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Abstract1

Famously, the ability of Message Passing Neural Networks (MPNN) to distin-2

guish between graphs is limited to graphs separable by the Weisfeiler-Lemann3

(WL) graph isomorphism test, and the strongest MPNNs, in terms of separation4

power, are WL-equivalent. However, it was demonstrated that the quality of5

separation provided by standard WL-equivalent MPNN can be very low, resulting6

in WL-separable graphs being mapped to very similar, hardly distinguishable7

outputs. This phenomenon can be explained by the recent observation that8

standard MPNNs are not lower-Lipschitz. This paper addresses this issue by9

introducing FSW-GNN, the first MPNN that is fully bi-Lipschitz with respect to10

standard WL-equivalent graph metrics. Empirically, we show that our MPNN11

is competitive with standard MPNNs for several graph learning tasks and is far12

more accurate in long-range tasks, due to its ability to avoid oversmoothing and13

oversquashing.14

1 Introduction15

Graph neural networks are a central research topic in contemporary machine learning. As shown by16

Gilmer et al. [34], many of the most popular models can be seen as instantiations of Message Passing17

Neural Networks (MPNNs).18

A well-known limitation of MPNNs is that they cannot differentiate between all distinct pairs of19

graphs. In fact, a pair of distinct graphs that cannot be separated by the Weisfeiler-Lehman (WL)20

graph isomorphism test will not be separated by any MPNN [61]. Accordingly, the most expressive21

MPNNs are those that are WL-equivalent, which means they can separate all pairs of graphs that are22

separable by WL. WL-equivalent MPNNs were proposed in the seminal works of Morris et al. [54]23

and Xu et al. [61], and the complexity of these constructions was later improved in [1, 5].24

While separation is theoretically guaranteed with WL-equivalent MPNNs, in some cases, their25

separation in practice is so weak that it cannot be observed with 32-bit floating-point number; see [18].26

Moreover, using many MPNN iterations often leads to almost-identical node features (oversmoothing),27

or features that are barely affected by changes in far-off nodes (oversquashing). These observations28

motivate the development of quantitative estimates of MPNN separation by means of bi-Lipschitz29

stability guarantees. These guarantees would ensure that Euclidean distances in the MPNN feature30

space are neither much larger nor much smaller than distances in the original graph space, which are31

defined by a suitable metric on graphs. Consequently, as we shall see, detrimental phenomena like32

oversmoothing and oversquashing can be fundamentally mitigated.33

This paper introduces a novel MPNN, called FSW-GNN (Fourier Sliced-Wasserstein GNN), which is34

bi-Lipschitz with respect to two WL-equivalent graph metrics: (a) the Doubly Stochastic (DS) metric35

of [36], and (b) the Tree Mover’s Distance (TMD) metric of Chuang and Jegelka [24]. Empirically,36

we show that FSW-GNN performs comparably or better than prevalent MPNNs on standard learning37

tasks, and achieves significantly superior performance in long-range tasks, i.e., tasks that require a38

large number of message-passing iterations (for example see Figure 1). This can be attributed to the39

bi-Lipschitzness of FSW-GNN, in contrast to standard MPNNs, which are not bi-Lipschitz [26].40
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Figure 1: FSW-GNN handles tasks with large radius better than standard MPNNs, which are more
prone to oversmoothing and oversquashing. Task taken from [3]

1.1 Related Works41

Bi-Lipschitzness. Bi-Lipschitzness arises naturally in many domains, including frames [7], phase42

retrieval [11, 23], group-invariant learning [19, 20] and multisets [4, 5]. In the context of MPNNs,43

upper Lipschitzness was discussed in [24, 48]. A recent survey by Morris et al. [51] identifies44

bi-Lipschitzness as a significant future goal for theoretical GNN research.45

SortMPNN. First steps towards a Bi-Lipschitz MPNN have recently been made by Davidson and46

Dym [26]. Their work analyzes a weaker notion of Lipschitz and Hölder guarantees—in expectation47

over the model parameters. They show that essentially all popular MPNN models fail to be lower-48

Lipschitz, but are lower-Hölder in expectation, with an exponent that grows worse as the MPNN49

depth increases. In contrast, they propose a novel MPNN, called SortMPNN, and prove that it satisfies50

this weaker notion of bi-Lipschitzness in expectation.51

As we discuss below, the FSW-GNN satisfies the standard, stronger, notion of bi-Lipschitzness.52

Interestingly, the proof technique we present here for FSW-GNN also applies to SortMPNN, allowing53

us to establish that SortMPNN is bi-Lipschitz as well. Nonetheless, SortMPNN has a key limitation54

in its message aggregation mechanism: it handles neighborhoods of different sizes by padding them55

to a predetermined maximal size. This requires a priori knowledge of the maximal neighborhood56

size in all future input graphs—an inherent constraint that significantly limits its applicability. In57

contrast, FSW-GNN does not share this constraint, since it treats vertex neighborhoods as distributions.58

Moreover, due to this padding-based approach, SortMPNN only accommodates neighborhoods that59

are multisets, thus making it unsuitable for graphs with non-integer edge weights. In contrast,60

FSW-GNN naturally supports edge weights.61

MPNNs with advanced pooling mechanisms. In addition to SortMPNN, our approach is con-62

ceptually related to other MPNNs that replace the basic max- or sum-pooling, used for message63

aggregation, with more advanced pooling mechanisms, such as sorting [8, 63], standard deviation64

[25], or Sliced-Wasserstein embeddings via template distributions [47]. However, these methods lack65

the bi-Lipschitzness guarantees that our model provides.66

WL-equivalent metrics. Bi-Lipschitz analysis of MPNNs requires a WL-equivalent graph metric.67

Several such metrics have been proposed, with notable examples being the Doubly-Stochastic (DS)68

metric (also known as the tree metric) [36]; the Tree Mover’s Distance (TMD) [24]; and the WL69

metric [21]. In this paper, we prove that the graph embeddings computed by our FSW-GNN model70

are bi-Lipschitz with respect to both the DS and TMD metrics. This analysis applies to graphs of71

bounded size with continuous, bounded node-features. Weaker notions of equivalence between these72

metrics, in the context of graphs with unbounded cardinality and without node features, are discussed73

in [15, 16].74
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Table 1: Learning accuracy comparison across different benchmarks and models.

Model Cora Cite. Pubm. Cham. Squi. Actor Corn. Texa. Wisc.

GCN 85.77 73.68 88.13 28.18 23.96 26.86 52.70 52.16 45.88
GAT 86.37 74.32 87.62 42.93 30.03 28.45 54.32 58.38 49.41
FSW-GNN 86.35 75.44 88.17 51.18 36.38 34.66 72.43 75.68 81.56
Sort-MPNN 83.46 72.69 85.15 78.11 74.69 31.32 67.03 70.54 73.92
SOTA 90.16 82.07 91.31 79.71 76.71 51.81 92.72 88.38 94.99

2 Problem Setting75

In this section, we outline the problem setting, first providing the theoretical background of the76

problem and then stating our objectives.77

Vertex-featured graphs. Our main objects of study are graphs with vertex features, represented78

as triplets G = (V,E,X), where V = {vi}ni=1 is the set of vertices, E ⊆ {{vi, vj} | i, j ∈ [n]} are79

the undirected edges in G, and X = [x1, . . . ,xn] is a matrix containing the vertex feature vectors80

xi ∈ Ω, with Ω ⊆ Rd being the feature domain. We denote by G≤N (Ω) the set of all vertex-featured81

graphs with at most N vertices and corresponding features in Ω. Throughout the paper, we use {} to82

denote multisets. We note that our results readily extend to graphs with edge features.83

Weisfeiler-Lemann Graph Isomorphism test. Two graphs are isomorphic if they are identical84

up to relabeling of their nodes. Perhaps surprisingly, the problem of determining whether two given85

graphs are isomorphic is rather challenging. To date, no known algorithm can solve it in polynomial86

time [6]. However, there exist various heuristics that provide an incomplete but often adequate87

method to test whether a given pair of graphs is isomorphic. The most notable example is the88

