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ABSTRACT

Understanding generalization in overparameterized neural networks hinges on the
interplay between the data geometry, neural architecture, and training dynamics.
In this paper, we theoretically explore how data geometry controls this implicit
bias. This paper presents theoretical results for overparametrized two-layer ReLU
networks trained below the edge of stability. First, for data distributions sup-
ported on a mixture of low-dimensional balls, we derive generalization bounds
that provably adapt to the intrinsic dimension. Second, for a family of isotropic
distributions that vary in how strongly probability mass concentrates toward the
unit sphere, we derive a spectrum of bounds showing that rates deteriorate as the
mass concentrates toward the sphere. These results instantiate a unifying princi-
ple: When the data is harder to “shatter” with respect to the activation thresholds
of the ReLU neurons, gradient descent tends to learn representations that capture
shared patterns and thus finds solutions that generalize well. On the other hand,
for data that is easily shattered (e.g., data supported on the sphere) gradient de-
scent favors memorization. Our theoretical results consolidate disparate empirical
findings that have appeared in the literature.

1 INTRODUCTION

How does gradient descent (GD) discover well-generalized representations in overparameterized
neural networks, when these models possess more than enough capacity to simply memorize the
training data? Conventional wisdom in statistical learning attributes this to explicit capacity control
via regularization such as weight decay. However, this view has been profoundly challenged by
empirical findings that neural networks generalize remarkably even without explicit regularizers, yet
can also fit randomly labeled data with ease, even with strong regularization (Zhang et al., 2017).

This paradox forces a critical re-evaluation of how we should characterize the effective capacity of
neural networks, which appears to be implicitly constrained by the optimizer’s preferences (Zhang
et al., 2017; Arpit et al., 2017). A powerful lens for examining this implicit regularization is to
inspect the properties of solutions to which GD can stably converge, since these stable points are
the only solutions that the training dynamics can practically reach and maintain. This direction is
strongly motivated by the empirical discovery of the “Edge of Stability” (EoS) regime, where GD
with large learning rates operates in a critical regime where the step size is balanced by the local
loss curvature (Cohen et al., 2020). This observation is further supported by theoretical analyses of
GD’s dynamical stability (Wu et al., 2018; Nar & Sastry, 2018; Mulayoff et al., 2021; Nacson et al.,
2023; Damian et al., 2024), confirming that the curvature constraint imposed by stability provides a
tractable proxy for this implicit regularization.

While the EoS regime offers a valuable proxy, a fundamental question remains: how precisely does
this stability-induced regularization lead to generalization? Recent breakthroughs have established
that for two-layer ReLU networks, this implicit regularizationthis implicit regularization acts like a
data-dependent penalty on the network’s complexity. Technically, this is captured by a weighted path
norm, where the weight function is determined by the training dataset itself (Liang et al., 2025; Qiao
et al., 2024; Nacson et al., 2023; Mulayoff et al., 2021). This resulting data-dependent regularity
provides an ideal theoretical microcosm to probe how data geometry governs effective capactity
(Arpit et al., 2017). For example, for uniform distribution on a ball, it implies generalization but
also a curse of dimensionality (Liang et al., 2025). However, this prediction of a curse is at odds
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with the empirical success of deep learning. This contradiction forces the question: how can we
predict which data geometries will generalize well under implicit regularization, and which will
not?

Contributions. In this work, we argue that the effectiveness of this data-dependent regularity is
governed by a single, unifying principle, which we term data shatterability

The less shatterable the data geometry, the stronger the implicit regularization of EoS becomes.

We formalize this principle with the following theoretical results:

• Provable Adaptation to Low-dimensionalty. Assuming that the input feature only sup-
port on a mixture of m-dimensional subspaces in Rd with m < d, we prove the general-
ization bound of Õ(n− 1

2m+4 ) that adapts to the intrinsic dimension as Theorem 3.2, where
Õ hides the constants that mildly depends on the number of subspaces (at most linear), and
the logarithmic factor of the probability term. Our empirical results on sythetic data also
support the theoretical analysis.

• A Spectrum of Generalization on Isotropic Data. We show that generalization perfor-
mance smoothly degrades as data concentrates near the boundary of its support. We pro-
vide precise upper bounds that depend on the dimension d and a concentration parameter
α (Theorem 3.5), as well as lower bounds (Theorem 3.6). This analysis culminates in the
limit of extreme boundary concentration (data on a sphere), where we provide a concrete
construction of a network that perfectly interpolates any dataset at the BEoS regime, see
Theorem 3.7. In particular, the “neural shattering” phenomenon, identified by Liang et al.
(2025) for the uniform ball distribution, represents one special point of the broader gener-
alization spectrum we uncover.

Our theoretical results for both subspace mixtures and isotropic distributions demonstrate how the
principle of data shatterability operates in two distinct ways.

On the one hand, for data residing on a mixture of subspaces, its low-dimensional nature inherently
limits its shatterability. We demonstrate that the network’s complex decision boundaries, formed by
combinations of half-spaces, are fundamentally constrained by the data’s intrinsic low-dimensional
structure. For example, when data lies on a line within Rd, a ReLUs’ complex hyperplane boundaries
reduce to a series of knots and entire complexity is defined by the locations and magnitudes of these
knots. The cornerstone of our proof is showing that the stability induced, data-dependent implicit
regularization is adaptive to this nature.

On the other hand, in the isotropic case, shatterability is governed by the data’s radial concentration.
As more mass concentrates towards the spherical shell, the data geometry becomes more shatterable.
This is because the more the data is concentrated near the sphere, the more non-overlapping caps the
network can create across the sphere, while keeping the mass of data inside each cap constant. This
allows the network to partition the data into a large number of disjoint, sparsely populated regions,
a key feature of high shatterability, and dedicate different neurons to memorizing the labels within
each region. Our theoretical analysis and empirical observation confirms that such solutions can
be dynamically stable, meaning they can be favored by gradient descent when the data geometry
permits.

From a representation learning perspective, our constructions for the lower bound and flat inter-
polation (Theorems 3.6 and 3.7) demonstrate that data shatterability directly governs the model’s
learning strategy. High shatterability enables the formation of “memorizing neurons” that activate
on only a few examples. Conversely, low shatterability makes this memorization strategy difficult,
implicitly forcing the optimizer to learn robust, shared representations (see Figure 2). We thus pro-
pose data shatterability as a foundational principle explaining the representations favored by gradient
descent, bridging a critical gap between learning theory and practice.

Related work and novelty. We build upon a recent line of work (Qiao et al., 2024; Liang et al.,
2025) that theoretically study the generalizaton of neural networks in Edge-of-Stability regime (Co-
hen et al., 2020) from a function space perspective (Mulayoff et al., 2021; Nacson et al., 2023).
We add to this literature a two brand new dimensions: how a concentration coefficient of data
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distribution affects generalization by EoS and how gradient descent with large step-size adapts to
low-dimensional structures in data.

More broaderly, our work is inspired by the seminal work of Zhang et al. (2017) on “rethinking
generalization”. Our results provide new theoretical justification that rigorously explains several
curious phenomena (such as why real data are harder to overfit than random Gaussian data) reported
therein. Compared to other existing work inspired by Zhang et al. (2017), e.g., those that study the
implicit bias of gradient descent from various alternative angles (dynamics (Arora et al., 2019; Mei
et al., 2019; Jin & Montúfar, 2023), algorithmic stability (Hardt et al., 2016), large-margin (Soudry
et al., 2018), benign overfitting (Joshi et al., 2024; Kornowski et al., 2024)), our work has more
end-to-end generalization bounds and requires (morally, since the settings are not all compatible)
weaker assumptions. On the practical front, we provide new theoretical insight into how “mix-
up” data augmentation (Zhang et al., 2018; 2021) and “activation-based pruning” (Hu et al., 2016;
Ganguli & Chong, 2024) work. A more detailed discussion of the related work and the implications
of our results can be found in Appendix B.

Disclaimers and limitations. It is important to note that our reseacher focus on gradient descent
training of overparameterized neural networks in the feature-learning regime (a.k.a “rich” learning
regime). Formally analyzing the gradient dynamics is notoriously difficult once training enters the
feature learning regime. This challenge is a core motivation for our work: we sidestep the dynamics
and analyze the properties of the set of stable solutions instead. At a cost, our theoretical bounds
do not apply to the early-phase of training. However, the benefit is that the function space char-
acterization derived from this stability condition allows for a width-agnostic analysis, which we
leverage for our generalization upper bounds that apply to networks of arbitrary finite width. Only
one requirement for sufficiently large width is invoked for our negative results. Specifically, for the
lower-bound construction of “hard-to-learn” functions (Theorem 3.6) and the existence of stable in-
terpolating solutions (Theorem 3.7), the network width K must be at least on the order of the sample
size n.

Our theoretical results are derived for two-layer fully-connected ReLU networks. While this archi-
tecture is a cornerstone for theoretical analysis, modern deep learning employs a much wider array
of designs. Extending our analysis to deeper networks, or architectures with specific inductive biases
like local connectivity (e.g., CNNs), is a significant undertaking left for future work.

2 PRELIMINARIES AND NOTATIONS

Neural network, data, and loss. We consider two-layer ReLU networks

fθ(x) =

K∑
k=1

vk ϕ(w
T
kx− bk) + β, ϕ(z) = max{z, 0}, (1)

with parameters θ = {(vk,wk, bk)}Kk=1 ∪ {β} ∈ R(d+2)K+1. Let Θ be the parameter set of such θ
for arbitrary K ∈ R. We also assume wk ̸= 0 for all k in this form, otherwise we may absorb it into
the output bias β. Given data D = {(xi, yi)}ni=1 with xi in a bounded domain Ω ⊂ Rd with d > 1,
the training loss is L(θ) = 1

2n

∑n
i=1

(
fθ(xi)− yi

)2
. We assume ∥xi∥ ≤ R and |yi| ≤ D for all i.

“Edge of Stability” regime. Empirical and theoretical research (Cohen et al., 2020; Damian et al.,
2024) has established the critical role of the linear stability threshold in the dynamics of gradient de-
scent. In GD’s trajectory, there is an initial phase of “progressive sharpening” where λmax(∇2L(θt))
increases. This continues until the GD process approaches the “Edge of Stability”, a state where
λmax(∇2L(θt)) ≈ 2/η, where η is the learning rate. In this paper, all the GD refers to vanilla GD
with learning rate η.
Definition 2.1 (Below Edge of Stability (Qiao et al., 2024, Definition 2.3)). We define the trajectory
of parameters {θt}t=1,2,··· generated by gradient descent with a learning rate η as Below-Edge-of-
Stability (BEoS) if there exists a time t∗ > 0 such that for all t ≥ t∗, λmax(∇2L(θt)) ≤ 2

η . Any
parameter state θt with t ≥ t∗ is thereby referred to as a BEoS solution.

This condition applies to any twice-differentiable solution found by GD, even when the optimization
process does not converge to a local or global minimum. Moreover, BEoS is empirically verified
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to hold during both the “progressive sharpening” phase and the subsequent oscillatory phase at the
EoS.

Our work aims to analyze the generalization properties of any solutions that satisfy the BEoS con-
dition (Definition 2.1). The set of solutions defined as:

ΘBEoS(η,D) :=
{
θ

∣∣∣∣ λmax(∇2L(θ)) ≤ 2

η

}
. (2)

Data-dependent weighted path norm. Given a weight function g : Sd−1 × R→ R, where Sd−1 :=

{u ∈ Rd : ∥u∥ = 1}, the g-weighted path norm of a neural network fθ(x) =
∑K

k=1 vkϕ(w
T
kx−

bk) + β is defined to be

∥fθ∥path,g =

K∑
k=1

|vk|∥wk∥2 · g
(

wk

∥wk∥2
,

bk
∥wk∥2

)
. (3)

The link between the EoS regime and weighted path norm constrain is presented in the following
data-dependent weight function (Liang et al., 2025; Nacson et al., 2023; Mulayoff et al., 2021). Fix
a dataset D = {(xi, yi)}ni=1 ⊂ Rd×R, we consider a weight function gD : Sd−1 × R→ R defined
by gD(u, t) := min{g̃D(u, t), g̃D(−u,−t)}, where

g̃D(u, t) := P(XTu > t)2 · E[XTu− t |XTu > t] ·
√

1 + ∥E[X |XTu > t]∥2. (4)

Here, X is a random vector drawn uniformly at random from the training examples {xi}ni=1. Specif-
ically, we may also consider its population level gP by viewing X as a random variable

Proposition 2.2. For any θ ∈ ΘBEoS(η,D), ∥fθ∥path,gD ≤ 1
η −

1
2 + (R+ 1)

√
2L(θ).

The proof of this proposition refers to (Liang et al., 2025, Corollary 3.3). The non-parametric
characterization of stable minima via bounded weighted variation norm refers to (Liang et al., 2025;
Nacson et al., 2023).

Supervised statistical learning and generalization gap. We consider a supervised learning prob-
lem where i.i.d. samples D = {(xi, yi)}ni=1 are drawn from an unknown distribution P . In
this paper, we assume the feature space is a compact subset of Euclidean space, Ω ⊂ Rd, the
label space is R, and the data is supported on Ω × [−D,D]. We use the squared loss, de-
fined as ℓ(f,x, y) = 1

2 (f(x) − y)2. The performance of a predictor f is measured by its pop-
ulation risk RP(f) = E(X,Y )∼P ℓ(f,X, Y ), while we optimize the empirical risk R̂D(f) =
1

|D|
∑

(xi,yi)∈D ℓ(f,xi, yi). The difference between these two quantities is the generalization gap

GapP(f ;D) = |RP(f) − R̂D(f)|. Our work focuses on the hypothesis classes the BEoS class
ΘBEoS(η,D) and the bounded weighted-path norm class Θg(Ω;M,C),

Θg(Ω;M,C) =
{
θ ∈ Θ

∣∣∣ ∥fθ |Ω ∥L∞ ≤M, ∥fθ∥path,g ≤ C
}
. (5)

where g can be the weight function gD associated to the empirical distribution D or the weight
function gP associated to the population distribution P , see Section E for more details.

3 MAIN RESULTS

In this section, we present our main theoretical results concerning the properties of stable solutions
found by gradient descent. Section 3.1 establishes a generalization bound for data exhibiting in-
trinsic low-dimensional structure. Section 3.2 then derives a spectrum of generalization bounds for
a tunable family of isotropic distributions, which connects the data’s radial mass concentration to
generalization performance. Finally, Section 3.3 investigates the behavior of stable solutions in the
limiting case where data is supported entirely on the unit sphere. All the detail proofs are deffered
to the appendix.
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3.1 PROVABLE ADAPTATION TO INTRINSIC LOW-DIMENSIONALITY

We begin with our main positive result, considering the case where data possesses an underlying
low-dimensional structure, a common feature of real-world datasets. We show that in this context,
the generalization performance of stable networks adapts to this intrinsic dimension rather than the
ambient one.
Assumption 3.1 (Mixture of Low-Dimensional Balls). Let {Vj}Jj=1 be a finite collection of J dis-
tinct m-dimensional (affine) linear subspaces within Rd. Let P be a joint distribution over Rd ×R.
The marginal distribution of the features x under P , denoted PX , is a mixture distribution given by

PX(x) =

J∑
j=1

pjPX,j(x), PX,j(x) = PX(x | x ∈ Vj), (6)

where pj > 0 are the mixture probabilities P(x ∈ Vj) satisfying
∑J

j=1 pj = 1. Each component

distribution Pj is the uniform distribution on the unit disc BVj

1 := {x ∈ Vj : ∥x∥2 ≤ 1}. The
corresponding labels y are generated from a conditional distribution P(y|x) and are assumed to be
bounded, i.e., |y| ≤ D for some constant D > 0. Similarly, we define Pj(x, y) = P(x, y | x ∈ Vj).

Under the structural conditions of Assumption 3.1, we establish a generalization bound whose sam-
ple complexity depends on the intrinsic dimension m.
Theorem 3.2 (Generalization Bound for Mixture Models). Let the data distribution P be as defined
in Assumption 3.1. LetD = {(xi, yi)}ni=1 be a dataset of n i.i.d. samples drawn from P . Then, with
probability at least 1− δ,

sup
θ∈ΘBEoS(η,D)

GapP(fθ;D) ⪅d

(1
η
− 1

2
+ 4M

) m
m2+4m+3

M2 J
4
m n− 1

2m+4 +M2 J

√
1

2n
. (7)

where M := max{D, ∥fθ|BV
1
∥L∞ , 1} and ⪅d hides constants (which could depend on d) and loga-

rithmic factors in J/δ and n.

