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Abstract
There has been a renewed interest in applying machine learn-
ing to planning due to recent developments in deep neural net-
works, with a lot of focus being placed on learning domain-
dependent heuristics. However, current approaches for learn-
ing heuristics have yet to achieve competitive performance
against domain-independent heuristics in several domains,
and have poor overall performance. In this work, we con-
struct novel graph representations of lifted planning tasks and
use the WL algorithm to generate features from them. These
features are used with classical machine learning methods
such as Support Vector Machines and Gaussian Processes,
which are both fast to train and evaluate. Our novel approach,
WL-GOOSE, reliably learns heuristics from scratch and out-
performs the hFF heuristic. It also outperforms or ties with
LAMA on 4 out of 10 domains. To our knowledge, the WL-
GOOSE learned heuristics are the first to achieve these feats.
Furthermore, we study the connections between our novel
feature generation methods, previous theoretically flavoured
learning architectures, and Description Logic features.

1 Introduction
Learning for planning has regained traction in recent years
due to advancements in deep learning (DL) and neural
network architectures. The focus of learning for planning
is to learn domain knowledge in an automated, domain-
independent fashion in order to improve the computation
and/or quality of plans. Recent examples of learning for
planning methods using DL include learning policies (Toyer
et al. 2018; Groshev et al. 2018; Garg, Bajpai, and Mausam
2019; Rivlin, Hazan, and Karpas 2020; Ståhlberg, Bonet,
and Geffner 2022, 2023), heuristics (Shen, Trevizan, and
Thiébaux 2020; Karia and Srivastava 2021) and heuristic
proxies (Shen et al. 2019; Ferber et al. 2022). However,
learning for planning is not a new field and works capable
of learning similar domain knowledge using classical sta-
tistical machine learning (SML) methods predate DL. For
instance, learning heuristic proxies using support vector ma-
chines (SVMs) (Garrett, Kaelbling, and Lozano-Pérez 2016)
and learning policies using reinforcement learning (Buffet
and Aberdeen 2009) and decision lists (Yoon, Fern, and Gi-
van 2002). We refer to (Jiménez et al. 2012) for a more com-
prehensive overview of classical SML methods for learning.

A notable advantage of DL methods over current SML
methods for learning for planning is their ability to gen-

eralise to unseen problems. For instance, DL-based gener-
alised policies have demonstrated scalability to larger prob-
lems than previously possible (Toyer et al. 2020), and heuris-
tics learned using GNNs have shown generalisation across
different domains (Shen, Trevizan, and Thiébaux 2020).
This added generalisation capability of DL comes with cer-
tain trade-offs, including a higher demand for data, a large
number of hyperparameters and slower training and evalua-
tion times compared to SML methods.

In this paper, we introduce WL-GOOSE, a novel ap-
proach for learning for planning that combines the efficiency
of SML-based methods with the generalisation capabilities
of DL-based methods. WL-GOOSE uses a new graph repre-
sentation for lifted planning tasks. However, differently from
several DL-based methods, we do not use GNNs to learn do-
main knowledge and use graph kernels instead. More pre-
cisely, we use a modified version of the Weisfeiler-Lehman
algorithm for generating features for graphs (Shervashidze
et al. 2011). This allows us to construct kernels using our
graphs as input in order to train SML models. Another ben-
efit of WL-GOOSE is its support for various learning tar-
gets, such as heuristic values or policies, without the need
for backpropagation to generate features as in DL-based ap-
proaches. We also provide a theoretical comparison between
our approach, GNNs for learning planning heuristics, and
Description Logic features (Martı́n and Geffner 2000).

To demonstrate the potential of WL-GOOSE, we ap-
plied it to learn domain-specific heuristics using two clas-
sical SML methods: SVMs and Gaussian Processes (GPs).
We evaluated the learned heuristics against the state-of-the-
art learning for planning on the 2023 International Plan-
ning Competition Learning Track benchmarks (Seipp and
Segovia-Aguas 2023). The learned heuristics generalised
better than previous DL-based methods while also being
more computationally efficient: our models took less than 10
seconds to train and are up to 421 times faster than GNNs
which train on GPUs. Furthermore, our models were trained
in a deterministic fashion with minimal parameter tuning,
unlike DL-based approaches which require stochastic gradi-
ent descent and tuning of various hyperparameters. When
used with greedy best-first search, our learned heuristics
models achieved higher total coverage than hFF (Hoffmann
and Nebel 2001) with an increase of 11% and 19% for SVMs
and GPs, respectively. Moreover, our learned SVM and GP



models outperformed or tied with LAMA (Richter and West-
phal 2010) on 4 out of 10 domains. To our knowledge, these
results make our learned heuristics using WL-GOOSE the
first ones to surpass the performance of hFF and the best per-
forming learned heuristics against LAMA.

2 Background and Notation
Planning
A classical planning task (Geffner and Bonet 2013) is a state
transition model given by a tuple Π = ⟨S,A, s0, G⟩ where
S is a set of states, A a set of actions, s0 ∈ S an initial
state and G ⊆ S a set of goal states. An action a ∈ A is
a function a : S → S ∪ ⊥ where a(s) = ⊥ indicates that
action a is not applicable at state s, and otherwise, a(s) is
the successor state when a is applied to s. An action also
has an associated cost c(a) ∈ R. A solution or plan for this
model is a sequence of actions π = a1 · . . . · an where si =
ai(si−1) ̸= ⊥ for i = 1, . . . , n and sn ∈ G. In other words,
a plan is a sequence of applicable actions which progresses
the initial state to a goal state when executed. The cost of
a plan π is the sum of its action costs: c(π) =

∑n
i=1 c(ai).