Weisfeiler-Leman (WL) graph isomorphism test.89

The WL test can be described as assigning to each graph G = (V,E,X) a feature vector cTG according90

to the formula91

c0v := Xv, v ∈ V ; for 1 ≤ t ≤ T :

ctv := Combine
(
ct−1
v ,Aggregate

({
ct−1
u

∣∣ u ∈ Nv

}))
;

cTG := Readout
({

cTv1 , . . . , c
T
vn

})
,

(1)

where Aggregate and Readout are functions that injectively map multisets of vectors in Euclidean92

space into another Euclidean space, Combine is an injective function from one Euclidean space to93

another, and Nv denotes the neighborhood of the vertex v in G.94

Definition (WL graph equivalence). Two vertex-featured graphs G and G̃ are said to be WL-95

equivalent, denoted by G
WL∼ G̃, if cTG = cT

G̃
for all T ≥ 0. Otherwise, they are said to be WL-separable.96

It is a known fact [35, 53] that for G, G̃ ∈ G≤N

(
Rd

)
, if the equality cTG = cT

G̃
is satisfied for T = N ,97

then it is satisfied for all T ≥ 0, and thus GWL∼ G̃.98

While the WL test can separate most pairs of non-isomorphic graphs, there exist examples of99

non-isomorphic graph pairs that WL cannot separate; see [64].100

Message passing neural networks. Message Passing Neural Networks (MPNNs) operate on a101

similar principle to the WL test, but with the purpose of performing predictions on single graphs102

rather than determining if pairs of them are isomorphic. Their core mechanism is the message-passing103

procedure, which maintains a hidden feature for each vertex and iteratively updates it as a function of104

the neighbors’ features. This process is outlined as follows:105

1. Initialization: The hidden feature h
(0)
v of each node is initialized by its input feature xv .106

2. Message aggregation: Each node v ∈ V aggregates messages from its neighbors by107

m(t)
v := Aggregate

({
h(t−1)
u

∣∣∣ u ∈ Nv

})
(2)

Where Aggregate is a multiset-to-vector function.108
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3. Update step: Each node updates its own hidden feature according to its aggregated messages109

and its previous hidden feature, using a vector-to-vector update function:110

h(t)
v := Update

(
m(t)

v ,h(t−1)
v

)
, (3)

4. Readout: After T iterations of steps 2-3, a graph-level feature hG is computed by a multiset-to-111

vector readout function:112

hG := Readout
({

h(T )
v

∣∣∣ v ∈ V
})

.

Numerous MPNNs were proposed in recent years, including GIN [61], GraphSage [38], GAT [60],113

and GCN [45], the main differences between them being the specific choices of the aggregation,114

update, and readout functions.115

An MPNN computes an embedding of a graph G to a vector F (G) = hG. The obtained embedding is116

often further processed by standard machine-learning tools for vectors, such as multi-layer perceptrons117

(MLPs), to obtain a final graph prediction. The ability of such a model to approximate functions on118

graphs is closely related to the separation properties of F : if F can differentiate between any pair119

of non-isomorphic graphs, then a model of the form MLP ◦ F would be able to approximate any120

functions on graphs [22].121

Unfortunately, MPNN cannot separate any pair of WL-equivalent graphs, even if they are not122

truly isomorphic [54, 61]. Accordingly, the best we can hope for from an MPNN, in terms of123

separation, is WL equivalence: for every pair of graphs G,G′ ∈ G≤N (Ω), F (G) = F (G′) if and124

only if G
WL∼G′. While MPNNs based on max- or mean-pooling cannot be WL-equivalent [61], it is125

possible to construct WL-equivalent MPNNs based on sum-pooling, as discussed in [1, 5, 17, 54, 61].126

Theoretically, a properly tuned graph model based on a WL-equivalent MPNN should be capable127

of perfectly solving any binary classification task, provided that no two WL-equivalent graphs have128

different ground-truth labels. However, this separation does not always manifest in practice. One129

reason is that WL-equivalent functions may map two input graphs that are far apart in the input space130

to outputs that are numerically indistinguishable in the output Euclidean space. In fact, Davidson131

and Dym [26] provide an example of graph pairs that are not WL-equivalent, yet are mapped to132

near-identical outputs by standard sum-based MPNNs. Consequently, these MPNNs fail on binary133

classification tasks for such graphs.134

This paper aims to address this limitation by devising an MPNN whose embeddings preserve distances135

in the bi-Lipschitz sense. To state our goal formally, we first need to define a notion of distance on136

the input space of graphs.137

WL metric for graphs. WL metrics quantify the extent to which two graphs are not WL-equivalent:138

139

Definition 2.1 (WL metric). A WL metric on G≤N (Ω) is a function ρ : G≤N (Ω)× G≤N (Ω) → R≥0140

that satisfies the standard requirements for a metric, with the exception that ρ(G1, G2) = 0 if and141

only if G1
WL∼G2.142

For convenience, we use the term WL metric, despite the fact that strictly speaking, WL metrics are143

pseudometrics on G≤N

(
Rd

)
.144

Tree Mover’s Distance. The first WL metric we consider is the Tree Mover’s Distance (TMD),145

defined in [24]. This metric is based on building computation trees T(t)
v , which simulate the WL146

procedure used to create the node features h(t)
v , and calculating distances147

TD(T(t)
v ,T(t)

u ) (4)
recursively between sub-trees using optimal transport. These node-level distances are zero if, and148

only if, the features c
(t)
v and c

(t)
u , constructed by the WL test, are equal. A graph-level distance149

TMD(G,G′) is obtained by aggregating all node-level distances. For the full definition, see ap-150

pendix C and [24]. Under the assumption that the feature domain Ω does not contain the zero vector,151

Chuang and Jegelka [24] proved that TMD(G,G′) is a WL-metric.152

The second WL metric we consider is the DS metric [35]. Originally, this metric was defined only for153

featureless graphs of fixed cardinality. In the next section, we extend this metric to the more general154

case of G≤N

(
Rd

)
.155
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Bi-Lipschitzness. Once a WL-metric is defined to measure distances between graphs, one can156

bound the distortion incurred by a graph embedding with respect to that metric, using the notion of157

bi-Lipschitzness:158

Definition (Bi-Lipschitz embedding). Let ρ be a WL-metric on G≤N (Ω). An embedding E :159

G≤N (Ω) → Rm is said to be bi-Lipschitz with respect to ρ on G≤N (Ω) if there exist constants160

0 < c ≤ C < ∞ such that ∀G1, G2 ∈ G≤N (Ω),161

c · ρ(G1, G2) ≤ ∥E(G1)− E(G2)∥2 ≤ C · ρ(G1, G2). (5)

If E only satisfies the left- or right-hand side of eq. (5), it is said to be lower- or upper-Lipschitz162

respectively.163

Bi-Lipschitzness ensures that the embedding maps the input space G≤N (Ω) into the output Euclidean164

space with bounded distortion, with the ratio C
c serving as an upper bound on the distortion, akin to165

the condition number of a matrix.166

3 Main Contributions167

In this section, we discuss our main contributions. We begin by defining our generalized DS metric168

for vertex-featured graphs. We then discuss our proposed MPNN and show that it is bi-Lipschitz with169

respect to the DS and TMD metrics.170

The DS metric. The DS metric originates from a relaxation of the graph isomorphism problem. Two171

graphs G and G̃, each with n vertices, and corresponding adjacency matrices A, Ã are isomorphic if172

and only if there exists a permutation matrix P such that AP = PÃ. Since checking whether graphs173

are isomorphic is intractable, an approximate solution can be sought by considering the equation174

