

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GENERALIZATION BELOW THE EDGE OF STABILITY: THE ROLE OF DATA GEOMETRY

Anonymous authors

Paper under double-blind review

ABSTRACT

Understanding generalization in overparameterized neural networks hinges on the interplay between the data geometry, neural architecture, and training dynamics. In this paper, we theoretically explore how data geometry controls this implicit bias. This paper presents theoretical results for overparametrized two-layer ReLU networks trained *below the edge of stability*. First, for data distributions supported on a mixture of low-dimensional balls, we derive generalization bounds that provably adapt to the intrinsic dimension. Second, for a family of isotropic distributions that vary in how strongly probability mass concentrates toward the unit sphere, we derive a spectrum of bounds showing that rates deteriorate as the mass concentrates toward the sphere. These results instantiate a unifying principle: When the data is harder to “shatter” with respect to the activation thresholds of the ReLU neurons, gradient descent tends to learn representations that capture shared patterns and thus finds solutions that generalize well. On the other hand, for data that is easily shattered (e.g., data supported on the sphere) gradient descent favors memorization. Our theoretical results consolidate disparate empirical findings that have appeared in the literature.

1 INTRODUCTION

How does gradient descent (GD) discover well-generalizing representations in overparameterized neural networks, when these models possess more than enough capacity to simply memorize the training data? Conventional wisdom in statistical learning attributes this to explicit capacity control via regularization such as weight decay. However, this view has been profoundly challenged by empirical findings that neural networks generalize remarkably even without explicit regularizers, yet can also fit randomly labeled data with ease, even with strong regularization (Zhang et al., 2017).

This paradox forces a critical re-evaluation of how we should characterize the effective capacity of neural networks, which appears to be implicitly constrained by the optimizer’s preferences (Zhang et al., 2017; Arpit et al., 2017). A powerful lens for examining this *implicit regularization* is to inspect the properties of solutions to which GD can stably converge, since these stable points are the only solutions that the training dynamics can practically reach and maintain. This direction is strongly motivated by the empirical discovery of the “*Edge of Stability*” (EoS) regime, where GD with large learning rates operates in a critical regime where the step size is balanced by the local loss curvature (Cohen et al., 2020). This observation is further supported by theoretical analyses of GD’s dynamical stability (Wu et al., 2018; Nar and Sastry, 2018; Mulayoff et al., 2021; Nacson et al., 2023; Damian et al., 2024), confirming that the curvature constraint imposed by stability provides a tractable proxy for this implicit regularization.

While the EoS regime offers a valuable proxy, a fundamental question remains: how precisely does this stability-induced regularization lead to generalization? Recent breakthroughs have established that for two-layer ReLU networks, this implicit regularization acts like a data-dependent penalty on the network’s complexity. Technically, this is captured by a weighted path norm, where the weight function is determined by the training dataset itself (Liang et al., 2025; Qiao et al., 2024; Nacson et al., 2023; Mulayoff et al., 2021). This resulting *data-dependent regularity* provides an ideal theoretical microcosm to probe how data geometry governs effective capacity (Arpit et al., 2017). For example, for the uniform distribution on a ball, it implies generalization but also a curse of dimensionality (Liang et al., 2025). However, this prediction of a curse is at odds with the empirical

054 success of deep learning. This contradiction forces the question: how can we predict which data
 055 geometries will generalize well under implicit regularization, and which will not?
 056

057 **Contributions.** We argue that the effectiveness of this data-dependent regularity is governed by
 058 a single geometric quantity, which we call *data shatterability*: qualitatively, how easily the data
 059 distribution can be partitioned into many disjoint small regions by ReLU half-spaces. Informally,
 060 *the less shatterable the data geometry, the stronger the implicit regularization at the EoS*. We make
 061 this principle precise and obtain the following results.

- 062 • **A Spectrum of Generalization on Isotropic Data.** For a one-parameter family of isotropic
 063 Beta(α)-radial distributions, we derive generalization upper bounds and matching lower
 064 bounds that depend smoothly on the radial concentration parameter α (Theorems 3.4
 065 and 3.5). As α decreases, the probability mass moves towards the boundary and the gen-
 066 eralization guarantee degrades. In the limiting case where the support collapses to the unit
 067 sphere, we construct perfectly interpolating networks that still satisfy the BEoS stability
 068 condition (Theorem 3.6). In particular, the “neural shattering” phenomenon, identified by
 069 [Liang et al. \(2025\)](#) for the uniform ball distribution, represents one special point of the
 070 broader generalization spectrum we uncover.
- 071 • **Provable Adaptation to Low-dimensionality.** Under a mixture-of-subspaces assumption
 072 where inputs are supported on a union of m -dimensional balls in \mathbb{R}^d with $m < d$, we prove
 073 that all BEoS-stable solutions enjoy a generalization rate $\tilde{O}(n^{-1/(2m+4)})$ that depends on
 074 the *intrinsic* dimension m rather than the ambient dimension d (Theorem 3.10). The depen-
 075 dence on the number of mixture components is at most polynomial. Synthetic experiments
 076 confirm that gradient descent indeed behaves according to this intrinsic-dimension law.

077 Taken together, these results identify data shatterability as the key geometric quantity that controls
 078 the strength of implicit regularization for gradient descent below the edge of stability.

079 **Technical novelty.** Many classical uniform-convergence-based generalization bounds for over-
 080 parameterized neural networks are distribution-agnostic: one first controls the L^∞ metric entropy of a
 081 function class, then controls the Rademacher complexity (or derive a uniform concentration inequality
 082 via a union bound). This approach is not available in our setting. The data-dependent regularity
 083 induced by the EoS condition defines a function class whose L^∞ metric entropy is infinite, and our
 084 spherical interpolation result shows that nontrivial distribution-agnostic bounds cannot hold. The
 085 key observation is that stability-induced regularity is highly inhomogeneous over the input domain:
 086 there are regions where the effective regularization is strong (“good” regions) and regions where it
 087 is extremely weak (“bad” regions) such that metric entropy explodes.

088 Our main technical innovation is to bypass global metric entropy control via a *half-space-depth*
 089 *quantile partition* of the input space. This technique allows us to decouple the analysis based on the
 090 strength of regularization: In the “good region”, the implicit regularization is effective, allowing us to
 091 enforce strict complexity control, while in the “bad region”, where complexity explodes, we abandon
 092 function-space covering arguments. Instead, we control the generalization error by bounding the
 093 *probability mass* of these regions, tying the error directly to the data geometry.

094 Conceptually, this framework inverts the classical VC dimension perspective. While VC dimension
 095 characterizes a model’s active capacity to shatter *arbitrary* data, our “data shatterability” principle
 096 characterizes the *feasibility* of a specific dataset being shattered by the GD-trained network.

097 **Related work.** We build upon a recent line of work ([Wu and Su, 2023](#); [Qiao et al., 2024](#); [Liang et al., 2025](#)) that theoretically study the generalization of neural networks in Edge-of-Stability regime ([Cohen et al., 2020](#)) from a function space perspective ([Mulayoff et al., 2021](#); [Nacson et al., 2023](#)). We
 098 add to this literature by abstracting neural-shattering analysis on uniform-ball of [Liang et al. \(2025\)](#)
 099 into a depth-based data-shatterability framework and extending it to a broader class of distributions
 100 that capture both radial concentration and low-dimensional structure, yielding distribution-
 101 dependent upper and lower bounds that make the role of data geometry explicit.

102 More broadly, our work is inspired by the seminal work of [Zhang et al. \(2017\)](#) on “rethinking
 103 generalization”. Our results provide new theoretical justification that rigorously explains several
 104 curious phenomena (such as why real data are harder to overfit than random Gaussian data) reported
 105 therein. Compared to other existing work inspired by [Zhang et al. \(2017\)](#), e.g., those that study the
 106 implicit bias of gradient descent from various alternative angles (dynamics ([Arora et al., 2019](#); [Mei](#)

108 et al., 2019; Jin and Montúfar, 2023), algorithmic stability (Hardt et al., 2016), large-margin (Soudry
 109 et al., 2018), benign overfitting (Joshi et al., 2024; Kornowski et al., 2024)), our work has more end-
 110 to-end generalization bounds and requires (morally, since the settings are not all compatible) weaker
 111 assumptions. On the practical front, we provide new theoretical insight into how “mix-up” data
 112 augmentation (Zhang et al., 2018; 2021) and “activation-based pruning” (Hu et al., 2016; Ganguli
 113 and Chong, 2024) work. A more detailed discussion of the related work and the implications of our
 114 results can be found in Appendix B.1.

115 **Scope of analysis.** Our theoretical framework is situated in the feature-learning (or “rich”) regime
 116 of overparameterized networks. Rather than tracking the full gradient dynamics¹, we focus on the
 117 regime in which gradient descent with a large step size operates for long stretches below around the
 118 edge-of-stability boundary. We therefore analyze the generalization behavior of all parameter vec-
 119 tors satisfying a Below-Edge-of-Stability (BEoS, see Definition 2.1), without assuming optimality
 120 or stationarity. Our bounds hold uniformly over this BEoS region and characterize a baseline form
 121 of implicit regularization that is enforced whenever training remains near the edge of stability.

2 PRELIMINARIES AND NOTATIONS

124 **Neural network, data, and loss.** We consider two-layer ReLU networks

$$126 \quad f_{\boldsymbol{\theta}}(\mathbf{x}) = \sum_{k=1}^K v_k \phi(\mathbf{w}_k^T \mathbf{x} - b_k) + \beta, \quad \phi(z) = \max\{z, 0\}, \quad (1)$$

127 with parameters $\boldsymbol{\theta} = \{(v_k, \mathbf{w}_k, b_k)\}_{k=1}^K \cup \{\beta\} \in \mathbb{R}^{(d+2)K+1}$. Let Θ be the parameter set of such $\boldsymbol{\theta}$
 128 for arbitrary $K \in \mathbb{N}$. We also assume $\mathbf{w}_k \neq \mathbf{0}$ for all k in this form, otherwise we may absorb it into
 129 the output bias β . Given data $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ with \mathbf{x}_i in a bounded domain $\Omega \subset \mathbb{R}^d$ with $d > 1$,
 130 the training loss is $\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^n (f_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i)^2$. We assume $\|\mathbf{x}_i\| \leq R$ and $|y_i| \leq D$ for all i .

131 **“Edge of Stability” regime.** Empirical and theoretical research (Cohen et al., 2020; Damian et al.,
 132 2024) has established the critical role of the linear stability threshold in the dynamics of gradient de-
 133 scend. In GD’s trajectory, there is an initial phase of “progressive sharpening” where $\lambda_{\max}(\nabla^2 \mathcal{L}(\boldsymbol{\theta}_t))$
 134 increases. This continues until the GD process approaches the “Edge of Stability”, a state where
 135 $\lambda_{\max}(\nabla^2 \mathcal{L}(\boldsymbol{\theta}_t)) \approx 2/\eta$, where η is the learning rate. In this paper, all the GD refers to vanilla GD
 136 with learning rate η .

137 **Definition 2.1** (Below Edge of Stability (Qiao et al., 2024, Definition 2.3)). *We define the trajectory
 138 of parameters $\{\boldsymbol{\theta}_t\}_{t=1,2,\dots}$ generated by gradient descent with a learning rate η as Below-Edge-of-
 139 Stability (BEoS) if there exists a time $t^* > 0$ such that for all $t \geq t^*$, $\lambda_{\max}(\nabla^2 \mathcal{L}(\boldsymbol{\theta}_t)) \leq \frac{2}{\eta}$. Any
 140 parameter state $\boldsymbol{\theta}_t$ with $t \geq t^*$ is thereby referred to as a BEoS solution.*

141 This condition applies to any twice-differentiable solution found by GD, even when the optimization
 142 process does not converge to a local or global minimum. Moreover, BEoS is empirically verified to
 143 hold during both the “progressive sharpening” phase and the subsequent oscillatory phase.

144 Our work aims to analyze the generalization properties of any solutions that satisfy the BEoS con-
 145 dition (Definition 2.1). The set of solutions defined as:

$$146 \quad \Theta_{\text{BEoS}}(\eta, \mathcal{D}) := \left\{ \boldsymbol{\theta} \mid \lambda_{\max}(\nabla^2 \mathcal{L}(\boldsymbol{\theta})) \leq \frac{2}{\eta} \right\}. \quad (2)$$

147 **Data-dependent weighted path norm.** Given a weight function $g : \mathbb{S}^{d-1} \times \mathbb{R} \rightarrow \mathbb{R}$, where $\mathbb{S}^{d-1} :=$
 148 $\{\mathbf{u} \in \mathbb{R}^d : \|\mathbf{u}\| = 1\}$, the g -weighted path norm of a neural network $f_{\boldsymbol{\theta}}(\mathbf{x}) = \sum_{k=1}^K v_k \phi(\mathbf{w}_k^T \mathbf{x} -$
 149 $b_k) + \beta$ is defined to be

$$150 \quad \|f_{\boldsymbol{\theta}}\|_{\text{path},g} = \sum_{k=1}^K |v_k| \|\mathbf{w}_k\|_2 \cdot g\left(\frac{\mathbf{w}_k}{\|\mathbf{w}_k\|_2}, \frac{b_k}{\|\mathbf{w}_k\|_2}\right). \quad (3)$$

151 The link between the EoS regime and weighted path norm constraint is presented in the following
 152 data-dependent weight function (Liang et al., 2025; Nacson et al., 2023; Mulayoff et al., 2021). Fix

153 ¹Nevertheless, there is informal and heuristic discussion from the perspective of gradient dynamics in Ap-
 154 pendix B.2.

162 a dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n \subset \mathbb{R}^d \times \mathbb{R}$, we consider a weight function $g_{\mathcal{D}} : \mathbb{S}^{d-1} \times \mathbb{R} \rightarrow \mathbb{R}$ defined
 163 by $g_{\mathcal{D}}(\mathbf{u}, t) := \min\{\tilde{g}_{\mathcal{D}}(\mathbf{u}, t), \tilde{g}_{\mathcal{D}}(-\mathbf{u}, -t)\}$, where
 164

$$165 \tilde{g}_{\mathcal{D}}(\mathbf{u}, t) := \mathbb{P}(\mathbf{X}^T \mathbf{u} > t)^2 \cdot \mathbb{E}[\mathbf{X}^T \mathbf{u} - t \mid \mathbf{X}^T \mathbf{u} > t] \cdot \sqrt{1 + \|\mathbb{E}[\mathbf{X} \mid \mathbf{X}^T \mathbf{u} > t]\|^2}. \quad (4)$$

166 Here, \mathbf{X} is a random vector drawn uniformly at random from the training examples $\{\mathbf{x}_i\}_{i=1}^n$. Specifically, we may also consider its population level $g_{\mathcal{P}}$ by viewing \mathbf{X} as a random variable.
 167

168 Informally, $g_{\mathcal{D}}(\mathbf{u}, t)$ measures how hard for GD to place a ReLU ridge with normalized \mathbf{u} and
 169 threshold t under the BEoS constraint. Large $g_{\mathcal{D}}$ corresponds to directions that sense significant data activation, thereby yielding strong gradients and hence strong implicit regularization.
 170 A more detailed interpretation from the perspective of gradient dynamics is given in Appendix B.2.
 171

172 **Proposition 2.2.** *For any $\theta \in \Theta_{\text{BEoS}}(\eta, \mathcal{D})$, $\|f_{\theta}\|_{\text{path}, g_{\mathcal{D}}} \leq \frac{1}{\eta} - \frac{1}{2} + (R + 1)\sqrt{2\mathcal{L}(\theta)}$.*

173 The proof of this proposition refers to (Liang et al., 2025, Corollary 3.3). The non-parametric version
 174 of the weighted path norm constrain can be found in (Liang et al., 2025; Nacson et al., 2023).

175 **Supervised statistical learning and generalization gap.** We consider a supervised learning problem
 176 where i.i.d. samples $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ are drawn from an unknown distribution \mathcal{P} . In
 177 this paper, we assume the feature space is a compact subset of Euclidean space, $\Omega \subset \mathbb{R}^d$, the
 178 label space is \mathbb{R} , and the data is supported on $\Omega \times [-D, D]$. We use the squared loss, defined as
 179 $\ell(f, \mathbf{x}, y) = \frac{1}{2}(f(\mathbf{x}) - y)^2$. The performance of a predictor f is measured by its population
 180 risk $R_{\mathcal{P}}(f) = \mathbb{E}_{(\mathbf{X}, Y) \sim \mathcal{P}} \ell(f, \mathbf{X}, Y)$, while we optimize the empirical risk $\hat{R}_{\mathcal{D}}(f) =$
 181 $\frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}} \ell(f, \mathbf{x}_i, y_i)$. The difference between these two quantities is the generalization gap
 182 $\text{Gap}_{\mathcal{P}}(f; \mathcal{D}) = |R_{\mathcal{P}}(f) - \hat{R}_{\mathcal{D}}(f)|$. Our work focuses on the hypothesis classes the BEoS class
 183 $\Theta_{\text{BEoS}}(\eta, \mathcal{D})$ and the bounded weighted-path norm class $\Theta_g(\Omega; M, C)$,
 184

$$185 \Theta_g(\Omega; M, C) = \left\{ \theta \in \Theta \mid \|f_{\theta}\|_{\Omega, L^{\infty}} \leq M, \|f_{\theta}\|_{\text{path}, g} \leq C \right\}. \quad (5)$$

186 where g can be the weight function $g_{\mathcal{D}}$ associated to the empirical distribution \mathcal{D} or the weight
 187 function $g_{\mathcal{P}}$ associated to the population distribution \mathcal{P} , see Section E for more details.
 188

189 3 DATA SHATTERABILITY PRINCIPLE AND GENERALIZATION BOUNDS

190 This section introduces our notion of *data shatterability* and explains how it leads to a unified
 191 proof strategy for both the generalization upper bounds (Theorem 3.10, Theorem 3.4) and the lower
 192 bounds (Theorem 3.5, Theorem 3.6).

