
FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural
Network

Yonatan Sverdlov
Technion – Israel Institute of Technology
yonatans@campus.technion.ac.il

Yair Davidson
Technion – Israel Institute of Technology

yairdavidson@campus.technion.ac.il

Nadav Dym
Technion – Israel Institute of Technology

nadavdym@technion.ac.il

Tal Amir
Technion – Israel Institute of Technology

talamir@technion.ac.il

Abstract
Famously, the ability of Message Passing Neural Networks (MPNN) to distin-
guish between graphs is limited to graphs separable by the Weisfeiler-Lemann
(WL) graph isomorphism test, and the strongest MPNNs, in terms of separa-
tion power, are WL-equivalent. However, it was demonstrated that the qual-
ity of separation provided by standard WL-equivalent MPNN can be very
low, resulting in WL-separable graphs being mapped to very similar, hardly
distinguishable outputs. This phenomenon can be explained by the recent
observation that standard MPNNs are not lower-Lipschitz. This paper ad-
dresses this issue by introducing FSW-GNN, the first MPNN that is fully
bi-Lipschitz with respect to standard WL-equivalent graph metrics. Empiri-
cally, we show that our MPNN is competitive with standard MPNNs for several
graph learning tasks and is far more accurate in long-range tasks, due to its
ability to avoid oversmoothing and oversquashing. Our code is available at
https://github.com/yonatansverdlov/Over-squashing.

1 Introduction
Graph neural networks are a central research topic in contemporary machine learning. As shown by
Gilmer et al. [34], many of the most popular models can be seen as instantiations of Message Passing
Neural Networks (MPNNs).

A well-known limitation of MPNNs is that they cannot differentiate between all distinct pairs of
graphs. In fact, a pair of distinct graphs that cannot be separated by the Weisfeiler-Lehman (WL)
graph isomorphism test will not be separated by any MPNN [61]. Accordingly, the most expressive
MPNNs are those that are WL-equivalent, which means they can separate all pairs of graphs that are
separable by WL. WL-equivalent MPNNs were proposed in the seminal works of Morris et al. [54]
and Xu et al. [61], and the complexity of these constructions was later improved in [1, 5].

While separation is theoretically guaranteed with WL-equivalent MPNNs, in some cases, their
separation in practice is so weak that it cannot be observed with 32-bit floating-point number; see [18].
Moreover, using many MPNN iterations often leads to almost-identical node features (oversmoothing),
or features that are barely affected by changes in far-off nodes (oversquashing). These observations
motivate the development of quantitative estimates of MPNN separation by means of bi-Lipschitz
stability guarantees. These guarantees would ensure that Euclidean distances in the MPNN feature
space are neither much larger nor much smaller than distances in the original graph space, which are
defined by a suitable metric on graphs. Consequently, as we shall see, detrimental phenomena like
oversmoothing and oversquashing can be fundamentally mitigated.

This paper introduces a novel MPNN, called FSW-GNN (Fourier Sliced-Wasserstein GNN), which is
bi-Lipschitz with respect to two WL-equivalent graph metrics: (a) the Doubly Stochastic (DS) metric

Sverdlov et al., FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network. Proceedings of the Fourth
Learning on Graphs Conference (LoG 2025), PMLR 269, Hybrid Event, December 10–12, 2025.

https://github.com/yonatansverdlov/Over-squashing


FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

2 3 4 5 6 7 8

0%

50%

100%

Problem radius

A
cc

ur
ac

y

FSW-GNN
Sort-MPNN

GAT
GIN
GCN

GGNN

Figure 1: FSW-GNN handles tasks with large radius better than standard MPNNs, which are more
prone to oversmoothing and oversquashing. Task taken from [3]

of [36], and (b) the Tree Mover’s Distance (TMD) metric of Chuang and Jegelka [24]. Empirically,
we show that FSW-GNN performs comparably or better than prevalent MPNNs on standard learning
tasks, and achieves significantly superior performance in long-range tasks, i.e., tasks that require a
large number of message-passing iterations (for example see Figure 1). This can be attributed to the
bi-Lipschitzness of FSW-GNN, in contrast to standard MPNNs, which are not bi-Lipschitz [26].

1.1 Related Works

Bi-Lipschitzness. Bi-Lipschitzness arises naturally in many domains, including frames [7], phase
retrieval [11, 23], group-invariant learning [19, 20] and multisets [4, 5]. In the context of MPNNs,
upper Lipschitzness was discussed in [24, 48]. A recent survey by Morris et al. [51] identifies
bi-Lipschitzness as a significant future goal for theoretical GNN research.

SortMPNN. First steps towards a Bi-Lipschitz MPNN have recently been made by Davidson and
Dym [26]. Their work analyzes a weaker notion of Lipschitz and Hölder guarantees—in expectation
over the model parameters. They show that essentially all popular MPNN models fail to be lower-
Lipschitz, but are lower-Hölder in expectation, with an exponent that grows worse as the MPNN
depth increases. In contrast, they propose a novel MPNN, called SortMPNN, and prove that it satisfies
this weaker notion of bi-Lipschitzness in expectation.

As we discuss below, the FSW-GNN satisfies the standard, stronger, notion of bi-Lipschitzness.
Interestingly, the proof technique we present here for FSW-GNN also applies to SortMPNN, allowing
us to establish that SortMPNN is bi-Lipschitz as well. Nonetheless, SortMPNN has a key limitation
in its message aggregation mechanism: it handles neighborhoods of different sizes by padding them
to a predetermined maximal size. This requires a priori knowledge of the maximal neighborhood
size in all future input graphs—an inherent constraint that significantly limits its applicability. In
contrast, FSW-GNN does not share this constraint, since it treats vertex neighborhoods as distributions.
Moreover, due to this padding-based approach, SortMPNN only accommodates neighborhoods that
are multisets, thus making it unsuitable for graphs with non-integer edge weights. In contrast,
FSW-GNN naturally supports edge weights.

MPNNs with advanced pooling mechanisms. In addition to SortMPNN, our approach is con-
ceptually related to other MPNNs that replace the basic max- or sum-pooling, used for message
aggregation, with more advanced pooling mechanisms, such as sorting [8, 63], standard deviation
[25], or Sliced-Wasserstein embeddings via template distributions [47]. However, these methods lack
the bi-Lipschitzness guarantees that our model provides.

WL-equivalent metrics. Bi-Lipschitz analysis of MPNNs requires a WL-equivalent graph metric.
Several such metrics have been proposed, with notable examples being the Doubly-Stochastic (DS)

2



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

Table 1: Learning accuracy comparison across different benchmarks and models.

Model Cora Cite. Pubm. Cham. Squi. Actor Corn. Texa. Wisc.

GCN 85.77 73.68 88.13 28.18 23.96 26.86 52.70 52.16 45.88
GAT 86.37 74.32 87.62 42.93 30.03 28.45 54.32 58.38 49.41
FSW-GNN 86.35 75.44 88.17 51.18 36.38 34.66 72.43 75.68 81.56
Sort-MPNN 83.46 72.69 85.15 78.11 74.69 31.32 67.03 70.54 73.92
SOTA 90.16 82.07 91.31 79.71 76.71 51.81 92.72 88.38 94.99

metric (also known as the tree metric) [36]; the Tree Mover’s Distance (TMD) [24]; and the WL
metric [21]. In this paper, we prove that the graph embeddings computed by our FSW-GNN model
are bi-Lipschitz with respect to both the DS and TMD metrics. This analysis applies to graphs of
bounded size with continuous, bounded node-features. Weaker notions of equivalence between these
metrics, in the context of graphs with unbounded cardinality and without node features, are discussed
in [15, 16].

2 Problem Setting
In this section, we outline the problem setting, first providing the theoretical background of the
problem and then stating our objectives.

Vertex-featured graphs. Our main objects of study are graphs with vertex features, represented
as triplets G = (V,E,X), where V = {vi}ni=1 is the set of vertices, E ⊆ {{vi, vj} | i, j ∈ [n]} are
the undirected edges in G, and X = [x1, . . . ,xn] is a matrix containing the vertex feature vectors
xi ∈ Ω, with Ω ⊆ Rd being the feature domain. We denote by G≤N (Ω) the set of all vertex-featured
graphs with at most N vertices and corresponding features in Ω. Throughout the paper, we use {} to
denote multisets. We note that our results readily extend to graphs with edge features.

Weisfeiler-Lemann Graph Isomorphism test. Two graphs are isomorphic if they are identical
up to relabeling of their nodes. Perhaps surprisingly, the problem of determining whether two given
graphs are isomorphic is rather challenging. To date, no known algorithm can solve it in polynomial
time [6]. However, there exist various heuristics that provide an incomplete but often adequate
method to test whether a given pair of graphs is isomorphic. The most notable example is the
Weisfeiler-Leman (WL) graph isomorphism test.

The WL test can be described as assigning to each graph G = (V,E,X) a feature vector cTG according
to the formula

c0v := Xv, v ∈ V ; for 1 ≤ t ≤ T :

ctv := Combine
(
ct−1
v ,Aggregate

({
ct−1
u

∣∣ u ∈ Nv

}))
;

cTG := Readout
({

cTv1 , . . . , c
T
vn

})
,

(1)

where Aggregate and Readout are functions that injectively map multisets of vectors in Euclidean
space into another Euclidean space, Combine is an injective function from one Euclidean space to
another, and Nv denotes the neighborhood of the vertex v in G.
Definition (WL graph equivalence). Two vertex-featured graphs G and G̃ are said to be WL-
equivalent, denoted by G

WL∼ G̃, if cTG = cT
G̃

for all T ≥ 0. Otherwise, they are said to be WL-separable.

It is a known fact [35, 53] that for G, G̃ ∈ G≤N

(
Rd

)
, if the equality cTG = cT

G̃
is satisfied for T = N ,

then it is satisfied for all T ≥ 0, and thus GWL∼ G̃.

While the WL test can separate most pairs of non-isomorphic graphs, there exist examples of
non-isomorphic graph pairs that WL cannot separate; see [64].