AS = SÃ with S ∈ Dn, the collection of n× n doubly stochastic matrices, which is the convex hull175

of all permutation matrices. Remarkably, this equation admits a solution S ∈ Dn if and only if the176

graphs G and G̃ are WL-equivalent [59]. Accordingly, a WL-metric between featureless graphs with177

the same number of vertices n can be defined by the minimization problem178

ρDS

(
G, G̃

)
= min

S∈Dn

∥∥∥AS − SÃ
∥∥∥, (6)

where ∥ · ∥ could denote any p norm. The fact that this is indeed a pseudometric was established in179

[12]. The optimization problem eq. (6) can be solved by off-the-shelf convex optimization solvers180

and was considered as a method for finding the correspondence between two graphs in several papers,181

including [2, 13, 29, 31, 50].182

The idea of using the DS metric for MPNN stability analysis was introduced in [36] and further183

discussed by Böker [15]. To apply this idea to our setting, we need to adapt this metric to vertex-184

featured graphs with varying numbers of vertices. We do this by augmenting it as follows:185

ρDS

(
G, G̃

)
= |n− ñ|+ min

S∈Π(n,ñ)

∥∥∥AS − SÃ
∥∥∥
1
+

∑
i∈[n],j∈[ñ]

Sij∥xi − x̃j∥1, (7)

where n and ñ denote the number of vertices in G and G̃, xi and x̃j denote the vertex features of G186

and G̃, and Π(n, ñ) is the set of n× ñ matrices S with non-negative entries, whose rows and columns187

sum to n and ñ, respectively.188

Theorem 3.1. (Proof in appendix D.1) ρDS is a WL-equivalent metric on G≤N

(
Rd

)
.189

Bi-Lipschitz MPNN. We now present our main contribution: a novel MPNN that is not only190

WL-equivalent, but also bi-Lipschitz, with respect to both ρDS and TMD.191

FSW Embedding. The core innovation in our MPNN lies in its message aggregation method.192

Specifically, we employ the Fourier Sliced-Wasserstein (FSW) Embedding—a method for embedding193

multisets of vectors into Euclidean space, proposed by Amir and Dym [4], where it was also shown to194

be bi-Lipschitz. This property makes it plausible, a priori, that an MPNN based on FSW aggregation195

will be bi-Lipschitz for graphs. In this work, we formally establish that this is indeed the case. We196

begin by describing the FSW embedding and then introduce our FSW-GNN architecture.197
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The FSW embedding maps an input multiset X = {x1, . . . ,xn}, where x1, . . . ,xn ∈ Rd, to an198

output vector z = (z1, . . . , zm) ∈ Rm. It is denoted by199

z = EFSW(X; (vk, ξk)
m
k=1), X = {x1, . . . ,xn}.

In addition to the input multiset X , it depends on parameters (vk, ξk)
m−1
k=1 , where each vk ∈ Sd−1200

represents a direction vector and ξk ∈ R represents a frequency. The embedding is computed in201

three steps: First, the direction vk is used to project the original multiset of vectors to a multiset of202

scalars {⟨vk,xi⟩}ni=1, which is then sorted: yk = sort({⟨vk,xi⟩}ni=1). This step is similar to the203

sort-type embedding used in SortMPNN, and was shown to be bi-Lipschitz on multisets of fixed size204

[8]. However, taking yk directly as the embedding leads to an output dimension dependent on the205

input multiset’s size, thus making the embedding unsuitable for varying-size multisets. The next206

steps address and resolve this limitation.207

In the second step, the vector yk is identified with a step function Qyk
: [0, 1] → R, namely the208

quantile function of the multiset {⟨vk,xi⟩}ni=1; see illustration in fig. 2. Then, in the third step, the209

cosine transform, a variant of the Fourier transform, is applied to Qyk
, and sampled at the given210

frequency ξk, to obtain the final output coordinates zk, k = 1, . . . ,m− 1. This is summarized by:211

{4,5,6}

{1,2,3}

{3,4}

1
3

2
3 1

1

3

5

Figure 2: The quantile func-
tion for three different multi-
sets

212

yk = (yk1, . . . , ykn) = sort(⟨vk,x1⟩, . . . , ⟨vk,xn⟩) (8)

Qyk
(t) = yki with i such that t ∈ [ i−1

n , i
n ) (9)

zk = 2(1 + ξk)

∫ 1

0

Qyk
(t) cos(2πξkt)dt (10)

Lastly, note that eqs. (8) to (10) treat input multisets as uniform distri-213

butions over their elements, and thus are agnostic to the multiset size214

by design. To address this and ensure that multisets of different sizes215

but identical element-proportions are mapped to distinct outputs, the216

last output coordinate zm is set to the cardinality |X| of the input217

multiset X . Further details appear in [4, Appendix A.1].218

Note that the integral in eq. (10) has a closed-form solution, and219

the whole embedding can be computed with a complexity of220

O(mnd+mn log n), similarly to simple aggregation functions such as sum pooling. Furthermore,221

the embedding parameters and output dimension do not depend on n, making this method suitable222

for multisets of different sizes.223

FSW-GNN. The FSW-GNN model processes input graphs G = (V,E,X) by T message-passing224

iterations:225

h(0)
v := xv,

q(t)
v := E

(t)
FSW

({
h(t−1)
u

∣∣∣ u ∈ Nv

})
, 1 ≤ t ≤ T,

h(t)
v := Φ(t)

([
h(t−1)
v ; q(t)

v

])
,

(11)

where the functions E(t)
FSW are all instances of the FSW embedding, Φ(t) are MLPs, and [x;y] denotes226

column-wise concatenation of column vectors x and y. Finally, a graph-level output is computed by:227

hG := Ψ ◦ EGlob
FSW

({
h(T )
v

∣∣∣ v ∈ V
})

, (12)

where, again, EGlob
FSW is an FSW embedding, and Ψ an MLP.228

The following theorem shows that, with the appropriate choice of MLP sizes and number of iterations229

T , our proposed architecture is WL equivalent:230

Theorem 3.2. (Proof in appendix D.2) Consider the FSW-GNN architecture for input graphs in231

G≤N

(
Rd

)
, with T = N iterations, where Φ(t),Ψ are just linear funtions, and all features (except for232

input features) are of dimension m ≥ 2Nd + 2. Then for Lebesgue almost every choice of model233

parameters, the graph embedding defined by the architecture is WL equivalent.234
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The proof of theorem 3.2 is based on the theory of σ-subanalytic functions and the Finite Witness235

Theorem, introduced in [5].236

It is worth noting that the output dimension m required in practice is typically considerably lower237

than the one required in theorem 3.2. This can be explained intuitively by the following fact: if all238

input graphs originate from a subset of G≤N

(
Rd

)
with intrinsic dimension D that is lower than the239

ambient dimension n · d, then it can be shown that m = 2D + 2 suffices for WL-equivalence.240

From separation to bi-Lipschitzness. In general, WL-equivalence does not imply bi-Lipschitzness.241

As mentioned above, sum-based MPNN can be injective but are never bi-Lipschitz. In contrast,242

we shall now prove that for FSW-GNN, WL-equivalence does imply bi-Lipschitzness, under the243

assumption that the feature domain Ω is compact:244

Theorem 3.3. (Proof in appendix D.3) Let Ω ⊂ Rd be compact. Under the assumptions of theo-245

rem 3.2, the FSW-GNN is bi-Lipschitz with respect to ρDS on G≤N (Ω). If, additionally, Ω does not246

contain 0, then the FSW-GNN is bi-Lipschitz with respect to TMD on G≤N (Ω).247

We now give a high-level explanation of the proof idea. We rely on the following facts: (1) the output248

of FSW-GNN for an input graph G = (V,E,X) is piecewise-linear with respect to the vertex-feature249

matrix X . This follows from properties of the FSW embedding functions E(t)
FSW and EGlob

FSW used in250

eqs. (11) and (12). (2) both metrics ρDS and TMD can be transformed, with bounded distortion, into251

metrics that are piecewise-linear, by choosing all the vector norms they employ to be the ℓ1 norm.252