193 We start with the classical notion of **half-space depth** (also known as **Tukey depth**).

194 **Definition 3.1.** *Given a distribution \mathcal{P}_X on \mathbb{R}^d . For any $\mathbf{x} \in \mathbb{R}^d$, its **population half-space**
 195 **depth** $\text{depth}(\mathbf{x}, \mathcal{P}_X) = \inf_{\mathbf{u} \in \mathbb{S}^{d-1}} \mathbb{P}_{\mathbf{X} \sim \mathcal{P}_X}(\mathbf{u}^T (\mathbf{X} - \mathbf{x}) \geq 0)$. On the other hand, given a
 196 point cloud $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \subset \mathbb{R}^d$ that is also represented by the empirical distribution
 197 $\mathcal{P}(\mathcal{X})$ that assigns mass $1/n$ to each point, the **empirical half-space depth** $\text{depth}(\mathbf{x}, \mathcal{X}) =$
 198 $\inf_{\mathbf{u} \in \mathbb{S}^{d-1}} \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{\mathbf{u}^T (\mathbf{x}_i - \mathbf{x}) \geq 0\}$.*

200 Half-space depth measures the centrality of a point \mathbf{x} by finding the minimum data mass (either
 201 population or empirical) on one side of any hyperplane passing through it (Tukey, 1975). For any
 202 $T \in [0, \frac{1}{2}]$, we define **T -deep region** $\Omega_T(\mathcal{P}_X) = \{\mathbf{x} \in \mathbb{R}^d \mid \text{depth}(\mathbf{x}, \mathcal{P}_X) \geq T\}$ as an upper level
 203 set of the half-space depth function (we define $\Omega_T(\mathcal{X})$ similarly).

204 Now let $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ be the point cloud of inputs in the dataset \mathcal{D} . The key geometric
 205 observation is that, for a ReLU neuron to create nonlinearity inside a T -deep region $\Omega_T(\mathcal{X})$, its
 206 activation boundary must intersect that region. Formally, let f_{θ} be a network of the form (1) and
 207 define $N_T := \{k \mid \{\mathbf{w}_k^T \mathbf{x} - b_k = 0\} \cap \Omega_T(\mathcal{X}) \neq \emptyset\}$. The neurons with $k \notin N_T$ are either
 208 always active or always inactive on $\Omega_T(\mathcal{X})$, hence contribute only an affine function on that region.
 209 Therefore there exists an affine function $\mathbf{x} \mapsto \mathbf{c}^T \mathbf{x} + b$ (which absorbs all neurons with $k \notin N_T$)
 210 such that $f_{\theta}(\mathbf{x}) = \sum_{k \in N_T} v_k \phi(\mathbf{w}_k^T \mathbf{x} - b_k) + \mathbf{c}^T \mathbf{x} + b, \forall \mathbf{x} \in \Omega_T(\mathcal{X})$.

211 By the definition of half-space depth, every hyperplane passing through a point in $\Omega_T(\mathcal{X})$ leaves at
 212 least a T -fraction of the data on each side. In particular, for any neuron whose boundary intersects

216 $\Omega_T(\mathcal{X})$, its activation event has probability at least T (population or empirical, depending on the
 217 context). This gives a positive lower bound on the data-dependent weight function g . We denote
 218

$$g_{\mathcal{D}}^{\min}(T) := \inf_{\{\mathbf{u}^\top \mathbf{x} - t = 0\} \cap \Omega_T(\mathcal{X}) \neq \emptyset} g_{\mathcal{D}}(\mathbf{u}, t) > 0, \quad g_{\mathcal{P}}^{\min}(T) := \inf_{\{\mathbf{u}^\top \mathbf{x} - t = 0\} \cap \Omega_T(\mathcal{P}_X) \neq \emptyset} g_{\mathcal{P}}(\mathbf{u}, t).$$

220 Thus, the neurons that generate nonlinearity on $\Omega_T(\mathcal{X})$ are effectively regularized by the BEOs
 221 condition, with strength controlled from below by $g_{\mathcal{D}}^{\min}(T)$ (and $g_{\mathcal{P}}^{\min}(T)$ at the population level).
 222

223 On the T -deep region, only neurons in N_T contribute nonlinearity, and for these we have
 224 $g_{\mathcal{D}}(\mathbf{u}_k, t_k) \geq g_{\mathcal{D}}^{\min}(T)$. Hence their unweighted path norm satisfies $\sum_{k \in N_T} |v_k| \|\mathbf{w}_k\|_2 \leq$
 225 $(g_{\mathcal{D}}^{\min}(T))^{-1} \|\mathbf{f}_{\theta}\|_{\text{path}, g_{\mathcal{D}}}$, so the restriction of \mathbf{f}_{θ} to $\Omega_T(\mathcal{X})$ lies in a standard (unweighted) path-
 226 norm ball with radius proportional to $(g_{\mathcal{D}}^{\min}(T))^{-1}$. Generalization bounds for such unweighted
 227 path-norm classes on bounded inputs are known (Parhi and Nowak, 2023; Neyshabur et al., 2015)
 228 and yield the T -deep term in (6). Outside the T -deep region, BEOs provides only weak control,
 229 so we bound the contribution by the worst-case L^∞ amplitude times the probability mass of the
 230 shallow region. Finally, since $g_{\mathcal{D}}^{\min}(T)$ and $\Omega_T(\mathcal{P}_X)$ are random, we replace them by their popula-
 231 tion counterparts $g_{\mathcal{P}}^{\min}(T)$ and $\Omega_T(\mathcal{P}_X)$ and control the discrepancy using empirical process tools
 232 (Appendix E.2). This yields the following generic decomposition, holding with high probability
 233

$$\sup_{\theta \in \Theta_{\text{BEOs}}(\eta, \mathcal{D})} \text{Gap}(f_{\theta}, \mathcal{D}) \leq \underbrace{\tilde{O}\left(\mathbb{P}_{\mathbf{X}}(\mathbf{X} \notin \Omega_T(\mathcal{P}_X))\right)}_{\text{shallow region}} + \underbrace{\tilde{O}\left(g_{\mathcal{P}}^{\min}(T)^{-\frac{d}{2d+3}} n^{-\frac{d+3}{4d+6}}\right)}_{T\text{-deep region}}, \quad (6)$$

235 where \tilde{O} hides logarithmic factors and universal constants. This inequality is the main technical
 236 bridge between data geometry and the behavior of BEOs solutions. Now we instantiate it for
 237 isotropic and anisotropic distributions to establish the corresponding generalization bounds.
 238

239 3.1 A SPECTRUM OF GENERALIZATION ON ISOTROPIC DISTRIBUTIONS

240 We now specialize to isotropic distributions with compact support and assume that the maximal
 241 support radius is 1. In this case, the depth of a point depends only on its radius. More precisely,
 242 we consider distributions of the form $\mathbf{X} = h(R) \mathbf{U}$, $\mathbf{U} \sim \text{Uniform}(\mathbb{S}^{d-1})$, where h is a radial
 243 profile and R is a scalar random variable. After rescaling, we may assume the support of \mathcal{P}_X is
 244 contained in \mathbb{B}_1^d . Writing $r = \|\mathbf{x}\|_2$ and setting $\varepsilon := 1 - r$, we decompose \mathbb{B}_1^d into (1) **ε -annulus**
 245 $\mathbb{A}_{\varepsilon}^d := \{\mathbf{x} \in \mathbb{B}_1^d \mid \|\mathbf{x}\|_2 \geq 1 - \varepsilon\}$, (2) **ε -strict interior** $\mathbb{I}_{\varepsilon}^d := \mathbb{B}_{1-\varepsilon}^d = \overline{\mathbb{B}_1^d \setminus \mathbb{A}_{\varepsilon}^d}$.
 246

247 For isotropic \mathcal{P}_X , the weight function $g_{\mathcal{P}}(\mathbf{u}, t)$ depends only on t , so we write $g_{\mathcal{P}}(t)$. In this setting,
 248 $g_{\mathcal{P}}(1 - \varepsilon)$ is a lower bound on the regularization strength for ReLUs whose activation boundaries
 249 lie at offsets $t \leq 1 - \varepsilon$. For any fixed $\varepsilon \in (0, 1)$, plugging this into (6) and rewriting in radial form,
 250 we obtain

$$\sup_{\theta \in \Theta_{\text{BEOs}}(\eta, \mathcal{D})} \text{Gap}(f_{\theta}, \mathcal{D}) \leq \tilde{O}\left(\mathcal{P}_X(\mathbb{A}_{\varepsilon}^d)\right) + \tilde{O}\left(g_{\mathcal{P}}(1 - \varepsilon)^{-\frac{d}{2d+3}} n^{-\frac{d+3}{4d+6}}\right), \quad \text{w.h.p.} \quad (7)$$

251 We instantiate this decomposition on a flexible family of radial profiles that interpolate between a
 252 “thick” center-concentration ball and a thin spherical shell.

253 **Definition 3.2** (Isotropic Beta-radial distributions). *Let \mathbf{X} be a d -dimensional random vector in \mathbb{R}^d .
 254 For any $\alpha \in (0, \infty)$, the isotropic Beta(α)-radial distribution is defined by*

$$\mathbf{X} = h(R) \mathbf{U} \sim \mathcal{P}_X(\alpha), \quad (8)$$

255 where $R \sim \text{Uniform}[0, 1]$, $\mathbf{U} \sim \text{Uniform}(\mathbb{S}^{d-1})$, and $h(r) = 1 - (1 - r)^{1/\alpha}$ is a radial profile.

256 **Assumption 3.3.** Fix $\alpha \in (0, \infty)$. Let $\mathcal{P}(\alpha)$ be a joint distribution over $\mathbb{R}^d \times \mathbb{R}$ whose marginal
 257 over \mathbf{x} is $\mathcal{P}_X(\alpha)$. The corresponding labels y are generated from a conditional distribution $\mathcal{P}(y|\mathbf{x})$
 258 and are bounded: $|y| \leq D$ for some constant $D > 0$.

259 This framework enables a generalization upper bound that depends explicitly on the parameter α .

260 **Theorem 3.4** (Spectrum of generalization on isotropic Beta-radial distributions). *Fix a dataset $\mathcal{D} =$
 261 $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, where each (\mathbf{x}_i, y_i) is drawn i.i.d. from $\mathcal{P}(\alpha)$ defined in Assumption 3.3. Then, with
 262 probability at least $1 - \delta$, for any $\theta \in \Theta_{\text{BEOs}}(\eta, \mathcal{D})$,*

$$\text{Gap}_{\mathcal{P}}(f_{\theta}; \mathcal{D}) \lesssim_d \begin{cases} \left(\frac{1}{\eta} - \frac{1}{2} + 4M\right)^{\frac{\alpha d}{d^2 + 4d + 3}} M^{\frac{2d^2 + 7\alpha d + 6\alpha}{d^2 + 4\alpha d + 3\alpha}} n^{-\frac{\alpha(d+3)}{2(d^2 + 4\alpha d + 3\alpha)}}, & \alpha \geq \frac{3d}{2d-3}, \\ \left(\frac{1}{\eta} - \frac{1}{2} + 4M\right)^{\frac{\alpha d}{d^2 + 4d + 3}} M^{\frac{2d^2 + 7\alpha d + 6\alpha}{d^2 + 4\alpha d + 3\alpha}} n^{-\frac{\alpha}{2d+4\alpha}}, & \alpha < \frac{3d}{2d-3}, \end{cases} \quad (9)$$

270 where $M := \max\{D, \|f_\theta|_{\mathbb{B}_1^d}\|_{L^\infty}, 1\}$ and \lesssim_d hides constants (which may depend on d) and logarithmic factors in n and $(1/\delta)$.
271
272

273 **Sketch proof of Theorem 3.4.** Suppose \mathcal{P}_X is a Beta(α)-radial distribution $\mathcal{P}_X(\alpha)$ with radial
274 profile $h(r) = 1 - (1 - r)^{1/\alpha}$ (Definition 3.2). Then Lemma G.2 gives $\mathbb{P}_X(\mathbb{A}_\varepsilon^d) \asymp \varepsilon^\alpha$ and
275 Proposition G.6 gives $g_{\mathcal{P}}(1 - \varepsilon) \asymp \varepsilon^{d+2\alpha}$. Substituting into (7), the right-hand side becomes
276 $\tilde{O}(\varepsilon^\alpha) + \tilde{O}\left(\varepsilon^{-\frac{d(d+2\alpha)}{2d+3}} n^{-\frac{d+3}{4d+6}}\right)$. Morally², optimizing over ε yields the upper bounds in Theorem 3.4, see Appendix G for details.
277

278 In the proof of the upper bound using (7), we sacrifice the shallow region \mathbb{A}_ε^d , but this is not just
279 a proof artifact. Our lower bound constructions place localized ReLU atoms on disjoint spherical
280 caps in the shallow shell where $g_{\mathcal{P}}$ is very small, so these neurons can develop large path norm at
281 small cost. Combinations of these boundary-supported ReLUs form a family of hard-to-distinguish
282 networks (see Construction H.4), yielding Theorem 3.5.
283

284 **Theorem 3.5** (Generalization gap lower bound). *Let \mathcal{P} be any joint distribution of (\mathbf{x}, y) where the
285 marginal distribution of \mathbf{x} is $\mathcal{P}_X(\alpha)$ and y is supported on $[-1, 1]$. Let $\mathcal{D}_n = \{(\mathbf{x}_j, y_j)\}_{j=1}^n$ be
286 a dataset of n i.i.d. samples from \mathcal{P} . Let $\hat{R}_{\mathcal{D}_n}(f)$ be any empirical risk estimator for the true risk
287 $R_{\mathcal{P}}(f) := \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{P}}[(f(\mathbf{x}) - y)^2]$. Then,*
288

$$\inf_{\hat{R}} \sup_{\mathcal{P}} \mathbb{E}_{\mathcal{D}_n} \left[\sup_{\boldsymbol{\theta} \in \Theta_g(\mathbb{B}_1^d; 1, 1)} \left| R_{\mathcal{P}}(f_{\boldsymbol{\theta}}) - \hat{R}_{\mathcal{D}_n}(f_{\boldsymbol{\theta}}) \right| \right] \gtrsim_{d, \alpha} n^{-\frac{2\alpha}{d-1+2\alpha}}.$$

291 The smaller α is, the more mass concentrates in \mathbb{A}_ε^d , the more disjoint spherical caps that each carry
292 comparable probability mass (see Figure 1(b)&(c)), the more memorization capacity the network
293 sustain. In the extreme case where $\alpha \rightarrow 0$ and the law of \mathbf{X} approaches Uniform(\mathbb{S}^{d-1}), each
294 datapoint can be isolated by a network and fitted perfectly within the BEoS regime, see Appendix I.
295

296 **Theorem 3.6** (Flat interpolation with width $\leq n$). *Assume that $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ is a dataset with
297 $\mathbf{x}_i \in \mathbb{S}^{d-1}$ and pairwise distinct inputs. Then there exists a width $K \leq n$ network of the form (1)
298 that interpolates the dataset and whose Hessian operator norm satisfies*

$$\lambda_{\max}(\nabla_{\boldsymbol{\theta}}^2 \mathcal{L}) \leq 1 + \frac{D^2 + 2}{n}. \quad (10)$$

301 If we remove the output bias parameter β in (1), then $\lambda_{\max}(\nabla_{\boldsymbol{\theta}}^2 \mathcal{L}) \leq \frac{D^2 + 2}{n}$.

