
Asymmetric Event-Guided Video Super-Resolution
Zeyu Xiao∗

MoE Key Laboratory of
Brain-inspired Intelligent Perception
and Cognition, University of Science

and Technology of China
Hefei, China

zeyuxiao@mail.ustc.edu.cn

Dachun Kai∗
MoE Key Laboratory of

Brain-inspired Intelligent Perception
and Cognition, University of Science

and Technology of China
Hefei, China

dachunkai@mail.ustc.edu.cn

Yueyi Zhang†
MoE Key Laboratory of

Brain-inspired Intelligent Perception
and Cognition, University of Science

and Technology of China
Hefei, China

zhyuey@ustc.edu.cn

Xiaoyan Sun
MoE Key Laboratory of

Brain-inspired Intelligent Perception
and Cognition, University of Science

and Technology of China
Hefei, China

sunxiaoyan@ustc.edu.cn

Zhiwei Xiong
MoE Key Laboratory of

Brain-inspired Intelligent Perception
and Cognition, University of Science

and Technology of China
Hefei, China

zwxiong@ustc.edu.cn

Abstract
Event cameras are novel bio-inspired cameras that record asyn-
chronous events with high temporal resolution and dynamic range.
Leveraging the auxiliary temporal information recorded by event
cameras holds great promise for the task of video super-resolution
(VSR). However, existing event-guided VSR methods assume that
the event and RGB cameras are strictly calibrated (e.g., pixel-level
sensor designs in DAVIS 240/346). This assumption proves limiting
in emerging high-resolution devices, such as dual-lens smartphones
and unmanned aerial vehicles, where such precise calibration is
typically unavailable. To unlock more event-guided application
scenarios, we perform the task of asymmetric event-guided VSR
for the first time, and we propose an Asymmetric Event-guided
VSR Network (AsEVSRN) for this new task. AsEVSRN incorporates
two specialized designs for leveraging the asymmetric event stream
in VSR. Firstly, the content hallucination module dynamically en-
hances event and RGB information by exploiting their complemen-
tary nature, thereby adaptively boosting representational capacity.
Secondly, the event-enhanced bidirectional recurrent cells align
and propagate temporal features fused with features from content-
hallucinated frames. Within the bidirectional recurrent cells, event-
enhanced flow is employed to simultaneously utilize and fuse tem-
poral information at both the feature and pixel levels. Compre-
hensive experimental results affirm that our method consistently
generates superior quantitative and qualitative results. The code is
publicly available at: https://github.com/zeyuxiao1997/AsEVSRN.
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1 Introduction
High-resolution (HR) videos are attracting increasing attention in
both academia and industry, and have been already widely used in
modern society, especially for the multimedia field. Video super-
resolution (VSR) stands as a foundational task within the domains
of computer vision to generate HR videos. The primary goal of VSR
is to enhance visual quality by reconstructing an HR video from
a low-resolution (LR) observation. VSR has garnered substantial
attention and popularity due to its diverse applications, encom-
passing areas such as video surveillance [1, 77], high-definition
television [12], and satellite imagery [8, 38, 62, 64]. In contrast
to single-image super-resolution, which primarily addresses spa-
tial dimensions, VSR uniquely exploits both spatial and tempo-
ral dependencies. Advanced VSR methods focus on harnessing
temporal information through various techniques such as sliding
windows [16, 24, 29, 30, 37, 57, 60, 74] and recurrent structures [5–
7, 27, 28, 48, 73]. Recently, with the rapid development of Trans-
formers in computer vision, several attempts have been made to
exploit Transformers for better recovering missing details in LR
sequences [31, 34, 43, 51]. However, effectively modeling and har-
nessing temporal relationships continues to pose an open and for-
midable challenge in the task of VSR.

Event cameras represent an innovative class of bio-inspired sen-
sors capable of asynchronously detecting intensity changes in in-
dividual pixels at the microsecond level [47]. These sensors can
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generate asynchronous event data, amounting to millions of events
per second while maintaining robustness in HDR lighting con-
ditions. Therefore, recent event-guided VSR methods have been
proposed [19, 21, 22, 36, 67] to leverage the advantages of the events
for VSR, comparing favorably to RGB-only methods. In practice,
however, these event-guided VSR methods assume strict alignment
between images and events. To substantiate this assumption, [19]
leverages the CED dataset [49], which comprises aligned images
and events sourced from DAVIS346. Similarly, [36] introduces the
well-aligned ALPIX-VSR dataset for event-guided VSR.

In practice, however, in our daily imaging systems, especially in
edge devices like dual-lens (or more) smartphones and unmanned
aerial vehicles [11], deploying strictly aligned event and RGB cam-
eras is challenging, let alone leveraging data collected from aligned
cameras for downstream tasks. It is crucial to develop an asym-
metric VSR algorithm based on asymmetric stereo events and RGB
cameras to address this issue. However, utilizing information from
different modalities and dealing with non-aligned data pose signifi-
cant challenges for this task.