The claim then follows from these observations and the following lemma, which shows that two253

functions that are piecewise linear and have the same zero set, are bi-Lipschitz with respect to one254

another:255

Lemma 3.4. (Proof in appendix D.3) Let f, g : M → R≥0 be nonnegative piecewise-linear functions256

defined on a compact polygon M ⊂ Rd. Suppose that for all x ∈ M , f(x) = 0 if and only if257

g(x) = 0. Then there exist real constants c, C > 0 such that258

c · g(x) ≤ f(x) ≤ C · g(x), ∀x ∈ M. (13)

We note that the assumption of a compact domain is essential; see Remark 6 in [10]. While lemma 3.4259

is rather intuitive, we are not aware of it appearing previously in the literature. This lemma easily260

implies1 previous bi-Lipschitzness results in the literature, such as Theorem 1.4 in [9], Theorem 1 in261

[10], and Theorem 3.10 in [8]. We believe the lemma has the potential to serve as a valuable tool for262

proving bi-Lipschitzness results in additional domains in the future. To illustrate this, in Appendix F263

we show how the lemma can be used to construct a bi-Lipschitz subgraph aggregation MPNN.264

To complement theorem 3.3, we now present an analogous result for node-level tasks: we show265

that the node features computed by FSW-GNN are bi-Lipschitz with respect to the Tree Distance266

discussed in eq. (4).267

Theorem 3.5. (Proof in appendix D.3) Suppose that Ω ⊂ Rd is a compact set that does not contain268

zero. Under the assumptions of theorem 3.2, the node features computed by FSW-GNN are bi-Lipschitz269

with respect to the Tree Distance metric on G≤N (Ω).270

4 Oversmoothing, Oversquashing, and Bi-Lipschitz MPNN271

Training deep MPNNs is one of the core challenges in graph neural networks [51]. The difficulty is272

often attributed to oversmoothing [58] or oversquashing [3]. Both phenomena can be regarded as a273

form of metric distortion induced by the MPNN as the number of iterations grows. Oversmoothing is274

the phenomenon where, for large t,275 ∥∥∥x(t)
v − x(t)

u

∥∥∥ ≈ 0, ∀v, u ∈ V. (14)

Oversquashing, as defined in [27], refers the phenomenon where a non-negligible change in an input276

node feature x(0)
v to a new value x̂(0)

v results in only a negligible change in features of far-away nodes,277

namely,278 ∥∥∥x(t)
u − x̂(t)

u

∥∥∥ ≪
∥∥∥x(0)

v − x̂(0)
v

∥∥∥, for u far from v. (15)

1In all these scenarios, the proposed embedding and metric are homogeneous, so that bi-Lipschitzness on a
compact polygon implies global bi-Lipschitzness.
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Figure 3: Performance comparison of MPNN models across the CliquePath, Ring, and CrossRing graph
transfer tasks as presented in [27].
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In other words, information fails to propagate adequately between distant nodes through the message-279

passing process.280

Accordingly, an MPNN that perfectly preserves distances between node features would provably not
encounter oversmoothing or oversquashing. We note that FSW-GNN is not in this position: while it
is bi-Lipschitz and thus has bounded distortion, we cannot rule out the possibility that its distortion
grows with t. Nonetheless, we conjecture that FSW-GNN should perform much better than standard
MPNN on long range tasks. This is because, as shown in [26], standard MPNNs are only lower
Hölder in expectation, namely, the inequality

∥x(t)
v − x(t)

u ∥ ≥ Ct

[
TD(T(t)

v ,T(t)
u )

]αt

holds only in expectation, with constants Ct and exponents αt that grow with t. In contrast, for281

FSW-GNN we have αt = 1 for all t, and only Ct may grow with t. We provide empirical evidence282

for our conjecture in section 5, where we show that our bi-Lipschitz MPNN outperforms standard283

MPNNs on long-range tasks.284

5 Numerical Experiments285

We compare the performance of FSW-GNN with standard MPNNs and Sort-MPNN on both real-286

world benchmarks and synthetic long-range tasks2.287

Empirical distortion evaluation. First, to assess the metric distortion induced by different MPNNs,288

we compared the distances induced by each MPNN vs. the TMD and DS metric on a particularly289

2Our code will be available to the public upon paper acceptance.
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challenging set of graph pairs; see appendix E for details. Empirical estimates Ĉ, ĉ of the constants290

C,c of eq. (5) were computed, and the distortion estimate was taken as the ratio Ĉ/ĉ. The results291

appear in fig. 4. Similar results were obtained for the TMD; see fig. 6 in the appendix. As seen in the292

figures, our method yields considerably lower distortion than all competitors, which aligns with our293

theoretical guarantees.294

Transductive Learning. Next, we compare FSW-GNN with GCN, GAT and Sort-MPNN for295

nine transductive learning tasks taken from [55]. As shown in table 1, FSW-GNN outperforms the296

competition in six out of nine tasks. SortMPNN is a clear winner in two of the other graphs, both297

of which have relatively large average degrees (see Table 4). In addition, we include the state-of-298

the-art results known to us for each dataset: For Cora [42]; for Citeseer [43]; for PubMed [44]; for299

Chameleon [57]; for Squirrel [46]; for Actor [40]; for Cornell [32]; for Texas [49]; for Wisconsin [41].300

These results are typically achieved by models that are strictly more powerful and computationally301

expensive than any MPNN.302

Graph classification and regression. In the appendix, we we include results on standard graph clas-303

sication and regression tasks: the peptides-func and peptides-struct datasets of the LRGB benchmark304

[28], and he MUTAG and Protein datasets [52]. These results appear in table 2 and table 3.305

Long range tasks. Next, we consider several synthetic long-range tasks proposed in the oversquash-306

ing literature [3, 27]. In these problems, one can control the problem radius r, which is the number of307

MPNN iterations needed to solve the problem.308

We first consider the NeighborsMatch problem from [3]. In fig. 1, we compare the performance of309

FSW-GNN with standard MPNN on the NeigborsMatch problem with 2 ≤ r ≤ 8. Our FSW-GNN310

achieves perfect accuracy for all values of r, while Sort-MPNN fails at r = 8 and the other competing311

methods falter for r ≥ 6.312

Next, we consider the ‘graph transfer’ tasks [27], in which a ‘source’ node feature is propagated to a313

‘target’ node that is r steps away. All other nodes have ‘blank’ features. Here we used three graph314

topologies proposed by [27]: clique, ring, and crossring, with problem radii r varying from 2 to 15.315

As shown in fig. 3, FSW-GNN is the only method to achieve 100% accuracy across all three graphs316

and radii. Other models start failing at much smaller r, which depends on the graph topology. We do317

find that our model’s performance deteriorates when r > 20.318

Finally, we evaluate the relation between our empirical results and oversmoothing on the ring319

experiment, using the Mean Average Distance (MAD) [58]. As seen in fig. 5, all methods except for320

FSW-GNN and GIN exhibit oversmoothing starting from some r.321

We note that long-range issues can be alleviated by graph rewiring methods, which effectively322

reduce problem radii [37], or by adding global information using spectral filters [33] or graph323

transformers. A key distinction of FSW-GNN is that it performs well without modifying the original324

graph topology. Thus, this work directly addresses the problem of relaying long-range messages,325

rather than circumventing it by architectural modifications.326

6 Conclusion327

In this paper, we introduced FSW-GNN, the first bi-Lipschitz MPNN. Empirically, we found that FSW-328

GNN is highly effective, particularly for long-range problems, and appears to mitigate oversmoothing329

and oversquashing due to its inherent ability to preserve graph metrics.330

A slight drawback of FSW-GNN is that its runtime is somewhat higher than that of standard MPNNs;331

see table 6. An interesting direction for future work is to obtain quantitative estimates of its bi-332

Lipschitz constants.333
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Table 2: Performance of different models on the LRGB results.