A planning task is solvable if there exists at least one plan.
A plan is optimal if there does not exist any other plan with
strictly lower cost.

We represent planning tasks in a compact form which
does not require enumerating all states and actions. A
lifted planning task (Lauer et al. 2021) is a tuple Π =
⟨P,O,A, s0, G⟩ where P is a set of first-order predicates,
O a set of objects, A a set of action schemas, s0 the ini-
tial state, and G the goal condition. A predicate P ∈ P
has a set of parameters x1, . . . , xnP

where nP ∈ N de-
pends on P , and it is possible for a predicate to have no
parameters. A ground proposition is a predicate which is in-
stantiated by assigning all of the xi with objects from O or
other defined variables. An action schema a ∈ A is a tuple
⟨∆(a),pre(a), add(a),del(a)⟩ where ∆(a) is a set of pa-
rameter variables, and the preconditions pre(a), add effects
add(a), and delete effects del(a) are sets of predicates from
P instantiated with elements from ∆(a) ∪ O. An action is
an action schema where each variable is instantiated with an
object. A domain D is a set of lifted planning tasks which
share the same sets of predicates P and action schemas A.

In a lifted planning task, states are represented as sets
of ground propositions. The following are sets of ground
propositions: states, goal condition, and the preconditions,
add effects, and delete effects of all actions. An action a is
applicable in a state s if pre(a) ⊆ s, in which case we define
a(s) = (s\del(a))∪add(a). Otherwise a(s) = ⊥. The cost
of an action is given by the cost of its corresponding action
schema. A state s is a goal state if G ⊆ s.

A heuristic is a function h : S → R ∪ {∞} which
maps a state into a real number representing an estimate
of the cost of the optimal plan to the goal, or ∞ represent-
ing that the state is unsolvable. A heuristic can be defined
on problems by evaluating the heuristic at their initial state:
h(Π) = h(s0). The optimal heuristic h∗ returns for each
state s the cost of the optimal plan to the goal if the problem
is solvable from s, and∞ otherwise.

Algorithm 1: WL algorithm

1 c0(v)← c(v),∀v ∈ V
2 for j = 1, . . . , h do for v ∈ V do
3 cj(v)← hash

(
cj−1(v), {{cj−1(u) | u ∈ N (v)}}

)
4 return

⋃
j=0,...,h{{cj(v) | v ∈ V }}

G1 G2

Figure 1: Two non-isomorphic graphs G1 (6-cycle) and G2

(two disjoint 3-cycles) which the WL algorithm returns the
same outputs, thus failing to distinguishing them.

The Weisfeiler-Lehman algorithms
We write ⟨V,E, c, l⟩ for a graph with coloured nodes and
edges, where V is a set of nodes, E ⊆

(
V
2

)
is a set of undi-

rected edges, c : V → ΣV maps nodes to a set of colours
ΣV , and l : E → ΣE maps edges to a set of colours ΣE .
The edge neighbourhood of a node u under edge colour ι is
Nι(u) = {e = ⟨u, v⟩ = ⟨v, u⟩ ∈ E | l(e) = ι}. The neigh-
bourhood of a node u in a graph is N (u) =

⋃
ι∈ΣE

Nι(u).
We only focus on the WL algorithm which is a spe-

cial case of the class of k-Weisfeiler-Lehman (k-WL) algo-
rithms (Leman and Weisfeiler 1968). The k-WL algorithms
were originally constructed to provide tests for whether pairs
of graphs are isomorphic or not. The k+1-WL algorithm
subsumes the k-WL algorithm as it can distinguish a greater
class of non-isomorphic graphs, and furthermore is in corre-
spondence with k-variable counting logics (Cai, Fürer, and
Immerman 1992). However, the complexity of the k-WL al-
gorithms is exponential in k.

The WL algorithm takes as input graphs without edge
colours, i.e. ∀e ∈ E, l(e) = 0, and outputs a canonical form
in terms of a multiset of colours, a set which is allowed to
have duplicate elements. It has also been used to construct a
kernel for graphs (Shervashidze et al. 2011) which converts
the multiset of colours in the WL algorithm into a feature
vector and then uses the simple dot product kernel. We de-
note a multiset of elements by {{. . .}}.

The WL algorithm is shown in Alg. 1 which takes as in-
put a graph G with coloured nodes only and a predefined
number of WL iterations h. The algorithm begins by initial-
ising the current colours of each node with the initial node
colours. If no node colours are given in the graph, we can
set them to 0. Line 3 updates the colour of each node v by
iteratively collecting the current colours of its neighbors in a
multiset and then hashing this multiset and v’s current colour
into a colour using an injective hash(·, ·) function. In prac-
tice, hash is built lazily by using a map data structure and
multisets are represented as sorted strings. Line 4 returns a
multiset of the node colours seen over all iterations.

If the WL algorithm outputs two different multisets for
two graphs G1 and G2, then the graphs are non-isomorphic.
However, if the algorithm outputs the same multisets for
two graphs we cannot say for sure whether they are isomor-



on(a,b) on(c,a)on(b,c)

a b c

Figure 2: ILG subgraph of facts and goal condition corre-
sponding to the on predicate of a Blocksworld instance. The
current state says that a stacked on b, which is stacked on c,
and the goal condition is for c to be stacked on a.

phic or not. The canonical example illustrating this case is
in Fig. 1 where the two graphs are not isomorphic but the
WL algorithm returns the same output for both graphs since
it views all nodes as the same because they have degree 2.