Message passing neural networks. Message Passing Neural Networks (MPNNs) operate on a
similar principle to the WL test, but with the purpose of performing predictions on single graphs
rather than determining if pairs of them are isomorphic. Their core mechanism is the message-passing

3



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

procedure, which maintains a hidden feature for each vertex and iteratively updates it as a function of
the neighbors’ features. This process is outlined as follows:

1. Initialization: The hidden feature h
(0)
v of each node is initialized by its input feature xv .

2. Message aggregation: Each node v ∈ V aggregates messages from its neighbors by

m(t)
v := Aggregate

({
h(t−1)
u

∣∣∣ u ∈ Nv

})
(2)

Where Aggregate is a multiset-to-vector function.
3. Update step: Each node updates its own hidden feature according to its aggregated messages

and its previous hidden feature, using a vector-to-vector update function:

h(t)
v := Update

(
m(t)

v ,h(t−1)
v

)
, (3)

4. Readout: After T iterations of steps 2-3, a graph-level feature hG is computed by a multiset-to-
vector readout function:

hG := Readout
({

h(T )
v

∣∣∣ v ∈ V
})

.

Numerous MPNNs were proposed in recent years, including GIN [61], GraphSage [38], GAT [60],
and GCN [45], the main differences between them being the specific choices of the aggregation,
update, and readout functions.

An MPNN computes an embedding of a graph G to a vector F (G) = hG. The obtained embedding is
often further processed by standard machine-learning tools for vectors, such as multi-layer perceptrons
(MLPs), to obtain a final graph prediction. The ability of such a model to approximate functions on
graphs is closely related to the separation properties of F : if F can differentiate between any pair
of non-isomorphic graphs, then a model of the form MLP ◦ F would be able to approximate any
functions on graphs [22].

Unfortunately, MPNN cannot separate any pair of WL-equivalent graphs, even if they are not
truly isomorphic [54, 61]. Accordingly, the best we can hope for from an MPNN, in terms of
separation, is WL equivalence: for every pair of graphs G,G′ ∈ G≤N (Ω), F (G) = F (G′) if and

only if G
WL∼G′. While MPNNs based on max- or mean-pooling cannot be WL-equivalent [61], it is

possible to construct WL-equivalent MPNNs based on sum-pooling, as discussed in [1, 5, 17, 54, 61].
Theoretically, a properly tuned graph model based on a WL-equivalent MPNN should be capable
of perfectly solving any binary classification task, provided that no two WL-equivalent graphs have
different ground-truth labels. However, this separation does not always manifest in practice. One
reason is that WL-equivalent functions may map two input graphs that are far apart in the input space
to outputs that are numerically indistinguishable in the output Euclidean space. In fact, Davidson
and Dym [26] provide an example of graph pairs that are not WL-equivalent, yet are mapped to
near-identical outputs by standard sum-based MPNNs. Consequently, these MPNNs fail on binary
classification tasks for such graphs.

This paper aims to address this limitation by devising an MPNN whose embeddings preserve distances
in the bi-Lipschitz sense. To state our goal formally, we first need to define a notion of distance on
the input space of graphs.

WL metric for graphs. WL metrics quantify the extent to which two graphs are not WL-equivalent:

Definition 2.1 (WL metric). A WL metric on G≤N (Ω) is a function ρ : G≤N (Ω)× G≤N (Ω) → R≥0

that satisfies the standard requirements for a metric, with the exception that ρ(G1, G2) = 0 if and
only if G1

WL∼G2.

For convenience, we use the term WL metric, despite the fact that strictly speaking, WL metrics are
pseudometrics on G≤N

(
Rd

)
.

Tree Mover’s Distance. The first WL metric we consider is the Tree Mover’s Distance (TMD),
defined in [24]. This metric is based on building computation trees T(t)

v , which simulate the WL
procedure used to create the node features h(t)

v , and calculating distances

TD(T(t)
v ,T(t)

u ) (4)

4



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

recursively between sub-trees using optimal transport. These node-level distances are zero if, and
only if, the features c

(t)
v and c

(t)
u , constructed by the WL test, are equal. A graph-level distance

TMD(G,G′) is obtained by aggregating all node-level distances. For the full definition, see ap-
pendix C and [24]. Under the assumption that the feature domain Ω does not contain the zero vector,
Chuang and Jegelka [24] proved that TMD(G,G′) is a WL-metric.

The second WL metric we consider is the DS metric [35]. Originally, this metric was defined only for
featureless graphs of fixed cardinality. In the next section, we extend this metric to the more general
case of G≤N

(
Rd

)
.

Bi-Lipschitzness. Once a WL-metric is defined to measure distances between graphs, one can
bound the distortion incurred by a graph embedding with respect to that metric, using the notion of
bi-Lipschitzness:
Definition (Bi-Lipschitz embedding). Let ρ be a WL-metric on G≤N (Ω). An embedding E :
G≤N (Ω) → Rm is said to be bi-Lipschitz with respect to ρ on G≤N (Ω) if there exist constants
0 < c ≤ C < ∞ such that ∀G1, G2 ∈ G≤N (Ω),

c · ρ(G1, G2) ≤ ∥E(G1)− E(G2)∥2 ≤ C · ρ(G1, G2). (5)

If E only satisfies the left- or right-hand side of eq. (5), it is said to be lower- or upper-Lipschitz
respectively.

Bi-Lipschitzness ensures that the embedding maps the input space G≤N (Ω) into the output Euclidean
space with bounded distortion, with the ratio C

c serving as an upper bound on the distortion, akin to
the condition number of a matrix.

3 Main Contributions
In this section, we discuss our main contributions. We begin by defining our generalized DS metric
for vertex-featured graphs. We then discuss our proposed MPNN and show that it is bi-Lipschitz with
respect to the DS and TMD metrics.

The DS metric. The DS metric originates from a relaxation of the graph isomorphism problem. Two
graphs G and G̃, each with n vertices, and corresponding adjacency matrices A, Ã are isomorphic if
and only if there exists a permutation matrix P such that AP = PÃ. Since checking whether graphs
are isomorphic is intractable, an approximate solution can be sought by considering the equation
AS = SÃ with S ∈ Dn, the collection of n× n doubly stochastic matrices, which is the convex hull
of all permutation matrices. Remarkably, this equation admits a solution S ∈ Dn if and only if the
graphs G and G̃ are WL-equivalent [59]. Accordingly, a WL-metric between featureless graphs with
the same number of vertices n can be defined by the minimization problem

ρDS

(
G, G̃

)
= min

S∈Dn

∥∥∥AS − SÃ
∥∥∥, (6)

where ∥ · ∥ could denote any p norm. The fact that this is indeed a pseudometric was established in
[12]. The optimization problem eq. (6) can be solved by off-the-shelf convex optimization solvers
and was considered as a method for finding the correspondence between two graphs in several papers,
including [2, 13, 29, 31, 50].

The idea of using the DS metric for MPNN stability analysis was introduced in [36] and further
discussed by Böker [15]. To apply this idea to our setting, we need to adapt this metric to vertex-
featured graphs with varying numbers of vertices. We do this by augmenting it as follows:

ρDS

(
G, G̃

)
= |n− ñ|+ min

S∈Π(n,ñ)

∥∥∥AS − SÃ
∥∥∥
1
+

∑
i∈[n],j∈[ñ]

Sij∥xi − x̃j∥1, (7)

where n and ñ denote the number of vertices in G and G̃, xi and x̃j denote the vertex features of G
and G̃, and Π(n, ñ) is the set of n× ñ matrices S with non-negative entries, whose rows and columns
sum to n and ñ, respectively.
Theorem 3.1. (Proof in appendix D.1) ρDS is a WL-equivalent metric on G≤N

(
Rd

)
.

5



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

Bi-Lipschitz MPNN. We now present our main contribution: a novel MPNN that is not only
WL-equivalent, but also bi-Lipschitz, with respect to both ρDS and TMD.

FSW Embedding. The core innovation in our MPNN lies in its message aggregation method.
Specifically, we employ the Fourier Sliced-Wasserstein (FSW) Embedding—a method for embedding
multisets of vectors into Euclidean space, proposed by Amir and Dym [4], where it was also shown to
be bi-Lipschitz. This property makes it plausible, a priori, that an MPNN based on FSW aggregation
will be bi-Lipschitz for graphs. In this work, we formally establish that this is indeed the case. We
begin by describing the FSW embedding and then introduce our FSW-GNN architecture.

The FSW embedding maps an input multiset X = {x1, . . . ,xn}, where x1, . . . ,xn ∈ Rd, to an
output vector z = (z1, . . . , zm) ∈ Rm. It is denoted by

z = EFSW(X; (vk, ξk)
m
k=1), X = {x1, . . . ,xn}.

In addition to the input multiset X , it depends on parameters (vk, ξk)
m−1
k=1 , where each vk ∈ Sd−1

represents a direction vector and ξk ∈ R represents a frequency. The embedding is computed in
three steps: First, the direction vk is used to project the original multiset of vectors to a multiset of
scalars {⟨vk,xi⟩}ni=1, which is then sorted: yk = sort({⟨vk,xi⟩}ni=1). This step is similar to the
sort-type embedding used in SortMPNN, and was shown to be bi-Lipschitz on multisets of fixed size
[8]. However, taking yk directly as the embedding leads to an output dimension dependent on the
input multiset’s size, thus making the embedding unsuitable for varying-size multisets. The next
steps address and resolve this limitation.

In the second step, the vector yk is identified with a step function Qyk
: [0, 1] → R, namely the

quantile function of the multiset {⟨vk,xi⟩}ni=1; see illustration in fig. 2. Then, in the third step, the
cosine transform, a variant of the Fourier transform, is applied to Qyk

, and sampled at the given
frequency ξk, to obtain the final output coordinates zk, k = 1, . . . ,m− 1. This is summarized by:

{4,5,6}

{1,2,3}

{3,4}

1
3

2
3 1

1

3

5

Figure 2: The quantile func-
tion for three different multi-
sets

yk = (yk1, . . . , ykn) = sort(⟨vk,x1⟩, . . . , ⟨vk,xn⟩) (8)

Qyk
(t) = yki with i such that t ∈ [ i−1

n , i
n ) (9)

zk = 2(1 + ξk)

∫ 1

0

Qyk
(t) cos(2πξkt)dt (10)

Lastly, note that eqs. (8) to (10) treat input multisets as uniform distri-
butions over their elements, and thus are agnostic to the multiset size
by design. To address this and ensure that multisets of different sizes
but identical element-proportions are mapped to distinct outputs, the
last output coordinate zm is set to the cardinality |X| of the input
multiset X . Further details appear in [4, Appendix A.1].