In this paper, to solve this new task, we propose the Asymmetric
Event-guided VSR Network (AsEVSRN). AsEVSRN is the first end-
to-end learning-based network that can generally be applied to
super-resolve an LR video using an asymmetric event camera. Our
proposed AsEVSRN introduces two key components to leverage
asymmetric event streams for VSR. Firstly, our proposed content
hallucination (CH) module dynamically enhances both event and
RGB information by exploiting their complementary characteristics,
thereby adaptively boosting representational capacity. Specifically,
we adopt a dual-branch architecture to fuse event and RGB infor-
mation adaptively and employ a dynamic convolution for dynamic
enhancement of representational capacity. Secondly, drawing inspi-
ration from successful practices in existing VSR methods [6], we
design the event-enhanced bidirectional recurrent cells. The event-
enhanced bidirectional recurrent cells align and propagate temporal
features, integrating them with features extracted from content-
hallucinated frames. Due to misalignment between the event stream
and RGB frames, direct utilization for temporal fusion and prop-
agation is not feasible. Therefore, our proposed event-enhanced
bidirectional recurrent cells first pre-align event information with
RGB views using a deformable convolution, enabling simultaneous
utilization and fusion of temporal information at both the feature
and pixel levels. We conduct experiments using event-RGB stereo
data. Through extensive experimentation, we have quantitatively
and qualitatively demonstrated the effectiveness of AsEVSRN.

In summary, our contributions can be summarized as follows:
(1) We propose AsEVSRN for super-resolving RGB frames with

the guidance of the asymmetric event data. To the best of our
knowledge, this is the first event-guided VSR method based on
asymmetric event and RGB cameras.

(2) We propose the CH module dynamically to enhance event
and RGB information by leveraging their complementary nature,
thereby adaptively boosting representational capacity.

(3) We propose the event-enhanced bidirectional recurrent cells
to align and propagate temporal features fused with features from
content-hallucinated frames. Within these recurrent cells, event-
enhanced flow facilitates simultaneous utilization and fusion of
temporal information at both feature and pixel levels.

(4) Extensive experiments demonstrate that our proposedAsEVSRN
is superior to the existing advanced potential methods.

2 Related Work
Video Super-Resolution. Existing RGB-only VSR methods en-

hance LR frames using temporal information via slidingwindows [63,
65, 66, 69] and recurrent structures [6, 7]. Sliding-window tech-
niques like 3DSRNet [24], TDAN [57], and EDVR [60] recover
HR frames by predicting dynamic offsets and sampling convolu-
tion kernels from adjacent LR frames. They employ methods such
as 3D convolution [24], optical flow estimation [25, 55], and de-
formable convolution [57, 60] to align temporal features. However,
capturing long-range temporal features remains challenging for
these approaches. To address this, recurrent structures-based meth-
ods [6, 13, 15, 55, 73] have been developed to model long-range
temporal dependencies by utilizing hidden states to connect video
frames. For example, BasicVSR [6] uses a bidirectional recurrent
structure that merges forward and backward propagation features,
resulting in significant performance gains. Vision Transformer-
based methods [3, 34, 51, 75] have also achieved remarkable success
in VSR. This paper focuses on event-guided VSR, which integrates
event cameras to enhance VSR performance.

Event-Guided VSR. Event-guided VSR emerges as a pivotal ap-
plication, leveraging the high-frame-rate motion details captured
by event cameras. In event-guided VSR, consecutive frames and
event data are utilized to generate HR frames. Various approaches
have emerged in this domain. Jing et al. [19] propose a two-stage
method that leverages events to interpolate the LR video, result-
ing in a high-frequency video that is then used to reconstruct HR
frames. Kai et al. [22] introduce a bidirectional VSR framework,
which harnesses nonlinear motion information from events to aid
temporal alignment and incorporates a bidirectional cross-modal
synthesis module to enhance the model’s robustness to lighting
variations. Lu et al. [36] present a joint framework that learns im-
plicit neural representations from both RGB frames and events,
enabling arbitrary-scale VSR. However, these methods presume
strict alignment between the event stream and RGB images, pos-
ing practical challenges in real-world applications. For instance,
in edge devices like dual-lens smartphones and unmanned aerial
vehicles [11], acquiring strictly aligned event and RGB cameras can
be challenging. To tackle this issue, we propose the first framework
for asymmetric event-guided VSR.

Event-Guided Video Restoration. Event cameras have the unique
capability to measure intensity changes at each pixel independently
with microsecond accuracy, making them valuable for various
video restoration tasks. One of the notable advantages of event
cameras is their ability to provide motion information within the
exposure time, which serves as a natural motion cue for deblur-
ring [18, 50, 52, 53, 76]. In the context of video frame interpolation,
the integration of event cameras has sparked innovations, such
as TimeLens [59]. Subsequently, there has been a growing em-
phasis on designing interaction modules facilitating the exchange
of information between event data and RGB frames, ultimately
enhancing the performance of event-based video frame interpola-
tion [42, 58, 68]. Additionally, event cameras have proven useful
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Figure 1: Left: Illustration of the asymmetric Event and RGB cameras System. Right: Overview of the proposed AsEVSRN.
The information from the left event stream and the right RGB frame stream are fed to content hallucination module, aiming
to highlight valuable information while mitigating interference from misaligned data from different modalities. Then the
hallucinated event and image features are fed to bidirectional recurrent cells for further alignment and aggregation. Finally, the
bidirectional features are fed to the upsampling module to generate the super-resolved results. For simplicity, the upsampling
residual operations are omitted in the figure.

in correcting rolling shutter artifacts in consecutive global shutter
frames [10, 35, 61, 78]. They have also been applied to tasks such
as high-dynamic-range imaging [40, 46, 72, 80], deraining [53], and
low-illumination enhancement [17], showcasing their versatility
across various domains. In this paper, to the best of our knowledge,
we propose the first event-guided VSRmethod based on asymmetric
event and RGB cameras.

