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ABSTRACT

Understanding generalization in overparameterized neural networks hinges on the
interplay between the data geometry, neural architecture, and training dynamics.
In this paper, we theoretically explore how data geometry controls this implicit
bias. This paper presents theoretical results for overparametrized two-layer ReLU
networks trained below the edge of stability. First, for data distributions sup-
ported on a mixture of low-dimensional balls, we derive generalization bounds
that provably adapt to the intrinsic dimension. Second, for a family of isotropic
distributions that vary in how strongly probability mass concentrates toward the
unit sphere, we derive a spectrum of bounds showing that rates deteriorate as the
mass concentrates toward the sphere. These results instantiate a unifying princi-
ple: When the data is harder to “shatter” with respect to the activation thresholds
of the ReLU neurons, gradient descent tends to learn representations that capture
shared patterns and thus finds solutions that generalize well. On the other hand,
for data that is easily shattered (e.g., data supported on the sphere) gradient de-
scent favors memorization. Our theoretical results consolidate disparate empirical
findings that have appeared in the literature.

1 INTRODUCTION

How does gradient descent (GD) discover well-generalized representations in overparameterized
neural networks, when these models possess more than enough capacity to simply memorize the
training data? Conventional wisdom in statistical learning attributes this to explicit capacity control
via regularization such as weight decay. However, this view has been profoundly challenged by
empirical findings that neural networks generalize remarkably even without explicit regularizers, yet
can also fit randomly labeled data with ease, even with strong regularization (Zhang et al., 2017).

This paradox forces a critical re-evaluation of how we should characterize the effective capacity of
neural networks, which appears to be implicitly constrained by the optimizer’s preferences (Zhang
et al., 2017; Arpit et al., 2017). A powerful lens for examining this implicit regularization is to
inspect the properties of solutions to which GD can stably converge, since these stable points are
the only solutions that the training dynamics can practically reach and maintain. This direction is
strongly motivated by the empirical discovery of the “Edge of Stability” (EoS) regime, where GD
with large learning rates operates in a critical regime where the step size is balanced by the local
loss curvature (Cohen et al., 2020). This observation is further supported by theoretical analyses of
GD’s dynamical stability (Wu et al., 2018; Nar & Sastry, 2018; Mulayoff et al., 2021; Nacson et al.,
2023; Damian et al., 2024), confirming that the curvature constraint imposed by stability provides a
tractable proxy for this implicit regularization.

While the EoS regime offers a valuable proxy, a fundamental question remains: how precisely does
this stability-induced regularization lead to generalization? Recent breakthroughs have established
that for two-layer ReLU networks, this implicit regularizationthis implicit regularization acts like a
data-dependent penalty on the network’s complexity. Technically, this is captured by a weighted path
norm, where the weight function is determined by the training dataset itself (Liang et al., 2025; Qiao
et al., 2024; Nacson et al., 2023; Mulayoff et al., 2021). This resulting data-dependent regularity
provides an ideal theoretical microcosm to probe how data geometry governs effective capactity
(Arpit et al., 2017). For example, for uniform distribution on a ball, it implies generalization but
also a curse of dimensionality (Liang et al., 2025). However, this prediction of a curse is at odds
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with the empirical success of deep learning. This contradiction forces the question: how can we
predict which data geometries will generalize well under implicit regularization, and which will
not?

Contributions. In this work, we argue that the effectiveness of this data-dependent regularity is
governed by a single, unifying principle, which we term data shatterability

The less shatterable the data geometry, the stronger the implicit regularization of EoS becomes.

We formalize this principle with the following theoretical results:

* Provable Adaptation to Low-dimensionalty. Assuming that the input feature only sup-
port on a mixture of m-dimensional subspaces in R? with m < d, we prove the general-

. . i~ —_ 71 . . . . .
ization bound of O(n™~ 2=+ ) that adapts to the intrinsic dimension as Theorem 3.2, where

O hides the constants that mildly depends on the number of subspaces (at most linear), and
the logarithmic factor of the probability term. Our empirical results on sythetic data also
support the theoretical analysis.

* A Spectrum of Generalization on Isotropic Data. We show that generalization perfor-
mance smoothly degrades as data concentrates near the boundary of its support. We pro-
vide precise upper bounds that depend on the dimension d and a concentration parameter
a (Theorem 3.5), as well as lower bounds (Theorem 3.6). This analysis culminates in the
limit of extreme boundary concentration (data on a sphere), where we provide a concrete
construction of a network that perfectly interpolates any dataset at the BEoS regime, see
Theorem 3.7. In particular, the “neural shattering” phenomenon, identified by Liang et al.
(2025) for the uniform ball distribution, represents one special point of the broader gener-
alization spectrum we uncover.

Our theoretical results for both subspace mixtures and isotropic distributions demonstrate how the
principle of data shatterability operates in two distinct ways.

On the one hand, for data residing on a mixture of subspaces, its low-dimensional nature inherently
limits its shatterability. We demonstrate that the network’s complex decision boundaries, formed by
combinations of half-spaces, are fundamentally constrained by the data’s intrinsic low-dimensional
structure. For example, when data lies on a line within R¢, a ReLUs’ complex hyperplane boundaries
reduce to a series of knots and entire complexity is defined by the locations and magnitudes of these
knots. The cornerstone of our proof is showing that the stability induced, data-dependent implicit
regularization is adaptive to this nature.

On the other hand, in the isotropic case, shatterability is governed by the data’s radial concentration.
As more mass concentrates towards the spherical shell, the data geometry becomes more shatterable.
This is because the more the data is concentrated near the sphere, the more non-overlapping caps the
network can create across the sphere, while keeping the mass of data inside each cap constant. This
allows the network to partition the data into a large number of disjoint, sparsely populated regions,
a key feature of high shatterability, and dedicate different neurons to memorizing the labels within
each region. Our theoretical analysis and empirical observation confirms that such solutions can
be dynamically stable, meaning they can be favored by gradient descent when the data geometry
permits.

From a representation learning perspective, our constructions for the lower bound and flat inter-
polation (Theorems 3.6 and 3.7) demonstrate that data shatterability directly governs the model’s
learning strategy. High shatterability enables the formation of “memorizing neurons” that activate
on only a few examples. Conversely, low shatterability makes this memorization strategy difficult,
implicitly forcing the optimizer to learn robust, shared representations (see Figure 2). We thus pro-
pose data shatterability as a foundational principle explaining the representations favored by gradient
descent, bridging a critical gap between learning theory and practice.

Related work and novelty. We build upon a recent line of work (Qiao et al., 2024; Liang et al.,
2025) that theoretically study the generalizaton of neural networks in Edge-of-Stability regime (Co-
hen et al., 2020) from a function space perspective (Mulayoff et al., 2021; Nacson et al., 2023).
We add to this literature a two brand new dimensions: how a concentration coefficient of data
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distribution affects generalization by EoS and how gradient descent with large step-size adapts to
low-dimensional structures in data.

More broaderly, our work is inspired by the seminal work of Zhang et al. (2017) on “rethinking
generalization”. Our results provide new theoretical justification that rigorously explains several
curious phenomena (such as why real data are harder to overfit than random Gaussian data) reported
therein. Compared to other existing work inspired by Zhang et al. (2017), e.g., those that study the
implicit bias of gradient descent from various alternative angles (dynamics (Arora et al., 2019; Mei
et al., 2019; Jin & Monttifar, 2023), algorithmic stability (Hardt et al., 2016), large-margin (Soudry
et al., 2018), benign overfitting (Joshi et al., 2024; Kornowski et al., 2024)), our work has more
end-to-end generalization bounds and requires (morally, since the settings are not all compatible)
weaker assumptions. On the practical front, we provide new theoretical insight into how “mix-
up” data augmentation (Zhang et al., 2018; 2021) and “activation-based pruning” (Hu et al., 2016;
Ganguli & Chong, 2024) work. A more detailed discussion of the related work and the implications
of our results can be found in Appendix B.

Disclaimers and limitations. It is important to note that our reseacher focus on gradient descent
training of overparameterized neural networks in the feature-learning regime (a.k.a “rich” learning
regime). Formally analyzing the gradient dynamics is notoriously difficult once training enters the
feature learning regime. This challenge is a core motivation for our work: we sidestep the dynamics
and analyze the properties of the set of stable solutions instead. At a cost, our theoretical bounds
do not apply to the early-phase of training. However, the benefit is that the function space char-
acterization derived from this stability condition allows for a width-agnostic analysis, which we
leverage for our generalization upper bounds that apply to networks of arbitrary finite width. Only
one requirement for sufficiently large width is invoked for our negative results. Specifically, for the
lower-bound construction of “hard-to-learn” functions (Theorem 3.6) and the existence of stable in-
terpolating solutions (Theorem 3.7), the network width K must be at least on the order of the sample
size n.

Our theoretical results are derived for two-layer fully-connected ReLU networks. While this archi-
tecture is a cornerstone for theoretical analysis, modern deep learning employs a much wider array
of designs. Extending our analysis to deeper networks, or architectures with specific inductive biases
like local connectivity (e.g., CNNs), is a significant undertaking left for future work.

2 PRELIMINARIES AND NOTATIONS

Neural network, data, and loss. We consider two-layer ReLU networks

K

fo@)=> vpd(wim—bp)+ B, ¢(z) =max{z,0}, ()

k=1

with parameters 8 = { (v, wy,, b,) }, U {8} € RIFDEHL Let @ be the parameter set of such 6
for arbitrary K € R. We also assume wy, # 0 for all & in this form, otherwise we may absorb it into
the output bias 3. Given data D = {(=;,y;)}"; with z; in a bounded domain Q C R? with d > 1,

the training loss is £(0) = 5= 37" | (fo(x;) — yi)Q. We assume ||z;|| < R and |y;| < D for all i.

2n
“Edge of Stability” regime. Empirical and theoretical research (Cohen et al., 2020; Damian et al.,
2024) has established the critical role of the linear stability threshold in the dynamics of gradient de-
scent. In GD’s trajectory, there is an initial phase of “progressive sharpening” where Ayax (V2L(6;))
increases. This continues until the GD process approaches the “Edge of Stability”, a state where
Amax(V2L(0;)) =~ 2/n, where 7 is the learning rate. In this paper, all the GD refers to vanilla GD
with learning rate 7).

Definition 2.1 (Below Edge of Stability (Qiao et al., 2024, Definition 2.3)). We define the trajectory
of parameters {Bt}t:1727”' generated by gradient descent with a learning rate 1 as Below-Edge-of-
Stability (BEoS) if there exists a time t* > 0 such that for all t > t*, Apax(V2L(6;)) < % Any
parameter state 0, with t > t* is thereby referred to as a BEoS solution.

This condition applies to any twice-differentiable solution found by GD, even when the optimization
process does not converge to a local or global minimum. Moreover, BEoS is empirically verified
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to hold during both the “progressive sharpening” phase and the subsequent oscillatory phase at the
EoS.

Our work aims to analyze the generalization properties of any solutions that satisfy the BEoS con-
dition (Definition 2.1). The set of solutions defined as:

Onrs(1.7) i~ {0 ‘ ha(72(60)) < 2. @

Data-dependent weighted path norm. Given a weight function g : S¥~! x R — R, where S?~! :=

{u € R?: |lu| = 1}, the g-weighted path norm of a neural network fg(x) = Zkl,(zl vpp(wilz —
bi) + [ is defined to be

K
w b
||fe||path,g=Z|vk|||wk||z-g( kb ) )
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The link between the EoS regime and weighted path norm constrain is presented in the following
data-dependent weight function (Liang et al., 2025; Nacson et al., 2023; Mulayoff et al., 2021). Fix
adataset D = {(z;,y;)}"; C R? x R, we consider a weight function gp : S9~! x R — R defined
by gp(u,t) == min{gp(u,t), jp(—u, —t)}, where

gp(u,t) =P(XTu>t)> EXTu—t|X u>t- \/1 +EX | XTu> > @)

Here, X is a random vector drawn uniformly at random from the training examples {@; }? ;. Specif-
ically, we may also consider its population level gp by viewing X as a random variable

f9||path,gz> < L - % + (R+ 1)\/ 2 (0)

The proof of this proposition refers to (Liang et al., 2025, Corollary 3.3). The non-parametric
characterization of stable minima via bounded weighted variation norm refers to (Liang et al., 2025;
Nacson et al., 2023).

Proposition 2.2. For any 6 € Opg.s(n, D),

Supervised statistical learning and generalization gap. We consider a supervised learning prob-
lem where ii.d. samples D = {(x;,y;)}}, are drawn from an unknown distribution P. In
this paper, we assume the feature space is a compact subset of Euclidean space, @ C RY, the
label space is R, and the data is supported on Q x [—D,D]. We use the squared loss, de-
fined as ¢(f,z,y) = (f(z) — y)®. The performance of a predictor f is measured by its pop-

ulation risk Rp(f) = Ex,y)~p (f, X,Y), while we optimize the empirical risk Rp(f) =
ﬁ Z(m“yi)ep L(f,x;,y;). The difference between these two quantities is the generalization gap

Gapp(f;D) = |Rp(f) — Ro( f)|- Our work focuses on the hypothesis classes the BEoS class
OgEos (1, P) and the bounded weighted-path norm class © 4,(2; M, C),

©,(2:M,C) = {0 €O |llfo lo 1~ < M, | follyuny < C}- )

where g can be the weight function gp associated to the empirical distribution D or the weight
function gp associated to the population distribution P, see Section E for more details.

3 MAIN RESULTS

In this section, we present our main theoretical results concerning the properties of stable solutions
found by gradient descent. Section 3.1 establishes a generalization bound for data exhibiting in-
trinsic low-dimensional structure. Section 3.2 then derives a spectrum of generalization bounds for
a tunable family of isotropic distributions, which connects the data’s radial mass concentration to
generalization performance. Finally, Section 3.3 investigates the behavior of stable solutions in the
limiting case where data is supported entirely on the unit sphere. All the detail proofs are deffered
to the appendix.
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3.1 PROVABLE ADAPTATION TO INTRINSIC LOW-DIMENSIONALITY

We begin with our main positive result, considering the case where data possesses an underlying
low-dimensional structure, a common feature of real-world datasets. We show that in this context,
the generalization performance of stable networks adapts to this intrinsic dimension rather than the
ambient one.