Note that the integral in eq. (10) has a closed-form solution, and
the whole embedding can be computed with a complexity of
O(mnd+mn log n), similarly to simple aggregation functions such as sum pooling. Furthermore,
the embedding parameters and output dimension do not depend on n, making this method suitable
for multisets of different sizes.

FSW-GNN. The FSW-GNN model processes input graphs G = (V,E,X) by T message-passing
iterations:

h(0)
v := xv,

q(t)
v := E

(t)
FSW

({
h(t−1)
u

∣∣∣ u ∈ Nv

})
, 1 ≤ t ≤ T,

h(t)
v := Φ(t)

([
h(t−1)
v ; q(t)

v

])
,

(11)

where the functions E(t)
FSW are all instances of the FSW embedding, Φ(t) are MLPs, and [x;y] denotes

column-wise concatenation of column vectors x and y. Finally, a graph-level output is computed by:

hG := Ψ ◦ EGlob
FSW

({
h(T )
v

∣∣∣ v ∈ V
})

, (12)

6



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

where, again, EGlob
FSW is an FSW embedding, and Ψ an MLP.

The following theorem shows that, with the appropriate choice of MLP sizes and number of iterations
T , our proposed architecture is WL equivalent:
Theorem 3.2. (Proof in appendix D.2) Consider the FSW-GNN architecture for input graphs in
G≤N

(
Rd

)
, with T = N iterations, where Φ(t),Ψ are just linear funtions, and all features (except for

input features) are of dimension m ≥ 2Nd + 2. Then for Lebesgue almost every choice of model
parameters, the graph embedding defined by the architecture is WL equivalent.

The proof of theorem 3.2 is based on the theory of σ-subanalytic functions and the Finite Witness
Theorem, introduced in [5].

It is worth noting that the output dimension m required in practice is typically considerably lower
than the one required in theorem 3.2. This can be explained intuitively by the following fact: if all
input graphs originate from a subset of G≤N

(
Rd

)
with intrinsic dimension D that is lower than the

ambient dimension n · d, then it can be shown that m = 2D + 2 suffices for WL-equivalence.

From separation to bi-Lipschitzness. In general, WL-equivalence does not imply bi-Lipschitzness.
As mentioned above, sum-based MPNN can be injective but are never bi-Lipschitz. In contrast,
we shall now prove that for FSW-GNN, WL-equivalence does imply bi-Lipschitzness, under the
assumption that the feature domain Ω is compact:
Theorem 3.3. (Proof in appendix D.3) Let Ω ⊂ Rd be compact. Under the assumptions of theo-
rem 3.2, the FSW-GNN is bi-Lipschitz with respect to ρDS on G≤N (Ω). If, additionally, Ω does not
contain 0, then the FSW-GNN is bi-Lipschitz with respect to TMD on G≤N (Ω).

We now give a high-level explanation of the proof idea. We rely on the following facts: (1) the output
of FSW-GNN for an input graph G = (V,E,X) is piecewise-linear with respect to the vertex-feature
matrix X . This follows from properties of the FSW embedding functions E(t)

FSW and EGlob
FSW used in

eqs. (11) and (12). (2) both metrics ρDS and TMD can be transformed, with bounded distortion, into
metrics that are piecewise-linear, by choosing all the vector norms they employ to be the ℓ1 norm.
The claim then follows from these observations and the following lemma, which shows that two
functions that are piecewise linear and have the same zero set, are bi-Lipschitz with respect to one
another:
Lemma 3.4. (Proof in appendix D.3) Let f, g : M → R≥0 be nonnegative piecewise-linear functions
defined on a compact polygon M ⊂ Rd. Suppose that for all x ∈ M , f(x) = 0 if and only if
g(x) = 0. Then there exist real constants c, C > 0 such that

c · g(x) ≤ f(x) ≤ C · g(x), ∀x ∈ M. (13)

We note that the assumption of a compact domain is essential; see Remark 6 in [10]. While lemma 3.4
is rather intuitive, we are not aware of it appearing previously in the literature. This lemma easily
implies1 previous bi-Lipschitzness results in the literature, such as Theorem 1.4 in [9], Theorem 1 in
[10], and Theorem 3.10 in [8]. We believe the lemma has the potential to serve as a valuable tool for
proving bi-Lipschitzness results in additional domains in the future. To illustrate this, in Appendix F
we show how the lemma can be used to construct a bi-Lipschitz subgraph aggregation MPNN.

To complement theorem 3.3, we now present an analogous result for node-level tasks: we show
that the node features computed by FSW-GNN are bi-Lipschitz with respect to the Tree Distance
discussed in eq. (4).
Theorem 3.5. (Proof in appendix D.3) Suppose that Ω ⊂ Rd is a compact set that does not contain
zero. Under the assumptions of theorem 3.2, the node features computed by FSW-GNN are bi-Lipschitz
with respect to the Tree Distance metric on G≤N (Ω).

4 Oversmoothing, Oversquashing, and Bi-Lipschitz MPNN
Training deep MPNNs is one of the core challenges in graph neural networks [51]. The difficulty is
often attributed to oversmoothing [58] or oversquashing [3]. Both phenomena can be regarded as a

1In all these scenarios, the proposed embedding and metric are homogeneous, so that bi-Lipschitzness on a
compact polygon implies global bi-Lipschitzness.

7



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

2 4 6 8 10 12 14

20%

40%

60%

80%

100%

15

Number of MPNN Layers
(a) CliquePath

2 4 6 8 10 12 14

20%

40%

60%

80%

100%

15

Number of MPNN Layers
(b) Ring

2 4 6 8 10 12 14

20%

40%

60%

80%

100%

15

Number of MPNN Layers
(c) CrossRing

FSW-GNN GIN GAT GCN Sort-MPNN Graph-SAGE

Figure 3: Performance comparison of MPNN models across the CliquePath, Ring, and CrossRing graph
transfer tasks as presented in [27].

form of metric distortion induced by the MPNN as the number of iterations grows. Oversmoothing is
the phenomenon where, for large t,∥∥∥x(t)

v − x(t)
u

∥∥∥ ≈ 0, ∀v, u ∈ V. (14)

Oversquashing, as defined in [27], refers the phenomenon where a non-negligible change in an input
node feature x(0)

v to a new value x̂(0)
v results in only a negligible change in features of far-away nodes,

namely, ∥∥∥x(t)
u − x̂(t)

u

∥∥∥ ≪
∥∥∥x(0)

v − x̂(0)
v

∥∥∥, for u far from v. (15)

In other words, information fails to propagate adequately between distant nodes through the message-
passing process.

Accordingly, an MPNN that perfectly preserves distances between node features would provably not
encounter oversmoothing or oversquashing. We note that FSW-GNN is not in this position: while it
is bi-Lipschitz and thus has bounded distortion, we cannot rule out the possibility that its distortion
grows with t. Nonetheless, we conjecture that FSW-GNN should perform much better than standard
MPNN on long range tasks. This is because, as shown in [26], standard MPNNs are only lower
Hölder in expectation, namely, the inequality

∥x(t)
v − x(t)

u ∥ ≥ Ct

[
TD(T(t)

v ,T(t)
u )

]αt

holds only in expectation, with constants Ct and exponents αt that grow with t. In contrast, for
FSW-GNN we have αt = 1 for all t, and only Ct may grow with t. We provide empirical evidence
for our conjecture in section 5, where we show that our bi-Lipschitz MPNN outperforms standard
MPNNs on long-range tasks.

5 Numerical Experiments

We compare the performance of FSW-GNN with standard MPNNs and Sort-MPNN on both real-
world benchmarks and synthetic long-range tasks2.

Empirical distortion evaluation. First, to assess the metric distortion induced by different MPNNs,
we compared the distances induced by each MPNN vs. the TMD and DS metric on a particularly
challenging set of graph pairs; see appendix E for details. Empirical estimates Ĉ, ĉ of the constants
C,c of eq. (5) were computed, and the distortion estimate was taken as the ratio Ĉ/ĉ. The results
appear in fig. 4. Similar results were obtained for the TMD; see fig. 6 in the appendix. As seen in the
figures, our method yields considerably lower distortion than all competitors, which aligns with our
theoretical guarantees.

2Our code will be available to the public upon paper acceptance.

8



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

1 2 3 4 5 6 7 8 9

1

102
104
106
108
1010
1012
1014

Number of MPNN iterations

D
is

to
rt

io
n

GCN
GIN
GAT

Sort-MPNN
FSW-GNN

Figure 4: Empirical distortion evaluation
with respect to the Doubly-Stochastic (DS)

metric

0 5 10 15

0

0.2

0.4

Number of MPNN iterations

M
A

D
en

er
gy

FSW-GNN GIN
Graph-SAGE GAT

GCN

Figure 5: MAD Energy vs. Number of
MPNN layers for various models on the Ring
long-range task

Transductive Learning. Next, we compare FSW-GNN with GCN, GAT and Sort-MPNN for
nine transductive learning tasks taken from [55]. As shown in table 1, FSW-GNN outperforms the
competition in six out of nine tasks. SortMPNN is a clear winner in two of the other graphs, both
of which have relatively large average degrees (see Table 4). In addition, we include the state-of-
the-art results known to us for each dataset: For Cora [42]; for Citeseer [43]; for PubMed [44]; for
Chameleon [57]; for Squirrel [46]; for Actor [40]; for Cornell [32]; for Texas [49]; for Wisconsin [41].
These results are typically achieved by models that are strictly more powerful and computationally
expensive than any MPNN.

Graph classification and regression. In the appendix, we we include results on standard graph clas-
sication and regression tasks: the peptides-func and peptides-struct datasets of the LRGB benchmark
[28], and he MUTAG and Protein datasets [52]. These results appear in table 2 and table 3.