3 Method
3.1 Overview
Given a multi-modal stereo camera capturing system, where the
left camera is an event camera and the right one is a normal
LR RGB camera, our goal is to reconstruct consecutive HR clear
right frames Î𝑅 = {. . . , 𝐼𝑅

𝑡−1, 𝐼
𝑅
𝑡 , 𝐼

𝑅
𝑡+1, . . . } (Î𝑅 ∈ R𝑇×𝑠𝐻×𝑠𝑊 ×3)

using the captured right LR frames I𝑅 = {. . . , 𝐼𝑅
𝑡−1, 𝐼

𝑅
𝑡 , 𝐼

𝑅
𝑡+1, . . . }

(I𝑅 ∈ R𝑇×𝐻×𝑊 ×3) and the corresponding left event streams E𝐿 =

{. . . , 𝐸𝐿
𝑡−1, 𝐸

𝐿
𝑡 , 𝐸

𝐿
𝑡+1, . . . } triggered within 𝑇 . 𝐸𝐿𝑡 denotes the left

event stream at the time stamp 𝑡 . Î𝑅 should be close to the ground
truthI𝑅,𝐺𝑇 = {. . . , 𝐼𝑅,𝐺𝑇

𝑡−1 , 𝐼
𝑅,𝐺𝑇
𝑡 , 𝐼

𝑅,𝐺𝑇
𝑡+1 , . . . } (I𝑅,𝐺𝑇 ∈ R𝑇×𝑠𝐻×𝑠𝑊 ×3).

𝑇 , 𝐻 , and𝑊 are the frame number, height, and width, respectively.
𝑠 is the upscaling factor and 𝑇 = {. . . , 𝑡 − 1, 𝑡, 𝑡 + 1, . . . }. Note that,
the camera system can consist of an event camera on the left and
an RGB camera on the right, or vice versa with the RGB camera on
the left and the event camera on the right.

Due to the fact that the event streams are not convenient for
observation and processing by convolutional neural networks be-
cause of their sparse, irregular and unstructured properties, we
convert event streams E𝐿 into voxel gridsV𝐿 ∈ R𝑇×𝐻×𝑊 ×𝐵 using

temporal bilinear transformation, suitable for convolutional neural
networks [36, 68]

V(𝑘) =
∑︁
𝑖

𝑝𝑖 max(0, 1 − |𝑘 − 𝑡𝑖 − 𝑡0
𝑡𝑁𝑒

− 𝑡0
(𝐵 − 1) |), (1)

where 𝑡0 and 𝑡𝑁𝑒
denote the start time and the end time of the

event stream, and 𝑁𝑒 denotes the number of the event data. 𝑡𝑘 is
the event firing timestamp, and 𝑝𝑘 is the polarity indicating the
sign of illumination changes, respectively. The index 𝑘 spans from
0 to 𝐵 − 1, with 𝐵 set as 5 in our experiments.

Figure 1 shows an overview of the proposed AsEVSRN. AsEVSRN
employs bidirectional recurrent cells 𝐹𝑓 and 𝐹𝑏 akin to the scheme
proposed in [6]. However, it introduces novel elements such as extra
inputs and specialized modules to harness event streams, setting it
apart from prior approaches. The left event streams and the right
LR frames are first converted into the feature domain using the
feature encoders (𝑓 𝑉

𝐸𝑛
and 𝑓 𝐼

𝐸𝑛
), following which they are directed

into the CHmodule, denoted as 𝑓𝐶𝐻 (·). This step aims to accentuate
valuable information while simultaneously mitigating interference
originating from misaligned data across distinct modalities. The
above process can be denoted as

𝑭𝐸 = 𝑓 𝑉
𝐸𝑛

(V𝐿), 𝑭 𝐼 = 𝑓 𝐼𝐸𝑛 (I
𝑅), (2)

𝑭𝐸,𝐶𝐻 = 𝑓𝐶𝐻 (𝑭𝐸 , 𝑭 𝐼 ), 𝑭 𝐼 ,𝐶𝐻 = 𝑓𝐶𝐻 (𝑭 𝐼 , 𝑭𝐸 ), (3)
Then the hallucinated event and image features (𝑭𝐸,𝐶𝐻 and 𝑭 𝐼 ,𝐶𝐻 )
are fed to recurrent cells, and for a time step 𝑡 , each recurrent cell
𝐹𝑓 or 𝐹𝑏 not only takes the hallucinated event and image features

at the current time step, but also the corresponding features (ℎ𝑓
𝑡−1

and ℎ𝑏
𝑡+1) propagated from its neighbors. Moreover, each recurrent
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Figure 2: The structure of the content hallucination module.

cell propagates the resulting features ℎ{ 𝑓 ,𝑏}𝑡 to the next cell. The
above process can be denoted as

ℎ
𝑓
𝑡 =𝐹𝑓 (𝐹

𝐸,𝐶𝐻
𝑡 , 𝐹

𝐼 ,𝐶𝐻
𝑡 , ℎ

𝑓

𝑡−1),

ℎ𝑏𝑡 =𝐹𝑏 (𝐹
𝐸,𝐶𝐻
𝑡 , 𝐹

𝐼 ,𝐶𝐻
𝑡 , ℎ𝑏𝑡+1) .

