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Abstract

Retinal vessel segmentation is critical for medical diagnosis, yet existing models
often struggle to generalize across domains due to appearance variability, limited an-
notations, and complex vascular morphology. We propose GraphSeg, a variational
Bayesian framework that integrates anatomical graph priors with structure-aware
image decomposition to enhance cross-domain segmentation. GraphSeg factor-
izes retinal images into structure-preserved and structure-degraded components,
enabling domain-invariant representation. A deformable graph prior, derived from
a statistical retinal atlas, is incorporated via a differentiable alignment and guided
by an unsupervised energy function. Experiments on three public benchmarks
(CHASE, DRIVE, HRF) show that GraphSeg consistently outperforms existing
methods under domain shifts. These results highlight the importance of jointly
modeling anatomical topology and image structure for robust generalizable vessel
segmentation. Code can be found at github.com/AI4MOL/GraphSeg.

1 Introduction

Retinal vessel segmentation is vital to assist in the diagnosis of common retinal diseases, such
as diabetic retinopathy, age-related macular degeneration, and retinal detachment, which have
been recognized as the leading causes of vision impairment and blindness globally by the World
Health Organization (WHO) 2. However, automatic segmentation is challenging due to high image
heterogeneity. Particularly, retinal structures are changing with age, and some structures could be
overlapped or occluded due to retinal lesions [1]. Besides, imaging artifacts widely exist in retinal
images due to low contrast, eye movement, and noise, increasing the difficulties of distinguishing
fine structures like blood capillaries [2].

Conventional supervised models have shown promising performance in automatically recognizing
vascular structures and segmenting retinal vessels [3–5]. However, these models expect manual
annotation of retinal vessels, which requires expert ophthalmologists and is labor-intensive, especially
for blood capillaries [6]. Besides, while automatic vessel segmentation models have shown promising
performance in recognizing vascular structures, they struggle to distinguish fine structures mixed with
lesions or imaging artifacts, leading to discontinuous segmentation that breaks vascular structures.
Moreover, supervised models tend to be over-dependent on training data when annotations are limited,
and thus often deliver poor generalizability in unseen scenarios [7]. Furthermore, although large
amounts of unannotated images are readily available, models trained solely with supervised losses
often fail to generalize to unseen domains, due to their inherent reliance on labeled data.

∗Corresponding author.
2https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
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Recent Bayesian approaches have shown promising generalizability by imposing statistical priors on
medical image segmentation [8, 9]. These methods built probabilistic graphical models to describe the
statistical correlation among images, noises, and targets. By statistically modeling local neighboring
systems of pixels, they showed impressive ability in capturing compact shapes of organs, such as
the heart and prostate. However, they overlooked the morphological characteristics of vascular
structures such as retinal arteries, veins, and capillaries. Compared with compact shapes, vascular
shapes have a higher surface-to-volume ratio, and the local modeling approaches lacked sensitivity in
capturing long-range dependencies between pixels along vascular structures. Few works have focused
on learning the long-range morphology of vessels by fitting skeleton priors extracted from ground
truth [4], but they lack adaptability for unseen domains. Graphs have proven effective for representing
non-Euclidean or irregular structures. Recent advances in graph shape analysis showed that retinal
vessel structures can be effectively represented by principal graph components, independent of a
specific image and its annotation [10, 11]. Hence, it is promising to incorporate image-agnostic
retinal graph priors into vessel segmentation for better model generalization.

Motivated by the success of Bayesian image segmentation and graph shape analysis, we propose a
Bayesian retinal vessel segmentation framework for modeling vascular shapes by imposing retinal
graph priors. Specifically, we propose a probabilistic graphical model by jointly modeling images,
vascular shapes, and the retinal graph atlas. To mitigate the spatial misalignment structure between
vascular shapes and the retinal graph atlas, we introduce a deformable retinal graph prior from
the atlas based on the learnable displacement field between vascular shapes of images and graph
priors. To drive structural matching between images and priors, we develop a statistical model for the
vascular shape, aiming to maximize the geometric similarity between vascular shapes and deformable
graph priors. Based on variational inference, we build deep neural networks to solve the probabilistic
graphical model and achieve promising generalizability in unseen scenarios, demonstrating the
effectiveness of incorporating retinal graph priors in vessel segmentation.

As a summary, our main contributions are: (1) We propose a Bayesian retinal vessel segmenta-
tion framework for modeling vascular structures, which overcomes the limitations of conventional
Bayesian image segmentation models only focusing on compact shapes; (2) We develop deformable
retinal graph priors for matching heterogeneous vessel structures in retinal images, and design a
statistical model for vascular structures to drive the spatial alignment between image vascular struc-
tures and deformable graph priors; and (3) We validate the Bayesian retinal vessel segmentation
framework on multiple commonly used datasets, and demonstrate its superior generalizability for
unseen scenarios.

2 Related Works

2.1 Retinal Vessel Segmentation

Retinal vessel segmentation has emerged as a critical tool in healthcare, providing non-invasive
biomarkers for cardiovascular risk assessment [1, 2]. Although deep learning methods, including
U-Net variants (e.g., ResU-Net [12], FR-Net [5]), and Transformer-based hybrid frameworks [13, 14],
with their symmetric encoder-decoder structure and skip connection [3], have significantly improved
segmentation accuracy, several persistent challenges hinder clinical adoption. Specifically, discon-
nected vessel predictions and spurious bifurcations can compromise the reliability of diagnostic
procedures [2]. Moreover, the model’s robustness is limited by factors such as performance degrada-
tion under low-contrast conditions, the presence of imaging artifacts, and variability across different
devices. Existing graph-based methods [15, 11] offer a partial solution to these issues, which are
promising for representing non-Euclidean or irregular structures. However, they lack explicit anatomi-
cal constraints, resulting in implausible structures during domain shifts. While Generative Adversarial
Networks (GANs) [16] enable the segmentation and reconstruction of blood vessel networks with no
human input, they introduce instability during the training process, a problem especially prevalent in
pathological cases. To address these issues, we propose a variational Bayesian framework, integrating
deformable graph priors with a displacement field, which offers a principled and effective path toward
anatomically consistent and generalizable medical image segmentation.
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(a) Probabilistic Graphical Model. (b) Geometric similarity and dissimilarity

Figure 1: Overall framework. (a) shows the probabilistic graphical model. White circles denote
variables, and dashed white circles denote prunable variables. Specifically, X denotes the observed
image, A and S are structure-degraded and structure-preserved components respectively, Z denotes
the probability of foreground, and G represents a deformable graph determined by linear weights
w, displacement field δ, and a set of principal graph components B (agnostic to X). (b) shows the
geometric similarity between adjacent vascular segments and the dissimilarity between landmarks
and its neighbors.

2.2 Image Decomposition

Image decomposition is widely explored, driven by the assumption that underlying data often lies in a
low-dimensional subspace [17, 18, 9], offering strong potential in medical image analysis. Principal
component analysis (PCA) demonstrates that the low-rank components of matrices are its basis
elements [18]. Babacan et al. [17] introduced variational Bayesian methods for posterior inference,
though their practical adoption has been limited by computational complexity. Recently, deep learning-
based image decomposition methods have emerged. Deep image prior (DIP) [19] is introduced to
capture essential image statistics from a single observation, enhanced DIP for image denoising [20],
and RONet for efficient subspace interpretable learning [21]. BayeSeg [22, 8] addresses the challenges
of domain generalization for medical image segmentation, which decomposes radiological images
into compact shape and appearance variables. The segmentation process is then modeled as a locally
smooth variable dependent only on shape features through a variational Bayesian inference framework.
These innovations highlight the Bayesian framework’s unique capacity to integrate statistical prior
knowledge for promising generalizability, a pivotal benefit for retinal vessel segmentation.