The proof appears in Appendix F. The core strategy is to decompose the problem by analyzing the
network’s behavior on each subspace Vj individually and then aggregating the results. If we restrict
the network to a single m-dimensional subspace Vj , a neuron’s activation is governed not by its full
weight vector wk, but solely by projVj

wk, since the component of wk that is orthogonal to Vj is
“invisible to the data on Vj”. However, a critical question then emerges: we know EoS provides
a constraint on the global data-dependent regularity, which involves the full weights wk, but how
does this global constraint translate to local constraint on each individual subspace? To resolve this
question, we prove that the global weight function g dominates the local weight function gj that is
only determined by the data points on Vj (Lemma F.3). This formally establishes that the implicit
regularization is adaptive to the data’s geometry, allowing us to derive a final bound that scales with
the intrinsic dimension m.

3.2 A SPECTRUM OF GENERALIZATION ON ISOTROPIC DISTRIBUTIONS

To explore the transition from a generalizing to a memorizing regime, we now analyze a family of
isotropic distributions parameterized by a term that controls the concentration of data mass near the
boundary of the unit ball. This allows for a precise characterization of how generalization degrades
as data points become more radially exposed.
Definition 3.3 (Isotropic Beta-radial distributions). Let X be a d-dimensional random vector in Rd.
For any α ∈ (0,∞), the isotropic α-powered-radial distribution is defined by the generation process

X = h(R)U ∼ PX(α), (8)

where R ∼ Uniform[0, 1] is a random variable drawn from a continuous uniform distribution on
the interval [0, 1], U ∼ Uniform(Sd−1) is a random vector drawn uniformly from the unit sphere
Sd−1 in Rd and h(r) = 1− (1− r)1/α is a radial profile.

Note that as α→ 0, the distribution P(α) will be closer to the uniform distribution on the sphere.

5
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Assumption 3.4. Fix α ∈ (0,∞). Let P(α) be a joint distribution over Rd × R such that The
marginal distribution of the features x under PX(α). The corresponding labels y are generated
from a conditional distribution P(y|x) and are assumed to be bounded, i.e., |y| ≤ D for some
constant D > 0. Similarly, we define Pj(x, y) = P(x, y | x ∈ Vj).

This framework enables the derivation of a generalization upper bound that depends explicitly on
the parameter α. The proof of the following theorem can be found in Appendix G.

Theorem 3.5. Fix a dataset D = {(xi, yi)}ni=1, where each (xi, yi) is drawn i.i.d. from P(α)
defined in Assumption 3.4. Then, with probability at least 1− δ, for any θ ∈ ΘBEoS(η,D),

GapP(fθ;D) ⪅d


(

1
η −

1
2 + 4M

) αd
d2+4d+3

M
2d2+7αd+6α

d2+4αd+3α n
− α(d+3)

2(d2+4αd+3α) , α ≥ 3d
2d−3 ;(

1
η −

1
2 + 4M

) αd
d2+4d+3

M
2d2+7αd+6α

d2+4αd+3α n− α
2d+4α , α < 3d

2d−3 ,

(9)

and for where M := max{D, ∥fθ|Bd
1
∥L∞ , 1} and ⪅d hides constants (which could depend on d)

and logarithmic factors in n and (1/δ).

To demonstrate the tightness of this result, we establish a corresponding lower bound. For this
purpose, we consider the class of neural networks with bounded g-weighted path norm Θg(Bd

1; 1, 1),
where g is the population version of the weighted.

Theorem 3.6 (Generalization Gap Lower Bound). Let P denote any joint distribution of (x, y)
where the marginal distribution of x is PX(α)) and y is supported on [−1, 1]. Let Dn =

{(xj , yj)}nj=1 be a dataset of n i.i.d. samples from P . Let R̂Dn
(f) be any empirical risk estimator

for the true risk RP(f) := E(x,y)∼P [(f(x)− y)2]. Then,

inf
R̂

sup
P

EDn

[
sup

θ∈Θg(Bd
1 ;1,1)

∣∣∣RP(fθ)− R̂Dn
(fθ)

∣∣∣] ≳d,α n− 2α
d−1+2α .

Crucially, the proof is constructive and, as detailed in Appendix H, leverages the “neural shattering”
observation found by (Liang et al., 2025). The method involves constructing a large family of distinct
two-layer ReLU networks, and then showing that with high probability, this family contains at least
one pair of networks that are indistinguishable to any learning algorithm that only has access to the
training data. This construction exhibit how data geometry (more precisely, shatterability) connect
to statistical uncertainty: (1) For bounded isotropic distributions with fixed boundary concentration
(fixed α) in high dimensions, the input space offers an exponential number of distinct directions; (2)
any training set of finite size n can only cover a fraction of these directions, leaving vast regions of
the input space unsampled. Our proof exploits this by designing networks whose neurons activate
only in localized, disjoint regions near the boundary of the unit ball. The construction ensures that,
with high probability, a significant number of these regions contain no training data. By having the
two networks differ only in these empty regions, they become identical on every point of the training
set, yet remain substantially different in their population risk.

3.3 FLAT INTERPOLATION OF SPHERICALLY SUPPORTED DATA

The previous analysis indicates that generalization degrades as data concentrates toward a boundary.
We now investigate the limiting case of this phenomenon, where the data support is confined to the
unit sphere. In this setting, we show that the stability condition at the EoS is insufficient to prevent
the network from perfectly interpolating the training data.

Theorem 3.7 (Flat interpolation with width ≤ n). Assume that {(xi, yi)}ni=1 is a dataset with
xi ∈ Sd−1 and pairwise distinct inputs, there exists a width K ≤ n network of the form (1) that
interpolates the dataset and whose Hessian operator norm satisfies

λmax

(
∇2

θL
)
≤ 1 +

D2 + 2

n
. (10)

If we remove the output bias parameter β in (1), then λmax

(
∇2

θL
)
≤ D2+2

n .

6
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Remark 3.8. Both Theorem 3.7 our work and (Wen et al., 2023) construct explicit memorization
networks to illustrate a negative result: even under natural “flatness/stability” proxies, a ReLU net-
work can interpolate while failing to generalize. In (Wen et al., 2023), they exhibit trace-minimizing
(“flattest”) interpolators that perform poorly on the distribution Pxor, which is different from our
setting.

The existence of an interpolating network that remains stable demonstrates that the EoS condition
alone does not preclude memorization. This result establishes a clear boundary for the effectiveness
of the stability-induced implicit bias, highlighting that its success is critically dependent on the
properties of the data’s support.

4 EXPERIMENTS

In this section, we present empirical verification of both our theoretical claims and proof strategies.

4.1 EMPIRICAL VERIFICATION OF THE GENERALIZATION UPPER BOUNDS

We test two predictions of our theory using synthetic data and two-layer ReLU networks of width
1000 trained with MSE loss and vanilla GD with learning rate 0.4 for 20000 epochs. The synthetic
training data is produced by fixing a ground-truth function f (ReLU networks or quadratic functions)
to noisy labels yi = f(xi) + ξi, where ξi is an i.i.d Gaussian noise. Generalization gap is measured
by the true MSE ED[(f̂(X) − f(X))2] on the training set. In other words, this measures the
resistence to memorize noise. Theory predicts Error ≲ n−c with a geometry-dependent exponent
c, so we plot log(clean MSE) against log n and estimate the slope by OLS. For each sample size n,
we train on n i.i.d. examples and report their true MSE. Each set-up sweep 6 random seeds and take
averages. The results are summarized in Figure 1.

(a) Adaptation to intrinsic dimension (b) Radial concentration parameter α

Figure 1: How data geometry controls generalization. (a) Union of J = 20 lines (m = 1) embed-
ded in Rd with d ∈ {10, 50, 100, 500}. The regression slopes remain nearly constant across different
d, showing that generalization adapts to intrinsic rather than ambient dimension. (b) Fixed ambient
dimension d = 5 with isotropic Beta-radial distributions (Definition G.1) for α ∈ {1, 5, 10, 50}.
Larger α yields steeper slopes in the log–log error curve, consistent with improved rates as proba-
bility mass concentrates away from the boundary.

4.2 HOW DATA GEOMETRY AFFECTS REPRESENTATION LEARNING

We study how data geometry shapes the representation selected by GD at the BEoS regime through
data activation rate of neurons. Given a neuron vkϕ(w

T
kx − bk) in the neuron network, its data

activation rate is define to 1
n

∑n
i=1 1{w⊤

k xi > bk }, which is exactly the probability term in the
definition of the weight function g in (25). Low data activation rate means the neuron fires on a
small portion of the data.
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(a) Activation-rate histogram (b) Weight magnitude vs. activation rate

Figure 2: Neuron activation statistics under different geometries. (a) On the uniform sphere,
most neurons fire on less than 10% of the data, indicating highly specialized ReLUs as we predict
in Theorem 3.6 and Theorem 3.7. On the low-dimensional mixture, many neurons fire on 10-40%
of the data, reflecting broader feature reuse. (b) Scatter of weight coefficient magnitude versus
activation rate. On the sphere, GD produces many low-activation neurons with large coefficients. On
the low-dimensional mixture, neurons spread to medium activation rates with moderate coefficients.

To verify it empirically, we compare two input distribution in R50: (i) uniform distribution on a
sphere and (ii) a union of lines of 20 lines by training ReLU networks the same recipe and initial-
ization . As a result, the ReLU network trained on the sphere interpolates the noisy label quickly
with final true MSE 1.0249 ≈ noise level (σ2 = 1), while the the ReLU network trained on a union
of lines resist to overfitting with final true MSE 0.07 ≈ 0 (more details appears in Appendix C).
Notably, the trained representations are presented in Figure 2. In particular, GD empirically finds
our lower bound construction below the edge of stability.

4.3 EMPIRICAL EVIDENCE FOR THE DATA SHATTERABILITY PRINCIPLE

Our theory assumes data supported exactly on a mixture of low-dimensional subspaces. In practice,
real datasets are only approximately low-dimensional, as highlighted in the literature on subspace
clustering (Vidal et al., 2016; Elhamifar & Vidal, 2013). For instance, MNIST images do not per-
fectly lie on a union of lines or planes, but still exhibit strong correlations that concentrate them
near such structures. Our experiments (Figure 3, more details in Appendix C.2) show that even this
approximate structure has a pronounced effect: compared to Gaussian data of the same size, GD
on MNIST requires orders of magnitude more iterations before mildly overfitting solutions emerge.
This demonstrates that our theoretical prediction is not fragile: generalization benefits from low-
dimensional structure across a spectrum.

This experimental result validates not only our main theorems but also the core techniques of our
proof. To illustrate this, we introduce Tukey depth depthPX

(x) := inf∥u∥2=1 P
(
u⊤X ≥ uTx),

which measures the centrality of a point x by finding the minimum data mass (either population or
empirical) on one side of any hyperplane passing through it (Tukey, 1975). Our key claim is that
deeper regions of a distribution are hard-to-shatter. For a ReLU ridge to introduce non-linearity, or
“wiggleness”, within a deep region ΩT := {x : depthPX

(x) ≥ T}, its decision boundary must
pass through that region. By the very definition of Tukey depth, the corresponding neuron is then
guaranteed to activate on at least a T -fraction of the data. This provides a lower bound on the EoS
weight function g for these specific neurons that contribute to the function’s nonlinearity in the ΩT .

Consequently, within this deep region, the stability-induced weighted path norm constraint effec-
tively becomes a more traditional unweighted path norm bound for the part of the network creating
local complexity. Such function classes are known to ensure generalization (Parhi & Nowak, 2023;
Neyshabur et al., 2015). Outside this core, the BEoS constraint provides no meaningful control for
neurons activating there, as g can be vanishingly small, allowing for large unweighted norms that
facilitate memorization. Heuristically, deeper regions should generalize better. The right panel of
Figure 3 provides a striking visual confirmation of this principle on a real-world dataset.
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Figure 3: Data geometry and memorization on MNIST. Left pannel: Comparison of training
curves under the same ground-truth predictor with Gaussian inputs versus MNIST inputs (n =
30000). GD on the Gaussian data set quickly interpolates, while MNIST resists overfitting for tens
of thousands of steps. Right pannel: Prediction error against Tukey depth for MNIST samples.
Shallow points (low depth) exhibit larger errors. This regions refers to “highly shatterable region”.

Our upper-bound proof technique, which refines the domain decomposition strategy from (Liang
et al., 2025), operationalizes this split. We partition the data space into a deep core ΩT and its
shallow complement. We control the generalization error in the core, while conservatively bounding
the error in the shallow region by its total probability mass. The final bound arises from optimizing
the trade-off in selecting T . Crucially, this strategy is consistent with our lower-bound construction,
as well as the ”neural shattering” phenomenon analyzed in (Liang et al., 2025). The “hard-to-
learn” functions in Construction H.4 are built with neurons that activate exclusively in the low-
depth regions. This shows that surrendering the shallow region in the upper bound is not a mere
mathematical trick, but reflects a fundamental characteristic of the BEoS regime. In the extreme case
of data on a sphere, where all points have zero depth, this technique becomes inapplicable—which
aligns perfectly with our finding that stable interpolation is possible in that setting.

5 DISCUSSION AND FURTHER QUESTIONS

In this work, we present a mechanism explaining how data geometry governs the implicit bias of
neural networks trained below the Edge of Stability. We introduce the principle of “data shatterabil-
ity,” demonstrating that geometries resistant to shattering guide gradient descent towards discovering
shared, generalizable representations. Conversely, we show that easily shattered geometries, such as
data concentrated on a sphere, permit stable solutions that memorize the training data.

Our framework opens several promising avenues for future research. A central question is the con-
nection between shatterability and optimization. The observation that a flip side of being prone to
overfitting is often faster optimization leads to a natural hypothesis: are high-shatterability distri-
butions easier to optimize? This, in turn, raises further questions about the role of normalization
techniques. For instance, do normalization techniques like Batch Norm accelerate training precisely
by enforcing more isotropic, and thus more shatterable, representations at each layer? This line of
inquiry extends naturally to deep networks, where hidden layers not only sense the initial data ge-
ometry but actively create a new “representation geometry”. Can our principles be translated to the
understanding of representation geometry? Finally, this framework may offer a new lens to under-
stand architectural inductive biases. For example, do CNNs generalize well precisely because their
local receptive fields impose an architectural constraint that inherently reduces the model’s ability
to shatter the data, forcing it to learn local, reusable features? Answering such questions, alongside
developing a quantifiable metric for shatterability, remains a key direction.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR 2026 policy on the responsible use of LLMs, we disclose the follow-
ing. We employed commercial LLM services during manuscript preparation. Specifically, we used
Gemini 2.5 Pro, ChatGPT 5, and DeepSeek to assist with language polishing, literature search, and
consistency checks of theoretical derivations. We further used Claude 4 and Cursor to help generate
experimental code templates. Importantly, all research ideas, theoretical results, and proof strategies
originated entirely from the authors. The LLMs were used solely as productivity aids and did not
contribute novel scientific content.

B MORE RELATED WORKS

How we “rethink” generalization. Our shatterability principle provides a theoretical account of the
discrepancy noted by Zhang et al. (2017): networks fit Gaussian noise much faster than real images
with random labels. Gaussian inputs concentrate on a thin spherical shell and are highly shatterable,
while CIFAR-10 exhibits unknown low-dimensional structure that resists shattering. Strong general-
ization arises in practice because gradient descent implicitly exploits this non-shatterable geometry
of the real world data. We conduct a similar experiment from the perspective of generalization in
Section 4.3 (see Figure 3).

Revisit data augmentation. Mixup forms convex combinations of inputs and labels and encourages
approximately linear predictions along these segments (Zhang et al., 2018). The added in-between
samples penalize solutions that memorize isolated points with sharply varying piecewise-linear be-
havior. For example, on spherical-like data that ReLU units can easily shatter, such memorization
incurs high loss on the mixed samples, which suppresses shattering-type separators. Prior work
mostly views Mixup as a data-dependent regularizer that improves generalization and robustness
(Zhang et al., 2021). Our analysis complements this view by tracing the effect to the implicit bias of
gradient descent near the edge of stability and by linking the gains to a reduction in data shatterability
induced by interpolation in low-density regions.

