterns in their respective
column for various datasets. For each target image, its top-5 nearest neighbors from the training set
(top row) and the synthetic set (bottom row) are shown to highlight the novelty or the commonality
of the image with respect to training and synthetic sets. Memorized samples are duplicates of the
training set while spurious samples are copies of the synthetic set. In contrast, generalized samples
do not belong to any of the two sets, indicating that the model is creative (or has fully generalized).

extensions of Hopfield networks with super-linear memory capacity [KH16, KH18] have paved
the way for more sophisticated associative memory systems [DHL+17, AAB+20, ADM20, Kro21,
AAAB22, MSS+22, SKZR23, HLP+23, KOT24, dSNMM24, AAAB24], driven in part by their
strong connection to the attention mechanism in transformers [RSL+21, KH21]. Simultaneously,
generative diffusion models [SDWMG15] have gained considerable popularity, due to their flexibility
and accuracy in modeling high dimensional distributions for a variety of domains —ranging from
image generation [HJA20, SME20, SSDK+21], audio [CZZ+20, KPH+20, LCY+23], video syn-
thesis [HSG+22, SPH+22, BRL+23, BPH+24], and other scientific applications. However, despite
their effectiveness, diffusion models pose challenges related to privacy and security, as concerns
grow over their tendency to memorize or replicate training data [SSG+23a, SSG+23b]. Such matters
consequently emphasize the need for further understanding of memorization and generalization
behaviours in diffusion models.

Recent works [HSK+23, Amb24, RA24] have begun establishing theoretical connections between
Dense Associative Memories and generative diffusion models, offering a foundation for bridging
the two fields. It has been shown that the logarithm of the probability of the generated samples in
diffusion models can be interpreted as the energy function in a commonly used Dense Associative
Memory model with the softmax activation function [Amb24]. This makes it possible to apply
theoretical tools developed for associative memory to better understand the computational properties
of diffusion models. See Appendix C for further details on such connections.

A common feature of Hopfield networks is the phenomenon of spurious patterns. Historically
considered as detrimental to pattern recall [HHFP83, AGS85, AMSJ85], spurious patterns can be
interpreted as combinations or interpolations of stored patterns, hinting at the network’s ability to
synthesize new patterns from existing ones. This blending of fundamental memories resembles the
generalization process in generative models, where learned representations are used to generate novel
outputs. In this way, spurious patterns offer a fascinating framework for exploring the balance between
memorization —where models store exact patterns from training data —and generalization, where
they use underlying structures to create genuinely new samples [KLP+24]. Studying the conditions
under which spurious patterns emerge and how they contribute to the network’s computation can thus
shed light on generalization in both associative memory and contemporary generative models.

Previous works have explored memorization in generative models through various approaches. For
instance, [MCD20, dBW21] propose general methods to measure memorization, while [SSG+23a,
SSG+23b, YCKR23] study memorization capacity in diffusion models as a function of training
data size. Other works focus on understanding generalization, such as [LLZB24], which provides
theoretical estimates of the generalization gap, and [KGSM23], which offers spectral analyses of how
diffusion models generalize. While these studies shed light on memorization and generalization, they
do not fully explore the model’s behavior during the transition between these two phases.
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Figure 2: Illustrations showing the fractions of memorized, spurious, and generalized samples
across different datasets. The fraction of each sample type is with respect to each data split and its
corresponding evaluation set of 10k samples. As memorization decreases due to increase in data
size, the onset of generalization is initiated with the emergence of spurious patterns, indicating the
beginning of attractors’ collapse. The fraction of spurious patterns rises and decreases quickly at the
boundary between the memorization and generalization phases.

Contributions In this work, we center our focus on establishing diffusion models as Hopfield
networks that have exceeded their memorization capacity, losing the ability to reliably recall stored
data points. To make this connection, we demonstrate that (1) diffusion models undergo a phase
transition from memorization to generalization as the number of training points increases; (2) this
onset of generalization is induced through the emergence of spurious patterns which signifies the
collapse or reduction of memorized attractors; and lastly, unlike previous works in Hopfield models,
(3) we provide theoretical descriptions distinguishing spurious states from generalized patterns. By
formally establishing the distinction between spurious and generalized patterns, we provide deeper
insights on the mechanisms which enable generalization in diffusion (and other generative) models.

