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Abstract

The challenge of multimodal semantic segmentation lies in
establishing semantically consistent and segmentable mul-
timodal fusion features under conditions of significant vi-
sual feature discrepancies. Existing methods commonly
construct cross-modal self-attention fusion frameworks or
introduce additional multimodal fusion loss functions to
establish fusion features. However, these approaches of-
ten overlook the challenge caused by feature discrepan-
cies between modalities during the fusion process. To
achieve precise segmentation, we propose an Attention-
Driven Multimodal Discrepancy Alignment Network (AM-
DANet). AMDANet reallocates weights to reduce the
saliency of discrepant features and utilizes low-weight fea-
tures as cues to mitigate discrepancies between modalities,
thereby achieving multimodal feature alignment. Further-
more, to simplify the feature alignment process, a seman-
tic consistency inference mechanism is introduced to re-
veal the network’s inherent bias toward specific modali-
ties, thereby compressing cross-modal feature discrepan-
cies from the foundational level. Extensive experiments
on the FMB, MFNet, and PST900 datasets demonstrate
that AMDANet achieves mIoU improvements of 3.6%,
3.0%, and 1.6%, respectively, significantly outperform-
ing state-of-the-art methods. The code is available at
https://github.com/Zhonghaifeng6/AMDANet

1. Introduction

Current semantic segmentation methods [5, 13, 15, 55]
mostly depend on visible light sensors for scene understand-
ing. In certain challenging environments, such as nighttime,
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Figure 1. Comparison with advanced SegMiF [60] and MRFS [25]
in image fusion and semantic segmentation is presented. As shown
in the figure, when there is a significant difference between the
infrared and visible images, it is difficult for other methods to align
cross-modal features, leading to suboptimal results. In contrast,
our method not only compresses the difference features between
cross-modality by weight adjustment but also achieves semantic
consistency alignment, thus achieving better results.

incomplete scene descriptions can hinder the accuracy of
semantic understanding. Some studies [25, 38, 41, 48, 49,
60, 68] have leveraged the unique thermal imaging capabil-
ities of infrared sensors, incorporating infrared images as
a complementary modality in segmentation to enable more
effective perception for complex environments.

Existing methods [8, 25, 51, 60, 68] predominantly focus
on leveraging semantic consistency among multimodal fea-
tures to construct segmentable feature representations, with
the key challenge lying in identifying and integrating se-
mantically consistent features across modalities. Current re-
search addresses this from two perspectives: designing mul-
timodal fusion loss functions [45, 65] to jointly optimize
fusion and segmentation tasks, or employing cross-modal
self-attention mechanisms [25, 60, 68] to align semantic
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features. However, these works primarily emphasize aggre-
gating semantically consistent multimodal features while
neglecting the detrimental impact of inter-modal discrepant
features on the fusion process. As illustrated in Fig. 1,
feature ambiguities arising from visual disparities—such
as divergent contours, shapes, and textures across modal-
ities—severely hinder the establishment of consistent se-
mantic representations. For fusion loss-driven methods [45,
65], minimizing such discrepancies often results in biased
dominance of features from one modality, whereas cross-
modal attention mechanisms [25, 60, 68] risk discarding
critical details from either modality during feature match-
ing. Thus, the critical step for multimodal semantic seg-
mentation lies in compressing and aligning inter-modal fea-
ture discrepancies during fusion to accurately construct se-
mantically consistent and segmentable features.

To systematically address the obstacles posed by inter-
modal feature discrepancies in building unified fusion
features, we propose an Attention-Driven Multimodal
Discrepancy Alignment Network (AMDANet). We cate-
gorize the discrepancies into two types: visual discrep-
ancies caused by modality-specific appearances, and em-
pirical feature biases introduced by the encoder’s inherent
preferences for specific modalities due to factors like regu-
larization and nonlinear activation [35, 43, 47]. For visual
discrepancies, we design a feature discrepancy alignment
module (FDAM). FDAM adopts a divide-and-conquer strat-
egy, leveraging self-enhanced single-modality features as
cues to eliminate mismatched information from both local
and global perspectives, thereby strengthening the coupling
between multimodal features. To address empirical fea-
ture biases, we propose a semantic consistency inference
(SCI) mechanism. SCI inhibits encoder-induced modal-
ity preferences at their source by leveraging the semantic
similarity between features of different modalities, thereby
preventing the progressive accumulation of discrepant fea-
tures across modalities in deeper network layers. Finally, to
enhance multimodal fusion, we introduce a mutual feature
mask learning (MFML) strategy. MFML employs pixel-
level feature masking to promote the learning of comple-
mentary and meaningful cross-modal representations, en-
suring robustness against partial modality degradation.