Assumption 3.1 (Mixture of Low-Dimensional Balls). Let {V;} 3-]:1 be a finite collection of J dis-

tinct m-dimensional (affine) linear subspaces within R%. Let P be a joint distribution over R x R.
The marginal distribution of the features x under P, denoted Px, is a mixture distribution given by

J
Px(z) =Y piPx (@), Px;x)=Px(®@|zcV)), (6)
j=1

where p; > 0 are the mixture probabilities P(x € V;) satisfying Z}]:l p; = 1. Each component

distribution 'P; is the uniform distribution on the unit disc IB%YJ ={x e V; : |z|, < 1}. The
corresponding labels y are generated from a conditional distribution P (y|x) and are assumed to be
bounded, i.e., |y| < D for some constant D > 0. Similarly, we define P;(x,y) = P(x,y | € V}).

Under the structural conditions of Assumption 3.1, we establish a generalization bound whose sam-
ple complexity depends on the intrinsic dimension m.

Theorem 3.2 (Generalization Bound for Mixture Models). Let the data distribution P be as defined
in Assumption 3.1. Let D = {(x;,y;) }, be a dataset of n i.i.d. samples drawn from P. Then, with
probability at least 1 — 6,

1 1 m mm, : 4 __1 1
sup GMWUED)éd(—+4M)2“”Aﬂjin2mﬂ+ﬂﬂjvh.(ﬂ
0€O®gEos(n,D) n 2 2n

where M := max{D, || folpv ||, 1} and Za hides constants (which could depend on d) and loga-
rithmic factors in J/§ and n.

The proof appears in Appendix F. The core strategy is to decompose the problem by analyzing the
network’s behavior on each subspace V; individually and then aggregating the results. If we restrict
the network to a single m-dimensional subspace V;, a neuron’s activation is governed not by its full
weight vector wy, but solely by projvj wy,, since the component of w;, that is orthogonal to Vj is
“invisible to the data on V;”. However, a critical question then emerges: we know EoS provides
a constraint on the global data-dependent regularity, which involves the full weights wy, but how
does this global constraint translate to local constraint on each individual subspace? To resolve this
question, we prove that the global weight function g dominates the local weight function g; that is
only determined by the data points on V; (Lemma F.3). This formally establishes that the implicit
regularization is adaptive to the data’s geometry, allowing us to derive a final bound that scales with
the intrinsic dimension m.

3.2 A SPECTRUM OF GENERALIZATION ON ISOTROPIC DISTRIBUTIONS

To explore the transition from a generalizing to a memorizing regime, we now analyze a family of
isotropic distributions parameterized by a term that controls the concentration of data mass near the
boundary of the unit ball. This allows for a precise characterization of how generalization degrades
as data points become more radially exposed.

Definition 3.3 (Isotropic Beta-radial distributions). Let X be a d-dimensional random vector in R%.
Forany a € (0, 00), the isotropic a-powered-radial distribution is defined by the generation process

X = h(R)U ~ Px(a), (8)

where R ~ Uniform|0, 1] is a random variable drawn from a continuous uniform distribution on
the interval [0, 1], U ~ Uniform(S%1) is a random vector drawn uniformly from the unit sphere

SV inR% and h(r) = 1 — (1 — r)Y/* is a radial profile.

Note that as o — 0, the distribution P () will be closer to the uniform distribution on the sphere.
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Assumption 3.4. Fix a € (0,00). Let P(«) be a joint distribution over R% x R such that The
marginal distribution of the features x under Px («). The corresponding labels y are generated
from a conditional distribution P(y|x) and are assumed to be bounded, i.e., |y| < D for some
constant D > 0. Similarly, we define Pj(x,y) = P(x,y | x € V).

This framework enables the derivation of a generalization upper bound that depends explicitly on
the parameter . The proof of the following theorem can be found in Appendix G.

Theorem 3.5. Fix a dataset D = {(x;,y;)}"_,, where each (x;,y;) is drawn i.id. from P(c)
defined in Assumption 3.4. Then, with probability at least 1 — 6, for any 6 € Opgos(n, D),

ad

s 2d2470d+6a  _ a(d+3)
<l _ % n 4M) dZ4d+3 M %t dad+30 p 2(d2+4o4d+3u)’ a > %;
Gapp(fe;D) Za § ) ©)
~ T Traars o, 234 adb6a o 3d
<E -3 + 4M) M d2+4ad+3a n 2d+4a a < 57oa,

and for where M = max{D, || fo|ga| L, 1} and Zq hides constants (which could depend on d)
and logarithmic factors inm and (1/6).

To demonstrate the tightness of this result, we establish a corresponding lower bound. For this
purpose, we consider the class of neural networks with bounded g-weighted path norm @, (BY:1,1),
where g is the population version of the weighted.

Theorem 3.6 (Generalization Gap Lower Bound). Ler P denote any joint distribution of (x,y)
where the marginal distribution of x is Px(«)) and y is supported on [—1,1]. Let D, =
{(z5,y;)}}—, be a dataset of n i.i.d. samples from P. Let Epn (f) be any empirical risk estimator
for the true risk Rp(f) := E(z y)~p[(f(z) — y)?]. Then,

2
infsup Ep, Zdan FesEs T

R P

sup ’Rp(fo) - }AED,L(fG)‘
0cO,(BY;1,1)

Crucially, the proof is constructive and, as detailed in Appendix H, leverages the “neural shattering”
observation found by (Liang et al., 2025). The method involves constructing a large family of distinct
two-layer ReLU networks, and then showing that with high probability, this family contains at least
one pair of networks that are indistinguishable to any learning algorithm that only has access to the
training data. This construction exhibit how data geometry (more precisely, shatterability) connect
to statistical uncertainty: (1) For bounded isotropic distributions with fixed boundary concentration
(fixed ) in high dimensions, the input space offers an exponential number of distinct directions; (2)
any training set of finite size n can only cover a fraction of these directions, leaving vast regions of
the input space unsampled. Our proof exploits this by designing networks whose neurons activate
only in localized, disjoint regions near the boundary of the unit ball. The construction ensures that,
with high probability, a significant number of these regions contain no training data. By having the
two networks differ only in these empty regions, they become identical on every point of the training
set, yet remain substantially different in their population risk.

3.3 FLAT INTERPOLATION OF SPHERICALLY SUPPORTED DATA

The previous analysis indicates that generalization degrades as data concentrates toward a boundary.
We now investigate the limiting case of this phenomenon, where the data support is confined to the
unit sphere. In this setting, we show that the stability condition at the EoS is insufficient to prevent
the network from perfectly interpolating the training data.

Theorem 3.7 (Flat interpolation with width < n). Assume that {(x;,y;)}"_, is a dataset with
x; € S* ! and pairwise distinct inputs, there exists a width K < n network of the form (1) that
interpolates the dataset and whose Hessian operator norm satisfies

D? +2

Amax (VoL£) < 1+ — (10)

If we remove the output bias parameter (3 in (1), then Ay ax (Vgﬁ) < %.
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Remark 3.8. Both Theorem 3.7 our work and (Wen et al., 2023) construct explicit memorization
networks to illustrate a negative result: even under natural “flatness/stability” proxies, a ReLU net-
work can interpolate while failing to generalize. In (Wen et al., 2023), they exhibit trace-minimizing
(“flattest”) interpolators that perform poorly on the distribution Pyor, which is different from our
setting.

The existence of an interpolating network that remains stable demonstrates that the EoS condition
alone does not preclude memorization. This result establishes a clear boundary for the effectiveness
of the stability-induced implicit bias, highlighting that its success is critically dependent on the
properties of the data’s support.

4 EXPERIMENTS
In this section, we present empirical verification of both our theoretical claims and proof strategies.

4.1 EMPIRICAL VERIFICATION OF THE GENERALIZATION UPPER BOUNDS

We test two predictions of our theory using synthetic data and two-layer ReLU networks of width
1000 trained with MSE loss and vanilla GD with learning rate 0.4 for 20000 epochs. The synthetic
training data is produced by fixing a ground-truth function f (ReLU networks or quadratic functions)
to noisy labels y; = f(x;) + &, where &; is an i.i.d Gaussian noise. Generalization gap is measured
by the true MSE Ep[(f(X) — f(X))?] on the training set. In other words, this measures the
resistence to memorize noise. Theory predicts Error < n™¢ with a geometry-dependent exponent
¢, so we plot log(clean MSE) against log n and estimate the slope by OLS. For each sample size n,
we train on n i.i.d. examples and report their true MSE. Each set-up sweep 6 random seeds and take
averages. The results are summarized in Figure 1.

—— d =10 (slope=-0.813) ° —— Alpha=1 (slope=-0.165)
A -~ d =50 (slope=-0.904) RaE N ~~- Alpha=5 (slope=-0.292)
05 ‘ N =+ d =100 (slope=-0.924) N\ — -+ Alpha=10 (slope=-0.296)
TN 2 ----- d = 500 (slope=-0.909) _oal SO e Alpha=50 (slope=-0.360)
-1.0 R AR \‘\
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Py 06 '\
m a Nise ®
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= -20 = -
-1.0 ¥
_,.5| Regression statistics: N, _1,/ | Regression statistics: .
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5.0 5.5 6.0 6.5 7.0 75 45 5.0 5.5 6.0 6.5 7.0
log(Sample Size) log(Sample Size)
(a) Adaptation to intrinsic dimension (b) Radial concentration parameter o

Figure 1: How data geometry controls generalization. (a) Union of J = 20 lines (m = 1) embed-
ded in R? with d € {10, 50,100, 500}. The regression slopes remain nearly constant across different
d, showing that generalization adapts to intrinsic rather than ambient dimension. (b) Fixed ambient
dimension d = 5 with isotropic Beta-radial distributions (Definition G.1) for o € {1,5,10,50}.
Larger « yields steeper slopes in the log—log error curve, consistent with improved rates as proba-
bility mass concentrates away from the boundary.

4.2 HoOw DATA GEOMETRY AFFECTS REPRESENTATION LEARNING

We study how data geometry shapes the representation selected by GD at the BEoS regime through
data activation rate of neurons. Given a neuron viy¢(w]x — by) in the neuron network, its data
activation rate is define to £ 3" | 1{w, @; > by }, which is exactly the probability term in the
definition of the weight function g in (25). Low data activation rate means the neuron fires on a
small portion of the data.
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Figure 2: Neuron activation statistics under different geometries. (a) On the uniform sphere,
most neurons fire on less than 10% of the data, indicating highly specialized ReLUs as we predict
in Theorem 3.6 and Theorem 3.7. On the low-dimensional mixture, many neurons fire on 10-40%
of the data, reflecting broader feature reuse. (b) Scatter of weight coefficient magnitude versus
activation rate. On the sphere, GD produces many low-activation neurons with large coefficients. On
the low-dimensional mixture, neurons spread to medium activation rates with moderate coefficients.

To verify it empirically, we compare two input distribution in R®?: (i) uniform distribution on a
sphere and (ii) a union of lines of 20 lines by training ReLU networks the same recipe and initial-
ization . As a result, the ReLU network trained on the sphere interpolates the noisy label quickly
with final true MSE 1.0249 = noise level (2 = 1), while the the ReLU network trained on a union
of lines resist to overfitting with final true MSE 0.07 ~ 0 (more details appears in Appendix C).
Notably, the trained representations are presented in Figure 2. In particular, GD empirically finds
our lower bound construction below the edge of stability.

4.3 EMPIRICAL EVIDENCE FOR THE DATA SHATTERABILITY PRINCIPLE

Our theory assumes data supported exactly on a mixture of low-dimensional subspaces. In practice,
real datasets are only approximately low-dimensional, as highlighted in the literature on subspace
clustering (Vidal et al., 2016; Elhamifar & Vidal, 2013). For instance, MNIST images do not per-
fectly lie on a union of lines or planes, but still exhibit strong correlations that concentrate them
near such structures. Our experiments (Figure 3, more details in Appendix C.2) show that even this
approximate structure has a pronounced effect: compared to Gaussian data of the same size, GD
on MNIST requires orders of magnitude more iterations before mildly overfitting solutions emerge.
This demonstrates that our theoretical prediction is not fragile: generalization benefits from low-
dimensional structure across a spectrum.

This experimental result validates not only our main theorems but also the core techniques of our
proof. To illustrate this, we introduce Tukey depth depthp () := inf),|,—1 P(uTX >u'x),
which measures the centrality of a point x by finding the minimum data mass (either population or
empirical) on one side of any hyperplane passing through it (Tukey, 1975). Our key claim is that
deeper regions of a distribution are hard-to-shatter. For a ReL.U ridge to introduce non-linearity, or
“wiggleness”, within a deep region Q7 := {x : depthp (2) > T}, its decision boundary must
pass through that region. By the very definition of Tukey depth, the corresponding neuron is then
guaranteed to activate on at least a T-fraction of the data. This provides a lower bound on the EoS
weight function g for these specific neurons that contribute to the function’s nonlinearity in the Q.

Consequently, within this deep region, the stability-induced weighted path norm constraint effec-
tively becomes a more traditional unweighted path norm bound for the part of the network creating
local complexity. Such function classes are known to ensure generalization (Parhi & Nowak, 2023;
Neyshabur et al., 2015). Outside this core, the BEoS constraint provides no meaningful control for
neurons activating there, as g can be vanishingly small, allowing for large unweighted norms that
facilitate memorization. Heuristically, deeper regions should generalize better. The right panel of
Figure 3 provides a striking visual confirmation of this principle on a real-world dataset.
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Figure 3: Data geometry and memorization on MNIST. Left pannel: Comparison of training
curves under the same ground-truth predictor with Gaussian inputs versus MNIST inputs (n =
30000). GD on the Gaussian data set quickly interpolates, while MNIST resists overfitting for tens
of thousands of steps. Right pannel: Prediction error against Tukey depth for MNIST samples.
Shallow points (low depth) exhibit larger errors. This regions refers to “highly shatterable region”.

