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Abstract

Pretrained language models (PLMs) have be-001
come remarkably adept at task and language002
generalization. Nonetheless, they often fail dra-003
matically when faced with unseen languages,004
posing a significant problem for diversity and005
equal access to PLM technology. In this work,006
we present LINGUALCHEMY, a regularization007
technique that incorporates various aspects of008
languages covering typological, geographical,009
and phylogenetic constraining the resulting010
representation of PLMs to better characterize011
the corresponding linguistics constraints. LIN-012
GUALCHEMY significantly improves the accu-013
racy performance of mBERT and XLM-R on014
unseen languages by ∼18% and ∼2%, respec-015
tively compared to fully fine-tuned models and016
displaying a high degree of unseen language017
generalization. We further introduce ALCHE-018
MYSCALE and ALCHEMYTUNE, extension of019
LINGUALCHEMY which adjusts the linguistic020
regularization weights automatically, alleviat-021
ing the need for hyperparameter search. LIN-022
GUALCHEMY enables better cross-lingual gen-023
eralization to unseen languages which is vital024
for better inclusivity and accessibility of PLMs.025

1 Introduction026

Significant advancements in language processing027

technology have been achieved through the devel-028

opment of PLMs, leading to a commendable pro-029

ficiency in language comprehension and genera-030

tion (Devlin et al., 2019; Liu et al., 2019; Con-031

neau et al., 2020; Sanh et al., 2022; Lewis et al.,032

2019; Raffel et al., 2023; Li et al., 2021; Cahyaw-033

ijaya et al., 2021; Wilie et al., 2020). However,034

there remains a notable deficiency in the ability of035

these models to generalize effectively to unseen036

languages, resulting in a considerable performance037

reduction of PLMs across thousands of unseen lan-038

guages. To mitigate this problem, efforts to develop039

efficient language adaptation approaches are under-040

way, focusing on the incorporation of these unseen041
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Figure 1: LINGUALCHEMY enhances performance in
unseen languages by allowing the model to predict the
linguistic vector and then fitting it via a similarity loss
towards the specific language’s URIEL vector.

languages to PLMs (Pfeiffer et al., 2021b; Alabi 042

et al., 2022; Ebrahimi et al., 2022; Goyal et al., 043

2021). 044

Incorporating new unseen languages has been a 045

longstanding problem in natural language process- 046

ing (NLP) research, especially given that most of 047

these unseen languages are low-resource and under- 048

represented making PLMs difficult to adapt to these 049

languages. MAD-X (Pfeiffer et al., 2020b) em- 050

ploys a language adapter to learn new unseen lan- 051

guages by incorporating language adapters that mit- 052

igate the risk of forgetting pre-trained knowledge 053

which is known as the curse-of-mulitlinguality. 054

Nonetheless, this approach requires training for 055

generalizing to new unseen languages which makes 056

it costly and difficult to scale to thousands of 057

languages. MAD-G (Ansell et al., 2021) and 058

Udapter (Üstün et al., 2020) further generalize this 059

approach by utilizing a linguistic-driven contex- 060

tual parameter generator (CPG) module to gener- 061

ate language-specific parameters allowing the mod- 062

els to generalize to other languages with similar 063

linguistic characteristics. Recently, Rathore et al. 064

(2023) introduced ZGUL, which combines repre- 065

sentations over multiple language adapters to gen- 066

erate the unseen language representation. Despite 067

the effectiveness, all these approaches largely rely 068

on two assumptions, i.e., 1) strict categorization of 069

languages and 2) knowing the language category of 070
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the query apriori. The first assumption disregards071