We conduct extensive experiments and ablations on
FMB [25], MFNet [10], and PST900 [38] datasets, to mea-
sure the performance of our method. The experimental re-
sults demonstrate that our method achieves superior accu-
racy compared to state-of-the-art (SOTA) methods.

Our contributions can be summarized as follows:
• We propose a multimodal semantic segmentation net-

work, AMDANet, which aligns feature discrepancies
across modalities from a multi-perspective to establish
easily segmentable feature representations.

• To align discrepant features that affect cross-modal fea-

ture fusion, we propose the feature discrepancy alignment
module (FDAM) and the semantic consistency infer-
ence (SCI). FDAM and SCI adopt a divide-and-conquer
approach to align cross-modal features from local and
global perspectives, respectively.

• We evaluate our method on the FMB, MFNet, and
PST900 datasets. The results demonstrate the superiority
of our method. Comprehensive ablation studies validate
the effectiveness of the proposed modules and strategies.

2. Related work
Multi-modal image fusion. With the development of
deep learning [3, 28, 66], multimodal image fusion meth-
ods [14, 33, 57, 65, 71] have made significant progress. Ex-
isting methods can be broadly categorized into four types:
based on generative adversarial network [29, 30], based on
autoencoder [18, 20, 26], based on unified model [16, 53,
54, 59], and based on algorithm unrolling model [4, 7, 64].
These methods focus on improving the fusion effect of
multimodal images by designing novel networks or loss
functions, but often neglect whether the fusion results are
well-suited to downstream tasks. Recently, some stud-
ies [21, 24, 51] have considered how to integrate the fusion
process with downstream recognition tasks. For instance,
Liu et al. [24] combine image fusion and detection tasks
by designing a dual adversarial learning fusion network.
Similarly, Wu et al. [51] propose a fusion framework that
generates fusion features beneficial to downstream tasks
by minimizing cross-modal semantics. However, existing
works lack consideration of how to establish a unified fea-
ture paradigm from multimodal images based on task at-
tributes. In contrast, our method focuses on fully eliminat-
ing discrepant features between multimodal images to es-
tablish fusion features conducive to downstream tasks.
Multimodal semantic segmentation. Multimodal seman-
tic segmentation [1, 25, 60, 68] involves constructing an
end-to-end network to simultaneously achieve image fusion
and semantic segmentation. Existing methods [8, 25, 44,
60, 68, 69] primarily implement semantic segmentation at
the feature level using strategies such as weighted averag-
ing [61], summation [40, 67], and concatenation [10, 38].
For example, Shivakumar et al. [38] propose a dual-stream
architecture that maps feature streams from different modal-
ities. Zhao et al. [68] achieve complementary and fused
features across multiple levels of different modalities by
weighting the extracted multi-scale and multi-level features.
Although current methods have made great strides in accu-
racy, they ignore the barriers of discrepant features to es-
tablishing consistent features. In contrast to existing meth-
ods, our method emphasizes resolving the obstacles that se-
mantic discrepancies pose to the establishment of consistent
features from multiple perspectives, thereby facilitating the
alignment of multimodal features.
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Figure 2. Overview of our AMDANet. The left part describes the workflow of AMDANet and mutual feature mask learning. The right
part provides a detailed description of the FDAM, which suppresses the discrepant features from both local and global perspectives.