(4)

To generate a super-resolved output 𝐼𝑅𝑡 at timestamp 𝑡 , the up-
sampling module 𝑈 incorporates multiple convolutional layers
along with pixel-shuffle operations. This module takes intermedi-
ate features ℎ𝑓 ,𝑏𝑡 and the LR frame 𝐼𝑅𝑡 as inputs, yielding the final
super-resolved frame 𝐼𝑅𝑡

𝐼𝑅𝑡 = 𝑈 ( [ℎ𝑓𝑡 , ℎ
𝑏
𝑡 , 𝐼

𝑅
𝑡 ]) + (𝐼𝑅𝑡 ) ↑𝑠 , (5)

where [·, ·] is the concatenation operation, and (·) ↑𝑠 is the bilinear
upsampling operation with a scaling factor of 𝑠 .

3.2 Content Hallucination
In scenarios involving LR scenes, both event streams and LR im-
ages inherently contain noise in the form of missing details and
artifacts, respectively. To tackle this challenge and leverage the com-
plementary nature of information across modalities, we propose
the CH module (see Figure 2). Specifically, the CH module adopts a
dual-branch structure (i.e., RGB2Event, and Event2RGB branches),
enabling the simultaneous hallucination of representations for two
modal features.

Given the left event feature 𝐹𝐸𝑡 and the right frame feature 𝐹 𝐼𝑡 ,
the proposed CH module initially employs an adaptive estimation
process to derive dynamic filters of high-level contextual informa-
tion independently for each modality branch. Subsequently, these
dynamic filters are utilized to enhance the features of the corre-
sponding modality, facilitating cross-modal feature refinement and
integration for improved representation learning. We have

𝐾𝐸
𝑡 =𝜙3 (P(𝐹𝐸𝑡 )), 𝐾 𝐼

𝑡 =𝜙3 (P(𝐹 𝐼𝑡 )),

𝐹
𝐸,𝐶𝐻
𝑡 =𝐾 𝐼

𝑡 ⊛ A(𝜙3 (𝐹𝐸𝑡 ))+𝐹𝐸𝑡 ,

𝐹
𝐼 ,𝐶𝐻
𝑡 =𝐾𝐸

𝑡 ⊛ A(𝜙3 (𝐹 𝐼𝑡 ))+𝐹 𝐼𝑡 ,

(6)

where 𝜙3 (·) denotes the convolution operation, P(·) denotes the
adaptive average pooling operation, A(·) denotes the ReLU acti-
vation operation, and ⊛ is the depth-wise convolution. Using a
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Figure 3: The structure of the event-enhanced forward recur-
rent cell. The event-enhanced backward recurrent cell one
can be obtained in a similar way.

learned dynamic filter from one modality to modulate the feature
representation of another, the proposed CH module enhances valu-
able information while mitigating interference. This module facili-
tates the refinement and integration of features across modalities,
thereby promoting more effective representation learning in the
task of event-guided VSR.

3.3 Bidirectional Recurrent Cells
In VSR, exploiting temporal information is crucial, particularly in
asymmetric event-guided VSR scenarios. The bidirectional prop-
agation scheme has been widely acknowledged for its effective-
ness [6, 7, 54]; therefore, we adopt it in AsEVSRN. Specifically, we
draw inspiration from the bidirectional recurrent cells employed in
BasicVSR to implement the utility of bidirectional propagation.

In each recurrent cell 𝐹𝑓 (·) and 𝐹𝑏 (·), a flow estimation network
(e.g., SpyNet[44]) is typically employed to estimate the optical flow
between the LR frame 𝐼𝑅𝑡 at the current time step and 𝐼𝑅

𝑡±1 at the
previous or the next time steps for alignment and further processing.
The optical flow estimation can be denoted as

𝑂
𝑓
𝑡 = SpyNet(𝐼𝑅𝑡 , 𝐼𝑅𝑡−1),𝑂

𝑏
𝑡 = SpyNet(𝐼𝑅𝑡 , 𝐼𝑅𝑡+1). (7)

However, under the practical setting of asymmetric event-guided
VSR, the conventional approach described above fails to fully ex-
ploit the asymmetric information from events. Considering that
the event information can effectively assist in aligning and fusing
multiple frames [9, 18, 33, 42, 59], we propose the event-enhanced
bidirectional recurrent cells.