the fact that linguistic phenomena such as code-072

mixing may occur in the query. While the second073

assumption might cause performance degradation074

due to the error propagation from the language075

identification module (Adilazuarda et al., 2023).076

To overcome those limitations, in this work, we077

introduce LINGUALCHEMY. Unlike adapter-based078

approaches which isolate the capability to under-079

stand different languages over multiple language-080

specific adapters, LINGUALCHEMY learns a shared081

representation across multiple languages, allow-082

ing the model to leverage shared knowledge be-083

tween languages. Such behavior is attainable by084

eliminating the language-specific module from the085

model and instead utilizing a regularization to learn086

language-specific knowledge. LINGUALCHEMY087

allows the model to perform inference without088

knowing the language of the query prior. Our evalu-089

ation suggests that LINGUALCHEMY can improve090

mBERT and XLM-R generalization in unseen lan-091

guages while maintaining the performance on the092

high-resource languages without requiring infor-093

mation on the language of the query apriori.094

In summary, our contributions are as follows:095

1. We propose LINGUALCHEMY, a regulariza-096

tion method that improves unseen language097

performance on language models and aligns098

them to arbitrary languages.099

2. We demonstrate strong performance on un-100

seen languages for models trained with LIN-101

GUALCHEMY.102

3. We introduced a dynamic scaling method to103

scale the classification and auxiliary loss fac-104

tors used in the fine-tuning stage.105

2 Related Works106

PLMs with their transformer-based architectures107

have been demonstrating exceptional capabilities108

in language comprehension and generation. These109

models excel in abstract linguistic generalization110

by capturing complex linguistic patterns and un-111

derstanding structural positions and thematic roles,112

which are crucial for interpreting language seman-113

tics. Research in this area (Ganesh et al., 2021) has114

provided critical insights that enable these models115

to process and generate human language effectively.116

The studies have explored how these models grasp117

intricate linguistic features, including syntax and118

semantics, thereby enhancing their performance 119

across a wide range of language tasks (Rathore 120

et al., 2023). 121

In parallel, the development of resources like 122

publicly available URIEL vector and lang2vec util- 123

ity (Littell et al., 2017) has been instrumental in 124

extending the reach of multilingual NLP, partic- 125

ularly for less-resourced languages. These tools 126

provide vector representations of languages, lever- 127

aging typological, geographical, and phylogenetic 128

data, thus offering a structured approach to under- 129

standing linguistic diversity. Complementing this, 130

recent research has conducted a comprehensive 131

survey on the utilization of typological informa- 132

tion in NLP, highlighting its potential in guiding 133

the development of multilingual NLP technologies 134

(Ponti et al., 2019). This survey emphasized the 135

underutilization of typological features in existing 136

databases and the need for integrating data-driven 137

induction of typological knowledge into machine 138

learning algorithms. 139

Recent advancements in prefix tuning (Li and 140

Liang, 2021) and subspace learning (Zhang et al., 141

2020) have contributed significantly to improving 142

generalization in PLMs. These methods focus on 143

learning prefix subspaces to stabilize the direct 144

learning of embeddings, addressing the instability 145

issues present in earlier approaches. Two notable 146

methods are the MAD-X (Pfeiffer et al., 2020b) and 147

MAD-G (Ansell et al., 2021) frameworks, which 148

employ adapter-based techniques for multi-task 149

cross-lingual transfer, highlighting modularity and 150

parameter efficiency. However, it inherits the limi- 151

tations of the pretrained multilingual models, such 152

as the limited capacity to adapt effectively to low- 153

resource and unseen languages. Furthermore, while 154

the framework facilitates adaptation to specific tar- 155

get languages, it may bias the model towards these 156

languages, potentially impacting its performance 157

on other languages. 158

However, despite these advancements, PLMs 159

still face significant challenges in generalizing to 160

unseen languages, particularly when adapting to 161

low-resource and unseen languages. These chal- 162

lenges stem from the vast structural and semantic 163

variation across languages (Bender, 2011; Jurafsky 164

and Martin, 2019), the scarcity of resources (Mo- 165

hammad, 2019; Lewis et al., 2020), and the limita- 166

tions inherent in the models themselves (Lin et al., 167

2017). This situation highlights the complexity of 168

scaling and generalizing these models effectively 169
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and underscores the need for more sophisticated ap-170

proaches in model training and adaptation to ensure171

broader and more equitable language coverage.172

3 Unseen Languages Adaptation with173

LINGUALCHEMY174

In this section, we provide an overview of how175

LINGUALCHEMY can capture linguistic constraint176

and how is the intuition behind LINGUALCHEMY.177

We also discuss in detail how do we align model178

representations with the linguistic vector.179

3.1 Does Multilingual LMs capture Linguistic180

Constraint?181

In this work, we define the linguistic knowledge as182

a vector gathered from URIEL vector (Littell et al.,183

2017). We chose three distinct linguistic knowl-184

edge from the database, namely ’syntax_knn’,185

’syntax_average’1, and ’geo’ features. The186

choice of ’syntax_knn’ and ’syntax_average’187

is motivated by the typological nature of syntax.188

Syntax in languages varies widely; hence, by us-189

ing aggregate measures like averages and k-nearest190

neighbors (kNN), we can capture a more gen-191

eral representation of syntactic features across lan-192

guages. These features include consensus values,193

like averages, and predicted values, such as kNN194

regressions based on phylogenetic or geographical195

neighbors.196

We excluded phonological features, as our focus197

is not on speech but on textual data. Phonology198

primarily pertains to spoken languages and would199

not add significant value to our analysis of written200

language structures. Additionally, we excluded lan-201

guage family features (’family’). These features202

are typically binary, indicating whether a language203

belongs to a particular subfamily. While they can204

be useful for language identification tasks, they205

tend to be sparse and may not provide the granular-206

ity needed for our study. By focusing on syntax and207

geographical features, our approach aims to encom-208

pass a broader and more nuanced understanding of209

linguistic variations in a multilingual context.210

Syntax Feature These feature vectors denote a211

typological feature that is adapted from several212

sources including World Atlas of Language Struc-213

tures (WALS), Syntactic Structures of World Lan-214

1In this work, we chose the ’knn’ and ’average syntax
features. These include consensus values (like averages) and
predicted values (such as kNN regressions based on phyloge-
netic or geographical neighbors)