303 **Remark 3.7.** If we remove the hidden bias term b and assume a uniform spherical distribution,
304 the model gets harder to shatter the data, and thus yields a generalization bound of approximately
305 $\tilde{O}(n^{-1/4})$, which is compatible with the rates in (Wu and Su, 2023).
306

3.2 A UNIFIED FRAMEWORK: DATA SHATTERABILITY PRINCIPLE

309 The trade-off in (6) and (7) shows that generalization is governed by the probability mass located
310 in the T -deep region. Intuitively, the more mass lies in deeper regions, the stronger the implicit
311 regularization. To quantify this geometric distribution, we introduce the following scalar summary.
312

313 **Definition 3.8.** Given a distribution \mathcal{P}_X on \mathbb{R}^d , its **half-space-depth quantile function** is
314 $\Psi_{\mathcal{P}_X}(T) := \mathbb{P}_{\mathbf{X} \sim \mathcal{P}_X}(\text{depth}(\mathbf{X}, \mathcal{P}_X) \geq T)$, for $T \in [0, 1/2]$. We define the **half-space-depth**
315 **concentration index** $S_{\text{DQ}}(\mathcal{P}_X) := \left(\int_0^{1/2} \Psi_{\mathcal{P}_X}(T) dT\right)^{-1}$, the reciprocal of the area under $\Psi_{\mathcal{P}_X}$.
316

317 We propose using this concentration index as a proxy for data shatterability, the feasibility of the
318 data being partitioned into disjoint regions. In the isotropic case, the spherical symmetry ensures
319 that one can always arrange a large number of disjoint activation regions (spherical caps), a quantity
320 governed by the packing number of the high-dimensional sphere (see Lemma H.3). Consequently,
321 the feasibility of shattering is strictly determined by the radial concentration: does each such potential
322 cap contain sufficient probability mass? As illustrated in Figure 1(b)&(c), if we require every
323 cap to contain a fixed amount of data, the total number of disjoint caps we can pack becomes a
324

2Since the empirical process only guarantee $\sup |g_{\mathcal{D}}(\mathbf{u}, t) - g_{\mathcal{P}}(\mathbf{u}, t)| \leq \tilde{O}(n^{-1/2})$ with $n = |\mathcal{D}|$, we
325 cannot let $g_{\mathcal{P}}(1 - \varepsilon^*)$ less than $\tilde{O}(n^{-1/2})$, so there is a two-case discussion in Theorem 3.4.

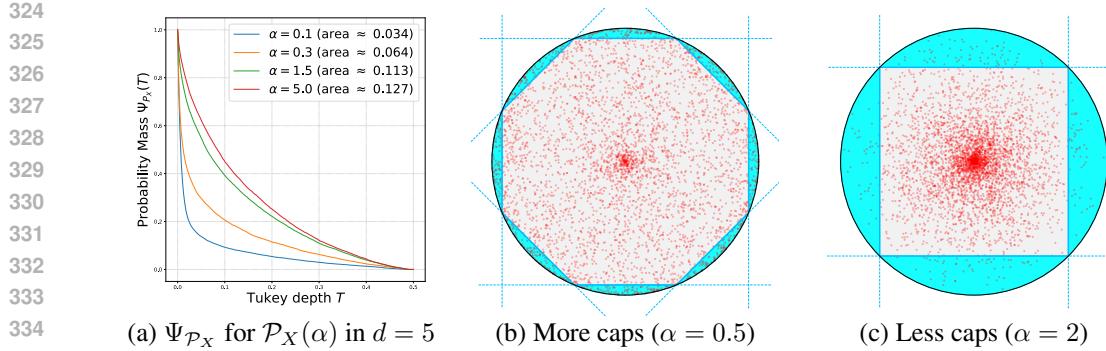


Figure 1: **Visualization of isotropic data shatterability.** (a) For isotropic Beta(α)-radial distributions, larger α implies mass is more concentrated centrally (larger area, smaller index). (b & c) Red dots depict data points and dashed lines represent neuron boundaries. We visualize the partitioning feasibility by fixing the probability mass within each cap and comparing the number of disjoint caps that can be packed. A distribution with mass near the boundary (small α) populates significantly more such disjoint regions than one concentrated at the center ($\alpha = 2$).

measure of shatterability. A large index (small α) implies mass accumulates at the boundary, populating these pre-existing packing slots and facilitating the construction of shattering functions for our lower bounds, see Construction H.4. Conversely, a small index (large α) starves these regions of data, limiting the noise-fitting feasibility.

A further consistency check comes from the spherical limit: for distributions on a sphere, the depth is zero everywhere. The quantile function collapses and the concentration index diverges, correctly matching the flat interpolation behavior in Theorem 3.6.

Remark 3.9 (Rectangle vs. Area). *This picture also clarifies why our upper bounds are not tight. On the T -deep region, we bound the entire contribution of the network by the worst-case variation over $\Omega_T(\mathcal{P}_X)$, and on the shallow region we use a crude worst-case L^∞ bound times $\mathbb{P}_X(X \notin \Omega_T(\mathcal{P}_X))$, ignoring any additional regularization. Our analysis only exploits the area of a single inscribed rectangle under $T \mapsto \Psi_{\mathcal{P}_X}(T)$, and choosing the optimal T^* in (6) is equivalent to picking the largest rectangle under the curve, which discards the rest of the underlying area. This gap is exactly where potential improvements to the bounds would have to come from.*

3.3 PROVABLE ADAPTATION TO INTRINSIC LOW-DIMENSIONALITY

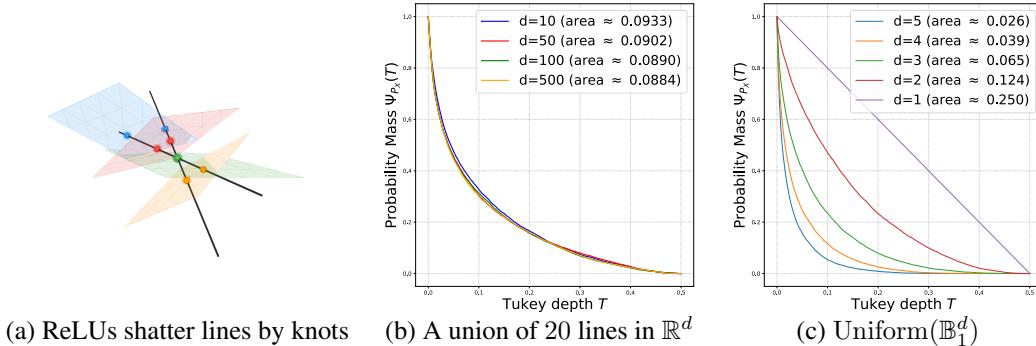


Figure 2: **Visualization of anisotropic data shatterability.** (a) When data lies on a mixture of lines (black lines), the complex activation boundaries of ReLUs (translucent planes) reduce to a finite set of **knots** (colored dots). This rigidity makes the data harder to shatter than the ambient depth suggests. (b) For a union of 20 embedded lines, the curves remain nearly identical across ambient dimensions, matching the prediction by Theorem 3.10. (c) As a comparison, the curves for Uniform(\mathbb{B}_1^d) degenerates and reveal the curse of dimensionality predicted in (Liang et al., 2025).

We now return to anisotropic data. Here, the connection between the concentration index and generalization becomes heuristic because the geometric structure restricts the available partitioning direc-

378 tions. Unlike the isotropic case, where we can leverage the packing number of the ambient sphere to
 379 form disjoint regions, low-dimensional structures constrain the effective directions. For instance, on
 380 a 1D line, the high-dimensional spherical caps effectively degenerate into simple intervals or knots
 381 (Figure 2a). This collapse drastically reduces the number of possible disjoint partitions, even if the
 382 data has low ambient depth (high concentration index). Consequently, for structured data, the index
 383 serves as a conservative estimate of difficulty. Nevertheless, the principle of depth adaptation still
 384 holds: the implicit regularization adapts to the *intrinsic* structure rather than the ambient dimension.

385 Specifically, we consider the mixture as generated by first drawing a component index $C \in$
 386 $\{1, \dots, J\}$ with $\mathbb{P}(C = j) = \pi_j$, and then sampling $\mathbf{X} \mid (C = j) \sim \mathcal{P}_{X,j}$. Once the depth-
 387 quantile curve $\Psi_{\mathcal{P}_{X,j}}(T)$ of each component is understood, the law of total probability yields

$$388 \quad \Psi_{\mathcal{P}_X}(T) = \mathbb{P}_{\mathbf{X}}(\text{depth}(\mathbf{X}, \mathcal{P}_X) \geq T) = \sum_{j=1}^J \pi_j \mathbb{P}_{\mathbf{X}}(\text{depth}(\mathbf{X}, \mathcal{P}_X) \geq T \mid C = j). \quad (11)$$

390 For any fixed j , the mixture cannot reduce all halfspace probabilities contributed by component j
 391 by more than a factor π_j (i.e., $\text{depth}(\mathbf{x}, \mathcal{P}_X) \geq \pi_j \text{depth}(\mathbf{x}, \mathcal{P}_{X,j})$). Hence, at the level of depth-
 392 quantile curves, this shows that $\Psi_{\mathcal{P}_X}$ is controlled by the collection $\{\Psi_{\mathcal{P}_{X,j}}\}_{j=1}^J$, and the area under
 393 $\Psi_{\mathcal{P}_X}$ behaves like a mixture-weighted average of the areas under the $\Psi_{\mathcal{P}_{X,j}}$.
 394

395 In this heuristic picture, if each component is essentially low-dimensional, then the concentration
 396 index of $\Psi_{\mathcal{P}_X}$ is governed by the embedded low-dimensional components and hence by the intrinsic
 397 dimension rather than the ambient one. Formally, we have the following theorem.

398 **Theorem 3.10** (Generalization bound for mixture models). *Given a data distribution \mathcal{P} on $\mathbb{R}^d \times \mathbb{R}$
 399 whose feature marginal satisfies $\mathcal{P}_X = \sum_{j=1}^J \pi_j \mathcal{P}_{X,j}$, where each $\mathcal{P}_{X,j}$ is the uniform distribution
 400 on the unit ball in an m -dimensional affine subspace $V_j \subset \mathbb{R}^d$, let $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ be a dataset
 401 of n i.i.d. samples drawn from \mathcal{P} . Then, with probability at least $1 - \delta$,*

$$402 \quad \sup_{\theta \in \Theta_{\text{BEOs}}(\eta, \mathcal{D})} \text{Gap}_{\mathcal{P}}(f_{\theta}, \mathcal{D}) \lesssim_d \left(\frac{1}{\eta} - \frac{1}{2} + 4M \right)^{\frac{m}{m^2+4m+3}} M^2 J^{\frac{4}{m}} n^{-\frac{1}{2m+4}} + M^2 J \sqrt{\frac{1}{2n}}, \quad (12)$$

405 where $M := \max\{D, \|f_{\theta}\|_{\mathbb{B}_1^V}, 1\}$ and \lesssim_d hides constants (which may depend on d) and logarithmic factors in J/δ and n .
 406

407 **Sketch proof of Theorem 3.10.** The detailed proof is in Appendix F. The argument instantiates the
 408 above shatterability picture at the level of the BEOs-induced regularization. For each component j ,
 409 we define a local weight function g_j using only samples with $\mathbf{X} \in V_j$, and Lemma F.4 formalizes
 410 this as a uniform domination $g \gtrsim g_j$. Consequently, the restriction of f_{θ} to V_j has controlled g_j -
 411 weighted variation with the same order of bound. Crucially, if we restrict the network to a single
 412 m -dimensional subspace V_j , a neuron’s activation is governed not by its full weight vector \mathbf{w}_k ,
 413 but solely by $\text{proj}_{V_j} \mathbf{w}_k$, since the component of \mathbf{w}_k that is orthogonal to V_j is “invisible” to the
 414 data on V_j . This projection mechanism mathematically formalizes how linearly low-dimensional
 415 structures limit the model’s shatterability (as visualized by the knots in Figure 2), and thus refine the
 416 characterization of network’s *effective capacity*, see Theorem F.3. Moreover, some insight of this
 417 low-dimensional adaptation from the perspective of gradient dynamics is stated in Appendix B.2.
 418

4 EXPERIMENTS

419 In this section, we present empirical verification of both our theoretical claims and *proof strategies*.
 420

4.1 EMPIRICAL VERIFICATION OF THE GENERALIZATION UPPER BOUNDS

421 We test two predictions of our theory using synthetic data and two-layer ReLU networks of width
 422 1000 trained with MSE loss and vanilla GD (learning rate 0.4, 20000 epochs). The synthetic training
 423 data are generated by fixing a ground-truth function f (a ReLU network) and adding i.i.d. Gaussian
 424 noise ξ_i to obtain labels $y_i = f(\mathbf{x}_i) + \xi_i$. For a trained network \hat{f} , we report the *true MSE*
 425 $\frac{1}{n} \sum_i (\hat{f}(\mathbf{x}_i) - f(\mathbf{x}_i))^2$, see Appendix C.1 for details and its relation to generalization.
 426

427 Our theory predicts Error $\lesssim n^{-c}$ with a geometry-dependent exponent c , so we plot $\log(\text{true MSE})$
 428 against $\log n$ and fit a line by OLS. The estimated slope of this line provides an empirical estimate
 429 of $-c$, so steeper negative slopes correspond to faster decay of the excess risk with n , while flatter
 430 slopes indicate slower decay and hence weaker generalization. For each sample size n , we train on
 431 n i.i.d. examples, evaluate the true MSE, average over 6 random seeds, and fitted slopes in Figure 3.

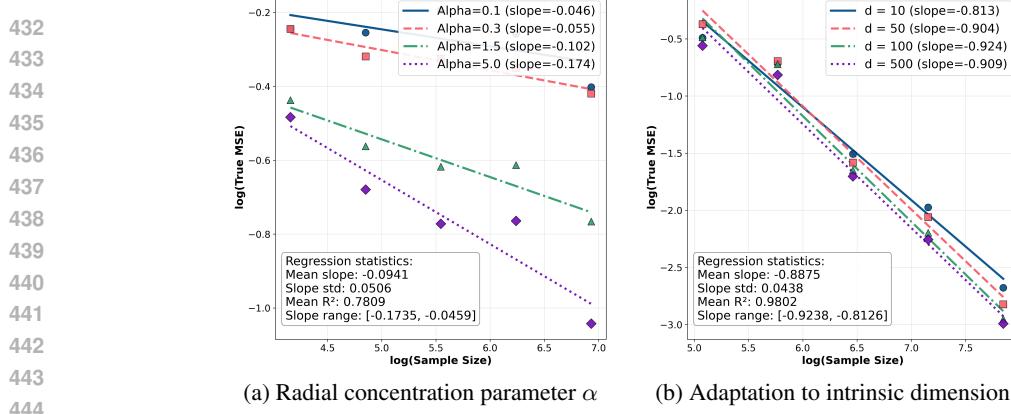


Figure 3: **How data geometry controls generalization.** (a) Fixed ambient dimension $d = 5$ with isotropic Beta-radial distributions (Definition 3.2) for $\alpha \in \{0.1, 0.3, 1.5, 5.0\}$. Larger α yields steeper slopes in the log-log error curve, consistent with improved rates as probability mass concentrates away from the boundary. (b) Union of $J = 20$ lines ($m = 1$) embedded in \mathbb{R}^d with $d \in \{10, 50, 100, 500\}$. The regression slopes remain nearly constant across different d , showing that generalization adapts to intrinsic rather than ambient dimension.

4.2 HOW DATA GEOMETRY AFFECTS REPRESENTATION LEARNING

We study how data geometry shapes the *representation* selected by GD at the BEoS regime through *data activation rate* of neurons. Given a neuron $v_k \phi(\mathbf{w}_k^\top \mathbf{x} - b_k)$ in the neural network, its data activation rate is defined as $\frac{1}{n} \sum_{i=1}^n \mathbb{1}\{\mathbf{w}_k^\top \mathbf{x}_i > b_k\}$, which is exactly the probability term in the definition of the weight function g in (28). Low data activation rate means the neuron fires on a small portion of the data.

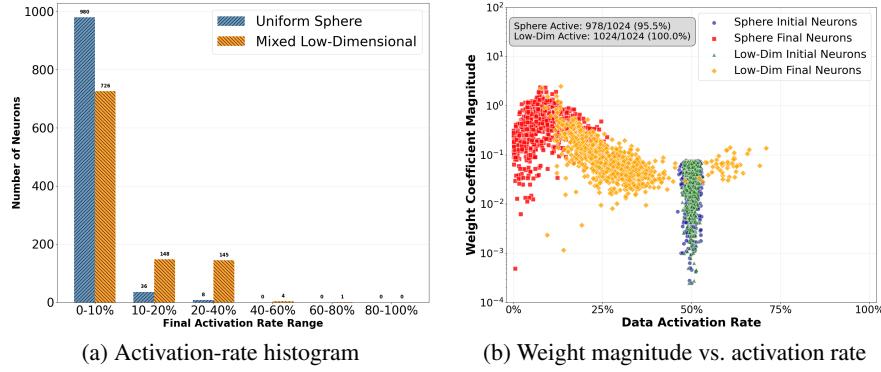


Figure 4: **Neuron activation statistics under different geometries.** (a) On the uniform sphere, most neurons fire on less than 10% of the data, indicating highly specialized ReLUs as we predict in Theorem 3.5 and Theorem 3.6. On the low-dimensional mixture, many neurons fire on 10-40% of the data, reflecting broader feature reuse. (b) Scatter of weight coefficient magnitude versus activation rate. On the sphere, GD produces many low-activation neurons with large coefficients. On the low-dimensional mixture, neurons spread to medium activation rates with moderate coefficients.