Long range tasks. Next, we consider several synthetic long-range tasks proposed in the oversquash-
ing literature [3, 27]. In these problems, one can control the problem radius r, which is the number of
MPNN iterations needed to solve the problem.

We first consider the NeighborsMatch problem from [3]. In fig. 1, we compare the performance of
FSW-GNN with standard MPNN on the NeigborsMatch problem with 2 ≤ r ≤ 8. Our FSW-GNN
achieves perfect accuracy for all values of r, while Sort-MPNN fails at r = 8 and the other competing
methods falter for r ≥ 6.

Next, we consider the ‘graph transfer’ tasks [27], in which a ‘source’ node feature is propagated to a
‘target’ node that is r steps away. All other nodes have ‘blank’ features. Here we used three graph
topologies proposed by [27]: clique, ring, and crossring, with problem radii r varying from 2 to 15.

As shown in fig. 3, FSW-GNN is the only method to achieve 100% accuracy across all three graphs
and radii. Other models start failing at much smaller r, which depends on the graph topology. We do
find that our model’s performance deteriorates when r > 20.

Finally, we evaluate the relation between our empirical results and oversmoothing on the ring
experiment, using the Mean Average Distance (MAD) [58]. As seen in fig. 5, all methods except for
FSW-GNN and GIN exhibit oversmoothing starting from some r.

We note that long-range issues can be alleviated by graph rewiring methods, which effectively
reduce problem radii [37], or by adding global information using spectral filters [33] or graph
transformers. A key distinction of FSW-GNN is that it performs well without modifying the original
graph topology. Thus, this work directly addresses the problem of relaying long-range messages,
rather than circumventing it by architectural modifications.

9



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

6 Conclusion
In this paper, we introduced FSW-GNN, the first bi-Lipschitz MPNN. Empirically, we found that FSW-
GNN is highly effective, particularly for long-range problems, and appears to mitigate oversmoothing
and oversquashing due to its inherent ability to preserve graph metrics.

A slight drawback of FSW-GNN is that its runtime is somewhat higher than that of standard MPNNs;
see table 6. An interesting direction for future work is to obtain quantitative estimates of its bi-
Lipschitz constants.

10



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

References
[1] Anders Aamand et al. “Exponentially Improving the Complexity of Simulating the Weisfeiler-

Lehman Test with Graph Neural Networks”. In: Advances in Neural Information Processing
Systems. Ed. by Alice H. Oh et al. 2022. URL: https://openreview.net/forum?id=
AyGJDpN2eR6. 1, 4

[2] Yonathan Aflalo, Alexander Bronstein, and Ron Kimmel. “On convex relaxation of graph
isomorphism”. In: Proceedings of the National Academy of Sciences 112.10 (2015), pp. 2942–
2947. DOI: 10.1073/pnas.1401651112. eprint: https://www.pnas.org/doi/pdf/
10.1073/pnas.1401651112. URL: https://www.pnas.org/doi/abs/10.1073/pnas.
1401651112. 5

[3] Uri Alon and Eran Yahav. “On the Bottleneck of Graph Neural Networks and its Practical
Implications”. In: Proceedings of the International Conference on Learning Representations
(ICLR). 2021. URL: https://openreview.net/forum?id=i80OPhOCVH2. 2, 7, 9, 23

[4] Tal Amir and Nadav Dym. Fourier Sliced-Wasserstein Embedding for Multisets and Measures.
2024. arXiv: 2405.16519 [cs.LG]. URL: https://arxiv.org/abs/2405.16519. 2, 6,
21

[5] Tal Amir et al. “Neural Injective Functions for Multisets, Measures and Graphs via a Finite
Witness Theorem”. In: Thirty-seventh Conference on Neural Information Processing Systems.
2023. URL: https://openreview.net/forum?id=TQlpqmCeMe. 1, 2, 4, 7, 21

[6] László Babai. “Graph isomorphism in quasipolynomial time”. In: Proceedings of the forty-
eighth annual ACM symposium on Theory of Computing. 2016, pp. 684–697. 3

[7] Radu Balan. “Stability theorems for Fourier frames and wavelet Riesz bases”. In: Journal of
Fourier Analysis and applications 3 (1997), pp. 499–504. 2

[8] Radu Balan, Naveed Haghani, and Maneesh Singh. “Permutation invariant representations
with applications to graph deep learning”. In: arXiv preprint arXiv:2203.07546 (2022). 2, 6, 7

[9] Radu Balan and Efstratios Tsoukanis. G-Invariant Representations using Coorbits: Bi-Lipschitz
Properties. 2023. arXiv: 2308.11784 [math.RT]. 7

[10] Radu Balan, Efstratios Tsoukanis, and Matthias Wellershoff. “Stability of sorting based
embeddings”. In: arXiv preprint arXiv:2410.05446 (2024). 7

[11] Afonso S Bandeira et al. “Saving phase: Injectivity and stability for phase retrieval”. In:
Applied and Computational Harmonic Analysis 37.1 (2014), pp. 106–125. 2

[12] Jose Bento and Stratis Ioannidis. “A family of tractable graph distances”. In: Proceedings of
the 2018 SIAM International Conference on Data Mining. SIAM. 2018, pp. 333–341. 5

[13] Florian Bernard, Christian Theobalt, and Michael Moeller. “DS*: Tighter Lifting-Free Convex
Relaxations for Quadratic Matching Problems”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). June 2018. 5

[14] Beatrice Bevilacqua et al. “Equivariant subgraph aggregation networks”. In: arXiv preprint
arXiv:2110.02910 (2021). 23

[15] Jan Böker. “Graph Similarity and Homomorphism Densities”. In: 48th International Collo-
quium on Automata, Languages, and Programming (ICALP 2021). Schloss-Dagstuhl-Leibniz
Zentrum für Informatik. 2021. 3, 5

[16] Jan Böker et al. “Fine-grained expressivity of graph neural networks”. In: Advances in Neural
Information Processing Systems 36 (2024). 3

[17] César Bravo, Alexander Kozachinskiy, and Cristóbal Rojas. “On dimensionality of feature
vectors in MPNNs”. In: arXiv preprint arXiv:2402.03966 (2024). 4

[18] César Bravo, Alexander Kozachinskiy, and Cristobal Rojas. “On dimensionality of feature
vectors in MPNNs”. In: Proceedings of the 41st International Conference on Machine Learning.
Ed. by Ruslan Salakhutdinov et al. Vol. 235. Proceedings of Machine Learning Research.
PMLR, 21–27 Jul 2024, pp. 4472–4481. URL: https://proceedings.mlr.press/v235/
bravo24a.html. 1

[19] Jameson Cahill, Andres Contreras, and Andres Contreras-Hip. “Complete set of translation
invariant measurements with Lipschitz bounds”. In: Applied and Computational Harmonic
Analysis 49.2 (2020), pp. 521–539. 2

[20] Jameson Cahill, Joseph W. Iverson, and Dustin G. Mixon. Towards a bilipschitz invariant
theory. 2024. arXiv: 2305.17241 [math.FA]. 2

11

https://openreview.net/forum?id=AyGJDpN2eR6
https://openreview.net/forum?id=AyGJDpN2eR6
https://doi.org/10.1073/pnas.1401651112
https://www.pnas.org/doi/pdf/10.1073/pnas.1401651112
https://www.pnas.org/doi/pdf/10.1073/pnas.1401651112
https://www.pnas.org/doi/abs/10.1073/pnas.1401651112
https://www.pnas.org/doi/abs/10.1073/pnas.1401651112
https://openreview.net/forum?id=i80OPhOCVH2
https://arxiv.org/abs/2405.16519
https://arxiv.org/abs/2405.16519
https://openreview.net/forum?id=TQlpqmCeMe
https://arxiv.org/abs/2308.11784
https://proceedings.mlr.press/v235/bravo24a.html
https://proceedings.mlr.press/v235/bravo24a.html
https://arxiv.org/abs/2305.17241


FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

[21] Samantha Chen et al. “Weisfeiler-Lehman Meets Gromov-Wasserstein”. In: Proceedings of
the 39th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri et al.
Vol. 162. Proceedings of Machine Learning Research. PMLR, 17–23 Jul 2022, pp. 3371–3416.
URL: https://proceedings.mlr.press/v162/chen22o.html. 3

[22] Zhengdao Chen et al. “On the equivalence between graph isomorphism testing and function
approximation with gnns”. In: Advances in neural information processing systems 32 (2019). 4

[23] Cheng Cheng et al. “Stable phase retrieval from locally stable and conditionally connected
measurements”. In: Applied and Computational Harmonic Analysis 55 (2021), pp. 440–465. 2

[24] Ching-Yao Chuang and Stefanie Jegelka. “Tree Mover’s Distance: Bridging Graph Metrics
and Stability of Graph Neural Networks”. In: Advances in Neural Information Processing
Systems. 2022. URL: https://openreview.net/forum?id=Qh89hwiP5ZR. 2–5, 16, 17

[25] Gabriele Corso et al. “Principal neighbourhood aggregation for graph nets”. In: Advances in
Neural Information Processing Systems 33 (2020), pp. 13260–13271. 2

[26] Yair Davidson and Nadav Dym. “On the H\"{o} lder Stability of Multiset and Graph Neural
Networks”. In: arXiv preprint arXiv:2406.06984 (2024). 2, 4, 8

[27] Francesco Di Giovanni et al. “On over-squashing in message passing neural networks: The
impact of width, depth, and topology”. In: International Conference on Machine Learning.
PMLR. 2023, pp. 7865–7885. 8, 9, 23

[28] Vijay Prakash Dwivedi et al. “Long Range Graph Benchmark”. In: Advances in Neural
Information Processing Systems. Ed. by S. Koyejo et al. Vol. 35. Curran Associates, Inc.,
2022, pp. 22326–22340. URL: https://proceedings.neurips.cc/paper_files/
paper/2022/file/8c3c666820ea055a77726d66fc7d447f-Paper-Datasets_and_
Benchmarks.pdf. 9