Activation-based network pruning. Empirical works have shown that pruning strategies based on
neuron activation frequency, such as removing neurons with low activation counts, can even improve
the test performance after retraining (Hu et al., 2016; Ganguli & Chong, 2024). This coincide with
our theory: such rare-firing neurons may be harmful to generalization and pruning these neurons
help models to learn more generalizable features.

Subspace and manifold hypothesis. A common modeling assumption in high-dimensional learn-
ing is that data lies on or near one or several low-dimensional subspaces embedded in the ambient
space, especially in image datasets where pixel values are constrained by geometric structure and
are well-approximated by local subspaces or unions of subspaces (Vidal et al., 2016). In particu-
lar, results in sparse representation and subspace clustering demonstrate that such structures enable
efficient recovery and segmentation of high-dimensional data into their intrinsic subspaces (Elham-
ifar & Vidal, 2013). This also extends to a more general framework of the manifold hypothesis
(Fefferman et al., 2016).

Capacity of neural networks. The subspace and manifold hypotheses have important implications
for the capacity and generalization of neural networks. When data lies near low-dimensional sub-
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spaces and manifolds, networks can achieve expressive power with significantly fewer parameters,
as the complexity of the function to be learned is effectively constrained by the subspace dimension
rather than the ambient dimension (Poggio & Liao, 2017; Cloninger & Klock, 2021; Kohler et al.,
2022). However, these results focus only on expressivity and the existence of neural networks to
learn efficiently on this data.

Interpolation, Benign overfitting and data geometry. Benign-overfitting (Bartlett et al., 2020)
studies the curious phenomenon that one can interpolate noisy labels (i.e., 0 training loss) while
consistently learn (excess risk→ 0 as n gets larger). Joshi et al. (2024) establishes that overfitting in
ReLU Networks is not benign in general, but it could become more benign as the input dimension
grows (Kornowski et al., 2024) in the isotropic Gaussian data case. Our results suggest that such
conclusion may be fragile under low-dimensional or structured input distributions. On a positive
note, our results suggest that in these cases, generalization may follow from edge-of-stability, which
applies without requiring interpolation.

Implicit bias of gradient descent. A rich line of work analyzes the implicit bias of (stochastic)
gradient descent (GD), typically through optimization dynamics or limiting kernels (Arora et al.,
2019; Mei et al., 2019; Jin & Montúfar, 2023). In contrast, we do not analyze the time evolution per
se; we characterize the function spaces that GD tends to realize at solutions. Our results highlight
a strong dependence on the input distribution: even for the same architecture and loss, the induced
hypothesis class (and thus generalization) changes as the data geometry changes, complementing
prior dynamics-centric views.

Edge of Stability (EoS) and minima stability. The EoS literature primarily seeks to explain when
and why training operates near instability and how optimization proceeds there (Cohen et al., 2020;
Kong & Tao, 2020; Arora et al., 2022; Ahn et al., 2022; Damian et al., 2024). Central flows offer
an alternative viewpoint on optimization trajectories that also emphasizes near-instability behavior
(Cohen et al., 2025). Closest to our work is the line on minima stability (Ma & Ying, 2021; Mulayoff
et al., 2021; Nacson et al., 2023; Wu & Su, 2023; Qiao et al., 2024), which links Hessian spectra
and training noise to the geometry of solutions but largely leaves generalization out of scope. We
leverage the EoS/minima-stability phenomena to define and analyze a data-distribution-aware notion
of stability, showing adaptivity to low-dimensional structure and making explicit how distributional
geometry shapes which stable minima GD selects.

Flatness vs. generalization. Whether (and which notion of) flatness predicts generalization re-
mains debated. Several works argue sharp minima can still generalize (Dinh et al., 2017), propose
information-geometric or Fisher–Rao–based notions (Liang et al., 2019), or develop relative/scale-
invariant flatness measures (Petzka et al., 2021). We focus on the largest curvature direction (i.e.,
λmax) motivated by EoS/minima-stability. Our results rigorously prove that flatness in this notion
does imply generalization (note that there is no contradiction with Dinh et al. (2017)), but it depends
on data distribitton.

Linear regions of neural networks. Our research connects to a significant body of work that
investigates the shattering capability of neural networks by quantifying their linear activation regions
(Hanin & Rolnick, 2019a;b; Hanin et al., 2021; Montúfar et al., 2014; Serra et al., 2017). Other
empirical work has meticulously characterized the geometric properties of linear regions shaped by
different optimizers (Zhang & Wu, 2020). Particularly, (Tiwari & Konidaris, 2022) consider the how
these linear regions intersect with data manifolds. These analyses primarily leverage the number of
regions to characterize the expressive power of deep networks, while our work shifts the focus on
the generalization performance of shallow networks at the EoS regime.

C DETAILS OF EXPERIMENTS

C.1 EXPERIMENTAL DETIALS FOR SECTION 4.2

Here we provide the full experimental details of the discussion in Section 4.2.

We worked in ambient dimension d = 50 with n = 2000 training examples. For the Sphere
condition, samples were drawn uniformly from the unit sphere. For the Low-dimensional mixture,
we generated data from a mixture of 20 randomly oriented 1-dimensional subspaces uniformly.
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Labels were produced by a fixed quadratic teacher function with added Gaussian noise of variance
1.

We trained a two-layer ReLU network with hidden width 1024. All models were trained with GD for
10000 epochs using learning rate 0.4 and gradient clipping at 50. The loss function was the squared
error against noisy labels, while generalization performance was evaluated by the true MSE against
the noiseless teacher. For comparability, both datasets shared the same initialization of parameters.

We monitored (i) training loss and true MSE, (ii) Hessian spectral norm estimated by power itera-
tion on random minibatches, and (iii) neuron-level statistics such as activation rate and coefficient
magnitude. The training curves are shown in Figure 4 and λmax(∇θL)-curves are shown in Figure 5.
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Training Loss vs True MSE: Sphere vs Low-Dimensional Distribution
Sphere: Training Loss
Sphere: True MSE
Low-Dim: Training Loss
Low-Dim: True MSE
Noise Baseline

Figure 4: Training curves on different geometries. Training loss and clean MSE on Sphere vs.
Low-dimensional mixture. We can see GD on sphere interpolate very quickly (before the 2000-th
epoch) while the mixed low-dimensional data resist to overfitting.
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Figure 5: λmax(∇θL)-curves. Both of the curves oscillates around 2/η = 5, signaling the edge of
stability regime.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.2 EXPERIMENTAL DETAILS OF SECTION 4.3

We complement the main experiments with a controlled comparison between real data (MNIST)
and synthetic Gaussian noise under the same ground-truth function. The goal is to illustrate how the
geometry of real-world data affects the speed and nature of memorization by GD.

We fix a ground-truth predictor f (a two-layer ReLU network) and generate noisy labels

yi = f(xi) + ξi, ξi ∼ N (0, 1).

We then compare two input distributions of size n = 30000:

(i) Gaussian inputs xi ∼ N (0, Id) with d = 784, and

(ii) MNIST images xi ∈ [0, 1]784 after normalization by 1/255.

Both datasets are trained with identical architecture (two-layer ReLU neuron network of 512 neu-
rons), initialization, learning rate η = 0.2, gradient clip threshold 50.

We track both the empirical training loss and the true MSE 1
n

∑n
i=1(f̂(xi) − f(xi))

2, which mea-
sures generalization. The horizontal dotted line at y = 1 corresponds to the noise variance and
represents the interpolation limit.

Figure 6 shows training curves over the first 5000 epochs. On Gaussian inputs, GD rapidly inter-
polates: the training loss vanishes and the clean MSE rises to the noise limit within a few hundred
steps. On MNIST inputs, GD initially decreases both training loss and clean MSE, entering a pro-
longed BEoS regime where interpolation is resisted. Only after thousands of epochs does the clean
MSE start to increase, suggesting that memorization occurs at a much slower rate.

Figure 6: Training curves for Gaussian noise vs. MNIST over the first 5000 epochs. Gaussian
quickly interpolates, while MNIST remains in a BEoS regime where clean MSE stays well below
the noise level.
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(a) Mean/median error by depth quintile (lower is better) (b) Sample-wise error versus Tukey depth at epoch 5,000

Figure 7: MNIST at 5,000 epochs: deeper points have smaller error. The shallow region produces
a long upper tail of errors, consistent with the annulus-interior decomposition used in our upper
bounds.
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D FUNCTIONAL ANALYSIS OF SHALLOW RELU NETWORKS

D.1 PATH-NORM AND VARIATION SEMI-NORM OF RELU NETWORKS

In this section, we summarize some result in (Parhi & Nowak, 2023) and (Siegel & Xu, 2023).

Definition D.1. Let fθ(x) =
∑K

k=1 vk ϕ(w
T
kx − bk) + β be a two-layer neural network. The

(unweighted) path-norm of fθ is defined to be

∥fθ∥path :=
K∑

k=1

|vk| ∥wk∥2 . (11)

Dictionary representation of ReLU networks. By the positive 1-homogeneity of ReLU, each
neuron can be rescaled without changing the realized function:

vk ϕ(w
T
kx− bk) = ak ϕ(u

T
kx− tk), uk :=

wk

∥wk∥2
∈ Sd−1, tk :=

bk
∥wk∥2

, ak := vk ∥wk∥2 .

Hence fθ admits the normalized finite-sum form

f(x) =

K′∑
k=1

ak ϕ(u
T
kx− tk) + cTx+ c0. (12)

Let the (ReLU) ridge dictionary be Dϕ :=
{
ϕ(uT · −t) : u ∈ Sd−1, t ∈ R

}
. We study the over-

parametrized, width-agnostic class given by the union over all finite widths

Ffin :=
⋃
K≥1

{
K∑

k=1

ak ϕ(u
T
k · −tk) + cT(·) + c0

}
, (13)

and measure complexity by the minimal path-norm needed to realize f :
∥f∥path,min := inf {∥fθ∥path : fθ ≡ f of the form (12)} .

From finite sums to a width-agnostic integral representation. To analyze Ffin without com-
mitting to a fixed width K, we pass to a convex, measure-based description that represents the
closure/convex hull of (13). Specifically, let ν be a finite signed Radon measure on Sd−1 × [−R,R]
and consider

f(x) =

∫
Sd−1×[−R,R]

ϕ(uTx− t) dν(u, t) + cTx+ c0. (14)

Any finite network (12) corresponds to the sparse measure ν =
∑K

k=1 ak δ(uk,tk), and conversely
sparse measures yield finite networks. Thus, (14) is a width-agnostic relaxation of (11), not an
assumption of an infinite-width limit.
Definition D.2. The (unweighted) variation (semi)norm

|f |V := inf {∥ν∥M : f admits (12) for some (ν, c, c0)} , (15)
where ∥ν∥M is the total variation of ν.

For the compact region Ω = Bd
R, we define the bounded variation function class as

VC(Ω):=

{
f : Ω→ R | f =

∫
Sd−1×[−R,R]

ϕ(uTx− t) dν(u, t) + cTx+ b, |f |V ≤ C

}
. (16)

Specifically, by identifying (12) with the atomic measure ν =
∑

k akδ(uk,tk), we have

|f |V ≤
∑
k

|ak| = ∥fθ∥path, hence |f |V ≤ ∥f∥path,min.

Conversely, the smallest variation needed to represent f equals the smallest path-norm across all
finite decompositions,

∥f∥path,min = |f |V. (17)
Thus, the variation seminorm (15) is the nonparametric counterpart of the path-norm, which cap-
tures the same notion of complexity but without fixing the width K.
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Remark D.3 (“Arbitrary width” ̸= “infinite width”). Our analysis concerns Ffin in (13), i.e., the
union over all finite widths. The integral model (14) is a convexification/closure of this union that
facilitates analysis and regularization; it does not assume an infinite-width limit. In variational
training with a total-variation penalty on ν, first-order optimality ensures sparse solutions (finite
support of ν), which correspond to finite-width networks. Thus, all results in this paper apply to
arbitrary (but finite) width, and the continuum measure is only a device to characterize and control
∥f∥path,min.

D.2 TOTAL VARIATION SEMI-NORM ON RADON DOMAIN

We now connect the (unweighted) variation semi-norm of shallow ReLU networks to an analytic
description on the Radon domain. Our presentation follows (Parhi & Nowak, 2021; 2023).
Definition D.4. For a function f : Rd → R and (u, t) ∈ Sd−1 × R := Sd−1× R, the Radon
transform and its dual are defined by

Rf(u, t) =

∫
{x:uTx=t}

f(x) ds(x)

R∗ {Φ} (x) =
∫
Sd−1

Φ
(
u, uTx

)
dσ(u).

The Radon framework encodes a function f by its integrals over affine hyperplanes faithfully in
the senses that the Radon transform is invertible up to a known dimension-dependent constant via a
one-dimensional “ramp” filter in t.
Proposition D.5 (Filtered backprojection (Radon inversion)). There exists cd > 0 such that

cd f = R∗ {Λd−1Rf } ,

where Λd−1 acts in the t-variable with Fourier symbol Λ̂d−1Φ(u, ω) = i d−1 |ω| d−1 Φ̂(u, ω).

The inversion formula motivates measuring the “ridge-curvature” of f by differentiating in the
Radon offset t after filtering, and aggregating its magnitude over all orientations and offsets.

The next definition is the sole norm we need on the Radon domain; it specializes all higher-order
variants to the ReLU case.
Definition D.6 (Second-order Radon total variation (ReLU case)). The (second-order) Radon total-
variation seminorm is

RTV2(f) :=
∥∥∥R

{
(−∆)

d+1
2 f
}∥∥∥

M(Sd−1×R)
,

where the fractional power is understood in the tempered-distribution sense. The null space of
RTV2(·) is the set of affine functions on Rd.
Proposition D.7 (Equivalence of seminorms on bounded domains (Parhi & Nowak, 2021)). Let
B = Bd

R. For any f : B → R with finite variation seminorm, its canonical extension fext to Rd

satisfies
|f |V = RTV2(fext),

and, in particular, for any finite two-layer ReLU network in reduced form fθ(x) =∑K
k=1 vk ϕ(w

T
kx− bk) + cTx+ c0,

RTV2(fθ) =

K∑
k=1

|vk| ∥wk∥2 ,

which equals the minimal (unweighted) path-norm needed to realize fθ on Bd
R.

The key structural reason is simple: ∂2
tΛd−1R turns each ReLU ridge ϕ(uTx− t) into a Dirac mass

at (u, t) on Sd−1 × R, so superpositions of ridges correspond exactly to finite signed measures on
Sd−1 × R, and the total-variation of that measure coincides with both the variation seminorm and
RTV2(·) after fixing the affine null space.
Remark D.8 (Takeaway). For ReLU networks on bounded domains, the three viewpoints

path-norm ∥f∥path ←→ unweighted variation |f |V ←→ Radon-TV RTV(f)

are equivalent up to the affine null space. We will freely switch between them in the sequel.
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D.3 THE METRIC ENTROPY OF VARIATION SPACES

Metric entropy quantifies the compactness of a set A in a metric space (X, ρX). Below we introduce
the definition of covering numbers and metric entropy.
Definition D.9 (Covering Number and Entropy). Let A be a compact subset of a metric space
(X, ρX). For t > 0, the covering number N(A, t, ρX) is the minimum number of closed balls of
radius t needed to cover A:

N(t, A, ρX) := min

{
N ∈ N : ∃x1, . . . , xN ∈ X s.t. A ⊂

N⋃
i=1

B(xi, t)

}
, (18)

where B(xi, t) = {y ∈ X : ρX(y, xi) ≤ t}. The metric entropy of A at scale t is defined as:
Ht(A)X := logN(t, A, ρX). (19)

The metric entropy of the bounded variation function class has been studied in previous works. More
specifically, we will directly use the one below in future analysis.
Proposition D.10 (Parhi & Nowak 2023, Appendix D). The metric entropy of VC(Bd

R) (see Defini-
tion D.2) with respect to the L∞(Bd

R)-distance ∥ · ∥∞ satisfies

logN(t,VC(Bd
R), ∥ · ∥∞) ⪅d

(
C

t

) 2d
d+3

. (20)

where ⪅d hides constants (which could depend on d) and logarithmic factors.