3 WL Features for Planning
In this section we describe how to generate features for plan-
ning states in order to learn heuristics. The process involves
three main steps: (1) converting planning states into graphs
with coloured nodes and edges, (2) running a variant of the
WL algorithm on the graphs in order to generate features,
and then (3) training a classical machine learning model for
predicting heuristics using the obtained features. We start by
defining the Instance Learning Graph (ILG), a novel repre-
sentation for lifted planning tasks.
Definition 3.1. The instance learning graph (ILG) of a
lifted planning problem Π = ⟨P,O,A, s0, G⟩ is the graph
G = ⟨V,E, c, l⟩ with
• V = O ∪ s0 ∪G
• E =

⋃
p=P (o1,...,onP

)∈s0∪G

{
⟨p, o1⟩ , . . . , ⟨p, onP

⟩
}

• c : V → ({ap,ug,ag} × P) ∪ {ob} defined by

u 7→


ob, if u ∈ O;
(ag, P ), if u = P (o1, . . . , onP

) ∈ s0 ∩G;
(ap, P ), if u = P (o1, . . . , onP

) ∈ s0 \G;
(ug, P ), if u = P (o1, . . . , onP

) ∈ G \ s0;

• l : E → N with ⟨p, oi⟩ 7→ i.

Fig. 2 provides an example of an ILG. An ILG consists
of a node for each object and the union of propositions that
are true in the state s0 and the goal condition G. A propo-
sition is connected to the n object nodes which instantiates
the proposition. The labels of the n edges correspond to the
position of the object in the predicate argument. The colours
of the nodes indicate whether the node corresponds to an ob-
ject (ob), or determines whether it is a proposition belonging
to s0 (ap) or G (ug) only or both (ag), as well as its cor-
responding predicate. Hence ug stands for unachieved goal,
ag for achieved goal, and ap for achieved (non-goal) propo-
sition. Note that ILGs are agnostic to the transition system of
the planning task as they ignore action schemas and actions.

Since ILGs have coloured edges, we need to extend the
WL algorithm to account for edge colours to generate fea-
tures for ILGs. Our modified WL algorithm is obtained by
replacing Line 3 in Alg. 1 with the update function

cj(v)← f
(
cj−1(v),

⋃
ι∈ΣE

{{
(cj−1(u), ι) | u ∈ Nι(v)

}})
,

DLFWLF ILGGNN ILG

Muninn

̸=
Thm. 4.4Thm. 4.1

=

⊊
Thm. 4.2

⊊
Cor. 4.3

Figure 3: Expressivity hierarchy of WL, GNN and DL gen-
erated features for planning.

where the union of multisets is itself a multiset. Note that
edge colours do not update during this modified WL algo-
rithm. It is possible to run a variant of the WL algorithm
which modifies edge colours but this comes at an additional
computational cost given that usually |E| ≫ |V |.

Now that ILGs can be represented as multisets of colours,
we can generate features by representing these multisets
as histograms (Shervashidze et al. 2011). The feature vec-
tor of a graph is a vector v with a size equal to the
number of observed colours during training, where v[κ]
counts how many times the WL algorithm has encoun-
tered colour κ throughout its iterations. Formally, let G1 =
⟨V1, E1, c1, l1⟩ , . . . , Gn = ⟨Vn, En, cn, ln⟩ be the set of
training graphs. Then the colours the WL algorithm encoun-
ters in the training graphs are given by

C = {cji (v) | i ∈ {1, . . . , n}; j ∈ {0, . . . , h}; v ∈ Vi}

where cji (v) is the colour of node v in graph Gi during
the j-th iteration of WL for j > 0 and c0i (v) = ci(v).
Given a planning task Π and the set of colours C ob-
served during training, Π’s feature vector representation v⃗ ∈
R|C| is v⃗ = [countC(Π, κ1), . . . ,countC(Π, κ|C|)] where
countC(Π, κ) is the number of times the colour κ ∈ C is
present in the output of the WL algorithm on the ILG rep-
resentation of Π. There is no guarantee that C contains all
possible observable colours for a given planning domain and
colours not in C observed after training are ignored.

4 Theoretical Results
In this section, we investigate the relationship between WL
features and features generated using message passing graph
neural network (GNN), description logic features (DLF) for
planning (Martı́n and Geffner 2000) and the features used by
Muninn (Ståhlberg, Bonet, and Geffner 2022, 2023), a theo-
retically motivated deep learning model. Fig. 3 summarises
our theoretical results.

We begin with some notation. Let D represent the set of
all problems in a given domain. We defineWLF ILG

Θ :D →
Rd as the WL feature generation function described in Sec. 3
which runs the WL algorithm on the ILG representation of
planning tasks. We denote Θ the set of parameters of the
function which includes the number of WL iterations and
the set of colours C with size d observed during training. We
similarly denote parametrised GNNs acting on ILG repre-
sentations of planning tasks by GNN ILG

Θ :D → Rd. Param-
eters for GNNs include number of message passing layers,
the message passing update function with fixed weights, and
the aggregation function.



We denote DLF generators (Martı́n and Geffner 2000)
by DLFΘ : D → Rd where the parameters for DLF in-
clude the maximum complexity length of its features (Bonet,
Francès, and Geffner 2019). DLFs have been used in several
areas of learning for planning including learning descend-
ing dead-end avoiding heuristics (Francès et al. 2019), un-
solvability heuristics (Ståhlberg, Francès, and Seipp 2021)
and policy sketches (Drexler, Seipp, and Geffner 2022).
Lastly, we denote the architecture from Ståhlberg, Bonet,
and Geffner (2022) for generating features by MuninnΘ :
D → Rd. We omit their final MLP layer which transforms
the vector feature into a heuristic estimate. Furthermore in
our theorems, we ignore their use of random node initialisa-
tion (RNI) (Abboud et al. 2021). The original intent of RNI
is to provide a universal approximation theorem for GNNs
but the practical use of the theorem is limited by the assump-
tion of exponential width layers and absence of generalisa-
tion results. Thus, it is unclear what benefits RNI brings to
Muninn for planning. Parameters for Muninn include hy-
perparameters for their GNN architecture and the learned
weights for their update functions.