Dataset peptides-func (AP↑) peptides-struct (MAE↓)
GINE 0.6621±0.0067 0.2473±0.0017
GCN 0.6860±0.0050 0.2460±0.0007
GatedGCN 0.6765±0.0047 0.2477±0.0009
SortMPNN 0.6914±0.0056 0.2494±0.0021
FSW-GNN 0.6864±0.0048 0.2489±0.00155
SOTA 0.73 0.242

Table 3: Performance of different models on the MUTAG and Protein datasets.

Model MUTAG Protein
GIN [62] 89.4± 5.6 76.2± 2.8
GCN 85.6± 5.8 76.0± 3.2
GraphSage 85.1± 7.6 75.9± 3.2
SortMPNN 90.99± 6.2 76.46± 3.68
AdaptMPNN 90.41± 6.1 75.12± 3.64
FSW-GNN 90.55± 6.1 76.93± 7.64

SOTA 96.66± 1.23 84.91± 1.62

A Statistics on our benchmarks514

We present some statistics of the learning problems considered in the main text. In Table 4, we present515

the statistics for each transductive dataset, and for the MUTAG dataset, including the number of516

nodes, edges, features, classes, average degree, and density, measuring the number of edges divided517

by the number of maximal edges. As we can see in the table, these datasets are very sparse.518

Table 5 shows the same statistics for the Peptides tasks from the LRGB dataset.519

Table 4: Graph statistics for transductive learning and MUTAG.

Dataset Cora Cite. Pubm. Cham. Squi. Actor Corn. Texa. Wisc. MUTAG
# Nodes 2708 3327 19717 2277 5201 7600 183 183 251 188
# Edges 5429 4732 44338 36101 217073 33544 295 309 499 744
# Features 1433 3703 500 2325 2089 931 1703 1703 1703 7
# Classes 7 6 3 5 5 5 5 5 5 2
Avg. Degree 4 2 4 31 83 8 3 3 4 8
Density 0.0007 0.0009 0.0001 0.0159 0.0161 0.0012 0.0177 0.0184 0.0041 0.0422

Table 5: Graph statistics for Peptides datasets.

Dataset Peptides-Func Peptides-Struct
# Graphs 15,535 15,535
# Nodes (Avg.) 150.94 150.94
# Edges (Avg.) 2.04 2.04
Avg. Degree 2.04 2.04
Density 1.74× 10−6 1.74× 10−6

# Classes - 10

B Implantation details520

For the Transductive learning and the LRGB dataset, we looked for each learning rate in the set521

1e−3, 5e−3 and weights decay in the set 0.0, 1e−5 and learning rate factor of 0.7. For each such522

configuration we stop according to the validation and take the best configuration of the validation set.523
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For all Over-squashing tasks we took a learning rate of 0.001 and weight decay 0, and learning rate524

factor of 0.7. In all datasets we took the original dataset splits to train, test and validation sets.525

C Relation to Tree Mover’s Distance526
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Figure 6: Empirical distortion evaluation with respect to the Tree Mover’s Distance (TMD)

In this appendix we give a full description of the Tree Mover’s Distance as defined in Chuang and527

Jegelka [24].528

We first review Wasserstein distances. Recall that if (X, d) is a metric space, Ω ⊆ X is a subset, then529

the Wasserstein distance can be defined on the space of multisets consisting of n elements in Ω via530

Wd(x1, . . . , xn, y1, . . . , yn) = min
τ∈Sn

n∑
j=1

d(xj , yτ(j))

For multisets of different size, the authors of [24] used an augmentation map, which, for a fixed
parameter n, augments multisets of size r ≤ n by padding with n− r instances of an element z in
X \ Ω, namely

Γz (x1, . . . , xr) = (x1, . . . , xr, xr+1 = z, . . . .xn = z)

and the augmented distance on multi-sets of size up to n is defined by

Wd(X, X̂) = W 0
d

(
Γz(X),Γz

(
X̂
))

.

We now return to define the TMD. We consider the space of graphs G≤N (Ω), consisting of graphs531

with ≤ N nodes, with node features coming from a compact domain Ω ⊆ Rd such that 0 /∈ Ω. The532

TMD is defined using the notion of computation trees:533

Definition C.1. (Computation Trees). Given a graph G = (V,E,X) with node features {xv}v∈V ,534

let T1
v be the rooted tree with a single node v, which is also the root of the tree, and node features535

xv. For t ∈ N let Tt
v be the depth-t computation tree of node v constructed by connecting the536

neighbors of the leaf nodes of Tt−1
v to the tree. Each node is assigned the same node feature it537

had in the original graph G. The multiset of depth-t computation trees defined by G is denoted by538

T K
G := {Tt

v}v∈V . Additionally, for a tree T with root r, we denote by Tr the multiset of subtrees539

that root at the descendants of r.540

Definition C.2. (Blank Tree). A blank tree T̄0 is a tree (graph) that contains a single node and no541

edge, where the node feature is the zero vector 0.542

Recall that by assumption, all node features will come from the compact set Ω, and 0 ̸∈ Ω. Therefore,543

the blank tree is not included in the space of trees with features in Ω, and can be used for augmentation.544

We can now define the tree distance:545

15



FSW-GNN: A Bi-Lipschitz WL-Equivalent Graph Neural Network

Definition C.3. (Tree Distance).3 The distance between two trees Ta,Tb with features from Ω and546

0 ̸∈ Ω, is defined recursively as547

TD(Ta,Tb) :=

{
∥xra − xrb∥1 +W T̄0

TD(Tra , Trb) if t > 1

∥xra − xrb∥1 otherwise

where t denotes the maximal depth of the trees Ta and Tb. Here W T̄0

TD denotes the Wasserstein548

metric obtained from the metric TD on the space of trees of smaller depth, with augmentation by549

blank trees T̄0.550

Definition C.4. (Tree Mover’s Distance). Given two graphs, Ga, Gb and w, t ≥ 0, the tree mover’s551

distance is defined by552

TMDt(Ga, Gb) = W T̄0

TD(T
t
Ga

, T t
Gb

),

where T t
Ga

and T t
Gb

denote the multiset of all depth t computational trees arising from the graphs553

Ga and Gb, respectively. Chuang and Jegelka [24] proved that TMDt(Ga, Gb) is a pseudo-metric554

that fails to distinguish only graphs that cannot be separated by t+ 1 iterations of the WL test. Thus,555

assuming that 0 /∈ Ω, TMDt(Ga, Gb) is WL equivalent on G≤N (Ω).556

In addition, it is easy to see from the definition of TMD that it satisfies the following properties:557

1. TMDt((A, α · X), (B, α · Y)) = α · TMDt(X,Y) for any α ≥ 0.558

2. For fixed A,B, the TMD metric is piecewise linear in (X,Y).559

These properties will be used to show that under the above assumptions, the embedding computed by560

FSW-GNN is bi-Lipschitz with respect to TMD.561

D Proofs562

D.1 DS metric563

Here we prove theorem 3.1564

Theorem 3.1. ρDS is a WL-equivalent metric on G≤N

(
Rd

)
.565

Proof. ρDS is symmetric, since if a pair’s minimum is obtained at S then the exact value is obtained566

for the opposite pair with ST and vice-versa.567

To prove the triangle inequality, let Let (V1,A,X), (V2,B,Y), (V3,C,Z) three arbitrary graphs with568

|Vi| = ni, i = 1, 2, 3. Then the following holds:569

α := ρDS(A,B) = |n1 − n2|+minS∈Π(n1,n2)||AS − SB||1 +
∑
i,j

Si,j ||Xi − Yj ||1

β := ρDS(B,C) = |n2 − n3|+minS∈Π(n2,n3)||BS − SC||1 +
∑
i,j

Si,j ||Yi − Zj ||1

γ := ρDS(A,C) = |n1 − n3|+minS∈Π(n1,n3)||AS − SC||1 +
∑
i,j

Si,j ||Xi − Zj ||1

We want to prove γ ≤ β + α. Let S1, S2 be the minimizers of the first two equations. Define570

S3 = n2 · S1 · S2 and note that S3 ∈ Π(n1, n3) because, using the notation 1d to the all one571

d-dimensional vector, we have572

S31n3
= n2 · S1 · S21n3

= S11n2
=

1

n1
1n1

1Tn1
S3 = n2 · 1Tn1

S1 · S2 = 1Tn2
S2 =

1

n3
1n3 .