Although the event stream contains crucial temporal information
and cues for alignment, asymmetric events may adversely affect
the alignment of RGB frames [4, 26, 27]. Therefore, we first employ
deformable convolution to align the event stream with the RGB
frames in feature space. Specifically, taking the forward recurrent
cell as an example (see Figure 3), the content-hallucinated features
𝐹
𝐸,𝐶𝐻
𝑡 and 𝐹 𝐼 ,𝐶𝐻𝑡 are first concatenated, followed by a convolutional
layer to generate the RGB-aware offset map Δ𝑃

𝑓
𝑡 . Δ𝑃

𝑓
𝑡 and 𝐹𝐸,𝐶𝐻𝑡

are then fed to the deformable convolution layer, resulting in 𝐹𝐸,𝑅𝑡 .
This procedure can be denoted as

Δ𝑃
𝑓
𝑡 = Conv( [𝐹 𝐼 ,𝐶𝐻𝑡 , 𝐹

𝐸,𝐶𝐻
𝑡 ]), (8)

𝐹
𝐸,𝑅
𝑡 = DConv(𝐹𝐸,𝐶𝐻𝑡 ,Δ𝑃

𝑓
𝑡 ), (9)
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Table 1: Quantitative comparison on the KITTI 2012 and KITTI 2015 datasets for 4× asymmetric event-guided VSR in terms
of PSNR and SSIM. The best results are marked in bold, the second ones are marked with underlines, and the third ones are
marked with

::::
wavy

:::::
lines. The number of parameters (M) and runtime (ms) are calculated using an NVIDIA GTX 1080Ti GPU

for 4× asymmetric event-guided VSR (spatial resolution: 48 × 48 → 192 × 192).

Method #Params (M) Runtime (ms) KITTI 2012 KITTI 2015

PSNR SSIM PSNR SSIM

SISR
Bicubic - - 25.36 0.7530 25.76 0.7613
SwinIR 11.504 240.99 29.14 0.8618 29.98 0.8700
SRFormer 10.396 291.91 29.19 0.8623 30.00 0.8697

VSR

VSRNet 0.439 37.63 27.65 0.8253 28.18 0.8308
DUF 5.822 78.42 29.05 0.8585 29.75 0.8642
TOF 1.406 104.10 28.74 0.8512 28.07 0.8286
EDVR 20.699 71.69 30.27 0.8888 30.80 0.8869
BasicVSR 6.291 21.31 30.69 0.8970 31.17 0.8938
BasicVSR++ 7.323 20.99

::::
30.83

:::::
0.8992

::::
31.30 0.8961

TTVSR 3.450 19.32 30.74 0.8983 31.11 0.8935
PSRT 13.367 187.09 30.48 0.8955 31.02 0.8936
IART 13.411 193.97 30.52 0.8980 31.01 0.8951

Event-guided VSR
EGVSR 2.574 44.91 30.41 0.8946 30.90 0.8971
EBVSR 12.151 46.76 30.89 0.8997 31.31

:::::
0.8965

AsEVSRN (Ours) 9.648 49.37 31.17 0.9052 31.91 0.9048

where [·, ·], Conv(·) and DConv(·) denotes the concatenation oper-
ation, the convolution layer and the deformable convolution layer,
respectively. The aligned event feature 𝐹𝐸,𝑅𝑡 is then employed for
flow refinement. On one hand, it is used to mitigate the influence
of low-resolution frames on flow estimation. On the other hand,
the motion information from events is utilized to further optimize
the optical flow 𝑂

𝑓
𝑡 . To obtain refined optical flow, we directly con-

catenate 𝐹𝐸,𝑅𝑡 and𝑂 𝑓
𝑡 and feed them into a convolutional layer and

a residual block. We then utilize residual connections to obtain 𝑂 𝑓
𝑡

𝑂
𝑓
𝑡 = ResB(Conv( [𝐹𝐸,𝑅𝑡 ,𝑂

𝑓
𝑡 ])) +𝑂

𝑓
𝑡 , (10)

where 𝑅𝑒𝑠𝐵(·) is the residual block.
To obtain the temporally aggregated feature ℎ𝑓𝑡 , we utilize the

refined optical flow to warp the RGB feature through a warping
operation. Then, we concatenate the warped result with 𝐼𝑅𝑡 and feed
it into a residual block. This design effectively leverages information
from both the feature domain and the pixel domain [68], enhancing
the recurrent cell’s representation capability. Formally, we have

ℎ
𝑓
𝑡 = ResB( [𝐼𝑅𝑡 , 𝐹

𝐼 ,𝐶𝐻
𝑡 ,Warp(𝐹 𝐼 ,𝐶𝐻

𝑡−1 ,𝑂
𝑓
𝑡 )]), (11)

where Warp(·, ·) denotes the warping operation.
The event-enhanced backward recurrent cell can be obtained

using a similar method to obtain ℎ𝑏𝑡 .