In all of the aforementioned models, the parameters Θ
consist of a combination of model hyperparameters and
trained parameters based on a training set TD ⊆ D. The
expressivity and distinguishing power of a feature generator
for planning determines if it can theoretically learn h∗ for
larger subsets of planning tasks. We begin with an applica-
tion of a well-known result connecting the expressivity of
the WL algorithm and GNNs for distinguishing graphs (Xu
et al. 2019) by extending it to edge-labelled graphs.

Theorem 4.1 (WLF ILG and GNN ILG have the same power
at distinguishing planning tasks.). Let Π1 and Π2 be any two
planning tasks from a given domain. If for a set of param-
eters Θ we have that GNN ILG

Θ (Π1) ̸= GNN ILG
Θ (Π2), then

there exists a corresponding set of parameters Φ such that
WLF ILG

Φ (Π1) ̸= WLF ILG
Φ (Π2). Conversely for all Φ such

that WLF ILG
Φ (Π1) ̸= WLF ILG

Φ (Π2), there exists Θ such
that GNN ILG

Θ (Π1) ̸= GNN ILG
Θ (Π2).

Proof. [⊆] The forward statement follows from (Xu et al.
2019, Lemma 3) which states that GNNs are at most as
expressive as the WL algorithm for distinguishing non-
isomorphic graphs. We can modify the lemma for the edge
labelled WL algorithm and GNNs which account for edge
features. Then the result follows after performing the trans-
formation of planning tasks into the ILG representation.

[⊇] The converse statement follows from (Xu et al. 2019,
Corollary 6) and modifying Eq. (4.1) of their GIN architec-
ture by introducing an MLP for each of the finite number
of edge labels in the ILG graph and summing their outputs
at each GIN layer. The MLPs have disjoint range in order
for injectivity to be preserved as to achieve the same distin-
guishing power of the edge labelled WL algorithm. This can
be easily enforced by increasing the hidden dimension size
and having each MLP to map to orthogonal dimensions.

We proceed to show that GNNs acting on ILGs is sim-
ilar to Muninn’s GNN architecture (Ståhlberg, Bonet, and

Q(a,a) Q(b,b) Q(a,b) Q(b,a)

a b

(a) ILG of Π1

Q(a,b) Q(b,a)

a b

(b) ILG of Π2

Q(a,a) Q(b,b) Qg(a,b) Qg(b,a)

a b

(c) Implicit Muninn graph of Π1

Q(a,b) Q(b,a) Qg(a,b) Qg(b,a)

a b

(d) Implicit Muninn graph of Π2

Figure 4: ILG and Muninn graph representations of tasks in
Thm. 4.2 [⊋].

Geffner 2022). The idea of the proof is that encoding dif-
ferent predicates into the ILG representation is equivalent to
having different weights for message passing to and from
different predicates in Muninn. However, we also show that
our model has strictly higher expressivity for distinguish
planning tasks due to explicitly encoding achieved goals.

Theorem 4.2 (GNN ILG is strictly more expressive than
Muninn at distinguishing planning tasks.). Let Π1 and
Π2 be any two planning tasks from a given domain. For
all Θ, if MuninnΘ(Π1) ̸= MuninnΘ(Π2), then there
exists a corresponding set of parameters Φ such that
GNN ILG

Φ (Π1) ̸= GNN ILG
Φ (Π2). Furthermore, there exists

a pair of planning tasks Π1 and Π2 such that there ex-
ists Φ with GNN ILG

Φ (Π1) ̸= GNN ILG
Φ (Π2) but for all Θ,

MuninnΘ(Π1) = MuninnΘ(Π2).

Proof. [⊇] In order to show the inclusion, we show that a
Muninn instance operating on a state can be expressed as a
GNN operating on the ILG representation of the state. More
explicitly, we show that the implicit graph representation of
planning states by Muninn is the same graph as ILG. The
message passing steps and initial node features are different
but the semantic meaning of executing both algorithms are
the same. The node features in the implicit graphs of Muninn
are all the same when ignoring random node initialisation.
Muninn differentiates object nodes and fact nodes by using
different message passing functions depending on whether a
node is an object or a fact, and depending on which predi-
cate the fact belongs to. In the language of ILG, Muninn’s
message passing step on fact nodes p = P (o1, . . . , onP

) is

hl+1
p = MLPP (h

l
o1 , . . . , h

l
onP

) (1)

where hl+1
p denotes the latent embedding of the node p in

the l + 1-th layer, hl
oi denotes the latent embedding of the

object node oi in the l-th layer, and MLPP is a multilayer
perceptron, with a different one for each predicate. The mes-
sage passing step of Muninn on object nodes oi is

hl+1
o = MLPU (h

l
o, {{hl

p | o ∈ p}}) (2)

where o ∈ p denotes that o is an argument of the predicate
associated with p. We note that having a different MLP in
the message passing step for different nodes is equivalent



to having a larger but identical MLP in the message pass-
ing step for all nodes. This is because the model can learn
to partition latent node features depending on their semantic
meaning and thus be able to use a single MLP function to
act as multiple different functions for different node feature
partitions. Thus, Eq. (1) and (2) can be imitated by a GNN
operating on ILG since ILG features differentiate nodes de-
pending on whether they correspond to an object, or a fact
associated with a predicate. Different edge labels in the ILG
allow it to distinguish the relationship between facts and ob-
jects depending on their position in the predicate argument.