3. Method
Preliminaries: Our goal is to eliminate the discrepan-
cies between different modalities that hinder the establish-
ment of semantic consistency features and couple effective
multimodal features into a unified framework. Given the
multimodal inputs be a pair of visible light and infrared
images, denoted as Ivi ∈

〈
I1vi, I

2
vi, . . . , I

n
vi

〉
and Iin ∈〈

I1in, I
2
in, . . . , I

n
in

〉
. Our method employs an encoder [52]

to perform feature extraction across four levels, generating
the foundational visible features Fvi ∈

〈
F1
vi,F2

vi,F3
vi,F4

vi

〉
and infrared features Fin ∈

〈
F1
in,F2

in,F3
in,F4

in

〉
required to

construct consistent representations.
Method overview: The overview of our AMDANet is out-
lined in Fig. 2. The AMDANet consists of three key compo-
nents: the semantic consistency inference (SCI) (Sec. 3.1),
the feature discrepancy alignment (FDAM) (Sec. 3.2), and
the mutual feature masking learning (MFML) (Sec. 3.3).
First, to address inherent feature biases generated by the en-
coder, we leverage the SCI to evaluate the network’s biased
performance across different modalities. Based on the eval-
uation results, biases are excluded from Fvi and Fin, hereby
easing the alignment of multimodal features. Second, to
achieve semantic alignment between multimodal features,
we employ the FDAM to remove invalid features that are
prone to misjudgment from both local channels and global
spatial dimensions. Finally, we utilize the MFML to achieve
fusion of multimodal features by randomly applying mask
perturbations [37] to specific modality features.

3.1. Semantic Consistency Inference
Under the influence of nonlinear factors such as regulariza-
tion and activation functions, the encoder in the model of-
ten exhibits empirical feature bias toward specific modali-
ties [9, 35, 43, 47]. The feature bias exacerbates the diver-

gence of feature representations across modalities, hinder-
ing the model’s ability to establish semantically consistent
multimodal fusion features. To address this, as shown in
Fig. 3, we propose Semantic Consistency Inference (SCI).
The core of SCI lies in enforcing the encoder to produce
consistent semantic representations for identical semantic
content across different modalities, thereby suppressing dis-
crepant features caused by feature bias.

For the four hierarchical features Fin and Fvi extracted
by the encoder from infrared and visible images, respec-
tively, we first employ cosine similarity to compute cross-
modal semantic similarity as a bias indicator:

Sm = ⟨Fin·Fvi⟩
∥Fin∥·∥Fvi∥ (1)

where Sm is the bias indicator. We utilize a threshold
τ = 0.4 (the analysis of τ is provided in the supplemen-
tary material.), where Fin and Fvi are identified as being
interfered by encoder bias when Sm < τ . For the features
in Fin and Fvi that are affected by encoder bias, we com-
pute their difference features as follows:

Pin = Fin ⊙ (1− Msc) + Fvi ⊙ Msc,
Pvi = Fvi ⊙ (1− Msc) + Fin ⊙ Msc,

(2)

where ⊙ is matrix multiplication and Msc is an ambiguity
mask generated by a multilayer perceptron (denoted as ℓω):

Msc = fN (ℓω (CAT (Fin,Fvi))) , (3)

where CAT is the concatenation and fN is the Sigmoid.
The role of Msc is to discriminate bias-affected discrepant
features by leveraging similar semantic content across
modalities. Based on the Pin and Pvi, we calculate the bias
components of the encoder toward different modalities by
contrasting them with the original features Fin,Fvi:

∆Pvi = Fvi − Pvi,∆Pin = Fin − Pin. (4)
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Figure 3. Structure of the Semantic Consistency Inference.

Finally, by introducing a learnable parameter λ, we sup-
press the discrepant features influenced by the feature bias
from the original features using the bias components:

Fa
vi = Fvi − λ∆Pvi,Fa

in = Fin − λ∆Pin. (5)

After discrepant features compression, Fa
vi and Fa

in can
be more effectively aligned in subsequent modules, thereby
simplifying the modeling complexity of fusion features.

3.2. Feature Discrepancy Alignment Module
To address the visual discrepancies in multimodal images
caused by their distinct appearances, we design the Feature
Discrepancy Alignment Module (FDAM). The FDAM con-
sists of local-alignment and global-alignment.