2.3 Domain Generalization for Medical Image Segmentation

Domain generalization (DG) aims to train models on one or multiple source domains that robustly
generalize to unseen target domains [7]. Current DG approaches for vessel segmentation broadly di-
vide into three categories: Data-centric augmentation methods enrich training diversity via synthetic
domain shifts [23, 24]. AADG [23] optimizes data augmentation policies through Sinkhorn distance-
based diversity maximization and reinforcement learning to enhance cross-domain generalization.
Meta-learning methods optimize for generalization through episodic training [25, 26]. Liu et al. [25]
address both centralized and federated learning scenarios through shape-aware meta-objectives and
frequency-space interpolation to enhance model robustness against domain shifts. Domain-invariant
representation methods focus on domain-agnostic feature extraction [27–29]. A Hessian-based
vector field [28] is proposed to model vessel structures as domain-invariant features, achieving
superior cross-domain generalization in retinal vessel segmentation. Despite the progress, retinal
vascular segmentation faces significant domain shifts due to differences in imaging artifacts, and the
morphological characteristics of vascular structures, and existing studies remain underexplored. In
particular, the lack of transparency in feature invariance of adversarial and meta-learning methods
hinders clinical trust. Domain alignment strategies often fail to maintain microvascular continuity at
low contrast variations.

3 Methodology

In this section, we present our method for generalizable retinal vessel segmentation, which integrates
the structural graph prior into segmentation networks through a variational Bayesian framework. As
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illustrated in Fig. 1a, we first introduce the probabilistic graphical model (PGM) that captures the
underlying structure of retinal vessels by matching with the deformable graph prior, followed by a
detailed description of the variational inference process that enables us to learn the model parameters
and perform segmentation. For convenience, we denote the vectorization of X by x, consistent with
the notation used elsewhere.

3.1 Deformable Graph Prior Guided Decomposition and Segmentation

Image Decomposition. Artifacts in retinal images could lead to unsatisfactory segmentation deviated
from vascular structures. Motivated by the success of image decomposition in disentangling shape
information, we decompose an image into a structure-preserved component, S, and a structure-
degraded counterpart, A, as shown in Fig. 1a. The former presents the enhanced vascular structure
closer to the ground truth, whereas the latter contains noisy structures degraded by vessel-like
artifacts that adversely affect segmentation. Concretely, let X ∈ Rh×w denote a grayscale image,
we decompose X into a structure-preserved variable S and a structure-degraded variable A, i.e.,
X = S +A. By assuming A follows a Gaussian distribution with mean m and inverse variance ρ,
the distribution p(X|S,A) can be expressed as, p(X|S,A) = N (X|s+m, diag(ρ)−1). To increase
the capacity of A in modeling artifacts, m is assumed to be a variable follows a Gaussian prior
N (m|µ0

m, (σ
0
m)−1I), and ρ is assumed to be a variable follows a Gamma prior G(ρ|ϕ0ρ, γ0ρ).

Deformable Graph Prior. Conventional Bayesian approaches directly used manual annotations
to guide the learning of anatomical structures [8]. They presented promising generalizability in
cross-domain segmentation, but are limited to compact anatomy with a low surface-to-volume ratio.
To encourage models to accurately capture vascular structures, we propose a deformable graph
prior to guide image decomposition and vessel segmentation. Specifically, let A = {G1, . . . , GN}
denote a graph atlas, where graphs {Gn}Nn=1 have different vertex sets {Vn}Nn=1, while sharing a
consistent vascular structure defined by a common edge set E, and B = {B1, . . . , BK} denote
K principle graph components of A. Furthermore, let G = wTB + δ, where the multiplication
and addition operations are applied only for the vertex set of B, then the parametric graph G
determines a deformable graph prior, as shown in Fig. 1a. Here, w ∈ RK follows a Gaussian
prior N (w|0, (σ0

w)
−1I) and determines a linear combination. δ follows another Gaussian prior

N (δ|0, (σ0
δ )

−1I) and defines a displacement field.

Landmark Detection. In general, adjacent vascular segments exhibit high geometric similarity
along the direction of vessels. However, this pattern is disrupted when vessels are branching points,
which are referred to as landmarks, as shown in Fig. 1b. Detecting these landmarks is important
since they disobey geometric similarity and reversely affect vascular structure matching between
the structure-preserved component S and the deformable graph prior G. To detect landmarks, we
introduce a variable, D, in Fig. 1a which follows a Gamma prior, G(d|ϕ0d, γ0d).

Vessel Segmentation. Let Y ∈ Rh×w denote a vessel annotation of X , and Z ∈ Rh×w denote the
probability of vessel segmentation, where p(Z) follows a Beta prior, B(z|α0

z, β
0
z ). Then the distribu-

tion p(Y |Z) determines a supervised loss function for segmentation, such as cross-entropy or Dice
loss. However, such pixel-wise loss functions struggle to capture vascular structures effectively, as
they overlook long-range dependencies between pixels along the vessels. Motivated by the advantage
of retinal graphs in preserving vascular structures, we develop structure-preserved image decomposi-
tion and vessel segmentation guided by the deformable graph prior. Concretely, let H(S;Z,G,D)
denote an energy function that quantifies the quality of vascular structure matching between S and
(Z,G) based on detected landmarks D, then p(S|Z,G,D) ∝ exp{−H(S;Z,G,D)} determines a
deformable graph prior-guided image decomposition and vessel segmentation. Nevertheless, the
definition of H(S;Z,G,D) is nontrivial and will be detailed in the following section.

3.2 Statistical Modeling of Vascular Structure

Implicit Neural Representation. The first challenge of defining H(S;Z,G,D) lies in measuring
the structural similarity between S and G. However, S is pixel-wise, while the vertex set of G is
low-dimensional and sparse, making it difficult to directly define the structural similarity between S
and G. To tackle the difficulty, we used implicit neural representation to map G to the same space as
S. Concretely, let fζ(·) denote a graph neural network parameterized by ζ to predict the Gaussian
parameters of each vertex, then we can sample a Gaussian cloud from fζ(G) by Gaussian splatting,
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Figure 2: Network Architecture of GraphSeg. GraphSeg consists of three modules: image decompo-
sition (green), vessel segmentation (blue) and deformable graph prior (yellow). During the training
stage, the deformable graph prior guides both the decomposition and segmentation processes. In the
inference stage, only decomposition and segmentation modules are used.

which not only has the same dimension as S, but also is differentiable. For convenience, the resulting
Gaussian cloud is notated as SG = fζ(G). Details are in Appendix A.2.5.