Our upper-bound proof technique, which refines the domain decomposition strategy from (Liang
et al., 2025), operationalizes this split. We partition the data space into a deep core {2r and its
shallow complement. We control the generalization error in the core, while conservatively bounding
the error in the shallow region by its total probability mass. The final bound arises from optimizing
the trade-off in selecting T". Crucially, this strategy is consistent with our lower-bound construction,
as well as the “neural shattering” phenomenon analyzed in (Liang et al., 2025). The “hard-to-
learn” functions in Construction H.4 are built with neurons that activate exclusively in the low-
depth regions. This shows that surrendering the shallow region in the upper bound is not a mere
mathematical trick, but reflects a fundamental characteristic of the BEoS regime. In the extreme case
of data on a sphere, where all points have zero depth, this technique becomes inapplicable—which
aligns perfectly with our finding that stable interpolation is possible in that setting.

5 DISCUSSION AND FURTHER QUESTIONS

In this work, we present a mechanism explaining how data geometry governs the implicit bias of
neural networks trained below the Edge of Stability. We introduce the principle of “data shatterabil-
ity,” demonstrating that geometries resistant to shattering guide gradient descent towards discovering
shared, generalizable representations. Conversely, we show that easily shattered geometries, such as
data concentrated on a sphere, permit stable solutions that memorize the training data.

Our framework opens several promising avenues for future research. A central question is the con-
nection between shatterability and optimization. The observation that a flip side of being prone to
overfitting is often faster optimization leads to a natural hypothesis: are high-shatterability distri-
butions easier to optimize? This, in turn, raises further questions about the role of normalization
techniques. For instance, do normalization techniques like Batch Norm accelerate training precisely
by enforcing more isotropic, and thus more shatterable, representations at each layer? This line of
inquiry extends naturally to deep networks, where hidden layers not only sense the initial data ge-
ometry but actively create a new “representation geometry”. Can our principles be translated to the
understanding of representation geometry? Finally, this framework may offer a new lens to under-
stand architectural inductive biases. For example, do CNNs generalize well precisely because their
local receptive fields impose an architectural constraint that inherently reduces the model’s ability
to shatter the data, forcing it to learn local, reusable features? Answering such questions, alongside
developing a quantifiable metric for shatterability, remains a key direction.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR 2026 policy on the responsible use of LLMs, we disclose the follow-
ing. We employed commercial LLM services during manuscript preparation. Specifically, we used
Gemini 2.5 Pro, ChatGPT 35, and DeepSeek to assist with language polishing, literature search, and
consistency checks of theoretical derivations. We further used Claude 4 and Cursor to help generate
experimental code templates. Importantly, all research ideas, theoretical results, and proof strategies
originated entirely from the authors. The LLMs were used solely as productivity aids and did not
contribute novel scientific content.

B MORE RELATED WORKS

How we “rethink” generalization. Our shatterability principle provides a theoretical account of the
discrepancy noted by Zhang et al. (2017): networks fit Gaussian noise much faster than real images
with random labels. Gaussian inputs concentrate on a thin spherical shell and are highly shatterable,
while CIFAR-10 exhibits unknown low-dimensional structure that resists shattering. Strong general-
ization arises in practice because gradient descent implicitly exploits this non-shatterable geometry
of the real world data. We conduct a similar experiment from the perspective of generalization in
Section 4.3 (see Figure 3).

Revisit data augmentation. Mixup forms convex combinations of inputs and labels and encourages
approximately linear predictions along these segments (Zhang et al., 2018). The added in-between
samples penalize solutions that memorize isolated points with sharply varying piecewise-linear be-
havior. For example, on spherical-like data that ReLU units can easily shatter, such memorization
incurs high loss on the mixed samples, which suppresses shattering-type separators. Prior work
mostly views Mixup as a data-dependent regularizer that improves generalization and robustness
(Zhang et al., 2021). Our analysis complements this view by tracing the effect to the implicit bias of
gradient descent near the edge of stability and by linking the gains to a reduction in data shatterability
induced by interpolation in low-density regions.

Activation-based network pruning. Empirical works have shown that pruning strategies based on
neuron activation frequency, such as removing neurons with low activation counts, can even improve
the test performance after retraining (Hu et al., 2016; Ganguli & Chong, 2024). This coincide with
our theory: such rare-firing neurons may be harmful to generalization and pruning these neurons
help models to learn more generalizable features.

Subspace and manifold hypothesis. A common modeling assumption in high-dimensional learn-
ing is that data lies on or near one or several low-dimensional subspaces embedded in the ambient
space, especially in image datasets where pixel values are constrained by geometric structure and
are well-approximated by local subspaces or unions of subspaces (Vidal et al., 2016). In particu-
lar, results in sparse representation and subspace clustering demonstrate that such structures enable
efficient recovery and segmentation of high-dimensional data into their intrinsic subspaces (Elham-
ifar & Vidal, 2013). This also extends to a more general framework of the manifold hypothesis
(Fefferman et al., 2016).

Capacity of neural networks. The subspace and manifold hypotheses have important implications
for the capacity and generalization of neural networks. When data lies near low-dimensional sub-
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spaces and manifolds, networks can achieve expressive power with significantly fewer parameters,
as the complexity of the function to be learned is effectively constrained by the subspace dimension
rather than the ambient dimension (Poggio & Liao, 2017; Cloninger & Klock, 2021; Kohler et al.,
2022). However, these results focus only on expressivity and the existence of neural networks to
learn efficiently on this data.

Interpolation, Benign overfitting and data geometry. Benign-overfitting (Bartlett et al., 2020)
studies the curious phenomenon that one can interpolate noisy labels (i.e., 0 training loss) while
consistently learn (excess risk — 0 as n gets larger). Joshi et al. (2024) establishes that overfitting in
ReLU Networks is not benign in general, but it could become more benign as the input dimension
grows (Kornowski et al., 2024) in the isotropic Gaussian data case. Our results suggest that such
conclusion may be fragile under low-dimensional or structured input distributions. On a positive
note, our results suggest that in these cases, generalization may follow from edge-of-stability, which
applies without requiring interpolation.

Implicit bias of gradient descent. A rich line of work analyzes the implicit bias of (stochastic)
gradient descent (GD), typically through optimization dynamics or limiting kernels (Arora et al.,
2019; Mei et al., 2019; Jin & Montifar, 2023). In contrast, we do not analyze the time evolution per
se; we characterize the function spaces that GD tends to realize at solutions. Our results highlight
a strong dependence on the input distribution: even for the same architecture and loss, the induced
hypothesis class (and thus generalization) changes as the data geometry changes, complementing
prior dynamics-centric views.

Edge of Stability (EoS) and minima stability. The EoS literature primarily seeks to explain when
and why training operates near instability and how optimization proceeds there (Cohen et al., 2020;
Kong & Tao, 2020; Arora et al., 2022; Ahn et al., 2022; Damian et al., 2024). Central flows offer
an alternative viewpoint on optimization trajectories that also emphasizes near-instability behavior
(Cohen et al., 2025). Closest to our work is the line on minima stability (Ma & Ying, 2021; Mulayoff
et al., 2021; Nacson et al., 2023; Wu & Su, 2023; Qiao et al., 2024), which links Hessian spectra
and training noise to the geometry of solutions but largely leaves generalization out of scope. We
leverage the EoS/minima-stability phenomena to define and analyze a data-distribution-aware notion
of stability, showing adaptivity to low-dimensional structure and making explicit how distributional
geometry shapes which stable minima GD selects.

Flatness vs. generalization. Whether (and which notion of) flatness predicts generalization re-
mains debated. Several works argue sharp minima can still generalize (Dinh et al., 2017), propose
information-geometric or Fisher—-Rao—based notions (Liang et al., 2019), or develop relative/scale-
invariant flatness measures (Petzka et al., 2021). We focus on the largest curvature direction (i.e.,
Amax) motivated by EoS/minima-stability. Our results rigorously prove that flatness in this notion
does imply generalization (note that there is no contradiction with Dinh et al. (2017)), but it depends
on data distribitton.

Linear regions of neural networks. Our research connects to a significant body of work that
investigates the shattering capability of neural networks by quantifying their linear activation regions
(Hanin & Rolnick, 2019a;b; Hanin et al., 2021; Montufar et al., 2014; Serra et al., 2017). Other
empirical work has meticulously characterized the geometric properties of linear regions shaped by
different optimizers (Zhang & Wu, 2020). Particularly, (Tiwari & Konidaris, 2022) consider the how
these linear regions intersect with data manifolds. These analyses primarily leverage the number of
regions to characterize the expressive power of deep networks, while our work shifts the focus on
the generalization performance of shallow networks at the EoS regime.

C DETAILS OF EXPERIMENTS

C.1 EXPERIMENTAL DETIALS FOR SECTION 4.2

Here we provide the full experimental details of the discussion in Section 4.2.

We worked in ambient dimension d = 50 with n = 2000 training examples. For the Sphere
condition, samples were drawn uniformly from the unit sphere. For the Low-dimensional mixture,
we generated data from a mixture of 20 randomly oriented 1-dimensional subspaces uniformly.
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Labels were produced by a fixed quadratic teacher function with added Gaussian noise of variance
1.

We trained a two-layer ReLU network with hidden width 1024. All models were trained with GD for
10000 epochs using learning rate 0.4 and gradient clipping at 50. The loss function was the squared
error against noisy labels, while generalization performance was evaluated by the true MSE against
the noiseless teacher. For comparability, both datasets shared the same initialization of parameters.

‘We monitored (i) training loss and true MSE, (ii) Hessian spectral norm estimated by power itera-
tion on random minibatches, and (iii) neuron-level statistics such as activation rate and coefficient
magnitude. The training curves are shown in Figure 4 and Ap,,.x (Vg L)-curves are shown in Figure 5.

Training Loss vs True MSE: Sphere vs Low-Dimensional Distribution
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Figure 4: Training curves on different geometries. Training loss and clean MSE on Sphere vs.

Low-dimensional mixture. We can see GD on sphere interpolate very quickly (before the 2000-th
epoch) while the mixed low-dimensional data resist to overfitting.

Hessian Norm Evolution: Sphere vs Low-Dimensional Distribution
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Figure 5: Amax(VeL)-curves. Both of the curves oscillates around 2/n = 5, signaling the edge of
stability regime.
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C.2 EXPERIMENTAL DETAILS OF SECTION 4.3

We complement the main experiments with a controlled comparison between real data (MNIST)
and synthetic Gaussian noise under the same ground-truth function. The goal is to illustrate how the
geometry of real-world data affects the speed and nature of memorization by GD.

We fix a ground-truth predictor f (a two-layer ReLU network) and generate noisy labels

yi = f(xi) + &, & ~N(0,1).

We then compare two input distributions of size n = 30000:

(i) Gaussian inputs x; ~ N (0, I;) with d = 784, and

(ii) MNIST images x; € [0, 1]"®* after normalization by 1/255.

Both datasets are trained with identical architecture (two-layer ReLU neuron network of 512 neu-
rons), initialization, learning rate = 0.2, gradient clip threshold 50.

We track both the empirical training loss and the true MSE L 3" ( f(x:) — f(x;))2, which mea-
sures generalization. The horizontal dotted line at y = 1 corresponds to the noise variance and
represents the interpolation limit.

Figure 6 shows training curves over the first 5000 epochs. On Gaussian inputs, GD rapidly inter-
polates: the training loss vanishes and the clean MSE rises to the noise limit within a few hundred
steps. On MNIST inputs, GD initially decreases both training loss and clean MSE, entering a pro-
longed BEoS regime where interpolation is resisted. Only after thousands of epochs does the clean
MSE start to increase, suggesting that memorization occurs at a much slower rate.

Generalization Gap Comparison
Training Curves Comparison |Clean MSE + o2 - Train MSE|
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Figure 6: Training curves for Gaussian noise vs. MNIST over the first 5000 epochs. Gaussian
quickly interpolates, while MNIST remains in a BEoS regime where clean MSE stays well below
the noise level.
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D FUNCTIONAL ANALYSIS OF SHALLOW RELU NETWORKS

D.1 PATH-NORM AND VARIATION SEMI-NORM OF RELU NETWORKS

In this section, we summarize some result in (Parhi & Nowak, 2023) and (Siegel & Xu, 2023).
Definition D.1. Let fo(x) = Zle v p(wlx — by) + B be a two-layer neural network. The
(unweighted) path-norm of fg is defined to be

K

1follpatn =D [vel [[wll, (1)

k=1

Dictionary representation of ReLU networks. By the positive 1-homogeneity of ReLU, each
neuron can be rescaled without changing the realized function:

vp p(wi e —by) = ar, plupx — ty), wup = Yk ¢ Sty = bik, ag = v ||wel|, -
l[wel, l|wel,
Hence fy admits the normalized finite-sum form
K
f(=x) :Zaké(ugw—tk)—i—cTw—&—co. (12)
k=1

Let the (ReLU) ridge dictionary be 7, := {¢(u” - —t) : uw € S, t € R}. We study the over-
parametrized, width-agnostic class given by the union over all finite widths

K
Fin = { ar ¢(uy, - —ty) +¢' () +co}, (13)
k=1

K>1

and measure complexity by the minimal path-norm needed to realize f:
| fll path,min := inf {|| follpatn : fo = f of the form (12)} .

From finite sums to a width-agnostic integral representation. To analyze g, without com-
mitting to a fixed width K, we pass to a convex, measure-based description that represents the
closure/convex hull of (13). Specifically, let v be a finite signed Radon measure on S¢~! x [~ R, R]
and consider

f(x) = / p(u'x —t) dv(u,t) + "z + co. (14)
S9-1x[—R,R]

Any finite network (12) corresponds to the sparse measure v = Zle ak O(uy,t,)» and conversely
sparse measures yield finite networks. Thus, (14) is a width-agnostic relaxation of (11), not an
assumption of an infinite-width limit.

Definition D.2. The (unweighted) variation (semi)norm
|flv :=inf {||[v]|r, : f admits (12) for some (v,c,co)}, (15)

where ||v|| \, is the total variation of v.

