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Abstract

Two principles: the complementary princi-001
ple and the consensus principle are widely002
acknowledged in the literature of multi-view003
learning. However, the current design of Multi-004
head self-attention, an instance of multi-view005
learning, prioritizes the complementarity while006
ignoring the consensus. To address this prob-007
lem, we propose an enhanced multi-head self-008
attention (EMHA). First, to satisfy the comple-009
mentary principle, EMHA removes the one-010
to-one mapping constraint among queries and011
keys in multiple subspaces and allows each012
query to attend to multiple keys. On top of that,013
we develop a method to fully encourage consen-014
sus among heads by introducing two interaction015
models, namely Inner-Subspace Interaction and016
Cross-Subspace Interaction. Extensive experi-017
ments on a wide range of language tasks (e.g.,018
machine translation, abstractive summarization019
and grammar correction, language modeling),020
show its superiority, with a very modest in-021
crease in model size.022

1 Introduction023

Transformer architectures (Vaswani et al., 2017)024

have yielded promising results on a wide range of025

natural language processing tasks (Devlin et al.,026

2019; Brown et al., 2020). A key factor contribut-027

ing to their success is the multi-head self-attention028

network (MHSA), which enables efficient model-029

ing of global dependencies among tokens in par-030

allel. Notably, instead of utilizing a single atten-031

tion mechanism, MHSA uses an ensemble of at-032

tention models, each models a small subspace, and033

finally aggregates these results to the final one. The034

core idea is similar to subspace learning (Blum and035

Mitchell, 1998) or multi-view learning (Chaudhuri036

et al., 2009).037

In the realm of multi-view learning, two funda-038

mental principles guide the research: the comple-039

mentary principle and the consensus principle (Xu040

et al., 2013). The complementary principle em-041

phasizes that each data view may possess unique 042

knowledge not present in other views, prompting 043

the use of multiple views for a comprehensive and 044

accurate data description. On the contrary, the con- 045

sensus principle aims to maximize the agreement 046

on multiple distinct views. However, in the con- 047

text of MHSA design, most studies predominantly 048

focus on the complementary principle. This over- 049

sight is evident in their encouragement of diverse 050

information capture by different heads (Li et al., 051

2018; Cui et al., 2019) and the adoption of complex 052

aggregation operations (Li et al., 2019; Wang and 053

Tu, 2020). Some studies (Michel et al., 2019; Clark 054

et al., 2019; Voita et al., 2019; Behnke and Heafield, 055

2020) even consider the high similarity among at- 056

tention heads as a significant problem referred to 057

as attention redundancy. 058

Although diversity is crucial in multi-view learn- 059

ing, Dasgupta et al. (2001) has shown that simply 060

fusing diverse outputs does not guarantee improved 061

results: the probability of a disagreement of two 062

independent hypotheses upper bounds the error rate 063

of either hypothesis. The consensus principle high- 064

lights the need to minimize disagreement among 065

views to achieve better outcomes. In response to 066

the consensus principle, several studies (Kumar 067

and III, 2011; Kumar et al., 2011) have focused on 068

minimizing disagreement among views to achieve 069

better outcomes. However, in the context of MHSA 070

research, there is a tendency to prioritize comple- 071

mentarity over consensus among different attention 072

heads. Here we ask a question: Can striking a bal- 073

ance between these two principles be beneficial for 074

designing MHSA mechanisms? 075

However, encouraging such a consensus in multi- 076

head self-attention is challenging. In our prelim- 077

inary experiments, we find that directly utilizing 078

regularization terms can achieve this goal but can- 079

not improve performance. Drawing inspirations 080

from human behavior where group discussions and 081

interactions foster consensus, we propose intro- 082

1



ducing interactions among different subspaces in083

MHSA to achieve consensus.084

To this end, we propose a new multi-head085

self-attention variant: Enhanced Multi-Head Self-086

Attention, which encourages the consensus among087

attention heads while guaranteeing to contain suf-088

ficient information. To ensure information suffi-089

ciency, we propose a novel many-to-many map-090

ping scheme to generate numerous high-quality091

initial attention maps. This can generate more092

attention maps without suffering low-bottleneck093

problems (Bhojanapalli et al., 2020). On top of094

these sufficient attention maps, we propose two in-095

teraction components: inner-subspace interaction096

(ISI) and cross-subspace interaction (CSI). These097

hierarchical interaction modules fully encourage098

consensus among attention maps of different heads.099

The outcome of this work is an Enhanced Interac-100

tive Transformer (EIT) architecture in that MHSA101

is replaced with Enhanced Multi-Head Attention102

(EMHA). Our proposed EIT has been demonstrated103

to be simple to implement and highly parameter104

efficient, yet it consistently produces impressive105

results across a diverse set of tasks, including ma-106

chine translation, grammar error correction, ab-107

stractive summarization, and language modeling.108

In addition, we have developed a computationally109

efficient variant of EIT, which, while still maintain-110

ing strong performance on several tasks, is better111

suited for low-latency industrial applications.112

2 Preliminary: Multi-Head Self-Attention113

Multi-head self-attention (MHSA) is an efficient114

operation that can capture the interactions among115

tokens. Given an embedded input sequence X ∈116

RT×d, MHSA is defined as follows:117

Ai = Softmax(
(XWi

Q)(XWi
K)T

dk
) (1)118

O =

M∑
i=1

AiXWi
V W

i
O (2)119

where T denotes the sequence length, d is the in-120

put embedding dimension, dk is the head dimen-121

sion, M is the number of head partition on rep-122

resentations, Wi
Q,W

i
K ,Wi

O ∈ Rd×dk , Wi
O ∈123

Rdk×d. Ai represents the attention distribution124

of i-th head. Without special declaration, we use125

Qi,Ki,Vi to refer to XWi
Q,XWi

K ,XWi
V , re-126

spectively, which denotes the query, key and value127

in i-th head.128

3 Enhancing Consensus in Transformers 129

3.1 Enhanced Interactive Transformer 130

We design a novel Enhanced Interactive Trans- 131

former (EIT) in which we replace the multi-head 132

self-attention with Enhanced Multi-Head Attention 133

mechanism (EMHA) that encourages consensus 134

among different attention heads. 135

3.1.1 Many-to-Many Mapping Scheme 136

Intuitively, to achieve better consensus, multi-head 137

self-attention should first contain as much informa- 138

tion as possible. To achieve this goal, a natural idea 139

is to employ more attention heads in multi-head 140

self-attention. However, multi-head self-attention 141

with too many heads suffers from low bottleneck 142

problem (Bhojanapalli et al., 2020), resulting in 143

performance deterioration in practical applications. 144

Although various strategies like attention expan- 145

sion (Shazeer et al., 2020; Zhou et al., 2021b) have 146

been proposed, the information captured in their 147

attention maps remains limited due to an additional 148

linear transformation step, which can introduce 149

similarity among the maps. 150

Q1

K1

Q2

K2

Q3

K3

Q4

K4K1 K2 K3 K4

S1 S2 S3 S4 S13 S14 S15 S16. . .