Vascular Structure Matching. Retinal vessels present geometric similarity between adjacent
vascular segments but dissimilarity between landmarks and their neighbors, as shown in Fig. 1b.
Motivated by this, we unfold S ∈ Rh×w to Sunfold ∈ Rhw×k2

using a sliding window of size k × k,
where each k× k matrix represents a local patch located at the central pixel. Similarly, we can unfold
the Gaussian cloud SG as SG

unfold. Let {vi = (xi, yi)}hw−1
i=0 denote the grid points corresponding to

S, then these points can be partitioned into two groups based on whether they belong to the vertex set
of deformable graph G. Concretely, IG = {i|deg(vi) > 0} denote the indices of nodes with non-zero
degree and IN(vi) denotes the indices of vi’s neighbors. Based on a all-to-all cosine similarity defined
by C = Simcos(Sunfold, S

G
unfold) ∈ Rhw×hw, the dissimilarity from G-to-neighbor can be defined

as:
HG2neighbor(S;Z,G,D) =

∑
i∈IG

∑
j∈IN(vi)

zi · exp{−di · ci,j}. (1)

Here, zi ≈ 1 denotes the i-th pixel with a big probability belongs to vascular foreground. This loss
forces to learn similar adjacent vascular segments while detect dissimilar landmarks. Similarly, the
similarity from G-to-background can be defined as,

HG2background(S;Z,G,D) =
∑
j∈IG

hw−1∑
i=0

(1− zi) · exp{di · ci,j}. (2)

Here, (1− zi) ≈ 1 denotes the i-th pixel with a big probability belongs to non-vascular background.
This enforces our model to distinguish between vascular structure and non-vascular background. By
combining both, we define an energy function by,

H(S;Z,G,D) = HG2neighbor(S;Z,G,D) +HG2background(S;Z,G,D). (3)

This aims to keep adjacent local shapes (if not landmarks) as similar as possible while distinguishing
unconnected local shapes. Finally, we have,

pζ(S|Z,G,D) ∝ exp{−H(S;Z,G,D)}, (4)

which informs a structure-preserved image decomposition and vessel segmentation, guided by the
deformable graph prior.

3.3 Deep Variational Inference

Maximum a posteriori. Let Ψ = {s,m, ρ, z,d, δ,w} denote the set of variables that need to be
inferred, we aim to maximize pζ(Ψ|x) ∝ p(x|Ψ)pζ(Ψ), which however is intractable due to unknown
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parameters ζ. To tackle the difficulty, we adopt a variational distribution qθ(Ψ|x) to approximate
p(Ψ|x), and maximize an evidence lower bound (ELBO) as follows,

L(ζ, θ;x) := EΨ∼qθ(Ψ|x)

[
ln
pζ(Ψ,x)

qθ(Ψ|x)

]
. (5)

Since pζ(Ψ,x) = p(x|Ψ)pζ(Ψ), the above equation can be converted to,

L(ζ, θ;x) := EΨ∼qθ(Ψ|x) [ln p(x|Ψ)]−KL(qθ(Ψ|x)∥pζ(Ψ)). (6)

The first term induces a reconstruction loss,

EΨ∼qθ(Ψ|x) [ln p(x|Ψ)] = Eqθ(s,m,ρ|x) [ln p(x|s,m, ρ)] . (7)

KL Divergence. Based on the PGM in Fig. 1a, the prior p(Ψ) can be expressed as,

pζ(Ψ) = pζ(s,m, ρ, z,d, δ,w) = pζ(s|z,d, δ,w)p(m)p(ρ)p(z)p(d)p(δ)p(w). (8)

Next, we factorize the variational distribution qθ(Ψ|x) as two distributions corresponding to the set
of image-related variables, {s,m, ρ}, and the set of structure-related variables, {z,d, δ,w},

qθ(Ψ|x) = qθ(s,m, ρ, z,d, δ,w|x) = qθ(s,m, ρ|x)qθ(z,d, δ,w|s). (9)

The distribution of the image-related variables can be further factorized as,

qθ(s,m, ρ|x) = qθ(m|x)qθ(s|x,m)qθ(ρ|x,m, s). (10)

Similarly, the distribution of the structure-related variables can be further factorized as,

qθ(z,d, δ,w|s) = qθ(d|s)qθ(w|s,d)qθ(δ|s,d,w)qθ(z|s,d, δ,w). (11)

Based on the above factorization, the second KL divergence term in Eq. (6) can be unfolded as,

KL(qθ(Ψ|x)∥pζ(Ψ)) = Eqθ(z,d,δ,w|s) [KL(qθ(s,m, ρ|x)||pζ(s|z,d, δ,w)p(m)p(ρ))]

+ Eqθ(s|x,m) [KL(qθ(z,d, δ,w|s)||p(z)p(d)p(δ)p(w))] . (12)

Closed-form Solutions. Since ρ follows a Gamma prior, its variational distribution also follows
a Gamma distribution, i.e., qθ(ρ|x,m, s) = G(ρ|ϕρ, γρ). By minimizing the KL divergence over
qθ(ρ|x,m, s), we have the following closed-formed solution,

ϕρi
= ϕ0ρ +

1

2
, γρi

= γ0ρ +
1

2
(xi − ŝi − m̂i)

2. (13)

Similarly, the variational distribution of d follows a Gamma distribution, i.e., qθ(d|s) = G(d|ϕd, γd).
Its distributional parameters can be explicitly computed by,

ϕdi
= ϕ0d, γdi

=

{
γ0d +max{0, µzi

∑
j∈IN(vi)

ĉi,j − (1− µzi)
∑

j∈IG
ĉi,j} if i ∈ IG

γ0d −min{0, (1− µzi)
∑

j∈IG
ĉi,j} otherwise

.

(14)
Here, max /min is used to ensure a feasible Gamma distribution, and ŝi, m̂i, ĉi,j denotes obtained
samples by Markov Chain Monte Carlo (MCMC) sampling.

Learnable Variational Posteriors. Given qθ(ρ|x,m, s) = G(ρ|ϕρ, γρ) and qθ(d|s) = G(d|ϕd, γd),
the variational distributions of other variables can be learned by minimizing,

L(ζ, θ;x, ρ,d) = Eqθ(Ψ|x) [− ln p(x|Ψ)] + KL(qθ(Ψ|x)∥pζ(Ψ))

= Lx(θ;x, ρ) + Lm(θ)︸ ︷︷ ︸
image-related

+Ls(θ, ζ;d) + Lz(θ) + Lδ(θ) + Lw(θ)︸ ︷︷ ︸
structure-related

. (15)

Please refer to Appendix A.2 for the detailed formulation of this section.

Network Architecture. We implement the variational inference framework with deep neural net-
works, as shown in Fig. 2. GraphSeg consists of three modules: image decomposition, deformable
graph prior, and vessel segmentation. For the decomposition module, we employ two separate residual
networks [30], denoted as fA and fS , to infer the structure-degraded component m and the structure-
preserved representation s of the input image x. Both m and s are modeled as samples drawn from
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Gaussian distributions, enabling a probabilistic interpretation of the decomposed features. For the
deformable graph prior module, we first utilize a convolutional neural network fW to infer the latent
principal component coefficients w from the input vascular structure representation s. The misaligned
graph template is then reconstructed as w⊤B, and refined by a graph neural network (GNN) f∆ to
predict a displacement field δ ∼ N (µδ, σ

2
δ ). This results in a deformable graph topology G. For the

segmentation module, a second graph neural network fζ is used to predict the local scale parameters
of each node in G, producing the final graph-based vascular structure SG through Gaussian splatting.
This result is correlated with the decomposed structure S for downstream segmentation. A third
U-Net decoder is used to infer the final segmentation map z, which is modeled as a sample from a
Beta distribution, B(z|αz, βz). After that, the unsupervised energy loss, Ls(θ, ζ;d), is computed
based on the consistency among the predicted segmentation z, the graph-based structure SG, the
decomposed structure S, and the landmark d, as formulated in Eq. (3), where d is obtained through a
closed form as Eq. (14). Finally, we combine the Dice loss with the unsupervised loss in Eq. (15) by
L(ζ, θ;x, ρ,d) + LDice(θ; z,y) for training neural networks.

4 Experiments

To assess the performance and generalization capability of GraphSeg, we train it on a single dataset
and evaluate it across all other datasets to measure its generalization effectiveness.