To verify it empirically, we compare two input distribution in \mathbb{R}^{50} : (i) uniform distribution on a sphere and (ii) a union of 20 lines by training ReLU networks with the same recipe and initialization . As a result, the ReLU network trained on the sphere interpolates the noisy label quickly with final true MSE $1.0249 \approx \text{noise level } (\sigma^2 = 1)$, while the ReLU network trained on a union of lines resist to overfitting with final true MSE $0.07 \approx 0$ (more details appear in Appendix C). Notably, the trained representations are presented in Figure 4. In particular, GD empirically finds our lower bound construction below the edge of stability.

4.3 EMPIRICAL EVIDENCE FOR THE DATA SHATTERABILITY PRINCIPLE

Our theory assumes data supported exactly on a mixture of low-dimensional subspaces. In practice, real datasets are only approximately low-dimensional, as highlighted in the literature on subspace

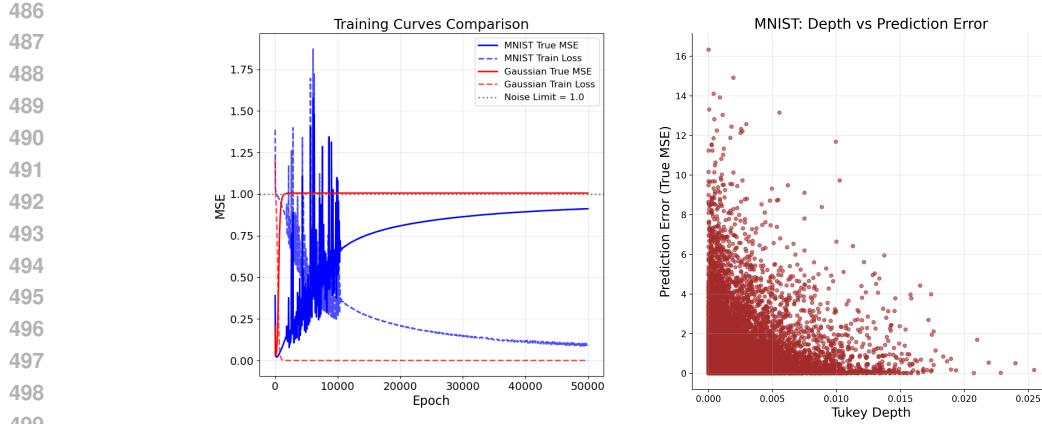


Figure 5: **Data geometry and memorization on MNIST.** **Left panel:** Comparison of training curves under the same ground-truth predictor with Gaussian inputs versus MNIST inputs ($n = 30000$). GD on the Gaussian data set quickly interpolates, while MNIST resists overfitting for tens of thousands of steps. **Right panel:** Prediction error against half-space depth for MNIST samples. Shallow points (low depth) exhibit larger errors. This region refers to “highly shatterable region”.

clustering (Vidal et al., 2016; Elhamifar and Vidal, 2013). For instance, MNIST images do not perfectly lie on a union of lines or planes, but still exhibit strong correlations that concentrate them near such structures. Our experiments (Figure 5, more details in Appendix C.3) show that even this approximate structure has a pronounced effect: compared to Gaussian data of the same size, GD on MNIST requires orders of magnitude more iterations before mildly overfitting solutions emerge. This demonstrates that our theoretical prediction is not fragile: generalization benefits from low-dimensional structure across a spectrum.

5 DISCUSSION AND FURTHER QUESTIONS

In this work, we present a mechanism explaining *how* data geometry governs the implicit bias of neural networks trained below the Edge of Stability. We introduce the principle of “data shatterability”, demonstrating that geometries resistant to shattering guide GD towards discovering generalizable representations.

Limitations. While our theoretical framework instantiates the principle of data shatterability, there are limitations to our current analysis. First, the proposed *half-space-depth concentration index* (S_{DQ}) serves as a proxy primarily for isotropic distributions and extending this scalar metric to quantify the shatterability of arbitrary, anisotropic, structured data remains a non-trivial challenge. Second, our results are derived for two-layer ReLU networks to maintain tractability in the function-space analysis. Generalizing these bounds to deep and complicated networks presents substantial theoretical hurdles, particularly in characterizing how the EoS-induced regularity constraint propagates through hierarchical layers without becoming vacuous.

Further Questions. Our framework opens several promising avenues for future research. A central question is the connection between shatterability and optimization. The observation that a flip side of being prone to overfitting is often faster optimization leads to a natural hypothesis: are high-shatterability distributions easier to optimize? This, in turn, raises further questions about the role of normalization techniques. For instance, do normalization techniques like Batch Norm accelerate training precisely by enforcing more isotropic, and thus more shatterable, representations at each layer? This line of inquiry extends naturally to deep networks, where hidden layers not only sense the initial data geometry but actively create a new “representation geometry”. Can our principles be translated to the understanding of representation geometry? Finally, this framework may offer a new lens to understand architectural inductive biases. For example, do CNNs generalize well precisely because their local receptive fields impose an architectural constraint that inherently reduces the model’s ability to shatter the data, forcing it to learn local, reusable features? Answering such questions, alongside developing a quantifiable metric for shatterability, remains a key direction.

540 REFERENCES

541 Kwangjun Ahn, Jingzhao Zhang, and Suvrit Sra. Understanding the unstable convergence of gradient descent. In *International conference on machine learning*, pages 247–257. PMLR, 2022.

544 Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. In *International Conference on Machine Learning*, pages 322–332. PMLR, 2019.

548 Sanjeev Arora, Zhiyuan Li, and Abhishek Panigrahi. Understanding gradient descent on the edge of stability in deep learning. In *International Conference on Machine Learning*, pages 948–1024. PMLR, 2022.

551 Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio, and Simon Lacoste-Julien. A closer look at memorization in deep networks. In *Proceedings of the 34th International Conference on Machine Learning (ICML)*, pages 233–242. PMLR, 2017.

555 Francis Bach. Breaking the curse of dimensionality with convex neural networks. *Journal of Machine Learning Research*, 18(1):629–681, 2017.

558 Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear regression. *Proceedings of the National Academy of Sciences*, 117(48):30063–30070, 2020.

560 Alexander Cloninger and Timo Klock. A deep network construction that adapts to intrinsic dimensionality beyond the domain. *Neural Networks*, 141:404–419, 2021.

563 Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on neural networks typically occurs at the edge of stability. In *International Conference on Learning Representations*, 2020.

566 Jeremy M. Cohen, Alex Damian, Ameet Talwalkar, J. Zico Kolter, and Jason D. Lee. Understanding optimization in deep learning with central flows. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=SIE2rI3ZPs>.

570 Alex Damian, Eshaan Nichani, and Jason D Lee. Self-stabilization: The implicit bias of gradient descent at the edge of stability. In *International Conference on Learning Representations*, 2024.

573 Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for deep nets. In *International Conference on Machine Learning*, pages 1019–1028. PMLR, 2017.

575 Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm, theory, and applications. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(11):2765–2781, 2013.

578 Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis. *Journal of the American Mathematical Society*, 29(4):983–1049, 2016.

580 Tushar Ganguli and Edwin K. P. Chong. Activation-based pruning of neural networks. *Algorithms*, 17(1):48, 2024.

583 Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In *International Conference on Machine Learning*, 2019a. URL <https://api.semanticscholar.org/CorpusID:59291990>.

586 Boris Hanin and David Rolnick. Deep ReLU networks have surprisingly few activation patterns. In *Advances in Neural Information Processing Systems*, volume 32, 2019b.

589 Boris Hanin, Ryan Jeong, and David Rolnick. Deep relu networks preserve expected length. *ArXiv*, abs/2102.10492, 2021. URL <https://api.semanticscholar.org/CorpusID:231986303>.

592 Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient descent. In *International conference on machine learning*, pages 1225–1234. PMLR, 2016.

594 David Haussler. Decision-theoretic generalizations of the pac model for neural net and other learning
 595 applications. *Information and Computation*, 100(1):78–150, 1992.
 596

597 Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
 598 neuron pruning approach towards efficient deep architectures. *arXiv preprint*, 2016. URL
 599 <https://arxiv.org/abs/1607.03250>.

600 Hui Jin and Guido Montúfar. Implicit bias of gradient descent for mean squared error regression
 601 with two-layer wide neural networks. *Journal of Machine Learning Research*, 24(137):1–97,
 602 2023.

603 Nirmit Joshi, Gal Vardi, and Nathan Srebro. Noisy interpolation learning with shallow univariate
 604 ReLU networks. In *International Conference on Learning Representations*, 2024.

605 Michael Kohler and Sophie Langer. On the rate of convergence of fully connected deep neural
 606 network regression estimates. *Annals of Statistics*, 49(4):2231–2249, 2021.

607 Michael Kohler, Adam Krzyżak, and Sophie Langer. Estimation of a function of low local dimen-
 608 sionality by deep neural networks. *IEEE transactions on information theory*, 68(6):4032–4042,
 609 2022.

610 Lingkai Kong and Molei Tao. Stochasticity of deterministic gradient descent: Large learning rate for
 611 multiscale objective function. *Advances in neural information processing systems*, 33:2625–2638,
 612 2020.

613 Guy Kornowski, Gilad Yehudai, and Ohad Shamir. From tempered to benign overfitting in relu
 614 neural networks. *Advances in Neural Information Processing Systems*, 36, 2024.

615 Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, ge-
 616 ometry, and complexity of neural networks. In Kamalika Chaudhuri and Masashi Sugiyama,
 617 editors, *Proceedings of the Twenty-Second International Conference on Artificial Intelligence
 618 and Statistics*, volume 89 of *Proceedings of Machine Learning Research*, pages 888–896,
 619 Naha, Okinawa, Japan, 2019. PMLR. URL [https://proceedings.mlr.press/v89/
 620 liang19a.html](https://proceedings.mlr.press/v89/liang19a.html).

621 Tongtong Liang, Dan Qiao, Yu-Xiang Wang, and Rahul Parhi. Stable minima of relu neural networks
 622 suffer from the curse of dimensionality: The neural shattering phenomenon, 2025. URL <https://arxiv.org/abs/2506.20779>.

623 Chao Ma and Lexing Ying. On linear stability of sgd and input-smoothness of neural networks.
 624 *Advances in Neural Information Processing Systems*, 34:16805–16817, 2021.

625 Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural
 626 networks: dimension-free bounds and kernel limit. In *Conference on Learning Theory*, pages
 627 2388–2464. PMLR, 2019.

628 Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
 629 regions of deep neural networks. In *Neural Information Processing Systems*, 2014. URL <https://api.semanticscholar.org/CorpusID:5941770>.

630 Rotem Mulayoff, Tomer Michaeli, and Daniel Soudry. The implicit bias of minima stability: A
 631 view from function space. *Advances in Neural Information Processing Systems*, 34:17749–17761,
 632 2021.

633 Mor Shpigel Nacson, Rotem Mulayoff, Greg Ongie, Tomer Michaeli, and Daniel Soudry. The
 634 implicit bias of minima stability in multivariate shallow ReLU networks. In *International Con-
 635 ference on Learning Representations*, 2023.

636 Kamil Nar and Shankar Sastry. Step size matters in deep learning. *Advances in Neural Information
 637 Processing Systems*, 31, 2018.

648 Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
 649 networks. In Peter Grünwald, Elad Hazan, and Satyen Kale, editors, *Proceedings of The 28th*
 650 *Conference on Learning Theory*, volume 40 of *Proceedings of Machine Learning Research*, pages
 651 1376–1401, Paris, France, 03–06 Jul 2015. PMLR. URL <https://proceedings.mlr.press/v40/Neyshabur15.html>.

652

653 Rahul Parhi and Robert D. Nowak. Banach space representer theorems for neural networks and
 654 ridge splines. *Journal of Machine Learning Research*, 22(43):1–40, 2021.

655

656 Rahul Parhi and Robert D. Nowak. Near-minimax optimal estimation with shallow ReLU neural
 657 networks. *IEEE Transactions on Information Theory*, 69(2):1125–1139, 2023.

658

659 Henning Petzka, Michael Kamp, Linara Adilova, Cristian Sminchisescu, and Mario Boley. Rel-
 660 ative flatness and generalization. In *Advances in Neural Information Processing Systems 34*,
 661 volume 34. Curran Associates, Inc., 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/995f5e03890b029865f402e83a81c29d-Abstract.html>.

662

663 Tomaso Poggio and Qianli Liao. Theory ii: Landscape of the empirical risk in deep learning. *arXiv*
 664 *preprint arXiv:1703.09833*, 2017.

665

666 Dan Qiao, Kaiqi Zhang, Esha Singh, Daniel Soudry, and Yu-Xiang Wang. Stable minima cannot
 667 overfit in univariate ReLU networks: Generalization by large step sizes. In *Advances in Neural*
 668 *Information Processing Systems*, volume 37, pages 94163–94208, 2024.

669

670 Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with ReLU acti-
 671 vation function. *Annals of Statistics*, 48(4):1875–1897, 2020.

672

673 Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting lin-
 674 ear regions of deep neural networks. *ArXiv*, abs/1711.02114, 2017. URL <https://api.semanticscholar.org/CorpusID:34019680>.

675

676 Jonathan W. Siegel and Jinchao Xu. Characterization of the variation spaces corresponding to shal-
 677 low neural networks. *Constructive Approximation*, pages 1–24, 2023.

678

679 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The im-
 680 plicit bias of gradient descent on separable data. *Journal of Machine Learning Research*, 19(70):
 1–57, 2018.

681

682 Taiji Suzuki. Adaptivity of deep relu network for learning in besov and mixed smooth besov spaces:
 683 optimal rate and curse of dimensionality. *arXiv preprint arXiv:1810.08033*, 2018.

684

685 Saket Tiwari and George Konidaris. Effects of data geometry in early deep learning. In *Advances in*
 686 *Neural Information Processing Systems*, volume 35, pages 25010–25023, 2022.

687

688 John W. Tukey. Mathematics and the picturing of data. In *Proceedings of the International*
 689 *Congress of Mathematicians*, volume 2, pages 523–531, Vancouver, 1975. Canadian Mathemati-
 690 cal Congress.

691

692 Vladimir N. Vapnik. *Statistical Learning Theory*. Wiley, 1998.

693

694 Ren Vidal, Yi Ma, and Shankar Sastry. *Generalized Principal Component Analysis*. Springer, 2016.

695

696 Lei Wu and Weijie J Su. The implicit regularization of dynamical stability in stochastic gradient
 697 descent. In *International Conference on Machine Learning*, pages 37656–37684. PMLR, 2023.

698

699 Lei Wu, Chao Ma, and Weinan E. How SGD selects the global minima in over-parameterized
 700 learning: A dynamical stability perspective. *Advances in Neural Information Processing Systems*,
 701 31, 2018.

702

703 Yunfei Yang and Ding-Xuan Zhou. Optimal rates of approximation by shallow ReLU^k neural net-
 704 works and applications to nonparametric regression. *Constructive Approximation*, pages 1–32,
 705 2024.

702 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
703 deep learning requires rethinking generalization. In *International Conference on Learning Rep-*
704 *resentations (ICLR)*, 2017. URL <https://openreview.net/forum?id=Sy8gdB9xx>.

705

706 Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empi-
707 *rical risk minimization*. In *International Conference on Learning Representations (ICLR)*, 2018.
708 URL <https://openreview.net/forum?id=r1Ddp1-Rb>.

709

710 Kaiqi Zhang and Yu-Xiang Wang. Deep learning meets nonparametric regression: Are weight-
711 decayed DNNs locally adaptive? In *International Conference on Learning Representations*,
712 2023.

713

714 Linjun Zhang, Kenji Kawaguchi, Amirata Ghorbani, Zhun Deng, and James Zou. How does mixup
715 help with robustness and generalization? In *International Conference on Learning Representa-*
716 *tions (ICLR)*, 2021.

717

718 Xiao Zhang and Dongrui Wu. Empirical studies on the properties of linear regions in deep neural
719 networks. *ArXiv*, abs/2001.01072, 2020. URL <https://api.semanticscholar.org/CorpusID:209862298>.