For the compact region §) = IBB%, we define the bounded variation function class as

Ve(Q):= {f:Q—)R | f= d(u'x —t)dv(u,t) +c @+ b, | flv <C}. (16)

Se-1x[—R,R]
Specifically, by identifying (12) with the atomic measure v = ) 3, ax0(u, +,), We have

[flv <> lakl = | follpatn, hence | £lv < || £path min-
K

Conversely, the smallest variation needed to represent f equals the smallest path-norm across all
finite decompositions,
||f||path,min = |f|V (17)

Thus, the variation seminorm (15) is the nonparametric counterpart of the path-norm, which cap-
tures the same notion of complexity but without fixing the width K.
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Remark D.3 (“Arbitrary width” # “infinite width”). Our analysis concerns Fgy in (13), i.e., the
union over all finite widths. The integral model (14) is a convexification/closure of this union that
facilitates analysis and regularization; it does not assume an infinite-width limit. In variational
training with a total-variation penalty on v, first-order optimality ensures sparse solutions (finite
support of v), which correspond to finite-width networks. Thus, all results in this paper apply to
arbitrary (but finite) width, and the continuum measure is only a device to characterize and control

| f [l path, min-

D.2 TOTAL VARIATION SEMI-NORM ON RADON DOMAIN

We now connect the (unweighted) variation semi-norm of shallow ReLU networks to an analytic
description on the Radon domain. Our presentation follows (Parhi & Nowak, 2021; 2023).

Definition D.4. For a function f : R* — R and (u,t) € ST xR := S x R, the Radon
transform and its dual are defined by

R (u.t) = / f(@)ds(z)

{z:uTx=t}

RX*{D} (x) = / (u, u'z) do(u).

Sd—1

The Radon framework encodes a function f by its integrals over affine hyperplanes faithfully in
the senses that the Radon transform is invertible up to a known dimension-dependent constant via a
one-dimensional “ramp” filter in ¢.

Proposition D.5 (Filtered backprojection (Radon inversion)). There exists cq > 0 such that
caf = " {NaZf},

where Ag_1 acts in the t-variable with Fourier symbol m(u, w) =i |w|d! i'(u, w).

The inversion formula motivates measuring the “ridge-curvature” of f by differentiating in the
Radon offset ¢ after filtering, and aggregating its magnitude over all orientations and offsets.

The next definition is the sole norm we need on the Radon domain; it specializes all higher-order
variants to the ReLU case.

Definition D.6 (Second-order Radon total variation (ReLU case)). The (second-order) Radon total-
variation seminorm is

ATV (f) = H%{(*A)%f} HM(SL‘*X}R)?

where the fractional power is understood in the tempered-distribution sense. The null space of

%TVQ(-) is the set of affine functions on R

Proposition D.7 (Equivalence of seminorms on bounded domains (Parhi & Nowak, 2021)). Let
B = B&. Forany f : B — R with finite variation seminorm, its canonical extension fox to R?

satisfies )
[flv = ZTV(fext),
and, in particular, for any finite two-layer ReLU network in reduced form fo(x) =

Zle vg p(wlx — by) + Tz + ¢,
K
RIV(fo) = Y |ve| wgl,
=1

which equals the minimal (unweighted) path-norm needed to realize fg on B%.

The key structural reason is simple: 92 A4_1% turns each ReLU ridge ¢(u"x —t) into a Dirac mass
at (u,t) on ST~! x R, so superpositions of ridges correspond exactly to finite signed measures on
S9-1 x R, and the total-variation of that measure coincides with both the variation seminorm and
ZTV?(-) after fixing the affine null space.

Remark D.8 (Takeaway). For ReLU networks on bounded domains, the three viewpoints
path-norm ||f|| ., <— unweighted variation |f|v <— Radon-TV ZTV(f)

are equivalent up to the affine null space. We will freely switch between them in the sequel.
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D.3 THE METRIC ENTROPY OF VARIATION SPACES

Metric entropy quantifies the compactness of a set A in a metric space (X, px ). Below we introduce
the definition of covering numbers and metric entropy.

Definition D.9 (Covering Number and Entropy). Let A be a compact subset of a metric space
(X, px). Fort > 0, the covering number N (A, t, px) is the minimum number of closed balls of
radius t needed to cover A:

N
N(t, A px):= min{N eN:Jxy,...,ay € X st. AC UB(xi,t)} , (18)
i=1
where B(z;,t) = {y € X : px(y,z;) < t}. The metric entropy of A at scale t is defined as:
Ht(A)X = IOgN(t, Ava)' (19)

The metric entropy of the bounded variation function class has been studied in previous works. More
specifically, we will directly use the one below in future analysis.

Proposition D.10 (Parhi & Nowak 2023, Appendix D). The metric entropy of V. (B%) (see Defini-
tion D.2) with respect to the L°°(B%)-distance || - || satisfies

log N(t, Ve (BL), | - o) S (C) o (20)

2d

t

where S q hides constants (which could depend on d) and logarithmic factors.

D.4 GENERALIZATION GAP OF UNWEIGHTED VARIATION FUNCTION CLASS

As a middle step towards bounding the generalization gap of the weighted variation function class,
we first bound the generalization gap of the unweighted variation function class according to a metric
entropy analysis.

Lemma D.11. Let For o = {f € Vo(BL) | || flloo < M} with M > D. Then let D ~ P%" be a
sampled data set of size n, with probability at least 1 — 6,

1
~ 3(d+2 : 2
sup |R(f) — Rp(f)| Sa O M i 4 M2 (10g(4/5)) ) (1)
f€EFM,c n
Proof. According to Proposition D.10, one just needs N (¢) balls to cover F in || - || with radius
t > 0 such that where
o

Then for any f,g € Fas,c and any (x, y),
(f(@) —9)* = (9(=) —9)*| = |f(@) — g()| |f(x) + g(x) — 2y| <AM[|f — g]|co.
Hence replacing f by a centre f; within ¢ changes both the empirical and true risks by at most 4M¢.

For any fixed centre f in the covering, Hoeffding’s inequality implies that with probability at least
>1— 9, we have

~ = log(2/d

[R(f) = B (f)] < 4M? % (22)
because each squared error lies in [0, 41/ 2]. Then we take all the centers with union bound to deduce
that with probability at least 1 — ¢ /2, for any center f in the set of covering index, we have

R(F) — Bp ()| < an2y | 22BN (0)/0)

n

<. (C) r”‘ (1> Ve (1°g<4/ ‘”) 23)
t n n

o1\ h
e (6 ()
t n

N
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where <4 hides the logarithmic factors about 1/§ and constants.

According to the definition of covering sets, for any f € Fys,c, we have that || f — fllo <t for
some center f. Then we have

|R(f) — Rp(f)]
Sa |R(F) — Rp(f)| + O(Mt) (24)
de M2 . (f)m n_% —|—O(Mt)

After tuning ¢ to be the optimal choice, we deduce that (21). O

E DATA-DEPENDENT REGULARITY FROM EDGE-OF-STABILITY

This section summarizes the data-dependent regularity induced by minima stability for two-layer
ReLU networks.

E.1 FUNCTION SPACE VIEWPOINT OF NEURAL NETWORKS BELOW THE EDGE OF
STABILITY

Recall the notations: given a dataset D = {(x;, )}, C R? x R, we define the data-dependent
weight function gp : S?~! x R — R by
gp (’U,, t) = min{gD (’U,, t)a gD(f’u’v 7t)}7

where

gp(u,t) =Pp(XTu>t)? Ep[X u—t| X u>t- \/1 +|[Ep[X | XTu>t]|>. (25

Here, X denotes a random draw uniformly sampled from {a;}?_;, so that Pp, Ep refer to proba-

bility and expectation under the empirical distribution 1 37 | §,,.. When the dataset D is fixed and

clear from context, we will simply write g in place of gnp.

Then the curvature constrain on the loss landscape of £ is converted into a weighted path norm
constrain in the following sense.
Proposition E.1 (Finite-sum version of Theorem 3.2 in (Liang et al., 2025)). Suppose that fg(x) =

22{21 v p(wlx — by) + B is two-layer neural network such that the loss L is twice differentiable
at 0. Then

K

b' >\max v2£ 0 1
Zlvklllwkll-g( el u )S (V5£(0)) —§+(R+1)\/2£(0). (26)
k=1

Jwp]|” [lwg | 2

If we write fg into a reduced form in (12), then we have

K’ 2
Zak'g(uk;tk) SM—%%—(H—F 1)1/2L£(0). (27
k=1

Therefore, we bring up the definition the g-weighted path norm and variation norm are introduced
as prior work introduced (Liang et al., 2025; Nacson et al., 2023).

Definition E.2. Let fg(x) = 2521 vp p(wlx — by) + B be a two-layer neural network. The
(g-)weighted path-norm of fg is defined to be

K
wip bk
I follpang = D ol leonla o (ot o) (28)
k=1

|'wk||7 [lwy ||

Similarly, for functions of the form

foceo(®) = / p(u'x —t)dv(u,t) + c'x + ¢y, = eRY, (29)
Se-1x[—R,R]
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where R > 0, ¢ € R%, and ¢y € R, we define the g-weighted variation (semi)norm as

Iflv, = inf lg-vlim st f=foceos (30)
veM(ST 1 x[~R,R])
cGRd,CUER

where, if there does not exist a representation of f in the form of (29), then the seminorm is un-
derstood to take the value +oco. Here, M(S?! x [~R, R]) denotes the Banach space of (Radon)
measures and, for p € M(S¥ ! x [-R, R)), ||ullm = fsdflx[fR,R] d|u|(u,t) is the measure-
theoretic total-variation norm.

With this seminorm, we define the Banach space of functions V4 (Bﬁl{) on the ball ]B%‘}{ = {x €
R : |l@|o < R} as the set of all functions f such that |f|y, is finite. When g = 1, | - |v, and
Vy (BdR) coincide with the variation (semi)norm and variation norm space of Bach (2017).
For convenience, we introduce the notation of bounded weighted variation class

Fo( M, C):={f: Q= R||flv, <C ||flallL~ < M}. 31
In particular, for any 0 € ©4(; M, C), we have fg € Fo(Q; M, C).

Within this framework together with the connection between | - |y and ZTV?(-) as summarized in
Section D.2, we show the functional characterization of stable minima.

Theorem E.3. For any fo € Opgos(n, D), |folv, = Ilg - %(_A)%fGHM < % - L+ (R+
1)/2L(6).

The detailed explanation and proof can be found in (Liang et al., 2025, Theorem 3.2, Corollary 3.3,
Theorem 3.4, Appendix C, D).

E.2 EMPIRICAL PROCESS FOR THE WEIGHT FUNCTION g

The implicit regularization of Edge-of-Stability induces a data-dependent regularity weight on the
cylinder S971 x R := S9! x [~1,1]. Denote this empirical weight by gp for a dataset D =
{z;}_,. Directly analyzing generalization through the random, data-dependent class weighted by
gp is conceptually delicate, since the hypothesis class itself depends on the sample. To separate
statistical from algorithmic randomness, we adopt the following paradigm.

(1) Fix an underlying distribution P for X with only the support assumption supp(P) C
B% = {x € R? : ||| < R}. Define a population reference weight gp on S4~! x R
(see below). This anchors a distribution-level notion of regularity independent of the par-
ticular sample.

(ii) For a realized dataset D ~ P®", form the empirical plug-ins that define gp on the same
index set S~ x R.

(iii) Use empirical-process theory to control the uniform deviation ||gp — g || With high prob-
ability over the draw of D. After this step, we can condition on the high-probability event
and regard D as fixed in any subsequent analysis.

Let X ~ P with supp(P) C B%. For (u,t) € S~! x R define
pp(u,t) ::P(XTu > ), sp(u,t) == IEXNP[(XTu—tp]

On the unit ball we have 0 < (XTu —t); < 2and [|[Ep[X | X Tu > t]|| < 1, which yields the
pointwise equivalence
gp(u,t) < pp(u,t)sp(u,t) (with absolute constants). (32)

Given a dataset D = {x;}" ,, let Pp, Ep denote probability and expectation under the empirical
distribution = 3" | 4, . Define

pp(u,t) :=Pp(XTu>t)= %Z Hzlu>t}, sp(u,t):=Ep[(X u—t);] = %Z(wz—u—tﬁr,
i=1 i

and the empirical weight
gp(u,t) < pp(u,t) sp(u,1). (33)
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Lemma E.4 (Uniform deviation for halfspaces). There exists a universal constant C' > 0 such that,
foreveryd € (0,1),

IF’( sup ’pp(u,t) —pp(u7t)’ >C cl—i—lmg(l/é)) <.

u€Sd—1, te[—1,1] n

Proof. The class {(z +— 1{z"u > t}) : u € S*"!, t € R} has VC-dimension d + 1. Apply the
VC-uniform convergence inequality for {0, 1}-valued classes (e.g., Vapnik (1998)) to the index set
S9! x [~1, 1] to obtain the stated bound. O

Lemma E.5 (Uniform deviation for ReLU). There exists a universal constant C' > 0 such that, for
every § € (0,1),

]P’( sup |sD(u,t) — sP(u,t)‘ >C d—l—log(l/é)) <.

ueSd—1, te[—1,1] n

Proof. Let F = {fus(x) = (u'z —t), : uw € S¥1 ¢t € [-1,1]}. Since ||z|| < 1 and
t € [-1,1], every f € F takes values in [0, 2]. Consider the subgraph class

subG(F) = {(z,y) eR*xR: y < (u'z —t); }.

For any (z, y) with y < 0, membership in subG(F) holds for all parameters, hence such points do
not contribute to shattering. For points with y > 0, the condition y < (u'x — t), is equivalent
tou'x —t — y > 0, i.e., an affine halfspace in R4t with variables (z,y). Therefore the family
subG(F) is (up to the immaterial fixed set {y < 0}) parametrized by affine halfspaces in R4+,
whose VC-dimension is at most d+2. By the standard equivalence Pdim(F) = VCdim(subG(F)),
we obtain

Pdim(F) < d+2.

Then by (Haussler, 1992, Theorem 3, Theorem 6, Theorem 7), we

d+log(1/6
sup |sp(u,t) — sp(u,t)| < C d+log(1/9)
(w,t) "
with probability at least 1 — ¢ for some universal constant C, which is the claimed bound. O

Theorem E.6 (Distribution-free uniform deviation for g, ). There exists a universal constant C' > 0
such that, for every ¢ € (0, 1),

P ( sup ’gp(u,t) — gp(u,t)’ >C CHMM) < 26.

uesSi—1, te[—1,1] n
Proof. By (32) and (33), it suffices (up to a universal factor) to control |stD — pp5p|. Using
0<sp,sp<2and0 < pp,pp <1,
|ppsp — ppsp| < |pp — pplsp + |sp — sp|pp + [pp — PP||sD — SP|

Taking the supremum over (u,t) € S?~! x [~1, 1] and applying Lemmas E.4 and E.5 with a union
bound yields
d+ log(1/6
p (Sup (o5 — ppse| 2 +g</>> .
u,t n

Finally, the equivalence g =< p s transfers this bound to ] gp — gp‘ at the cost of an absolute multi-
plicative factor and one more failure event. O
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F GENERALIZATION UPPER BOUND: MIXTURE OF LOW-DIMENSIONAL
BALLS

In this section, we present the proof of Theorem 3.2. First, we prove the simple case of singe-
subspace assumption (J = 1) via Theorem F.2.