4.1 Setup

Datasets and Metrics. We employ four widely recognized datasets: CHASE [31], HRF [32], DRIVE
[33], and STARE [34]. For evaluation, we mainly employ the Accuracy (Acc), F1, Soft Dice,
Sensitivity, and Specificity to evaluate the segmentation performance. Acc, F1, and Soft Dice are
used to measure the overall segmentation performance, while Sensitivity and Specificity are used to
measure the performance of vascular foreground and non-vascular background, respectively.

Compared Approaches. We mainly compare GraphSeg with the following representative methods:
(1) previous state-of-the-art vessel segmentation models, including FR-Net [5] and FSG-Net [11];
(2) widely adopted architectures for medical image segmentation, such as U-Net [35], AttUNet [36],
AGNet [37], ConvUNeXt [38], DCSAU-Net [39], R2UNet [40], and SAUNet [41]; (3) a strong and
generalizable baseline, BayeSeg [8]; and (4) Skelcon [4], which attempts to introduce the skeleton
structural prior into retinal vessel segmentation. To ensure a fair comparison in generalization ability,
both U-Net and BayeSeg are re-implemented with the same segmentation backbone used in GraphSeg
to eliminate architecture-induced bias. The graph construction follows Bal et al. [42]. Graph Atlas is
obtained by performing their code on the training set of CHASE. More implementation details can be
found in the Appendix B.

4.2 Experimental Results

We first compare GraphSeg with state-of-the-art methods in terms of accuracy, sensitivity, specificity,
F1 score, and Soft Dice. To evaluate cross-domain generalization, the models are trained on one
dataset and tested on the others. Finally, we conduct an ablation study to quantify the contribution of
each component within GraphSeg.

4.2.1 Comparison with Previous Models

To evaluate the effectiveness of GraphSeg on retinal vessel segmentation, we first compare our Graph-
Seg with previous models by training and testing on the same dataset. As shown in Table 1, under the
same segmentation backbone, both BayeSeg and GraphSeg outperform U-Net across all datasets,
highlighting the effectiveness of the variational decomposition in improving vascular segmentation.
Furthermore, GraphSeg consistently surpasses BayeSeg, especially on structure-sensitive metrics
such as Soft Dice and F1 score, demonstrating the additional benefit of incorporating a graph-based
structural prior. Compared with other state-of-the-art methods (e.g., FR-Net, FSG-Net, Skelton),
GraphSeg achieves competitive or superior results, confirming that our framework is comparable to
specialized architectures while offering stronger anatomical consistency and generalization potential.
Without loss of generality, any other models, including the FR-Net and FSG-Net, can be integrated
into our GraphSeg framework for graph prior injection.
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Table 1: Performance comparison of different methods across CHASE, DRIVE, and HRF datasets.
The best results per dataset are in bold. Note that U-Net, BayeSeg, and GraphSeg used the same
segmentation backbone.

Dataset Method Accuracy Soft Dice F1 Sensitivity Specificity

CHASE

Skelton 95.61 80.71 78.95 78.17 97.94
FR-Net 97.26 80.10 79.10 84.74 97.65
FSG-Net 97.52 81.34 81.02 86.00 98.26
U-Net 95.17 79.74 78.39 81.97 96.79
BayeSeg 95.45 80.48 79.62 82.93 96.99
GraphSeg 96.54 82.91 81.82 87.84 97.40

DRIVE

Skelton 94.61 81.50 80.39 83.23 98.59
FR-Net 97.01 83.91 82.99 83.86 98.15
FSG-Net 97.04 84.19 83.23 84.21 98.30

U-Net 90.89 61.09 61.09 48.55 98.51
BayeSeg 94.48 79.08 78.56 77.60 97.06
GraphSeg 96.13 85.23 84.82 83.02 98.15

HRF

Skelton 95.90 79.87 78.59 78.53 98.86
FR-Net 97.01 81.92 80.70 81.67 98.42
FSG-Net 97.10 82.51 81.57 83.61 98.99
U-Net 89.79 71.37 67.76 78.15 91.74
BayeSeg 95.35 81.77 81.05 75.44 98.42
GraphSeg 95.88 84.29 83.89 81.58 98.07

4.2.2 Cross-domain Generalization

Cross-dataset Generalizability. To assess the generalizability of GraphSeg, we perform cross-
dataset evaluations by training the model on the CHASE dataset and testing it on three unseen datasets:
DRIVE, HRF and STARE. As shown in Table 2, we compare against ten strong baselines. To ensure
a fair comparison, U-Net, BayeSeg, and GraphSeg are trained with the same data augmentation
and implemented with the same segmentation backbone, eliminating potential confounding factors
from training protocols or model capacity. In particular, U-Net is trained and tested on each dataset
independently, serving as an in-domain reference. BayeSeg and GraphSeg are trained on CHASE
and evaluated on all test sets to assess their cross-domain performance.

Across domains, BayeSeg and GraphSeg consistently outperform others in Soft Dice, demonstrating
the advantage of image decomposition in improving robustness under distribution shift. Notably,
GraphSeg outperforms the second best by 7.43 in Soft Dice and 6.46 in F1 Score on the HRF dataset,
where the background is more complex and noisy, highlighting the importance of incorporating a
graph structure prior to cross-domain generalization. Compared with the in-domain results in Table 1,
although BayeSeg and GraphSeg present significant performance drops due the low-resolution nature
of DRIVE, which raises difficulties in decomposing vascular structures, GraphSeg still performs
much better on DRIVE, demonstrating the effectiveness of statistical modeling of vsacular structures.

Generalizability on Cross-dataset Graph Prior. We also use the graph prior from the CHASE to
train GraphSeg on the DRIVE dataset, as shown in Table 3. The results are summarized as follows:
(1) GraphSeg (trained) outperforms U-Net (trained) due to the graph prior, which demonstrates that
the graph prior extracted from one dataset can be transferred to the other dataset. (2) GraphSeg
outperforms U-Net (trained) on most metrics, which confirms the generalizability of GraphSeg and
demonstrates the robustness of our framework with respect to graph priors.

4.3 Ablation Study

To evaluate the impact of the graph prior and the image decomposition module, we conduct an
ablation study by training the models on the CHASE dataset and testing them on the DRIVE dataset.
Both the two modules contribute positively to the generalization performance as shown in Table 4.
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Table 2: Cross-dataset evaluation: Models are trained on CHASE and evaluated on other datasets.
U-Net is trained and tested on each dataset as a strong baseline.

Dataset Model Acc Soft Dice F1 Sensitivity Specificity

CHASE (train)

U-Net 95.17 79.74 78.39 81.97 96.79
FSGNet 97.52 81.34 81.02 86.00 98.26
FRNet 97.26 80.10 79.10 84.74 97.65

AttUNet 97.54 66.02 77.06 78.92 98.56
AGNet 97.44 76.25 77.58 85.14 98.13

ConvUNeXt 97.21 72.40 73.93 75.97 98.39
DCSAU-net 97.17 74.33 74.68 79.87 98.12

R2UNet 96.96 67.99 71.73 74.60 98.20
SAUNet 97.47 76.17 77.23 82.02 98.33
BayeSeg 95.45 80.48 79.62 82.93 96.99
GraphSeg 96.54 82.91 81.82 87.84 97.40

DRIVE

U-Net (trained) 90.89 61.09 61.09 48.55 98.51
FSGNet 95.62 57.51 57.56 44.39 99.46
FRNet 96.65 71.33 73.57 67.53 98.85

AttUNet 95.07 45.27 50.22 38.75 99.30
AGNet 96.25 69.46 70.59 55.21 98.59

ConvUNeXt 97.07 61.91 63.77 74.35 97.92
DCSAU-net 95.30 62.30 62.56 56.82 98.19

R2UNet 95.01 63.86 67.02 70.14 96.60
SAUNet 96.46 69.78 70.67 61.92 99.06
BayeSeg 92.34 71.68 70.71 61.85 97.87
GraphSeg 93.56 77.16 76.01 68.09 98.19