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756	SUPPLEMENTARY MATERIALS	
757		
758	A The Use of Large Language Models (LLMs)	15
759		
760	B More Related Works and Discussions	16
761	B.1 More Related Works	16
762	B.2 A Gradient-dynamics Perspective on Stability and Data Geometry	18
763		
764		
765	C Details of Experiments	19
766	C.1 Excess risk, label noise, and interpretation of log–log slopes	19
767	C.2 Experimental Details for Section 4.2	20
768	C.3 Experimental Details of Section 4.3	21
769		
770		
771		
772	D Functional Analysis of Shallow ReLU Networks	23
773	D.1 Path-norm and Variation Semi-norm of ReLU Networks	23
774	D.2 Total Variation Semi-norm on Radon Domain	24
775	D.3 The Metric Entropy of Variation Spaces	25
776	D.4 Generalization Gap of Unweighted Variation Function Class	25
777		
778		
779		
780	E Data-Dependent Regularity from Edge-of-Stability	26
781	E.1 Function Space Viewpoint of Neural Networks Below the Edge of Stability	26
782	E.2 Empirical Process for the Weight Function g	27
783		
784		
785	F Generalization Upper Bound: Mixture of Low-Dimensional Balls	29
786	F.1 Case: uniform distribution on unit disc of a linear subspace	29
787	F.2 Proof of Theorem 3.10	30
788		
789		
790	G Generalization Upper Bounds: Isotropic Beta Family	34
791	G.1 Characterization of the Weight Function for a Custom Radial Distribution	35
792	G.2 Proof of Theorem 3.4	37
793		
794		
795	H Generalization Gap Lower Bound via Poissonization	40
796	H.1 Construction of “hard-to-learn” networks	40
797	H.2 Proof of Theorem 3.5	43
798		
799		
800	I Flat Interpolating Two-Layer ReLU Networks on the Unit Sphere	46
801		
802		
803	J Technical Lemmas	48
804		
805		
806	A THE USE OF LARGE LANGUAGE MODELS (LLMs)	
807		

808 In accordance with the ICLR 2026 policy on the responsible use of LLMs, we disclose the follow-
 809 ing. We employed commercial LLM services during manuscript preparation. Specifically, we used
 Gemini 2.5 Pro, ChatGPT 5, and DeepSeek to assist with language polishing, literature search, and

810 consistency checks of theoretical derivations. We further used Claude 4 and Cursor to help generate
 811 experimental code templates. Importantly, all research ideas, theoretical results, and proof strategies
 812 originated entirely from the authors. The LLMs were used solely as productivity aids and did not
 813 contribute novel scientific content.

815 B MORE RELATED WORKS AND DISCUSSIONS

816 B.1 MORE RELATED WORKS

819 **How we “rethink” generalization.** Our shatterability principle provides a theoretical account of the
 820 discrepancy noted by [Zhang et al. \(2017\)](#): networks fit Gaussian noise much faster than real images
 821 with random labels. Gaussian inputs concentrate on a thin spherical shell and are highly shatterable,
 822 while CIFAR-10 exhibits unknown low-dimensional structure that resists shattering. Strong general-
 823 alization arises in practice because gradient descent implicitly exploits this non-shatterable geometry
 824 of the real world data. We conduct a similar experiment from the perspective of generalization in
 825 Section 4.3 (see Figure 5).

826 **Revisit data augmentation.** Mixup forms convex combinations of inputs and labels and encourages
 827 approximately linear predictions along these segments ([Zhang et al., 2018](#)). The added in-between
 828 samples penalize solutions that memorize isolated points with sharply varying piecewise-linear be-
 829 havior. For example, on spherical-like data that ReLU units can easily shatter, such memorization
 830 incurs high loss on the mixed samples, which suppresses shattering-type separators. Prior work
 831 mostly views Mixup as a data-dependent regularizer that improves generalization and robustness
 832 ([Zhang et al., 2021](#)). Our analysis complements this view by tracing the effect to the implicit bias of
 833 gradient descent near the edge of stability and by linking the gains to a reduction in data shatterability
 834 induced by interpolation in low-density regions.

835 **Activation-based network pruning.** Empirical works have shown that pruning strategies based on
 836 neuron activation frequency, such as removing neurons with low activation counts, can even improve
 837 the test performance after retraining ([Hu et al., 2016](#); [Ganguli and Chong, 2024](#)). This coincide with
 838 our theory: such rare-firing neurons may be harmful to generalization and pruning these neurons
 839 help models to learn more generalizable features.

840 **Subspace and manifold hypothesis.** A common modeling assumption in high-dimensional learning
 841 is that data lies on or near one or several low-dimensional subspaces embedded in the ambient
 842 space, especially in image datasets where pixel values are constrained by geometric structure and
 843 are well-approximated by local subspaces or unions of subspaces ([Vidal et al., 2016](#)). In particu-
 844 lar, results in sparse representation and subspace clustering demonstrate that such structures enable
 845 efficient recovery and segmentation of high-dimensional data into their intrinsic subspaces ([Elham-
 846 ifar and Vidal, 2013](#)). This also extends to a more general framework of the manifold hypothesis
 847 ([Fefferman et al., 2016](#)).

848 **Capacity of neural networks.** The subspace and manifold hypotheses have important implications
 849 for the capacity and generalization of neural networks. When data lies near low-dimensional sub-
 850 spaces and manifolds, networks can achieve expressive power with significantly fewer parameters,
 851 as the complexity of the function to be learned is effectively constrained by the subspace dimen-
 852 sion rather than the ambient dimension ([Poggio and Liao, 2017](#); [Cloninger and Klock, 2021](#); [Kohler
 853 et al., 2022](#)). However, these results focus only on expressivity and the existence of neural networks
 854 to learn efficiently on this data.

855 **Interpolation, Benign overfitting and data geometry.** Benign-overfitting ([Bartlett et al., 2020](#))
 856 studies the curious phenomenon that one can interpolate noisy labels (i.e., 0 training loss) while
 857 consistently learn (excess risk $\rightarrow 0$ as n gets larger). [Joshi et al. \(2024\)](#) establishes that overfitting in
 858 ReLU Networks is not benign in general, but it could become more benign as the input dimension
 859 grows ([Kornowski et al., 2024](#)) in the isotropic Gaussian data case. Our results suggest that such
 860 conclusion may be fragile under *low-dimensional or structured* input distributions. On a positive
 861 note, our results suggest that in these cases, generalization may follow from edge-of-stability, which
 862 applies without requiring interpolation.

863 **Implicit bias of gradient descent.** A rich line of work analyzes the implicit bias of (stochastic)
 864 gradient descent (GD), typically through optimization dynamics or limiting kernels ([Arora et al.,](#)

864 2019; Mei et al., 2019; Jin and Montúfar, 2023). In contrast, we do not analyze the time evolution
 865 per se; we characterize the *function spaces* that GD tends to realize at solutions. Our results highlight
 866 a strong dependence on the *input distribution*: even for the same architecture and loss, the induced
 867 hypothesis class (and thus generalization) changes as the data geometry changes, complementing
 868 prior dynamics-centric views.

869
 870 Table 1: Comparison of our results with relevant prior works on path-norm and EoS-based general-
 871 ization.

873 Work	874 Setting / assumptions	875 Rate	876 Context / contribution
877 Parhi and Nowak (2023)	878 Unweighted path norm 879 bounded (static estimator, 880 no optimization dynamics)	881 $\tilde{O}(n^{-\frac{d+3}{4d+6}})$	882 Near-minimax baseline for es- 883 timators with an <i>unweighted</i> 884 path-norm constraint. Does not 885 model GD/SGD dynamics.
886 Wu and Su (2023)	887 Interpolation at global, linearly 888 stable minima; hidden-bias-free 889 model $f(x) = \sum_j v_j \phi(\mathbf{w}_j^\top \mathbf{x})$; 890 noiseless labels $y = f^*(x)$; in- 891 puts essentially uniform on the 892 sphere	893 $\tilde{O}(n^{-1})$	894 Shows that any linearly sta- 895 ble interpolating minimum of 896 GD/SGD enjoys an $O(1/n)$ 897 generalization rate via a <i>uni- 898 form</i> (unweighted) path-norm 899 control in a bias-free setting.
900 Qiao et al. (2024)	901 BEOs dynamics; univariate in- 902 put	903 $\tilde{O}(n^{-\frac{2}{5}})$	904 Used the technique of “chop- 905 ping off the bad region” for 1D 906 data. Only considering good 907 regions. and does not address 908 multivariate geometry.
909 Liang et al. (2025)	910 BEOs dynamics; multivariate 911 input uniform on the ball \mathbb{B}_1^d	912 $\tilde{O}(n^{-\frac{1}{2d+4}})$	913 Analyzes neural shattering un- 914 der isotropic inputs to ob- 915 tain matching upper and lower 916 bounds. No adaptation to in- 917 trinsic low-dimensional structure.
918 Ours (Thm. 3.10)	919 BEOs dynamics; input sup- 920 ported on a mixture of m - 921 dimensional balls ($m \leq d$)	922 $\tilde{O}(n^{-\frac{1}{2m+4}})$	923 Intrinsic-dimension adap- 924 tation. The rate depends on 925 m rather than d , improving 926 on Liang et al. (2025) for 927 structured, low-dimensional 928 data.
929 Ours (Thm. 3.4 & Thm. 3.5)	930 BEOs dynamics; input sam- 931 pled from an isotropic Beta(α)- 932 radial family on \mathbb{B}_1^d	933 rates depend 934 on α and d .	935 Exhibits a continuous spec- 936 trum from generalization to 937 memorization as the radial 938 parameter α varies, with the 939 bounds of Liang et al. (2025) 940 appearing as special cases 941 within this spectrum.
942 Ours (Thm. 3.6)	943 BEOs dynamics; input on the 944 sphere \mathbb{S}^{d-1}	945 $\tilde{\Omega}(1)$	946 Flat interpolation. For any 947 labeling of points on \mathbb{S}^{d-1} , 948 constructs BEOs-stable inter- 949 polating networks, showing that 950 dynamical stability alone does 951 not guarantee generalization on 952 spherical data once hidden bi- 953 ases are allowed.

954 **Edge of Stability (EoS) and minima stability.** The EoS literature primarily seeks to explain when
 955 and why training operates near instability and how optimization proceeds there (Cohen et al., 2020;
 956 Kong and Tao, 2020; Arora et al., 2022; Ahn et al., 2022; Damian et al., 2024). Central flows offer
 957 an alternative viewpoint on optimization trajectories that also emphasizes near-instability behavior
 958 (Cohen et al., 2025). Closest to our work is the line on *minima stability* (Ma and Ying, 2021;

918 [Mulayoff et al., 2021](#); [Nacson et al., 2023](#)), which links Hessian spectra and training noise to the
 919 geometry of solutions but largely leaves generalization out of scope. We leverage the EoS/minima-
 920 stability phenomena to *define* and analyze a data-distribution-aware notion of stability, showing
 921 adaptivity to low-dimensional structure and making explicit how distributional geometry shapes
 922 which stable minima GD selects.

923
 924 **Nonparametric function estimation with neural networks.** The notion of generalization gap is
 925 closely related to the estimation error. It is well known that neural networks are minimax optimal
 926 estimators for a wide variety of functions ([Suzuki, 2018](#); [Schmidt-Hieber, 2020](#); [Kohler and Langer, 2021](#);
 927 [Parhi and Nowak, 2023](#); [Zhang and Wang, 2023](#); [Wu and Su, 2023](#); [Yang and Zhou, 2024](#);
 928 [Qiao et al., 2024](#)). Outside of the univariate work of [Qiao et al. \(2024\)](#), all prior works construct
 929 their estimators via empirical risk minimization problems. Thus, they do not incorporate the training
 930 dynamics that arise when training neural networks in practice. In contrast, [Qiao et al. \(2024\)](#); [Liang et al. \(2025\)](#) derive nonparametric guarantees for solutions selected directly by gradient descent
 931 dynamics, without assuming even stationary condition. Our work further develops in this direction
 932 by modeling how data geometry affect generalization for the gradient trajectories below the edga-
 933 of-stability.

934 **Flatness vs. generalization.** Whether (and which notion of) flatness predicts generalization re-
 935 mains debated. Several works argue sharp minima can still generalize ([Dinh et al., 2017](#)), propose
 936 information-geometric or Fisher-Rao-based notions ([Liang et al., 2019](#)), or develop relative/scale-
 937 invariant flatness measures ([Petzka et al., 2021](#)). We focus on the *largest* curvature direction (i.e.,
 938 λ_{\max}) motivated by EoS/minima-stability. Our results rigorously prove that flatness in this notion
 939 does imply generalization (note that there is no contradiction with [Dinh et al. \(2017\)](#)), but it depends
 940 on data distribution.

941 **Linear regions of neural networks.** Our research connects to a significant body of work that
 942 investigates the shattering capability of neural networks by quantifying their linear activation regions
 943 ([Hanin and Rolnick, 2019a;b](#); [Hanin et al., 2021](#); [Montúfar et al., 2014](#); [Serra et al., 2017](#)). Other
 944 empirical work has meticulously characterized the geometric properties of linear regions shaped
 945 by different optimizers ([Zhang and Wu, 2020](#)). Particularly, ([Tiwari and Konidaris, 2022](#)) consider
 946 the how these linear regions intersect with data manifolds. These analyses primarily leverage the
 947 number of regions to characterize the expressive power of deep networks, while our work shifts the
 948 focus on the generalization performance of shallow networks at the EoS regime.

950 951 B.2 A GRADIENT-DYNAMICS PERSPECTIVE ON STABILITY AND DATA GEOMETRY

952
 953 We now discuss our results from the viewpoint of *gradient dynamics*.

954 **Why Shattering Neural Networks May Be Dynamically Stable.** Here we paraphrase and adapt
 955 the discussion from ([Liang et al., 2025](#), Appendix A.4). The BEoS condition defines a set of dy-
 956 namically stable parameter states, and the data-dependent weight function $g_D(\mathbf{u}, t)$ provides a static
 957 summary of how expensive it is to place a ReLU ridge at orientation \mathbf{u} and threshold t . Small values
 958 of $g_D(\mathbf{u}, t)$ indicate weak stability constraints in that region of parameter space, so a neuron aligned
 959 with (\mathbf{u}, t) can carry a large coefficient while still satisfying the BEoS curvature bound. In highly
 960 shatterable geometries, the shallow shell contains many such directions with tiny g_D , creating am-
 961 ple room inside the stable set for high-magnitude, sparsely activating neurons supported on disjoint
 962 caps.

963 This static picture is closely tied to the actual gradient dynamics. If the dataset is highly shatterable in
 964 the sense of the half-space-depth concentration index, a neuron’s activation boundary can easily drift
 965 toward regions where it fires on only a few data points. Once those few points are already well-fitted,
 966 the gradient contributions in (13) become small and localized, so the neuron experiences almost no
 967 force pulling it back toward more central regions of the data cloud. Its parameters become effectively
 968 “stuck” near the boundary, and the corresponding directions in the loss landscape remain flat enough
 969 to satisfy the BEoS condition. Our lower bound constructions exploit exactly this mechanism: by
 970 arranging many such trapped, boundary-supported neurons on disjoint caps, we obtain shattering
 971 networks that interpolate, remain dynamically stable, and yet are statistically hard to learn. Although
 972 our analysis is carried out for ReLU, where hard sparsity makes this effect particularly transparent,

972 the underlying “weak-gradient trapping” mechanism suggests that similar phenomena may persist
 973 for other activations with rapidly decaying gradients away from their transition region.
 974

975 **How GD Adapts to Low-dimensionality Dynamically.** Recall our notations: for a two-layer ReLU
 976 network

$$977 \quad f_{\theta}(\mathbf{x}) = \sum_{k=1}^K v_k \phi(\mathbf{w}_k^T \mathbf{x} - b_k) + \beta$$

979 trained on data $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ with empirical loss $\mathcal{L}(\theta) = \frac{1}{2n} \sum_{i=1}^n \ell(f_{\theta}(\mathbf{x}_i), y_i)$, the gradient with
 980 respect to a hidden weight \mathbf{w}_k has the form
 981

$$982 \quad \nabla_{\mathbf{w}_k} \mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell'(f_{\theta}(\mathbf{x}_i), y_i) v_k \phi'(\mathbf{w}_k^T \mathbf{x}_i - b_k) \mathbf{x}_i = \sum_{i=1}^n \alpha_{k,i}(\theta) \mathbf{x}_i. \quad (13)$$

984 Thus, at every step of gradient descent, the update of \mathbf{w}_k is a linear combination of input vectors.
 985 In informal terms, the *shape* of the gradient field is inherited from the shape of the data cloud: the
 986 dynamics cannot move in arbitrary directions in parameter space, but only along directions induced
 987 by the training inputs and the neuron-specific activation pattern.
 988

989 In the idealized case where all \mathbf{x}_i lie in a linear subspace $V \subset \mathbb{R}^d$, (13) already suggests a form
 990 of intrinsic-dimension adaptation: the trajectory of each hidden weight lives in an affine translate
 991 of V , so any meaningful notion of effective complexity should depend on $\dim V$ rather than on the
 992 ambient dimension. However, as soon as we move to more realistic geometries—affine subspaces
 993 $a + V$ or mixtures of m -dimensional components—the global span of the data can easily be full-
 994 dimensional. In those settings, the observation that gradients lie in $\text{span}\{\mathbf{x}_i\}$ is nearly vacuous: it
 995 no longer encodes the *structured* way in which the data constrain the dynamics, and by itself it does
 996 not yield intrinsic-dimension generalization bounds.
 997

998 Our contribution is to make this stability-based picture interact explicitly with the *geometry of the*
 999 *data*. For structured distributions such as mixtures of m -dimensional balls, the data-dependent
 1000 weight function $g_{\mathcal{D}}(\mathbf{u}, t)$ inherits a corresponding structure. A hyperplane that cuts through the
 1001 thick interior of an m -dimensional component activates on many of its points. Neurons aligned with
 1002 such hyperplanes receive large gradients and are strongly constrained by the stability condition,
 1003 which is reflected in large values of $g_{\mathcal{D}}(\mathbf{u}, t)$. In contrast, hyperplanes that only touch shallow caps
 1004 or skim the boundary fire on very few points; neurons aligned with these directions see much weaker
 1005 “gradient pressure” and correspondingly small values of $g_{\mathcal{D}}(\mathbf{u}, t)$, allowing them to carry high norm
 1006 and implement localized features.
 1007