Next, we prove the following lemma (as usual, norms in this lemma are Frobenius norms)573

3This definition slightly varies from from the original definition in [24], due to our choice to set the depth
weight to 1 and using the 1-Wasserstein which is equivalent to optimal transport.
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Lemma D.1. Let S ∈ Π(n1, n2), then for all B ∈ Rn2×b and A ∈ Ra×n1574

∥SB∥1 ≤ 1

n2
∥B∥1, ∥AS∥1 ≤ 1

n1
∥A∥1

Proof.

∥SB∥1 =

n1∑
i=1

b∑
j=1

|(SB)ij |

≤
n1∑
i=1

b∑
j=1

n2∑
k=1

Sik|Bkj |

=

b∑
j=1

n2∑
k=1

|Bkj | ·
n1∑
i=1

Sik

=
1

n2
∥B∥1

A symmetric argument can be used to show that ∥AS∥1 ≤ 1
n1

∥A∥1575

Given the lemma, we now have576

1

n2
||AS3 − S3C||1 = ||AS1S2 − S1S2C||1 = ||AS1S2 − S1BS2 + S1BS2 − S1S2C||1

≤ ||AS1S2 − S1BS2||1 + ||S1BS2 − S1S2C||1 = ||(AS1 − S1B) · S2||1

+ ||S1 · (BS2 − S2C)||1 ≤ 1

n2
||AS1 − S1B||1 +

1

n2
· ||BS2 − S2C||1

Next, we show the second part is also smaller:577

1

n2

∑
i,j

S3
i,j · |Xi − Yj |1 =

∑
i,j

∑
k

S1
i,k · S2

k,j · ||Xi − Zj ||1

≤
∑
i,j

∑
k

S1
i,k · S2

k,j · (||Xi − Zk||1 + ||Zk − Yj ||1)

=
∑
i,j

n∑
k=1

S1
i,k · S2

k,j · ||Xi − Zk||1 +
∑
i,j

n∑
k=1

S1
i,k · S2

k,j · ||Yj − Zk||1

We now open both sums:578 ∑
i,j

∑
k

S1
i,k · S2

k,j · ||Xi − Zk||1 =
∑
i

∑
k

S1
i,k · ||Xi − Zk||1 ·

∑
j

S2
k,j

=
1

n2

∑
i

∑
k

S1
i,k · ||Xi − Zk||1

With the same argument, we obtain that579 ∑
i,j

∑
k

S1
i,k · S2

k,j · ||Yj − Zk||1 =
1

n2

∑
i,j

S2
i,j · ||Yi − Zj ||1

So overall we obtain580

α ≤|n1 − n3|+ ||AS3 − S3C||1 +
∑
i,j

S3
i,j ||Xi − Zj ||1

≤|n1 − n2|+ ||AS1 − S1B||1 +
∑
i,j

S1
i,j ||Xi − Yj ||1 + |n2 − n3|

+||BS2 − S2C||1 +
∑
i,j

S3
i,j ||Yi − Zj ||1 = α+ β
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Now, we show that our metric ρDS is equivalent to WL. Clearly, any pair of graphs with different581

numbers of vertices are distinguished both by WL and by ρDS. Thus, in the following, we assume582

that the two graphs have the same number of vertices.583

We begin first with some needed definitions.584

Partitions. Most of our techniques are inspired by [59]. Given G = (A,X), we define a stable585

partition V = P1 ∪ P2... ∪ Pk if586

∀u, v ∈ Pi,Xu =Xv (16)
∀l ∈ [k], i ∈ [k], u, v ∈ Pi, |Nu ∩ Pl| =|Nv ∩ Pl| (17)

In simple words, two nodes in the same partition must have the same feature and the same number of587

neighbors with the same feature. Note that the union of all singleton is a valid stable partition. We588

can characterize a partition as a k tuple, and in the i′th place, we put a tuple of the common feature589

and a vector telling the number of neighbors in other partitions. We say that graphs have the same590

stable partition; if, up to permitting of the k tuple indices, we have the same k tuple.591

Lemma D.2. The number of colors in 1-WL can’t increase at level n. In addition, all nodes with the592

same color at step n make a stable partition.593

Proof. The number of colors of 1-WL can only increase as the number of iterations increases. It is594

also known that, if at some step t the number of colors does not increase, then the process is ’stuck’.595

Accordingly, after at most n iterations, the number of different colors will stay the same. Denote by596

P = (P1, ..,Ps) a partition of the nodes with the same coloring at the n iteration, and be c ∈ C some597

color, we claim that nodes in the same partition, have the same number of neighbors with color c. As598

otherwise, those nodes that now have the same coloring will have different coloring in the next n+ 1599

iteration. But as the number of colors doesn’t decrease (because of the concatenation of the current600

color), we have at least one more color, a contradiction. So, we found a stable partition.601

Lemma D.3. The following conditions are equivalent:602

• G ∼=1−WL H603

• Both graphs have a common stable partition. That is, there is a relabeling of G such that the604

same partition P1, ..,Ps of V is a stable partition for both G and H, and the features inside605

each partition are the same, in both G and H.606

Proof. Assume we have the same common partition. Up to renaming the names of the vertices of607

the nodes in the first graphs, we assume we have the same stable partition with the same parameters.608

Assume that a common stable partition exists P = P1 ∪ .. ∪ Pk. Then, by simple induction on the609

number of iterations, we will prove that all nodes in the same partition have the same color in both610

graphs.611

Basis Nodes in the same partition have the same initial feature and, thus, have the same color (in both612

graphs).613

Step By the induction hypothesis, all nodes in the same partition iteration T have the same color; and614

they both have the same number of neighbors with the same color, so the aggregation yields the same615

output. Thus, in iteration T + 1, those nodes also have the same color. Note that this argument is616

symmetric to both graphs; thus, the 1-WL test will not distinguish them. On the other hand, if G1,G2617

have the same 1-WL embedding, then we partition the nodes to those classes with the same color at618

iteration n, denoted by P = P1 ∪ .. ∪ Pk. We have to show this partition is valid. First, by definition,619

those nodes u, v ∈ Pi have the same node feature (by iteration 1); next, if u, v don’t have the same620

number of neighbors in Pl for some l ∈ [k], then their color won’t be the same at iteration n + 1.621

But, as shown in lemma D.2, the number of distinct colors can’t increase between n to n+ 1. Thus,622

we found a common stable partition.623

Before proving the following lemma, we revise a definition from [59]. We define direct the direct624

sum of matrices S1 and S2 by:625

S1 ⊕ S2 =

[
S1 0
0 S2

]
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Given S ∈ Rn×n, we say S is composable if there exists P,Q, S1, S2 such that626

S = P · (S1 ⊕ S2) ·Q

Such that P,Q are permutation matrices. By simple induction, we can write M as a direct sum of an627

indecomposable628

S = P · (S1 ⊕ S2 ⊕ ...⊕ St) ·Q

629

Lemma D.4. Let S ∈ Π(n, n) and assume it’s in the form of S = S1 ⊕ ...⊕ Sk such that all blocks630

are indecomposable and
∑

i,j Si,j · ||Xi − Yj || = 0. Denote by i1, ..., ik+1 the indices define the631

start and the end of S1, ..., St and by Ik := [ik, ik+1]. Then Xi = Yj ,∀t ∈ [k],∀i, j ∈ It.632

Proof. Given t ∈ [k], we build a bipartite graph from It to itself, such that two indexes i, j are633

connected if Si,j > 0. Note that this graph is connected, as otherwise, St could be composed into634

its connected components, and thus St would be composable. Given a path P = (i1, ..., il) in635

the graph, note that by definition, as the metric vanishes, and Sij ,ij+1
> 0, so Xij = Yij+1