[29] Nadav Dym. “Exact recovery with symmetries for the doubly stochastic relaxation”. In: SIAM
Journal on Applied Algebra and Geometry 2.3 (2018), pp. 462–488. 5

[30] Nadav Dym and Steven J. Gortler. Low Dimensional Invariant Embeddings for Universal
Geometric Learning. 2023. arXiv: 2205.02956 [cs.LG]. 21

[31] Nadav Dym, Haggai Maron, and Yaron Lipman. “DS++ a flexible, scalable and provably tight
relaxation for matching problems”. In: ACM Transactions on Graphics (TOG) 36.6 (2017),
pp. 1–14. 5

[32] Moshe Eliasof, Eldad Haber, and Eran Treister. “Graph Neural Reaction Diffusion Models”.
In: SIAM Journal on Scientific Computing 46.4 (2024), pp. C399–C420. 9

[33] Simon Geisler et al. “Spatio-Spectral Graph Neural Networks”. In: arXiv preprint
arXiv:2405.19121 (2024). 9

[34] Justin Gilmer et al. “Neural Message Passing for Quantum Chemistry”. In: International
Conference on Machine Learning. 2017. URL: https://api.semanticscholar.org/
CorpusID:9665943. 1

[35] Martin Grohe. “The logic of graph neural networks”. In: 2021 36th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). IEEE. 2021, pp. 1–17. 3, 5

[36] Martin Grohe. “word2vec, node2vec, graph2vec, X2vec: Towards a Theory of Vector Embed-
dings of Structured Data”. In: Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems. PODS’20. Portland, OR, USA: Association for Com-
puting Machinery, 2020, pp. 1–16. ISBN: 9781450371087. DOI: 10.1145/3375395.3387641.
URL: https://doi.org/10.1145/3375395.3387641. 2, 3, 5

[37] Benjamin Gutteridge et al. “Drew: Dynamically rewired message passing with delay”. In:
International Conference on Machine Learning. PMLR. 2023, pp. 12252–12267. 9

[38] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive Representation Learning on Large
Graphs”. In: Advances in Neural Information Processing Systems. Ed. by I. Guyon et al.
Vol. 30. Curran Associates, Inc., 2017. URL: https://proceedings.neurips.cc/paper_
files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf. 4

[39] Snir Hordan et al. “Complete Neural Networks for Complete Euclidean Graphs”. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. 11. 2024, pp. 12482–
12490. 21

[40] Yiming Huang et al. “Higher-order graph convolutional network with flower-petals laplacians
on simplicial complexes”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 38. 11. 2024, pp. 12653–12661. 9

12

https://proceedings.mlr.press/v162/chen22o.html
https://openreview.net/forum?id=Qh89hwiP5ZR
https://proceedings.neurips.cc/paper_files/paper/2022/file/8c3c666820ea055a77726d66fc7d447f-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8c3c666820ea055a77726d66fc7d447f-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8c3c666820ea055a77726d66fc7d447f-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/2205.02956
https://api.semanticscholar.org/CorpusID:9665943
https://api.semanticscholar.org/CorpusID:9665943
https://doi.org/10.1145/3375395.3387641
https://doi.org/10.1145/3375395.3387641
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf


FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

[41] Yiming Huang et al. “Higher-order graph convolutional network with flower-petals laplacians
on simplicial complexes”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 38. 11. 2024, pp. 12653–12661. 9

[42] Mohammad Rasool Izadi et al. “Optimization of graph neural networks with natural gradient
descent”. In: 2020 IEEE international conference on big data (big data). IEEE. 2020, pp. 171–
179. 9

[43] Mohammad Rasool Izadi et al. “Optimization of graph neural networks with natural gradient
descent”. In: 2020 IEEE international conference on big data (big data). IEEE. 2020, pp. 171–
179. 9

[44] Mohammad Rasool Izadi et al. “Optimization of graph neural networks with natural gradient
descent”. In: 2020 IEEE international conference on big data (big data). IEEE. 2020, pp. 171–
179. 9

[45] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convolutional
Networks”. In: International Conference on Learning Representations. 2017. URL: https:
//openreview.net/forum?id=SJU4ayYgl. 4

[46] Christian Koke and Daniel Cremers. “HoloNets: Spectral Convolutions do extend to Directed
Graphs”. In: arXiv preprint arXiv:2310.02232 (2023). 9

[47] Soheil Kolouri et al. “Wasserstein Embedding for Graph Learning”. In: International Con-
ference on Learning Representations. 2021. URL: https://openreview.net/forum?id=
AAes_3W-2z. 2

[48] Ron Levie. “A graphon-signal analysis of graph neural networks”. In: Thirty-seventh Confer-
ence on Neural Information Processing Systems. 2023. URL: https://openreview.net/
forum?id=J0RD92Tmfc. 2

[49] Sitao Luan et al. “Revisiting heterophily for graph neural networks”. In: Advances in neural
information processing systems 35 (2022), pp. 1362–1375. 9

[50] Vince Lyzinski et al. “Graph Matching: Relax at Your Own Risk”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 38.1 (2016), pp. 60–73. DOI: 10.1109/TPAMI.
2015.2424894. 5

[51] Christopher Morris et al. Future Directions in Foundations of Graph Machine Learning. 2024.
arXiv: 2402.02287 [cs.LG]. 2, 7

[52] Christopher Morris et al. “Tudataset: A collection of benchmark datasets for learning with
graphs”. In: arXiv preprint arXiv:2007.08663 (2020). 9

[53] Christopher Morris et al. “Weisfeiler and leman go machine learning: The story so far”. In:
The Journal of Machine Learning Research 24.1 (2023), pp. 15865–15923. 3

[54] Christopher Morris et al. “Weisfeiler and Leman Go Neural: Higher-Order Graph Neural
Networks”. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press, 2019, pp. 4602–4609.
DOI: 10.1609/AAAI.V33I01.33014602. URL: https://doi.org/10.1609/aaai.
v33i01.33014602. 1, 4

[55] Hongbin Pei et al. “Geom-gcn: Geometric graph convolutional networks”. In: arXiv preprint
arXiv:2002.05287 (2020). 9

[56] Chendi Qian et al. “Ordered subgraph aggregation networks”. In: Advances in Neural Informa-
tion Processing Systems 35 (2022), pp. 21030–21045. 23

[57] Emanuele Rossi et al. “Edge directionality improves learning on heterophilic graphs”. In:
Learning on Graphs Conference. PMLR. 2024, pp. 25–1. 9

[58] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. “A Survey on Over-
smoothing in Graph Neural Networks”. In: ArXiv abs/2303.10993 (2023). URL: https:
//api.semanticscholar.org/CorpusID:257632346. 7, 9

[59] Edward R Scheinerman and Daniel H Ullman. Fractional graph theory: a rational approach
to the theory of graphs. Courier Corporation, 2013. 5, 19, 20

[60] Petar Velickovic et al. “Graph Attention Networks”. In: 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018. URL: https://openreview.net/
forum?id=rJXMpikCZ. 4

13

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=AAes_3W-2z
https://openreview.net/forum?id=AAes_3W-2z
https://openreview.net/forum?id=J0RD92Tmfc
https://openreview.net/forum?id=J0RD92Tmfc
https://doi.org/10.1109/TPAMI.2015.2424894
https://doi.org/10.1109/TPAMI.2015.2424894
https://arxiv.org/abs/2402.02287
https://doi.org/10.1609/AAAI.V33I01.33014602
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1609/aaai.v33i01.33014602
https://api.semanticscholar.org/CorpusID:257632346
https://api.semanticscholar.org/CorpusID:257632346
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ


FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

[61] Keyulu Xu et al. “How Powerful are Graph Neural Networks?” In: International Confer-
ence on Learning Representations. 2019. URL: https://openreview.net/forum?id=
ryGs6iA5Km. 1, 4

[62] Keyulu Xu et al. “How powerful are graph neural networks?” In: arXiv preprint
arXiv:1810.00826 (2018). 15, 21

[63] Muhan Zhang et al. “An End-to-End Deep Learning Architecture for Graph Classification”. In:
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018. Ed. by Sheila A. McIlraith and Kilian Q. Weinberger. AAAI Press, 2018,
pp. 4438–4445. DOI: 10.1609/AAAI.V32I1.11782. URL: https://doi.org/10.1609/
aaai.v32i1.11782. 2

[64] Markus Zopf. “1-wl expressiveness is (almost) all you need”. In: 2022 International Joint
Conference on Neural Networks (IJCNN). IEEE. 2022, pp. 1–8. 3

14

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1609/AAAI.V32I1.11782
https://doi.org/10.1609/aaai.v32i1.11782
https://doi.org/10.1609/aaai.v32i1.11782


FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

Table 2: Performance of different models on the LRGB results.

Dataset peptides-func (AP↑) peptides-struct (MAE↓)
GINE 0.6621±0.0067 0.2473±0.0017
GCN 0.6860±0.0050 0.2460±0.0007
GatedGCN 0.6765±0.0047 0.2477±0.0009
SortMPNN 0.6914±0.0056 0.2494±0.0021
FSW-GNN 0.6864±0.0048 0.2489±0.00155
SOTA 0.73 0.242

Table 3: Performance of different models on the MUTAG and Protein datasets.

Model MUTAG Protein
GIN [62] 89.4± 5.6 76.2± 2.8
GCN 85.6± 5.8 76.0± 3.2
GraphSage 85.1± 7.6 75.9± 3.2
SortMPNN 90.99± 6.2 76.46± 3.68
AdaptMPNN 90.41± 6.1 75.12± 3.64
FSW-GNN 90.55± 6.1 76.93± 7.64

SOTA 96.66± 1.23 84.91± 1.62

A Statistics on our benchmarks
We present some statistics of the learning problems considered in the main text. In Table 4, we present
the statistics for each transductive dataset, and for the MUTAG dataset, including the number of
nodes, edges, features, classes, average degree, and density, measuring the number of edges divided
by the number of maximal edges. As we can see in the table, these datasets are very sparse.

Table 5 shows the same statistics for the Peptides tasks from the LRGB dataset.

Table 4: Graph statistics for transductive learning and MUTAG.