1008 In this way, the gradient-dynamics perspective can be summarized as
 1009

$$1010 \quad \text{data geometry} \implies \text{gradient geometry} \implies \text{stability-induced regularization},$$

1011 with $g_{\mathcal{D}}$ acting as the bridge between dynamics and capacity control. Stability does not merely say
 1012 that gradients live in the span of the data; through $g_{\mathcal{D}}$, it tells us *which parts* of the data geometry are
 1013 expensive to fit and *which parts* can host high-norm, sparsely supported neurons. This refinement
 1014 allows our analysis to turn the qualitative statement that “gradient trajectories are shaped by the
 1015 data geometry” into quantitative, distribution-dependent generalization bounds that scale with the
 1016 intrinsic dimension m rather than the ambient dimension d .
 1017

1018 C DETAILS OF EXPERIMENTS

1019 C.1 EXCESS RISK, LABEL NOISE, AND INTERPRETATION OF LOG–LOG SLOPES

1020 In our synthetic experiments, the data are generated according to the standard i.i.d. model

$$1021 \quad (\mathbf{X}, Y) \sim \mathcal{D}, \quad Y = f^*(\mathbf{X}) + \xi,$$

1022 where f^* is a fixed target function and ξ is independent Gaussian noise with variance σ^2 . For a
 1023 predictor f , the population risk under squared loss decomposes as

$$1024 \quad R_{\text{noisy}}(f) = \mathbb{E}_{\mathcal{D}}[(f(\mathbf{X}) - Y)^2] = \mathbb{E}_{\mathcal{D}}[(f(\mathbf{X}) - f^*(\mathbf{X}))^2] + \sigma^2 = R_{\text{excess}}(f) + \sigma^2,$$

1025 where $R_{\text{excess}}(f) = \mathbb{E}_{\mathcal{D}}[(f(\mathbf{X}) - f^*(\mathbf{X}))^2]$ is the excess risk controlled by our theoretical upper
 1026 bounds.
 1027

1026 During training, we minimize the empirical noisy risk
 1027

$$1028 \quad \hat{R}_{\text{train}}(f) = \frac{1}{n} \sum_{i=1}^n (f(\mathbf{x}_i) - Y_i)^2 \\ 1029 \\ 1030$$

1031 computed on the noisy labels Y_i . To isolate the contribution of the excess risk and to make the
 1032 geometry dependence visible, we additionally evaluate the *clean* empirical risk

$$1033 \quad \hat{R}_{\text{clean}}(f) = \frac{1}{n} \sum_{i=1}^n (f(\mathbf{x}_i) - f^*(\mathbf{x}_i))^2, \\ 1034 \\ 1035$$

1036 using the same inputs $\{\mathbf{x}_i\}_{i=1}^n$ but with clean labels $f^*(\mathbf{x}_i)$. This quantity is an unbiased Monte
 1037 Carlo estimator of $R_{\text{excess}}(f)$ and thus serves as our numerical proxy for the term upper-bounded in
 1038 the generalization theorems.

1039 The usual generalization gap can be written as
 1040

$$1041 \quad R_{\text{noisy}}(f) - \hat{R}_{\text{train}}(f) = R_{\text{excess}}(f) + \sigma^2 - \hat{R}_{\text{train}}(f) \approx \hat{R}_{\text{clean}}(f) + \sigma^2 - \hat{R}_{\text{train}}(f), \\ 1042$$

1043 so changes in $\hat{R}_{\text{clean}}(f)$ directly translate into changes in the generalization gap, up to the fixed
 1044 noise floor σ^2 and the empirical fluctuation in $\hat{R}_{\text{train}}(f)$.

1045 Our bounds predict that, for a fixed geometry,
 1046

$$1047 \quad R_{\text{excess}}(f_n) \lesssim n^{-c},$$

1048 with a geometry-dependent exponent c . In the experiments, we therefore plot $\log \hat{R}_{\text{clean}}(f_n)$ against
 1049 $\log n$ and fit a straight line by ordinary least squares. The estimated slope of this line provides an
 1050 empirical estimate of $-c$: steeper negative slopes correspond to faster decay of the excess risk with
 1051 n , while flatter slopes indicate slower decay and hence weaker generalization. This is the sense in
 1052 which the slopes in Figure 3 should be interpreted.
 1053

1054 C.2 EXPERIMENTAL DETAILS FOR SECTION 4.2

1055 Here we provide the full experimental details of the discussion in Section 4.2.

1056 We worked in ambient dimension $d = 50$ with $n = 2000$ training examples. For the *Sphere*
 1057 condition, samples were drawn uniformly from the unit sphere. For the *Low-dimensional mixture*,
 1058 we generated data from a mixture of 20 randomly oriented 1-dimensional subspaces uniformly.
 1059 Labels were produced by a fixed quadratic teacher function with added Gaussian noise of variance
 1060 1.

1061 We trained a two-layer ReLU network with hidden width 1024. All models were trained with GD for
 1062 10000 epochs using learning rate 0.4 and gradient clipping at 50. The loss function was the squared
 1063 error against noisy labels, while generalization performance was evaluated by the *true MSE* against
 1064 the noiseless teacher. For comparability, both datasets shared the same initialization of parameters.
 1065

1066 We monitored (i) training loss and true MSE, (ii) Hessian spectral norm estimated by power iteration
 1067 on random minibatches, and (iii) neuron-level statistics such as activation rate and coefficient
 1068 magnitude. The training curves are shown in Figure 6 and $\lambda_{\max}(\nabla_{\theta} \mathcal{L})$ -curves are shown in Figure 7.
 1069

1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

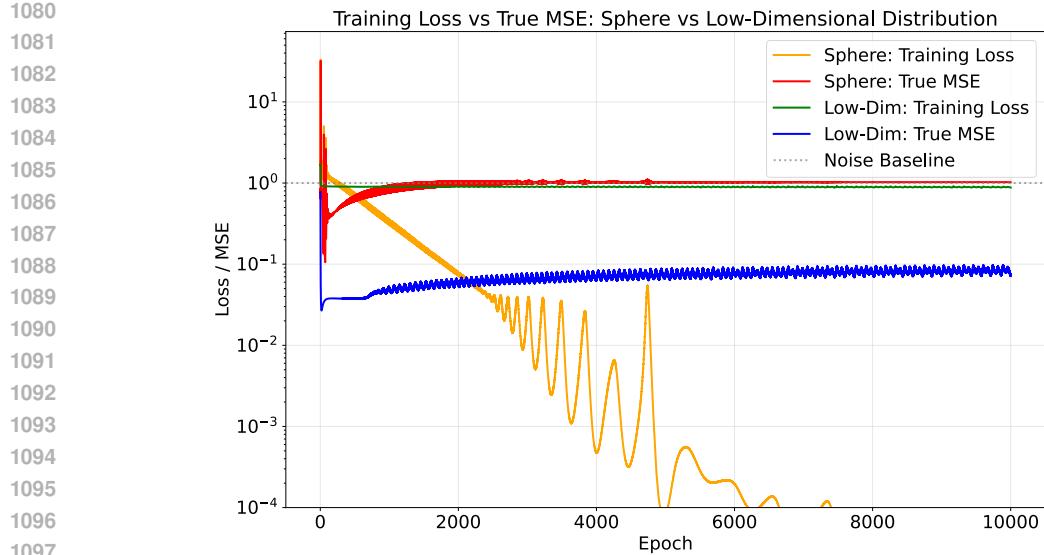


Figure 6: **Training curves on different geometries.** Training loss and true MSE on Sphere vs. Low-dimensional mixture. We can see GD on sphere interpolate very quickly (before the 2000-th epoch) while the mixed low-dimensional data resist to overfitting.

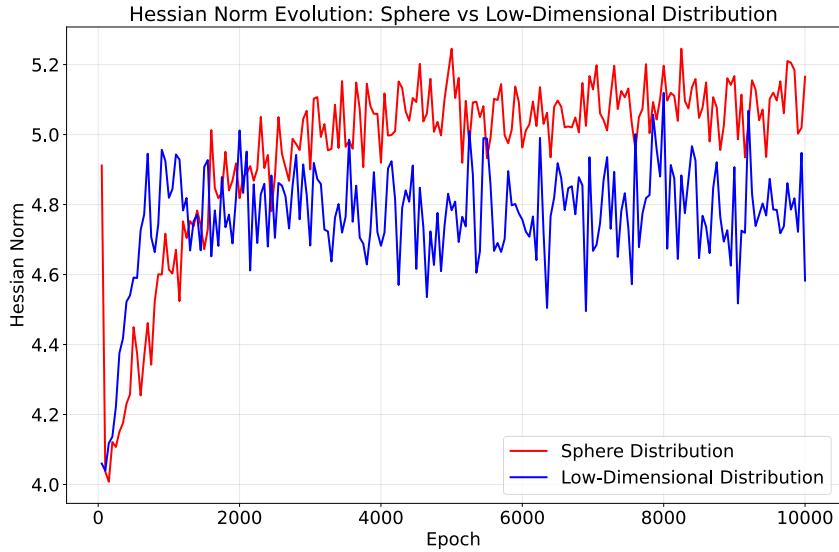


Figure 7: $\lambda_{\max}(\nabla_{\theta}\mathcal{L})$ -curves. Both of the curves oscillates around $2/\eta = 5$, signaling the edge of stability regime.

C.3 EXPERIMENTAL DETAILS OF SECTION 4.3

We complement the main experiments with a controlled comparison between real data (MNIST) and synthetic Gaussian noise under the same ground-truth function. The goal is to illustrate how the geometry of real-world data affects the speed and nature of memorization by GD.

We fix a ground-truth predictor f (a two-layer ReLU network) and generate noisy labels

$$y_i = f(\mathbf{x}_i) + \xi_i, \quad \xi_i \sim \mathcal{N}(0, 1).$$

We then compare two input distributions of size $n = 30000$:

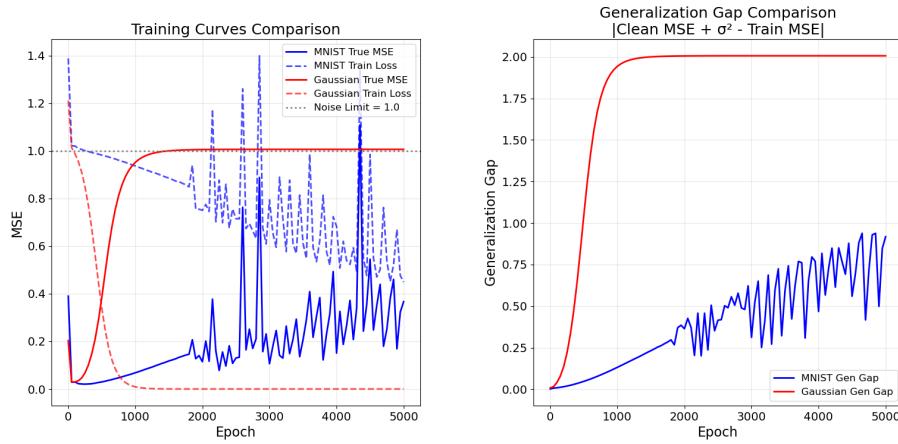
- (i) Gaussian inputs $\mathbf{x}_i \sim \mathcal{N}(0, I_d)$ with $d = 784$, and

1134 (ii) MNIST images $\mathbf{x}_i \in [0, 1]^{784}$ after normalization by 1/255.
 1135

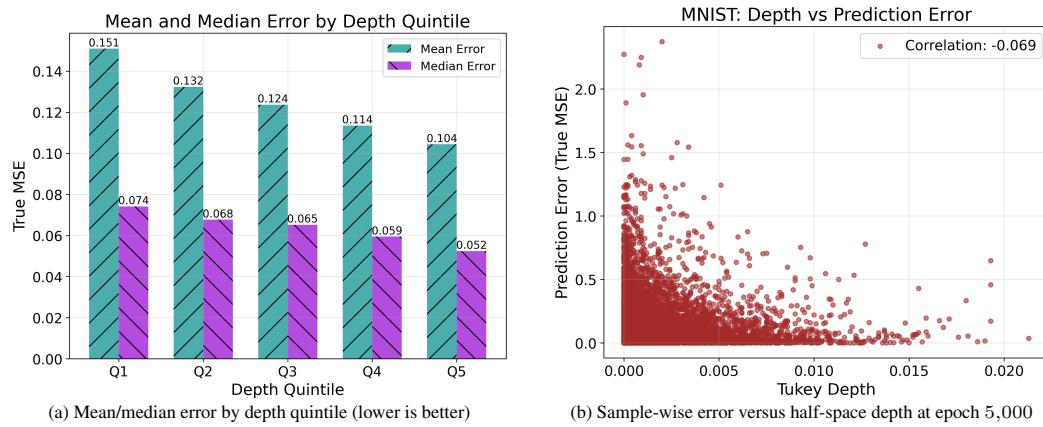
1136 Both datasets are trained with identical architecture (two-layer ReLU neuron network of 512 neu-
 1137 rons), initialization, learning rate $\eta = 0.2$, gradient clip threshold 50.

1138 We track both the empirical training loss and the *true* $MSE \frac{1}{n} \sum_{i=1}^n (\hat{f}(\mathbf{x}_i) - f(\mathbf{x}_i))^2$, which mea-
 1139 sures generalization. The horizontal dotted line at $y = 1$ corresponds to the noise variance and
 1140 represents the interpolation limit.
 1141

1142 Figure 8 shows training curves over the first 5000 epochs. On Gaussian inputs, GD rapidly interpo-
 1143 lates: the training loss vanishes and the true MSE rises to the noise limit within a few hundred steps.
 1144 On MNIST inputs, GD initially decreases both training loss and true MSE, entering a prolonged
 1145 BEOs regime where interpolation is resisted. Only after thousands of epochs does the true MSE
 1146 start to increase, suggesting that memorization occurs at a much slower rate.
 1147



1163 Figure 8: Training curves for Gaussian noise vs. MNIST over the first 5000 epochs. Gaussian
 1164 quickly interpolates, while MNIST remains in a BEOs regime where true MSE stays well below the
 1165 noise level.
 1166
 1167



1182 Figure 9: MNIST at 5,000 epochs: deeper points have smaller error. The shallow region produces
 1183 a long upper tail of errors, consistent with the annulus-interior decomposition used in our upper
 1184 bounds.
 1185
 1186
 1187

1188 **D FUNCTIONAL ANALYSIS OF SHALLOW RELU NETWORKS**
 1189

1190 **D.1 PATH-NORM AND VARIATION SEMI-NORM OF RELU NETWORKS**
 1191

1192 In this section, we summarize some result in (Parhi and Nowak, 2023) and (Siegel and Xu, 2023).

1193 **Definition D.1.** Let $f_{\theta}(x) = \sum_{k=1}^K v_k \phi(\mathbf{w}_k^T x - b_k) + \beta$ be a two-layer neural network. The
 1194 (unweighted) path-norm of f_{θ} is defined to be

1195
$$\|f_{\theta}\|_{\text{path}} := \sum_{k=1}^K |v_k| \|\mathbf{w}_k\|_2. \quad (14)$$

 1196

1197 **Dictionary representation of ReLU networks.** By the positive 1-homogeneity of ReLU, each
 1198 neuron can be rescaled without changing the realized function:

1201
$$v_k \phi(\mathbf{w}_k^T x - b_k) = a_k \phi(\mathbf{u}_k^T x - t_k), \quad \mathbf{u}_k := \frac{\mathbf{w}_k}{\|\mathbf{w}_k\|_2} \in \mathbb{S}^{d-1}, \quad t_k := \frac{b_k}{\|\mathbf{w}_k\|_2}, \quad a_k := v_k \|\mathbf{w}_k\|_2.$$

 1202

1203 Hence f_{θ} admits the normalized finite-sum form

1204
$$f(x) = \sum_{k=1}^{K'} a_k \phi(\mathbf{u}_k^T x - t_k) + \mathbf{c}^T x + c_0. \quad (15)$$

 1205

1206 Let the (ReLU) ridge dictionary be $\mathcal{D}_{\phi} := \{\phi(\mathbf{u}^T \cdot - t) : \mathbf{u} \in \mathbb{S}^{d-1}, t \in \mathbb{R}\}$. We study the *over-parameterized, width-agnostic* class given by the *union over all finite widths*

1207
$$\mathcal{F}_{\text{fin}} := \bigcup_{K \geq 1} \left\{ \sum_{k=1}^K a_k \phi(\mathbf{u}_k^T \cdot - t_k) + \mathbf{c}^T(\cdot) + c_0 \right\}, \quad (16)$$

 1208

1209 and measure complexity by the minimal path-norm needed to realize f :

1210
$$\|f\|_{\text{path,min}} := \inf \{\|f_{\theta}\|_{\text{path}} : f_{\theta} \equiv f \text{ of the form (15)}\}.$$

 1211

1212 **From finite sums to a width-agnostic integral representation.** To analyze \mathcal{F}_{fin} without committing to a fixed width K , we pass to a convex, measure-based description that *represents the closure/convex hull of (16)*. Specifically, let ν be a finite signed Radon measure on $\mathbb{S}^{d-1} \times [-R, R]$ and consider

1213
$$f(x) = \int_{\mathbb{S}^{d-1} \times [-R, R]} \phi(\mathbf{u}^T x - t) \, d\nu(\mathbf{u}, t) + \mathbf{c}^T x + c_0. \quad (17)$$

 1214

1215 Any finite network (15) corresponds to the *sparse* measure $\nu = \sum_{k=1}^K a_k \delta_{(\mathbf{u}_k, t_k)}$, and conversely sparse measures yield finite networks. Thus, (17) is a *width-agnostic relaxation* of (14), not an assumption of an infinite-width limit.