, thus636

Xi = Yj , i ∈ Ik, j ∈ Ik and we are done.637

Theorem D.5. Be G,H two featured graphs, then638

d(G,H) = 0 ⇐⇒ GWL∼H

We first prove that if the two graphs are 1-WL equivalent, then this metric vanishes. We may assume639

they have the same stable partition as we proved above. Take P = P1 ∪ .. ∪ Pt, rename the nodes640

such that they come in consecutive order and denote by n1, n2, .., nk the sizes of the partitions. Note641

that by definition, ∀u, v ∈ Pi, both have the same feature and number of neighbors in all Pl. As in642

the book [59], define S := 1
n1

Jn1
⊕ ...⊕ 1

nj
Jnk

and from the book [59], we know that AS = SB.643

As all nodes in the same partition have the same feature, Xi = Yj ,∀i, j ∈ Ik = [nt, nt+1],∀t ∈ [k],644

so as S is non-zero only on indexes in the same partition then also this metric vanishes, so also the645

sum vanishes on S.646

For the next direction, be G = (A,X),H = (B,Y) two graphs and assume there exists a matrix of647

the form of S = P (S1 ⊕ ...⊕ St)Q such that the metric vanishes and denote by D = S1 ⊕ ...⊕ St648

We show we can choose S such that it’s a block matrix.649

||PDQ · A − B · PDQ|| =||P · (DQA ·Q−1 − P−1BP ·D) ·Q||
(∗)
= ||DQA ·Q−1 − P−1BP ·D||

=
∑
i,j

Si,j · |Xi − Yj |
∑
i,j

(PDQ)i,j · |Xi − Yj |

=
∑
i,j

Dπ−1
1 (i),π2(j)

· |Xi − Yj |

=
∑
i,j

Di,j · |Xπ1(i) − Yπ−1
2 (j)|,

where (*) follows from the fact that permutation matrices preserve the norm. We define two graphs650

Ĝ = (QAQ−1, QX) ∼= G, Ĥ = (P−1AP, P−1Y) ∼= H. So, we can choose S to be a diagonal block651

matrix. Note that D defines a partition P1, . . . ,Ps of the nodes, and we will prove that it’s a stable652

partition of both graphs. From SA = BS, we obtain, as in the book [59], that each of the two653

nodes u, v ∈ Pk has the same number of neighbors in Pl,∀l ∈ [s]. Next, by the lemma D.4, we654

know that Xi = Yj ,∀i, j ∈ Pk, so nodes in the same partition have the same feature. Thus, this655

partition is stable. So, Ĝ, Ĥ have exactly the same partition. Then G,H have the same partition up to656

isomorphism, and by lemma D.3, both graphs are 1-WL equivalent.657
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D.2 FSW-GNN: Equivalence to WL658

We now prove theorem 3.2 that says the FSW-GNN is equivalent to WL.659

Theorem 3.2. Consider the FSW-GNN architecture for input graphs in G≤N

(
Rd

)
, with T = N660

iterations, where Φ(t),Ψ are just linear funtions, and all features (except for input features) are of661

dimension m ≥ 2Nd+ 2. Then for Lebesgue almost every choice of model parameters, the graph662

embedding defined by the architecture is WL equivalent.663

Proof. This proof employs the finite witness theorem [5], and the basic methodology to use it for664

graph neural network injectivity, first presented by Hordan et al. [39].665

It is sufficient to show that the functions Φ(t) and Ψ are injective vector-to-vector functions, and that666

the FSW ebmedding maps used in the FSW-GNN are injective multiset to vector functions. The667

injectivity of all these functions ensures that the MPNN is WL-equivalent [62].668

By Theorem 4.1 in [4], if we take the FSW embedding with an output dimension of 2Nd+1, defined669

on the space of multisets with at most N features in Rd, then the embedding will be injective for670

Lebesgue almost every choice of its parameters. This injectivity is in the sense that two multisets671

will attain the same value if and only if they define the same distribution. This can happen when672

the multisets are not equal, but have different cardinalities. However, the last coordinae of the FSW673

embedding, which encodes the multiset cardinality, ensures that this will not be an issue. Accordingly674

the FSW embedding is injective on the multiset space.675

We note that the output of the FSW embedding will now be node features of a higher dimension of676

2Nd + 2, rather than just d. However, the set of all possible features obtrained from the previous677

iteration will be a semialgebraic set of dimension ≤ Nd. As long as this is the case, reapplying the678

FSW embedding with output dimension of 2Nd+ 2 will still be injective, for almost every choice of679

parameters.680

The same argument can also be applied for the linear functions Φ(t) and Ψ used in FSW-GNN: It is681

an easy consequence of the finite witness theorem [5, 30], that almost every (2Nd+ 1)×m matrix,682

applied to a semialgebraic subset of Rm of dimension ≤ Nd, will be injective. This concludes the683

proof.684

D.3 FSW-GNN: Bi-Lipschitzness685

We first prove lemma 3.4.686

Lemma 3.4. Let f, g : M → R≥0 be nonnegative piecewise-linear functions defined on a compact687

polygon M ⊂ Rd. Suppose that for all x ∈ M , f(x) = 0 if and only if g(x) = 0. Then there exist688

real constants c, C > 0 such that689

c · g(x) ≤ f(x) ≤ C · g(x), ∀x ∈ M. (13)

Proof. By definition, there is a partition of M into a finite union of compact polygons, so that the690

restriction of f to each polygon is an affine function. g also has such a partition, and by taking the691

mutual refinement of the two partitions, we obtain a finite partition of M into compact polygons,692

such that the restriction of both f and g to each polygon is affine.693

Accordingly, it is sufficient to prove the claim on a single compact polygon P ⊆ M on which the
restriction of both f and g is affine. A compact polygon has a finite number of extreme points
v1, . . . , vk, and every point in the polygon can be written as a convex combination of these points.
Now let us denote

I = {i ∈ [k]| f(vi) > 0} = {i ∈ [k]| g(vi) > 0}.

We note that if I is empty, then f and g are identically zero on P , and there is nothing to prove.694

Otherwise, the following quantities are well defined and strictly positive:695

mf = min
i∈I

f(vi), Mf = max
i∈I

f(vi)

mg = min
i∈I

g(vi), Mg = max
i∈I

g(vi)
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Then for every x ∈ P , there exist non-negative θ1, . . . , θk which sum to 1 such that x =
∑k

i=1 θivi.696

It follows that697

f(x) = f(

k∑
i=1

θivi) =

k∑
i=1

θif(vi) =
∑
i∈I

θif(vi)

≥ mf

∑
i∈I

θi =
mf

Mg
·Mg

∑
i∈I

θi ≥
mf

Mg
·
∑
i∈I

θig(vi)

=
mf

Mg
· g(

k∑
i=1

θivi) =
mf

Mg
· g(x).

By reversing the roles of f and g, we obtain that for every x ∈ P ,

g(x) ≥ mg

Mf
f(x).