guages (Collins, 2010), and short prose descrip- 215

tions on typological features in Ethnologue (Lewis, 216

2009). Syntax vectors captures information about 217

the syntactic properties of languages which derived 218

from large-scale typological databases, which doc- 219

ument the structural and semantic variation across 220

different languages. These syntax features in the 221

URIEL vector are utilized to represent languages 222

in vector form, allowing for the analysis and com- 223

parison of languages based on their syntactic prop- 224

erties. 225

Geographical Feature On the other hand, ge- 226

ographical features represent languages in terms 227

of their geographical properties. The inclusion 228

of ’geo’ features aims to capture geographical at- 229

tributes of languages. Geographic factors can sig- 230

nificantly influence language evolution and struc- 231

ture, making them crucial for understanding lin- 232

guistic variations. This feature expresses geograph- 233

ical location with a fixed number of dimensions that 234

each represents the “great circle” distance—from 235

the language in question to a fixed point on the 236

Earth’s surface. By incorporating geographical 237

information into language vectors, URIEL and 238

lang2vec provide a more comprehensive view of 239

languages, considering not only their structural and 240

semantic properties but also their geographical con- 241

text. 242

3.2 Proof of Concept 243

Linguistic Separability in LMs To explore 244

whether multilingual language models (MLMs), 245

such as Multilingual BERT (mBERT), capture the 246

linguistic constraints as defined by the URIEL vec- 247

tors, we align the mBERT language embeddings to 248

the linguistic knowledge vectors. This projection 249

is quantitatively measured to assess the represen- 250

tation of both seen and unseen languages within 251

the model. The fundamental question we address 252

is the extent to which mBERT’s embeddings corre- 253

spond to the typological and geographical features 254

encapsulated in the URIEL vectors. 255

Figure 2 presents a visual analysis facilitated by 256

UMAP (McInnes et al., 2018), showing the cor- 257

relation between mBERT language representation 258

and the linguistic vectors from the URIEL database 259

(R2 = 0.816). By leveraging UMAP, the plot ac- 260

centuates the principal variances within the joint 261

feature space of the embeddings and vectors. The 262

spatial representation of languages on this plot mir- 263

rors their linguistic and geographical relatedness, 264
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Figure 2: Alignment between mBERT Representation
with URIEL Language Representation. The green-
shaded areas indicate the sentence representations of
mBERT while the brown dots represent the URIEL rep-
resentations of the corresponding language.