1216 **Definition D.2.** The (unweighted) variation (semi)norm

1217
$$|f|_{\text{V}} := \inf \{\|\nu\|_{\mathcal{M}} : f \text{ admits (15) for some } (\nu, \mathbf{c}, c_0)\}, \quad (18)$$

 1218

1219 where $\|\nu\|_{\mathcal{M}}$ is the total variation of ν .

1220 For the compact region $\Omega = \mathbb{B}_R^d$, we define the bounded variation function class as

1221
$$\text{V}_C(\Omega) := \left\{ f: \Omega \rightarrow \mathbb{R} \mid f = \int_{\mathbb{S}^{d-1} \times [-R, R]} \phi(\mathbf{u}^T x - t) \, d\nu(\mathbf{u}, t) + \mathbf{c}^T x + b, |f|_{\text{V}} \leq C \right\}. \quad (19)$$

 1222

1223 Specifically, by identifying (15) with the atomic measure $\nu = \sum_k a_k \delta_{(\mathbf{u}_k, t_k)}$, we have

1224
$$|f|_{\text{V}} \leq \sum_k |a_k| = \|f_{\theta}\|_{\text{path}}, \quad \text{hence} \quad |f|_{\text{V}} \leq \|f\|_{\text{path,min}}.$$

 1225

1226 Conversely, the smallest variation needed to represent f equals the smallest path-norm across all finite decompositions,

1227
$$\|f\|_{\text{path,min}} = |f|_{\text{V}}. \quad (20)$$

1228 Thus, the variation seminorm (18) is the *nonparametric* counterpart of the path-norm, which captures the same notion of complexity but *without fixing the width K* .

Remark D.3 (“Arbitrary width” \neq “infinite width”). Our analysis concerns \mathcal{F}_{fin} in (16), i.e., the union over all finite widths. The integral model (17) is a convexification/closure of this union that facilitates analysis and regularization; it does not assume an infinite-width limit. In variational training with a total-variation penalty on ν , first-order optimality ensures sparse solutions (finite support of ν), which correspond to finite-width networks. Thus, all results in this paper apply to arbitrary (but finite) width, and the continuum measure is only a device to characterize and control $\|f\|_{\text{path,min}}$.

D.2 TOTAL VARIATION SEMI-NORM ON RADON DOMAIN

We now connect the (unweighted) variation semi-norm of shallow ReLU networks to an analytic description on the *Radon domain*. Our presentation follows (Parhi and Nowak, 2021; 2023).

Definition D.4. For a function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ and $(\mathbf{u}, t) \in \mathbb{S}^{d-1} \times \mathbb{R} := \mathbb{S}^{d-1} \times \mathbb{R}$, the Radon transform and its dual are defined by

$$\mathcal{R}f(\mathbf{u}, t) = \int_{\{\mathbf{x}: \mathbf{u}^\top \mathbf{x} = t\}} f(\mathbf{x}) \, d\mathbf{x}$$

$$\mathcal{R}^* \{\Phi\}(\mathbf{x}) = \int_{\mathbb{S}^{d-1}} \Phi(\mathbf{u}, \mathbf{u}^\top \mathbf{x}) \, d\sigma(\mathbf{u}).$$

The Radon framework encodes a function f by its integrals over affine hyperplanes faithfully in the sense that the Radon transform is invertible up to a known dimension-dependent constant via a one-dimensional ramp filter in t .

Proposition D.5 (Filtered backprojection (Radon inversion)). There exists $c_d > 0$ such that

$$c_d f = \mathcal{R}^* \{\Lambda_{d-1} \mathcal{R}f\},$$

where Λ_{d-1} acts in the t -variable with Fourier symbol $\widehat{\Lambda_{d-1} \Phi}(\mathbf{u}, \omega) = i^{d-1} |\omega|^{d-1} \widehat{\Phi}(\mathbf{u}, \omega)$.

The inversion formula motivates measuring the ridge-curvature of f by differentiating in the Radon offset t after filtering, and aggregating its magnitude over all orientations and offsets.

The next definition is the sole norm we need on the Radon domain; it specializes all higher-order variants to the ReLU case.

Definition D.6 (Second-order Radon total variation (ReLU case)). The (second-order) Radon total-variation seminorm is

$$\mathcal{RTV}^2(f) := \left\| \mathcal{R} \left\{ (-\Delta)^{\frac{d+1}{2}} f \right\} \right\|_{\mathcal{M}(\mathbb{S}^{d-1} \times \mathbb{R})},$$

where the fractional power is understood in the tempered-distribution sense. The null space of $\mathcal{RTV}^2(\cdot)$ is the set of affine functions on \mathbb{R}^d .

Proposition D.7 (Equivalence of seminorms on bounded domains (Parhi and Nowak, 2021)). Let $\mathcal{B} = \mathbb{B}_R^d$. For any $f : \mathcal{B} \rightarrow \mathbb{R}$ with finite variation seminorm, its canonical extension f_{ext} to \mathbb{R}^d satisfies

$$|f|_V = \mathcal{RTV}^2(f_{\text{ext}}),$$

and, in particular, for any finite two-layer ReLU network in reduced form $f_{\theta}(\mathbf{x}) = \sum_{k=1}^K v_k \phi(\mathbf{w}_k^\top \mathbf{x} - b_k) + \mathbf{c}^\top \mathbf{x} + c_0$,

$$\mathcal{RTV}^2(f_{\theta}) = \sum_{k=1}^K |v_k| \|\mathbf{w}_k\|_2,$$

which equals the minimal (unweighted) path-norm needed to realize f_{θ} on \mathbb{B}_R^d .

The key structural reason is simple: $\partial_t^2 \Lambda_{d-1} \mathcal{R}$ turns each ReLU ridge $\phi(\mathbf{u}^\top \mathbf{x} - t)$ into a Dirac mass at (\mathbf{u}, t) on $\mathbb{S}^{d-1} \times \mathbb{R}$, so superpositions of ridges correspond exactly to finite signed measures on $\mathbb{S}^{d-1} \times \mathbb{R}$, and the total-variation of that measure coincides with both the variation seminorm and $\mathcal{RTV}^2(\cdot)$ after fixing the affine null space.

Remark D.8 (Takeaway). For ReLU networks on bounded domains, the three viewpoints

path-norm $\|f\|_{\text{path}} \longleftrightarrow$ unweighted variation $|f|_V \longleftrightarrow$ Radon-TV $\mathcal{RTV}(f)$

are equivalent up to the affine null space. We will freely switch between them in the sequel.

1296 D.3 THE METRIC ENTROPY OF VARIATION SPACES
12971298 Metric entropy quantifies the compactness of a set A in a metric space (X, ρ_X) . Below we introduce
1299 the definition of covering numbers and metric entropy.1300 **Definition D.9** (Covering Number and Entropy). *Let A be a compact subset of a metric space
1301 (X, ρ_X) . For $t > 0$, the covering number $N(A, t, \rho_X)$ is the minimum number of closed balls of
1302 radius t needed to cover A :*

1303
$$N(t, A, \rho_X) := \min \left\{ N \in \mathbb{N} : \exists x_1, \dots, x_N \in X \text{ s.t. } A \subset \bigcup_{i=1}^N \mathbb{B}(x_i, t) \right\}, \quad (21)$$

1304
1305

1306 where $\mathbb{B}(x_i, t) = \{y \in X : \rho_X(y, x_i) \leq t\}$. The metric entropy of A at scale t is defined as:

1307
$$H_t(A)_X := \log N(t, A, \rho_X). \quad (22)$$

1308

1309 The metric entropy of the bounded variation function class has been studied in previous works. More
1310 specifically, we will directly use the one below in future analysis.1311 **Proposition D.10** (Parhi and Nowak 2023, Appendix D). *The metric entropy of $V_C(\mathbb{B}_R^d)$ (see Definition D.2) with respect to the $L^\infty(\mathbb{B}_R^d)$ -distance $\|\cdot\|_\infty$ satisfies*

1312
$$\log N(t, V_C(\mathbb{B}_R^d), \|\cdot\|_\infty) \lesssim_d \left(\frac{C}{t} \right)^{\frac{2d}{d+3}}. \quad (23)$$

1313
1314

1315 where \lesssim_d hides constants (which could depend on d) and logarithmic factors.1316 D.4 GENERALIZATION GAP OF UNWEIGHTED VARIATION FUNCTION CLASS
13171318 As a middle step towards bounding the generalization gap of the weighted variation function class,
1319 we first bound the generalization gap of the unweighted variation function class according to a metric
1320 entropy analysis.1321 **Lemma D.11.** *Let $\mathcal{F}_{M,C} = \{f \in V_C(\mathbb{B}_R^d) \mid \|f\|_\infty \leq M\}$ with $M \geq D$. Then let $\mathcal{D} \sim \mathcal{P}^{\otimes n}$ be a
1322 sampled data set of size n , with probability at least $1 - \delta$,*

1323
$$\sup_{f \in \mathcal{F}_{M,C}} |R(f) - \hat{R}_{\mathcal{D}}(f)| \lesssim_d C^{\frac{d}{2d+3}} M^{\frac{3(d+2)}{2d+3}} n^{-\frac{d+3}{4d+6}} + M^2 \left(\frac{\log(4/\delta)}{n} \right)^{-\frac{1}{2}}. \quad (24)$$

1324

1325 *Proof.* According to Proposition D.10, one just needs $N(t)$ balls to cover \mathcal{F} in $\|\cdot\|_\infty$ with radius
1326 $t > 0$ such that where

1327
$$\log N(t) \lesssim_d \left(\frac{C}{t} \right)^{\frac{2d}{d+3}}.$$

1328

1329 Then for any $f, g \in \mathcal{F}_{M,C}$ and any (x, y) ,

1330
$$|(f(x) - y)^2 - (g(x) - y)^2| = |f(x) - g(x)| |f(x) + g(x) - 2y| \leq 4M \|f - g\|_\infty.$$

1331

1332 Hence replacing f by a centre f_i within t changes both the empirical and true risks by at most $4Mt$.1333 For any fixed centre \bar{f} in the covering, Hoeffding's inequality implies that with probability at least
1334 $\geq 1 - \delta$, we have

1335
$$|R(\bar{f}) - \hat{R}_{\mathcal{D}}(\bar{f})| \leq 4M^2 \sqrt{\frac{\log(2/\delta)}{n}} \quad (25)$$

1336

1337 because each squared error lies in $[0, 4M^2]$. Then we take all the centers with union bound to deduce
1338 that with probability at least $1 - \delta/2$, for any center \bar{f} in the set of covering index, we have

1339
$$\begin{aligned} |R(\bar{f}) - \hat{R}_{\mathcal{D}}(\bar{f})| &\leq 4M^2 \sqrt{\frac{\log(4N(t)/\delta)}{n}} \\ &\lesssim M^2 \cdot \left(\frac{C}{t} \right)^{\frac{d}{d+3}} \left(\frac{1}{n} \right)^{-\frac{1}{2}} + M^2 \left(\frac{\log(4/\delta)}{n} \right)^{-\frac{1}{2}} \\ &\lesssim_d M^2 \cdot \left(\frac{C}{t} \right)^{\frac{d}{d+3}} \left(\frac{1}{n} \right)^{-\frac{1}{2}}, \end{aligned} \quad (26)$$

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350 where \lesssim_d hides the logarithmic factors about $1/\delta$ and constants.
 1351

1352 According to the definition of covering sets, for any $f \in \mathcal{F}_{M,C}$, we have that $\|f - \bar{f}\|_\infty \leq t$ for
 1353 some center \bar{f} . Then we have

$$\begin{aligned} 1354 \quad & |R(f) - \hat{R}_{\mathcal{D}}(f)| \\ 1355 \quad & \lesssim_d |R(\bar{f}) - \hat{R}_{\mathcal{D}}(\bar{f})| + O(Mt) \\ 1356 \quad & \lesssim_d M^2 \cdot \left(\frac{C}{t}\right)^{\frac{d}{d+3}} n^{-\frac{1}{2}} + O(Mt). \\ 1357 \\ 1358 \\ 1359 \end{aligned} \tag{27}$$

1360 After tuning t to be the optimal choice, we deduce that (24). \square
 1361

1362 E DATA-DEPENDENT REGULARITY FROM EDGE-OF-STABILITY

1364 This section summarizes the *data-dependent regularity* induced by minima stability for two-layer
 1365 ReLU networks.
 1366

1367 E.1 FUNCTION SPACE VIEWPOINT OF NEURAL NETWORKS BELOW THE EDGE OF 1368 STABILITY

1369 Recall the notations: given a dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n \subset \mathbb{R}^d \times \mathbb{R}$, we define the data-dependent
 1370 weight function $g_{\mathcal{D}} : \mathbb{S}^{d-1} \times \mathbb{R} \rightarrow \mathbb{R}$ by
 1371

$$1372 \quad g_{\mathcal{D}}(\mathbf{u}, t) := \min\{\tilde{g}_{\mathcal{D}}(\mathbf{u}, t), \tilde{g}_{\mathcal{D}}(-\mathbf{u}, -t)\},$$

1373 where
 1374

$$1375 \quad \tilde{g}_{\mathcal{D}}(\mathbf{u}, t) := \mathbb{P}_{\mathcal{D}}(\mathbf{X}^T \mathbf{u} > t)^2 \cdot \mathbb{E}_{\mathcal{D}}[\mathbf{X}^T \mathbf{u} - t \mid \mathbf{X}^T \mathbf{u} > t] \cdot \sqrt{1 + \|\mathbb{E}_{\mathcal{D}}[\mathbf{X} \mid \mathbf{X}^T \mathbf{u} > t]\|^2}. \tag{28}$$

1377 Here, \mathbf{X} denotes a random draw uniformly sampled from $\{\mathbf{x}_i\}_{i=1}^n$, so that $\mathbb{P}_{\mathcal{D}}, \mathbb{E}_{\mathcal{D}}$ refer to probability
 1378 and expectation under the empirical distribution $\frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}_i}$. When the dataset \mathcal{D} is fixed and
 1379 clear from context, we will simply write g in place of $g_{\mathcal{D}}$.

1380 Then the curvature constrain on the loss landscape of \mathcal{L} is converted into a weighted path norm
 1381 constrain in the following sense.

1382 **Proposition E.1** (Finite-sum version of Theorem 3.2 in (Liang et al., 2025)). *Suppose that $f_{\theta}(\mathbf{x}) =$
 1383 $\sum_{k=1}^K v_k \phi(\mathbf{w}_k^T \mathbf{x} - b_k) + \beta$ is two-layer neural network such that the loss \mathcal{L} is twice differentiable
 1384 at θ . Then*

$$1386 \quad \sum_{k=1}^K |v_k| \|\mathbf{w}_k\| \cdot g\left(\frac{\mathbf{w}_k}{\|\mathbf{w}_k\|}, \frac{b_k}{\|\mathbf{w}_k\|}\right) \leq \frac{\lambda_{\max}(\nabla_{\theta}^2 \mathcal{L}(\theta))}{2} - \frac{1}{2} + (R+1)\sqrt{2\mathcal{L}(\theta)}. \tag{29}$$

1388 If we write f_{θ} into a reduced form in (15), then we have
 1389

$$1390 \quad \sum_{k=1}^{K'} a_k \cdot g\left(\mathbf{u}_k, t_k\right) \leq \frac{\lambda_{\max}(\nabla_{\theta}^2 \mathcal{L}(\theta))}{2} - \frac{1}{2} + (R+1)\sqrt{2\mathcal{L}(\theta)}. \tag{30}$$

1393 Therefore, we bring up the definition the g -weighted path norm and variation norm are introduced
 1394 as prior work introduced (Liang et al., 2025; Nacson et al., 2023).