[⊋] To see how GNN ILG is strictly more expressive
than Muninn, we consider the following pair of planning
tasks. The main idea is that Muninn does not keep track
of achieved goals and sometimes cannot even see that the
goal has been achieved. Let Π1 = ⟨P,O,A, s(1)0 , G⟩ and
Π2 = ⟨P,O,A, s(2)0 , G⟩ with P = {Q}, O = {a, b},
A = ∅, G = s

(2)
0 = {Q(a, b), Q(b, a)} and s

(1)
0 =

{Q(a, a), Q(b, b)}. Fig. 4 illustrates the ILG representation
and the implicitly defined edge-labelled graph representa-
tion in Muninn’s GNN architecture of Π1 and Π2. It is
clear that the ILG representation of Π1 and Π2 are differ-
ent and hence GNN ILG differentiates between Π1 and Π2.
On the other hand without RNI, Muninn sees the pair of
non-isomorphic graphs in Fig. 4(c) and (d). However, any
edge-labelled variant of the WL algorithm views the pair of
graphs as the same, and hence so does Muninn.

Corollary 4.3 (WLF ILG is strictly more expressive than
Muninn at distinguishing planning tasks.). Let Π1 and
Π2 be any two planning tasks from a given domain. For
all Θ, if MuninnΘ(Π1) ̸= MuninnΘ(Π2), then there
exists a corresponding set of parameters Φ such that
WLF ILG

Φ (Π1) ̸= WLF ILG
Φ (Π2). Furthermore, there exists

a pair of planning tasks Π1 and Π2 such that there ex-
ists Φ with WLF ILG

Φ (Π1) ̸= WLF ILG
Φ (Π2) but for all Θ,

MuninnΘ(Π1) = MuninnΘ(Π2).

Our next theorem shows that WLF ILG and DLF fea-
tures are incomparable, in the sense that there are pairs of
planning tasks that look equivalent to one model but not
the other. We use a similar counterexample to that used for
Muninn but with an extra predicate which WLF ILG does
not distinguish but DLF can. Conversely we use the fact
that DLFs are limited by the need to convert planning pred-
icates into binary predicates to construct a counterexample
pair of planning tasks with ternary predicates which DLF
views as the same whileWLF ILG does not.

Theorem 4.4 (WLF ILG and DLF are incomparable at
distinguishing planning tasks.). There exists a pair of
planning tasks Π1 and Π2 such that there exists Φ
with WLF ILG

Φ (Π1) ̸= WLF ILG
Φ (Π2) but for all Θ,

DLFΘ(Π1) = DLFΘ(Π2). Furthermore, there exists
a pair of planning tasks Π1 and Π2 such that there ex-
ists Φ with DLFΦ(Π1) ̸= DLFΦ(Π2) but for all Θ,
WLF ILG

Θ (Π1) =WLF ILG
Θ (Π2).

Proof. [∃<] We begin by describing a pair of planning

Q(a,a) Q(b,b) W(a,b) W(b,a)

a b

(a) ILG of Π1

Q(a,b) Q(b,a) W(a,b) W(b,a)

a b

(b) ILG of Π1

Figure 5: ILG representations of tasks in Thm. 4.4 [∃<].

tasks Π1 and Π2 such thatWLF ILG
Θ (Π1) = WLF ILG

Θ (Π2)
for any set of parameters Θ but are distinguished by De-
scription Logics. Let Π1 = ⟨P,O,A, s(1)0 , G⟩ and Π2 =

⟨P,O,A, s(2)0 , G⟩ with P = {Q,W}, O = {a, b}, A con-
tains the single action schema o = ⟨{x, y}, {Q(x, y)},
{W (x, y)}, ∅⟩, G = {W (a, b), W (b, a)}, s(1)0 = {Q(a, a),
Q(b, b)} and s

(2)
0 = {Q(a, b), Q(b, a)}.

We have that h∗(Π1) = ∞ as the problem Π1 is
unsolvable, while h∗(Π2) = 2 as the optimal plan
contains actions o(a, b) and o(b, a). DL features are
able to distinguish the two planning tasks by consid-
ering the role-value map (Q = W )(s) defined by
{x | ∀y : Q(x, y) ∈ s ⇐⇒ W (x, y) ∈ s}, and the corre-
sponding numerical feature |Q = W | (s) = |(Q = W )(s)|.
We have that |Q = W | (s(1)0 ) = 0 and |Q = W | (s(1)0 ) = 2,
meaning that DLF can distinguish between Π1 and Π2.

On the other hand, the ILG representations of Π1 and Π2

are indistinguishable to our definition of the edge-labelled
WL algorithm. Fig. 5 illustrates this example and we note
that it is similar to the implicit Muninn graph representations
of the pair of planning tasks from Thm. 4.2.

[∃>] We identify a pair of problems with ternary pred-
icates which compile to the same problem with only
binary predicates for which DL features are defined.
For problems with at most binary predicates, DL in-
troduces base roles on each predicate P (x, y) ∈ P
by P s = {(a, b) | P (a, b) ∈ s} where s is a plan-
ning state. Then given an n-ary predicate R(x1, . . . , xn),
DL introduces n(n − 1)/2 roles defined by Rs

i,j =
{(a, b) | ∃o1, . . . , oi−1, oi+1, . . . , oj−1, oj+1, . . . , on ∈ O,
R(o1, . . . , oi−1, a, oi+1, . . . , oj−1, b, oj+1, . . . , on) ∈ s}
for 1 ≤ i < j ≤ n. Now consider the problems Π1 =

⟨P,O,A, s(1)0 , G⟩ and Π2 = ⟨P,O,A, s(2)0 , G⟩ now with
P = {P}, O = {a, b, c, d}, A = ∅, G = {P (a, b, c)}, and

s
(1)
0 = {P (a, b, a), P (c, b, c), P (a, d, c), P (c, d, a)}

s
(2)
0 = {P (a, b, c), P (c, b, a), P (a, d, a), P (c, d, c)}.