F.1 CASE: UNIFORM DISTRIBUTION ON UNIT DISC OF A LINEAR SUBSPACE

Fix an m-dimensional subspace V' C R¢ and write BY := {z € V: ||z, < 1}, the canon-
ical linear projection proj,, : R? — V. Recall the notations in (1): the parameters § :=
{(vk, wy, b)) B, 5} with wy, # 0, define a two-layer neural network

K

fo() =) vnd(wim—by)+p,  wy:

k=1

Wy, T bi

T el T Tl
2 kll2

Then we define neuronwise projection operator from neural networks to neural networks

K

proji : fo(x) — Z Vg gb((projv wk)T:c - bk) + B. (34)
k=1

Lemma F.1 (Projection reduction). Fix F a hyothesis class of two-layer neural networks. Let P be
a joint distribution on (x,y) supported on R? x [— D, D] such that the marginal distribution Px of
x supports on'V. For any dataset D := {(z;,y;)}!_, drawn i.i.d. from P,

sup Gapp(f; D) = sup Gapp(projy, f; D). (35)
ferx feF

Proof. Because x € V' almost surely and in the sample, we have f(x) = (f o projy,)(z) for every
f and every x € BY. Using the identity w] (proj, ) = (proj,, wy) x, we obtain f o proj, =
proj}, f pointwise on BY . Hence for any f € F, Gapp(f; D) = Gapp(proj}, f; D). O

Theorem F.2. Let P denote the joint distribution of (x,%). Assume that P is supported on BY x
[~ D, D] for some D > 0 and that the marginal distribution of = is Uniform(BY"). Fix a dataset
D = {(x;,yi) 1, where each (x;,vy;) is drawn i.i.d. from P. Then, with probability > 1 — 6,

o . log(4/5)\ "2
sup  GapplfoiD) Sa O M g2 (KRG

v
fe€®yp, (B,7;M,C)

where M := max{D, || fo|| Lo (&v), 1} and Sq hides constants (which could depend on d).

Proof. By Lemma F.1, it remains to consider the case of proj}, fo. Similarly, for any u € S?~! and
any data set D C V, we have g(u,t) = g(projy (u),t). Therefore, we just need to consider the

generalization gap with respect to the @;/D (IB%YJ M, C) = {projﬂ{/ fo: fo €Oy, (IB%Y”}M, C)}
Therefore, we just need consider the case where the whole algorithm with any dataset sample from

V operates in V and we get the result from (Liang et al., 2025, Theorem F.8) by replacing R? with
V =R™ O

F.2 PROOF OF THEOREM 3.2

In this section, we extend the generalization analysis from a single low-dimensional subspace to
a more complex and practical scenario where the data is supported on a finite union of such sub-
spaces. This setting is crucial for modeling multi-modal data, where distinct clusters can each be
approximated by a low-dimensional linear structure. Our main result demonstrates that the sample
complexity of stable minima adapts to the low intrinsic dimension of the individual subspaces, rather
than the high ambient dimension of the data space.
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F.2.1 ANALYSIS OF THE GLOBAL WEIGHT FUNCTION

A critical step in our proof is to understand the relationship between the global weight function
g(u,t), which is induced by the mixture distribution P, and the local weight functions g;(u,t),
each induced by a single component distribution P; defined on V;, which should be understood as
the distribution conditioned to & € V;. Fix a dataset D, the function class @ggos (1; D) is defined
by the properties of the global function g. To analyze the performance on a specific subspace V,
we must ensure that the global regularity constraint is sufficiently strong when viewed locally. The
following lemma provides this crucial guarantee.

Lemma FE.3 (Global-to-Local Weight Domination). For any mixed distribution Px =
ijl pjPx ; with supp(Px ;) = Vj. Let g be the global weight induced by the mixture Px,

and g; the weight induced by Px ;. Forevery j € {1,...,J},
2

g(u,t) > %gj(u7t), for all (u,t) € ™! x R. (36)
Consequently, for any M, C > 0,
Fo(By'sM,C) C Fy,(BY"; M,V2C/p3). (37)

Proof. Fix j and the activation event A := {x : u'x > t}. By definition of g (global) and g; (local)
we can write

g(u,t) = Px(A)?- E [XTu—t|A]-¢1+|| E [X | A3

x~Px x~Px

x~Px z~Px

gi(u,t) =Px(A|z V) E [XTu—t|A,a:eij1+|| E [X|Aze V3

=Px, (A7 B [XTu—t]4]- w +IlE (XA
mwpij mN/Pij
Using the law of total probability and total expectation for the mixture distribution Px =
Z;jzl piPx ;, and the non-negativity of (X Tu — 1)1 4, we get
Px(A) = p; Px ;(A), E [(XTu-0)14 > p; E [(XTu—t)1a].
x~Px z~Px j
Hence, by combining the first two terms of g(u,t) as Px (A) Ez~pyx [(X Tu — )1 4], we have:
g(uw,t) = (pPx3(A)-(p; E [(XTu—t)14])-1 = p} Px ;(A) E [(XTu—1)14].
z~Px g TNIEX G
For the local weight function g;, the same algebra gives
9i(u,t) =Px ;(A) E [(XTu—t)14]- \/1 +I E (XA

mN'PX‘j EN'PX‘J’

Since the support of Px ; is B, we have || X||» < 1 almost surely under Px ;. This implies
| Ee~px,; [X | All2 < 1, and therefore \/1 + | Eznpx,; [ X | A3 < V2.

Combining these results, we establish the lower bound:

glu,t) > %(PXM E [<XTu—t>1A1~\/1+|| E [X|A]|%> - %gxu,w,

T~Px z~Px

which proves (36). The class embedding (37) follows directly from the definition of the weighted
variation seminorm. O

Proposition F.4. Let P be a distribution defined in Assumption 3.1 and recall that P; is P condi-
tional to x € V;. Fix j € {1,...,J} and a data set D ~ P®". Let Dj := D NV; and n; := |D;|.
Then with probability 1 — 6,

1 1 _
L_l4aM\ o 1 log(4/8
sup  Gapp, (fo;D;) Za (n ; ) MR T M ( o )>

2
fe€®Bros (1,D) p; n

N

(38)

where M = max{D, || fol| x 1} and <4 hides constants (which could depend on d).

Lo (B,
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Proof. Note that the notation Gapp, (fe; Dj) can be expanded into

Gapp, (fo;D;) = |Rp, (fo) — Rp,(fo)

=| B |(fo(@) ~v)*| - Bo,(fo)

(z,y)~P;

=| E_[Usl@)—9)* |z V] - B, (fo)

(z,y)~P

LetC == — % + 4M. According to (Liang et al., 2025, Corollary 3.3), we have that

1
n

fo € ©,, (BY'; M,C), V0 € Opgos(; D).
Then by Lemma F.3, we conclude that

GQ(B}G;Mv C) < ®gg‘ (B}GQMv \/§C/p?),

where the weight functions g and g; can be either empirical or population.

Therefore,
sup Gapp, (fo; Dj) < sup Gapp, (f;D;)
0€®sEos(n;D) feegj (BYJ' ;]W,\@C/pjz)

Then by Theorem F.2, we may conclude that

m
%+4M m2+4m+3 R
5 M n; amtd

1 _
sup Gapp, (fo; Dj) = ("
feej:gj(Blj;M7\/§C/p?)
O

Theorem E.5 (Generalization Bound for Mixture Models). Let the data distribution P be as defined
in Assumption 1. Let D = {(x;,y;)}_, be a dataset of n i.i.d. samples drawn from P. Then, with
probability at least 1 — 29,

1 1
n 2

+4M)mM2 TE w4 M2 log(;J/é).
n

(39)

sup  Gapp(fe; D) Sd(
0€O®gEos(n,D)

where M = max{D, || fe |gv ||L>,1} and Sq hides constants (which could depend on d).

The proof proceeds in several steps. First, we establish a high-probability event where the number
of samples drawn from each subspace is close to its expected value. Second, we decompose the
total generalization gap into several terms. Finally, we bound each of these terms, showing that the
dominant term is determined by the generalization performance on the individual subspaces, which
scales with the intrinsic dimension m.

Proof. Let nj = Y. 1, cv,} be the number of samples from the dataset D that fall into the
subspace V. Each n; is a random variable following a Binomial distribution, n; ~ Bin(n, p;). We
need to ensure that for all subspaces simultaneously, the empirical proportion 7;/n is close to the
true probability p;.

We use Hoeffding’s inequality for each j € {1,...,J}. Forany ¢ > 0, P (|%J — pj| > e) <
2¢=2n<" . To ensure this holds for all .J subspaces at once, we apply a union bound. Let §; be the
failure probability allocated to the j-th subspace. The total failure probability is at most ijl 0; =

J,so we set §; = 0/J and yields € = \/@-
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Let & be the event that |2 — p;| < eholds forall j = 1,...,.J. We have shown that P(€) > 1 — 4.
The remainder of our proof is conditioned on this event £. A direct consequence of this event is a
lower bound on each n;

2J
nj > npj; —ne =np; — log 5 (40)

Now we decompose the generalization gap using the law of total expectation for the true risk and by
partitioning the empirical sum for the empirical risk.

Let P; denote the distribution P conditioned on z € Vj, and let D; = DN V,}.

Gapy (fo: D) = |R(fo) — Ro(fo)|
J J
— > E @) -p? lee V- ML S () - y)?
= =T =t " (@ en
J J 1
<I>opi E [(fol@) =)l =Y pj— > (fo(m:)—w)
= =P = (:,:)€D;
J
ij S Uelw) =5 =3 S (ole) — )
" (z4,y:)ED; j=1 T (@4,y:)€D;

SXJ: | R (10) = B fe] Z\pj——]RD (fo)

p;Gapy, (fo; D pi = 2| Ro, (fo)

I
ML( )

<.
Il
—

Term A Term B
Where RDJ' (f) = % Z(mi,yi)G’Dj (f(wl) - yl)Q

* Bounding the Weighted Sum of Conditional Gaps (Term A): According to Proposition
F.4, with probability at least 1 — 4, for each j,

LolgaMy o log(47/6)\ ~*
Gapp, (fo: Dj) Sa (17> M?p, 77 4 M () :
p

2
£ n

Conditioned on £, we use the lower bound on n; from (40) , n; < np;(1 — €/p;).

J
Term A = ZpJGapp (fo;Dj)
Jj=1
J 11 ,
= —z4+4M\ -
2 2T am 1
Sayomi( )T M s (1 = efpg)) T
j=1 Dj

__m J
= (1 1 +4M) T M2 mme Y - (py ) e - (pj _ \/W

n 2 j—l 2n

m 1
< l _ 1 LAM m2+4m+3 2, - T 2+4m+3 TmTd
~d n 2 E p_] .

The exponent of p; simplifies to

1 2m 1 - 2m3 + Tm? +10m +9 @1
(m+1)(m+3) 2m+4) 2(m+1)(m+2)(m+3)
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For positive integers m, (41) is strictly increasing and bounded above by 1. In particular,
whenm =1, (41) = % Therefore, a brute-force upper bound is

J 2m347m2410m+9
2(m¥ 1) (m+2)(m+3)
E p; <J
=1
and thus
2m

J
1 1 TTAmTs __1 1— —
Term A g (7*§+4M) Fam¥3 g2 2m+4§ :pj mZtamts  2mTa
n

Jj=1

Sa (1 - % M) T N g
n

Note that the dependence of Term A on J is very mild. Indeed, if we denote

2m 1
m2+4m+3 2m+4’

aim) =1
then

J
2m 1
E p;x(m) < Jlfa(m) < Jm2+4m+3+2m+4 < J%v
Jj=1

since ) ; p; = 1. For large m, the exponent a(m) is close to 1, hence ), p?(m) remains

essentially of order one. Consequently, the bound on Term A grows at most linearly with
J, and in practice the J-dependence is negligible in high m. Here we use the power 4/m
upper for clean format.

* Bounding the Sampling Deviation Error (Term B): Conditioned on the event £, we have
|[p; —nj/n| < eforall j. The empirical risk term is bounded because max {|f(z)|, |y|} <
M, which implies |n—1J > (wiynen; (fo(@:) = yi)?| < 4M>. Thus, Term B is bounded by:

J
log(4./8
TermB < Y edM? = 4M?%e = 47 M? log(47/9) (42)
= 2n

The total generalization gap is bounded by the sum of the bounds for Term A and Term B.

11 it log(4
Gapp (fo: D) Sa () =5 +4M) ™7 M w0 s(tJo)

This completes the proof. O

G GENERALIZATION UPPER BOUNDS: ISOTROPIC BETA FAMILY

In this section, the data generalization process is considered to be a family of isotropic Beta-radial
distributions.

Definition G.1 (Isotropic Beta-radial distributions). Let X be a d-dimensional random vector in
R, For any o € (0,00), the isotropic a-powered-radial distribution is defined by the generation
process

X = h(R)U ~ Px(a), 43)

where R ~ Uniform|0, 1] is a random variable drawn from a continuous uniform distribution on
the interval [0,1], U ~ Uniform(S%~1) is a random vector drawn uniformly from the unit sphere

SV inR% and h(r) = 1 — (1 — r)/* is a radial profile.

Lemma G.2. Let Px () be the isotropic a-powered-radial distribution in Definition G.1. For X ~
Px(a)anyt € [0,1], P(|X|| > 1 —t) = t* In particular, || X ||2 is a Beta(1, o) distribution.
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Proof. The proof follows from a direct calculation based on the properties of the data-generating
process.