D.4 GENERALIZATION GAP OF UNWEIGHTED VARIATION FUNCTION CLASS

As a middle step towards bounding the generalization gap of the weighted variation function class,
we first bound the generalization gap of the unweighted variation function class according to a metric
entropy analysis.
Lemma D.11. Let FM,C = {f ∈ VC(Bd

R) | ∥f∥∞ ≤ M} with M ≥ D. Then let D ∼ P⊗n be a
sampled data set of size n, with probability at least 1− δ,

sup
f∈FM,C

∣∣R(f)− R̂D(f)
∣∣ ≲d C

d
2d+3 M

3(d+2)
2d+3 n− d+3

4d+6 + M2

(
log(4/δ)

n

)− 1
2

. (21)

Proof. According to Proposition D.10, one just needs N(t) balls to cover F in ∥ · ∥∞ with radius
t > 0 such that where

logN
(
t) ⪅d

(
C

t

) 2d
d+3

.

Then for any f, g ∈ FM,C and any (x, y),∣∣(f(x)− y)2 − (g(x)− y)2
∣∣ = |f(x)− g(x)| |f(x) + g(x)− 2y| ≤ 4M ∥f − g∥∞.

Hence replacing f by a centre fi within t changes both the empirical and true risks by at most 4Mt.

For any fixed centre f̄ in the covering, Hoeffding’s inequality implies that with probability at least
≥ 1− δ, we have

|R(f̄)− R̂D(f̄)| ≤ 4M2

√
log(2/δ)

n
(22)

because each squared error lies in [0, 4M2]. Then we take all the centers with union bound to deduce
that with probability at least 1− δ/2, for any center f̄ in the set of covering index, we have

|R(f̄)− R̂D(f̄)| ≤ 4M2

√
log(4N(t)/δ)

n

≲ M2 ·
(
C

t

) d
d+3

(
1

n

)− 1
2

+M2

(
log(4/δ)

n

)− 1
2

⪅d M2 ·
(
C

t

) d
d+3

(
1

n

)− 1
2

,

(23)
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where ⪅d hides the logarithmic factors about 1/δ and constants.

According to the definition of covering sets, for any f ∈ FM,C , we have that ∥f − f̄∥∞ ≤ t for
some center f̄ . Then we have

|R(f)− R̂D(f)|
⪅d |R(f̄)− R̂D(f̄)|+O(Mt)

≲d M2 ·
(
C

t

) d
d+3

n− 1
2 +O(Mt).

(24)

After tuning t to be the optimal choice, we deduce that (21).

E DATA-DEPENDENT REGULARITY FROM EDGE-OF-STABILITY

This section summarizes the data-dependent regularity induced by minima stability for two-layer
ReLU networks.

E.1 FUNCTION SPACE VIEWPOINT OF NEURAL NETWORKS BELOW THE EDGE OF
STABILITY

Recall the notations: given a dataset D = {(xi, yi)}ni=1 ⊂ Rd × R, we define the data-dependent
weight function gD : Sd−1 × R→ R by

gD(u, t) := min{g̃D(u, t), g̃D(−u,−t)},
where

g̃D(u, t) := PD(X
Tu > t)2 · ED[X

Tu− t |XTu > t] ·
√
1 + ∥ED[X |XTu > t]∥2. (25)

Here, X denotes a random draw uniformly sampled from {xi}ni=1, so that PD,ED refer to proba-
bility and expectation under the empirical distribution 1

n

∑n
i=1 δxi

. When the dataset D is fixed and
clear from context, we will simply write g in place of gD.

Then the curvature constrain on the loss landscape of L is converted into a weighted path norm
constrain in the following sense.
Proposition E.1 (Finite-sum version of Theorem 3.2 in (Liang et al., 2025)). Suppose that fθ(x) =∑K

k=1 vk ϕ(w
T
kx− bk) + β is two-layer neural network such that the loss L is twice differentiable

at θ. Then
K∑

k=1

|vk| ∥wk∥ · g
( wk

∥wk∥
,

bk
∥wk∥

)
≤ λmax(∇2

θL(θ))
2

− 1

2
+ (R+ 1)

√
2L(θ). (26)

If we write fθ into a reduced form in (12), then we have

K′∑
k=1

ak · g
(
uk, tk

)
≤ λmax(∇2

θL(θ))
2

− 1

2
+ (R+ 1)

√
2L(θ). (27)

Therefore, we bring up the definition the g-weighted path norm and variation norm are introduced
as prior work introduced (Liang et al., 2025; Nacson et al., 2023).

Definition E.2. Let fθ(x) =
∑K

k=1 vk ϕ(w
T
kx − bk) + β be a two-layer neural network. The

(g-)weighted path-norm of fθ is defined to be

∥fθ∥path,g :=
K∑

k=1

|vk| ∥wk∥2 · g
( wk

∥wk∥
,

bk
∥wk∥

)
. (28)

Similarly, for functions of the form

fν,c,c0(x) =

∫
Sd−1×[−R,R]

ϕ(uTx− t) dν(u, t) + cTx+ c0, x ∈ Rd, (29)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where R > 0, c ∈ Rd, and c0 ∈ R, we define the g-weighted variation (semi)norm as

|f |Vg
:= inf

ν∈M(Sd−1×[−R,R])

c∈Rd,c0∈R

∥g · ν∥M s.t. f = fν,c,c0 , (30)

where, if there does not exist a representation of f in the form of (29), then the seminorm is un-
derstood to take the value +∞. Here,M(Sd−1 × [−R,R]) denotes the Banach space of (Radon)
measures and, for µ ∈ M(Sd−1 × [−R,R]), ∥µ∥M :=

∫
Sd−1×[−R,R]

d|µ|(u, t) is the measure-
theoretic total-variation norm.

With this seminorm, we define the Banach space of functions Vg(Bd
R) on the ball Bd

R := {x ∈
Rd : ∥x∥2 ≤ R} as the set of all functions f such that |f |Vg is finite. When g ≡ 1, | · |Vg and
Vg(Bd

R) coincide with the variation (semi)norm and variation norm space of Bach (2017).

For convenience, we introduce the notation of bounded weighted variation class

Fg(Ω;M,C) :=
{
f : Ω→ R

∣∣|f |Vg
≤ C, ∥f |Ω∥L∞ ≤M

}
. (31)

In particular, for any θ ∈ Θg(Ω;M,C), we have fθ ∈ Fg(Ω;M,C).

Within this framework together with the connection between | · |V and RTV2(·) as summarized in
Section D.2, we show the functional characterization of stable minima.

Theorem E.3. For any fθ ∈ ΘBEoS(η,D), |fθ|Vg = ∥g · R(−∆)
d+1
2 fθ∥M ≤ 1

η −
1
2 + (R +

1)
√
2L(θ).

The detailed explanation and proof can be found in (Liang et al., 2025, Theorem 3.2, Corollary 3.3,
Theorem 3.4, Appendix C, D).

E.2 EMPIRICAL PROCESS FOR THE WEIGHT FUNCTION g

The implicit regularization of Edge-of-Stability induces a data-dependent regularity weight on the
cylinder Sd−1 × R := Sd−1 × [−1, 1]. Denote this empirical weight by gD for a dataset D =
{xi}ni=1. Directly analyzing generalization through the random, data-dependent class weighted by
gD is conceptually delicate, since the hypothesis class itself depends on the sample. To separate
statistical from algorithmic randomness, we adopt the following paradigm.

(l) Fix an underlying distribution P for X with only the support assumption supp(P) ⊆
Bd
R := {x ∈ Rd : ∥x∥ ≤ R}. Define a population reference weight gP on Sd−1 × R

(see below). This anchors a distribution-level notion of regularity independent of the par-
ticular sample.

(ii) For a realized dataset D ∼ P⊗n, form the empirical plug-ins that define gD on the same
index set Sd−1 × R.

(iii) Use empirical-process theory to control the uniform deviation ∥gD−gP∥∞ with high prob-
ability over the draw of D. After this step, we can condition on the high-probability event
and regard D as fixed in any subsequent analysis.

Let X ∼ P with supp(P) ⊆ Bd
R. For (u, t) ∈ Sd−1 × R define

pP(u, t) := P
(
XTu > t

)
, sP(u, t) := EX∼P

[
(XTu− t)+

]
.

On the unit ball we have 0 ≤ (XTu − t)+ ≤ 2 and ∥EP [X | XTu > t]∥ ≤ 1, which yields the
pointwise equivalence

gP(u, t) ≍ pP(u, t) sP(u, t) (with absolute constants). (32)

Given a dataset D = {xi}ni=1, let PD,ED denote probability and expectation under the empirical
distribution 1

n

∑n
i=1 δxi

. Define

pD(u, t) := PD(X
Tu > t) =

1

n

n∑
i=1

1{xT
i u > t}, sD(u, t) := ED

[
(XTu−t)+

]
=

1

n

n∑
i=1

(xT
i u−t)+,

and the empirical weight
gD(u, t) ≍ pD(u, t) sD(u, t). (33)
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Lemma E.4 (Uniform deviation for halfspaces). There exists a universal constant C > 0 such that,
for every δ ∈ (0, 1),

P

(
sup

u∈Sd−1, t∈[−1,1]

∣∣pD(u, t)− pP(u, t)
∣∣ > C

√
d+ log(1/δ)

n

)
≤ δ.

Proof. The class {(x 7→ 1{xTu > t}) : u ∈ Sd−1, t ∈ R} has VC-dimension d + 1. Apply the
VC-uniform convergence inequality for {0, 1}-valued classes (e.g., Vapnik (1998)) to the index set
Sd−1 × [−1, 1] to obtain the stated bound.

Lemma E.5 (Uniform deviation for ReLU). There exists a universal constant C > 0 such that, for
every δ ∈ (0, 1),

P

(
sup

u∈Sd−1, t∈[−1,1]

∣∣sD(u, t)− sP(u, t)
∣∣ > C

√
d+ log(1/δ)

n

)
≤ δ.

Proof. Let F := {fu,t(x) = (uTx − t)+ : u ∈ Sd−1, t ∈ [−1, 1]}. Since ∥x∥ ≤ 1 and
t ∈ [−1, 1], every f ∈ F takes values in [0, 2]. Consider the subgraph class

subG(F) =
{
(x, y) ∈ Rd × R : y ≤ (uTx− t)+

}
.

For any (x, y) with y ≤ 0, membership in subG(F) holds for all parameters, hence such points do
not contribute to shattering. For points with y > 0, the condition y ≤ (uTx − t)+ is equivalent
to uTx − t − y ≥ 0, i.e., an affine halfspace in Rd+1 with variables (x, y). Therefore the family
subG(F) is (up to the immaterial fixed set {y ≤ 0}) parametrized by affine halfspaces in Rd+1,
whose VC-dimension is at most d+2. By the standard equivalence Pdim(F) = VCdim(subG(F)),
we obtain

Pdim(F) ≤ d+ 2.

Then by (Haussler, 1992, Theorem 3, Theorem 6, Theorem 7), we

sup
(u,t)

∣∣sD(u, t)− sP(u, t)
∣∣ ≤ C

√
d+ log(1/δ)

n

with probability at least 1− δ for some universal constant C, which is the claimed bound.

Theorem E.6 (Distribution-free uniform deviation for ĝn). There exists a universal constant C > 0
such that, for every δ ∈ (0, 1),

P

(
sup

u∈Sd−1, t∈[−1,1]

∣∣gD(u, t)− gP(u, t)
∣∣ > C

√
d+ log(1/δ)

n

)
≤ 2δ.

Proof. By (32) and (33), it suffices (up to a universal factor) to control
∣∣pDsD − pPsP

∣∣. Using
0 ≤ sD, sP ≤ 2 and 0 ≤ pD, pP ≤ 1,∣∣pDsD − pPsP

∣∣ ≤ |pD − pP | sP + |sD − sP | pP + |pD − pP | |sD − sP |

Taking the supremum over (u, t) ∈ Sd−1 × [−1, 1] and applying Lemmas E.4 and E.5 with a union
bound yields

P

(
sup
u,t

∣∣pDsD − pPsP
∣∣ ≳√d+ log(1/δ)

n

)
≤ 2δ.

Finally, the equivalence g ≍ p s transfers this bound to
∣∣gD − gP

∣∣ at the cost of an absolute multi-
plicative factor and one more failure event.
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F GENERALIZATION UPPER BOUND: MIXTURE OF LOW-DIMENSIONAL
BALLS

In this section, we present the proof of Theorem 3.2. First, we prove the simple case of singe-
subspace assumption (J = 1) via Theorem F.2.

F.1 CASE: UNIFORM DISTRIBUTION ON UNIT DISC OF A LINEAR SUBSPACE

Fix an m-dimensional subspace V ⊂ Rd and write BV
1 := {x ∈ V : ∥x∥2 ≤ 1}, the canon-

ical linear projection projV : Rd → V . Recall the notations in (1): the parameters θ :={
(vk,wk, bk)

K
k=1, β

}
with wk ̸= 0, define a two-layer neural network

fθ(x) =

K∑
k=1

vk ϕ(w
T
kx− bk) + β, w̄k :=

wk

∥wk∥2
, b̄k :=

bk
∥wk∥2

.

Then we define neuronwise projection operator from neural networks to neural networks

proj∗V : fθ(x) 7→
K∑

k=1

vk ϕ
(
(projV wk)

Tx− bk
)
+ β. (34)

Lemma F.1 (Projection reduction). Fix F a hyothesis class of two-layer neural networks. Let P be
a joint distribution on (x, y) supported on Rd× [−D,D] such that the marginal distribution PX of
x supports on V . For any dataset D := {(xi, yi)}ni=1 drawn i.i.d. from P ,

sup
f∈F

GapP(f ;D) = sup
f∈F

GapP(proj
∗
V f ;D). (35)

Proof. Because x ∈ V almost surely and in the sample, we have f(x) = (f ◦ projV )(x) for every
f and every x ∈ BV

1 . Using the identity wT
k (projV x) = (projV wk)

Tx, we obtain f ◦ projV =
proj∗V f pointwise on BV

1 . Hence for any f ∈ F , GapP(f ;D) = GapP(proj
∗
V f ;D).

Theorem F.2. Let P denote the joint distribution of (x, y). Assume that P is supported on Bd
1 ×

[−D,D] for some D > 0 and that the marginal distribution of x is Uniform(BV
1 ). Fix a dataset

D = {(xi, yi)}ni=1, where each (xi, yi) is drawn i.i.d. from P . Then, with probability ≥ 1− δ,

sup
fθ∈ΘgD (B

Vj
1 ;M,C)

GapP(fθ;D) ≲d C
m

m2+4m+3 M2 n− 1
2m+4 + M2

(
log(4/δ)

n

)− 1
2

,

where M := max{D, ∥fθ∥L∞(BV
1 ), 1} and ≲d hides constants (which could depend on d).

Proof. By Lemma F.1, it remains to consider the case of proj∗V fθ. Similarly, for any u ∈ Sd−1 and
any data set D ⊂ V , we have g(u, t) = g(projV (u), t). Therefore, we just need to consider the
generalization gap with respect to the ΘV

gD (B
Vj

1 ;M,C) =
{
proj∗V fθ : fθ ∈ ΘgD (B

Vj

1 ;M,C)
}

.
Therefore, we just need consider the case where the whole algorithm with any dataset sample from
V operates in V and we get the result from (Liang et al., 2025, Theorem F.8) by replacing Rd with
V ∼= Rm.