We have that h∗(Π1) =∞ since there are no actions and
the initial state is not the goal condition, while h∗(Π2) = 0

since G ⊆ s
(2)
0 . The ILG for the two tasks are distinguished

by the WL algorithm as the ILG of Π1 has no achieved goal
colour while Π2 does. However, DL features view the two
states s

(1)
0 and s

(2)
0 as the same due after the compilation

from ternary to binary predicates:

P1,2(a, b) P1,2(a, d) P1,2(c, b) P1,2(c, d)
P1,3(a, a) P1,3(a, c) P1,3(c, a) P1,3(c, c)
P2,3(b, a) P2,3(b, c) P2,3(d, a) P2,3(d, c).



Thus any DL features will be the same for both s
(1)
0 and

s
(2)
0 and thus cannot distinguish Π1 and Π2.

Our final theorem combines previous results and states
that there exist domains for which all feature generators de-
fined thus far are not powerful enough to perfect learn h∗.
Although this is not a surprising result, we hope to bring
some intuition on what is further required for constructing
more expressive features for learning for planning.

Corollary 4.5 (All feature generation models thus far can-
not generate features that allow us to learn h∗ for all do-
mains.). Let F ∈

{
WLF ILG,GNN ILG,Muninn,DLF

}
.

There exists a domain D with a pair of planning tasks Π1,
Π2 such that for all parameters Θ for F , we have that
FΘ(Π1) = FΘ(Π2) and h∗(Π1) ̸= h∗(Π2).

In this section, we concluded that our WLF ILG features
are one of the most expressive features thus far in the liter-
ature for representing planning tasks, the other being DLF
features. We have done so by drawing an expressivity hi-
erarchy between our WLF ILG features and previous work
on GNN architectures (Ståhlberg, Bonet, and Geffner 2022).
We further constructed explicit counterexamples illustrating
the difference between WLF ILG and DLF features, high-
lighting their respective advantages and limitations.

5 Experiments
In this section, we empirically evaluate WL-GOOSE for
learning domain-specific heuristics against the state-of-the-
art. We consider the domains and training and test sets
from the learning track of the 2023 International Plan-
ning Competition (IPC) (Seipp and Segovia-Aguas 2023).
The domains are Blocksworld, Childsnack, Ferry, Floortile,
Miconic, Rovers, Satellite, Sokoban, Spanner, and Trans-
port. Each domain contains instances categorised into easy,
medium and hard difficulties depending on the number of
objects in the instance. For each domain, the training set
consists of at most 99 easy instances and the test set consists
of exactly 30 instances from each of the three easy, medium
and hard difficulties that are not in the training set.

The hyperparameters considered for WL-GOOSE are the
number of iterations h for generating features using the WL
algorithm and the choice of a machine learning model used
and its corresponding hyperparameters. In all our experi-
ments with WL-GOOSE, we use h = 4 and, since our
learning target is h∗, we consider the following regression
models: support vector regression with the dot product ker-
nel (SVR) and the radial basis kernel (SVR∞), and Gaus-
sian process regression with the dot product kernel (GPR).
We choose SVR over ridge regression for our kernelised
linear model due to its sparsity and hence faster evalua-
tion time with use of the ϵ-insensitive loss function (Vapnik
2000). The choice of Gaussian process allows us to explore
a Bayesian treatment for learning h∗ providing us with con-
fidence bounds on the learned heuristics.

Furthermore, we experiment with the 2-LWL algorithm
with h = 4 for generating features alongside SVR with
the dot product kernel (2-LWL). The 2-LWL algorithm is

a computationally feasible approximation of the 2-WL al-
gorithm (Morris, Kersting, and Mutzel 2017), which in turn
is a generalisation of the WL algorithm where colours are
assigned to pairs of vertices. While the features computed
by the 2-WL algorithm subsume those of the WL algorithm,
it is computationally more expensive to compute requiring
quadratically more time than the WL algorithm.

For any configuration of WL-GOOSE, we use optimal
plans returned by scorpion (Seipp, Keller, and Helmert
2020) on the training set with a 30-minute timeout on each
instance for training. We use 67% of the states and the corre-
sponding cost to the goal from each optimal plan as training
data and the remaining 33% were used as a validation set for
logging loss scores.

As baselines for heuristics, we use the domain-
independent heuristic hFF and GNNs operating on the ILG
representations of planning tasks. For the GNNs, we use 4
message passing layers and consider both max and mean
aggregators. All heuristics are evaluated using greedy best-
first search. We include LAMA (Richter and Westphal 2010)
using its first plan output as a strong satisficing planner
that uses multi-queue heuristic search and other optimisation
techniques. We also compare against Muninn using the same
weights trained in its entry of the 2023 IPC Learning Track.
For all methods, we use a timeout of 1800 seconds per evalu-
ation problem. With the exception of the GNNs using ILGs,
the experiments were run on a cluster with single Intel Xeon
3.2 GHz CPU cores and a memory limit of 8GB. For the
GNNs using ILGs, we used single Intel Xeon Gold 5218R
2.1GHz CPU cores and an NVIDIA RTX A6000 GPU with
48GB memory. However the GNNs never use more than
8GB of GPU or main memory before reaching the timeout.
The other planners in the competition were not considered
because they do not explicitly learn a heuristic.