First, the norm simplifies to: || X || = ||h(R)U|| = h(R). Next, it is equivalent to calculating the
probability that the scalar random variable h(R) is greater than 1 — ¢:

P(|X||>1-t)=P(h(R) >1-1).
To proceed, we need to apply the inverse of the function A to both sides of the inequality. The func-

tion h(r) is monotonically increasing for r € [0, 1], so applying its inverse preserves the direction
of the inequality. Note that the inverse functionis h=*(y) = 1 — (1 — y)*.

Applying the inverse function A~ to the inequality h(R) > 1 — t, we get
R>h71-1).
Substituting the expression for h~!:
R>1-(1-(1-1t)*=1-1t"
Finally, we compute the probability of this event for the random variable R. By our initial assump-

tion, R is uniformly distributed on the interval [0,1], i.e., R ~ Uniform[0,1]. The cumulative
distribution function (CDF) of R is Fr(z) = « for z € [0, 1]. The tail probability is therefore,

P(R>xz)=1—Fg(z)=1—=.
Applying this to our inequality B > 1 — ¢t:
P(R>1—-t%)=1—(1—-1t%) =t~

Combining all steps, we have rigorously shown that
P(|X] >1-1t) =t
To show that this implies || X|| is a Beta(1, «) distribution, we can examine its cumulative distribu-

tion function (CDF). Let Y = || X||. The CDF is Fy (y) = P(Y < y). Substituting y = 1 — ¢, we
have ¢ = 1 — y. Then the tail probability becomes:

P(| X > y) = (1 —y)".
From this, the CDF can be derived as
Fy(y) =P(| X[ <y) =1 =P(|X[| >y) =1 - (1 —y)*.
This is the characteristic CDF of a Beta(1, «) distribution, thus completing the proof. O

Assumption G.3. Fix a € (0,00). Let P(a) be a joint distribution over R% x R such that The
marginal distribution of the features x under Px («). The corresponding labels y are generated
from a conditional distribution P(y|x) and are assumed to be bounded, i.e., |y| < D for some
constant D > 0. Similarly, we define Pj(xz,y) = P(z,y | © € V}).

G.1 CHARACTERIZATION OF THE WEIGHT FUNCTION FOR A CUSTOM RADIAL
DISTRIBUTION

In this section, we analyze the properties of the weight function g (u,t) = gp, . (u,t) with respect
to the population distribution Px . we defined in Definition G.1 and Assumption G.3. Recall that
Jo(u,t) = min (G (u,t), o (—u, —t)), where

Ga(u,t) =Ppy (XTu>t)? Ep, [XTu—t| X u>t" \/1 + |Epx o[ X | XTu > t]||2.

(44)
Due to rotational symmetry, we analyze the projection X; = X " e; without loss of generality. Our
primary goal is to establish rigorous bounds on the tail probability Q(¢) = P(Xy > t) and the
conditional expectation for ¢ in a specific range close to 1.
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Proposition G.4 (Tail Probability). Let X be a random vector from the distribution defined above.
Let X4 be its projection onto a fixed coordinate, and let its tail probability be Q(t) = P(Xy4 > t)
fort € (—=1,1). Then there exists a fixed to € [0,1) such that for all t € [to,1):

ea(a,d)(1 - 0T T < Q(1) < exlan d)(1 - )™ 7,
where co(av, d) and c3(«, d) are positive constants depending on o and d.

Proof. The tail probability is Q(t) = P(h(R)Ug > t). We compute this by integrating over the
distribution of R ~ Uniform|0, 1]:

= [ Pwa i)

where the lower limit A=%(t) = 1 — (1 — ¢)® ensures h(r) > t. The term P(U; > x) is the
normalized surface area of a spherical cap on S¢~1. For x € [0, 1), this area can be bounded.

Let 6y = arccos(z). The area is proportional to foeo (sin $)?~2dg. For ¢ € [0,7/2], we have
2¢/m < sin ¢ < ¢. This provides lower and upper bounds on the cap area

Cd’L(l - 1‘)(d_1)/2 S P(Ud > LU) S Cd’U(l - {E)(d_l)/Q,

where Cy 1, and Cy ¢y are constants depending on d. Let’s apply this to our integral, substituting

x =t/h(r): 1 s
= [ cu(i-5) o

We analyze this for t — 17. Lett = 1 — €. The lower limitis 1 — e*. Forr € [1 — €, 1], h(r) is
close to 1. Let’s choose tg such that for ¢t € [to, 1), h(r) > h(to) > 1/2. Then h(r) is bounded away
from 0. The term 1 — t/h(r) = (h(r) — t)/h(r). Let’s bound the denominator: h(ty) < h(r) < 1.

1
Q(t) > Cd,L/ (h(r) — (1 — 6))(11’—1)/2 dr.
1—e>
The integrand is h(r) — (1 — ¢) = ¢ — (1 — r)"/*. The integral becomes:
! (d—1)/2
/ (6 - (1= 7’)”0‘) dr.
1

—ex

Lety = (1 —7)"* sor =1—y*and dr = —ay® ' dy. Limits for y are [¢, 0].

0 €
/ (6 _ y)(d—l)/Q(_aya—l dy) — Oé/ (6 _ y)(d—l)/an—l dy
€ 0

Lety = ez, dy = edz. Limits for z are [0, 1].

1
- d+1
a/ (€ —e2) /2 (e2)2 edz = ac*t T B (oz, ;) .
0

Combining all constants, we establish the lower bound Q(t) > ca(c, d)(1 — t)o“r%. The upper
bound follows an identical procedure, absorbing the 1/h(r) term into the constant c3(«, d). O

Proposition G.5 (Conditional Expectation). For t € [to, 1), the conditional expectation E[X4 |
Xy > t] is bounded by

1—cs5(a,d)(1—1t) <E[Xq| Xg>1t] <1—cala,d)(1—1),
where c4(a, d) and c5(a, d) are positive constants.

Proof. We analyze E[1 — Xy | X4 > t] = ﬁf:(l — 8)fx,(s)ds, where fx,(s) = —Q’(s).

d—3
at+=5=

From Proposition G.4, we know fx,(s) « (1 — s) . The numerator is:

N(t) = / (1 8)fx,(s) ds.
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Bounding the constant of proportionality for fx,(s) by ¢1, and ¢1,¢:

1 1
Cl,L/ (1 — 5)0‘+% ds < N(t) < CLU/ (1 — s)o‘Jr% ds.
t t

d+1
(-0 +%
a+ 4t

The integral evaluates to So, N(t) o« (1 — t)°‘+%. Dividing N (t) by Q(t)
(1— )5, we get:

1- )+
E[l—Xd|Xd>t]o<()7d::1—t.
(1—t)ot =

By carefully tracking the constants ¢z, c3 from Proposition G.4 and the constants from the integra-
tion of fx,(s), we can construct explicit (though complex) expressions for ¢4 and ¢ that provide
rigorous two-sided bounds for ¢ in the specified range [to, 1). O

Proposition G.6 (Asymptotic Behavior of gt (¢)). Let the function gt (t) be defined as in (44). Then
fort € [to, 1), we have:

(e, d)(1 = 1)20F < gE (1) < el (a, d)(1 - )2F,

where c(Lg) (o, d) and cg’) («, d) are positive constants.

Proof. Let Q(t) = P(X,; > t) and E(t) = E[X, | X4 > t]. The function is g (t) = Q(t)? -
(E(t) —t) - /1 + E(t)2. We establish bounds for ¢ € [to, 1) for a sufficiently large t.

1. Bounds for Q(t)?: From Proposition G.4, we have:
(e2(a, d)?(1 = 8)?*H 1 < Q(1)? < (es(ar,d))*(1 —t)* i,
Let Az (a,d) = (ca(a, d))? and Ay (a, d) = (c3(a, d))?.

2. Bounds for E(t) — ¢t: This is E[Xy — ¢ | X4 > t]. From Proposition G.5, we have
(1—-t)—c5(1—¢t) <E({t)—t<(1—1t)—ca(l —t). This gives:

Br(a,d)(1—t) < E(t) —t < By(a,d)(1 —t),

where By (a,d) = 1 — ¢5(a,d) and By (a,d) = 1 — ¢4(a, d). We can choose tg close
enough to 1 to ensure these constants are positive.

3. Bounds for /1 + E(t)2: Fort € [tg, 1), we have tg < t < E(t) < 1. By choosing, for
instance, ¢y = 3/4, we have 3/4 < E(t) < 1. Thus,

VI+@/42</1+E{l)? <V1+12

This gives constant bounds C, = 5/4 and Cy = V2.

Combining these three bounds, for ¢ € [tg, 1):
ApBrCr(1 —t)?T4=1(1 —t) < gF (t) < AyByCp (1 —t)** 411 —¢t).
This simplifies to the final result:

P (a,d)(1 - )2+ < g (1) < e (@, d)(1 — )2+,

where the bounding constants are given by c(Lg) (a,d) = ApBrCp and cgj]) (a,d) = AyByCy. O
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G.2 PROOF OF THEOREM 3.5

Theorem G.7 (Restate Theorem 3.5). Fix a dataset D = {(x;,y;)}1—,, where each (x;,y;) is
drawn i.i.d. from P(«) defined in Assumption 3.4. Then, with probability at least 1 — 6, for any
fo € Opgos(n, D),

ad 2 P
2d2+7ad+6a a(d+3)
(l _ % +4M) aZt4d13 M @Tticdtsa p 2(@+iadisa) o > %;
. n - -
Gapp(f97D) éd __ad 2 (45)
1 1 4M 42 rad+3 Mzd(l?j::ddjf: ~3dtaa 3d
727t e n , @< 553

and for where M = max{D, | fol| Lo (a), 1} and Sq hides constants (which could depend on d)
and logarithmic factors inn and (1/6).

Proof. For convenience, we let A = % — % + 4M and we have that
V.
fo € Fop(By?; M, C), VO € Opgos(n; D).
For any fixed ¢ < 1, we may decompose B¢ into e-annulus A? .= {x € B¢ | ||z||2 > 1 — ¢} and
the closure of its complement is called e-strict interiordenoted by 1¢.
B = AdUTL

According to the law of total expectation, the population risk is decomposed into

(F(@) —y)°| =P(z € &0) B4 [(f(2) —9)*| + P@ € I2) - Ex |(f(@) —v)*] . 46)

E
(z,y)~P

where E, means that {x,y} is a new sample from the data distribution conditioned on = € A% and
[y means that (x, y) is a new sample from the data distribution conditioned on € I¢.

Similarly, we also have this decomposition for empirical risk

IS ) ) = - @) )+ X () —
=1 el JEA (47)
= LS ) -+ A ST () — ),
LY e oAy

where 1 is the set of data points with &; € 1¢ and A is the set of data points with z; € AZ. Then the
generalization gap can be decomposed into

IR() = Ro (/)| < Pl € A9 Ea [(fol@) = )°] + "2-0 S(f(e) —wi)®  69)
JjEA
+ ﬂP(w end) - % nil > (@) — i) (49)
i€l
+P@ el B (@) -] - o (@) -w?|. 60
iel

Using the property that the marginal distribution of  is Uniform (B¢) and its concentration property,
with probability at least 1 — 4,

(48) Sa O(M?e), (51
where <4 hides the constants that could depend on d and logarithmic factors of 1/4.

For the term (49), with probability 1 — ¢

[ee 1 5
{‘P(a}' S Hg) - %‘ ,S z Oi(l/ )a (52)

LS e (fla) —yi)? < AM?
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so we may also conclude that
elog(1/0)

n

(49) < M? (53)

For the part of the interior (50), the scalar P(z € 1¢) is less than 1 with high-probability. Therefore,
we just need to deal with the term

B[ (F@) = 9)] = — > (f (@) - ) (54)
il
Since both the distribution and sample points only support in I¢, we may consider f by its restrictions
in ]Igl, which are denoted by f¢. Furthermore, according to the definition, we have

flx) = / d(uTx —t)dv(u,t) + ¢z + b
Sd—1x[~1,1]

- / S(uTz — ) dv(u,t) + / s(uTE — 1) d(u, 1)
Sd—1x[—1+e,1—¢] Sd=1x[—1,—1+e)U(1—e,1]
Annulus ReLU
+c'z+b
(55)
where the Annulus ReLU term is totally linear in the strictly interior i.e. there exists ¢/, b’ such that
T +b = / p(u'x —t)dv(u,t), VY cld (56)
Sd—1x[—1,—1+¢e)U(1—¢,1]

Therefore, we may write
flx) = fo(x) = / d(u'x —t)dv(u,t) + (c+ ) e+ b+ b, xcll (57)
Sd=1x[—1+e,1—¢]

According to the definition, we have that
Fohvan < [ v (58)
Sd=1x[—1+4¢e,1—¢]

From empirical process we discussed in Section E.2, especically Theorem E.6, we know that with
probability at least 1 — 6,

d +log(2/0
sup g (a6, 1) — g, )] Sa | TEE —i o, 59

s

This implies a lower bound on the empirical minimum weight in the core with probability at least
1-6/3,

min — inf 1) = inf (U, t) — €n = Ga,min — €n- 60

9o, o gp(ut) > inf ga(wt) = en = go, € (60)

d+2a

Here, go,min < € is the minimum of the population weight function in the core.

must operate in a regime where g, min > €,. We enforce a stricter validity condition for our proof

d—+1 1)
Ya,min > 2ep - €d+2a Zd L(ES/) (61)
n

For the bound |f¢|v < A/9D.min < A/(ga,min — €r) to be meaningful with high probability, we

Under this condition, we have ¢p min > Gamin — €n > Jo,min/2 < gd+2 Thus, for any f €
OgpEros(n, D), its restriction f has a controlled unweighted variation norm with high probability:

A A A
lflvme ) <

= =:C..
1-e 9D, min goz,min/2 gdt2a

According to the assumption, we have that |f|y,, (84) < A, and thus we have

/ gp| dv| < / gp| dv| < A. 62)
Sd-1x[—1+4e,1—e] §d-1x[—1,1]

34



Under review as a conference paper at ICLR 2026

d+2a

Suppose the validity condition (61) holds (we will verify it later), we have g(u,t) Zq € when

t <1 — £ with probability 1 — §/3, we may use (62) to deduce that

e | < [ goldv| < A (63)
Sd—1x[—14¢€,1—¢] Sd=1x[—14e,1—¢]

Combining (58) and (63), we deduce that

| v ) <d —dtza = C.