This concludes the proof.698

We now turn to the full proof of theorem 3.3.699

Theorem 3.3. Let Ω ⊂ Rd be compact. Under the assumptions of theorem 3.2, the FSW-GNN700

is bi-Lipschitz with respect to ρDS on G≤N (Ω). If, additionally, Ω does not contain 0, then the701

FSW-GNN is bi-Lipschitz with respect to TMD on G≤N (Ω).702

Proof. Following the reasoning in the main text, the rest of the proof is as follows: Let G, G̃ ∈703

G≤N (Ω), G = (V,E,X) and G̃ =
(
Ṽ , Ẽ, X̃

)
, with n and ñ vertices respectively. Since there is a704

finite number of choices of possible n, ñ ≤ N and edges E, Ẽ It is enough to show that once these705

parameters are chosen, the bi-Lipschitz ratio is bounded on all choices of X ∈ Ωn, X̃ ∈ Ωñ, . Define706

the function f
(
X, X̃

)
= ∥hG − hG̃∥1, g

(
X, X̃

)
= ρ

(
G, G̃

)
, where ρ is either ρDS or TMD. By707

the comment above, both f and g are piecewise linear. Since both FSW-GNN and the metric ρ are708

WL-equivalent, f and g have the same zero set. Lastly, since Ω is compact and does not contain709

0, the distance from Ω to 0 is strictly positive, and thus Ω can be extended to a compact polygon710

that does not contain 0 (e.g. by taking the set-difference between a compact box that contains Ω711

and a small ℓ∞ ball around 0 that is disjoint with Ω). Thus, lemma 3.4 guarantees the existence of712

Lipschitz constants c, C.713

Finally, note that by equivalence of all norms on a finite dimensional space, the same bi-Lipschitz714

equivalence holds if we replace the one-norm in the definition of f with any other norm. Q.E.D.715

Theorem D.6. Suppose that Ω ⊂ Rd is a compact set that does not contain zero. Under the716

assumptions of theorem 3.2, the node features computed by FSW-GNN are bi-Lipschitz with respect717

to the Tree Distance metric on G≤N (Ω).718

Proof. Let G = (V,A,X), G̃ =
(
Ṽ , Ã, X̃

)
be two graphs in G≤N (Ω). Let t ∈ N denote the719

number of MPNN/WL iterations iterations applied. Let v ∈ V , ṽ ∈ Ṽ . Let h(t)
v and h

(t)
ṽ be the720

output features of vertices v and ṽ computed by FSW-GNN. Then TD
(
T

(t)
v ,T

(t)
ṽ

)
= 0 if and only721

if v and ṽ are assigned the same features by the WL test, which in turn takes place if and only722

if h(t)
v = h

(t)
ṽ . Note that ∥hv − hṽ∥1 is a piecewise-linear function of the input vertex features723

{xv}v∈V and {x̃ṽ}ṽ∈Ṽ . Moreover, TD
(
T

(t)
v ,T

(t)
ṽ

)
= 0 can be transformed with bounded distortion724

to a piecewise-linear function of {xv}v∈V and {x̃ṽ}ṽ∈Ṽ . Lastly, similarly to the proof of theorem 3.3,725

Ω can be extended to a compact polygon that does not contain 0. Thus, by lemma 3.4, there exist726

constants 0 < c,C < ∞ such that727

c · TD
(
T(t)

v ,T
(t)
ṽ

)
≤

∥∥∥h(t)
v − h

(t)
ṽ

∥∥∥
1
≤ C · TD

(
T(t)

v ,T
(t)
ṽ

)
.

728
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E Experiment Details729

We used the Adam optimizer for all experiments.730

For the empirical distortion evaluation, we used pairs of graphs G, G̃, each of which consisting of four731

vertices and the edges 1−2−3−4−1. Two random vectors v0,∆v ∈ Rd were drawn i.i.d. Gaussian732

and normalized to unit length. In G all vertex features were set to v0, whereas in G̃ they were set to733

v0 + εσ∆v, with σ = 1 for v2, v4 and −1 for v1, v3. We used ε =
{
1, 10−1, 10−2, . . . , 10−6

}
, and734

generated 100 pairs for each value of ε, and evaluated the constants C, c for the resulting pairs. This735

experiment was repeated 10 times and the average distortion was taken. To ensure accurate results,736

we used 64-bit floating-point arithmetic in this experiment.737

For the NeighborsMatch problem from [3], we used the protocol developed in their paper: we used738

their implementation for the MPNNs we compared to, with a hidden dimension of 64 for all models,739

searched for each of its best hyper-parameters, and reported the training accuracy. For fair comparison740

with rival models, we repeated each sample 100 times, as was done in [3].741

For the Ring dataset, we used the results from [27] and trained our models with a hidden dimension742

of 64.743

For the LRGB dataset, we trained all models under the constraint of 500K parameters. In contrast,744

for the MolHIV dataset, there was no restriction, and we trained the models with 40K parameters.745

For the transductive learning tasks, we used a hidden dimension of 128 across all models.746

Timing. Here, we show the testing time for FSW-GNN, GIN, and GCN, GGNN, GAT, and747

GraphSAGE on the MUTAG graph classification task.

Table 6: Comparison of Average Time in seconds per testing in evaluation mode for different models
on MUTAG.

Model Avg Time per Testing
GIN 0.09
GCN 0.08
GAT 0.09

GGNN 0.08
GraphSage 0.07
FSW-GNN 0.11

748

F Ordered subgraph aggregation749

In this section, we recall sub-graph aggregation networks and show that FSW-GNN could be used to750

create a Bi-lipshiz embedding with respect to the metric equivalent to sub-graph WL.751

F.1 Ordered subgraph 1-WL752

. The OSWL (Ordered sub-graph WL) is taken from [14, 56]. Given 1-WL procedure using T753

iterations denoted by WLT , and deterministic graph sampling Π(could be node/edge deletion), we754

define the following three steps:755

• Step 1: Deterministic graph sampling (e.g. node/edge deletion) Π(G) = {G1, . . . ,Gm} .756

• yi = WLT (Gi),Gi ∈ Π(G)757

• yG = ϕ({y1, . . . , ym})758

Where WLT denotes the application of T iterations of the WL test, and ϕ is an injective multiset759

function.760

Definition F.1. We say G1,G2 to be equivalent up to OSWL, if OSWLT (G1) = OSWLT (G2),∀T ∈761

N, and denoted by G1
∼= G2. As for WL, checking equality for T = |G1| is sufficient to ensure762

equality for all T .763
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Ordered subgraph MPNN. Ordered subgraph MPNNs are very similar to OSWL. Given an764

MPNN and a multi-set to vector embedding ϕ, we define its sub-graph version:765

• Step 1: Deterministic graph sampling Π(G) = {G1, . . . ,Gm}766

• yi = MPNN(Gi),Gi ∈ Π(G)767

• yG = ϕ({y1, . . . , ym})768

OSWL equivalent metric. We define a metric OSWL equivalent similarly to 2.1:769

Definition (WL metric). A OSWL metric on G=N (Ω) is a function ρ : G=N (Ω)× G=N (Ω) → R≥0770

that satisfies the following conditions for all G1, G2, G3 ∈ G=N (Ω):771

ρ(G1, G2) = ρ(G2, G1) Symmetry (18a)

ρ(G1, G3) ≤ ρ(G1, G2) + ρ(G2, G3) Triangle inequality (18b)
ρ(G1, G2) = 0 ⇐⇒ G1

∼= G2. OSWL equivalence (18c)

Theorem F.2. Be a 1-WL equivalent metric dWL, and sampling procedure, the following metric is772

OSWL equivalent:773

dsub(G,H) = minπ∈Sm

m∑
i=1

dWL(Gi,Hπ(i))

Proof. We prove only the last part, which is not trivial. Assume first that the number of nodes is the774

same, then:775

dsub(G,H) = 0 ⇐⇒ ∃π ∈ Sm : ∀i ∈ [m] : dWL(Gi,Hπ(i)) = 0 ⇐⇒
⇐⇒ ∃π ∈ Sm : ∀i ∈ [m], yGi = yHπ(i)

ϕ({yG1 , . . . , yGm}) = ϕ({yH1 , . . . , yHm}) ⇐⇒ OSWL(G) = OSWL(H)

776

Theorem F.3. Assume we use FSW-GNN as MPNN, FSW aggregation as ϕ, dDS , as the 1-WL777

equivalent metric, then the overall OSMPNN is OSWL bilipshiz.778

Proof. Note that the OSMPNN is piece-wise linear as a composition of piece-wise linear functions.779

Also, dsub is piece-wise linear a summation of piece-wise linear functions. In addition, both functions780

vanish on the same set, so by the 3.4, the OSMPNN is bilipshiz.781
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