as encapsulated by mBERT. This visualization un-265

derscores the model’s ability to mirror linguistic266

typologies, with languages sharing common roots267

such as ’de-DE’ and ’nl-NL’ naturally clustering to-268

gether. The density and arrangement of these clus-269

ters potentially reflect mBERT capacity to capture270

and represent language family traits. Conversely,271

the presence of sparser clusters or outliers prompts272

a closer examination of mBERT’s coverage and273

consistency in representing diverse linguistic fea-274

tures. We also formally defined the language repre-275

sentation alignment in the Appendix B.276

3.3 LINGUALCHEMY277

We introduce LINGUALCHEMY as an approach278

that intuitively aligns model representations with279

linguistic knowledge, leveraging URIEL vectors.280

This is operationalized through an auxiliary loss281

function, involving the training process with a nu-282

anced understanding of linguistic characteristics.283

In LINGUALCHEMY, we enhance the fine-tuning284

of encoder models such as mBERT for downstream285

tasks by not only using the regular classification286

loss but also introducing a novel linguistic regu-287

larization term. This is achieved through the im-288

plementation of a URIEL loss, designed to align289

the model’s representations with linguistic knowl-290

edge derived from URIEL vectors. Specifically,291

this process involves applying a linear projection292

to the model’s pooled output, which aligns it with293

the URIEL vector space. The URIEL loss is quan-294

tified as the mean squared error (MSE) between295

the projected model outputs and the corresponding296

URIEL vectors. This dual approach, combining 297

classification loss and URIEL loss, allows for a 298

more linguistically informed model training, en- 299

hancing the model’s ability to capture and reflect 300

complex linguistic patterns and relationships. 301

Luriel(R,U) =
1

N

N∑
i=1

∥Ri − Ui∥2 302

where R represents the model-generated repre- 303

sentations, U denotes the URIEL vectors, and N is 304

the number of data points. To generate the model 305

representation, we take the output representation 306

from the CLS token and multiply it with a new, 307

trainable projection layer to transform the vector 308

size so that they are compatible. 309

Note that there may be discrepancies between 310

the scales of the standard classification loss and 311

the URIEL loss. To address this, we introduce an 312

optional hyperparameter, denoted as λ, to scale the 313

URIEL loss appropriately. 314

Dynamic Scaling Approaches In addition to the 315

fixed scaling factor, we also explore dynamic ad- 316

justment of this scaling factor at each training step. 317

This aims to maintain a balance between the clas- 318

sification and URIEL losses, and even considers 319

making the scale trainable. The final loss formula 320

when training with LINGUALCHEMY is given by: 321

L = λcls ∗ Lcls + λuriel ∗ Luriel(R,U) 322

We define two methods to implement dynamic 323

scaling: 324

1. ALCHEMYSCALE: This method dynamically 325

adjusts the scaling factor λ during training. It 326

initiates with scaling factors set relative to the 327

mean of initial losses, ensuring proportional 328

importance to each loss component. Subse- 329

quently, these factors are updated periodically 330

using an Exponential Moving Average (EMA) 331

method, with a conservative adjustment for 332

specific loss components to maintain stabil- 333

ity. This approach ensures an optimal balance 334

between different loss components, adjusting 335

the contribution of each to the total loss based 336

on predefined criteria. 337

2. ALCHEMYTUNE: Here, λ is conceptualized 338

as a trainable parameter within the model’s 339

architecture. Initialized as part of the model’s 340
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parameters, λ undergoes optimization during341

the training process. This method applies the342

scaling factors to loss components, and an ad-343

ditional mini_loss—representing the deviation344

of the sum of scaling factors from unity—is345

computed. This mini_loss is used for back-346

propagation, enabling the scaling factors to347

adapt based on the training dynamics and348

dataset specifics.349

Both methods aim to enhance model perfor-350

mance by dynamically and intelligently scaling351

loss components, with the first method relying on352

predefined, periodically updated scaling mecha-353

nisms, and the second integrating the scaling factor354

into the model’s learning parameters for adaptive355

adjustments.356

4 Experiment Setting357

Datasets In our experiments, we utilize the pub-358

licly available MASSIVE Dataset (Xu et al., 2022),359

which is a comprehensive collection of multilin-360

gual data incorporating intent classification tasks.361

This dataset is particularly notable for its inclu-362

sion of a diverse range of languages, with various363

language families, genera, and scripts. Specifi-364

cally, we split MASSIVE into 25 languages that365

are ’seen’ during finetuning and the rest 27 lan-366

guages that are ’unseen’, which we exclusively367

used for evaluation. This splitting is based on the368

language adapters availability as outlined in the369

prior research of (Pfeiffer et al., 2020a), which we370

utilized in the AdapterFusion experiment for our371

baseline model. For a detailed breakdown of the372

languages used, including their respective families,373

genera, and script can be found in Appendix A.374

Models Our research employs two state-of-the-375

art language models: Multilingual BERT Base376

(mBERTBASE) and XLM-RoBERTa Base (XLM-377

RBASE). These models are chosen for their robust378

performance across a wide range of multilingual379

NLP tasks, making them ideal for our intent classi-380

fication and language identification objectives.381

Hyperparameters The following hyperparame-382

ters are used in our training process:383

• Learning rate: 5× 10−5384

• Training epochs: 30385

• Performance metric: Accuracy386

• Early stopping criterion: 3 epochs without 387

improvement 388

Each training takes about 5 hours using a single 389

A100 GPU. 390

5 Results and Discussion 391

5.1 LINGUALCHEMY Performance 392

To evaluate the effectiveness of our proposed tech- 393

nique on unseen languages, we trained mBERT 394

and XLM-R on the MASSIVE dataset. Specif- 395

ically, we train on 25 languages and test on 27 396

different, unseen languages. Our results are sum- 397

marized in Table 1. We compared our method with 398

zero-shot generalization, where the model is fully 399

tuned on seen languages and then tested on un- 400

seen languages (referred to as Full FT in the Table). 401

Additionally, we explored AdapterFusion (Pfeiffer 402

et al., 2021a) as another baseline. AdapterFusion 403

has shown better adaptation to unseen languages 404

than naive zero-shot generalization. Unfortunately, 405

many language adapters that we need for Adapter- 406

Fusion is not available for XLM-R. 407

From Table 1, it is shown that LIN- 408

GUALCHEMY achieves better generalization 409

for unseen languages. We observed a significant 410

improvement for mBERT and a modest average 411

improvement for the stronger XLM-R model. 412

For mBERT, LINGUALCHEMY can significantly 413

increase performance in truly unseen languages 414

of am-ET, km-KH, mn-MN, in which mBERT 415

has never seen during the pre-training stage 416

nor fine-tuning. These findings show that LIN- 417

GUALCHEMY can be useful in truly zero-shot 418

settings. 419

We note that LINGUALCHEMY tends to even 420

out the performance across all unseen languages, 421

leading to a massive boost in weaker languages 422

such as cy-GB or sw-KE. However, in languages 423

where zero-shot performance is already strong, 424

LINGUALCHEMY does not seem to provide ben- 425

efits and in some cases degrade performance. 426

This is more evident in XLM-R, where LIN- 427

GUALCHEMY flattens performance to the 80-82% 428

range, in which many of zero-shot performance is 429

already reached that level or more. Regardless, the 430

potential of our method is clear, showing it to be 431

beneficial in cases where zero-shot performance is 432

poor. 433
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am-ET* cy-GB af-ZA km-KH* sw-KE mn-MN* tl-PH kn-IN te-IN sq-AL ur-PK az-AZ ml-IN ms-MY