3.2.1. Local-Alignment
The role of local-alignment is to align features between
modalities from the perspective of fine-grained visual fea-
tures by leveraging local attention mechanisms [23, 56]. As
shown in Fig. 2, for outputs {Fa

vi,F
a
in} of SCI, we apply

global max and average pooling along the channel dimen-
sion to capture effective response characteristics. We then
process these feature responses with an MLP to generate at-
tention weights Ach

vi,in for the effective and ineffective fea-
tures. Based on the Ach

vi,in, we multiply them back into
Fa
vi,in (Ach

vi,in ⊙ Fa
vi,in) to generate the feature cues Fm

vi,in:

Ach
vi,in = fN (ℓω (ϑa (Fvi,in)) + ℓω (ϑm (Fvi,in))) ,

(6)
where ϑa and ϑm represent the global average and max
pooling, respectively. Traditional squeeze-excitation meth-
ods [6, 11, 12] focus on enhancing effective features but are
challenged in suppressing visual discrepancies. To address
this issue, we calculate the difference between the feature
cues Fm

vi,in and the initial features Fvi,in to eliminate the
discrepancies between modalities. We then use the sigmoid
to add the reallocated weight results to the effective fea-
tures, further compressing the discrepant features:

Fch
vi,in = fN

(
Fm
vi,in − Fvi,in

)
⊙ Fvi,in + Fvi,in. (7)

From the local spatial perspective, we apply max pool-
ing and average pooling operations to {Fvi,Fin} to capture

Figure 4. Structure of the Saliency Cross-Modal Attention.

their pixel-level response characteristics in the local spatial
dimension. Then, we use a convolution kernel to map the
effective local correlation features and apply a sigmoid to
generate spatial attention weights Asp

vi,in. Then, we mul-
tiply Asp

vi,in with Fa
vi,in (Asp

vi,in ⊙ Fa
vi,in) to generate the

feature clues Fn
vi,in of spatial dimension:

Asp
vi,in = fN (Conv (Pa (Fvi,in) ,Pm (Fvi,in))) , (8)

where Pa and Pm represent average and max pooling, re-
spectively. Similarly, we use the sigmoid to process the dif-
ference between the feature cues Fn

vi,in and the initial fea-
tures Fvi,in, eliminating visual discrepancy features within
the local spatial dimension:

Fsp
vi,in = fN

(
Fn
vi,in − Fvi,in

)
⊙ Fvi,in + Fvi,in. (9)

We add the features
{

Fch
vi + Fch

vi ,F
sp
in + Fsp

in

}
to obtain

local alignment results
{

Flo
vi,F

lo
in

}
.

3.2.2. Global-Alignment
Local alignment focuses on aligning visual discrepancies
from a local perspective of feature maps but lacks the ca-
pacity to address such discrepancies from a global perspec-
tive [2, 27]. Previous works [25, 60] have demonstrated
that cross-modal long-range context modeling can facili-
tate multimodal feature alignment. However, non-critical
features across modalities may lead to feature misjudgment
during cross-modal matching, causing the model to discard
detailed features of one modality. To address this, as shown
in Fig. 4, we propose a saliency cross-modal attention in
global-alignment. Our method aligns features based on the
salient characteristics of each modality, effectively avoiding
feature misjudgment caused by non-critical features.

First, we employ salient feature enhancement [32] to per-
form self-enhancement on the effective contextual features
within

{
Flo
vi,F

lo
in

}
. Then, we apply a linear layer to the en-

hanced Flo
vi to compute Qvi ∈ RHW×C , and use a linear

layer on the enhanced Flo
in to compute Kin ∈ RHW×C and
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Table 1. Quantitative comparison results on the MFNet. Best and
second-best are highlighted in bold and underline (mIoU).

Method Car Person Bike Curve Car stop Cone Bump Guard. mIoU

EGFNet [69] 87.6 69.8 58.8 42.8 33.8 48.3 47.1 7.2 54.8
SeAFusion [44] 84.2 71.1 58.7 33.1 20.1 40.4 33.9 0.1 48.8
LASNet [17] 84.2 67.1 56.9 41.1 39.6 48.8 40.1 18.9 54.9
EAEFNet [22] 87.6 77.6 63.8 48.6 35.3 52.4 58.3 14.2 58.9
MDRNet+ [63] 87.1 69.8 60.9 47.8 34.2 50.2 55.1 8.2 56.8
SGFNet [50] 88.4 76.6 64.3 45.8 31.2 57.1 55.4 6.1 57.6
MMSMC [70] 89.2 69.1 63.5 46.4 41.9 48.8 57.6 8.8 58.1
SegMiF [25] 87.8 71.4 63.2 47.5 31.1 48.9 50.3 0.1 56.1
MRFS [60] 89.4 75.4 64.9 49.2 37.2 53.1 58.8 5.4 59.1
OpenRss [62] 87.4 68.9 63.2 46.8 43.2 49.5 56.6 7.4 58.5

Ours 90.9 76.9 62.1 49.4 51.7 57.3 58.4 14.6 62.1↑3%

Table 2. Quantitative comparison results on the FMB (mIoU).