Generated Attention Maps: 16

Queries

Keys

Mappings

Figure 1: The illustration of many-to-many mapping
scheme (M = 4).

To alleviate this problem, we propose a novel 151

many-to-many (M2M) mapping scheme that en- 152

ables each query to attend to M keys instead of a 153

single key. As illustrated in Figure 1, four queries 154

and four keys can be served as two components in 155

a bipartite graph and each element in a component, 156

e.g., Q1, can interact with any elements in another 157

component, e.g., K1, . . . ,K4. Formally, suppos- 158

ing one with M heads, the i-th attention map can 159

be formally calculated as: 160

Si =
Q⌊(i−1)/M+1⌋(K(i−1)%M+1)T√

dk
(3) 161

where i ∈ {1, . . . ,M2}, Si ∈ RT×T is the atten- 162

tion maps without softmax, ⌊⌋ is the round down 163

operation and % is the mod operation. For example, 164

S4 is computed by Q1 and K4 when M equals to 165

4. 166
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Figure 2: Illustration of dual enhanced interaction in
EIT (M = 4). We omit the ReLU for simplicity.

Discussion. M2M demonstrates an increased ca-167

pacity to generate M times the number of attention168

maps when given identical input. This enhanced ca-169

pability can be attributed to effective utilization of170

a many-to-many mapping strategy by M2M, which171

fully leverages the original head features, such as Q172

and K. Notably, this approach successfully avoids173

the production of similar attention maps by employ-174

ing a dot-multiplication strategy to directly gener-175

ate the attention maps (See Figure 6). By avoiding176

the generation of redundant attention maps, M2M177

improves its ability to capture diverse and distinct178

patterns in the input data. As a result, it facilitates179

the subsequent creation of more comprehensive180

and informative representations. This component181

can also be viewed as a strategy to enhance com-182

plementary principle.183

3.1.2 Dual Enhanced Interaction184

As aforementioned, M2M enlarges the information185

capacity, which provides a prerequisite for encour-186

aging consensus among different heads. To encour-187

age consensus, a simple idea is to directly add a lin-188

ear transformation among attention maps (Shazeer189

et al., 2020; Zhou et al., 2021b; Wang and Tu,190

2020). While these methods can achieve perfor-191

mance improvements in vanilla Transformer set-192

tings, they are unsuitable in our framework. One193

key factor is that our framework encompasses a194

wealth of information; however, it also incorpo-195

rates certain elements of noise. Such a coarse level196

of interaction fails to attain a satisfactory consen-197

sus.198

To address this problem, we propose a finer so-199

lution that is able to differentiate between relevant200

and irrelevant information, discarding the latter201

while fully capitalizing on the former. Two kinds of202

interactions among those attention maps are intro-203

duced hierarchically, the inner-subspace interaction204

and cross-subspace interaction.205

Two Relationships. We begin with identifying 206

two important relationships: inner-subspace inter- 207

action (ISI) relationship and cross-subspace inter- 208

action (CSI) relationship. As illustrated in Figure 209

1, the inner-subspace interaction (ISI) relationship 210

describes the connection among the attention maps 211

generated by the same query, e.g., attention maps in 212

the block of same color. These attention maps own 213

a closer relationship. The cross-subspace interac- 214

tion (CSI) relationship describes the collaboration 215

among different heads, which exists in the attention 216

maps generated by different queries, e.g., attention 217

maps from blocks of different color. 218

Inner-Subspace Interaction Modeling. One can 219

adopt the standard convolution operation via batch 220

transformation. However, such a way ignores the 221

difference among the ISI relationship constrained 222

by different queries, e.g., the ISI relationship in red 223

block and blue block in Figure 1. It is desirable 224

to preserve and enhance this distinction. To more 225

efficiently model the interaction within subspaces, 226

we therefore adopt group convolutions (Krizhevsky 227

et al., 2012), which use separate parameters to pro- 228

cess features from different groups. 229

Denote f(·) as a single layer group convolution. 230

As illustrated in Figure 2, given the output of M2M, 231

namely S, as input, ISI sub-module is computed 232

as: 233

Ṡ = f (1)(ReLU(f (0)(S))) (4) 234

where Ṡ ∈ RM×T×T is the output of the ISI sub- 235

module. We use MHisi to represent the intermedi- 236

ate head size in ISI sub-module and set the number 237

of groups in group convolutions to M . 238

Finally, we can obtain M high-quality attention 239

maps that effectively retain the benefits of using a 240

larger number of attention heads while discarding 241

irrelevant information. Such a process is another 242

key for Transformer to benefit from more heads 243

and is unique to our work. 244

Cross-Subspace Interaction Modeling. To ef- 245

ficiently model the cross-subspace interaction, we 246

adopt two-layer convolutions accompanied by the 247

ReLU activation to consist this sub-module. 248

Let us denote g(·) as a single layer convolution. 249

As illustrated in Figure 2, given the output of ISI, 250

namely Ṡ, as input, CSI sub-module is computed 251

as: 252

S̈ = g(1)(ReLU(g(0)(Ṡ))) (5) 253

where S̈ ∈ RM×T×T is the output of the CSI sub- 254

module. We use MHcsi to represent the intermedi- 255
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ate head size in CSI sub-module. Finally, we can256

obtain M final attention maps that fully leverage257

the benefits of each head.258

3.2 Efficient Version of EIT259

S1 S2 S3 S4 S13 S14 S15 S16. . .