2 The Onset of Generalization

To characterize the memorization-to-generalization transition, we focus on the model’s capacity to
generate new samples while still retaining some degree of its ability to replicate memorized data. In
simple terms, this transition can be seen as the development from a student — who learns by copying
— to an expert, capable of creating original work. During this intermediate phase, the model begins to
move beyond replication, but lacks the full creative capacity to generate truly novel patterns with
high probability. Following [YCKR23], we extend their memorization capacity MC to define both
spurious and generalization capacities to delineate this transition.

Let G be a diffusion model that maps noise z drawn from a prior distribution q to a data point
in a data space X . Additionally, let T be a training algorithm that takes in a training set S =
{x1,x2, . . . ,xK} ⊂ X and produces a set of parameters θ. Furthermore, let S′ = {x′

1,x
′
2, . . . ,x

′
m}

be a set of synthetic samples generated by the trained diffusion model Gθ, where the condition
|S′| ≫ |S| is required to account for duplication in S′.

Definition 2.1 (Memorization Capacity). The maximum number of training samples n such that
the model Gθ consistently reproduces those samples with high probability. Specifically, this number
represents the largest training set size where the probability that the model generates samples
belonging to the training set S remains the highest, within a tolerable error margin. This number can
thus be described as

MCS = max

{
K

∣∣∣∣ Prob
z∼q

[
Gθ(z) ∈ S

]
≥ 1− ϵ

}
(1)

where a small value ϵ ∈ (0, 1) represents the permissible error margin for the probability and Gθ(z)
is a target sample generated from Gθ, independently from the generation of the synthetic set S′, using
the noise z drawn from q.

Hypothesis 2.1. When the training set size exceeds the memorization capacity, |S| > MC, the model
begins to generate spurious patterns, signaling the onset of generalization. These spurious attractors
are interpolations between the stored patterns, signaling a transition from strong memorization to
initial pattern synthesis.
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Definition 2.2 (Spurious Capacity). The number of training samples n which maximizes the
probability of samples generated from Gθ to belong only in the synthetic set S′ and not the training
set S. This number denotes the inflection point at which the model is unable to simply replicate the
training data but not yet generalized to the true underlying data distribution. This number can be
described as

SCS,S′ = argmax
K

{
Prob
z∼q

[
Gθ(z) /∈ S ∧Gθ(z) ∈ S′]} (2)

Hypothesis 2.2. When the training set size exceeds both the memorization capacity, |S| ≫ MC, and
spurious capacity, |S| ≫ SC, the model is near full generalization, closely modeling the underlying
data distribution. At this stage, many of the generated samples are genuinely novel, exhibiting no
duplication or direct replication of the training data S and the synthetic set S′. The fraction of such
samples is greater than the fractions of memorized and spurious samples, respectively.
Definition 2.3 (Generalization Capacity). The minimum number of training samples K which
maximizes the novelty of samples generated from Gθ under the condition that they do not belong to
either the synthetic set S′ or the training set S, given as

GCS,S′(G, T ) = min

{
K

∣∣∣∣ Prob
z∼q

[
Gθ(z) /∈ S ∧Gθ(z) /∈ S′] ≥ 1− ϵ

}
(3)

Hypothesis 2.3. When the training set size exceeds the generalization capacity, |S| > GC, the model
has reached full generalization, effectively modeling the underlying data distribution. At this stage,
generated samples are genuinely novel, exhibiting no duplication or direct replication of the training
data S and the synthetic set S′.