AdapterFusion 4.6% 25.1% 57.7% 7.8% 22.2% 27.6% 40.3% 41.0% 34.4% 49.5% 47.1% 63.8% 35.8% 65.8%
Zero-shot CL 5.5% 23.8% 52.7% 8.3% 19.8% 27.2% 37.5% 34.2% 35.3% 44.8% 42.8% 61.6% 27.7% 66.5%
Ours 58.1% 30.0% 50.2% 59.9% 54.9% 57.4% 66.5% 67.8% 71.9% 70.7% 69.4% 69.2% 67.8% 67.9%

Zero-shot CL 78.6% 64.4% 82.7% 84.6% 58.1% 87.5% 85.9% 80.5% 84.6% 67.9% 73.6% 80.2% 78.9% 83.0%
Ours 77.0% 69.0% 75.7% 78.7% 74.9% 76.3% 80.4% 81.2% 82.6% 82.2% 81.8% 82.0% 81.8% 81.8%

ca-ES sl-SL sv-SE ta-IN nl-NL it-IT he-IL pl-PL da-DK nb-NO ro-RO th-TH fa-IR Average

AdapterFusion 73.1% 49.3% 64.1% 41.7% 70.0% 71.9% 51.2% 62.3% 71.3% 68.8% 58.7% 30.4% 59.4% 48.0%
Zero-shot CL 73.1% 47.2% 60.1% 34.9% 70.7% 70.8% 48.2% 60.0% 71.7% 68.5% 54.2% 24.2% 56.9% 45.5%
Ours 68.4% 68.5% 68.4% 68.6% 68.6% 68.1% 68.1% 67.1% 66.4% 65.7% 64.9% 64.4% 64.4% 64.2%

Zero-shot CL 87.4% 86.3% 85.4% 84.4% 82.0% 78.3% 88.7% 61.3% 76.5% 78.2% 82.8% 73.3% 77.2% 79.0%
Ours 82.0% 82.2% 82.2% 82.4% 82.3% 82.1% 82.3% 81.6% 81.4% 81.3% 81.3% 81.1% 81.0% 80.3%

mBERT

XLM-R

Unseen Language Performance
Method

mBERT

XLM-R

Table 1: Performance of LINGUALCHEMY in MASSIVE dataset for unseen languages. These models have not
seen these languages during fine-tuning. For languages in *, mBERT model also never seen the languages during
pre-training.

5.2 Effect of Scaling URIEL loss434

The classification and URIEL losses are not on435

the same scale. Therefore, simply adding both436

losses together means that the model will give more437

weight to the loss with the higher magnitude. When438

observing both the classification and URIEL losses439

during the early stages of training, we note that the440

classification loss is around 10 times larger than441

the URIEL loss. In this part, we explore the effect442

of different scaling factors for the URIEL loss.443

URIEL scale
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Figure 3: Average performance of unseen languages
under various URIEL loss scales.

Constant Scaling We explore consistently scal-444

ing up the URIEL loss across various scaling fac-445

tors. The results can be seen in Figure 3. It is446

important to note that, as we use the scale-invariant447

optimizer AdamW, we don’t have to worry about448

gradients becoming too large due to extremely large449

losses. Generally, we observe that a scaling factor450

of 10x slightly outperforms other scaling factors,451

and the performance appears to decline with higher452

scale factors. 453

Dynamic and Trainable Scaling One issue with 454

introducing a scaling factor is the addition of an- 455

other tunable hyperparameter. Intuitively, we might 456

aim for a balanced weight between the classifica- 457

tion and URIEL losses. Therefore, instead of ex- 458

pensively testing different scaling factors, an adap- 459

tive scaling factor might be more cost-effective 460

and beneficial. Here, we explore two ideas: dy- 461

namic and trainable factors. The results of these 462

approaches can be seen in Table 2. 463

URIEL scaling mBERT XLM-R

Constant 10x 64.68% 80.32%
ALCHEMYSCALE 62.97% 80.43%
ALCHEMYTUNE 63.24% 79.10%

Table 2: Performance Comparison Across Different
URIEL Scaling Methods.