. . . . . .. . .

S̈1 S̈2 S̈3 S̈4

M2 × T × T
(M = 4)

f (0)

MH × T × T

g(0)

M × T × T

︸︷︷
︸

ISI

︸︷︷
︸

CSI

Figure 3: Illustration of dual enhanced interaction in ef-
ficient EIT (M = 4). We omit the ReLU for simplicity.

Despite the theoretically computational effi-260

ciency and parametric efficiency of group convolu-261

tions, they slow down the training in practice (Ma262

et al., 2018). To alleviate this issue, we provide263

another efficient version of EIT, namely E-EIT, by264

simplifying the design of dual enhanced interac-265

tion. As illustrated in Figure 3, both ISI and CSI266

adopt a single-layer operation. Formally, the dual267

enhanced interactions are computed as:268

S̈ = g(0)(ReLU(f (0) (S))), (6)269

where ReLU(f (0) (S)), namely as Ṡ,270

∈ RMH×T×T and S̈ ∈ RM×T×T and MH271

is a hyper-parameter, e.g. we set it as 32 for the272

base configuration. In this way, E-EIT avoids parts273

of memory consumption and somehow improves274

the computational efficiency.275

4 Experiment Settings276

We evaluate our EIT on five widely used bench-277

marks: 1) Machine Translation, 2) Grammar Error278

Correlation, 3) Abstractive Summarization, and279

4) Language Modeling. The detailed architecture280

setups, training setups and evaluation setups are281

presented in Appendix A.282

4.1 Machine Translation283

Dataset. We select two widely used corpus:284

WMT’14 English-German (En-De) translations (a285

large-scale dataset, 4.5M training sentence pairs)286

and WMT’16 English-Romanian (En-Ro) trans-287

lations (a small-scale dataset, 610K training sen-288

tence pairs). The validation and test sets are new-289

stest2013 and newstest2014, respectively. For the290

En-Ro task, it consists of 610K training sentence291

pairs. The preprocessing follows the setups in292

Mehta et al. (2021).293

Models. We build our EIT vaiants of different 294

configurations ranging over base, big and deep for 295

both tasks. The configurations are the same as that 296

in Vaswani et al. (2017). 297

4.2 Grammar Error Correlation 298

Dataset. We also examine the effectiveness of 299

EIT on grammar error correction task, an important 300

application in natural language processing. We 301

conduct experiments on CONLL dataset, which 302

consists of 827K training sentences. We replicate 303

the setup in (Chollampatt and Ng, 2018) and adopt 304

the word-level dropout technique (Sennrich et al., 305

2016) to alleviate the overfitting problem. 306

Models. We choose the Transformer (Vaswani 307

et al., 2017) and SURFACE (Liu et al., 2021) as 308

the comparisons. All architectures follow the 309

Transformer-base configuration in Vaswani et al. 310

(2017). 311

4.3 Abstractive Summarization 312

Dataset. We also test the effectiveness of EIT on 313

abstractive summarization task, a task relying on 314

the ability of modeling long dependency. We se- 315

lect a widely used corpus: CNN/DailyMail dataset 316

which consists of 287K training documents. 317

Models. Our models are all under base configura- 318

tion, e.g., embedding dimension, hidden dimension, 319

M are set to 512, 2048 and 8, respectively. 320

4.4 Language Modeling 321

Dataset. We also evaluate our EIT on a language 322

modeling task: WikiText-103 to further examine 323

its ability of modeling long-dependency. The train- 324

ing, validation and test sets consist of 103M words 325

(from 28K articles), 218K words and 246K words, 326

respectively. We follow the official preprocessing 327

procedure (Ott et al., 2019) 328

Models. We select Adaptive Input Trans- 329

former (Baevski and Auli, 2019) as the baseline. 330

Both the baseline and our EIT are all 8-layer big 331

models with 8 heads. 332

5 Experiments Results 333

5.1 Machine Translation 334

Performance. Table 1 and Table 2 display the 335

results on En-De and En-Ro tasks, respectively. 336

First, we can see that Our EIT variants demon- 337

strate superior performance compared to the vanilla 338

Transformer across various configurations on both 339
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Type Model
WMT’14 En-De

θ (M) BLEU sBLEU

Head
Modification

Refiner (Zhou et al., 2021b) - 27.62 -
Talking-Head (Shazeer et al., 2020) - 27.51 -
Collaboration (Wang and Tu, 2020) - 27.55 -
DYROUTING (Li et al., 2019) 297M 28.96 -
DISAGREE (Li et al., 2018) - 29.28 -
MoA (Zhang et al., 2022) 200M 29.40 -
FISHformer (Nguyen et al., 2022) - 29.57 -

Localness
DMAN (Fan et al., 2021) 211M 28.97 27.8
CSAN (Yang et al., 2019) - 28.74 -
UMST (Li et al., 2022) 242M 29.75 -

Our
System

(Pre-Norm)

Transformer base 62M 27.13 26.0
EIT base 62M 28.00 26.9
E-EIT base 62M 27.72 26.7

Transformer 48L 194M 29.60 28.5
EIT 48L 194M 30.25 29.2
E-EIT 48L 194M 30.16 29.1

Transformer big 211M 28.80 27.7
EIT big 212M 29.79 28.7
E-EIT big 211M 29.61 28.5

Table 1: Results on WMT’14 En-De Task.