2.1 Detection Metrics

Below, we introduce specific detection metrics to quantify and distinguish between memorized,
spurious, and generalized patterns — to tackle the above hypotheses. Using these metrics, we present
results which map out the phase transition of different diffusion models trained on various sizes of
different datasets (see Figure 2). The metrics defined below rely on three datasets: S — the training
set used to train the model Gθ, S′ — the synthetic dataset generated from Gθ, and Seval — the
evaluation dataset, which is also generated from Gθ, but independently from S′; the size of S′ is
assumed to be much bigger than the training set size.
Metric 2.1 (Memorization Detection). Following [YCKR23] and using the definition of memoriza-
tion capacity (1), we define the memorization detection metric M. Given a target pattern x̂ ∈ Seval,
its first and second nearest neighbors x1 and x2 are extracted from the training set S according to a
distance measure d(·, ·) — small distance corresponds to high similarity. Metric M detects sample x̂
as memorized if it belongs to the training set S. Specifically,

M(x̂, S) = I
(

d(x̂,x1)

d(x̂,x2) + ϵ
≤ δm

)
(4)

where I represents the indicator function, δm ∈ (0, 1) is a small threshold value, and ϵ is a small
constant to avoid division by zero, e.g., ϵ = 10−6. In words, x̂ is much closer, and thus considered
memorized, to x1 than any other point in training set S.
Metric 2.2 (Spurious Detection). Using the definition of spurious capacity (2), we define the
spurious pattern detection metric S . It identifies instances where the model generates outputs that do
not belong to the training set but have high similarity with samples from the synthetic set,

S(x̂, S, S′) = I
(

d(x̂,x′
1)

d(x̂,x1) + d(x̂,x′
1) + ϵ

≤ δs

)
∧ ¬M(x̂, S) (5)

using a small threshold value δs ∈ (0, 1
2 ) as part of the criterion. With respect to the target pattern

x̂, x1 and x′
1 are the first nearest neighbors extracted from the training set S and synthetic set S′,

respectively. This metric ensures that the ratio is bounded between 0 and 1 while requiring that
d(x̂,x′

1) ≪ d(x̂,x1) for a pattern to be considered as spurious. If the two distances are equal, then
the ratio is close to 0.5. Once the spurious patterns are identified via I given the threshold δs, they are
also filtered from the memorized sample set to ensure that the two sets are disjointed.
Metric 2.3 (Generalization Detection). Lastly, following the definition of generalization capacity
(3), we define the generalized pattern detection metric G as

G(x̂, S, S′) = ¬M(x̂, S) ∧ ¬S(x̂, S, S′) (6)
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which identifies a given target sample x̂ as generalized if it is not classified either as memorized nor
spurious using the above detection metrics M and S.

3 Experiments

Using our detection metrics, we computed the fractions of memorized, spurious, and generalized
samples for various sizes of training data for different datasets (see Figure 2). These datasets include
MNIST [Den12], FashionMNIST [XRV17], CIFAR10 [KNH14], and LSUN-Church [YZS+15]
scaled down to 64× 64 resolution using center-crop and down-scale. For each dataset, we trained a
DDPM-based diffusion model [HJA20] for M = 38 different training set sizes obtained by using
a fixed random seed to split. The same training setting as DDPM was used with the exception of
using no random flip, modifying batch size, and the channel multipliers in the Unet backbone to
accommodate for the dataset’s dimensionality. For each model α = 1, ...,M , trained on the training
set Sα, an evaluation set Seval

α of 10k samples was generated. Additionally, a synthetic set S′
α was

generated for each model. To account for duplication and the diversity of the dataset, we ensured that
each synthetic set is 16 times the size of the corresponding training set |S′

α| = 16|Sα| for CIFAR10
and LSUN-Church. Meanwhile, for FashionMNIST and MNIST, we kept the synthetic size as four
times the size of the corresponding training set |S′

α| = 4|Sα| due to their limited diversity. Each
sample x̂ ∈ Seval

α was classified as memorized, spurious, or generalized using the above metrics (Eqs.
4, 5, 6). The ratio of the sizes of these three sets with respect to |Seval

α | =10k was used to plot the
curves in Figure 2. For each dataset our smallest model was trained on the training set of |S1| = 2
data points, and the largest model was trained on the entire original training set SM = S. Please
refer to Appendix B for more details on training, selection of the M data sizes, and detection metrics’
hyperparameters for each dataset.