Therefore, we may leverage LemmaD.11 to ¢ € V(B{_,), we may conclude that with probability

atleast 1 — 6,
3(d+2) d+3

(50) Sq C7¥5 M 3dts p~ddrs, (64)
where <, hides the constants that could depend on d and logarithmic factors of 1/4.
~ p g

Now we combine the upper bounds (51), (53) and (64) to deduce an upper bound of the generaliza-
tion gap. We have for any fixed € > 0, with probability 1 — §,

3(d+2) d+3

d
‘R(f) - Rp(f)| éd M2 + <€d+2(1) M 2d+3 pn~ 1d+6 (65)

Then we may choose the optimal £* such that

M 2d+3 n~ 1d+6

A ) 2d+3 3(d+2) d+3

and by direct computation, we get

d _ d _ d+3
o (A d?2+aad+3a ] dZ+4ad+3a p 2(d2+4ad+3a)>.

To satisfy the validity condition (61), we require

d+3 >d+2a

(e%)d+20 = o(n‘m > O(n~%). (66)

By adjusting some universal constants, it suffices to show whether

(d+3)(d+20) 1
(&t dad 1 3a) ~ 2 ©7)

After direct computation, (67) is equivalent to o € (559, 00). With this assumption, we may

evaluate the optimal €* in the inequality (65) to deduce the optimal results that

1 1 ) ﬁﬂlﬁ% 2d2 4 7ad+6a  _ o (d+3)

R = (D)) Za () = 5 +4M M itz TR (68)

In the case where a < di%’ we set

e =0 (n-7miw)
and adjust some universal constant to satisfy the validaty condition. Then (65) has the form
[B(f) = Bo ()] < O (=75 ) + 0 (%)

3d
d+2a

. I 2 _ 3
Then assumption o < implies that n~ 2d+ia > n~ 7a+6 and thus

IR(F) ~ Ro(f)] < O (n~=m ).

Note that the other constants in the front of 1/n does not change, so we finish the proof. O
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H GENERALIZATION GAP LOWER BOUND VIA POISSONIZATION

This section provides a self-contained proof for a lower bound on the generalization gap in a noise-
less setting. We employ the indistinguishability method, where the core technical challenge is to
construct two functions that are identical on a given training sample yet significantly different in
population. The Poissonization technique is the key tool that simplifies the probabilistic analysis
required to guarantee the existence of such a pair. The paradigm is almost the same as the one in
(Liang et al., 2025, Appendix H & I), but the assumption on distributions are different.

H.1 CONSTRUCTION OF “HARD-TO-LEARN” NETWORKS

Our strategy relies on functions localized on small, disjoint regions near the boundary of the unit ball.
We first establish key geometric properties of these regions, called spherical caps. Let u € S?~! be
a unit vector. Let £ € R be a constant with ¢ < 1/2. Consider the ReLU atom:

Pucz(T) = p(u'x — (1 —£?)). (69)
Lemma H.1. The L?(Px («))-norm of ¢, .2, where the measure Px () is defined in Definition
G.1, is given by

d+342a d+3+42a

c(d,a)e 2 <louwerllzpx () < cvld,a)e 2, (70)

where cr,(d, o) and cy (d, o) are constants that depend on the dimension d and the parameter c.

Before the formal proof, we offer a geometric justification for the result. The squared norm is
an integral of (¢(...))%, and we can estimate its value as the product of the integrand’s average
magnitude and the measure of the small domain where it is non-zero. We estimate the measure of
this “active” domain, where ru'U > 1 — €2, using a polar coordinate perspective.

« Integrand’s Magnitude: Within the active domain, the term ru"U — (1 — £2) represents
the positive “height” above the activation threshold. This height varies from 0 to a maxi-

mum on the order of O(g?). A reasonable estimate for the squared term’s average value is
thus O((¢2)?) = O(e?).

* Measure of the Domain: We decompose the domain’s volume into radial and angular
parts.

— Radial Measure: The condition requires the radius 7 to be near 1. For the Px («)
distribution, this confines r to a region of length Ar ~ O(g2%).

— Angular Measure: The vector U is confined to a small spherical cap around w. A cap
defined by a “height” of h ~ O(e?) has a surface area on S*~! of order O(h(?~1)/2),
This gives an angular measure of AQ ~ O((g2)(4=1/2) = O(¢?-1).

Combining these estimates, the squared norm I scales as the product of the integrand’s magnitude
and the two components of the domain’s measure:

I~ O() x 0(%%) x O(e¥7 1) = O(g2+3+2),
—— e — ——
Integrand Radial Angular

Taking the square root provides the claimed scaling for the L2-norm. The formal proof makes this
geometric heuristic rigorous.

Proof. The squared L? norm of ¢,, .2 over the distribution Px () is defined by the expectation
I = |louelZ2px(a)) = Exapx(a) [|Pue2(X)]
Substituting the definition of ¢,, .2 () and using the property of the ReLU function, we get
I=Ery [(6(h(R)u'U - (1 - ¢%)))’]
=Eru [Lin(myurvs1—c2} (M(R)u'U — (1 —€2))?]

(71)
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where R ~ Uniform[0, 1] and U ~ Uniform(S?1).

Due to the rotational symmetry of the distribution of U, we can perform a rotation of the coordinate
system such that w aligns with the d-th standard basis vector e; = (0, ...,0, 1) without changing
the value of the integral. In these new coordinates, u' U = U,. The expectation becomes an iterated
integral:

1
= / Eur [1inyvas1—e2y (B(r)Ua — (1 — £2))?] dr
0

Let z = Uy. The probability density function of z is p(z) = Cg(1 — 22)@=3/2 for z € [-1,1],
['(d/2)

_ . . . 2 . . .
where Cg = TR d-1)73)" The integral is non-zero only if hA(r) > 1 — &2, which implies r >
1— &_204
I—Cd/ / (1—¢2)%(1 - 22)T" dzdr (72)
1—g2« J 1
We perform a change of variable z = 1 — ¢, so dz = — dt and the integration limits change from
= 1o [1 - ==, 0],

0
Inner integration of (72) = C’d/ LA —1t)—(1- )21 —(1—1t)? ) ( dt)
1- 1h_(7€~)
(73)

to(r) a3
— /O (h(P)to(r) — h(r)t)2(2t — £2)°7* dt

where to(r) = 1 — lh(f) = h(rzlt)%Q. Since r € [1 — 2%, 1] and for small ¢, h(r) is close to 1, we

know to(r) is small. For a sufficiently small €, we can ensure ¢ < ¢o(r) < 1/4. Thus, we can bound
the term 2 — ¢ as 7/4 < 2 — t < 2. This gives bounds on (2t — t2)(@=3)/2 = ((2 — ¢)¢)(4=3)/2;

d—3
2 —
<7> 1 < (2t —12) T < 2T
4
The integral I is therefore bounded by:

1 1
@/ J(r)drglgﬁd/ J(r)dr (74)
1—g2a 1—g2x

where Cy, C, are new constants and J(r) = Oto( )(h(r)to(r) — h(r)t)2t T dt.

Consider the integral .JJ(r) and change variable by setting ¢ = ¢o(r)s , then dt = to(r) ds.
1
56) = [ 0t0(0) = bt (r)o)? 10 (r)2) ' (a(r) )
= ()0 T o) [ (1= 55 s s)

= B (to(r) 5 ( / (1ot ds>

constant

To analyze to(r)“z", we let 7 = 1 — 4, so dr = — d§ and the integration limits for § are [£2,0].
1/a . e2_§l/e
h(r)=1-(1-(1 —5))1/@ =18 Asd = 0,h(r) = L to(r) = 122 53/:+ _ 2osle

For small 6, 1 — 6/ is close to 1, providing upper and lower bounds. Thus I is bounded by integrals
of the form

92 e @2
c/ 51/a (—do) =C (62 - 51/a) 6
0

for some mild constant C'.
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Now we perform a new change-of-variable by setting §'/* = ¢2v. This gives § = (e?v)® = £2%®

and dé = ae?®v®~! dv. The limits for v become

e &3 1 d+3
/ (52 - 51/"‘) dé = / (€2 —e%0) 2 (ae? ™ dv)
0 0

1
= (52)#520‘/ (1-v) % av* L dv
0

1
— €d+3+2a (a/ (1 _ U)%va—l d’U)
0

constant

(76)

The squared norm I is bounded by constants times ¢4+3¥2¢, The L2-norm is the square root of I:

d+342c d4+342«a
2

cr(d,a)e < H‘PuxEQHLz(PX(a)) =VI<cy(d,a)e™ = (77)

where cg(d, ) and ¢19(d, «) are constants that absorb all factors depending on d and « from the
bounds established in the derivation. This completes the proof. O

Lemma H.2 (Cap mass at angular scale ¢). Fore € (0, %} and w € ST, define the thin cap
C(u,e) ={x €B: u'x>1-¢e}.

There exist constants depending only on (d, o), such that Px (C(u,¢)) =< 4112,

Sketch proof. The result and the proof almost the same as the ones about Lemma H.1. We omit the
calculation detials. O

Lemma H.3 (Disjoint Cap Packing). For any ¢ € (0,1/2], there exists a set of N unit vectors
{wi,...,un} C S* 1, with N < e~ (4= such that the caps {C(u;,2)}N| are pairwise disjoint.

Sketch proof. The angular radius of the cap C(u,€) is ¥ = arccos(1 — &%) < . For two caps to
be disjoint, the angular separation between their centers must be at least 2¢J. The maximum number
of such points is the packing number M (S?~!,2¢). A standard volumetric argument provides the
upper bound M (S?~1,29) = O(¢~(¢~1). The lower bound is established by relating the packing
number to the covering number N (S, a), which is known to scale as N (S !, o) < o~ (@1,
thus yielding the asserted scaling for /V. O

We now formally establish the family of functions used to construct the adversarial pair. This family

resides within a function class F,(B{; 1, 1) and is built upon normalized ReLU atoms localized on

the disjoint spherical caps.

Construction H.4 (Adversarial Function Family). Recall that ¢, 2(z) = ¢(u'z — (1 — £2)).

We define its normalized version as ®,, > = £ %, 2. By construction, ||®,, .2 HLoc(IB%) <1

and ||(I)u s?H ‘ —2.2d+4a 2(d—1+2a)
’ path,g

sufficiently small e, belong to our function class F, (B¢ 1, 0).

= € =c . We assume that these normalized atoms, for a

Let {uq,...,un} be the set of vectors from Lemma H.3 that define a disjoint cap packing. We
define a family of candidate functions indexed by sign vectors £ € {£1}N. For each &, the function
fe € F is given by:

N
fe(x) = Z{l@i(az), where ®; := @, >.
i=1

As the atoms ®; have disjoint supports, the squared L?(Px («)) distance between any two distinct
functions fe and fer can be computed as:

N

Ife = fel 2o ian = D& = E)21®ill T2 prey =4 D 1®ill72p(a)-
i=1 i €]
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Referring to the cap mass properties in Lemma H.1 (which implies || ®; ||%2(7)X(
simplifies to the final distance scaling

I fe = ferlZapy (@) =da €972 d(€,€),

where d (€, ) is the Hamming distance.

o ~d—1+42a .
a) <€ ), this

H.2 PROOF OF THEOREM 3.6

A key step in our proof is to find a large number of caps that contain no data points from the
dataset D. In the standard fixed-sample-size setting, the number of points in each disjoint cap,
say Z; := #{x; € C(u;,¢)}, follows a multinomial distribution. The counts (Z,..., Zy) are
negatively correlated because their sum is fixed to n. This dependence complicates the analysis of
finding many empty caps simultaneously.

To circumvent this difficulty, we employ Poissonization. We replace the fixed sample size n with a
random sample size Npo; drawn from a Poisson distribution with mean n. This means the occupancy
counts Z; become independent Poisson random variables. This independence allows for the direct
use of standard concentration inequalities like the Chernoff bound.

Proposition H.5 (Abundance of Empty Caps under Poissonization). Let {C(u;,e)}Y, be the set
of disjoint caps from Lemma H.3. Let the sample size be N, ~ Poi(n). Let Z; be the number
of samples falling into cap C(u;,e). Define the expected number of points per cap as \ := n -
Px (C(uy,€)). If we choose € such that \ < 1, then there exists a constant ¢ > 0 such that with
probability at least 1 — exp(—cN):

1
#{ie{l,...,N}:Z;, =0} > ie_’\N.

Proof. Under Poissonization, the random variables Z; = #{x; € C(u;,¢)} are independent Pois-
son variables with mean \; = n-Px (C'(u;,¢)). By Lemma H.2 and our choice of scale, \; = A < 1
for all s.

Let Y; = 1{Z; = 0} be the indicator that the i-th cap is empty. The variables Y7, ..., Yy are i.i.d.
Bernoulli random variables. The probability of success (a cap being empty) is:

7)\)\0

Since A < 1, p is a positive constant. The expected number of empty caps is E[> Y;] = Np =
Ne 2. By a standard Chernoff bound on the sum of i.i.d. Bernoulli variables, we have that for any

d e (0,1): .
P <ZK <(1 —§)Np> < exp (—6 ;Vp> .

i=1

Choosing 6 = 1/2, we find that the number of empty caps is at least %N p = %e’)‘N with proba-

bility at least 1 — exp(—cN) for some constant ¢ > 0. O

The condition A =< 1 is central. It balances the sample size n with the geometric scale €. Using
Lemma H.2, this balance is achieved when:

neoed1t20 =1 e o x g V/A1420) (78)

With this choice, Proposition H.5 guarantees that a constant fraction of the N = ¢~(4=1) caps are

empty with overwhelmingly high probability. Informlly speaking, this hints appearance of the neural
network with dedicated neurons, each of which has at most one activation point. This paradigm
aligns with our construction stable/flat interpolation neural network discussed in Appendix I.

Armed with the guarantee of many empty caps, we can now construct our adversarial pair of func-
tions, f and f’. These functions will be designed to agree on all non-empty caps but disagree on a
large number of empty caps. Since by definition no data lies in the empty caps, the functions will be
identical on the training data. However, their disagreement on a substantial portion of the space will
create a large gap in their population risks.
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Proposition H.6 (Indistinguishable yet Separated Pair). Work under the scale choice ¢ <
n~V(@=1422) and on the high-probability event from Proposition H.5 where at least %e‘AN caps
are empty. There exist two functions f, f' € F from Construction H.4 such that

1. Indistinguishability on Data: f(x;) = f'(x;) for all points x; in the Poisson-drawn
sample.

2. Separation in Population: ||f — f/||2L2(79x(a)) = p~ =it

Proof. Let J C {1,...,N} be the set of indices corresponding to empty caps, with |J| >
1e7*N = N. Construct two sign vectors &, &’ € {1} as follows:

e Forie J,set§ =1land & = —1.
e Fori ¢ J,set& =& =1.