HRF

U-Net (trained) 89.79 71.37 67.76 78.15 91.74
FSGNet 95.90 68.26 68.56 71.50 98.28
FRNet 97.00 64.99 67.56 69.78 97.28

AttUNet 97.37 54.20 65.29 66.41 97.94
AGNet 96.70 63.03 64.54 66.69 97.10

ConvUNeXt 96.52 59.74 60.04 63.58 99.07
DCSAU-net 96.63 61.70 62.09 68.56 97.30

R2UNet 94.21 49.07 52.03 88.87 94.40
SAUNet 97.15 65.87 67.17 83.92 97.65
BayeSeg 92.05 70.73 70.13 67.71 96.13
GraphSeg 93.38 78.16 76.59 78.90 96.88

STARE

U-Net (trained) 90.98 60.81 59.66 55.71 95.95
FSGNet 96.15 54.08 54.23 45.43 99.33
FRNet 93.04 64.91 67.07 62.39 98.96

AttUNet 95.71 37.91 41.97 34.39 99.54
AGNet 96.52 67.49 68.82 66.74 98.47

ConvUNeXt 95.97 52.65 53.30 46.89 98.96
DCSAU-net 94.77 47.59 47.83 45.65 97.75

R2UNet 95.53 49.90 50.86 50.63 98.22
SAUNet 96.87 61.50 62.23 56.44 99.29
BayeSeg 92.85 67.82 66.82 59.78 97.65
GraphSeg 93.65 72.76 71.43 68.72 97.69

Introducing the decomposition module alone brings consistent improvements across all metrics,
particularly in sensitivity and Dice score, indicating enhanced structural representation. When the
graph prior is additionally incorporated, the model achieves the best performance, demonstrating the
complementary role of topological constraints in further improving generalization to unseen data.
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Table 3: Evaluation of model generalizability on the cross-dataset graph prior
Dataset Model Acc Soft Dice F1 Sensitivity Specificity

DRIVE (train) GraphSeg (trained) 96.13 85.23 84.82 83.02 98.15
U-Net (trained) 90.89 61.09 61.09 48.55 98.51

CHASE
GraphSeg 95.02 82.56 79.37 89.70 95.69

U-Net (trained) 95.17 79.74 78.39 81.97 96.79
GraphSeg (trained) 96.54 82.91 81.82 87.84 97.40

HRF
GraphSeg 93.91 78.20 77.25 78.40 96.34

U-Net(trained) 89.79 71.37 67.76 78.15 91.74
GraphSeg(trained) 95.88 84.29 83.89 81.58 98.07

Table 4: Ablation on the effect of graph prior and image decomposition to generalizability.
Decomposition Graph prior Accuracy Soft Dice F1 Sensitivity Specificity

90.75 66.56 64.07 55.04 97.19
✓ 92.34 71.68 70.71 61.85 97.87
✓ ✓ 93.56 77.16 76.01 68.09 98.19

5 Discussion

Why does GraphSeg work? The success of GraphSeg can be attributed to its unique integration
of graph structure prior and image decomposition, which is modeled with an energy function as
Eq. (3). The graph structure prior effectively captures the anatomical coherence of vascular trees,
allowing the model to leverage both local connectivity and global shape constraints. This enables
GraphSeg to achieve high-quality segmentation even in challenging scenarios, like complex noisy
backgrounds. The image decomposition module further enhances this by disentangling the structure-
preserved component from artifacts, leading to improved segmentation accuracy. Moreover, the
introduction of an unsupervised energy function in Eq. (3) enables a natural extension of GraphSeg
to semi-supervised learning settings, which are both practical and significant in real-world medical
applications. We leave this direction as promising future work.

How does GraphSeg generalize? The generalizability of GraphSeg stems from two key factors: (1)
the use of a graph structure prior that captures the underlying anatomy of retinal vessels, allowing the
model to learn robust representations that are less sensitive to domain shifts; (2) the incorporation of
a variational Bayesian framework that enables the model to adaptively learn stochastic intermediate
samples from variational distributions, enhancing its ability to generalize to unseen domains. This
combination allows GraphSeg to maintain high performance across different datasets.

6 Conclusion

In this work, we proposed GraphSeg, a variational Bayesian segmentation framework that integrates
a deformable graph prior to anatomically consistent retinal vessel segmentation. By jointly modeling
image decomposition and graph-aligned structural inference, GraphSeg captures both local connectiv-
ity and global vascular topology. Extensive experiments across CHASE, DRIVE, HRF, and STARE
datasets demonstrate state-of-the-art accuracy and strong cross-domain generalization. In particular,
our method consistently outperforms prior work in structure-sensitive metrics such as Soft Dice and
F1, especially in challenging domains like HRF. Ablation studies further confirm the complemen-
tary roles of the graph prior and image decomposition. Overall, GraphSeg provides a principled
and generalizable approach for structure-aware medical image segmentation. Limitation: While
GraphSeg demonstrates strong performance and cross-domain generalization, its current formulation
requires a pre-processing step to extract skeletons and construct graphs from segmentation masks.
This dependency may introduce slight variations due to heuristic rules (e.g., junction merging, branch
pruning), and future work could explore end-to-end learnable graph extraction to reduce reliance on
hand-crafted morphological pipelines.
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A Method Details

A.1 Graph Construction and Shape PCA

The graph construction and shape PCA are conducted on the training set of CHASE dataset in
this work. Given the segmentation masks, we construct a graph-based representation as our graph
structural prior. Following Bal et al. [42] and Luo et al. [43], The process involves the following
steps: (1) Skeletonization: We apply morphological thinning to obtain a 1-pixel-wide vessel skeleton,
which preserves the topological structure while discarding width information. (2) Graph Construc-
tion: Nodes are extracted by identifying endpoints and bifurcations on the skeleton based on pixel
connectivity. Edges are defined as pixel chains connecting node pairs, resulting in an undirected
graph represented by an adjacency matrix. (3) Graph Refinement: To address artifacts such as
node fragmentation and false intersections, we apply topological corrections by merging closely
located nodes and pruning spurious connections based on angular continuity. (4) Graph Registration:
Each graph is aligned to a common mean template using factorized graph matching [44]. Both
node similarity (Euclidean distance) and edge similarity (shape distance computed via Square Root
Velocity Functions, SRVFs [45]) are considered. (5) Shooting Vector Computation: The deformation
from the mean graph Gµ to each registered graphG∗

k is encoded as a shooting vector svk = G∗
k−Gµ.

(6) Feature Vector Construction: We concatenate the shooting vector and node coordinate differences
into a high-dimensional vector sv∗k to capture both topological and geometric variability. (7) Principal
Component Analysis. PCA is applied to the set {sv∗k}mk=1 to obtain a compact shape representation.
The resulting PCA coefficients characterize structural variation and are used in GraphSeg.