4 Discussion

The results in Figure 2 clearly demonstrate the transition from memorization to generalization as
the dataset size increases, validating the above hypotheses (2.1, 2.2, 2.3). Meanwhile, the collected
samples show distinct characteristics in each of the considered phases (see Figure 1). For example, in
the small data regime, the diffusion model predominantly replicates the training data (see Figure 1
memorized panel, or additional samples in Figure 3 of the Appendix). As the data size surpasses the
memorization capacity MC, we observe a critical transition where the memorization fraction declines
and spurious patterns begin to emerge. Such patterns are primarily composites of the data points and
exhibit strong duplication in the synthetic set (see Figure 1 spurious panel, or additional samples in
Figure 4 of the Appendix). The emergence of such patterns aligns with the onset of generalization,
as the model moves away from strictly reproducing the training set and starts generating novel
combinations of learned features. Once the training size surpasses the spurious capacity SC, the
creation of memorized and spurious samples starts to decrease, signaling the transition to full
generalization regime. When GC is surpassed, the model completely loses its replication ability and
no duplicate samples are detected in either training or synthetic sets (see Figure 1 generalized panel,
or additional samples in Figure 5 of the Appendix).

5 Conclusion

In this work, we establish a novel connection between diffusion models and Hopfield models, demon-
strating how diffusion models experience a phase transition from memorization to generalization
as the training data size increases. Moreover, unlike the general knowledge in associative memory,
we show that spurious patterns are not merely negative artifacts but are, in fact, indicators of the
onset of generalization. These patterns emerge as the model begins to learn and leverage common
features across the data. By highlighting this transition, we offer a deeper understanding of how
diffusion models evolve toward generalization, with spurious patterns serving as a bridge between the
memorization and generalization phases. Future work could further investigate the size and dynamics
of the basins of attraction in each phase to provide a more comprehensive view of how diffusion
models generalize.
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A Appendix

Figure 3: Visualization of memorized patterns and their nearest neighbors for different datasets. The
top row illustrates nearest neighbors from the training set while the bottom row depicts those from the
synthetic set. Memorized samples are duplicates of the training set. During the strong memorization
phase, duplicates are also found within the synthetic set. Note, even though our memorization
metric does not utilize the synthetic set, we are showing the nearest neighbors obtained from it, for
consistency.

Figure 4: Visualization of spurious patterns and their top-5 nearest neighbors for different datasets.
The top row illustrates nearest neighbors from the training set while the bottom row shows those
from the synthetic set. Spurious patterns are demonstrated to arise from the onset of generalization
where the mixing of training points begins. Since the basin of attractions is yet to collapse completely,
spurious patterns can be duplicated with high probability, as seen in the synthetic set, much like
memorized patterns. Hence, spurious samples lack the uniqueness to be considered as generalized
samples.
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Figure 5: Visualization of generalized patterns and their nearest neighbors for different datasets. The
top row illustrates nearest neighbors from the training set while the bottom row depicts those from
the synthetic set. Generalized samples are novel samples, which have little to no resemblance to their
nearest neighbors in training and synthetic sets, that fully trained models can generate.

B Additional Details on Transition Mapping

B.1 Points Selection

For the computation of Figure 2, we follow the experimentation of [YCKR23] and conduct a
sparse search starting at 0.5k data size and doubling it all the way to the total data size |S|, i.e.,
K = 0.5k, 1k, 2k, . . . , N . We then identified two transitional critical points, A and B (see Table 1),
to further highlight the memorization-generalization transition. Point A indicates the initial drop
in memorization while B signals the plateauing of memorization. To capture the details of the
memorization-generalization transition, we perform a fine-grained search of 30 linearly spaced points,
from A to B. For regions outside of the transition, using linearly spacing, we sample 5 points from
|S| = 2 to point A, and another 5 points from B to the total dataset size |S|. In other words, we train
a separate model for each selected data size and generate the corresponding evaluation and synthetic
sets. Then, we compute the memorization, spurious, and generalization fractions, see Figure 2. Due
to limited sample size, we employ the bootstrapping method [Efr83, ET94] to obtain more robust
estimates of these fractions. Specifically, for each data size points α = 1 . . .M , we perform 10k
bootstrapping iterations, where in each iteration, we randomly select 10k samples from each Seval

α
with replacement and compute each fraction. We report the mean and the standard deviation as error
bar, computed from bootstrapping, for each data size point in Figure 2. However, we must note that
the error bar is too small to be seen.