F.2 PROOF OF THEOREM 3.2

In this section, we extend the generalization analysis from a single low-dimensional subspace to
a more complex and practical scenario where the data is supported on a finite union of such sub-
spaces. This setting is crucial for modeling multi-modal data, where distinct clusters can each be
approximated by a low-dimensional linear structure. Our main result demonstrates that the sample
complexity of stable minima adapts to the low intrinsic dimension of the individual subspaces, rather
than the high ambient dimension of the data space.
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F.2.1 ANALYSIS OF THE GLOBAL WEIGHT FUNCTION

A critical step in our proof is to understand the relationship between the global weight function
g(u, t), which is induced by the mixture distribution P , and the local weight functions gj(u, t),
each induced by a single component distribution Pj defined on Vj , which should be understood as
the distribution conditioned to x ∈ Vj . Fix a dataset D, the function class ΘBEoS(η;D) is defined
by the properties of the global function g. To analyze the performance on a specific subspace Vj ,
we must ensure that the global regularity constraint is sufficiently strong when viewed locally. The
following lemma provides this crucial guarantee.
Lemma F.3 (Global-to-Local Weight Domination). For any mixed distribution PX =∑J

j=1 pjPX,j with supp(PX,j) = Vj . Let g be the global weight induced by the mixture PX ,
and gj the weight induced by PX,j . For every j ∈ {1, . . . , J},

g(u, t) ≥
p2j√
2
gj(u, t), for all (u, t) ∈ Sd−1 × R. (36)

Consequently, for any M,C > 0,

Fg(B
Vj

1 ;M,C) ⊆ Fgj

(
BVj

1 ;M,
√
2C/p2j

)
. (37)

Proof. Fix j and the activation event A := {x : uTx > t}. By definition of g (global) and gj (local)
we can write

g(u, t) = PX(A)2 · E
x∼PX

[XTu− t | A] ·
√

1 + ∥ E
x∼PX

[X | A]∥22

gj(u, t) = PX(A | x ∈ Vj)
2 · E

x∼PX

[XTu− t | A,x ∈ Vj ] ·
√
1 + ∥ E

x∼PX

[X | A,x ∈ Vj ]∥22

= PX,j(A)2 · E
x∼PX,j

[XTu− t | A] ·
√
1 + ∥ E

x∼PX,j

[X | A]∥22

Using the law of total probability and total expectation for the mixture distribution PX =∑J
i=1 piPX,i, and the non-negativity of (XTu− t)1A, we get

PX(A) ≥ pj PX,j(A), E
x∼PX

[(XTu− t)1A] ≥ pj E
x∼PX,j

[(XTu− t)1A].

Hence, by combining the first two terms of g(u, t) as PX(A)Ex∼PX
[(XTu− t)1A], we have:

g(u, t) ≥
(
pjPX,j(A)

)
·
(
pj E

x∼PX,j

[(XTu− t)1A]
)
·1 = p2j PX,j(A) E

x∼PX,j

[(XTu− t)1A].

For the local weight function gj , the same algebra gives

gj(u, t) = PX,j(A) E
x∼PX,j

[(XTu− t)1A] ·
√
1 + ∥ E

x∼PX,j

[X | A]∥22 .

Since the support of PX,j is BVj

1 , we have ∥X∥2 ≤ 1 almost surely under PX,j . This implies

∥Ex∼PX,j
[X | A]∥2 ≤ 1, and therefore

√
1 + ∥Ex∼PX,j

[X | A]∥22 ≤
√
2.

Combining these results, we establish the lower bound:

g(u, t) ≥
p2j√
2

(
PX,j(A) E

x∼PX,j

[(XTu− t)1A] ·
√
1 + ∥ E

x∼PX,j

[X | A]∥22

)
=

p2j√
2
gj(u, t),

which proves (36). The class embedding (37) follows directly from the definition of the weighted
variation seminorm.

Proposition F.4. Let P be a distribution defined in Assumption 3.1 and recall that Pj is P condi-
tional to x ∈ Vj . Fix j ∈ {1, . . . , J} and a data set D ∼ P⊗n. Let Dj := D ∩ Vj and nj := |Dj |.
Then with probability 1− δ,

sup
fθ∈ΘBEoS(η,D)

GapPj
(fθ;Dj) ≲d

( 1
η −

1
2 + 4M

p2j

) m
m2+4m+3

M2 n
− 1

2m+4

j +M2

(
log(4/δ)

n

)− 1
2

.

(38)
where M := max{D, ∥fθ∥L∞(B

Vj
1 )

, 1} and ≲d hides constants (which could depend on d).
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Proof. Note that the notation GapPj
(fθ;Dj) can be expanded into

GapPj
(fθ;Dj) =

∣∣∣∣∣RPj
(fθ)− R̂Dj

(fθ)

∣∣∣∣∣
=

∣∣∣∣∣ E
(x,y)∼Pj

[
(fθ(x)− y)

2
]
− R̂Dj (fθ)

∣∣∣∣∣
=

∣∣∣∣∣ E
(x,y)∼P

[
(fθ(x)− y)

2 | x ∈ Vj

]
− R̂Dj

(fθ)

∣∣∣∣∣
Let C = 1

η −
1
2 + 4M . According to (Liang et al., 2025, Corollary 3.3), we have that

fθ ∈ ΘgD (B
Vj

1 ;M,C), ∀θ ∈ ΘBEoS(η;D).

Then by Lemma F.3, we conclude that

Θg(B
Vj

1 ;M,C) ⊆ Θgj (B
Vj

1 ;M,
√
2C/p2j ),

where the weight functions g and gj can be either empirical or population.

Therefore,

sup
θ∈ΘBEoS(η;D)

GapPj
(fθ;Dj) ≤ sup

f∈Θgj
(B

Vj
1 ;M,

√
2C/p2

j )

GapPj
(f ;Dj)

Then by Theorem F.2, we may conclude that

sup
fθ∈Fgj

(B
Vj
1 ;M,

√
2C/p2

j )

GapPj
(fθ;Dj) ⪅d

(
1
η −

1
2 + 4M

p2j

) m
m2+4m+3

M2 n
− 1

2m+4

j

Theorem F.5 (Generalization Bound for Mixture Models). Let the data distribution P be as defined
in Assumption 1. Let D = {(xi, yi)}ni=1 be a dataset of n i.i.d. samples drawn from P . Then, with
probability at least 1− 2δ,

sup
θ∈ΘBEoS(η,D)

GapP(fθ;D) ≲d

(1
η
− 1

2
+ 4M

) m
m2+4m+3

M2 J
4
m n− 1

2m+4 +M2 J

√
log(4J/δ)

2n
.

(39)
where M := max{D, ∥fθ |BV

1
∥L∞ , 1} and ≲d hides constants (which could depend on d).

The proof proceeds in several steps. First, we establish a high-probability event where the number
of samples drawn from each subspace is close to its expected value. Second, we decompose the
total generalization gap into several terms. Finally, we bound each of these terms, showing that the
dominant term is determined by the generalization performance on the individual subspaces, which
scales with the intrinsic dimension m.

Proof. Let nj =
∑n

i=1 1{xi∈Vj} be the number of samples from the dataset D that fall into the
subspace Vj . Each nj is a random variable following a Binomial distribution, nj ∼ Bin(n, pj). We
need to ensure that for all subspaces simultaneously, the empirical proportion nj/n is close to the
true probability pj .

We use Hoeffding’s inequality for each j ∈ {1, . . . , J}. For any ϵ > 0, P
(∣∣nj

n − pj
∣∣ ≥ ϵ

)
≤

2e−2nϵ2 . To ensure this holds for all J subspaces at once, we apply a union bound. Let δj be the
failure probability allocated to the j-th subspace. The total failure probability is at most

∑J
j=1 δj =

δ, so we set δj = δ/J and yields ϵ =
√

log(2J/δ)
2n .
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Let E be the event that |nj

n − pj | ≤ ϵ holds for all j = 1, . . . , J . We have shown that P(E) ≥ 1− δ.
The remainder of our proof is conditioned on this event E . A direct consequence of this event is a
lower bound on each nj

nj ≥ npj − nϵ = npj −
√

n

2
log

2J

δ
. (40)

Now we decompose the generalization gap using the law of total expectation for the true risk and by
partitioning the empirical sum for the empirical risk.

Let Pj denote the distribution P conditioned on x ∈ Vj , and let Dj = D ∩ Vj}.

GapP(fθ;D) =
∣∣∣R(fθ)− R̂D(fθ)

∣∣∣
=

∣∣∣∣∣∣
J∑

j=1

pj E
x∼P

[(f(x)− y)2 | x ∈ Vj ]−
J∑

j=1

nj

n

1

nj

∑
(xi,yi)∈Dj

(f(xi)− yi)
2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
J∑

j=1

pj E
x∼Pj

[(fθ(x)− y)2]−
J∑

j=1

pj
1

nj

∑
(xi,yi)∈Dj

(fθ(xi)− yi)
2

∣∣∣∣∣∣
+

∣∣∣∣∣∣
J∑

j=1

pj
1

nj

∑
(xi,yi)∈Dj

(fθ(xi)− yi)
2 −

J∑
j=1

nj

n

1

nj

∑
(xi,yi)∈Dj

(fθ(xi)− yi)
2

∣∣∣∣∣∣
≤

J∑
j=1

pj

∣∣∣RPj (fθ)− R̂Dj (fθ)
∣∣∣+ J∑

j=1

∣∣∣pj − nj

n

∣∣∣ R̂Dj (fθ)

=

J∑
j=1

pjGapPj
(fθ;Dj)︸ ︷︷ ︸

Term A

+

J∑
j=1

∣∣∣pj − nj

n

∣∣∣ R̂Dj (fθ)︸ ︷︷ ︸
Term B

where R̂Dj (f) =
1
nj

∑
(xi,yi)∈Dj

(f(xi)− yi)
2.

• Bounding the Weighted Sum of Conditional Gaps (Term A): According to Proposition
F.4, with probability at least 1− δ, for each j,

GapPj
(fθ;Dj) ≲d

( 1
η −

1
2 + 4M

p2j

) m
m2+4m+3

M2 n
− 1

2m+4

j + M2

(
log(4J/δ)

n

)− 1
2

.

Conditioned on E , we use the lower bound on nj from (40) , nj ≤ npj(1− ϵ/pj).

Term A =

J∑
j=1

pjGapPj
(fθ;Dj)

⪅d

J∑
j=1

pj

( 1
η −

1
2 + 4M

p2j

) m
m2+4m+3

M2(npj(1− ϵ/pj))
− 1

2m+4

=
(1
η
− 1

2
+ 4M

) m
m2+4m+3

M2n− 1
2m+4

J∑
j=1

pj · (p−2
j )

m
m2+4m+3 ·

(
pj −

√
log(2J/δ)

2n

)− 1
2m+4

⪅d

(1
η
− 1

2
+ 4M

) m
m2+4m+3

M2n− 1
2m+4

J∑
j=1

p
1− 2m

m2+4m+3
− 1

2m+4

j .

The exponent of pj simplifies to

1− 2m

(m+ 1)(m+ 3)
− 1

2m+ 4)
=

2m3 + 7m2 + 10m+ 9

2(m+ 1)(m+ 2)(m+ 3)
. (41)
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For positive integers m, (41) is strictly increasing and bounded above by 1. In particular,
when m = 1, (41) = 7

12 . Therefore, a brute-force upper bound is

J∑
j=1

p
2m3+7m2+10m+9

2(m+1)(m+2)(m+3)

j ≤ J

and thus

Term A ⪅d

(1
η
− 1

2
+ 4M

) m
m2+4m+3

M2n− 1
2m+4

J∑
j=1

p
1− 2m

m2+4m+3
− 1

2m+4

j

⪅d

(1
η
− 1

2
+ 4M

) m
m2+4m+3

M2 J n− 1
2m+4 .

Note that the dependence of Term A on J is very mild. Indeed, if we denote

α(m) = 1− 2m

m2 + 4m+ 3
− 1

2m+ 4
,

then
J∑

j=1

p
α(m)
j ≤ J 1−α(m) ≤ J

2m
m2+4m+3

+ 1
2m+4 ≤ J

4
m ,

since
∑

j pj = 1. For large m, the exponent α(m) is close to 1, hence
∑

j p
α(m)
j remains

essentially of order one. Consequently, the bound on Term A grows at most linearly with
J , and in practice the J-dependence is negligible in high m. Here we use the power 4/m
upper for clean format.

• Bounding the Sampling Deviation Error (Term B): Conditioned on the event E , we have
|pj −nj/n| ≤ ϵ for all j. The empirical risk term is bounded because max {|f(x)|, |y|} ≤
M , which implies | 1nj

∑
(xi,yi)∈Dj

(fθ(xi)− yi)
2| ≤ 4M2. Thus, Term B is bounded by:

Term B ≤
J∑

j=1

ϵ4M2 = 4M2ϵ = 4JM2

√
log(4J/δ)

2n
. (42)

The total generalization gap is bounded by the sum of the bounds for Term A and Term B.

GapP(fθ;D) ≲d

(1
η
− 1

2
+ 4M

) m
m2+4m+3

M2 J
4
m n− 1

2m+4 +M2 J

√
log(4J/δ)

2n
.

This completes the proof.

G GENERALIZATION UPPER BOUNDS: ISOTROPIC BETA FAMILY

In this section, the data generalization process is considered to be a family of isotropic Beta-radial
distributions.

Definition G.1 (Isotropic Beta-radial distributions). Let X be a d-dimensional random vector in
Rd. For any α ∈ (0,∞), the isotropic α-powered-radial distribution is defined by the generation
process

X = h(R)U ∼ PX(α), (43)

where R ∼ Uniform[0, 1] is a random variable drawn from a continuous uniform distribution on
the interval [0, 1], U ∼ Uniform(Sd−1) is a random vector drawn uniformly from the unit sphere
Sd−1 in Rd and h(r) = 1− (1− r)1/α is a radial profile.

Lemma G.2. LetPX(α) be the isotropic α-powered-radial distribution in Definition G.1. For X ∼
PX(α) any t ∈ [0, 1], P (∥X∥ > 1− t) = tα. In particular, ∥X∥2 is a Beta(1, α) distribution.
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Proof. The proof follows from a direct calculation based on the properties of the data-generating
process.

First, the norm simplifies to: ∥X∥ = ∥h(R)U∥ = h(R). Next, it is equivalent to calculating the
probability that the scalar random variable h(R) is greater than 1− t:

P (∥X∥ > 1− t) = P (h(R) > 1− t) .

To proceed, we need to apply the inverse of the function h to both sides of the inequality. The func-
tion h(r) is monotonically increasing for r ∈ [0, 1], so applying its inverse preserves the direction
of the inequality. Note that the inverse function is h−1(y) = 1− (1− y)α.

Applying the inverse function h−1 to the inequality h(R) > 1− t, we get

R > h−1(1− t).

Substituting the expression for h−1:

R > 1− (1− (1− t))α = 1− tα.

Finally, we compute the probability of this event for the random variable R. By our initial assump-
tion, R is uniformly distributed on the interval [0, 1], i.e., R ∼ Uniform[0, 1]. The cumulative
distribution function (CDF) of R is FR(x) = x for x ∈ [0, 1]. The tail probability is therefore,

P(R > x) = 1− FR(x) = 1− x.

Applying this to our inequality R > 1− tα:

P (R > 1− tα) = 1− (1− tα) = tα.

Combining all steps, we have rigorously shown that

P (∥X∥ > 1− t) = tα.

To show that this implies ∥X∥ is a Beta(1, α) distribution, we can examine its cumulative distribu-
tion function (CDF). Let Y = ∥X∥. The CDF is FY (y) = P(Y ≤ y). Substituting y = 1 − t, we
have t = 1− y. Then the tail probability becomes:

P(∥X∥ > y) = (1− y)α.

From this, the CDF can be derived as

FY (y) = P(∥X∥ ≤ y) = 1− P(∥X∥ > y) = 1− (1− y)α.

This is the characteristic CDF of a Beta(1, α) distribution, thus completing the proof.

Assumption G.3. Fix α ∈ (0,∞). Let P(α) be a joint distribution over Rd × R such that The
marginal distribution of the features x under PX(α). The corresponding labels y are generated
from a conditional distribution P(y|x) and are assumed to be bounded, i.e., |y| ≤ D for some
constant D > 0. Similarly, we define Pj(x, y) = P(x, y | x ∈ Vj).