Tab. 1 summarises our experiments by showing the cov-
erage per domain for each planner as well as their total IPC
score. Next, we discuss our results in detail and we conclude
this section by describing how to analyse the learned fea-
tures of our models using an example.

How well do heuristics learned from WL features per-
form? Considering total coverage and total IPC score
(Tab. 1), we notice that SVR and GPR outperform all the
other planners with the exception of LAMA-first, i.e., all
learning-based approaches as well as hFF. Domain-wise,
SVR and GPR outperform Muninn in all domains while out-
performing GNNs using ILGs on 8 and 9 domains, respec-
tively. Both SVR and GPR outperform or tie with LAMA on
4 domains, namely Blocksworld, Ferry, Miconic and Span-
ner. GPR is able to return better plans than LAMA on 5 do-
mains (Blocksworld, Childsnack, Ferry, Miconic, Sokoban),
while the reverse is true only on 3 domains (Rovers, Satel-
lite, Spanner). For Spanner, this is because LAMA’s heuris-
tics are not informative for this domain, which leads to it per-
forming like blind search and hence returning better plans.

SVR and GPR also outperform or tie with hFF on 5 and
7 domains, respectively. We compare GPR and hFF in more
detail in Fig. 6 by showing plan cost and nodes expanded per
problem. We observe that the better performing planner on a
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blocksworld 61 28 40 49 58 72 20 22 77
childsnack 35 26 11 19 20 16 15 13 30
ferry 68 68 46 64 72 77 32 60 76
floortile 11 12 - - - 2 - 1 2
miconic 90 90 30 90 90 90 31 67 90
rovers 67 34 15 25 29 33 27 33 37
satellite 89 65 18 31 29 46 29 20 57
sokoban 40 36 26 32 33 38 30 31 38
spanner 30 30 32 30 33 74 30 52 74
transport 66 41 17 38 35 29 26 35 32

sum coverage 557 430 235 378 399 477 240 334 513
sum IPC score 492.7 393.5 232.4 354.5 374.6 442.8 213.4 304.8 471.2

Table 1: Coverage of considered planners. The bottom-most
row provides their overall IPC 2023 learning track score.
Our new models are the WL models. Only LAMA-first and
Muninn are multi-queue heuristic search planners. The top
three single-queue heuristic search planners in each row are
indicated by the cell colouring intensity, with the best one in
bold. The best planner overall in each row is underlined.
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Figure 6: Returned plan cost and number of expanded nodes
of hFF and GPR. Problems that were not solved by one plan-
ner has their respective metric set to the axis limit. Points on
the top left triangle favour GPR while points on the bottom
right triangle favour hFF.

domain generally has better plan quality and fewer number
of expanded nodes. The only exception to this is Sokoban
where GPR expands more nodes than hFF but solves more
problems because it is faster with its heuristic evaluations.
Overall, the domains in which GPR performs worse are do-
mains that require traversing a map which WL features can-
not express due to the finite number of WL iterations.

Are our methods more computationally efficient to
train? To answer this question, we compare the train-
ing time of GNNs using ILGs, SVR and GPR. Their mean
and 95% confidence interval in seconds are 112.8 ± 54.3
(GNNmax), 142.7 ± 62.6 (GNNmean), 0.8 ± 0.5 (SVR) and
2.6 ± 1.7 (GPR). Comparing against the most efficient
GNN model per domain, we have that SVR is between 33x
(Sokoban) to 421x (Rovers) more efficient and GPR is be-
tween 13x (Blocksworld) and 118x (Spanner) more efficient.
Note that the GNNs have access to GPUs and they would
take even more time to train on a CPU.

h error Expanded

Domain E. M. H. all E. M. H. all

blocksworld +0.93 +0.90 +0.94 +0.98 +0.32 +0.22 +0.33 +0.58
childsnack +0.69 +0.93 - +0.87 +0.59 +0.52 - +0.20
ferry +0.86 +0.98 +0.99 +1.00 +0.86 +0.87 +0.83 +0.93
floortile - - - - - - - -
miconic +0.56 +0.67 +0.97 +0.96 +0.55 +0.81 +0.99 +0.99
rovers +0.89 +0.86 - +0.96 +0.26 +0.19 - +0.53
satellite +0.73 +0.95 - +0.96 +0.09 +0.07 - +0.18
sokoban +0.27 +0.86 - +0.96 +0.26 +0.76 - +0.79
spanner +0.36 +0.53 +0.96 +0.92 +0.43 +0.54 +0.96 +0.92
transport +0.83 - - +0.83 +0.37 - - +0.35

Table 2: Pearson’s correlation coefficient ρ between stan-
dard deviation obtained by GPR against heuristic estimate
error and node expansions of initial states from solved prob-
lems. Statistically significant coefficients (p < 0.05) are
highlighted in bold font and italics otherwise. Strongly cor-
related values (|ρ| ≥ 0.5) are highlighted in green, medium
correlated values (0.3 ≤ |ρ| < 0.5) in a lighter green, and
low correlation (|ρ| < 0.3) in gray. Entries for which we
solved fewer then 10 problems are omitted. E., M., H. stand
for easy, medium and hard difficulties respectively.

Does kernelising help? As commonly done in classical
machine learning, we combine our WL features with non-
linear kernels to obtain new non-linear features that can
increase the expressivity of the regression models. Unfor-
tunately, as shown in Tab. 1, this generally results in a
decrease in the performance of the learned heuristic: the
SVR∞ model has significantly worse coverage than SVR
despite theoretically having more expressive implicit fea-
tures. The drop in performance can be explained by over-
fitting to the more expressive features which do not bring
any obvious semantic information for planning tasks.