Dataset Start Point Point A Point B End Point
(Data Size) (Data Size) (Data Size) (Data Size)

CIFAR10 2 2,000 16,000 50,000
LSUN-Church 2 2,000 16,000 126,227
FashionMNIST 2 2000 32,000 60,000

MNIST 2 2000 32,000 60,000

Table 1: Table showing the critical points A and B of each datasets, as well as the starting point
and ending point or the total dataset size. We use 30 linearly spaced points between A and B, and 5
points for the other two ends.
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B.2 Detection Details

For high dimensional datasets, CIFAR10 and LSUN-Church, we utilize LPIPS [ZIE+18] as the
function d(·, ·), with AlexNet [KSH12] as the backbone, for both memorization (4) and spurious (5)
detection metrics. LPIPS is a commonly used perceptual metric that compares the similarity between
two images based on their deep feature representations, offering a more nuanced evaluation of image
similarity than pixel-wise comparisons. It has been shown to better align with human judgment
of visual similarity, making it ideal for assessing the quality and diversity of generated samples in
these high-dimensional image datasets. For simpler datasets like MNIST and FashionMNIST, where
images are single-channel and less complex, we found that l2-distance suffices for both memorization
and spurious detection tasks.

For the consideration of the detection thresholds, we first focused on selecting an optimal value
for δm since [YCKR23, CHN+23] have found the memorization metric (4) to be very robust and
accurate in identifying memorized samples. Consequently, similarly to [YCKR23], we have found
that δm = 1

3 works well with the four datasets. To select the optimal spurious threshold, we first
detect the set of memorized samples across M data sizes and set our initial δs = 0.3. We tune this
threshold by manually inspecting at the least 10 spurious samples, identified via the spurious metric
(5), across all M sizes. If, on average, there are a minimum of 9 well-looking spurious samples, we
select that δs as the optimal value; otherwise, we decrease it and repeat the process again. Overall,
we selected δs = 0.28 for MNIST and δs = 0.3 for FashionMNIST; δs = 0.175 for CIFAR10 and
δs = 0.25 for LSUN-Church.

B.3 Model Training Details

For each point in our transition plots in Figure 2, we train a DDPM-based diffusion model, where
the score model is a PixelCNN++ based Unet [VdOKE+16, SKCK17]. We keep the variances,
βmin = 10−4 and βmax = 2 × 10−2, timesteps T = 1000, and learning rate lr = 2 × 10−4 for all
models and datasets. Each model has 2 residual blocks [HZRS16] for each down- and up- sampling
layer, while an attention block is placed at 16x resolution. We only modified the channel multipliers
for each model based on the complexity of the dataset, see Table 2. For generation or inference, we
use the exponential moving average (EMA) of each trained model, as delineated in [HJA20], which
was obtained with the decay value set as 0.9999 during training. We did not use random flipping
in training our models, but we did use dropout (of value 0.1) for the training of CIFAR10 models.
Lastly, for of the each training set Si, they were split from the original dataset given a specified size
n, and using the same random seed value for all data splits.

Dataset Initial Latent Channel Multipliers Number of Parameters Batch Size Training Iterations
CIFAR10 128 (1, 2, 2, 2) 35.7M 128 500,000

LSUN-Church 96 (1, 1, 2, 2, 4, 4) 61.7M 64 800,000
FashionMNIST 128 (1, 2, 2) 24.5M 128 400,000

MNIST 128 (1, 2, 2) 24.5M 128 400,000

Table 2: Table displaying both model and training configurations for each dataset.