Method Car Person Truck T-Lamp T-Sign Build. Vegeta. Pole mIoU

SeAFusion [44] 76.2 59.6 15.1 34.4 68.1 80.1 83.5 38.4 51.9
LASNet [17] 73.2 58.3 33.1 32.6 68.5 80.8 83.4 41.1 55.7
EAEFNet [22] 79.7 61.6 22.5 34.3 74.6 82.3 86.6 46.2 58.1
MDRNet+ [63] 75.4 67.1 27.1 41.4 68.4 79.8 82.7 45.3 55.5
SGFNet [50] 75.2 67.2 34.6 45.8 71.4 78.2 82.7 42.8 56.1
SegMiF [25] 78.7 65.5 42.4 35.6 71.7 80.1 85.1 35.7 58.5
MRFS [60] 76.2 71.3 34.4 50.1 75.8 85.4 87.1 53.6 61.2
OpenRss [62] 74.5 63.5 41.5 35.3 71.5 77.1 84.3 36.2 59.3

Ours 83.6 71.5 57.7 37.4 73.8 85.9 87.3 52.8 64.8↑3.6%

Vin ∈ RHW×C . Qvi is used to query Kin to obtain cross-
modal matching scores. These scores highlight the different
focuses on effective and ineffective information across the
multimodal features. Then, we refine the consistent repre-
sentation of both multimodal features by modulating Vin:

Mvi
cross = Dropout

((
Qvi ·KT

in

)
/
√
dk

)
· Vin, (10)

where dk is the number of heads and Mvi
cross is the long-

range refined value based on visible features. Then, we use
Mvi

cross to enhance Flo
vi, resulting in an improved features

Fgv
vi based on the global view of infrared features:

Fmid = ℓω
(
Mvi

cross + Flo
vi

)
. (11)

The same approach is applied to use Qin, generated from
Flo
in, to match Kmid and Vmid, generated from Fmid. Then,

we compute the long-range refined value Min
cross based

on infrared features. We use Min
cross to modulate and re-

fine the features Flo
in from the global perspective of visible

features, finally outputting multimodal fusion features Fm.
Our cross-modal attention mechanism seamlessly integrates
effective information from both infrared and visible-light
modalities into consistent semantic features that are easy to
fuse and segment from a global perspective.

3.3. Mutual Feature Mask Learning
The different feature distributions in multimodal images
often result in varying degrees of contribution from each
modality’s features to the prediction. In such cases, it be-
comes challenging for the network to learn complementary
cross-modal features. To address this, as shown in Fig. 2,
we propose a mutual feature mask learning (MFML) strat-
egy to promote the complementarity and fusion of features
across modalities. Unlike directly applying masks to im-

Table 3. Quantitative comparison results on the PST900 (mIoU).

Method Hand-Drill Back-Pack Fire-Exti. Survivor mIoU

EGFNet [69] 64.7 83.1 71.3 74.3 78.8
SeAFsuion [44] 65.6 59.6 41.1 29.5 58.9
LASNet [17] 77.8 86.5 82.8 75.5 84.4
EAEFNet [22] 80.4 87.7 84.1 76.2 85.6
MDRNet+ [63] 66.3 81.4 76.3 71.3 79.7
SGFNet [50] 62.4 89.2 73.3 72.7 79.8
MMSMC [70] 82.8 75.8 79.9 74.7 82.1
SegMiF [25] 63.2 76.3 63.5 75.5 74.6
MRFS [60] 79.7 87.4 88.2 79.6 86.9
OpenRss [62] 78.3 84.2 83.7 72.1 84.2

Ours 81.2 87.7 88.6 80.8 88.5↑1.6%

Table 4. Quantitative comparison results (mAP).