Do higher order WL features help? The motivation for
using higher-order WL features is similar to using higher-
order kernels: to introduce more expressive features that
may be correlated with the optimal heuristic. In Tab. 1, we
see that the performance of 2-LWL is generally worse on all
domains except for Transport. This again can be attributed to
poorer generalisation. Furthermore, computing the 2-LWL
features are slower to generate than WL features as they take
time cubic in the size of the ILGs in the worst case. We also
note that attempting to generate 3-LWL features causes out
of memory problems during training as the size of features
generated is extremely large, on the order of 107 and above.

Are Bayesian variance estimates meaningful? One ad-
vantage of Bayesian models is that by assuming a prior dis-
tribution on the weights of our models, we are able to derive
uncertainty bounds on the outputs of the learned posterior
model. In Tab. 2, we analyse the Pearson’s correlation co-
efficient between the standard deviation obtained by GPR
and (1) the error between output mean and h∗, and (2) the
number of expanded nodes using the learned heuristic with
greedy best first search.

We see that there is a statistically significant strong cor-
relation between the heuristic estimate error and the GPR
variance outputs. This is reasonable given that the deriva-
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Figure 7: The dependency subgraph of generated WL fea-
tures on Blocksworld. The first row of each node indicates
the index of the feature and also the colour. The second row
indicates the initial colour the feature corresponds to or the
input to the hash function which generated the colour. The
third row describes the semantic meaning of the feature.
Edges describe the dependency of the feature on previous
features based on the hash function.

tion of the Bayesian model computes the uncertainty on its
output prediction. The story is different for the number of ex-
panded nodes during search where for easy problems there
is no significant correlation depending on the domain. In-
terestingly, the correlation is more significant and stronger
on harder problems for more domains. Thus, the Bayesian
model is able to determine the difficulty of solving a prob-
lem within a domain by looking at the predicted standard
deviation for h(s0) but the quality of this prediction will de-
pend on the domain.

Understanding Learned Models
Another advantage of WL-GOOSE is that its set of features
is explainable, and it is possible to see which features are
chosen when using a linear inference model. The models
can be understood by analysing the features with the highest
corresponding linear weights, and by observing the distri-
bution of such weights. The semantic meaning of the fea-
tures can be understood by examining the generation of WL
colours. This can be achieved by representing the observed
WL colours as a directed acyclic graph (DAG) where each
WL colour is a node and there is a directed edge from κ to
κ′ if κ′ = hash(x,M) and x = κ or ∃ι, (κ, ι) ∈M .

We provide an example of how to interpret the learned
models by briefly studying the learned GPR model on
Blocksworld. In this domain, a total of 8990 features were
generated from the training data and Fig. 7 illustrates the
DAG representation of feature 85’s generation. Consider
feature 10 in Fig. 7, it computes the number of blocks that
are correctly on the table and also have the correct block
above it. We have that 10 = hash(0, {{(5, 1), (3, 2)}}), mean-

ing that the colour 10 is generated from an object node
(0 = ob) which is part of an achieved on-table goal (5 =
(ag, on-table)) and achieved on goal (3 = (ag, on)). The
corresponding edge label of the node colours indicate the
position of the block object in the proposition. Thus, blocks
b with colour 10 are in the first and only argument of on-table
and the second argument of on. This means that the colour
10 is assigned to blocks correctly on the table and correctly
underneath another block.

Moreover, we observed that certain subsets of features
were evaluated to the same value on all training states. As
a result, the same learned weight value was assigned to each
feature in these subsets. This can be seen in Fig. 7 where
features 10, 28, 49 and 85 are semantically equivalent. The
sum of their weight values is −1.70, the second largest in
value from subsets of features. Thus, the learned weight re-
wards states satisfying this condition as blocks correctly on
the table do not have to be moved.

Note that, it is possible for features to evaluate to the
same values on the training set but have different semantic
meanings because the training set is finite. For example, in
Blocksworld, a training set may satisfy that a block is cor-
rectly on the table if and only if it has the correct block above
it. In this case, the count of colours 5 and 10 would be the
same on all states despite not being semantically equivalent.

6 Conclusion
We introduced WL-GOOSE, a novel approach that com-
bines the efficiency of Statistical Machine Learning (SML)
models with features commonly used by Deep Learn-
ing (DL) methods. To achieve this, we developed the In-
stance Learning Graph (ILG), a novel representation of
lifted planning tasks and provided a method to generate fea-
tures for ILGs based on the WL algorithm. Similar to De-
scription Logic features for planning, our generated fea-
tures are agnostic to the learning target and can be used
without the need for backpropagation. Furthermore, unlike
DL-based approaches, our models can be trained in a de-
terministic fashion with minimal parameter tuning. To vali-
date the benefits of WL-GOOSE, we have used two classical
SML models, namely support vector regression (SVR) and
Gaussian process regression (GPR), to learn domain-specific
heuristics and compared them to the state of the art.

The experimental results showed that WL-GOOSE can
efficiently and reliably learn domain-specific heuristics from
scratch. Compared to GNNs applied to ILGs, our learned
heuristics are between 13 to 421 times faster to train and
solve up to 28.5% more problems. Our results also showed
that both SVR and GPR are the first learned heuristics capa-
ble of outperforming hFF in terms of total coverage. More-
over, our learned heuristics outperform or tie with LAMA
on 4 domains and, to our knowledge, this is the best perfor-
mance of learned heuristics against LAMA. We also showed
the theoretical connections between our novel feature gener-
ation method with Description Logic features and GNNs.
Our future work agenda includes exploring how to best use
the uncertainty bounds provided by GPR to improve search,
as well as combining stronger satisficing search algorithms
to further improve WL-GOOSE.
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