C Diffusion Models and Hopfield Models

C.1 Diffusion Models

Given a dataset of i.i.d. samples x0 drawn from an unknown data distribution p(x0), diffusion models
are a class of generative models, which aims to approximate p(x0) by placing a reversible process
that maps data to noise and back. The mapping to noise (or forward process) is described by the
following stochastic differential equation (SDE) [SSDK+21],

dxt = f(xt, t)dt+ g(t)dwt, (7)
which transforms the given data distribution into a simpler distribution, e.g., isotropic Gaussian
distribution. Here, f(xt, t) represents the drift term which guides the diffusion process while g(t)
represents the diffusion coefficient that controls the noise at each time step t. In contrast, the reverse
process, removes the injected noise at each τ = T − t step and it is described as,

dxτ = [g(τ)2∇xτ
log p(xτ , τ)− f(xτ , τ)]dτ + g(τ)dwτ , (8)

12



where ∇τ is an infinitesimal positive step. To effectively solve this equation, it is crucial to reliably
estimate the score ∇x log pt(x). This is done via the parameterization of ∇x log pt(x) as a neural
network sθ(x, t), where θ∗ is obtained using methods for denoising score matching across multiple
times steps [Hyv05, Vin11, SE19]. The general description of this optimization problem, given by
[YZS+23], is formulated as

θ∗ = argmin
θ

Et∼U(1,T ),x0∼p(x0),xt∼p(xt|x0)

[
λ(t)∥sθ(xt, t)−∇xt

log p0,t(xt|x0)∥2
]
+ C, (9)

where p(xt|x0) is the forward process, λ(t) is a positive weighting function, U(1, T ) is a uniform
distribution over the set {1, 2, . . . , T}, and C is a constant which does not depend θ.

C.2 Diffusion Models as Hopfield Models

Hopfield networks are the original energy-based systems, which seek to store data patterns as
memories and perform accurate retrievals. These systems utilize an explicit formulation of an energy
function, with properties that define them as a dynamical system, to perform pattern recall. The energy
function of the classical system, the Hopfield network [Hop82], is described as E(σ) = − 1

2σ
⊤Wσ,

where W =
∑N

j yjy
⊤
j is the memory matrix which stores patterns yj ∼ D through Hebbian

learning and σ is a binary query to the system. Although expressive, the Hopfield network can
only store a small number of patterns (≈ 0.14N ) and consequently, often recall false or spurious
patterns [AGS85, AMSJ85]. However, with recent revisions, such networks have evolved into Dense
Associative Memory or Modern Hopfield networks, capable of storing exponential number of patterns
[KH16, DHL+17, RSL+21, KH21]. Specifically, for the model with the softmax activation function
the energy function is given by

E(x) = −β−1 log

( N∑
j=1

eβx
⊤yj

)
+

1

2
∥x∥22, (10)

where β is the inverse temperature which controls the overlap among the memories yj —is theoreti-
cally linked to the attention mechanism found in transformers [RSL+21, HLP+23].

Meanwhile, generative diffusion models can be interpreted as modern associative memory networks,
due to their strong link to energy-based models [SE19]. As demonstrated in [Amb24, RA24], the
energy of diffusion models EDM(x, t) can be described as

EDM(x, t) = −σ2 log pt(x) = −σ2 logEy∼pdata

(
e−

∥x−yj∥
2
2

2τσ2

)
+ C, (11)

where τ = T − t and the constant C can be omitted as it does not depend on x. By assuming the
stored patterns are normalized such that ∥yj∥22 = 1 and divide EDM(x, t) by σ2, it leads to

EDM(x, t)

σ2
= − log

( N∑
j=1

e
x⊤yj

τσ2

)
+

∥x∥22
2τσ2

, (12)

where setting β−1(t) = (T − t)σ2 = τσ2 and multiply it to both sides yields

EDAM(x, t) = β−1(t)
EDM(x, t)

σ2

= −β−1(t) log

( N∑
j=1

e
x⊤yj

τσ2

)
+

1

2
∥x∥22

= −β−1(t) log

( N∑
j=1

eβ(t) (x
⊤yj)

)
+

1

2
∥x∥22,

(13)

as the energy of the Dense Associative Memory network with the softmax activation function. As a
note, in general β(t) is fixed in Hopfield networks and thus the energy minimization is deterministic
unlike the stochasticity exhibited in the dynamics of diffusion models [Amb24].
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