Interestingly, these dynamic scale factors do not 464

significantly outperform a constant factor. In con- 465

trast, a 10x scaling achieves the best performance 466

in mBERT, while dynamic scaling barely outper- 467

forms the 10x scaling in XLM-R. Therefore, in a 468

limited budget scenario, a suggested 10x scaling 469

factor should suffice, and one may explore differ- 470

ent scaling factors given more computational re- 471

sources. 472

5.3 Generalization Across Language Family 473

We investigate LINGUALCHEMY across language 474

families to further analyze the generalization ca- 475

pabilities of BERT and XLM-R models. This ex- 476

periment offers insight into how adaptable LIN- 477
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Train Group Lang. Family Languages Num. Languages

1 Indo-European af-ZA, bn-BD, ca-ES, cy-GB, da-DK, de-DE, el-GR, en-US,
es-ES, fa-IR, fr-FR, hi-IN, hy-AM, is-IS, it-IT, lv-LV, nb-NO,
nl-NL, pl-PL, pt-PT, ro-RO, ru-RU, sl-SL, sq-AL, sv-SE, ur-PK

26

2 Dravidian Train Group 1 + kn-IN, ml-IN, ta-IN, te-IN 30
3 Afro-Asiatic Train Group 2 + am-ET, ar-SA, he-IL 33
4 Sino-Tibetan Train Group 3 + my-MM, zh-CN, zh-TW 36

Unseen Languages sw-KE, km-KH, vi-VN, id-ID, jv-ID, ms-MY, tl-PH, ja-JP, ka-
GE, ko-KR, mn-MN, th-TH, az-AZ, tr-TR, fi-FI, hu-HU 16

Table 3: Language family distribution used in the language family generalization experiment (§5.3)

GUALCHEMY is to a variety of linguistic features.478

We perform our experiment by splitting the lan-479

guages in MASSIVE according to their language480

families and train the model on a subset of language481

families while testing on the rest, unseen language482

families. We explore on including different subset483

of language families, as seen in Table 3.484

The "others unseen" category includes additional485

language families not incorporated in the train-486

ing set, serving as an "unseen" testbed. As il-487

lustrated in Figure 4, LINGUALCHEMY demon-488

strates generalization towards these unseen lan-489

guage families. Perhaps unsurprisingly, adding490

more languages and, importantly, diversity to the491

training data improves generalization performance.492

Notably, the inclusion of the Afro-Asiatic lan-493

guage group—consisting of languages such as ’am-494

ET,’ ’ar-SA,’ and ’he-IL,’ each featuring unique495

scripts—has significantly enhanced performance496

from the second to the third training group iteration.497

This improvement underscores LINGUALCHEMY’s498

capability to adapt to scripts not presented during499

the initial training or fine-tuning phases, such as the500

Hebrew script of ’he-IL’ and the Ethiopian script501

of ’am-ET,’ further illustrating its robustness in502

generalizing across different scripts.503

The performance of both models, combined with504

LINGUALCHEMY underscores the advantage of in-505

cluding a broader spectrum of languages within506

training groups for enhanced model generalization.507

However, the impact of this diversity is not uniform508

across all language families: While some consis-509

tently benefit from the expansion of training data,510

others do not, indicating that merely increasing the511

volume of data from the same family may not nec-512

essarily improve performance. This inconsistency513

indicates the potential limitations within the mod-514

els’ capacity to learn and generalize the linguistic515

features specific to certain language families. Con-516

sequently, our observation shows that the degree517
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Figure 4: Model performance across language families.
Dotted lines indicates language families used in training
in some of the training stages (solid dots for active use–
refer to Table 3), and solid grey lines for families unseen
in all training stages, with variance shown in shading.

of generalization varies noticeably among different 518

families, suggesting that while some may signifi- 519

cantly profit from these models’ capabilities, others 520

may require more tailored strategies to gain similar 521

performance improvement. 522

5.4 Seen Language Performance 523

One drawback of LINGUALCHEMY that we have 524

noticed is the sacrifice in performance for seen lan- 525

guages. This result is related to our findings in 526

unseen languages, where LINGUALCHEMY flat- 527

tens out the performance across all languages, thus 528

being extremely beneficial to poorly performing 529

ones. Additionally, we note that the performance 530

of seen languages is flattened to a similar level, 531

which, most of the time, is worse than that of stan- 532
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Performance mBERT XLM-R
Full FT Ours Full FT Ours