Type Model
WMT’16 En-Ro

θ (M) BLEU

Basic
Baseline

Transformer (Liu et al., 2020) - 34.30
Transformer (Kasai et al., 2020) 34.16
DELIGHT (Mehta et al., 2021) 53M 34.70

Head
modification

Refiner (Zhou et al., 2021b) 54M 34.25
Talking-Head (Shazeer et al., 2020) 54M 34.35
Collaboration (Wang and Tu, 2020) 54M 34.64
FISHformer (Nguyen et al., 2022) 49M 34.42
MoA (Zhang et al., 2022) 56M 34.39

Localness DMAN (Fan et al., 2021) - 34.49
UMST (Li et al., 2022) 60M 34.81

Our
System

(Pre-Norm)

Transformer base 54M 34.23
EIT base 54M 35.10
E-EIT base 54M 35.01

Transformer 24L 111M 35.00
EIT 24L 111M 35.40
E-EIT 24L 111M 35.35

Transformer big 196M 34.44
EIT big 196M 34.91
E-EIT big 196M 34.67

Table 2: Results on WMT’16 En-Ro Task.

tasks. This indicate the effectiveness of EIT vari-340

ants. Notably, E-EIT, an alternative to satisfy the341

low-latency of industrial application, can deliver342

competitive results compared with the full version343

while maintaining fast processing speeds.344

Besides, Our EIT can beat all selected methods345

of head modification and localness modeling, in-346

cluding the latest methods such as MoA (Zhang347

et al., 2022), Fishformer (Nguyen et al., 2022),348

UMST (Li et al., 2022), on both datasets. This349

highlights the fact that focusing on a single as-350

pect, such as complementarity, is inadequate for351

achieving optimal results. It is essential to take into352

account both complementarity and consensus to353

ensure the best outcomes.354

Efficiency. As the application of EIT is limited355

to the encoder-side only, the impact on inference356

speed degradation is insignificant.357

5.2 Grammar Error Correlation358

Table 3 presents the results on the CONLL dataset’s359

test set. Both EIT and E-EIT outperform the stan-360

dard Transformer, showing improvements of 0.87361

and 1.13 in terms of F0.5, respectively. Compared362

to the strong baseline SURFACE, our methods (EIT363

and E-EIT) still outperform it by 0.45 and 0.71 F0.5364

points, respectively. Importantly, both EIT and E-365

EIT require negligible extra parameters, less than366

0.1M, indicating their enhanced expressive power.367

5.3 Abstractive Summarization368

Table 4 shows results on test set of CNN-DailyMail.369

We can see EIT can achieve scores of 41.62370

ROUGE-1 points, 18.70 ROUGE-2 points and 371

38.33 ROUGE-L points, outperforming the stan- 372

dard Transformer by 0.78, 0.70 and 0.75 in terms 373

of ROUGE-1, ROUGE-2 and ROUGE-L points, re- 374

spectively. Compared with other strong baselines, 375

our EIT can still show superiority on these datasets 376

in terms of ROUGE-1 points, e.g., EIT surpasses 377

SURFACE, DMAN and BOTTOM-UP by 0.62, 0.64 378

and 0.40 in terms of ROUGE-1 points, respectively. 379

Notably, our efficient version of EIT, the E-EIT 380

can achieve comparable performance with EIT. 381

5.4 Language Modeling 382

Table 5 presents the perplexity scores of various 383

models on the WikiText-103 test set. Our EIT and 384

E-EIT models outperform the baseline with PPL 385

scores of 1.11 and 0.92, respectively. These results 386

highlight the high expressiveness of our methods, 387

as the improvements are achieved with only a neg- 388

ligible increase in parameters. 389

6 Analysis 390

6.1 Ablation Studies 391

Table 6 summarizes the impacts of removing 392

each module on En-De and En-Ro tasks, respec- 393

tively. First, we find removing any module (or 394

sub-module) mostly results in obvious performance 395

degradation (#3,4,5 vs. #2). These evidences indi- 396

cate the indispensability of these modules. 397

Notably, when removing the M2M module (#2 398

vs. #3), we observe an obvious decline in per- 399

formance on two translation tasks, indicating the 400
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Model Precision Recall F0.5

Transformer ‡ 64.84 36.61 56.18
SURFACE (Liu et al., 2021) 66.80 35.00 56.60
EIT 69.98 32.80 57.05
E-EIT 69.85 33.36 57.31

Table 3: Results on the correction task.

Model RG-1 RG-2 RG-L

Transformer ‡ 40.84 18.00 37.58

PG-Net (See et al., 2017) 39.53 17.28 36.38
MADY (Wang et al., 2021) 40.72 17.90 37.21
DMAN (Fan et al., 2021) 40.98 18.29 37.88
BOTTOM-UP (Gehrmann et al., 2018) 41.22 18.68 38.34
SURFACE (Liu et al., 2021) 41.00 18.30 37.90
EIT 41.62 18.70 38.33
E-EIT 41.58 18.63 38.28

Table 4: Results on the summarization task.

importance of M2M module. Within our EIT frame-401

work, the M2M module, motivated by the comple-402

mentary principle, serves the critical purpose of403

supplying necessary information for subsequent404

interactions. Therefore, its absence impedes the405

effectiveness of our two interaction models.406

Furthermore, the omission of the ISI sub-module407

(#2 vs. #4) results in a significant and noticeable de-408

crease in BLEU scores. One possible explanation is409

that while increasing the number of heads enhances410

the information capacity, it also introduces a cer-411

tain degree of irrelevant information (noise) into412

the attention maps. Consequently, a direct fusion413

of these heads fails to yield satisfactory outcomes.414

However, our EIT framework overcomes this chal-415

lenge by incorporating the ISI sub-module, which416

provides an effective mechanism for discarding ir-417

relevant information while retaining the benefits418

of the previous heads. This unique and innovative419

design sets our approach apart from the attention420

expansion technique (Zhou et al., 2021b).421

Apart from performance, we can see that the422

additional primary cost comes from the ISI sub-423

module (#2 vs. #4), which occupies nearly 50%424

extra training cost. We attribute this phenomenon425

to the unfriendly support for the implementation of426

group convolution in PyTorch (Paszke et al., 2019).427

6.2 Analysis on Placement of DEI428

Table 7 compares the impacts on several place-429

ments of DEI module, e.g., ISI→ Softmax →CSI.430

First, Softmax operation is insensitive to the place-431

ment of the CSI sub-module, which results in neg-432

Model Depth θ (M) Test PPL

Adaptive Transformer 8 147M 21.11
EIT 8 147M 20.00
E-EIT 8 147M 20.19

Table 5: Results on the WikiText-103 dataset.