Dataset Cora Cite. Pubm. Cham. Squi. Actor Corn. Texa. Wisc. MUTAG
# Nodes 2708 3327 19717 2277 5201 7600 183 183 251 188
# Edges 5429 4732 44338 36101 217073 33544 295 309 499 744
# Features 1433 3703 500 2325 2089 931 1703 1703 1703 7
# Classes 7 6 3 5 5 5 5 5 5 2
Avg. Degree 4 2 4 31 83 8 3 3 4 8
Density 0.0007 0.0009 0.0001 0.0159 0.0161 0.0012 0.0177 0.0184 0.0041 0.0422

Table 5: Graph statistics for Peptides datasets.

Dataset Peptides-Func Peptides-Struct
# Graphs 15,535 15,535
# Nodes (Avg.) 150.94 150.94
# Edges (Avg.) 2.04 2.04
Avg. Degree 2.04 2.04
Density 1.74× 10−6 1.74× 10−6

# Classes - 10

B Implantation details
For the Transductive learning and the LRGB dataset, we looked for each learning rate in the set
1e−3, 5e−3 and weights decay in the set 0.0, 1e−5 and learning rate factor of 0.7. For each such
configuration we stop according to the validation and take the best configuration of the validation set.

15



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

For all Over-squashing tasks we took a learning rate of 0.001 and weight decay 0, and learning rate
factor of 0.7. In all datasets we took the original dataset splits to train, test and validation sets.

C Relation to Tree Mover’s Distance

1 2 3 4 5 6 7 8 9

1

102

104

106

108

1010

1012

1014

MPNN iterations

D
is

to
rt

io
n

GCN
GIN
GAT

Sort-MPNN
FSW-GNN

Figure 6: Empirical distortion evaluation with respect to the Tree Mover’s Distance (TMD)

In this appendix we give a full description of the Tree Mover’s Distance as defined in Chuang and
Jegelka [24].

We first review Wasserstein distances. Recall that if (X, d) is a metric space, Ω ⊆ X is a subset, then
the Wasserstein distance can be defined on the space of multisets consisting of n elements in Ω via

Wd(x1, . . . , xn, y1, . . . , yn) = min
τ∈Sn

n∑
j=1

d(xj , yτ(j))

For multisets of different size, the authors of [24] used an augmentation map, which, for a fixed
parameter n, augments multisets of size r ≤ n by padding with n− r instances of an element z in
X \ Ω, namely

Γz (x1, . . . , xr) = (x1, . . . , xr, xr+1 = z, . . . .xn = z)

and the augmented distance on multi-sets of size up to n is defined by

Wd(X, X̂) = W 0
d

(
Γz(X),Γz

(
X̂
))

.

We now return to define the TMD. We consider the space of graphs G≤N (Ω), consisting of graphs
with ≤ N nodes, with node features coming from a compact domain Ω ⊆ Rd such that 0 /∈ Ω. The
TMD is defined using the notion of computation trees:
Definition C.1. (Computation Trees). Given a graph G = (V,E,X) with node features {xv}v∈V ,
let T1

v be the rooted tree with a single node v, which is also the root of the tree, and node features
xv. For t ∈ N let Tt

v be the depth-t computation tree of node v constructed by connecting the
neighbors of the leaf nodes of Tt−1

v to the tree. Each node is assigned the same node feature it
had in the original graph G. The multiset of depth-t computation trees defined by G is denoted by
T K
G := {Tt

v}v∈V . Additionally, for a tree T with root r, we denote by Tr the multiset of subtrees
that root at the descendants of r.
Definition C.2. (Blank Tree). A blank tree T̄0 is a tree (graph) that contains a single node and no
edge, where the node feature is the zero vector 0.

Recall that by assumption, all node features will come from the compact set Ω, and 0 ̸∈ Ω. Therefore,
the blank tree is not included in the space of trees with features in Ω, and can be used for augmentation.

We can now define the tree distance:

16



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

Definition C.3. (Tree Distance).3 The distance between two trees Ta,Tb with features from Ω and
0 ̸∈ Ω, is defined recursively as

TD(Ta,Tb) :=

{
∥xra − xrb∥1 +W T̄0

TD(Tra , Trb) if t > 1

∥xra − xrb∥1 otherwise

where t denotes the maximal depth of the trees Ta and Tb. Here W T̄0

TD denotes the Wasserstein
metric obtained from the metric TD on the space of trees of smaller depth, with augmentation by
blank trees T̄0.
Definition C.4. (Tree Mover’s Distance). Given two graphs, Ga, Gb and w, t ≥ 0, the tree mover’s
distance is defined by

TMDt(Ga, Gb) = W T̄0

TD(T
t
Ga

, T t
Gb

),

where T t
Ga

and T t
Gb

denote the multiset of all depth t computational trees arising from the graphs
Ga and Gb, respectively. Chuang and Jegelka [24] proved that TMDt(Ga, Gb) is a pseudo-metric
that fails to distinguish only graphs that cannot be separated by t+ 1 iterations of the WL test. Thus,
assuming that 0 /∈ Ω, TMDt(Ga, Gb) is WL equivalent on G≤N (Ω).

In addition, it is easy to see from the definition of TMD that it satisfies the following properties:

1. TMDt((A, α · X), (B, α · Y)) = α · TMDt(X,Y) for any α ≥ 0.
2. For fixed A,B, the TMD metric is piecewise linear in (X,Y).

These properties will be used to show that under the above assumptions, the embedding computed by
FSW-GNN is bi-Lipschitz with respect to TMD.

D Proofs
D.1 DS metric

Here we prove theorem 3.1
Theorem 3.1. ρDS is a WL-equivalent metric on G≤N

(
Rd

)
.

Proof. ρDS is symmetric, since if a pair’s minimum is obtained at S then the exact value is obtained
for the opposite pair with ST and vice-versa.

To prove the triangle inequality, let Let (V1,A,X), (V2,B,Y), (V3,C,Z) three arbitrary graphs with
|Vi| = ni, i = 1, 2, 3. Then the following holds:

α := ρDS(A,B) = |n1 − n2|+minS∈Π(n1,n2)||AS − SB||1 +
∑
i,j

Si,j ||Xi − Yj ||1

β := ρDS(B,C) = |n2 − n3|+minS∈Π(n2,n3)||BS − SC||1 +
∑
i,j

Si,j ||Yi − Zj ||1

γ := ρDS(A,C) = |n1 − n3|+minS∈Π(n1,n3)||AS − SC||1 +
∑
i,j

Si,j ||Xi − Zj ||1

We want to prove γ ≤ β + α. Let S1, S2 be the minimizers of the first two equations. Define
S3 = n2 · S1 · S2 and note that S3 ∈ Π(n1, n3) because, using the notation 1d to the all one
d-dimensional vector, we have

S31n3
= n2 · S1 · S21n3

= S11n2
=

1

n1
1n1

1Tn1
S3 = n2 · 1Tn1

S1 · S2 = 1Tn2
S2 =

1

n3
1n3 .

Next, we prove the following lemma (as usual, norms in this lemma are Frobenius norms)
3This definition slightly varies from from the original definition in [24], due to our choice to set the depth

weight to 1 and using the 1-Wasserstein which is equivalent to optimal transport.

17



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

Lemma D.1. Let S ∈ Π(n1, n2), then for all B ∈ Rn2×b and A ∈ Ra×n1

∥SB∥1 ≤ 1

n2
∥B∥1, ∥AS∥1 ≤ 1

n1
∥A∥1

Proof.

∥SB∥1 =

n1∑
i=1

b∑
j=1

|(SB)ij |

≤
n1∑
i=1

b∑
j=1

n2∑
k=1

Sik|Bkj |

=

b∑
j=1

n2∑
k=1

|Bkj | ·
n1∑
i=1

Sik

=
1

n2
∥B∥1

A symmetric argument can be used to show that ∥AS∥1 ≤ 1
n1

∥A∥1

Given the lemma, we now have
1

n2
||AS3 − S3C||1 = ||AS1S2 − S1S2C||1 = ||AS1S2 − S1BS2 + S1BS2 − S1S2C||1

≤ ||AS1S2 − S1BS2||1 + ||S1BS2 − S1S2C||1 = ||(AS1 − S1B) · S2||1

+ ||S1 · (BS2 − S2C)||1 ≤ 1

n2
||AS1 − S1B||1 +

1

n2
· ||BS2 − S2C||1

Next, we show the second part is also smaller:
1

n2

∑
i,j

S3
i,j · |Xi − Yj |1 =

∑
i,j

∑
k

S1
i,k · S2

k,j · ||Xi − Zj ||1

≤
∑
i,j

∑
k

S1
i,k · S2

k,j · (||Xi − Zk||1 + ||Zk − Yj ||1)

=
∑
i,j

n∑
k=1

S1
i,k · S2

k,j · ||Xi − Zk||1 +
∑
i,j

n∑
k=1

S1
i,k · S2

k,j · ||Yj − Zk||1

We now open both sums:∑
i,j

∑
k

S1
i,k · S2

k,j · ||Xi − Zk||1 =
∑
i

∑
k

S1
i,k · ||Xi − Zk||1 ·

∑
j

S2
k,j

=
1

n2

∑
i

∑
k

S1
i,k · ||Xi − Zk||1

With the same argument, we obtain that∑
i,j

∑
k

S1
i,k · S2

k,j · ||Yj − Zk||1 =
1

n2

∑
i,j

S2
i,j · ||Yi − Zj ||1

So overall we obtain

α ≤|n1 − n3|+ ||AS3 − S3C||1 +
∑
i,j

S3
i,j ||Xi − Zj ||1

≤|n1 − n2|+ ||AS1 − S1B||1 +
∑
i,j

S1
i,j ||Xi − Yj ||1 + |n2 − n3|

+||BS2 − S2C||1 +
∑
i,j

S3
i,j ||Yi − Zj ||1 = α+ β

18



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

Now, we show that our metric ρDS is equivalent to WL. Clearly, any pair of graphs with different
numbers of vertices are distinguished both by WL and by ρDS. Thus, in the following, we assume
that the two graphs have the same number of vertices.