G.1 CHARACTERIZATION OF THE WEIGHT FUNCTION FOR A CUSTOM RADIAL
DISTRIBUTION

In this section, we analyze the properties of the weight function gα(u, t) = gPX,α
(u, t) with respect

to the population distribution PX,α we defined in Definition G.1 and Assumption G.3. Recall that
gα(u, t) = min (g̃α(u, t), g̃α(−u,−t)), where

g̃α(u, t) := PPX,α
(XTu > t)2 · EPX,α

[XTu− t |XTu > t] ·
√
1 +

∥∥EPX,α
[X |XTu > t]

∥∥2.
(44)

Due to rotational symmetry, we analyze the projection Xd = XTed without loss of generality. Our
primary goal is to establish rigorous bounds on the tail probability Q(t) := P(Xd > t) and the
conditional expectation for t in a specific range close to 1.
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Proposition G.4 (Tail Probability). Let X be a random vector from the distribution defined above.
Let Xd be its projection onto a fixed coordinate, and let its tail probability be Q(t) = P(Xd > t)
for t ∈ (−1, 1). Then there exists a fixed t0 ∈ [0, 1) such that for all t ∈ [t0, 1):

c2(α, d)(1− t)α+
d−1
2 ≤ Q(t) ≤ c3(α, d)(1− t)α+

d−1
2 ,

where c2(α, d) and c3(α, d) are positive constants depending on α and d.

Proof. The tail probability is Q(t) = P(h(R)Ud > t). We compute this by integrating over the
distribution of R ∼ Uniform[0, 1]:

Q(t) =

∫ 1

h−1(t)

P(Ud > t/h(r)) dr,

where the lower limit h−1(t) = 1 − (1 − t)α ensures h(r) > t. The term P(Ud > x) is the
normalized surface area of a spherical cap on Sd−1. For x ∈ [0, 1), this area can be bounded.
Let θ0 = arccos(x). The area is proportional to

∫ θ0
0

(sinϕ)d−2 dϕ. For ϕ ∈ [0, π/2], we have
2ϕ/π ≤ sinϕ ≤ ϕ. This provides lower and upper bounds on the cap area

Cd,L(1− x)(d−1)/2 ≤ P(Ud > x) ≤ Cd,U (1− x)(d−1)/2,

where Cd,L and Cd,U are constants depending on d. Let’s apply this to our integral, substituting
x = t/h(r):

Q(t) ≥
∫ 1

h−1(t)

Cd,L

(
1− t

h(r)

)(d−1)/2

dr.

We analyze this for t → 1−. Let t = 1 − ϵ. The lower limit is 1 − ϵα. For r ∈ [1 − ϵα, 1], h(r) is
close to 1. Let’s choose t0 such that for t ∈ [t0, 1), h(r) ≥ h(t0) > 1/2. Then h(r) is bounded away
from 0. The term 1− t/h(r) = (h(r)− t)/h(r). Let’s bound the denominator: h(t0) ≤ h(r) ≤ 1.

Q(t) ≥ Cd,L

∫ 1

1−ϵα
(h(r)− (1− ϵ))

(d−1)/2
dr.

The integrand is h(r)− (1− ϵ) = ϵ− (1− r)1/α. The integral becomes:∫ 1

1−ϵα

(
ϵ− (1− r)1/α

)(d−1)/2

dr.

Let y = (1− r)1/α, so r = 1− yα and dr = −αyα−1 dy. Limits for y are [ϵ, 0].∫ 0

ϵ

(ϵ− y)(d−1)/2(−αyα−1 dy) = α

∫ ϵ

0

(ϵ− y)(d−1)/2yα−1 dy.

Let y = ϵz, dy = ϵdz. Limits for z are [0, 1].

α

∫ 1

0

(ϵ− ϵz)(d−1)/2(ϵz)α−1ϵdz = αϵα+
d−1
2 B

(
α,

d+ 1

2

)
.

Combining all constants, we establish the lower bound Q(t) ≥ c2(α, d)(1 − t)α+
d−1
2 . The upper

bound follows an identical procedure, absorbing the 1/h(r) term into the constant c3(α, d).

Proposition G.5 (Conditional Expectation). For t ∈ [t0, 1), the conditional expectation E[Xd |
Xd > t] is bounded by

1− c5(α, d)(1− t) ≤ E[Xd | Xd > t] ≤ 1− c4(α, d)(1− t),

where c4(α, d) and c5(α, d) are positive constants.

Proof. We analyze E[1 − Xd | Xd > t] = 1
Q(t)

∫ 1

t
(1 − s)fXd

(s) ds, where fXd
(s) = −Q′(s).

From Proposition G.4, we know fXd
(s) ∝ (1− s)α+

d−3
2 . The numerator is:

N(t) =

∫ 1

t

(1− s)fXd
(s) ds.
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Bounding the constant of proportionality for fXd
(s) by c1,L and c1,U :

c1,L

∫ 1

t

(1− s)α+
d−1
2 ds ≤ N(t) ≤ c1,U

∫ 1

t

(1− s)α+
d−1
2 ds.

The integral evaluates to (1−t)α+ d+1
2

α+ d+1
2

. So, N(t) ∝ (1 − t)α+
d+1
2 . Dividing N(t) by Q(t) ∝

(1− t)α+
d−1
2 , we get:

E[1−Xd | Xd > t] ∝ (1− t)α+
d+1
2

(1− t)α+
d−1
2

= 1− t.

By carefully tracking the constants c2, c3 from Proposition G.4 and the constants from the integra-
tion of fXd

(s), we can construct explicit (though complex) expressions for c4 and c5 that provide
rigorous two-sided bounds for t in the specified range [t0, 1).

Proposition G.6 (Asymptotic Behavior of g+α (t)). Let the function g+α (t) be defined as in (44). Then
for t ∈ [t0, 1), we have:

c
(g)
L (α, d)(1− t)2α+d ≤ g+α (t) ≤ c

(g)
U (α, d)(1− t)2α+d,

where c
(g)
L (α, d) and c

(g)
U (α, d) are positive constants.

Proof. Let Q(t) = P(Xd > t) and E(t) = E[Xd | Xd > t]. The function is g+α (t) = Q(t)2 ·
(E(t)− t) ·

√
1 + E(t)2. We establish bounds for t ∈ [t0, 1) for a sufficiently large t0.

1. Bounds for Q(t)2: From Proposition G.4, we have:

(c2(α, d))
2(1− t)2α+d−1 ≤ Q(t)2 ≤ (c3(α, d))

2(1− t)2α+d−1.

Let AL(α, d) = (c2(α, d))
2 and AU (α, d) = (c3(α, d))

2.

2. Bounds for E(t) − t: This is E[Xd − t | Xd > t]. From Proposition G.5, we have
(1− t)− c5(1− t) ≤ E(t)− t ≤ (1− t)− c4(1− t). This gives:

BL(α, d)(1− t) ≤ E(t)− t ≤ BU (α, d)(1− t),

where BL(α, d) = 1 − c5(α, d) and BU (α, d) = 1 − c4(α, d). We can choose t0 close
enough to 1 to ensure these constants are positive.

3. Bounds for
√

1 + E(t)2: For t ∈ [t0, 1), we have t0 ≤ t < E(t) ≤ 1. By choosing, for
instance, t0 = 3/4, we have 3/4 ≤ E(t) ≤ 1. Thus,√

1 + (3/4)2 ≤
√

1 + E(t)2 ≤
√
1 + 12.

This gives constant bounds CL = 5/4 and CU =
√
2.

Combining these three bounds, for t ∈ [t0, 1):

ALBLCL(1− t)2α+d−1(1− t) ≤ g+α (t) ≤ AUBUCU (1− t)2α+d−1(1− t).

This simplifies to the final result:

c
(g)
L (α, d)(1− t)2α+d ≤ g+α (t) ≤ c

(g)
U (α, d)(1− t)2α+d,

where the bounding constants are given by c
(g)
L (α, d) = ALBLCL and c

(g)
U (α, d) = AUBUCU .
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G.2 PROOF OF THEOREM 3.5

Theorem G.7 (Restate Theorem 3.5). Fix a dataset D = {(xi, yi)}ni=1, where each (xi, yi) is
drawn i.i.d. from P(α) defined in Assumption 3.4. Then, with probability at least 1 − δ, for any
fθ ∈ ΘBEoS(η,D),

GapP(fθ;D) ⪅d


(

1
η −

1
2 + 4M

) αd
d2+4d+3

M
2d2+7αd+6α

d2+4αd+3α n
− α(d+3)

2(d2+4αd+3α) , α ≥ 3d
2d−3 ;(

1
η −

1
2 + 4M

) αd
d2+4d+3

M
2d2+7αd+6α

d2+4αd+3α n− α
2d+4α , α < 3d

2d−3 ,

(45)

and for where M := max{D, ∥fθ∥L∞(Bd
1)
, 1} and ⪅d hides constants (which could depend on d)

and logarithmic factors in n and (1/δ).

Proof. For convenience, we let A = 1
η −

1
2 + 4M and we have that

fθ ∈ FgD (B
Vj

1 ;M,C), ∀θ ∈ ΘBEoS(η;D).

For any fixed ε < 1, we may decompose Bd
1 into ε-annulus Ad

ε := {x ∈ Bd
1 | ∥x∥2 ≥ 1 − ε} and

the closure of its complement is called ε-strict interiordenoted by 1d
ε .

Bd
1 = Ad

ε ∪ Idε .
According to the law of total expectation, the population risk is decomposed into

E
(x,y)∼P

[
(f(x)− y)

2
]
= P(x ∈ Ad

ε) · EA

[
(f(x)− y)

2
]
+ P(x ∈ Idε) · EI

[
(f(x)− y)

2
]
, (46)

where EA means that {x, y} is a new sample from the data distribution conditioned on x ∈ Ad
ε and

EI means that (x, y) is a new sample from the data distribution conditioned on x ∈ Idε .

Similarly, we also have this decomposition for empirical risk

1

n

n∑
i=1

(f(xi)− yi)
2 =

1

n

∑
i∈I

(f(xi)− yi)
2 +

∑
j∈A

(f(xi)− yi)
2


=

nI

n

1

nI

∑
i∈I

(f(xi)− yi)
2 +

nA

n

1

nA

∑
j∈A

(f(xi)− yi)
2,

(47)

where I is the set of data points with xi ∈ Idε and A is the set of data points with xi ∈ Ad
ε . Then the

generalization gap can be decomposed into

|R(f)− R̂D(f)| ≤ P(x ∈ Ad
ε) · EA

[
(fθ(x)− y)

2
]
+

nA

n

1

nA

∑
j∈A

(f(xi)− yi)
2 (48)

+
∣∣∣P(x ∈ Idε)−

nI

n

∣∣∣ 1

nI

∑
i∈I

(f(xi)− yi)
2 (49)

+ P(x ∈ Idε) ·

∣∣∣∣∣EI

[
(f(x)− y)

2
]
− 1

nI

∑
i∈I

(f(xi)− yi)
2

∣∣∣∣∣ . (50)

Using the property that the marginal distribution of x is Uniform(Bd
1) and its concentration property,

with probability at least 1− δ,
(48) ⪅d O(M2εα), (51)

where ⪅d hides the constants that could depend on d and logarithmic factors of 1/δ.

For the term (49), with probability 1− δ{∣∣P(x ∈ Idε)− nI

n

∣∣ ≲
√

εα log(1/δ)
n ,

1
nI

∑
i∈I(f(xi)− yi)

2 ≤ 4M2
(52)
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so we may also conclude that

(49) ≲ M2

√
ε log(1/δ)

n
(53)

For the part of the interior (50), the scalar P(x ∈ Idε) is less than 1 with high-probability. Therefore,
we just need to deal with the term

EI

[
(f(x)− y)

2
]
− 1

nI

∑
i∈I

(f(xi)− yi)
2. (54)

Since both the distribution and sample points only support in Idε , we may consider f by its restrictions
in Idε , which are denoted by fε. Furthermore, according to the definition, we have

f(x) =

∫
Sd−1×[−1,1]

ϕ(uTx− t) dν(u, t) + cTx+ b

=

∫
Sd−1×[−1+ε,1−ε]

ϕ(uTx− t) dν(u, t) +

∫
Sd−1×[−1,−1+ε)∪(1−ε,1]

ϕ(uTx− t) dν(u, t)︸ ︷︷ ︸
Annulus ReLU

+ cTx+ b
(55)

where the Annulus ReLU term is totally linear in the strictly interior i.e. there exists c′, b′ such that

c′Tx+ b′ =

∫
Sd−1×[−1,−1+ε)∪(1−ε,1]

ϕ(uTx− t) dν(u, t), ∀x ∈ Idε . (56)

Therefore, we may write

f(x) = fε(x) =

∫
Sd−1×[−1+ε,1−ε]

ϕ(uTx− t) dν(u, t) + (c+ c′)Tx+ b+ b′, x ∈ Idε . (57)

According to the definition, we have that

|fε|V(Idε) ≤
∫
Sd−1×[−1+ε,1−ε]

|dν|. (58)

From empirical process we discussed in Section E.2, especically Theorem E.6, we know that with
probability at least 1− δ,

sup
u,t
|gD(u, t)− gα(u, t)| ≲d

√
d+ log(2/δ)

n
=: ϵn. (59)

This implies a lower bound on the empirical minimum weight in the core with probability at least
1− δ/3,

gD,min = inf
|t|≤1−ε

gD(u, t) ≥ inf
|t|≤1−ε

gα(u, t)− ϵn = gα,min − ϵn. (60)

Here, gα,min ≍ εd+2α is the minimum of the population weight function in the core.

For the bound |fε|V ≤ A/gD,min ≤ A/(gα,min − ϵn) to be meaningful with high probability, we
must operate in a regime where gα,min ≥ ϵn. We enforce a stricter validity condition for our proof

gα,min ≥ 2ϵn =⇒ εd+2α ≳d

√
d+ log(6/δ)

n
. (61)

Under this condition, we have gD,min ≥ gα,min − ϵn ≥ gα,min/2 ≍ εd+2α. Thus, for any f ∈
ΘBEoS(η,D), its restriction fε has a controlled unweighted variation norm with high probability:

|fε|V(Bd
1−ε)
≤ A

gD,min
≤ A

gα,min/2
≍ A

εd+2α
=: Cε.

According to the assumption, we have that |f |Vg(Bd
1)
≤ A, and thus we have∫

Sd−1×[−1+ε,1−ε]

gD|dν| ≤
∫
Sd−1×[−1,1]

gD|dν| ≤ A. (62)

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Suppose the validity condition (61) holds (we will verify it later), we have g(u, t) ⪆d εd+2α when
t ≤ 1− ε with probability 1− δ/3, we may use (62) to deduce that

εd+2α ·
∫
Sd−1×[−1+ε,1−ε]

|dν| ≤
∫
Sd−1×[−1+ε,1−ε]

gD|dν| ≤ A. (63)

Combining (58) and (63), we deduce that

|fε|V(Bd
1−ε)

⪅d
A

εd+2α
=: C.

Therefore, we may leverage Lemma D.11 to fε ∈ VC(Bd
1−ε), we may conclude that with probability

at least 1− δ,
(50) ⪅d C

d
2d+3 M

3(d+2)
2d+3 n− d+3

4d+6 , (64)
where ⪅d hides the constants that could depend on d and logarithmic factors of 1/δ.

Now we combine the upper bounds (51), (53) and (64) to deduce an upper bound of the generaliza-
tion gap. We have for any fixed ϵ > 0, with probability 1− δ,

|R(f)− R̂D(f)| ⪅d M2εα +

(
A

εd+2α

) d
2d+3

M
3(d+2)
2d+3 n− d+3

4d+6 . (65)

Then we may choose the optimal ε∗ such that

M2(ε∗)α =

(
A

(ε∗)d+2α

) d
2d+3

M
3(d+2)
2d+3 n− d+3

4d+6

and by direct computation, we get

ε∗ =
(
A

d
d2+4αd+3α M

− d
d2+4αd+3α n

− d+3

2(d2+4αd+3α)

)
.

To satisfy the validity condition (61), we require

(ε∗)d+2α = O
(
n
− d+3

2(d2+4αd+3α)

)d+2α

≥ Õ(n− 1
2 ). (66)

By adjusting some universal constants, it suffices to show whether

(d+ 3)(d+ 2α)

2(d2 + 4αd+ 3α)
<

1

2
. (67)

After direct computation, (67) is equivalent to α ∈ ( 3d
2d−3 ,∞). With this assumption, we may

evaluate the optimal ε∗ in the inequality (65) to deduce the optimal results that

|R(f)− R̂n(f)| ⪅d

(1
η
− 1

2
+ 4M

) αd
d2+4d+3

M
2d2+7αd+6α

d2+4αd+3α n
− α(d+3)

2(d2+4αd+3α) . (68)

In the case where α ≤ 3d
d+2α , we set

ε∗ = Õ
(
n− 1

2d+4α

)
and adjust some universal constant to satisfy the validaty condition. Then (65) has the form

|R(f)− R̂D(f)| ≤ Õ
(
n− 2α

2d+4α

)
+ Õ

(
n− 3

4d+6

)
.