Method MFNet-dataset FMB-dataset PST-dataset

SeAFsuion [44] 67.7 68.8 76.9
LASNet [17] 75.2 74.6 82.5
EAEFNet [22] 70.5 71.8 81.4
MDRNet+ [63] 68.9 69.5 78.8
SGFNet [50] 73.5 72.4 85.2
SegMiF [25] 74.2 76.2 88.7
MRFS [60] 75.6 75.6 90.2
OpenRss [62] 72.7 75.3 87.8

Ours 77.4↑1.8% 77.1↑0.9% 91.8↑1.6%

ages [37], the innovation of MFML lies in performing pixel-
level masking directly on the feature maps, thus preventing
the backbone from falsely reconstructing the image masks.
For the input {Fa

vi,F
a
in}, we apply masks along the channel

dimension of the feature map, randomly masking the fea-
tures of one modality to generate mask features {Fm

in,Fm
vi}:

Fm
in,Fm

vi = R{Fc
in or Fc

vi} ⊙ Mmask,

Mmask =
C∑
c
·
H,W∑
h,w

{0 or 1}, (12)

where R represents the random selection of either an in-
frared or visible-light feature map for the feature masking
operation. Mmask is a mask matrix with the same dimen-
sions as the selected feature map, where each pixel value
is either 0 or 1. Based on {Fm

vi,F
m
in}, we use a consistency

regularization loss Lcr to measure the consistency between
the predictions of the masked and unmasked features:

Lcr = Φce (D {Fc
in,Fc

vi} ,D {Fm
in,Fm

vi}) , (13)

where D (·) denotes the decoder [60]. Φce (·) represents the
cross-entropy loss. Our objective in consistency regular-
ization prediction [31, 39, 58] is to minimize Lcr, thereby
promoting complementarity between features from differ-
ent modalities through masked prompts.

3.4. Loss Function
The total loss function is composed of the image fusion
loss Lfus, the semantic segmentation loss Lseg , and the
mask consistency regularization loss Lcr. We use the cross-
entropy loss as the semantic segmentation loss:
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Figure 5. Qualitative comparison results on the FMB and MFNet datasets, respectively.

Figure 6. Quantitative comparisons of image fusion with SOTA
methods on MFNet, in which the circles indicate mean values.

Lseg (ps, g) = −
∑

g × log (ps) , (14)

where ps and g represent the prediction and the ground
truth, respectively. Following prior work [60], we use
salient information loss Lsi and consistency color loss Lco

to define the image fusion loss Lfus = Lsi + Lco:

Lsi = ∥∀ (pf −max (Ivi, Iin))∥ ,
Lco = ∥pf |cr+cb − S (Ivi|cr+cb)∥ ,

(15)

where the ∀ and || of Lsi denote the gradient operator and
the mean absolute error (MAE), while pf represents the
fused image. Specifically, we use the fusion head of [60] to
process the output of FDAM to generate the fused image. In
Lco, cr and cb refer to the red and blue chrominance com-
ponents obtained after converting the image to the YCrCb
color space [19]. S (·) denotes data augmentation. Overall,
the total loss Ltotal is defined as:

Ltotal = α1Lseg + α2Lfus + α3Lcr, (16)

where α1, α2 and α3 are hyperparameters, the specific value
is 1, 0.5, and 0.5, respectively. The analysis of α1, α2 and
α3 is provided in the supplementary material.

Figure 7. Visual comparison results of different image fusion
methods on the FMB and MFNet datasets, respectively.

4. Experiments
Datasets. We conduct experiments on three representa-
tive multimodal semantic segmentation datasets: FMB [60],
MFNet [10], and PST900 [38].
Implementation details. Our AMDANet is trained and
evaluated using an NVIDIA Tesla A40 (45G) GPU. We
employ the adaptive moment estimation (Adam) optimizer
with an initial learning rate of 6×10−5 and adopt a warm-up
strategy for learning rate scheduling. We use the mean In-
tersection over Union (mIoU) and mean Average Precision
(mAP) to evaluate segmentation performance.

4.1. Results of semantic segmentation
We show the superiority of our method in multimodal
semantic segmentation by qualitatively and quantitatively
comparing it with ten advanced methods: EGFNet [69],
SeAFusion [44], LASNet [17], EAEFNet [22], MDR-
Net+ [63], SGFNet [50], MMSMC [70], SegMiF [25],
MFRS [60], and OpenRss [62].