4 Experiments
4.1 Experimental Settings

Datasets. We train and evaluate our proposed AsEVSRN on
KITTI 2012 [2] and KITTI 2015 [39] datasets. KITTI 2012 is a real-
world dataset with street views from a driving car. It consists of
194 training stereo video clips and 195 testing clips, each with a

resolution of 1242 × 375 pixels and a total of 21 frames per clip.
KITTI 2015 is also a real-world dataset that shares the same shoot-
ing conditions as KITTI 2012 but with higher quality. It contains
200 training stereo video clips and 200 testing stereo video clips.
The resolution and frame number are the same as KITTI 2012.
Without loss of generality, we transform the left view of KITTI
2012 and KITTI 2015 into event data, while keeping the right view
unchanged. This creates asymmetric event-RGB inputs. We first
utilize the pre-trained RIFE interpolation model [14] to generate
additional left-view frames at a 4× higher frame rate. Then we use
the event camera simulator ESIM [45], to simulate events from the
interpolated high-frame-rate left videos.

Training Settings. During the training stage, we follow the divi-
sion of the training sets of the KITTI 2012 and KITTI 2015 datasets.
We utilize bicubic downsampling by a factor of 4 on the left and
right view video frames to obtain LR frames. In other words, we
set 𝑠 = 4. The proposed AsEVSRN aims to learn the mapping re-
lationship from low-resolution frames to high-resolution frames.
Given the ground-truth frame I𝑅,𝐺𝑇 and the super-resolved results
Î𝑅 generated by our proposed AsEVSRN, we adopt the simple but
effective Charbonnier loss [60] to train it from scratch, which can
be described as:

L =

√︂I𝑅,𝐺𝑇 − Î𝑅
2 + 𝜀2, (12)

where 𝜀 is set to 1𝑒 − 6 in our experiments. Following previous
works, we use a pre-trained SpyNet to estimate optical flow in
the event-enhanced bidirectional recurrent cells. We utilize the
Adam optimizer with parameters 𝛽1 = 0.9 and 𝛽2 = 0.999, and we
utilize the Cosine Annealing scheduler for optimization. Each mini-
batch consists of 6 samples. The input patch size is set to 64 × 64.
Experiments are conducted using PyTorch [85] on two NVIDIA
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3090 GPUs. We fix the weights of the pre-trained SpyNet in the
first 5K iterations, and the total number of iterations is 300K.

Inference Settings. During the testing stage, we follow the divi-
sion of the training sets of the KITTI 2012 and KITTI 2015 datasets.
To quantitatively evaluate the reconstructed HR videos, we choose
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) on Y channel as metrics. The temporal consistency can be an-
alyzed by evaluating the estimated optical flow of the reconstructed
HR videos and the extracted temporal profiles.

4.2 Quantitative and Qualitative Comparisons
We compare the proposed AsEVSRN with a wide range of potential
methods that could be used to address asymmetric event-guided
VSR, aiming to explore as many diverse and rich approaches as pos-
sible. (1) Single image SR (SISR) methods: Bicubic, SwinIR [32], and
SRFormer [79]. Specifically, we process each LR frame sequentially
through the SISR network for reconstruction, and then assemble
the reconstructed frames to form an HR video. (2) VSR methods:
VSRNet [23], DUF [20], TOF [71], EDVR [60], BasicVSR [6], Ba-
sicVSR++ [7], PSRT [51], TTVSR [34], and IART [70]. In particular,
we exclude the event stream and solely feed the LR video frames
into the VSR network for reconstruction, resulting in the final re-
constructed video output. (3) Event-guided VSR methods: as this
direction is relatively less explored, we compare our AsEVSRN with
EGVSR and EBVSR to provide a thorough evaluation. It is important
to note that for fair comparison, we retrain all these methods on
the KITTI 2012 and KITTI 2015 datasets using their publicly re-
leased codes. We refrain from using fine-tuning or directly utilizing
pre-trained models on Vimeo90K [71] or REDS [41].

Quantitative Results. Table 1 shows the quantitative comparisons
on various testsets in terms of PSNR and SSIM. From the table, we
can draw several conclusions. Firstly, VSR methods generally out-
perform SISR methods in terms of PSNR and SSIM. This indicates
that the temporal information provided by video sequences helps in
achieving better reconstruction quality compared to SISR methods.
For instance, BasicVSR and its variants consistently outperform
SwinIR, which is a representative leading SISR method. Secondly,
event-guided VSR shows potential for achieving higher perfor-
mance compared to traditional VSR methods. For instance, methods
like EBVSR, which incorporates event information, exhibit higher
PSNR and SSIM values than some traditional VSR methods like Ba-
sicVSR++ and TTVSR. For example, for EBVSR compared to TTVSR
on the KITTI 2012 dataset, there is a PSNR increase of 0.15 dB and a
SSIM increase of 0.0014. On the KITTI 2015 dataset, EBVSR shows a
PSNR increase of 0.20 dB and an SSIM increase of 0.0030 compared
to TTVSR. Lastly, our proposed AsEVSRN demonstrates superior
performance compared to both traditional VSR methods and other
event-guided VSR methods. Specifically, AsEVSRN achieves the
highest PSNR and SSIM values among all methods evaluated on
both KITTI 2012 and KITTI 2015 datasets. For instance, AsEVSRN
achieves a PSNR of 31.17 dB on KITTI 2012, outperforming all other
baseline methods.