# Model En-De En-Ro
BLEU Time BLEU Time

1 Transformer 27.13 - 34.23 -

2 EIT 28.00 1.45× 35.10 1.38×
3 - Many-to-Many 27.39 1.15× 34.71 1.10×
4 - Inner-Subspace Interaction 25.79 1.22× 32.50 1.21×
5 - Cross-Subspace Interaction 27.70 1.40× 34.53 1.29×

Table 6: Ablation study on two tasks. Time denotes the
training computing time.

ligible BLEU degradation (#1 vs. #2). Moreover, 433

by comparing #2 and #3, we find that when placing 434

the ISI sub-module behind the Softmax, the per- 435

formance suffers an obvious BLEU drop on both 436

tasks compared to EIT. One potential explanation 437

for this phenomenon is that the softmax operation, 438

which averages out the noise information to every 439

position, can be detrimental to the ISI module. 440

6.3 Parameter Analysis 441

Effect of M . In our EIT, the size of M directly 442

influences the number of attention maps we can 443

obtain, e.g., M2 attention maps. To investigate 444

its effect on performance, we conduct experiments 445

with different M on the En-De task. The results 446

are exhibited in Figure 4(a). We can see that the 447

performance gap between EIT and Transformer 448

increases as the M grows. This indicates that EIT 449

has good ability of utilizing these attention maps. 450

For example, when M is 16, EIT achieves BLEU 451

scores of 28.06 on the En-De task. 452

Effect of Strength of M2M. In our default set- 453

ting of many-to-many mapping, each query can 454

attend to all the keys. We further investigate the ef- 455

fect of strengths of M2M on the final performance. 456

Strength refers to the number of keys each query 457

can attend to. Figure 4(b) displays the results. We 458

can see that as the strength increases, the perfor- 459

mance on the En-De task goes better. This is rea- 460

sonable since more strength the more information 461

contains which is better for later interaction. 462

Effect of Number of EIT Layers. Recent re- 463

searches (Shi et al., 2016; Peters et al., 2018; Hao 464

et al., 2019) has demonstrated that various layers 465
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# IB IA CB CA En-De En-Ro
1 ✓ ✓ 28.00 35.10
2 ✓ ✓ 27.93 34.88
3 ✓ ✓ 27.50 34.45

Table 7: Effect on placement of DEI on two tasks. Here,
IB and IA denote the ISI module is located before or
after the Softmax function, and so on for CSI.
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Figure 4: BLEU vs. the size of M and strength of M2M
on the En-De task.

in the encoder of a model have a tendency to cap-466

ture distinct syntax and semantic features. Con-467

sequently, each layer may have different require-468

ments for promoting agreement among the repre-469

sentations. In light of this, we examine the impact470

of consensus on different layers. The results on the471

En-De task are presented in Tables 8. The lowest472

layer clearly benefits from a higher degree of con-473

sensus compared to other layers, consistent with474

prior research (Shleifer and Ott, 2022) indicating475

the challenges of optimizing shallow layers within476

the pre-normalization paradigm. However, by em-477

ploying the consensus strategy, we enhance the478

learning of representations in shallow layers, giv-479

ing them a significant advantage. Additionally, it480

is observed that incorporating consensus into mul-481

tiple layers does not yield optimal results. These482

findings suggest an efficient strategy: apply EMHA483

exclusively to the first encoder layer of EIT for484

optimal efficiency.485

6.4 Analysis on Behaviour of Attention Heads486

6.4.1 EIT owns Higher Consensus among487

Attention Heads488

As depicted in Figure 5, it is evident that EIT ex-489

hibits the highest average similarity among atten-490

tion maps from various heads, surpassing all other491

models. This finding suggests that EIT demon-492

strates a greater consensus among attention heads.493

We attribute this achievement to the significant role494

played by M2M and dual enhanced interaction.495

M2M facilitates the generation of rich information,496

while dual enhanced interaction efficiently lever-497

Encoder Layers Training Time En-De

[1] 1.07× 27.76
[2] - 27.46
[3] - 27.40
[4] - 27.38
[5] - 27.30
[6] - 27.48

[1− 2] 1.13× 28.08
[1− 3] 1.20× 28.02
[1− 4] 1.27× 28.05
[1− 5] 1.36× 27.82
[1− 6] 1.45× 28.00

Table 8: Layer Evaluation of Encoder with EMHA
Implementation. “1" indicates the bottom layer.

ages and refines the available information from 498

different attention heads. 499

Discussions. This phenomenon is contradictory 500

to the findings of previous studies about head inter- 501

action (Wang et al., 2022a). We speculate that this 502

is because our interactions are more efficient, not 503

only relying on an adequate number of attention 504

heads but also operating in a hierarchical manner. 505

These characteristics result in a consensus among 506

the attention maps. 507

6.4.2 Dynamics of Attention Map Similarity 508

during Computation 509

Figure 6 exhibits the dynamics of attention map 510

similarity for the EIT 48L model on the En-De test 511

set. The similarity between attention maps initially 512

decreases and then increases as the dual interac- 513

tions progress. This pattern is attributed to the two 514

stages of our approach. In the ISI phase, interac- 515

tions are modeled within each group, generating 516

representative attention maps. As these groups 517

operate independently, the similarity among these 518

representatives is lower. Subsequently, in the CSI 519

phase, interactions occur among these representa- 520

tives, resulting in the final attention maps. This CSI 521

enhances similarity among the attention maps. 522

6.4.3 EIT Learns High-quality 523

Representations 524

We further investigate how consensus affect the 525

layer representations. Following (Gong et al., 2021; 526

Dong et al., 2021; Shi et al., 2022; Wang et al., 527

2022b), we adopt the token correlation T C to mea- 528

sure the quality of features (the lower, the better). 529

The token correlation is computed by the Pearson 530

correlation coefficient (Benesty et al., 2009). 531
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Figure 6: Dynamics of attention map similarity.