Tab. 1, 2, 3, and 4 present the quantitative comparison
results on the FMB, MFNet, and PST 900 datasets, respec-
tively. The results show that our method outperforms all
comparable methods across all datasets, achieving the high-
est mIoU and mAP scores. The sparse image quality [60]
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Table 5. Ablation studies of different components on MFNet.

Dataset SCI MFML FDAM mIoU mAP

MFNet

✗ ✗ ✗ 53.1 61.7
✗ ✔ ✔ 58.1 69.2
✔ ✗ ✔ 59.7 73.5
✔ ✔ ✗ 58.6 71.2
✔ ✔ ✔ 62.1 77.1

Table 6. Ablation studies of different loss functions on FMB.

Dataset Lcr Lco Lsi mIoU mAP

FMB

✗ ✔ ✔ 61.6 75.2
✔ ✗ ✔ 62.3 75.8
✔ ✔ ✗ 60.5 73.5
✔ ✔ ✔ 64.8 77.4

of the PST900 interferes with the boundary between valid
and invalid features, resulting in a smaller improvement for
our method compared to its gains on the FMB and MFNet.
Despite this, our method achieves satisfactory results across
the majority of categories in the FMB and MFNet datasets.
Compared to the advanced MSRF, our method improves
the mIoU by 3.6%, 3.0%, and 1.6% on FMB, MFNet, and
PST 900, respectively. This improvement validates the ef-
fectiveness of our method in aligning feature discrepancies
between modalities from multiple perspectives. Fig. 5 il-
lustrates qualitative comparisons on the FMB and MFNet
datasets across different methods. The results show that our
method can produce more accurate results. For example,
our method precisely delineates the contours of pedestrians,
while other methods only approximate the area.

4.2. Results of image fusion
We further demonstrate the superiority of our method in
multimodal image fusion through qualitative and quanti-
tative comparisons with six advanced methods: DetFu-
sion [42], DATFuse [46], TGFuse [34], CDDFuse [65],
SegMiF [25], and MRFS [60]. Following the work [25],
we use entropy (EN), standard deviation (SD), spatial fre-
quency (SF), and structural correlation difference (SCD) to
evaluate the quantitative results on the FMB dataset across
different methods. As shown in Fig. 6, our method achieves
the highest EN and SCD, indicating that our method’s joint
enhancement of multimodal features leads to improved vi-
sual quality. Additionally, our method achieves higher
SF and SD scores, reflecting its ability to suppress dis-
crepant features and produce outputs with rich textural de-
tails. Fig. 7 presents a qualitative comparison of the FMB
and MFNet datasets. Our method excels in enhancing subtle
texture information and improving realistic visual quality.
For instance, as shown in Fig. 7, our fused images improve
pedestrian visibility in low-light conditions. Furthermore,
our method effectively aligns semantic ambiguities across
multimodal features from multiple perspectives, producing

Figure 8. Visual ablation results of different components.

Figure 9. Visual ablation results of different loss functions.

semantically coherent fusion results. For example, in Fig. 7,
our method successfully suppresses artifacts typically intro-
duced by infrared images.

4.3. Ablation studies
We conduct ablation studies to evaluate the effectiveness of
the modules in AMDANet, including: removing all mod-
ules, removing SCI, removing MFML, removing FDAM,
and without any modifications. For removing Global-
Eliminating, we fuse the infrared and visible features output
by Local-Eliminating to generate the fusion features.

Tab. 5 shows the performance of these different variants
on the MFNet dataset. As seen in Tab. 5, all variants exhibit
varying degrees of performance decline compared to the
AMDANet, demonstrating the effectiveness of each mod-
ule design. The variant without FDAM shows the most sig-
nificant drop in performance, indicating that the absence of
inter-modal ambiguity suppression hinders the formation of
consistent features that facilitate semantic segmentation.
Fig. 8 presents visual comparison results. Examining the
barricade in Fig. 8 reveals that while AMDANet without
MFML can approximate the barricade’s general location, it
struggles to accurately depict its structural shape. This is
because the different feature distributions between modali-
ties increase the difficulty of modeling fusion features. Sim-
ilar issues appear in AMDANet without SCI, suggesting
that feature fusion is complicated by feature bias of the en-
coder and feature discrepancies between modalities.

