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1. Introduction
Non-alcoholic fatty liver disease (NAFLD) is

rapidly becoming the most prevalent cause of
liver disease worldwide.[?] Pathological examina-
tion remains the diagnostic gold standard, using
Hematoxylin and Eosin (H&E) for morphology and
Masson’s Trichrome (MT) for fibrosis assessment.[1]
However, traditional MT staining poses multiple
obstacles—time, labor, sampling error risks, and
inconsistent quality.[2]
Digital pathology and machine learning promise

new solutions for virtual staining Fig.1. Pix2Pix re-
lies on paired datasets to map H&E to MT, while
CycleGAN[3] operates onunpaired data but struggles
with fibrosis detail. We propose extending Cycle-
GAN through Region of Interest (ROI)[4] extraction
and self-attention[5], improving the model’s detec-
tion and representation of fibrotic regions, thereby
offering enhanced clinical utility in virtual staining.

Fig. 1: Virtual staining schematic diagram of H&E
and MT staining pathological images

2. RelatedWork
2.1 GAN in Pathology Image Generation
The Pix2Pixmodel, proposed by Isola et al[6], em-

ploys a conditional Generative Adversarial Network
(GAN) architecture, combining adversarial loss with
L1 reconstruction loss. However, it requires strictly
paired data. In contrast, CycleGAN[7], achieves un-
paired data transformation through cycle consis-
tency loss, significantly reducing the difficulty of
data collection. Despite this advantage, CycleGAN
has limited performance in depicting detailed fea-
tures of specific lesion areas.

2.2 Attention Mechanisms in Virtual Staining
Zhang[8] introduced the Self-Attention GAN,

which incorporates self-attention layers to enable
the model to learn long-range dependencies within
images. Methods like AttentionGAN[9] integrate
spatial and channel attention modules, effectively
increasing the focus onRegions of Interest (ROI) and
enhancing the quality of virtual staining. However,
there remains room for improvement in accurately
expressing fibrosis features.

3. Methodology
3.1 Dataset
In this study, we used paraffin-embedded liver

biopsy sections from 68 anonymized patients (fibro-
sis stages F1–F4). Each was stained with H&E and
MT, then scanned at 40× to produce whole-slide im-
ages. We aligned the two stain modalities using
VALIS[10] registration method. From both H&E and
MT slides, a 512×512 sliding window extracted tiles
and resized to 256×256. In each MT tile, a 48×48
bounding box (bbox) marked fibrotic regions (pur-
ple areas labeled positive /1, otherwise negative /0),
with the same bbox applied to H&E.

3.2 Model Architecture
Drawing inspiration from Region-guided Cycle-

GAN [11], we fuse self-attention and ROI discrimina-
tion into a multi-level framework consisting of an
enhanced generator and two discriminators. The
generator, based on a modified ResNet backbone,
inserts self-attention layers to adaptively focus on
fibrotic lesions. A global PatchGAN discriminator
ensures overall style consistency, while an ROI dis-
criminator uses RoIAlign to judge synthetic quality
specifically in fibrotic areas. This design preserving
both global and local fidelity.

4. Experiments and Results
4.1 Experimental Design and Baseline Method
This study aims to validate the effectiveness of

our proposed ROI-SAGAN and compare it with the
native CycleGAN. We use the IoU (Intersection over
Union)[12] metric to measure the accuracy of key ar-
eas and combine visual comparisons to evaluate the
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Fig. 2: H&E tiles are processed through a genera-
tor to generate MT-stained tiles, with discrimi-
nators trained on labeled fibrosis/non-fibrosis re-
gions refining the output; cycle consistency loss
ensures fidelity between original H&E and regen-
erated tiles.

fidelity of generated images in fibrosis regions. To
ensure a fair comparison, we trained and tested both
methods using the same dataset and data split strat-
egy. During the testing phase, we quantitatively an-
alyze the IoU of fibrosis regions between the virtual
staining results and real MT images, combined with
visual comparisons of lesion areas, to verify the ef-
fectiveness of ROI-SAGAN inpreserving pathological
features.

4.2 Main Result
This study compares fibrosis region generation

quality between ROI-SAGAN and the native Cycle-
GAN, using IoU to measure accuracy at key le-
sion sites. As shown in Table 1, the native Cycle-
GAN achieves an IoU of 0.254, whereas ROI-SAGAN
reaches 0.510, indicating that explicit ROI extraction
and self-attention improve detail reproduction and
overall staining fidelity in fibrosis areas.

Table 1: ROI-SAGANandCycleGANmean IoUonTest
dataset

Patient-ID CycleGAN-
Fibrosis-IoU

ROI-SAGAN-
Fibrosis-IoU

NEMB078 0.294 0.716
NEMB079 0.313 0.710
NEMB018 0.253 0.370
NEMB085 0.510 0.680
NEMB020 0.112 0.457
NEMB074 0.155 0.340
NEMB050 0.143 0.305
NEMB059 0.314 0.464
NEMB076 0.194 0.526
Average 0.254 0.510

Figure 3 shows the same pathological sample un-
der bothmethods, with red boxes highlighting fibro-
sis discrepancies for the native CycleGAN vs. real
staining, and green boxes comparing ROI-SAGAN to
the real staining. ROI-SAGANoffersmore precise de-
tail in fibrosis edges and internal structures, while

retaining a style closer to real MT images. Hence,
explicit ROI focus plus self-attention enhances le-
sion feature recovery and consistency, providing a
stronger foundation for virtual staining applications
and subsequent diagnostics.

Fig. 3: Cyclegan and ROI-SAGAN staining ranges
compared to real MT stained image

4.3 Image Generated Evaluation
Figure 4 illustrates the generate results of

ROI-SAGAN. In regions with fibrosis, ROI-SAGAN
presents more refined color gradients and edge
handling, closely matching real stained images.
These findings confirm the approach’s viability
for pathological staining conversion, providing a
higher-quality synthetic basis for diagnostic analy-
sis. This framework not only improves the fidelity
of virtual staining but also increases the reliability
of synthesized images for clinical use.

Fig. 4: MT virtual staining WSI image and fibrosis
part images

5. Conclusion
We proposed ROI-SAGAN, which augments Cycle-

GAN with fibrosis ROI extraction and self-attention,
significantly improving virtual staining infibrotic re-
gions. Experiments show ROI-SAGAN achieves an
IoU of 0.510, outperforming native CycleGAN’s 0.254,
especially in color transitions and edge detail. This
enhanced fidelity highlights the method’s potential
for automated pathological imaging and advanced
diagnostic support in liver fibrosis analysis.
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