Computational Efficiency. We compare AsEVSRN to other meth-
ods in terms of the number of parameters and the runtime. Results

are listed in Table 1. Comparing the number of parameters and run-
time among different methods, we observe that AsEVSRN achieves
competitive performance with fewer parameters and comparable
runtime. Specifically, AsEVSRN has 9.648M parameters and a run-
time of 49.37 ms, while EBVSR, which has a similar performance,
requires 12.151M parameters and a runtime of 46.76 ms. Despite
having fewer parameters, AsEVSRN achieves higher PSNR and
SSIM scores compared to EBVSR. This indicates that AsEVSRN
effectively utilizes parameter efficiency to improve reconstruction
quality, demonstrating its superiority in terms of performance-
complexity trade-off. Therefore, even under similar computational
constraints, AsEVSRN outperforms other methods in terms of PSNR
and SSIM on both KITTI 2012 and KITTI 2015 datasets.

Qualitative Results. In Figure 4, we present visual comparisons
between the results obtained by our proposed AsEVSRN and those
of other competing baselines on the KITTI 2012 dataset. It is evi-
dent from these visual comparisons that our proposed AsEVSRN
method outperforms the baseline methods, yielding superior qual-
itative results characterized by more accurate details and signifi-
cantly reduced blurring artifacts. For instance, in the restoration
of fine texture details, our AsEVSRN excels in reconstructing the
intricate brick patterns on the rooftops, while artifacts are visibly
present in the results produced by other methods. Furthermore,
AsEVSRN demonstrates a clearer restoration of textural details
compared to other methods, which often generate blurry results.
This is particularly noticeable in regions with complex textures and
high-frequency details, where our method successfully recovers
fine structures without introducing unwanted noise or smoothing
effects. These qualitative improvements underscore the efficacy
of our proposed architecture in enhancing the visual quality of
super-resolved video content.

Temporal Consistency. To evaluate the temporal consistency of
the super-resolved video clips, we estimate the optical flow on the
KITTI 2012 dataset using the advanced RAFT algorithm [56]. Specif-
ically, we compute the optical flow between consecutive frames to
assess the motion coherence of the reconstructed sequences. As
illustrated in Figure 5, the optical flow estimated from the results
produced by our proposed AsEVSRN is remarkably close to that
obtained from the original HR frames. This observation substanti-
ates the superior temporal consistency and motion accuracy of our
method, demonstrating its effectiveness in generating high-quality,
temporally coherent super-resolved video content.

4.3 Ablation Studies
To analyze the effectiveness of the proposed AsEVSRN, we conduct
the following experiments on KITTI 2012.

Effectiveness of TwoModules in AsEVSRN. TheCHmodule and the
event-enhanced bidirectional recurrent cells are two core modules
in AsEVSRN. We analyze the performance of each component by
removing different modules and replacing themwith residual blocks
of equivalent parameter amount. Table 2 presents the effectiveness
of the CH module and the event-enhanced bidirectional recurrent
cells in terms of PSNR and SSIM. Each method is evaluated with
different combinations of thesemodules. Firstly, when excluding the
CH module (AsEVSRN-w/o-𝐹𝐶𝐻 ), the PSNR is 30.72 dB and SSIM
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Bicubic SRFormer SwinIR VSRNet

DUF PSRT BasicVSR TTVSR

EBVSR BasicVSR++ Ours Ground truth

Figure 4: Visual comparison on the 4× asymmetric event-guided VSR task. Frames are from the KITTI 2012 dataset.

Bicubic SRFormer SwinIR VSRNet

DUF PSRT BasicVSR TTVSR

EBVSR BasicVSR++ Ours Ground truth

Figure 5: Temporal consistency comparison on the 4× asymmetric event-guided VSR task. We show the estimated optical flow
of the results from different methods using the pre-trained RAFT [56].

is 0.8975. This indicates that the absence of the CH module leads to
a decrease in performance compared to the full AsEVSRN method.
Secondly, omitting the backward recurrent cell (𝐹𝑏 ) while including
the CH module (AsEVSRN-w/o-𝐹𝑏 ) results in a slight improvement
in PSNR to 30.95 dB and SSIM to 0.9011 compared to the case
without the CH module. Similarly, excluding the forward recurrent
cell (𝐹𝑓 ) while keeping the CH module (AsEVSRN-w/o-𝐹𝑓 ) yields
a PSNR of 30.96 dB and SSIM of 0.9014, slightly higher than the
previous case. Finally, the full AsEVSRN method, incorporating
both the CH module and bidirectional recurrent cells, achieves the
highest PSNR of 31.17 dB and SSIM of 0.9052, demonstrating the
effectiveness of both modules in enhancing the performance of the
proposed method.

Investigation of the CH Module. The CH module aims at lever-
aging the complementary nature of information across the event
and RGB modalities while enhancing the representation ability. To
showcase its effectiveness, we design and analyze several variants:
(1) CH-w/o-dynamicfilter: we replace the dynamic filter with a sim-
ple addition operation. (2) CH-w/o-RGB2Event: in this variant, we
directly remove the RGB2Event branch. (3) CH-w/o-Event2RGB:
this variant involves the direct removal of the Event2RGB branch.

Table 2: Effectiveness of the CH module and the event-
enhanced bidirectional recurrent cells.