Figure 7 exhibits the results on the test set of532

the En-De task. Notably, the features learned by533

EIT exhibit lower token correlation compared to534

the vanilla Transformer across all configurations.535

This indicates that EIT effectively learns improved536

layer representations.537

Furthermore, we observe that the vanilla Trans-538

former consistently maintains relatively high token539

correlation from the first layer. This observation540

aligns with prior study (Shleifer and Ott, 2022),541

suggesting that lower layers struggle to optimize ef-542

fectively in pre-normalization Transformers. How-543

ever, our EIT approach alleviates this issue.544

6.4.4 EIT Makes Head Pruning Easier545

To further explore the possibility of pruning546

the consensus attention maps, we introduce a547

simple head mask mechanism for head pruning548

during the inference phase as follows:: O =549 ∑M
i=1 ηiA

iXWi
V W

i
O, where ηi ∈ {0, 1}. Table550

9 exhibits the results on En-De tasks. Note that the551

head selection process is done in a straightforward552

manner, such as selecting heads by index, with-553

out considering their relative importance as high-554

lighted in previous studies (Michel et al., 2019).555

Additionally, the head pruning operations are ex-556

clusively applied to the encoder side. It is evident557

that EIT exhibits a high tolerance for head pruning558

without experiencing significant deterioration in559

performance. Such phenomenon sheds light on the560

researches of head pruning and inference speeding.561

1 16 32 48

0.10

0.40

0.70

1.00

Transformer-6L

Transformer-24L
Transformer-48L

EIT-6L
EIT-24L

EIT-48L

Layer Index

T
C

Figure 7: Token correlation of Transformer and EIT on
En-De task (Left) and CNN-DailyMail task (Right).

Model Pruning Ratio
0.0% 50.0% 87.5%

Transformer-48L 29.60 27.64 1.86
EIT-48L 30.25 29.09 21.12

Table 9: BLEU points of models with head pruning on
the En-De task.

7 Related Work 562

Improved Multi-Head Mechanism Previous 563

work has shown that multi-head attention can be 564

further enhanced by encouraging individual atten- 565

tion heads to extract distinct information (Li et al., 566

2018; Cui et al., 2019; Sukhbaatar et al., 2019; Guo 567

et al., 2020; Hao et al., 2019). Another branch 568

of research is designing more complex interactive 569

modeling to make better use of the multiple sub- 570

space information (Shazeer et al., 2020; Wang and 571

Tu, 2020; Li et al., 2019). Besides, Voita et al. 572

(2019) empirically demonstrates that some heads 573

in attention are useless and can be pruned with- 574

out performance degradation. Along this line, re- 575

searchers investigate how to efficiently cut off re- 576

dundant heads (Michel et al., 2019; Behnke and 577

Heafield, 2020). Different from these work, our 578

study aims to leverage the benefits of both diversity 579

and consistency. 580

8 Conclusions 581

In this paper, we propose EIT, an alternative to the 582

Transformer architecture. It further advances the 583

multi-head schema by fully leveraging two prin- 584

ciples in multi-view learning: the complementary 585

principle and the consensus principle. In addition, 586

E-EIT can be served as another choice consider- 587

ing the trade-off between performance and com- 588

putation efficiency. Experimental results on four 589

widely-used tasks demonstrate the effectiveness 590

of EIT-variants, which deliver consistent improve- 591

ments to the standard Transformer. 592

8



Limitations593

Besides the advantages endowed by EIT, there still594

exists a shortcoming that the computational effi-595

ciency of the group convolution cannot be satis-596

factory, although it is computationally efficient in597

theory. This is due to the lack of high-efficiency598

CUDA kernel support. We will release a more ef-599

ficient optimization of group convolutions in the600

soon future.601
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A Detailed Setups of Experiments 894

A.1 Machine Translation Task 895

Dataset We evaluated our approach on two 896

widely used machine translation datasets: WMT’14 897

En-De and WMT’16 En-Ro. The En-De dataset 898

contains approximately 4.5M tokenized training 899

sentence pairs. We selected newstest2013 and new- 900

stest2014 as the validation and test data, respec- 901

tively. As for the En-Ro dataset, it consists of 902

0.6M tokenized training sentence pairs. We per- 903

formed shared BPE operations on both datasets to 904

overcome the out-of-vocabulary (OOV) problem. 905

Concretely, we set the size of BPE operations to 906

32K and 20K for En-De and En-Ro datasets, result- 907

ing in a shared vocabulary with sizes of 34040 and 908

19064, respectively. 909

Model Configuration Our model architectures 910

are based on Transformer (Vaswani et al., 2017). 911

We provided three basic configurations, namely 912

base, deep, and big which follow the configura- 913

tions in Vaswani et al. (2017). We adopted a pre- 914

normalization strategy (Wang et al., 2019) consider- 915

ing training stability under different configurations. 916
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The detailed settings of hyper-parameters are given917