Then assumption α < 3d
d+2α implies that n− 2α

2d+4α > n− 3
4d+6 and thus

|R(f)− R̂D(f)| ≤ Õ
(
n− 2α

2d+4α

)
.

Note that the other constants in the front of 1/n does not change, so we finish the proof.
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H GENERALIZATION GAP LOWER BOUND VIA POISSONIZATION

This section provides a self-contained proof for a lower bound on the generalization gap in a noise-
less setting. We employ the indistinguishability method, where the core technical challenge is to
construct two functions that are identical on a given training sample yet significantly different in
population. The Poissonization technique is the key tool that simplifies the probabilistic analysis
required to guarantee the existence of such a pair. The paradigm is almost the same as the one in
(Liang et al., 2025, Appendix H & I), but the assumption on distributions are different.

H.1 CONSTRUCTION OF “HARD-TO-LEARN” NETWORKS

Our strategy relies on functions localized on small, disjoint regions near the boundary of the unit ball.
We first establish key geometric properties of these regions, called spherical caps. Let u ∈ Sd−1 be
a unit vector. Let ε ∈ R+ be a constant with ε ≤ 1/2. Consider the ReLU atom:

φu,ε2(x) = ϕ(uTx− (1− ε2)). (69)

Lemma H.1. The L2(PX(α))-norm of φu,ε2 , where the measure PX(α) is defined in Definition
G.1, is given by

cL(d, α)ε
d+3+2α

2 ≤ ∥φu,ε2∥L2(PX(α)) ≤ cU (d, α)ε
d+3+2α

2 , (70)

where cL(d, α) and cU (d, α) are constants that depend on the dimension d and the parameter α.

Before the formal proof, we offer a geometric justification for the result. The squared norm is
an integral of (ϕ(. . . ))2, and we can estimate its value as the product of the integrand’s average
magnitude and the measure of the small domain where it is non-zero. We estimate the measure of
this “active” domain, where ruTU > 1− ε2, using a polar coordinate perspective.

• Integrand’s Magnitude: Within the active domain, the term ruTU − (1− ε2) represents
the positive “height” above the activation threshold. This height varies from 0 to a maxi-
mum on the order of O(ε2). A reasonable estimate for the squared term’s average value is
thus O((ε2)2) = O(ε4).

• Measure of the Domain: We decompose the domain’s volume into radial and angular
parts.

– Radial Measure: The condition requires the radius r to be near 1. For the PX(α)
distribution, this confines r to a region of length ∆r ∼ O(ε2α).

– Angular Measure: The vector U is confined to a small spherical cap around u. A cap
defined by a “height” of h ∼ O(ε2) has a surface area on Sd−1 of order O(h(d−1)/2).
This gives an angular measure of ∆Ω ∼ O((ε2)(d−1)/2) = O(εd−1).

Combining these estimates, the squared norm I scales as the product of the integrand’s magnitude
and the two components of the domain’s measure:

I ≈ O(ε4)︸ ︷︷ ︸
Integrand

×O(ε2α)︸ ︷︷ ︸
Radial

×O(εd−1)︸ ︷︷ ︸
Angular

= O(εd+3+2α).

Taking the square root provides the claimed scaling for the L2-norm. The formal proof makes this
geometric heuristic rigorous.

Proof. The squared L2 norm of φu,ε2 over the distribution PX(α) is defined by the expectation

I = ∥φu,ε2∥2L2(PX(α)) = EX∼PX(α)

[
|φu,ε2(X)|2

]
Substituting the definition of φu,ε2(x) and using the property of the ReLU function, we get

I = ER,U

[(
ϕ(h(R)uTU − (1− ε2))

)2]
= ER,U

[
1{h(R)uTU>1−ε2}(h(R)uTU − (1− ε2))2

] (71)

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

where R ∼ Uniform[0, 1] and U ∼ Uniform(Sd−1).

Due to the rotational symmetry of the distribution of U , we can perform a rotation of the coordinate
system such that u aligns with the d-th standard basis vector ed = (0, . . . , 0, 1) without changing
the value of the integral. In these new coordinates, uTU = Ud. The expectation becomes an iterated
integral:

I =

∫ 1

0

EU

[
1{h(r)Ud>1−ε2}(h(r)Ud − (1− ε2))2

]
dr

Let z = Ud. The probability density function of z is p(z) = Cd(1 − z2)(d−3)/2 for z ∈ [−1, 1],
where Cd = Γ(d/2)√

πΓ((d−1)/2)
. The integral is non-zero only if h(r) > 1 − ε2, which implies r >

1− ε2α.

I = Cd

∫ 1

1−ε2α

∫ 1

1−ε2

h(r)

(h(r)z − (1− ε2))2(1− z2)
d−3
2 dz dr (72)

We perform a change of variable z = 1 − t, so dz = −dt and the integration limits change from
[ 1−ε2

h(r) , 1] to [1− 1−ε2

h(r) , 0].

Inner integration of (72) = Cd

∫ 0

1− 1−ε2

h(r)

(h(r)(1− t)− (1− ε2))2(1− (1− t)2)
d−3
2 (− dt)

= Cd

∫ t0(r)

0

(h(r)t0(r)− h(r)t)2(2t− t2)
d−3
2 dt

(73)

where t0(r) = 1− 1−ε2

h(r) = h(r)−1+ε2

h(r) . Since r ∈ [1− ε2α, 1] and for small ε, h(r) is close to 1, we
know t0(r) is small. For a sufficiently small ε, we can ensure t ≤ t0(r) < 1/4. Thus, we can bound
the term 2− t as 7/4 ≤ 2− t ≤ 2. This gives bounds on (2t− t2)(d−3)/2 = ((2− t)t)(d−3)/2:(

7

4

) d−3
2

t
d−3
2 ≤ (2t− t2)

d−3
2 ≤ 2

d−3
2 t

d−3
2

The integral I is therefore bounded by:

Cd

∫ 1

1−ε2α
J(r) dr ≤ I ≤ Cd

∫ 1

1−ε2α
J(r) dr (74)

where Cd, Cd are new constants and J(r) =
∫ t0(r)

0
(h(r)t0(r)− h(r)t)2t

d−3
2 dt.

Consider the integral J(r) and change variable by setting t = t0(r)s , then dt = t0(r) ds.

J(r) =

∫ 1

0

(h(r)t0(r)− h(r)t0(r)s)
2(t0(r)s)

d−3
2 (t0(r) ds)

= (h(r)t0(r))
2(t0(r))

d−3
2 t0(r)

∫ 1

0

(1− s)2s
d−3
2 ds

= h(r)2(t0(r))
d+3
2

(∫ 1

0

(1− s)2s
d−3
2 ds

)
︸ ︷︷ ︸

constant

(75)

To analyze t0(r)
d+3
2 , we let r = 1 − δ, so dr = −dδ and the integration limits for δ are [ε2α, 0].

h(r) = 1− (1− (1− δ))1/α = 1− δ1/α. As δ → 0, h(r)→ 1. t0(r) =
(1−δ1/α)−1+ε2

1−δ1/α
= ε2−δ1/α

1−δ1/α
.

For small δ, 1−δ1/α is close to 1, providing upper and lower bounds. Thus I is bounded by integrals
of the form

C

∫ 0

ε2α

(
ε2 − δ1/α

) d+3
2

(−dδ) = C

∫ ε2α

0

(
ε2 − δ1/α

) d+3
2

dδ

for some mild constant C.
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Now we perform a new change-of-variable by setting δ1/α = ε2v. This gives δ = (ε2v)α = ε2αvα

and dδ = αε2αvα−1 dv. The limits for v become∫ ε2α

0

(
ε2 − δ1/α

) d+3
2

dδ =

∫ 1

0

(ε2 − ε2v)
d+3
2 (αε2αvα−1 dv)

= (ε2)
d+3
2 ε2α

∫ 1

0

(1− v)
d+3
2 αvα−1 dv

= εd+3+2α

(
α

∫ 1

0

(1− v)
d+3
2 vα−1 dv

)
︸ ︷︷ ︸

constant

(76)

The squared norm I is bounded by constants times εd+3+2α. The L2-norm is the square root of I:

cL(d, α) ε
d+3+2α

2 ≤
∥∥φu,ε2

∥∥
L2(PX(α))

=
√
I ≤ cU (d, α) ε

d+3+2α
2 (77)

where c9(d, α) and c10(d, α) are constants that absorb all factors depending on d and α from the
bounds established in the derivation. This completes the proof.

Lemma H.2 (Cap mass at angular scale ε). For ε ∈ (0, 1
2 ] and u ∈ Sd−1, define the thin cap

C(u, ε) = {x ∈ Bd
1 : uTx > 1− ε2}.

There exist constants depending only on (d, α), such that PX

(
C(u, ε)

)
≍ ε d−1+2α.

Sketch proof. The result and the proof almost the same as the ones about Lemma H.1. We omit the
calculation detials.

Lemma H.3 (Disjoint Cap Packing). For any ε ∈ (0, 1/2], there exists a set of N unit vectors
{u1, . . . ,uN} ⊂ Sd−1, with N ≍ ε−(d−1), such that the caps {C(ui, ε)}Ni=1 are pairwise disjoint.

Sketch proof. The angular radius of the cap C(u, ε) is ϑ = arccos(1 − ε2) ≍ ε. For two caps to
be disjoint, the angular separation between their centers must be at least 2ϑ. The maximum number
of such points is the packing number M(Sd−1, 2ϑ). A standard volumetric argument provides the
upper bound M(Sd−1, 2ϑ) = O(ε−(d−1)). The lower bound is established by relating the packing
number to the covering number N(Sd−1, α), which is known to scale as N(Sd−1, α) ≍ α−(d−1),
thus yielding the asserted scaling for N .

We now formally establish the family of functions used to construct the adversarial pair. This family
resides within a function class Fg(Bd

1; 1, 1) and is built upon normalized ReLU atoms localized on
the disjoint spherical caps.

Construction H.4 (Adversarial Function Family). Recall that φu,ε2(x) = ϕ(uTx − (1 − ε2)).
We define its normalized version as Φu,ε2 := ε−2φu,ε2 . By construction, ∥Φu,ε2∥L∞(Bd

1)
≤ 1

and
∥∥Φu,ε2

∥∥
path,g

≍ ε−2ε2d+4α = ε2(d−1+2α) . We assume that these normalized atoms, for a
sufficiently small ε, belong to our function class Fg(Bd

1; 1, C).

Let {u1, . . . ,uN} be the set of vectors from Lemma H.3 that define a disjoint cap packing. We
define a family of candidate functions indexed by sign vectors ξ ∈ {±1}N . For each ξ, the function
fξ ∈ F is given by:

fξ(x) =

N∑
i=1

ξiΦi(x), where Φi := Φui,ε2 .

As the atoms Φi have disjoint supports, the squared L2(PX(α)) distance between any two distinct
functions fξ and fξ′ can be computed as:

∥fξ − fξ′∥2L2(PX(α)) =

N∑
i=1

(ξi − ξ′i)
2∥Φi∥2L2(PX(α)) = 4

∑
i:ξi ̸=ξ′i

∥Φi∥2L2(PX(α)).
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Referring to the cap mass properties in Lemma H.1 (which implies ∥Φi∥2L2(PX(α)) ≍ εd−1+2α), this
simplifies to the final distance scaling

∥fξ − fξ′∥2L2(PX(α)) ≍d,α ε d−1+2α dH(ξ, ξ′),

where dH(ξ, ξ′) is the Hamming distance.

H.2 PROOF OF THEOREM 3.6

A key step in our proof is to find a large number of caps that contain no data points from the
dataset D. In the standard fixed-sample-size setting, the number of points in each disjoint cap,
say Zi := #{xj ∈ C(ui, ε)}, follows a multinomial distribution. The counts (Z1, . . . , ZN ) are
negatively correlated because their sum is fixed to n. This dependence complicates the analysis of
finding many empty caps simultaneously.

To circumvent this difficulty, we employ Poissonization. We replace the fixed sample size n with a
random sample size Npoi drawn from a Poisson distribution with mean n. This means the occupancy
counts Zi become independent Poisson random variables. This independence allows for the direct
use of standard concentration inequalities like the Chernoff bound.
Proposition H.5 (Abundance of Empty Caps under Poissonization). Let {C(ui, ε)}Ni=1 be the set
of disjoint caps from Lemma H.3. Let the sample size be Npoi ∼ Poi(n). Let Zi be the number
of samples falling into cap C(ui, ε). Define the expected number of points per cap as λ := n ·
PX(C(u1, ε)). If we choose ε such that λ ≍ 1, then there exists a constant c > 0 such that with
probability at least 1− exp(−cN):

#{i ∈ {1, . . . , N} : Zi = 0} ≥ 1

2
e−λN.

Proof. Under Poissonization, the random variables Zi = #{xj ∈ C(ui, ε)} are independent Pois-
son variables with mean λi = n·PX(C(ui, ε)). By Lemma H.2 and our choice of scale, λi = λ ≍ 1
for all i.

Let Yi = 1{Zi = 0} be the indicator that the i-th cap is empty. The variables Y1, . . . , YN are i.i.d.
Bernoulli random variables. The probability of success (a cap being empty) is:

p := P(Yi = 1) = P(Zi = 0) =
e−λλ0

0!
= e−λ.

Since λ ≍ 1, p is a positive constant. The expected number of empty caps is E[
∑

Yi] = Np =
Ne−λ. By a standard Chernoff bound on the sum of i.i.d. Bernoulli variables, we have that for any
δ ∈ (0, 1):

P

(
N∑
i=1

Yi < (1− δ)Np

)
≤ exp

(
−δ2Np

2

)
.

Choosing δ = 1/2, we find that the number of empty caps is at least 1
2Np = 1

2e
−λN with proba-

bility at least 1− exp(−cN) for some constant c > 0.

The condition λ ≍ 1 is central. It balances the sample size n with the geometric scale ε. Using
Lemma H.2, this balance is achieved when:

n · ε d−1+2α ≍ 1 ⇐⇒ ε ≍ n−1/(d−1+2α). (78)

With this choice, Proposition H.5 guarantees that a constant fraction of the N ≍ ε−(d−1) caps are
empty with overwhelmingly high probability. Informlly speaking, this hints appearance of the neural
network with dedicated neurons, each of which has at most one activation point. This paradigm
aligns with our construction stable/flat interpolation neural network discussed in Appendix I.

Armed with the guarantee of many empty caps, we can now construct our adversarial pair of func-
tions, f and f ′. These functions will be designed to agree on all non-empty caps but disagree on a
large number of empty caps. Since by definition no data lies in the empty caps, the functions will be
identical on the training data. However, their disagreement on a substantial portion of the space will
create a large gap in their population risks.
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Proposition H.6 (Indistinguishable yet Separated Pair). Work under the scale choice ε ≍
n−1/(d−1+2α) and on the high-probability event from Proposition H.5 where at least 1

2e
−λN caps

are empty. There exist two functions f, f ′ ∈ F from Construction H.4 such that

1. Indistinguishability on Data: f(xj) = f ′(xj) for all points xj in the Poisson-drawn
sample.

2. Separation in Population: ∥f − f ′∥2L2(PX(α)) ≍ n− 2α
d−1+2α .

Proof. Let J ⊂ {1, . . . , N} be the set of indices corresponding to empty caps, with |J | ≥
1
2e

−λN ≍ N . Construct two sign vectors ξ, ξ′ ∈ {±1}N as follows:

• For i ∈ J , set ξi = 1 and ξ′i = −1.

• For i /∈ J , set ξi = ξ′i = 1.

Let f = fξ and f ′ = fξ′ .

1. Indistinguishability: The function difference is f − f ′ =
∑

i∈J 2Φi. The support of this
difference is

⋃
i∈J C(ui, ε). Since all caps indexed by J are empty, no data point xj falls

into this support. Thus, (f − f ′)(xj) = 0 for all j, which implies f(xj) = f ′(xj).