Method 𝐹𝐶𝐻
𝐹𝑓 𝑏 PSNR SSIM

𝐹𝑏 𝐹𝑓

AsEVSRN-w/o-𝐹𝐶𝐻 % ! ! 30.72 0.8975
AsEVSRN-w/o-𝐹𝑏 ! % ! 30.95 0.9011
AsEVSRN-w/o-𝐹𝑓 ! ! % 30.96 0.9014
AsEVSRN ! ! ! 31.17 0.9052

Table 3: Effectiveness of the designs in the CH module.

Method PSNR SSIM
CH-w/o-dynamicfilter 30.93 0.8995
CH-w/o-RGB2Event 30.99 0.9016
CH-w/o-Event2RGB 31.00 0.9020
CH Module 31.17 0.9052

Results are shown in Table 3. The results show that including both
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CH-w/o-dynamicfilter CH-w/o-RGB2Event

CH-w/o-Event2RGB CH Module

Figure 6: Visual comparison on removing different parts in
the CH module. Please zoom in for better viewing.

Table 4: Effectiveness of the designs in the event-enhanced
bidirectional recurrent cells.

Method PSNR SSIM
Cell-w/o-DCN 30.96 0.9013
Cell-w/o-𝐹𝐸,𝑅𝑡 31.00 0.9021
Cell-w/o-𝑂 𝑓

𝑡 31.04 0.9033
Cell-w/o-𝐹 𝐼 ,𝐶𝐻𝑡 31.14 0.9036
Cell-w/o-𝐼𝑅𝑡 31.12 0.9035
Cell 31.17 0.9052

Table 5: Embedding the components of the AsEVSRN into
existing baseline methods, i.e., BasicVSR and EBVSR. † de-
notes the method with the CH module and event-enhanced
bidirectional recurrent cells.

Method PSNR SSIM
BasicVSR 30.69 0.8970
BasicVSR† 30.92 0.9001
EBVSR 30.89 0.8997
EBVSR† 31.03 0.9029

RGB-to-Event and Event-to-RGB fusion, along with dynamic fil-
tering in the CH module enhances performance, as evidenced by
the highest PSNR and SSIM values compared to the configurations
with individual components excluded. In Figure 6, we also visualize
the results after removing different parts in the CH module. The
removal of dynamic convolution resulted in an overall deterioration
in performance. Furthermore, eliminating the RGB2event branch
lead to a degradation in the reconstructed details, while removing
the event2RGB branch caused the results to become blurrier. These
observations align with the findings presented in Table 3.

Investigation of the Event-Enhanced Bidirectional Recurrent Cells.
The event-enhanced bidirectional recurrent cells aim at leveraging
the event information for RGB feature fusion and propagation. To
showcase its effectiveness, we design and analyze several variants:
(1) Cell-w/o-DCN: in this variant, we directly remove the G2DT
module. (2) Cell-w/o-𝐹𝐸,𝑅𝑡 : we feed the content-hallucinated event

feature to the following parts directly. (3) Cell-w/o-𝑂 𝑓
𝑡 : we utilize

the optical flow estimated by SpyNet directly. (4) Cell-w/o-𝐹 𝐼 ,𝐶𝐻𝑡 :

we perform the warping operation at the pixel level. (5) Cell-w/o-
𝐼𝑅𝑡 : we perform the warping operation at the feature level. Table 4
presents the effectiveness of different designs in the event-enhanced
bidirectional recurrent cells based on PSNR and SSIM metrics. The
results show that each design variation contributes to improving
performance, with the complete cell achieving the highest PSNR
of 31.17 dB and SSIM of 0.9052 compared to its variants without
specific components.

Embedding the Components of the AsEVSRN into Existing Baseline
Methods. Table 5 presents the results after integrating two impor-
tant components into BasicVSR and EBVSR. We observe that incor-
porating these components leads to improvements in both PSNR
and SSIM metrics for both methods. Specifically, BasicVSR with the
integrated components achieves a PSNR of 30.92 dB and SSIM of
0.9001, while EBVSR with the integrated components achieves a
PSNR of 31.03 dB and SSIM of 0.9029. These results indicate that the
integration of the components enhances the performance of both
BasicVSR and EBVSR methods, demonstrating the effectiveness of
the proposed components.

4.4 Limitation
While our AsEVSRN demonstrates promising results, there are still
challenges that need to be addressed. For instance, we encounter
difficulties in reconstructing small objects, as elaborated in the
supplementary material. These small objects often require finer
detail recovery, which can be challenging due to the limited amount
of information available at lower resolutions.

5 Conclusion
In this paper, we address the challenge of performing asymmetric
event-guided VSR for the first time, introducing AsEVSRN tailored
specifically for this novel task. The AsEVSRN leverages two spe-
cialized designs: a content hallucination module that dynamically
enhances event and RGB information, boosting representational
capacity, and event-enhanced bidirectional recurrent cells that align
and propagate temporal features fused with content-hallucinated
frames. These cells employ event-enhanced flow for the simulta-
neous utilization and fusion of temporal information at both the
feature and pixel levels. The AsEVSRN consistently generates su-
perior results both quantitatively and qualitatively.
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