in Table 11.918

Training & Evaluation Our implementations919

are based on Fairseq (Ott et al., 2019). Our ex-920

periments are performed on the GEFORCE RTX921

3090 cards. We use 8 GEFORCE RTX 3090 cards922

to train models for the WMT’14 En-De task. As923

for the models on the WMT’16 En-Ro task, we924

train them on 4 GEFORCE RTX 3090 cards. The925

batch sizes for En-De and En-Ro tasks are 65536926

and 16384, respectively. The total updates are 50K,927

50K and 100K for base, deep and big in En-De928

task, respectively. We adopt Adam (Kingma and929

Ba, 2015) as an optimizer with an adamβ of (0.9,930

0.997). The learning rate scheduler is invert sqrt931

with a learning rate of 0.002 and warmup updates932

of 16000. We also adopt label smoothing with a933

ratio of 0.1 in all the experiments. More details are934

exhibited in Table 12. During the evaluation pro-935

cess, we set the beam number to 4 and the length936

penalty to 0.6 for the En-De task. As for the En-937

Ro task, the number of beams is 5 and the length938

penalty is 1.3.939

A.2 Abstractive Summarization Task940

Dataset For abstractive summarization, we con-941

duct experiments on a widely used corpus, e.g.,942

CNN/DailyMail dataset. It consists of 287K train-943

ing documents. Shared BPE operations with a size944

of 30K are performed on all the training data, re-945

sulting in a vocabulary of 32584.946

Model Configuration We only provide the base947

configuration of our EIT and E-EIT for abstractive948

summarization. The details are presented in Table949

11.950

Training & Evaluation We train models for an951

abstractive summarization task on 8 GEFORCE952

RTX 3090 cards with a batch size of 131072 and953

total updates of 30K. We adopt a weight decay strat-954

egy with a ratio of 0.0001. Other hyper-parameters955

are the same as that in machine translation tasks.956

You can find their settings in Table 12. During957

testing, the number of beams is set to 4 and the958

length penalty is set to 2.0. Besides, we set the min-959

imal length and maximum length to 55 and 140,960

respectively.961

A.3 Grammar Error Correction Task962

Dataset For the grammar error correction task,963

we select the CONLL dataset to evaluate our ap-964

proach. The CONLL dataset consists of 827K 965

training sentences. We replicate the setup in Chol- 966

lampatt and Ng (2018) and adopt the word-level 967

dropout technique (Sennrich et al., 2016) to allevi- 968

ate the overfitting problem. More details are listed 969

in Table 10. 970

Model Configuration For grammar error correc- 971

tion task, we only provide the base configuration 972

of our EIT and E-EIT. The details are presented in 973

Table 11. Notice that the models on this task adopt 974

a post-normalization strategy. 975

Training & Evaluation We train models for the 976

grammar error correction task on 8 GEFORCE 977

RTX 3090 cards. The batch size is 65536 and the 978

total updates are 14K. More training details are 979

shown in Table 12. During testing, the beams and 980

length penalty are set to 6 and 0.6, respectively. 981

A.4 Automatic Disease Diagnosis Task 982

Dataset For the automatic disease diagnosis task, 983

we select the ABIDE dataset to evaluate our ap- 984

proach. The ABIDE dataset consists of 1009 brain 985

networks from 1009 real samples of 17 interna- 986

tional sits. Due to the heterogeneity of this data, 987

we adopt the shared data with re-standardized data 988

splitting in Kan et al. (2022). Specifically, 70%, 989

10% and 20% samples are served as the training, 990

validation and test sets, respectively. 991

Model Configuration For ABIDE task, we still 992

follow the model configuration in Kan et al. (2022). 993

Specifically, we build our BrainNetEITF with two- 994

layer encoder. The number of heads M are set to 4 995

for each layer. 996

Training & Evaluation We train all models in- 997

cluding the BrainNetTF and BrainNetEITF fro 998

200 epochs on a single GEFORCE RTX 3090 999

card. Each model is trained by 5 times. We adopt 1000

Adam (Kingma and Ba, 2015) as an optimizer with 1001

an initial learning rate of 10−4 and a weight decay 1002

of 10−4. The batch size is set to 64. We adopt the 1003

checkpoint of the final epoch for evaluating the test 1004

set. 1005

A.5 Language Modeling Task 1006

Dataset For the language modeling task, we se- 1007

lect the WikiText-103 dataset to evaluate our ap- 1008

proach. The training set consists of 103M words 1009

from 28K articles. While for the validation and test 1010

sets, they are made up of 218K and 246K words, re- 1011

spectively. In details, we follow the instructions in 1012
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Dataset Sentence BPE Vocab
Train Dev Test

WMT’14 En-De 4.5M 3.0K 3.0K 32K 34040
WMT’16 En-Ro 0.6M 2.0K 2.0K 20K 19064
CNN/DailyMail 287K 13.0K 11.0K 30K 32584
CONLL 827K 5.4K 1.3K 30K 33136
WikiText-103 103M 218K 246K - 267740

Table 10: The details of datasets of language tasks.

Task Model Configuration M MH MHisi MHcsi r Kisi
h Kisi

w Kcsi
h Kcsi

w

MT

EIT

base 8 - 128 64 8 1 7 1 3
deep 8 - 128 64 8 1 7 1 3
big 16 - 256 256 16 1 7 1 3

E-EIT

base 8 32 - - 8 1 7 1 7
deep 8 32 - - 8 1 7 1 7
big 16 64 - - 16 1 7 1 7

AS
EIT base 8 - 8 64 8 1 1 1 1

E-EIT base 8 16 - - 8 1 1 1 1

GEC
EIT base 8 - 128 128 8 1 7 1 3

E-EIT base 8 64 - - 8 1 7 1 7

LM
EIT big 8 - 64 32 8 1 1 1 1

E-EIT big 8 8 - - 8 1 1 1 1

Table 11: The configurations of models on three sequence generation tasks. MT, AS, GEC and LM denote machine
translation, abstractive summarization, grammar error correction and language modelling, respectively.

Hyper-parameter WMT’14 En-De WMT’16 En-Ro CNN/DailyMail CONLL WikiText-103

GPUs 8 4 8 8 8
Batch 4096 4096 4096 4096 1024
UF 2 1 4 2 8
Optimer Adam Adam Adam Adam Nag
Adamβ (0.9, 0.997) (0.9, 0.997) (0.9, 0.997) (0.9, 0.980) -
LR 0.0020 0.0020 0.0020 0.0015 0.0001
LR scheduler inverse sqrt inverse sqrt inverse sqrt inverse sqrt Cosine(t-mult=2)
Initial LR 1e−7 1e−7 1e−7 1e−7 1e−7

Total updates 50K (100K) 25K 30K 14K 286K
Warmup updates 16000 8000 8000 4000 16000
Weight decay 0.0000 0.0000 0.0001 0.0001 0.0000
Label smoothing 0.1 0.1 0.1 0.1 0.0
Dropout 0.1 (0.3) 0.1 (0.3) 0.1 0.2 0.3
Attention dropout 0.1 0.1 0.1 0.1 0.1
ReLU dropout 0.1 0.1 0.1 0.1 0.1
Word dropout 0.0 0.0 0.0 0.2 0.1

Table 12: The training setups of different tasks. UF denotes the update frequency of the gradient. (.) lists the values
of hyper-parameters under the big configuration, which vary from the values under the base configuration.