We begin first with some needed definitions.

Partitions. Most of our techniques are inspired by [59]. Given G = (A,X), we define a stable
partition V = P1 ∪ P2... ∪ Pk if

∀u, v ∈ Pi,Xu =Xv (16)
∀l ∈ [k], i ∈ [k], u, v ∈ Pi, |Nu ∩ Pl| =|Nv ∩ Pl| (17)

In simple words, two nodes in the same partition must have the same feature and the same number of
neighbors with the same feature. Note that the union of all singleton is a valid stable partition. We
can characterize a partition as a k tuple, and in the i′th place, we put a tuple of the common feature
and a vector telling the number of neighbors in other partitions. We say that graphs have the same
stable partition; if, up to permitting of the k tuple indices, we have the same k tuple.

Lemma D.2. The number of colors in 1-WL can’t increase at level n. In addition, all nodes with the
same color at step n make a stable partition.

Proof. The number of colors of 1-WL can only increase as the number of iterations increases. It is
also known that, if at some step t the number of colors does not increase, then the process is ’stuck’.
Accordingly, after at most n iterations, the number of different colors will stay the same. Denote by
P = (P1, ..,Ps) a partition of the nodes with the same coloring at the n iteration, and be c ∈ C some
color, we claim that nodes in the same partition, have the same number of neighbors with color c. As
otherwise, those nodes that now have the same coloring will have different coloring in the next n+ 1
iteration. But as the number of colors doesn’t decrease (because of the concatenation of the current
color), we have at least one more color, a contradiction. So, we found a stable partition.

Lemma D.3. The following conditions are equivalent:

• G ∼=1−WL H

• Both graphs have a common stable partition. That is, there is a relabeling of G such that the
same partition P1, ..,Ps of V is a stable partition for both G and H, and the features inside
each partition are the same, in both G and H.

Proof. Assume we have the same common partition. Up to renaming the names of the vertices of
the nodes in the first graphs, we assume we have the same stable partition with the same parameters.
Assume that a common stable partition exists P = P1 ∪ .. ∪ Pk. Then, by simple induction on the
number of iterations, we will prove that all nodes in the same partition have the same color in both
graphs.
Basis Nodes in the same partition have the same initial feature and, thus, have the same color (in both
graphs).
Step By the induction hypothesis, all nodes in the same partition iteration T have the same color; and
they both have the same number of neighbors with the same color, so the aggregation yields the same
output. Thus, in iteration T + 1, those nodes also have the same color. Note that this argument is
symmetric to both graphs; thus, the 1-WL test will not distinguish them. On the other hand, if G1,G2

have the same 1-WL embedding, then we partition the nodes to those classes with the same color at
iteration n, denoted by P = P1 ∪ .. ∪ Pk. We have to show this partition is valid. First, by definition,
those nodes u, v ∈ Pi have the same node feature (by iteration 1); next, if u, v don’t have the same
number of neighbors in Pl for some l ∈ [k], then their color won’t be the same at iteration n + 1.
But, as shown in lemma D.2, the number of distinct colors can’t increase between n to n+ 1. Thus,
we found a common stable partition.

Before proving the following lemma, we revise a definition from [59]. We define direct the direct
sum of matrices S1 and S2 by:

S1 ⊕ S2 =

[
S1 0
0 S2

]

19



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

Given S ∈ Rn×n, we say S is composable if there exists P,Q, S1, S2 such that

S = P · (S1 ⊕ S2) ·Q

Such that P,Q are permutation matrices. By simple induction, we can write M as a direct sum of an
indecomposable

S = P · (S1 ⊕ S2 ⊕ ...⊕ St) ·Q

Lemma D.4. Let S ∈ Π(n, n) and assume it’s in the form of S = S1 ⊕ ...⊕ Sk such that all blocks
are indecomposable and

∑
i,j Si,j · ||Xi − Yj || = 0. Denote by i1, ..., ik+1 the indices define the

start and the end of S1, ..., St and by Ik := [ik, ik+1]. Then Xi = Yj ,∀t ∈ [k],∀i, j ∈ It.

Proof. Given t ∈ [k], we build a bipartite graph from It to itself, such that two indexes i, j are
connected if Si,j > 0. Note that this graph is connected, as otherwise, St could be composed into
its connected components, and thus St would be composable. Given a path P = (i1, ..., il) in
the graph, note that by definition, as the metric vanishes, and Sij ,ij+1

> 0, so Xij = Yij+1
, thus

Xi = Yj , i ∈ Ik, j ∈ Ik and we are done.

Theorem D.5. Be G,H two featured graphs, then

d(G,H) = 0 ⇐⇒ GWL∼H

We first prove that if the two graphs are 1-WL equivalent, then this metric vanishes. We may assume
they have the same stable partition as we proved above. Take P = P1 ∪ .. ∪ Pt, rename the nodes
such that they come in consecutive order and denote by n1, n2, .., nk the sizes of the partitions. Note
that by definition, ∀u, v ∈ Pi, both have the same feature and number of neighbors in all Pl. As in
the book [59], define S := 1

n1
Jn1

⊕ ...⊕ 1
nj
Jnk

and from the book [59], we know that AS = SB.
As all nodes in the same partition have the same feature, Xi = Yj ,∀i, j ∈ Ik = [nt, nt+1],∀t ∈ [k],
so as S is non-zero only on indexes in the same partition then also this metric vanishes, so also the
sum vanishes on S.

For the next direction, be G = (A,X),H = (B,Y) two graphs and assume there exists a matrix of
the form of S = P (S1 ⊕ ...⊕ St)Q such that the metric vanishes and denote by D = S1 ⊕ ...⊕ St

We show we can choose S such that it’s a block matrix.

||PDQ · A − B · PDQ|| =||P · (DQA ·Q−1 − P−1BP ·D) ·Q||
(∗)
= ||DQA ·Q−1 − P−1BP ·D||

=
∑
i,j

Si,j · |Xi − Yj |
∑
i,j

(PDQ)i,j · |Xi − Yj |

=
∑
i,j

Dπ−1
1 (i),π2(j)

· |Xi − Yj |

=
∑
i,j

Di,j · |Xπ1(i) − Yπ−1
2 (j)|,

where (*) follows from the fact that permutation matrices preserve the norm. We define two graphs
Ĝ = (QAQ−1, QX) ∼= G, Ĥ = (P−1AP, P−1Y) ∼= H. So, we can choose S to be a diagonal block
matrix. Note that D defines a partition P1, . . . ,Ps of the nodes, and we will prove that it’s a stable
partition of both graphs. From SA = BS, we obtain, as in the book [59], that each of the two
nodes u, v ∈ Pk has the same number of neighbors in Pl,∀l ∈ [s]. Next, by the lemma D.4, we
know that Xi = Yj ,∀i, j ∈ Pk, so nodes in the same partition have the same feature. Thus, this
partition is stable. So, Ĝ, Ĥ have exactly the same partition. Then G,H have the same partition up to
isomorphism, and by lemma D.3, both graphs are 1-WL equivalent.

20



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

D.2 FSW-GNN: Equivalence to WL

We now prove theorem 3.2 that says the FSW-GNN is equivalent to WL.
Theorem 3.2. Consider the FSW-GNN architecture for input graphs in G≤N

(
Rd

)
, with T = N

iterations, where Φ(t),Ψ are just linear funtions, and all features (except for input features) are of
dimension m ≥ 2Nd+ 2. Then for Lebesgue almost every choice of model parameters, the graph
embedding defined by the architecture is WL equivalent.

Proof. This proof employs the finite witness theorem [5], and the basic methodology to use it for
graph neural network injectivity, first presented by Hordan et al. [39].

It is sufficient to show that the functions Φ(t) and Ψ are injective vector-to-vector functions, and that
the FSW ebmedding maps used in the FSW-GNN are injective multiset to vector functions. The
injectivity of all these functions ensures that the MPNN is WL-equivalent [62].

By Theorem 4.1 in [4], if we take the FSW embedding with an output dimension of 2Nd+1, defined
on the space of multisets with at most N features in Rd, then the embedding will be injective for
Lebesgue almost every choice of its parameters. This injectivity is in the sense that two multisets
will attain the same value if and only if they define the same distribution. This can happen when
the multisets are not equal, but have different cardinalities. However, the last coordinae of the FSW
embedding, which encodes the multiset cardinality, ensures that this will not be an issue. Accordingly
the FSW embedding is injective on the multiset space.

We note that the output of the FSW embedding will now be node features of a higher dimension of
2Nd + 2, rather than just d. However, the set of all possible features obtrained from the previous
iteration will be a semialgebraic set of dimension ≤ Nd. As long as this is the case, reapplying the
FSW embedding with output dimension of 2Nd+ 2 will still be injective, for almost every choice of
parameters.

The same argument can also be applied for the linear functions Φ(t) and Ψ used in FSW-GNN: It is
an easy consequence of the finite witness theorem [5, 30], that almost every (2Nd+ 1)×m matrix,
applied to a semialgebraic subset of Rm of dimension ≤ Nd, will be injective. This concludes the
proof.

D.3 FSW-GNN: Bi-Lipschitzness

We first prove lemma 3.4.
Lemma 3.4. Let f, g : M → R≥0 be nonnegative piecewise-linear functions defined on a compact
polygon M ⊂ Rd. Suppose that for all x ∈ M , f(x) = 0 if and only if g(x) = 0. Then there exist
real constants c, C > 0 such that

c · g(x) ≤ f(x) ≤ C · g(x), ∀x ∈ M. (13)

Proof. By definition, there is a partition of M into a finite union of compact polygons, so that the
restriction of f to each polygon is an affine function. g also has such a partition, and by taking the
mutual refinement of the two partitions, we obtain a finite partition of M into compact polygons,
such that the restriction of both f and g to each polygon is affine.

Accordingly, it is sufficient to prove the claim on a single compact polygon P ⊆ M on which the
restriction of both f and g is affine. A compact polygon has a finite number of extreme points
v1, . . . , vk, and every point in the polygon can be written as a convex combination of these points.
Now let us denote

I = {i ∈ [k]| f(vi) > 0} = {i ∈ [k]| g(vi) > 0}.