Let f = fg and [/ = fg/.

1. Indistinguishability: The function difference is f — f' = ;. ; 2®;. The support of this
difference is |, 7C (u;, €). Since all caps indexed by J are empty, no data point x; falls
into this support. Thus, (f — f’)(x;) = 0 for all j, which implies f(x;) = f'(x;).

2. Separation: The Hamming distance is dp(£,£') = |J| < N. Using the result from
Construction H.4:

1f = £ 1Py < P20 dn(€,€) = eI N s R 70D = e

Substituting our choice of scale ¢ =< n~1/(4=142%) yields the desired separation:

2c o
15 = P Wiy = (/0420 ) 7 = vt

O

The final step is to transfer the result from the Poissonized model back to the original fixed-sample-
size model. This is justified by the strong concentration of the Poisson distribution around its mean.

Lemma H.7 (De-Poissonization). Let Np,; ~ Poi(n). Foranyn € (0,1), P(Npi ¢ [(1—n)n, (1+
n)n]) < 2exp(—cyn) for some constant ¢, > 0. The conclusions of Proposition H.6 hold for a
fixed sample size n.

Proof. The existence of a large fraction of empty caps is an event that is monotone with respect to
the sample size (fewer samples lead to more empty caps). The high-probability conclusion from
Proposition H.5 holds for any sample size k within the concentration interval [(1 — n)n, (1 + n)n],
as changing n to k only alters the key parameter A\ by a constant factor, which does not affect the
asymptotic analysis. Since Ny falls in this interval with probability 1 — o(1), the event of finding
an indistinguishable pair also occurs with probability 1 — o(1) for a Poisson sample. This high-
probability statement can be transferred back to the fixed-n setting, yielding the same rate for the
lower bound. O

The existence of an indistinguishable pair allows us to establish a lower bound on the minimax
risk for estimation in the noiseless setting. This intermediate result is the foundation for the final
generalization gap bound.

Let Fpack be the adversarial class defined in Construction H.4 with € defined in Proposition H.6.

Corollary H.8 (Minimax Lower Bound). In the noiseless setting where y; = f(x;), the minimax
risk for any estimator f over the adversarial class Fpqcr is bounded below

. r 2o
inf sup E |:||f_f0||2L2(’Px(a))} R nT AR,
f fo€Fpuck
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Proof. Let E be the event that an indistinguishable pair (f, f') € Fpack exists for a fixed sample size
n. From Proposition H.6 and Lemma H.7, we know that P(E)) = 1 — o(1). On this event E, let the
true function fy be chosen uniformly at random from { f, f'}.

Any estimator f receives the dataset D,, of size n. Since f(x;) = f/(«;) for all x; € D, the
generated data is identical whether fo = f or fo = f’. The estimator thus has no information to
distinguish between f and f’. The expected risk of any estimator, conditioned on the event F, can
be lower-bounded

. 1, 4 1, 4 1
E(If - foll|E] = 515 = £I2+ 5017 = 712 = 71F = £,
where the inequality is a standard result for a choice between two points. The worst-case risk for an
estimator over fo € {f, f'} is thus at least || f — f/[|2.
Taking the expectation over the sampling of D,,:

it sup BJIf = ol zinf swp E[I] - fol? \E} B(B)

f fo€Fpack 0 € Fpack
1
> JE[If = FIP[E] B(

Since on the event E, the separation || f — f/||2L2(7>x(a)) = p~a=1%2 and P(E) —» lasn — oo,
the result follows. O

Finally, we connect the minimax risk lower bound to the generalization gap. The argument reduces
the problem of bounding the generalization gap to the minimax estimation problem we just solved.

Theorem H.9 (Generalization Gap Lower Bound). Let P denote any joint distribution of (x,y)
where the marginal distribution of x is Px(«)) and y is supported on [—1,1]. Let D, =
{(zj,y;)}7-, be a dataset of n i.i.d. samples from P. Let Rp, (f) be any empirical risk estimator
for the true risk Rp(f) := E(z y)~p[(f(z) — y)?]. Then,

infsupEp,
R P

sup | |Re(f) = Bo, (1| Zaa n T
fEFG(BE;1,1

Proof. We lower-bound the supremum over all distributions P by restricting it to a worst-case family
of deterministic distributions Py, where labels are given by y = fo(x) for some f; from our
adversarial packing set, Fpck. The proof proceeds via a chain of inequalities.

infsupE |sup |Rp(f) — ﬁDn (f)” (79
R P feF
>inf sup E |sup ‘Rpfo (f) - ﬁpn (f)” (80)
R fo€Fpack feFx
1. A
> sup - infE [RP,«O (ferm) — Rpy, (fo)] 81
fo € Fpack R
1 .
> —inf sup E |Rp, (f)— Rp, (f (82)
f fo€Fpack [ PfO( ) PfO( O):|
=3 lf]}f fOSeuI;LkE [Hf fo||L2 "Px(a))i| (83)
Corollary H8 — 2 n~ it (84)

The steps are justified as follows

* Inequality (81): This step uses a standard result relatmg the generahzatlon gap to the
excess risk of an Empirical Risk Minimizer (ERM), fERM (= argminyer RD (f). By
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definition, ﬁ( Ferm) < ﬁ( fo). This leads to the decomposition
R(ferm) — R(fo) = (R(fERM) - ﬁf(fERM)) + (E(fERM) - ﬁ(fo)) + (R(fo) - R(fo))
< 2sup |R(f) - R(f)].
feFr

* Inequation (82) The infimum over all risk estimators R (which induces a corresponding

ERM) is lower-bounded by the infimum over all possible estimators f of the function f.
This transitions the problem to the standard minimax framework.

* Equation (83): In this noiseless setting with a deterministic labeling function fy, the pop-

ulation risk of fo is Rp, (fo) = 0. The excess risk Rp, (f) is precisely the squared Lo

distance || f — fOH%Q(PX(Q)). The expression becomes the definition of the minimax risk
over the class Fpack.

This completes the proof. O

I FLAT INTERPOLATING TWO-LAYER RELU NETWORKS ON THE UNIT
SPHERE

Let {(z;,y;)}", be a dataset with ¢; € S?~1, d > 1, and pairwise distinct inputs. Assume labels
are uniformly bounded, i.e., |y;| < D for all 4. Consider width-K two-layer ReLU models

K
folx) = vpp(wim —by) + . (85)
k=1
Theorem 1.1 (Flat interpolation with width < n). Under the set-up above, there exists a width
K < n network of the form (85) that interpolates the dataset and whose Hessian operator norm
satisfies
D? +2
Amax (VoL£) < 1+ e (86)
n

Construction 1.2 (Flat interpolation ReLU network). Let I+q := {i : y; # 0} and set the width
K := || < n. Foreach k € I define

1+ pg

5 ), Wy, 1= T. (87)

Pr = r}ggz( ar:lT:):;C < 1, br € (pr, 1) (e.g., b =

Then for any sample index 1,
1—-0b; > 0, 1=k,
wy; — by = i , (88)
<pr—br <0, i#k,
so the k-th unit activates on xy, and is inactive on all x; with i # k. Set the output weight

Yk
= . 89
(o 10, (89)
By (88) and (89), the model interpolates on nonzero labels because f(xy) = ax(1 — b)) = yi, for
k € Ixo, and it also interpolates zero labels since all constructed units are inactive on x; when

i & Jxo, hence f(x;) =0 =y,.

For each constructed unit, define

Vg 1= sign(vk) S {il}, Wy, := |vg| wy, Bk = |ak]| by 90)
Then for any input x,
O, p(w}x — by) = sign(vy) qz5(|vk|('wg:c — b)) = vk d(wix — by), 1)
so interpolation is preserved. Moreover, the activation pattern on the dataset is unchanged because
(88) has strict inequalities and |a;| > 0. At &; we have the (post-rescaling) pre-activation

Zp = Wl — by = ag| (1 —bp) = |yx| > 0, |55 =1. (92)

In what follows we work with the reparameterized network and drop tildes for readability, implicitly
assuming |vi,| = 1 for all k € I 40 and z, == w] x — b, = |yi-
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Proposition 1.3. Let 0 be the model in Construction 1.2. Then

D2 +2
Mmax (VAL) <1+ n+ )

Proof. By direct computation, the Hessian V3£ is given by
1 n 1 n
Vol = - > Veof(@:)Vef(x:)" + - > (f(@:) = yi) Vo f(m:). ©3)
i=1 i=1
Since the model interpolates f(x;) = y; for all 4, we have

VA= 1) Vof(x)Vof(z) ©4)

i=1

Denote the tangent features matrix by
® = [VGf($1)7 v@f(wQ)a e aVGf(mn)] . (95)

Then V3L in (94) can be expressed by V5L = ®@T /n, and the operator norm is computed by

1 1
V2/) = L eT~l2 — L 2
A (Vo L) = 'yeg}%m nH(I> "= uIenSé}L}El nH(I’uH (°6)

From direct computation we obtain

Vw(f)
Vof(z) = g:((?)
Vis(f)

7)

For the parameters [wy, b, vi] associated to the neuron of index j,

agq(}w) = 1{w]ae > by} (wiz —by), aggi) — wlz > by) oz,
k k

Of (; 91z,

J;(ba:) = L{wiz > b} o, fa(;:) ~1.

By the one-to-one activation property (88), each sample x; activates exactly one unit (the unit with
the same index k£ when k € I(), and activates none when i ¢ I+o. Hence the sample-wise gradient
Vo f(x) has support only on the parameter triplet (wy, bi, v, §) for k € I, and is zero for other
parameters. Writing the nonzero gradient block explicitly (recall |vg| = 1),

vw. .U f@
v(wk7bkavk7ﬁ)f9(wk):< ( k’bllw ) >7

Vg Tk
Vk s (k S 1750),
Yk
0, (k ¢ 1750)’

(98)
V(wk,bk,vk)fa (wk) -
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After row permutation and subsistion by (98), (96) is of the form

v(wl,bl,vl)fG(wl) 0 0
0 V(w27b27vz)f9(w2) :
P = 0 0
f ; | )
0 0 T v(wnabnyvn)f9<wn)
1 1
V1 L1
U1 0 A 0
U1
Vo T2
0 Vo
Y2
— o 0
S
v'n, xn
0 0 oy
yn
1 1 1
Letw = (u1, - ,u,) € S" ! and plug (100) in (96) to have
Aas (V30) = e, Bl
UES" 1
2
ULV (ay by 1) o (T1)
1 U2V (ws,bs,0) [0 (T2)
= Inax, .
N wesSn— :
u7lv(w7“b7“vn)fe(mn)
ZT} 1 Uq 9
1 - n 5
= ;Jgg%Zu 19 (a1, fo ()| + (Z_Zf”)
=2 max ; u? (HwH2 +1 +y-2) + (zn:u)Q
T uest i ' o ' i=1 '
1 n 9
< - max (||$z||2+1+yl) + max ( ul)
n 'LG weSn—1 pa
]. D2 2
S*(D2+2+n):1+ +
n

n

99)

(100)

(101)

(102)

(103)

(104)

If we remove the output bias term [ from the parameters, then the bottom row of 100 will be remove
and thus term ), u; in (102) will be removed.

J TECHNICAL LEMMAS

O

Lemma J.1 (Concentration of a Poisson Random Variable). Let N,,,; ~ Poi(n) be a Poisson random
variable with mean n. Then for any n € (0, 1),

’n
P (| Npoi —n| > nn) < 2exp (—773) )
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Proof. The proof employs the Chernoff bounding method. The Moment Generating Function
(MGF) of Ny ~ Poi(n) is given by:

E [ethoi] _ en(et—l).
We will bound the upper and lower tails separately.

We want to bound P(Npei > (1 + n)n). For any ¢ > 0, Markov’s inequality implies:

P(Npoi Z (1 =+ 7’])’{7,) =P (eth(,j Z et(1+n)n)
E [6tNP"‘]

= gt(+mn

enle=1) .

= e = o (n(e' = 1) — in(1+n)).

To obtain the tightest bound, we minimize the exponent with respect to ¢. The optimal ¢ is found by
setting the derivative to zero, which yields et =1+nort= In(1+n). Substituting this value back
into the bound gives:

P(Npoi = (14+n)n) < exp (n((1 +n) —1) —n(1 +n)In(1 + 7)) = exp (n[n — (1 +n) In(1 +n)]).
We now use the standard inequality: In(1 4+ z) > x — “”2—2 for x > 0. A more specific inequality for
this contextis n — (1 +n)In(1 +n) < —2(%2/3). For n € (0, 1], this further simplifies. A widely
used bound derived from this expression is:

2n
exp (nlin — (1 +7)In(1 + 7)]) < exp <"3) .

Next, we bound P(Npei < (1 —n)n). For any ¢ > 0, we have:

P(Npoi < (1 =n)n) =P (e’thoi > e*t(lfn)n)

E [e=tNei]
- e~ t(l-m)n
enle=t=1) »
= iimmn — exp (n(e — 1) +tn(1 777)) )

The optimal ¢ is found by setting e * =1 — n, or t = —In(1 — 7). Substituting this value gives:
P(Npoi < (1=n)n) < exp (n((1 —n) —1) = n(l = n)In(1 —n)) = exp (n[-n — (1 =) In(1 —n)]).
Using the inequality —y — (1 — 1) In(1 — ) < —§ forn € (0,1), we get a simple bound:

n°n
exp (nf — (1= (1 = ) < exp (=21
Since for € (0,1), we have exp(—n?n/2) < exp(—n*n/3), the lower tail is also bounded by
exp(—n*n/3).
Using the union bound, we combine the probabilities for the two tails:

P ([Npoi =1 = nn) = P(Npoi > (1 4+ 1)) + P(Npoi < (1 —1)n)

2 2
< exp (_”3”) +exp (_"2”)
2
T] n
<2 — .

This completes the proof. O
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