Fairseq (Ott et al., 2019) to obtain and preprocess1013

the data. The details are listed in Table 10.1014

Model Configuration For WikiText-103 task, 1015

Both baseline and our model are all 8-layer big 1016

model with 8 heads. Note that the baseline we 1017
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adopted are adaptive input transformer (Baevski1018

and Auli, 2019). In this task, the kernel sizes in1019

DEI are all set to 1.1020

Training & Evaluation The training and evalua-1021

tion settings all follow the standard instructions for1022

language modeling in PyTorch (Ott et al., 2019).1023

We train both baseline and EIT with 286000 up-1024

dates. The details are given in Table 12. As for the1025

evaluation process, we adopt the checkpoint per-1026

forming best on the validation set. We set the max-1027

tokens, max-sentences, context-window to 3072, 11028

and 2560, respectively.1029

B Details of Metrics1030

B.1 Calculation of Head Distance1031

Inspired by the attention metrics in Zhou et al.1032

(2021a) and Wang et al. (2022b), we measure the1033

distance between different heads by calculating1034

cosine similarity among attention maps. Notice1035

that our metric focuses on the diversity of attention1036

maps, which is quite different from them. Denote1037

the dataset as D, and the attention map of h-th head1038

of l-th layer of i-th sample denotes as A(h,l,i), the1039

head similarity in l-th layer is computed by averag-1040

ing the cosine similarity of every two heads in i-th1041

layer across all samples as:1042

HD(l) =
1

|D|
1

M(M − 1)

1

T

|D|∑
i=1

(
M∑
j=1

M∑
k=1

T∑
t=1

Cosine(A
(j,l,i)
t,: ,A

(k,l,i)
t,: )

−M)

(7)1043

where |D| denotes the size of dataset, M is the1044

number of partition of features in attention, T is the1045

sequence length and Cosine(·) denotes the cosine1046

similarity function. We set D to the test set of the1047

corresponding task. The obtained head similarity1048

ranges from [0, 1]. The larger the head similarity,1049

the lower the distances between different heads are.1050

B.2 Calculation of Token Correlation1051

We define a metric T C, which measures the correla-1052

tion among the representations of different tokens.1053

Denote the dataset as D, and the sequence represen- 1054

tation of i-th sample in l-th layer denotes as X(l,i), 1055

the token correlation of in l-th layer is computed 1056

as: 1057

T C(l) =
1

|D|
1

T (T − 1)

|D|∑
i=1

(

T∑
j=1

T∑
k=1

ρ(X
(l,i)
j ,X

(l,i)
k )− T )

(8) 1058

where ρ(·) denotes the pearson correlation func- 1059

tion. Intuitively, the larger the T C is, the higher the 1060

token correlation is, degrading the model’s learning 1061

capacity (Gong et al., 2021). 1062

C Detailed added parameters of our 1063

methods 1064

The detailed parameters of models on all tasks are 1065

listed in Table 13 and Table 14. We can see that 1066

the increased parameters are negligible on all tasks. 1067

Thus, we can exclude the effect of increasing pa- 1068

rameters on performance. 1069

C.1 Efficiency Comparison 1070

Despite the performance evaluation, the memory 1071

consumption and computational cost are also two 1072

major concerns in the literature. Figure 8 also dis- 1073

plays the memory consumption and computational 1074

cost of models on the En-De task. EIT only costs 1075

8.5% more memory consumption and 44.4% more 1076

training costs than the baseline with a depth of 6. 1077

However, the extra consumption goes larger as the 1078

depth goes deeper. 1079

Besides, as aforementioned, we elaborately de- 1080

sign an efficient version E-Eit that only costs 9.4% 1081

more memory consumption and 21.7% more train- 1082

ing costs than the baseline under all the configura- 1083

tions on average. In this work, the many-to-many 1084

mapping rule is only applied on the encoder side. 1085

This is because the proposed M2M module and the 1086

subsequent ISI and CSI sub-modules will signifi- 1087

cantly enlarge the inference cost due to the heavy 1088

use of product attention on the decoder side, al- 1089

though it can attain further benefits in terms of 1090

BLEU. 1091

D Visualization of Training and 1092

Validation Perplexity 1093

We plot the training and validation perplexity of 1094

Transformer and our EIT on the WMT’14 task in 1095
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Model
En-De En-Ro

Base Deep-48L Big Base Deep-24L Big
Transformer 61.56 M 193.96 M 211.22 M 53.90 M 110.64 M 195.88 M
EIT 61.63 M 194.32 M 211.55 M 53.98 M 111.09 M 196.40 M
E-EIT 61.57 M 194.14 M 211.30 M 53.92 M 110.73 M 195.97 M

Table 13: Detailed parameters of models on WMT En-De and WMT En-Ro tasks.

Model CNN-DailyMail CONLL WikiText-103 ABIDE
Transformer 60.82 M 61.10 M 146.49 M 3.98 M
EIT 60.83 M 61.19 M 146.50 M 3.98 M
E-EIT 60.82 M 61.15 M 146.49 M 3.98 M

Table 14: Detailed parameters of models on CNN-DailyMail, CONLL, WikiText-103 and ABIDE tasks.

Figure 9. We can see that our EIT owns lower train-1096

ing and validation perplexity than Transformer.1097

E Hyper-Parameters Analysis (Kernel1098

Size and Hidden Size)1099

Since there are several hyper-parameters in both1100

ISI and CSI sub-modules, it is necessary to figure1101

out how they affect performance. Figure 10 (a-d)1102

plots the performance of EIT against the kernel1103

size and the hidden size. We can see that EIT can1104

outperform Transformer in all choice of kernel size1105

and hidden size. This observation can further help1106

us trade off efficiency and performance well. For1107

example, we can set csi kernel size to 1 or isi kernel1108

size to 3 or MHisi to M2 or MHcsi to 4M to own1109

a more efficient EIT.1110

F Local Analysis1111

Local modeling is one of the widely accepted1112

ways to improve the expressiveness of Trans-1113

former (Yang et al., 2019; Fan et al., 2021; Li et al.,1114

2022). In dual enhanced interaction, we apply con-1115

volution operations to attention maps, which has1116

the potential to introduce local biases. To figure1117

it out, we measure the localness of attention maps1118

since if there is a local bias, each token will dis-1119

tribute larger attention weights on their neighboring1120

tokens. We adopt the localness metric of Fan et al.1121

(2021), denoted as C (higher is better). More details1122

are presented in Appendix.1123

We plot the C value within a local region w =1124

0.1 ∗ T + 1, of models in En-De task and CNN-1125

DailyMail task in Figure 11. The value is computed1126

over the test set. Due to the long sequence length,1127

we only use a subset of the test set consisting of1128

1000 samples for the CNN-DailyMail task. The re-1129

sults (mean) show no significant local enhancement1130

phenomena in both tasks. Note that the attention1131

maps in the first layer of EIT on the abstractive 1132

summarization have a strong local pattern, but the 1133

kernel sizes are set to 1 on this task. So we con- 1134

clude that the improvements do not come from 1135

local enhancement. 1136
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