We note that if I is empty, then f and g are identically zero on P , and there is nothing to prove.
Otherwise, the following quantities are well defined and strictly positive:

mf = min
i∈I

f(vi), Mf = max
i∈I

f(vi)

mg = min
i∈I

g(vi), Mg = max
i∈I

g(vi)

21



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

Then for every x ∈ P , there exist non-negative θ1, . . . , θk which sum to 1 such that x =
∑k

i=1 θivi.

It follows that

f(x) = f(

k∑
i=1

θivi) =

k∑
i=1

θif(vi) =
∑
i∈I

θif(vi)

≥ mf

∑
i∈I

θi =
mf

Mg
·Mg

∑
i∈I

θi ≥
mf

Mg
·
∑
i∈I

θig(vi)

=
mf

Mg
· g(

k∑
i=1

θivi) =
mf

Mg
· g(x).

By reversing the roles of f and g, we obtain that for every x ∈ P ,

g(x) ≥ mg

Mf
f(x).

This concludes the proof.

We now turn to the full proof of theorem 3.3.
Theorem 3.3. Let Ω ⊂ Rd be compact. Under the assumptions of theorem 3.2, the FSW-GNN
is bi-Lipschitz with respect to ρDS on G≤N (Ω). If, additionally, Ω does not contain 0, then the
FSW-GNN is bi-Lipschitz with respect to TMD on G≤N (Ω).

Proof. Following the reasoning in the main text, the rest of the proof is as follows: Let G, G̃ ∈
G≤N (Ω), G = (V,E,X) and G̃ =

(
Ṽ , Ẽ, X̃

)
, with n and ñ vertices respectively. Since there is a

finite number of choices of possible n, ñ ≤ N and edges E, Ẽ It is enough to show that once these
parameters are chosen, the bi-Lipschitz ratio is bounded on all choices of X ∈ Ωn, X̃ ∈ Ωñ, . Define
the function f

(
X, X̃

)
= ∥hG − hG̃∥1, g

(
X, X̃

)
= ρ

(
G, G̃

)
, where ρ is either ρDS or TMD. By

the comment above, both f and g are piecewise linear. Since both FSW-GNN and the metric ρ are
WL-equivalent, f and g have the same zero set. Lastly, since Ω is compact and does not contain
0, the distance from Ω to 0 is strictly positive, and thus Ω can be extended to a compact polygon
that does not contain 0 (e.g. by taking the set-difference between a compact box that contains Ω
and a small ℓ∞ ball around 0 that is disjoint with Ω). Thus, lemma 3.4 guarantees the existence of
Lipschitz constants c, C.

Finally, note that by equivalence of all norms on a finite dimensional space, the same bi-Lipschitz
equivalence holds if we replace the one-norm in the definition of f with any other norm. Q.E.D.

Theorem D.6. Suppose that Ω ⊂ Rd is a compact set that does not contain zero. Under the
assumptions of theorem 3.2, the node features computed by FSW-GNN are bi-Lipschitz with respect
to the Tree Distance metric on G≤N (Ω).

Proof. Let G = (V,A,X), G̃ =
(
Ṽ , Ã, X̃

)
be two graphs in G≤N (Ω). Let t ∈ N denote the

number of MPNN/WL iterations iterations applied. Let v ∈ V , ṽ ∈ Ṽ . Let h(t)
v and h

(t)
ṽ be the

output features of vertices v and ṽ computed by FSW-GNN. Then TD
(
T

(t)
v ,T

(t)
ṽ

)
= 0 if and only

if v and ṽ are assigned the same features by the WL test, which in turn takes place if and only
if h(t)

v = h
(t)
ṽ . Note that ∥hv − hṽ∥1 is a piecewise-linear function of the input vertex features

{xv}v∈V and {x̃ṽ}ṽ∈Ṽ . Moreover, TD
(
T

(t)
v ,T

(t)
ṽ

)
= 0 can be transformed with bounded distortion

to a piecewise-linear function of {xv}v∈V and {x̃ṽ}ṽ∈Ṽ . Lastly, similarly to the proof of theorem 3.3,
Ω can be extended to a compact polygon that does not contain 0. Thus, by lemma 3.4, there exist
constants 0 < c,C < ∞ such that

c · TD
(
T(t)

v ,T
(t)
ṽ

)
≤

∥∥∥h(t)
v − h

(t)
ṽ

∥∥∥
1
≤ C · TD

(
T(t)

v ,T
(t)
ṽ

)
.

22



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

E Experiment Details
We used the Adam optimizer for all experiments.

For the empirical distortion evaluation, we used pairs of graphs G, G̃, each of which consisting of four
vertices and the edges 1−2−3−4−1. Two random vectors v0,∆v ∈ Rd were drawn i.i.d. Gaussian
and normalized to unit length. In G all vertex features were set to v0, whereas in G̃ they were set to
v0 + εσ∆v, with σ = 1 for v2, v4 and −1 for v1, v3. We used ε =

{
1, 10−1, 10−2, . . . , 10−6

}
, and

generated 100 pairs for each value of ε, and evaluated the constants C, c for the resulting pairs. This
experiment was repeated 10 times and the average distortion was taken. To ensure accurate results,
we used 64-bit floating-point arithmetic in this experiment.

For the NeighborsMatch problem from [3], we used the protocol developed in their paper: we used
their implementation for the MPNNs we compared to, with a hidden dimension of 64 for all models,
searched for each of its best hyper-parameters, and reported the training accuracy. For fair comparison
with rival models, we repeated each sample 100 times, as was done in [3].

For the Ring dataset, we used the results from [27] and trained our models with a hidden dimension
of 64.

For the LRGB dataset, we trained all models under the constraint of 500K parameters. In contrast,
for the MolHIV dataset, there was no restriction, and we trained the models with 40K parameters.

For the transductive learning tasks, we used a hidden dimension of 128 across all models.

Timing. Here, we show the testing time for FSW-GNN, GIN, and GCN, GGNN, GAT, and
GraphSAGE on the MUTAG graph classification task.

Table 6: Comparison of Average Time in seconds per testing in evaluation mode for different models
on MUTAG.

Model Avg Time per Testing
GIN 0.09
GCN 0.08
GAT 0.09

GGNN 0.08
GraphSage 0.07
FSW-GNN 0.11

F Ordered subgraph aggregation
In this section, we recall sub-graph aggregation networks and show that FSW-GNN could be used to
create a Bi-lipshiz embedding with respect to the metric equivalent to sub-graph WL.

F.1 Ordered subgraph 1-WL

. The OSWL (Ordered sub-graph WL) is taken from [14, 56]. Given 1-WL procedure using T
iterations denoted by WLT , and deterministic graph sampling Π(could be node/edge deletion), we
define the following three steps:

• Step 1: Deterministic graph sampling (e.g. node/edge deletion) Π(G) = {G1, . . . ,Gm} .

• yi = WLT (Gi),Gi ∈ Π(G)
• yG = ϕ({y1, . . . , ym})

Where WLT denotes the application of T iterations of the WL test, and ϕ is an injective multiset
function.
Definition F.1. We say G1,G2 to be equivalent up to OSWL, if OSWLT (G1) = OSWLT (G2),∀T ∈
N, and denoted by G1

∼= G2. As for WL, checking equality for T = |G1| is sufficient to ensure
equality for all T .

23



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

Ordered subgraph MPNN. Ordered subgraph MPNNs are very similar to OSWL. Given an
MPNN and a multi-set to vector embedding ϕ, we define its sub-graph version:

• Step 1: Deterministic graph sampling Π(G) = {G1, . . . ,Gm}
• yi = MPNN(Gi),Gi ∈ Π(G)
• yG = ϕ({y1, . . . , ym})

OSWL equivalent metric. We define a metric OSWL equivalent similarly to 2.1:
Definition (WL metric). A OSWL metric on G=N (Ω) is a function ρ : G=N (Ω)× G=N (Ω) → R≥0

that satisfies the following conditions for all G1, G2, G3 ∈ G=N (Ω):

ρ(G1, G2) = ρ(G2, G1) Symmetry (18a)

ρ(G1, G3) ≤ ρ(G1, G2) + ρ(G2, G3) Triangle inequality (18b)
ρ(G1, G2) = 0 ⇐⇒ G1

∼= G2. OSWL equivalence (18c)

Theorem F.2. Be a 1-WL equivalent metric dWL, and sampling procedure, the following metric is
OSWL equivalent:

dsub(G,H) = minπ∈Sm

m∑
i=1

dWL(Gi,Hπ(i))

Proof. We prove only the last part, which is not trivial. Assume first that the number of nodes is the
same, then:

dsub(G,H) = 0 ⇐⇒ ∃π ∈ Sm : ∀i ∈ [m] : dWL(Gi,Hπ(i)) = 0 ⇐⇒
⇐⇒ ∃π ∈ Sm : ∀i ∈ [m], yGi = yHπ(i)

ϕ({yG1 , . . . , yGm}) = ϕ({yH1 , . . . , yHm}) ⇐⇒ OSWL(G) = OSWL(H)

Theorem F.3. Assume we use FSW-GNN as MPNN, FSW aggregation as ϕ, dDS , as the 1-WL
equivalent metric, then the overall OSMPNN is OSWL bilipshiz.

Proof. Note that the OSMPNN is piece-wise linear as a composition of piece-wise linear functions.
Also, dsub is piece-wise linear a summation of piece-wise linear functions. In addition, both functions
vanish on the same set, so by the 3.4, the OSMPNN is bilipshiz.

24


	1 Introduction
	1.1 Related Works

	2 Problem Setting
	3 Main Contributions
	4 Oversmoothing, Oversquashing, and Bi-Lipschitz MPNN
	5 Numerical Experiments
	6 Conclusion
	A Statistics on our benchmarks
	B Implantation details
	C Relation to Tree Mover's Distance
	D Proofs
	D.1 DS metric
	D.2 FSW-GNN: Equivalence to WL
	D.3 FSW-GNN: Bi-Lipschitzness

	E Experiment Details
	F Ordered subgraph aggregation
	F.1 Ordered subgraph 1-WL