A.2 Deep Variational Inference Details

A.2.1 Derivation of Variational Inference

Let Ψ = {s,m, ρ, z,d, δ,w} denote the set of variables that need to be inferred, we aim to maximize
pζ(Ψ|x) ∝ p(x|Ψ)pζ(Ψ). We adopt a variational distribution qθ(Ψ|x) to approximate p(Ψ|x). As a
result, this can be optimized by maximizing an evidence lower bound (ELBO) as follows,

L(ζ, θ;x) := EΨ∼qθ(Ψ|x)

[
ln
pζ(Ψ,x)

qθ(Ψ|x)

]
. (16)

Since pζ(Ψ,x) = p(x|Ψ)pζ(Ψ), the above equation can be converted to

L(ζ, θ;x) := EΨ∼qθ(Ψ|x) [ln p(x|Ψ)]−KL(qθ(Ψ|x)∥pζ(Ψ)), (17)

where the first term induces a reconstruction loss:

EΨ∼qθ(Ψ|x) [ln p(x|Ψ)] = Eqθ(s,m,ρ|x) [ln p(x|s,m, ρ)] . (18)

Based on the PGM as shown in Fig. 1a, the prior p(Ψ) can be expressed as:

pζ(Ψ) = pζ(s,m, ρ, z,d, δ,w) = pζ(s|z,d, δ,w)p(m)p(ρ)p(z)p(d)p(δ)p(w). (19)

Variational Distributions. The variational distribution qθ(Ψ|x) can be factorized as two distributions
corresponding to the set of image-related variables, {s,m, ρ}, and the set of structure-related variables,
{z,d, δ,w},

qθ(Ψ|x) = qθ(s,m, ρ, z,d, δ,w|x) = qθ(s,m, ρ|x)qθ(z,d, δ,w|s). (20)

The distribution of the image-related variables can be further factorized by,

qθ(s,m, ρ|x) = qθ(m|x)qθ(s|x,m)qθ(ρ|x,m, s). (21)

That is we first estimate the mean m of a and then infer the vascular shape, s, from x,m, and finally
infer the inverse variance ρ from x,m, s. Similarly, the distribution of the structure-related variables
can be further factorized by,

qθ(z,d, δ,w|s) = qθ(d|s)qθ(z, δ,w|s,d) (22)
= qθ(d|s)qθ(δ,w|s,d)qθ(z|s,d, δ,w) (23)
= qθ(d|s)qθ(w|s,d)qθ(δ|s,d,w)qθ(z|s,d, δ,w). (24)
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That is we detect landmarks, d, from the vascular shape s, estimate the linear weights w which
determines a vascular template wTB, infer displacement field δ between the vascular shape and
template, and predict the segmentation z from the shape, landmark, and estimated graph wTB + δ.

Based on the above factorizations, the second KL divergence term in (17) can be unfolded as,

KL(qθ(Ψ|x)∥pζ(Ψ)) = Eqθ(z,d,δ,w|s) [KL(qθ(s,m, ρ|x)||pζ(s|z,d, δ,w)p(m)p(ρ))] (25)

+ Eqθ(s|x,m) [KL(qθ(z,d, δ,w|s)||p(z)p(d)p(δ)p(w))] . (26)

A.2.2 Closed-form Solution of ρ

Given other variables, qθ(ρ|x,m, s) = G(ρ|ϕρ, γρ) can be inferred by minimizing,

L(ϕρ, γρ) =E [− ln p(x|s,m, ρ)] + E [KL(qθ(ρ|x,m, s)||p(ρ))] + C (27)
=Eqθ(ρ|x,m,s) [ln qθ(ρ|x,m, s)]− Eqθ(ρ|x,m,s) [ln p(ρ) (28)

+Eqθ(Ψ\ρ|x) [ln p(x|s,m, ρ)] + C
]
. (29)

The minimum is achieved when

ln qθ(ρ|x,m, s) = ln p(ρ) + Eqθ(Ψ\ρ|x) [ln p(x|s,m, ρ)] + C (30)

≈
hw−1∑
i=0

[(ϕ0ρ − 1) ln ρi − γ0ρρi] (31)

+

hw−1∑
i=0

1

2
[ln ρi − (xi − ŝi − m̂i)

2ρi] + C (32)

=

hw−1∑
i=0

[(ϕ0ρ −
1

2
) ln ρi − (γ0ρ +

1

2
(xi − ŝi − m̂i)

2)ρi] + C. (33)

Here, we use Markov Chain Monte Carlo (MCMC) sampling in (32) to approximate the expectation
in (30). Since qθ(ρ|x,m, s) = G(ρ|ϕρ, γρ), we finally have

ϕρi = ϕ0ρ +
1

2
, γρi = γ0ρ +

1

2
(xi − ŝi − m̂i)

2. (34)

A.2.3 Closed-form Solution of d

Given other variables, qθ(d|s) = G(d|ϕd, γd) can be inferred by minimizing,

L(ϕd, γd) = E [− ln pζ(s|z,d, δ,w)] + E [KL(qθ(d|s)||p(d))] + C (35)

= Eqθ(d|s) [ln qθ(d|s)]− Eqθ(d|s)
[
ln p(d) + Eqθ(Ψ\d|x) [ln pζ(s|z,d, δ,w)] + C

]
.

(36)

The minimum is achieved when

ln qθ(d|s) = ln p(d) + Eqθ(Ψ\d|x) [ln pζ(s|z,d, δ,w)] + C (37)

≈ ln p(d) +
∑
i∈IG

∑
j∈IN(vi)

µzi · exp{−di · ĉi,j}+
∑
j∈IG

hw−1∑
i=0

(1− µzi) · exp{di · ĉi,j}+ C

(38)

=

hw−1∑
i=0

[(ϕ0d − 1) ln di − γ0ddi] (39)

+
∑
i∈IG

∑
j∈IN(vi)

µzi · exp{−di · ĉi,j}+
∑
j∈IG

hw−1∑
i=0

(1− µzi) · exp{di · ĉi,j}+ C, (40)

where µzi = αzi/(αzi + βzi), and we approximate the expectation at the right-hand of (37) by the
MCMC sampling in (38). Furthermore, since eλx = 1 + λx+ O(x2), we have exp{−di · ĉi,j} ≈

16



1− di · ĉi,j and exp{di · ĉi,j} ≈ 1 + di · ĉi,j . As a result, we can convert the above formula to,

ln qθ(d|s) ≈
∑
i∈IG

[
(ϕ0d − 1) ln di −

(
γ0d + µzi

∑
j∈IN(vi)

ĉi,j − (1− µzi)
∑

j∈IG
ĉi,j

)
di

]
(41)

+
∑
i/∈IG

[
(ϕ0d − 1) ln di −

(
γ0d − (1− µzi)

∑
j∈IG

ĉi,j

)
di

]
+ C. (42)

Thus, the parameters of qθ(d|s) = G(d|ϕd, γd) can be explicitly expressed as,

ϕdi = ϕ0d, γdi =

{
γ0d +max{0, µzi

∑
j∈IN(vi)

ĉi,j − (1− µzi)
∑

j∈IG
ĉi,j} if i ∈ IG

γ0d −min{0, (1− µzi)
∑

j∈IG
ĉi,j} otherwise

.

(43)
Here, max /min is used to ensure a feasible Gamma distribution.