2. Separation: The Hamming distance is dH(ξ, ξ′) = |J | ≍ N . Using the result from
Construction H.4:

∥f − f ′∥2L2(PX(α)) ≍ ε d−1+2α · dH(ξ, ξ′) ≍ ε d−1+2α ·N ≍ ε d−1+2α · ε−(d−1) = ε2α.

Substituting our choice of scale ε ≍ n−1/(d−1+2α) yields the desired separation:

∥f − f ′∥2L2(PX(α)) ≍
(
n−1/(d−1+2α)

)2α
= n− 2α

d−1+2α .

The final step is to transfer the result from the Poissonized model back to the original fixed-sample-
size model. This is justified by the strong concentration of the Poisson distribution around its mean.
Lemma H.7 (De-Poissonization). Let Npoi ∼ Poi(n). For any η ∈ (0, 1), P(Npoi /∈ [(1− η)n, (1+
η)n]) ≤ 2 exp(−cηn) for some constant cη > 0. The conclusions of Proposition H.6 hold for a
fixed sample size n.

Proof. The existence of a large fraction of empty caps is an event that is monotone with respect to
the sample size (fewer samples lead to more empty caps). The high-probability conclusion from
Proposition H.5 holds for any sample size k within the concentration interval [(1− η)n, (1 + η)n],
as changing n to k only alters the key parameter λ by a constant factor, which does not affect the
asymptotic analysis. Since Npoi falls in this interval with probability 1 − o(1), the event of finding
an indistinguishable pair also occurs with probability 1 − o(1) for a Poisson sample. This high-
probability statement can be transferred back to the fixed-n setting, yielding the same rate for the
lower bound.

The existence of an indistinguishable pair allows us to establish a lower bound on the minimax
risk for estimation in the noiseless setting. This intermediate result is the foundation for the final
generalization gap bound.

Let Fpack be the adversarial class defined in Construction H.4 with ε defined in Proposition H.6.
Corollary H.8 (Minimax Lower Bound). In the noiseless setting where yi = f(xi), the minimax
risk for any estimator f̂ over the adversarial class Fpack is bounded below

inf
f̂

sup
f0∈Fpack

E
[
∥f̂ − f0∥2L2(PX(α))

]
≳ n− 2α

d−1+2α .
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Proof. Let E be the event that an indistinguishable pair (f, f ′) ∈ Fpack exists for a fixed sample size
n. From Proposition H.6 and Lemma H.7, we know that P(E) = 1− o(1). On this event E, let the
true function f0 be chosen uniformly at random from {f, f ′}.

Any estimator f̂ receives the dataset Dn of size n. Since f(xi) = f ′(xi) for all xi ∈ Dn, the
generated data is identical whether f0 = f or f0 = f ′. The estimator thus has no information to
distinguish between f and f ′. The expected risk of any estimator, conditioned on the event E, can
be lower-bounded

E
[
∥f̂ − f0∥2

∣∣∣E] = 1

2
∥f̂ − f∥2 + 1

2
∥f̂ − f ′∥2 ≥ 1

4
∥f − f ′∥2,

where the inequality is a standard result for a choice between two points. The worst-case risk for an
estimator over f0 ∈ {f, f ′} is thus at least 1

4∥f − f ′∥2.

Taking the expectation over the sampling of Dn:

inf
f̂

sup
f0∈Fpack

E
[
∥f̂ − f0∥2

]
≥ inf

f̂
sup

f0∈Fpack

E
[
∥f̂ − f0∥2

∣∣∣E]P(E)

≥ 1

4
E
[
∥f − f ′∥2

∣∣E]P(E).

Since on the event E, the separation ∥f − f ′∥2L2(PX(α)) ≍ n− 2α
d−1+2α and P(E) → 1 as n → ∞,

the result follows.

Finally, we connect the minimax risk lower bound to the generalization gap. The argument reduces
the problem of bounding the generalization gap to the minimax estimation problem we just solved.

Theorem H.9 (Generalization Gap Lower Bound). Let P denote any joint distribution of (x, y)
where the marginal distribution of x is PX(α)) and y is supported on [−1, 1]. Let Dn =

{(xj , yj)}nj=1 be a dataset of n i.i.d. samples from P . Let R̂Dn(f) be any empirical risk estimator
for the true risk RP(f) := E(x,y)∼P [(f(x)− y)2]. Then,

inf
R̂

sup
P

EDn

[
sup

f∈Fg(Bd
1 ;1,1)

∣∣∣RP(f)− R̂Dn
(f)
∣∣∣] ≳d,α n− 2α

d−1+2α .

Proof. We lower-bound the supremum over all distributionsP by restricting it to a worst-case family
of deterministic distributions Pf0 , where labels are given by y = f0(x) for some f0 from our
adversarial packing set, Fpack. The proof proceeds via a chain of inequalities.

inf
R̂

sup
P

E

[
sup
f∈F

∣∣∣RP(f)− R̂Dn
(f)
∣∣∣] (79)

≥ inf
R̂

sup
f0∈Fpack

E

[
sup
f∈F

∣∣∣RPf0
(f)− R̂Dn

(f)
∣∣∣] (80)

≥ sup
f0∈Fpack

1

2
inf
R̂

E
[
RPf0

(f̂ERM)−RPf0
(f0)

]
(81)

≥ 1

2
inf
f̂

sup
f0∈Fpack

E
[
RPf0

(f̂)−RPf0
(f0)

]
(82)

=
1

2
inf
f̂

sup
f0∈Fpack

E
[
∥f̂ − f0∥2L2(PX(α))

]
(83)

Corollary H.8 =⇒ ≳ n− 2α
d−1+2α (84)

The steps are justified as follows

• Inequality (81): This step uses a standard result relating the generalization gap to the
excess risk of an Empirical Risk Minimizer (ERM), f̂ERM := argminf∈F R̂Dn(f). By
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definition, R̂(f̂ERM) ≤ R̂(f0). This leads to the decomposition

R(f̂ERM)−R(f0) =
(
R(f̂ERM)− R̂(f̂ERM)

)
+
(
R̂(f̂ERM)− R̂(f0)

)
+
(
R̂(f0)−R(f0)

)
≤ 2 sup

f∈F
|R(f)− R̂(f)|.

• Inequation (82) The infimum over all risk estimators R̂ (which induces a corresponding
ERM) is lower-bounded by the infimum over all possible estimators f̂ of the function f0.
This transitions the problem to the standard minimax framework.

• Equation (83): In this noiseless setting with a deterministic labeling function f0, the pop-
ulation risk of f0 is RPf0

(f0) = 0. The excess risk RPf0
(f̂) is precisely the squared L2

distance ∥f̂ − f0∥2L2(PX(α)). The expression becomes the definition of the minimax risk
over the class Fpack.

This completes the proof.

I FLAT INTERPOLATING TWO-LAYER RELU NETWORKS ON THE UNIT
SPHERE

Let {(xi, yi)}ni=1 be a dataset with xi ∈ Sd−1, d > 1, and pairwise distinct inputs. Assume labels
are uniformly bounded, i.e., |yi| ≤ D for all i. Consider width-K two-layer ReLU models

fθ(x) =

K∑
k=1

vk ϕ(w
T
kx− bk) + β. (85)

Theorem I.1 (Flat interpolation with width ≤ n). Under the set-up above, there exists a width
K ≤ n network of the form (85) that interpolates the dataset and whose Hessian operator norm
satisfies

λmax

(
∇2

θL
)
≤ 1 +

D2 + 2

n
. (86)

Construction I.2 (Flat interpolation ReLU network). Let I ̸=0 := {i : yi ̸= 0} and set the width
K := |I ̸=0| ≤ n. For each k ∈ I̸=0 define

ρk := max
k ̸=i

xT
i xk < 1, bk ∈ (ρk, 1) (e.g., bk =

1 + ρk
2

), wk := xk. (87)

Then for any sample index i,

wT
kxi − bk =

{
1− bk > 0, i = k,

≤ ρk − bk < 0, i ̸= k,
(88)

so the k-th unit activates on xk and is inactive on all xi with i ̸= k. Set the output weight

vk :=
yk

1− bk
. (89)

By (88) and (89), the model interpolates on nonzero labels because f(xk) = ak(1 − bk) = yk for
k ∈ I̸=0, and it also interpolates zero labels since all constructed units are inactive on xi when
i /∈ J̸=0, hence f(xi) = 0 = yi.

For each constructed unit, define

ṽk := sign(vk) ∈ {±1}, w̃k := |vk|wk, b̃k := |ak| bk. (90)
Then for any input x,

ṽk ϕ(w̃
T
kx− b̃k) = sign(vk)ϕ

(
|vk|(wT

kx− bk)
)
= vk ϕ(w

T
kx− bk), (91)

so interpolation is preserved. Moreover, the activation pattern on the dataset is unchanged because
(88) has strict inequalities and |ai| > 0. At xi we have the (post-rescaling) pre-activation

z̃k := w̃T
kxk − b̃k = |ak| (1− bk) = |yk| > 0, |ṽi| = 1. (92)

In what follows we work with the reparameterized network and drop tildes for readability, implicitly
assuming |vk| = 1 for all k ∈ I̸=0 and zk := wT

kxk − bk = |yk|.
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Proposition I.3. Let θ be the model in Construction I.2. Then

λmax(∇2
θL) ≤ 1 +

D2 + 2

n
.

Proof. By direct computation, the Hessian∇2
θL is given by

∇2
θL =

1

n

n∑
i=1

∇θf(xi)∇θf(xi)
T +

1

n

n∑
i=1

(f(xi)− yi)∇2
θf(xi). (93)

Since the model interpolates f(xi) = yi for all i, we have

∇2
θL =

1

n

n∑
i=1

∇θf(xi)∇θf(xi)
T. (94)

Denote the tangent features matrix by

Φ = [∇θf(x1),∇θf(x2), · · · ,∇θf(xn)] . (95)

Then ∇2
θL in (94) can be expressed by ∇2

θL = ΦΦT/n, and the operator norm is computed by

λmax(∇2
θL) = max

γ∈S(d+2)K

1

n
∥ΦTγ∥2 = max

u∈Sn−1

1

n
∥Φu∥2 (96)

From direct computation we obtain

∇θf(x) =

∇W (f)
∇b(f)
∇ω(f)
∇β(f)

 (97)

For the parameters [wk, bk, vk] associated to the neuron of index j,

∂f(x)

∂vk
= 1{wT

kx > bk}
(
wT

kx− bk
)
,

∂f(xi)

∂wk
= 1{wT

kx > bk} vk x,

∂f(xi)

∂bk
= 1{wT

kx > bk} vk,
∂f(xi)

∂β
= 1.

By the one-to-one activation property (88), each sample xi activates exactly one unit (the unit with
the same index k when k ∈ I̸=0), and activates none when i /∈ I ̸=0. Hence the sample-wise gradient
∇θf(xk) has support only on the parameter triplet (wk, bk, vk, β) for k ∈ I ̸=0, and is zero for other
parameters. Writing the nonzero gradient block explicitly (recall |vk| = 1),

∇(wk,bk,vk,β)fθ(xk) =

(
∇(wk,bk,vk)fθ

1

)
,

∇(wk,bk,vk)fθ(xk) =


vk xk

vk
yk

 , (k ∈ I̸=0),

0, (k /∈ I̸=0),

(98)
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After row permutation and subsistion by (98), (96) is of the form

Φ =



∇(w1,b1,v1)fθ(x1) 0 · · · 0

0 ∇(w2,b2,v2)fθ(x2) · · ·
...

0 0 · · ·
...

...
... · · · 0

0 0 · · · ∇(wn,bn,vn)fθ(xn)

1 1 · · · 1


(99)

=



(
v1 x1

v1
y1

)
0 · · · 0

0

(
v2 x2

v2
y2

)
· · ·

...

0 0 · · ·
...

...
... · · · 0

0 0 · · ·

(
vn xn

vn
yn

)
1 1 · · · 1



. (100)

Let u = (u1, · · · , un) ∈ Sn−1 and plug (100) in (96) to have

λmax(∇2
θL) = max

u∈Sn−1

1

n
∥Φu∥2 (101)

=
1

n
max

u∈Sn−1

∥∥∥∥∥∥∥∥∥∥∥


u1∇(w1,b1,v1)fθ(x1)

u2∇(w2,b2,v2)fθ(x2)
...

un∇(wn,bn,vn)fθ(xn)∑n
i=1 ui



∥∥∥∥∥∥∥∥∥∥∥

2

2

=
1

n
max

u∈Sn−1

n∑
i=1

u2
i

∥∥∇(wi,bi,vi)fθ(xi)
∥∥2
2
+
( n∑

i=1

ui

)2
(102)

=
1

n
max

u∈Sn−1

n∑
i=1

u2
i

(
∥xi∥22 + 1 + y2i

)
+
( n∑

i=1

ui

)2
(103)

≤ 1

n

(
max
i∈[n]

(
∥xi∥22 + 1 + y2i

)
+ max

u∈Sn−1

( n∑
i=1

ui

)2)
(104)

≤ 1

n

(
D2 + 2 + n

)
= 1 +

D2 + 2

n
If we remove the output bias term β from the parameters, then the bottom row of 100 will be remove
and thus term

∑
i ui in (102) will be removed.

J TECHNICAL LEMMAS

Lemma J.1 (Concentration of a Poisson Random Variable). Let Npoi ∼ Poi(n) be a Poisson random
variable with mean n. Then for any η ∈ (0, 1),

P (|Npoi − n| ≥ ηn) ≤ 2 exp

(
−η2n

3

)
.
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Proof. The proof employs the Chernoff bounding method. The Moment Generating Function
(MGF) of Npoi ∼ Poi(n) is given by:

E
[
etNpoi

]
= en(e

t−1).

We will bound the upper and lower tails separately.

We want to bound P(Npoi ≥ (1 + η)n). For any t > 0, Markov’s inequality implies:

P(Npoi ≥ (1 + η)n) = P
(
etNpoi ≥ et(1+η)n

)
≤

E
[
etNpoi

]
et(1+η)n

=
en(e

t−1)

et(1+η)n
= exp

(
n(et − 1)− tn(1 + η)

)
.

To obtain the tightest bound, we minimize the exponent with respect to t. The optimal t is found by
setting the derivative to zero, which yields et = 1+η, or t = ln(1+η). Substituting this value back
into the bound gives:

P(Npoi ≥ (1+η)n) ≤ exp (n((1 + η)− 1)− n(1 + η) ln(1 + η)) = exp (n[η − (1 + η) ln(1 + η)]) .

We now use the standard inequality: ln(1 + x) ≥ x− x2

2 for x ≥ 0. A more specific inequality for

this context is η − (1 + η) ln(1 + η) ≤ − η2

2(1+η/3) . For η ∈ (0, 1], this further simplifies. A widely
used bound derived from this expression is:

exp (n[η − (1 + η) ln(1 + η)]) ≤ exp

(
−η2n

3

)
.

Next, we bound P(Npoi ≤ (1− η)n). For any t > 0, we have:

P(Npoi ≤ (1− η)n) = P
(
e−tNpoi ≥ e−t(1−η)n

)
≤

E
[
e−tNpoi

]
e−t(1−η)n

=
en(e

−t−1)

e−t(1−η)n
= exp

(
n(e−t − 1) + tn(1− η)

)
.

The optimal t is found by setting e−t = 1− η, or t = − ln(1− η). Substituting this value gives:

P(Npoi ≤ (1−η)n) ≤ exp (n((1− η)− 1)− n(1− η) ln(1− η)) = exp (n[−η − (1− η) ln(1− η)]) .

Using the inequality −η − (1− η) ln(1− η) ≤ −η2

2 for η ∈ (0, 1), we get a simple bound:

exp (n[−η − (1− η) ln(1− η)]) ≤ exp

(
−η2n

2

)
.

Since for η ∈ (0, 1), we have exp(−η2n/2) ≤ exp(−η2n/3), the lower tail is also bounded by
exp(−η2n/3).
Using the union bound, we combine the probabilities for the two tails:

P (|Npoi − n| ≥ ηn) = P(Npoi ≥ (1 + η)n) + P(Npoi ≤ (1− η)n)

≤ exp

(
−η2n

3

)
+ exp

(
−η2n

2

)
≤ 2 exp

(
−η2n

3

)
.

This completes the proof.
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