Unseen Lgs. 45.48% 64.68% 78.97% 80.43%
Seen Lgs. 84.52% 67.45% 86.45% 81.05%

Average 64.25% 66.01% 82.56% 80.62%

Table 4: Average performance of LINGUALCHEMY on
unseen vs seen languages

dard in-language fine-tuning. The compiled results533

can be seen in Table 4534

Based on this finding, LINGUALCHEMY is535

suitable for enhancing the performance of ex-536

tremely low-resource languages where standard537

cross-lingual zero-shot fine-tuning does not im-538

prove performance. In cases where training data539

is available, normal fine-tuning is a better choice.540

We are exploring why LINGUALCHEMY does not541

help with seen languages and how to boost the per-542

formance of seen languages as future work. Nev-543

ertheless, our method is still beneficial in under-544

resourced settings where multilingual models per-545

form poorly.546

6 Conclusion547

We introduced LINGUALCHEMY, a novel approach548

that demonstrates strong performance across 27549

unseen languages in a 60-class intent classifica-550

tion task. Our method hinges on the integration of551

linguistic knowledge through the URIEL vectors,552

enhancing the language model’s ability to gener-553

alize across a diverse set of languages. We also554

proposed ALCHEMYSCALE and ALCHEMYTUNE,555

which employs a hyperparameter search for the556

URIEL scaling factor. This is achieved by two557

key strategies: (1) weight-averaging classification558

and URIEL loss, and (2) learning to balance the559

scale between classification and URIEL loss, thus560

ensuring a more adaptable and robust model per-561

formance.562

Limitations563

LINGUALCHEMY enhances performance across564

many unseen languages in intent classification, yet565

it faces limitations. Performance on seen languages566

is less than ideal, indicating room for improvement567

through methods like weight freezing. Also, bet-568

ter generalization appears to reduce accuracy in569

seen languages, pointing to a need for balanced570

approaches. Currently, the research is limited to571

intent classification, and expanding to other NLP572

tasks could reveal more about its versatility. More- 573

over, the choice of URIEL features—syntax, geog- 574

raphy, language family—is theoretically sound, as 575

discussed in Chapter 3, but empirical tests with dif- 576

ferent features might refine the model further. Over- 577

coming these limitations could greatly improve the 578

generalizability and effectiveness of multilingual 579

NLP models. 580
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Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun 691
Cho, and Iryna Gurevych. 2020a. Adapterhub: A 692
framework for adapting transformers. In Proceedings 693
of the 2020 Conference on Empirical Methods in Nat- 694
ural Language Processing (EMNLP 2020): Systems 695
Demonstrations, pages 46–54, Online. Association 696
for Computational Linguistics. 697

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se- 698
bastian Ruder. 2020b. MAD-X: An Adapter-Based 699
Framework for Multi-Task Cross-Lingual Transfer. 700
In Proceedings of the 2020 Conference on Empirical 701
Methods in Natural Language Processing (EMNLP), 702
pages 7654–7673, Online. Association for Computa- 703
tional Linguistics. 704
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A Languages in Dataset776

The MASSIVE Dataset, also known as the Multi-777

lingual Amazon SLU Resource Package (SLUPR),778

offers a comprehensive collection of approximately779

one million annotated utterances for various natural780

language understanding tasks such as slot-filling,781

intent detection, and Virtual Assistant performance782

evaluation. It is an extensive dataset that includes783

51 languages, 60 intents, 55 slot types, and spans784

18 different domains. The dataset is further en-785

riched with a substantial amount of English seed786

data, comprising 587k training utterances, 104k787

development utterances, and 152k test utterances.788

Code Name Script Genus Code Name Script Genus

ar-SA Arabic Arab Semitic is-IS Icelandic Latn Germanic
bn-BD Bengali Beng Indic ka-GE Georgian Geor Kartvelian
el-GR Greek Grek Greek km-KH Khmer Khmr Khmer
en-US English Latn Germanic lv-LV Latvian Latn Baltic
es-ES Spanish Latn Romance ml-IN Malayalam Mlym Southern Dravidian
fa-IR Persian Arab Iranian nb-NO Norwegian Latn Germanic
fr-FR French Latn Romance ro-RO Romanian Latn Romance
he-IL Hebrew Hebr Semitic sl-SI Slovenian Latn Slavic
hu-HU Hungarian Latn Ugric ur-PK Urdu Arab Indic
hy-AM Armenian Armn Armenian zh-CN Mandarin Hans Chinese
id-ID Indonesian Latn Malayo-Sumbawan zh-TW Mandarin Hant Chinese

Table 5: Statistics and description of the dataset used (Xu et al., 2022). The dataset used is a subset of the MASSIVE
dataset, selecting 25 different seen languages.

Code Name Script Genus Code Name Script Genus

af-ZA Afrikaans Latn Germanic my-MM Burmese Mymr Burmese-Lolo
am-ET Amharic Ethi Semitic nl-NL Dutch Latn Germanic
az-AZ Azerbaijani Latn Turkic pl-PL Polish Latn Slavic
cy-GB Welsh Latn Celtic pt-PT Portuguese Latn Romance
da-DK Danish Latn Germanic ru-RU Russian Cyrl Slavic
de-DE German Latn Germanic sq-AL Albanian Latn Albanian
fi-FI Finnish Latn Finnic sv-SE Swedish Latn Germanic
hi-IN Hindi Deva Indic sw-KE Swahili Latn Bantoid
ja-JP Japanese Jpan Japanese ta-IN Tamil Taml Southern Dravidian
kn-IN Kannada Knda Southern Dravidian te-IN Telugu Telu South-Central Dravidian
ko-KR Korean Kore Korean th-TH Thai Thai Kam-Tai
mn-MN Mongolian Cyrl Mongolic vi-VN Vietnamese Latn Viet-Muong
ms-MY Malay Latn Malayo-Sumbawan