To validate the effectiveness of Lco, Lsi, and Lcr, we
conduct corresponding ablation studies. As shown in Tab. 6,
removing the Lco leads to mIoU and mAP decreases of
2.5% and 1.6%, respectively, while removing the Lsi re-
sulted in mIoU and mAP reductions of 4.3% and 3.9%.
These findings indicate that Lco and Lsi are effective in

10651



Figure 10. Visual comparison of AMDANet output features in different settings.

Table 7. Quantitative comparisons of Parameters and FLOPs

Method #Params (M) FLOPs (G) mIoU

EAEFNet [22] 316.49 147.21 58.1
SeAFusion [44] 102.53 13.06 51.9
SegMiF [25] 526.21 45.61 58.5
MFRS [60] 219.16 134.97 61.2
Ours 197.85 119.02 64.5

guiding the model to establish multimodal features suitable
for both visual and segmentation tasks. Similarly, remov-
ing the Lcr leads to mIoU and mAP drops of 3.2% and
2.2%, demonstrating that Lcr effectively promotes the net-
work to fuse multimodal features. The second and third
columns in Fig. 9 illustrate that, without Lco and Lsi, the
model struggles to establish accurate multimodal informa-
tion, leading to poor coherence in the edge. In the fourth
column of Fig. 9, the absence of Lcr introduces ambiguous
information into the results, reducing the model’s ability to
distinguish similar regions and causing color blending arti-
facts. In contrast, the complete AMDANet captures image
details and boundary information more accurately.

4.4. Discussion about SCI and FDAM
To validate the effectiveness of FDAM and SCI, we ap-
ply Grad-CAM [36] to the intermediate features of the de-
coder on the MFNet dataset, comparing the performance
of AMDANet without (w/o) FDAM and SCI. As shown in
the left part of Fig. 10, the CAM map generated by AM-
DANet without FDAM is more chaotic compared to the
full AMDANet, with excessive attention allocated to irrel-
evant regions. This is due to significant distribution differ-
ences between modalities, causing the fused features to re-
tain ambiguous characteristics from both modalities. Under
the interference of these feature discrepancies, the network
mislocalizes critical information of the image. In contrast,
FDAM effectively compresses the ambiguous features be-
tween modalities from both local and global views, facil-
itating the establishment of a more accurate and consistent
feature representation. As shown in the right part of Fig. 10,
compared to AMDANet with SCI, AMDANet without SCI
generates CAM maps that show insufficient attention to crit-
ical information. For example, in the second row of Fig. 10,
while the network accurately locates the pedestrian, it as-
signs a lower heat value to the pedestrian area. This is be-

cause the encoder’s biased feature tendencies toward differ-
ent modality images diffuse some of the network’s atten-
tion, hindering the establishment of consistent features. In
contrast, with SCI enabled, the network can focus more ef-
fectively on establishing semantically consistent features.

4.5. Complexity analysis
We compare the Parameters and FLOPs of different meth-
ods on the FMB dataset to evaluate the complexity of each
method. In Tab. 7, while our method does not achieve the
best performance in terms of Params and FLOPs, its com-
plexity remains reasonable and even surpasses some com-
parable methods. For instance, compared to EAEFNet, our
method achieves a reduction in both Params and FLOPs
while improving the mIoU by 6.4%. Although our method
does not perform as well as SeAFusion in terms of Params
and FLOPs, we achieve a significant improvement of 12.6%
in mIoU by sacrificing some lightweight capabilities.

5. Conclusion and limitation

In this paper, we propose AMDANet, a multimodal seman-
tic segmentation method that constructs segmentable fusion
features by aligning modality-discrepant features from a
multi-level perspective. We introduce the Feature Discrep-
ancy Attention Module (FDAM) to suppress irrelevant fea-
tures and propose Semantic Consistency Inference (SCI) to
alleviate feature bias caused by the encoder. Extensive ex-
periments on the MFNet, FMB, and PST900 datasets vali-
date the superior segmentation performance of AMDANet.
Despite its high accuracy, the method’s computational com-
plexity limits its deployment on resource-constrained plat-
forms. As part of future work, we plan to adopt model com-
pression strategies, such as knowledge distillation, to reduce
complexity while preserving segmentation accuracy.
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