A.2.4 Unsupervised Loss Details

In Eq. (15), the unsupervised loss consists of image-related parts and structure-related parts. To be
specific, we describe the terms as follows:

Lx(θ;x, ρ) = Eqθ(s,m,ρ|x) [− ln p(x|s,m, ρ)] (44)

= Eqθ(m|x)qθ(s|x,m)qθ(ρ|x,m,s) [− ln p(x|s,m, ρ)] (45)

= Eqθ(m|x)qθ(s|x,m)

[
1

2

hw−1∑
i=0

µρi(xi − si −mi)
2

]
+ C (46)

≈ 1

2
∥x− ŝ− m̂∥2diag(µρ)

+ C, (47)

where µρi =
ϕρi

γρi
denotes the mean of ρi. Suppose qθ(m) = N (m|µm, diag(σ

2
m)), then

Lm(θ) = Eqθ(m|x) [KL(qθ(m|x)||p(m))] (48)

= Eqθ(m|x) [ln qθ(m|x))] + Eqθ(m|x) [− ln p(m)] (49)

=
1

2
σ0
m∥µm − µ0

m∥22 +
1

2
[⟨σ0

m1, σ2
m⟩ − ⟨1, lnσ2

m⟩] + C. (50)

Suppose qθ(s|x,m) = N (s|µs, diag(σ
2
s)), then

Ls(θ, ζ;d) = Eqθ(z,d,δ,w|s) [KL(qθ(s|x,m)||pζ(s|z,d, δ,w))] (51)

= Eqθ(s|x,m) [ln qθ(s|x,m)] + Eqθ(s|x,m)qθ(z,d,δ,w|s) [− ln pζ(s|z,d, δ,w)] (52)

=
∑
i∈IG

∑
j∈IN(vi)

µzi ·Mdi(−ĉi,j) +
∑
j∈IG

hw−1∑
i=0

(1− µzi) ·Mdi(ĉi,j)−
hw−1∑
i=0

lnσ2
s + C,

(53)

where, Mdi(t) = (1 − t
γdi

)−ϕd1 (for t < γdi) denotes the moment-generating function of di. In
practical implementation, we need to clip ĉi,j and ensure it satisfy −γdi

+ ϵ ≤ ĉi,j ≤ γdi
− ϵ.

Suppose qθ(z|s,d, δ,w) = B(z|αz, βz), then

Lz(θ) = Eqθ(z|s,d,δ,w) [KL(qθ(z|s,d, δ,w)||p(z))] (54)

= Eqθ(z|s,d,δ,w) [ln qθ(z|s,d, δ,w)] + Eqθ(z|s,d,δ,w) [− ln p(z)] (55)

=

hw−1∑
i=0

[
ln

Γ(αzi)Γ(βzi)

Γ(αzi + βzi)
+ (αzi − α0

z)ψ(αzi) + (βzi − β0
z )ψ(βzi)

]
(56)

+

hw−1∑
i=0

[
(α0

z + β0
z − αzi − βzi)ψ(αzi + βzi)

]
+ C. (57)
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Here, Γ(·) and ψ(·) denote Gamma and Digamma functions, respectively. Suppose qθ(δ|s,d,w) =
N (δ|µδ, diag(σ

2
δ )), then

Lδ(θ) = Eqθ(δ|s,d,w) [KL(qθ(δ|s,d,w)||p(δ))] (58)

= Eqθ(δ|s,d,w) [ln qθ(δ|s,d,w)] + Eqθ(z|s,d,δ,w) [− ln p(δ)] (59)

=
1

2
σ0
δ∥µδ∥22 +

1

2
[⟨σ0

δ1, σ
2
δ ⟩ − ⟨1, lnσ2

δ ⟩] + C. (60)

Finally, suppose qθ(w|s,d) = N (w|µw, diag(σ
2
w)), then

Lw(θ) = Eqθ(w|s,d) [KL(qθ(w|s,d)||p(w))] (61)

= Eqθ(w|s,d) [ln qθ(w|s,d)] + Eqθ(w|s,d) [− ln p(w)] (62)

=
1

2
σ0
w∥µw∥22 +

1

2
[⟨σ0

w1, σ
2
w⟩ − ⟨1, lnσ2

w⟩] + C. (63)

A.2.5 Gaussian Splatting for Implicit Neural Representation

In this work, we sample 20 points on each edge and denote the entire graph with these points
(including the sampled points and the nodes) as new nodes (v) and their connections as new edges
(e). Then we input the new graph G(V, E) into a Graph Neural Network to predict the parameters
for Gaussian splatting, including the (σ, θ, and s), where the feature of each node is its coordinates
[46]. Note that the symbol definition is only used in this section for implicit neural representation
explanation.

For the Gaussian splatting process, given a set of input nodes {vi}Ni=1, where each node is associated
with Gaussian parameters (σi, θi, si), the splatted field value at spatial location u ∈ R2 is defined as:

f(u) =

N∑
i=1

si · N (u | vi,Σi)

where N (u | vi,Σi) denotes a 2D anisotropic Gaussian:

N (u | vi,Σi) =
1

2π|Σi|1/2
exp

(
−1

2
(u− vi)

⊤Σ−1
i (u− vi)

)
The covariance matrix Σi is constructed from the scale σi and orientation θi as:

Σi = R(θi)

[
σ2
i 0
0 ϵ

]
R(θi)

⊤ with R(θi) =

[
cos θi − sin θi
sin θi cos θi

]
where ϵ≪ σ2

i is a small constant to ensure anisotropy.

For each pixel u in the image grid, we can calculate the splatted field as SG.

A.2.6 Hyper-parameters

For Gaussian distributions N (µw, σw) and N (µδ, σδ), we set the prior distribution to be N (0, 1).
For N (µm, σm), we set the prior distribution to be N (0, 0.5) for the first 200 epochs for easier
extraction of shape component, and then set it to be N (0, 1) for better decomposition of images. For
the Gamma distributions, we set the prior distribution of G(ϕρ, γρ) to be G(2, 10−6) and G(ϕd, γd)
to be G(2, 10−4). For the Beta distribution, we set the prior distribution of B(αz, βz) to be B(2, 2).
The sliding window size for unfolding is k = 5. For all losses used, we summed all items and divided
them by hw.

B Experimental Details

B.1 Evaluation Metrics

The evaluation metrics used in this paper are defined as follows:
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Table 5: Cross-dataset evaluation: GraphSeg and BayeSeg are trained on CHASE and evaluated on
CHASE, DRIVE, and HRF. U-Net is trained and tested on each dataset as a strong baseline. Numbers
in parentheses indicate the performance drop relative to the results in Table 1. Note that the same
segmentation backbone was used for fair comparisons.

Test Set Method Accuracy Soft Dice F1 Sensitivity Specificity

CHASE
U-Net (train) 95.17 79.74 78.39 81.97 96.79
BayeSeg (train) 95.45 80.48 79.62 82.93 96.99
GraphSeg (train) 96.54 82.91 81.82 87.84 97.40

DRIVE
U-Net (train) 90.89 61.09 61.09 48.55 98.51
BayeSeg 92.34 (↓2.14) 71.68 (↓7.40) 70.71 (↓7.85) 61.85 (↓15.75) 97.87 (↓0.81)
GraphSeg 93.56 (↓2.57) 77.16 (↓8.07) 76.01 (↓8.81) 68.09 (↓14.93) 98.19 (↓0.04)

HRF
U-Net (train) 89.79 71.37 67.76 78.15 91.74
BayeSeg 92.05 (↓3.30) 70.73 (↓11.04) 70.13 (↓10.92) 67.71 (↓7.73) 96.13 (↓2.29)
GraphSeg 93.38 (↓2.50) 78.16 (↓6.13) 76.59 (↓7.30) 78.90 (↓2.68) 96.88 (↓1.19)

• Accuracy = TP+TN
TP+TN+FP+FN ,

• F1 = 2·TP
2·TP+FP+FN .

• SoftDice = 2
∑

i yiŷi+ε∑
i y

2
i+

∑
i ŷ

2
i+ε

.

• Sensitivity = TP
TP+FN .

• Specificity = TN
TN+FP .

where TP, TN, FP, and FN denote true positive, true negative, false positive, and false negative pixels,
respectively. y and ŷ denote the ground truth and prediction.