Table 6: Statistics and description of the dataset used (Xu et al., 2022). The dataset used is a subset of the MASSIVE
dataset, selecting 27 different unseen languages.
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B Algorithm789

Formally, we define the language representation790

alignment in Algorithm 1, where FU represents the791

features extracted from URIEL, S is the set of sen-792

tence representations, Hx and Nx are the hidden793

states and number of attention-masked tokens for a794

sentence x, respectively. The matrix W is used for795

the linear projection, and A holds the final aligned796

representations. Algorithm 1 outlines the process797

for aligning language representations we use in798

Figure 2. It leverages the URIEL database for lin-799

guistic features, processes sentences through a lan-800

guage model (Θ), and aligns these with mBERT801

representations (M ). The algorithm iteratively up-802

dates transformation parameters (W and b) through803

a training loop to minimize the loss between the804

projected mBERT representations and the target805

sentence representations in set S, thus achieving806

aligned language representations (A).807

Algorithm 1 Language Representation and Align-
ment Process
Require: Dataset D, URIEL database U , Lan-

guage Model Θ, mBERT representations M
Ensure: Aligned Language Representations A

FU ← EXTRACTFEATURES(U )
S ← {}
for each sentence x in D do

Hx ← GETLASTHIDDENSTATES(x, Θ)
Nx ← COUNTATTENTIONMASKED(x)
Rx ← SUM(Hx)

Nx

S ← S ∪ {Rx}
end for
W, b← INITIALIZEPARAMETERS()
for each training epoch do
PU ← (W × S) + b
loss← COMPUTELOSS(PU , FU )
W, b ← UPDATEPARAMETERSWITHCON-
STRAINT(W, b, loss)

end for
A← {}
for each sentence representation s in S do

Am ← (W × s) + b
A← A ∪ {Am}

end for
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C Language Family Experiment808

Tables 7 and 8 provide a comprehensive analysis809

of language family performance across different810

training groups. These tables compare the accu-811

racy percentages of the Multilingual BERT and812

XLM-RoBERTa models, respectively. The results813

displayed in the tables elucidate the models’ capa-814

bilities in generalizing from the training data to un-815

seen languages. A clear trend that can be observed816

is the improvement in performance as the training817

groups progress from 1 to 4, which suggests that818

the models benefit from exposure to a wider variety819

of language families during training. The ’Average’820

row at the bottom of each table indicates the mean821

accuracy across all language families, providing an822

insight into the overall performance enhancement823

achieved by each model with incremental training824

diversity.825

Language Family Train Group 1 Train Group 2 Train Group 3 Train Group 4

Afro-Asiatic 52.82% 52.93% 61.26% 61.00%
Atlantic-Congo 65.71% 68.08% 70.62% 71.79%
Austroasiatic 64.77% 66.78% 69.72% 70.16%
Austronesian 66.88% 68.66% 72.06% 72.19%
Dravidian 64.74% 67.97% 70.93% 71.41%
Indo-European 67.50% 68.61% 72.53% 72.95%
Japonic 72.11% 71.98% 75.80% 75.67%
Kartvelian 68.91% 68.89% 72.46% 72.32%
Koreanic 64.80% 66.46% 70.04% 69.91%
Mongolic-Khitan 63.11% 66.44% 69.71% 69.59%
Sino-Tibetan 62.65% 66.29% 68.79% 70.33%
Tai-Kadai 63.52% 67.89% 70.23% 71.34%
Turkic 54.69% 56.91% 63.54% 64.05%
Uralic 71.49% 71.27% 75.33% 75.15%

Average 65.54% 67.07% 71.04% 71.43%

Table 7: Multilingual BERT Performance of Language Families Across Training Groups

Language Family Train Group 1 Train Group 2 Train Group 3 Train Group 4

Afro-Asiatic 75.74% 76.23% 85.56% 85.39%
Atlantic-Congo 70.86% 72.38% 83.24% 82.73%
Austroasiatic 74.85% 76.04% 83.91% 83.59%
Austronesian 78.94% 79.83% 84.77% 84.69%
Dravidian 81.49% 82.20% 85.41% 85.43%
Indo-European 80.31% 81.21% 83.26% 83.47%
Japonic 80.21% 81.36% 82.67% 83.15%
Kartvelian 80.40% 81.53% 82.79% 83.27%
Koreanic 79.74% 80.91% 82.14% 82.61%
Mongolic-Khitan 79.54% 81.00% 82.20% 82.65%
Sino-Tibetan 79.25% 81.00% 82.14% 82.58%
Tai-Kadai 79.08% 80.81% 81.90% 82.35%
Turkic 79.20% 80.90% 81.96% 82.39%
Uralic 79.24% 80.91% 81.92% 82.47%

Average 79.45% 80.48% 83.44% 83.62%

Table 8: XLM-RoBERTa Performance of Language Families Across Training Groups
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