B.2 Implementation details

We implement our method using PyTorch and train it on a cluster with NVIDIA A800 GPU. The
batch size is set to 4, and the learning rate is set to 0.001. We use the Adam optimizer with a weight
decay of 1e-5. The model is trained for 500 epochs, and we use early stopping based on the validation
loss. The input images are resized to 256×256 pixels, and data augmentation techniques such as
random rotation, and flipping are applied during training. For the image decomposition, we adopted
the two ResNets with ten layers, and for the segmentation network, we used the efficient U-Net [35].
For the matching process, we use two two-layer graph convolutional networks (GCN) [47] with 64
channels and a three-layer convolutional network (CNN). We follow the training, validation and test
data splitting in [11].

B.3 Dataset Details

We employ four widely recognized datasets: CHASE [31], HRF [32], DRIVE [33], and STARE [34].
CHASE contains 28 color retina images with a size of 999×960 pixels. The HRF dataset consists of
45 color retina images with a size of 3504×2336 pixels. The DRIVE dataset contains 40 color retina
images with a size of 584×565 pixels. The STARE dataset consists of 20 color retina images with a
size of 700×605 pixels. In this work, we use the training set of one dataset and the test set of the
other datasets to evaluate the generalization performance of our method. We also resize the images to
the resolution of 256 × 256 pixels for training and testing.

C Additional Results

C.1 Cross-domain Performance Drop

We also provide the cross-dataset relative performance drops of SOTA methods in table. 5. The
noticeable performance drops demonstrates that there is still considerable room for improving the
generalizability of current segmentation models.
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Table 6: Computational cost comparison.
Model Parameters (M) GFLOPs Inference Time (s) Memory (MB)
FSGNet 18.32 89.59 6.23 925.42
FRNet 7.38 55.19 4.67 374.65
AttUNet 34.88 66.54 2.08 269.80
AGNet 9.33 16.73 5.99 330.72
ConvUNeXt 3.51 7.18 2.82 160.07
DCSAU-net 2.60 6.72 6.45 180.37
R2UNet 39.09 152.71 3.20 323.44
SAUNet 0.48 2.33 1.59 37.66
BayeSeg 19.32 88.82 7.95 144.50
GraphSeg 19.32 88.82 7.78 145.95

C.2 Computational Complexity

We provide the computational cost comparison as follows. The computational costs are comparable
for GraphSeg to other methods. In the inference stage, we only need to run the Decomposition
(green in Figure 2) and Segmentation (blue in Figure 2) parts. Therefore, the computational costs are
comparable. Besides, without the deformable graph prior, GraphSeg is downgraded to BayeSeg, thus
the computational costs are almost the same for GraphSeg and BayeSeg for inference. We trained
GraphSeg for 2.8 hours on GTX 4090. Since each method uses different training settings, it is not
directly comparable. Therefore, we focus on inference metrics, which are more relevant for practice
as shown in Table. 6.

C.3 Results on Different Resolutions

Table 7: Comparison of GraphSeg performance with different image resolutions (128×128 vs.
256×256 nodes) on various datasets.

Dataset Resolution Acc Soft Dice F1 Sens Spec

CHASE 128 95.79 83.00 81.52 87.35 97.19
256 96.54 82.91 81.82 87.84 97.40

DRIVE 128 95.19 84.00 83.50 80.45 97.88
256 96.13 85.23 84.82 83.02 98.15

HRF 128 95.42 83.74 82.90 80.12 98.02
256 95.88 84.29 83.89 81.58 98.07

We compare GraphSeg performance using two different image resolutions: 128×128 and 256×256.
As shown in Table 7, increasing the image resolution generally improves segmentation quality
across all datasets. In particular, the 256×256 pixel setting leads to consistent gains in accuracy
and structure-sensitive metrics such as Dice and F1 on DRIVE and HRF. Notably, DRIVE benefits
the most, with Dice increasing from 84.00 to 85.23 and F1 from 83.50 to 84.82. This suggests that
higher-resolution images provide finer structural representation, enabling better modeling of small
vessels and complex bifurcations. While the improvements are modest on CHASE, they remain
stable, indicating the robustness of GraphSeg to image resolution.

C.4 Visual Results

C.4.1 Segmentation Results

We also present cross-domain visual results of segmentation to further demonstrate the generalization
ability of GraphSeg. As shown in the visualizations, despite the significant structural variations
across different datasets, GraphSeg consistently produces accurate and coherent vessel segmentation,
highlighting its strong generalizability.
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Data CHASE DRIVE HRF

Image

Model trained on
CHASE

Model trained on
DRIVE

Model trained on
HRF

Gold Standard

Figure 3: Cross-domain segmentation results from GraphSeg. Each column shows one dataset, while
each row compares predictions from models trained on different domains.

C.4.2 Decomposition Results

We further provide three groups of visual decomposition results in Fig. 4 to illustrate the effectiveness
of our graph prior and image decomposition framework. To assess the cross-domain generalizability of
GraphSeg, we additionally present cross-dataset visualizations in Fig. 5 and Fig. 6. As shown in these
figures, the input images are consistently decomposed into a structure-preserved component (s) and a
structure-degraded component (m). The segmentation is performed solely on the structure-preserved
component s, which maintains a consistent style across different domains. This domain-invariant
representation largely explains the strong generalization capability of GraphSeg.
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Image m s z

Figure 4: Visualization of image decomposition on CHASE dataset. Each row shows the input,
structure-degraded component (m), structure-preserved component (s), and learned mask (z).

Image m s z

Figure 5: Cross dataset visualization of image decomposition on HRF dataset. GraphSeg is trained
on CHASE dataset and tested on the other dataset. Each row shows the input, structure-degraded
component (m), structure-preserved component (s), and learned mask (z).

C.4.3 Sampled Vascular Structure for Training

We also provide illustrative examples in Fig. 7 to further explain the generalizability of GraphSeg.
The sampled structure-preserved components (s) during training often contain substantial noise due to
MCMC, which implicitly serves as a form of data augmentation. A model that can accurately segment
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Image m s z

Figure 6: Cross dataset visualization of image decomposition on DRIVE dataset. GraphSeg is trained
on CHASE dataset and tested on the other dataset. Each row shows the input, structure-degraded
component (m), structure-preserved component (s), and learned mask (z).

the target structures from such noisy backgrounds demonstrates strong robustness and generalization
capability.

Figure 7: Sampled s used for training.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitation in the last paragraph of the discussion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provided assumptions and proof for each theoretical result. Proof can be
found in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided all the information for reproducing our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The dataset is publicly available and the pre-processing is clearly described in
the Appendix. The code has been released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details are clearly described in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The results are significant without the need to calculate the significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided resource requirements in Implementation details..

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No ethics concerns.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provided potential impact in the discussion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the code, data, and models used in or related to this work are properly cited
and discussed.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets during the review process.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
The datasets used in this paper are publicly available.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

30

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Retinal Vessel Segmentation
	Image Decomposition
	Domain Generalization for Medical Image Segmentation

	Methodology
	Deformable Graph Prior Guided Decomposition and Segmentation
	Statistical Modeling of Vascular Structure
	Deep Variational Inference

	Experiments
	Setup
	Experimental Results
	Comparison with Previous Models
	Cross-domain Generalization

	Ablation Study

	Discussion
	Conclusion
	Method Details
	Graph Construction and Shape PCA
	Deep Variational Inference Details
	Derivation of Variational Inference
	Closed-form Solution of 
	Closed-form Solution of d
	Unsupervised Loss Details
	Gaussian Splatting for Implicit Neural Representation
	Hyper-parameters


	Experimental Details
	Evaluation Metrics
	Implementation details
	Dataset Details

	Additional Results
	Cross-domain Performance Drop
	Computational Complexity
	Results on Different Resolutions
	Visual Results
	Segmentation Results
	Decomposition Results
	Sampled Vascular Structure for Training