1396 **Definition E.2.** *Let $f_{\theta}(\mathbf{x}) = \sum_{k=1}^K v_k \phi(\mathbf{w}_k^T \mathbf{x} - b_k) + \beta$ be a two-layer neural network. The
 1397 (g -)weighted path-norm of f_{θ} is defined to be*

$$1398 \quad \|f_{\theta}\|_{\text{path},g} := \sum_{k=1}^K |v_k| \|\mathbf{w}_k\|_2 \cdot g\left(\frac{\mathbf{w}_k}{\|\mathbf{w}_k\|}, \frac{b_k}{\|\mathbf{w}_k\|}\right). \tag{31}$$

1401 Similarly, for functions of the form
 1402

$$1403 \quad f_{\nu, \mathbf{c}, c_0}(\mathbf{x}) = \int_{\mathbb{S}^{d-1} \times [-R, R]} \phi(\mathbf{u}^T \mathbf{x} - t) d\nu(\mathbf{u}, t) + \mathbf{c}^T \mathbf{x} + c_0, \quad \mathbf{x} \in \mathbb{R}^d, \tag{32}$$

1404 where $R > 0$, $\mathbf{c} \in \mathbb{R}^d$, and $c_0 \in \mathbb{R}$, we define the g -weighted variation (semi)norm as

$$1406 \quad |f|_{V_g} := \inf_{\substack{\nu \in \mathcal{M}(\mathbb{S}^{d-1} \times [-R, R]) \\ \mathbf{c} \in \mathbb{R}^d, c_0 \in \mathbb{R}}} \|g \cdot \nu\|_{\mathcal{M}} \quad \text{s.t.} \quad f = f_{\nu, \mathbf{c}, c_0}, \quad (33)$$

1408 where, if there does not exist a representation of f in the form of (32), then the seminorm is un-
1409 derstood to take the value $+\infty$. Here, $\mathcal{M}(\mathbb{S}^{d-1} \times [-R, R])$ denotes the Banach space of (Radon)
1410 measures and, for $\mu \in \mathcal{M}(\mathbb{S}^{d-1} \times [-R, R])$, $\|\mu\|_{\mathcal{M}} := \int_{\mathbb{S}^{d-1} \times [-R, R]} d|\mu|(\mathbf{u}, t)$ is the measure-
1411 theoretic total-variation norm.

1412 With this seminorm, we define the Banach space of functions $V_g(\mathbb{B}_R^d)$ on the ball $\mathbb{B}_R^d := \{\mathbf{x} \in \mathbb{R}^d : \|\mathbf{x}\|_2 \leq R\}$ as the set of all functions f such that $|f|_{V_g}$ is finite. When $g \equiv 1$, $|\cdot|_{V_g}$ and
1413 $V_g(\mathbb{B}_R^d)$ coincide with the variation (semi)norm and variation norm space of [Bach \(2017\)](#).

1414 For convenience, we introduce the notation of bounded weighted variation class

$$1415 \quad \mathcal{F}_g(\Omega; M, C) := \{f : \Omega \rightarrow \mathbb{R} \mid |f|_{V_g} \leq C, \|f\|_{\Omega, L^\infty} \leq M\}. \quad (34)$$

1416 In particular, for any $\theta \in \Theta_g(\Omega; M, C)$, we have $f_\theta \in \mathcal{F}_g(\Omega; M, C)$.

1417 Within this framework together with the connection between $|\cdot|_V$ and $\mathcal{RTV}^2(\cdot)$ as summarized in
1418 Section D.2, we show the functional characterization of stable minima.

1419 **Theorem E.3.** For any $f_\theta \in \Theta_{\text{BEOs}}(\eta, \mathcal{D})$, $|f_\theta|_{V_g} = \|g \cdot \mathcal{R}(-\Delta)^{\frac{d+1}{2}} f_\theta\|_{\mathcal{M}} \leq \frac{1}{\eta} - \frac{1}{2} + (R + 1)\sqrt{2\mathcal{L}(\theta)}$.

1420 The detailed explanation and proof can be found in [\(Liang et al., 2025, Theorem 3.2, Corollary 3.3, Theorem 3.4, Appendix C, D\)](#).

1421 E.2 EMPIRICAL PROCESS FOR THE WEIGHT FUNCTION g

1422 The implicit regularization of Edge-of-Stability induces a *data-dependent* regularity weight on the
1423 cylinder $\mathbb{S}^{d-1} \times \mathbb{R} := \mathbb{S}^{d-1} \times [-1, 1]$. Denote this empirical weight by $g_{\mathcal{D}}$ for a dataset $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^n$. Directly analyzing generalization through the random, data-dependent class weighted by
1424 $g_{\mathcal{D}}$ is conceptually delicate, since the hypothesis class itself depends on the sample. To separate
1425 *statistical* from *algorithmic* randomness, we adopt the following paradigm.

- 1426 (I) Fix an underlying distribution \mathcal{P} for X with only the support assumption $\text{supp}(\mathcal{P}) \subseteq \mathbb{B}_R^d := \{\mathbf{x} \in \mathbb{R}^d : \|\mathbf{x}\| \leq R\}$. Define a *population* reference weight $g_{\mathcal{P}}$ on $\mathbb{S}^{d-1} \times \mathbb{R}$
1427 (see below). This anchors a distribution-level notion of regularity independent of the par-
1428 ticular sample.
- 1429 (ii) For a realized dataset $\mathcal{D} \sim \mathcal{P}^{\otimes n}$, form the empirical plug-ins that define $g_{\mathcal{D}}$ on the same
1430 index set $\mathbb{S}^{d-1} \times \mathbb{R}$.
- 1431 (iii) Use empirical-process theory to control the uniform deviation $\|g_{\mathcal{D}} - g_{\mathcal{P}}\|_\infty$ with high prob-
1432 ability over the draw of \mathcal{D} . After this step, we can *condition on the high-probability event*
1433 and regard \mathcal{D} as fixed in any subsequent analysis.

1434 Let $\mathbf{X} \sim \mathcal{P}$ with $\text{supp}(\mathcal{P}) \subseteq \mathbb{B}_R^d$. For $(\mathbf{u}, t) \in \mathbb{S}^{d-1} \times \mathbb{R}$ define

$$1435 \quad p_{\mathcal{P}}(\mathbf{u}, t) := \mathcal{P}(\mathbf{X}^\top \mathbf{u} > t), \quad s_{\mathcal{P}}(\mathbf{u}, t) := \mathbb{E}_{\mathbf{X} \sim \mathcal{P}}[(\mathbf{X}^\top \mathbf{u} - t)_+].$$

1436 On the unit ball we have $0 \leq (\mathbf{X}^\top \mathbf{u} - t)_+ \leq 2$ and $\|\mathbb{E}_{\mathcal{P}}[\mathbf{X} \mid \mathbf{X}^\top \mathbf{u} > t]\| \leq 1$, which yields the
1437 *pointwise equivalence*

$$1438 \quad g_{\mathcal{P}}(\mathbf{u}, t) \asymp p_{\mathcal{P}}(\mathbf{u}, t) s_{\mathcal{P}}(\mathbf{u}, t) \quad (\text{with absolute constants}). \quad (35)$$

1439 Given a dataset $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^n$, let $\mathbb{P}_{\mathcal{D}}, \mathbb{E}_{\mathcal{D}}$ denote probability and expectation under the empirical
1440 distribution $\frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}_i}$. Define

$$1441 \quad p_{\mathcal{D}}(\mathbf{u}, t) := \mathbb{P}_{\mathcal{D}}(\mathbf{X}^\top \mathbf{u} > t) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{\mathbf{x}_i^\top \mathbf{u} > t\}, \quad s_{\mathcal{D}}(\mathbf{u}, t) := \mathbb{E}_{\mathcal{D}}[(\mathbf{X}^\top \mathbf{u} - t)_+] = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i^\top \mathbf{u} - t)_+,$$

1442 and the empirical weight

$$1443 \quad g_{\mathcal{D}}(\mathbf{u}, t) \asymp p_{\mathcal{D}}(\mathbf{u}, t) s_{\mathcal{D}}(\mathbf{u}, t). \quad (36)$$

1458
1459 **Lemma E.4** (Uniform deviation for halfspaces). *There exists a universal constant $C > 0$ such that,*
1460 *for every $\delta \in (0, 1)$,*

1461
$$\mathbb{P} \left(\sup_{\mathbf{u} \in \mathbb{S}^{d-1}, t \in [-1, 1]} |p_{\mathcal{D}}(\mathbf{u}, t) - p_{\mathcal{P}}(\mathbf{u}, t)| > C \sqrt{\frac{d + \log(1/\delta)}{n}} \right) \leq \delta.$$

1462
1463

1464 *Proof.* The class $\{(\mathbf{x} \mapsto \mathbf{1}\{\mathbf{x}^T \mathbf{u} > t\}) : \mathbf{u} \in \mathbb{S}^{d-1}, t \in \mathbb{R}\}$ has VC-dimension $d + 1$. Apply the
1465 VC-uniform convergence inequality for $\{0, 1\}$ -valued classes (e.g., [Vapnik \(1998\)](#)) to the index set
1466 $\mathbb{S}^{d-1} \times [-1, 1]$ to obtain the stated bound. \square
1467

1468 **Lemma E.5** (Uniform deviation for ReLU). *There exists a universal constant $C > 0$ such that, for*
1469 *every $\delta \in (0, 1)$,*

1470
$$\mathbb{P} \left(\sup_{\mathbf{u} \in \mathbb{S}^{d-1}, t \in [-1, 1]} |s_{\mathcal{D}}(\mathbf{u}, t) - s_{\mathcal{P}}(\mathbf{u}, t)| > C \sqrt{\frac{d + \log(1/\delta)}{n}} \right) \leq \delta.$$

1471
1472
1473

1474 *Proof.* Let $\mathcal{F} := \{f_{\mathbf{u}, t}(\mathbf{x}) = (\mathbf{u}^T \mathbf{x} - t)_+ : \mathbf{u} \in \mathbb{S}^{d-1}, t \in [-1, 1]\}$. Since $\|\mathbf{x}\| \leq 1$ and
1475 $t \in [-1, 1]$, every $f \in \mathcal{F}$ takes values in $[0, 2]$. Consider the subgraph class
1476
1477

$$\text{subG}(\mathcal{F}) = \{(\mathbf{x}, y) \in \mathbb{R}^d \times \mathbb{R} : y \leq (\mathbf{u}^T \mathbf{x} - t)_+\}.$$

1478 For any (\mathbf{x}, y) with $y \leq 0$, membership in $\text{subG}(\mathcal{F})$ holds for all parameters, hence such points do
1479 not contribute to shattering. For points with $y > 0$, the condition $y \leq (\mathbf{u}^T \mathbf{x} - t)_+$ is equivalent
1480 to $\mathbf{u}^T \mathbf{x} - t - y \geq 0$, i.e., an affine halfspace in \mathbb{R}^{d+1} with variables (\mathbf{x}, y) . Therefore the family
1481 $\text{subG}(\mathcal{F})$ is (up to the immaterial fixed set $\{y \leq 0\}$) parametrized by affine halfspaces in \mathbb{R}^{d+1} ,
1482 whose VC-dimension is at most $d + 2$. By the standard equivalence $\text{Pdim}(\mathcal{F}) = \text{VCdim}(\text{subG}(\mathcal{F}))$,
1483 we obtain
1484

$$\text{Pdim}(\mathcal{F}) \leq d + 2.$$

1485 Then by [\(Haussler, 1992, Theorem 3, Theorem 6, Theorem 7\)](#), we
1486

1487
$$\sup_{(\mathbf{u}, t)} |s_{\mathcal{D}}(\mathbf{u}, t) - s_{\mathcal{P}}(\mathbf{u}, t)| \leq C \sqrt{\frac{d + \log(1/\delta)}{n}}$$

1488
1489

1490 with probability at least $1 - \delta$ for some universal constant C , which is the claimed bound. \square
1491

1492 **Theorem E.6** (Distribution-free uniform deviation for \hat{g}_n). *There exists a universal constant $C > 0$*
1493 *such that, for every $\delta \in (0, 1)$,*

1494
$$\mathbb{P} \left(\sup_{\mathbf{u} \in \mathbb{S}^{d-1}, t \in [-1, 1]} |g_{\mathcal{D}}(\mathbf{u}, t) - g_{\mathcal{P}}(\mathbf{u}, t)| > C \sqrt{\frac{d + \log(1/\delta)}{n}} \right) \leq 2\delta.$$

1495
1496

1497 *Proof.* By (35) and (36), it suffices (up to a universal factor) to control $|p_{\mathcal{D}} s_{\mathcal{D}} - p_{\mathcal{P}} s_{\mathcal{P}}|$. Using
1498 $0 \leq s_{\mathcal{D}}, s_{\mathcal{P}} \leq 2$ and $0 \leq p_{\mathcal{D}}, p_{\mathcal{P}} \leq 1$,
1499

$$|p_{\mathcal{D}} s_{\mathcal{D}} - p_{\mathcal{P}} s_{\mathcal{P}}| \leq |p_{\mathcal{D}} - p_{\mathcal{P}}| s_{\mathcal{P}} + |s_{\mathcal{D}} - s_{\mathcal{P}}| p_{\mathcal{P}} + |p_{\mathcal{D}} - p_{\mathcal{P}}| |s_{\mathcal{D}} - s_{\mathcal{P}}|$$

1500 Taking the supremum over $(\mathbf{u}, t) \in \mathbb{S}^{d-1} \times [-1, 1]$ and applying Lemmas E.4 and E.5 with a union
1501 bound yields
1502

1503
$$\mathbb{P} \left(\sup_{\mathbf{u}, t} |p_{\mathcal{D}} s_{\mathcal{D}} - p_{\mathcal{P}} s_{\mathcal{P}}| \gtrsim \sqrt{\frac{d + \log(1/\delta)}{n}} \right) \leq 2\delta.$$

1504
1505

1506 Finally, the equivalence $g \asymp p s$ transfers this bound to $|g_{\mathcal{D}} - g_{\mathcal{P}}|$ at the cost of an absolute multi-
1507 plicative factor and one more failure event. \square
1508

1509
1510
1511

1512 **F GENERALIZATION UPPER BOUND: MIXTURE OF LOW-DIMENSIONAL
1513 BALLS**
1514

1515 In this section, we present the proof of Theorem 3.10. We formalize the mixture model by the
1516 following setting.

1517 **Assumption F.1** (Mixture of low-dimensional balls). *Let $\{V_j\}_{j=1}^J$ be a finite collection of J distinct
1518 m -dimensional (affine) linear subspaces within \mathbb{R}^d . Let \mathcal{P} be a joint distribution over $\mathbb{R}^d \times \mathbb{R}$. The
1519 marginal distribution of the features \mathbf{x} under \mathcal{P} , denoted $\mathcal{P}_{\mathbf{X}}$, is a mixture distribution given by*
1520

1521
$$\mathcal{P}_{\mathbf{X}}(\mathbf{x}) = \sum_{j=1}^J p_j \mathcal{P}_{\mathbf{X},j}(\mathbf{x}), \quad \mathcal{P}_{\mathbf{X},j}(\mathbf{x}) = \mathcal{P}_{\mathbf{X}}(\mathbf{x} \mid \mathbf{x} \in V_j), \quad (37)$$

1522
1523

1524 where $p_j > 0$ are the mixture probabilities $\mathbb{P}(\mathbf{x} \in V_j)$ satisfying $\sum_{j=1}^J p_j = 1$. Each component
1525 distribution \mathcal{P}_j is the uniform distribution on the unit ball $\mathbb{B}_1^{V_j} := \{\mathbf{x} \in V_j : \|\mathbf{x}\|_2 \leq 1\}$. The
1526 corresponding labels y are generated from a conditional distribution $\mathcal{P}(y|\mathbf{x})$ and are assumed to be
1527 bounded, i.e., $|y| \leq D$ for some constant $D > 0$. Similarly, we define $\mathcal{P}_j(\mathbf{x}, y) = \mathcal{P}(\mathbf{x}, y \mid \mathbf{x} \in V_j)$.
1528

1529 First, we prove the simple case of single-subspace assumption ($J = 1$) via Theorem F.3.

1530 **F.1 CASE: UNIFORM DISTRIBUTION ON UNIT DISC OF A LINEAR SUBSPACE**

1531 Fix an m -dimensional subspace $V \subset \mathbb{R}^d$ and write $\mathbb{B}_1^V := \{\mathbf{x} \in V : \|\mathbf{x}\|_2 \leq 1\}$, the canonical
1532 linear projection $\text{proj}_V : \mathbb{R}^d \rightarrow V$. Recall the notations in (1): the parameters $\boldsymbol{\theta} :=$
1533 $\{(v_k, \mathbf{w}_k, b_k)\}_{k=1}^K, \beta\}$ with $\mathbf{w}_k \neq \mathbf{0}$, define a two-layer neural network
1534

1535
$$f_{\boldsymbol{\theta}}(\mathbf{x}) = \sum_{k=1}^K v_k \phi(\mathbf{w}_k^T \mathbf{x} - b_k) + \beta, \quad \bar{\mathbf{w}}_k := \frac{\mathbf{w}_k}{\|\mathbf{w}_k\|_2}, \quad \bar{b}_k := \frac{b_k}{\|\mathbf{w}_k\|_2}.$$

1536
1537

1538 Then we define neuronwise projection operator from neural networks to neural networks

1539
$$\text{proj}_V^* : f_{\boldsymbol{\theta}}(\mathbf{x}) \mapsto \sum_{k=1}^K v_k \phi((\text{proj}_V \mathbf{w}_k)^T \mathbf{x} - b_k) + \beta. \quad (38)$$

1540
1541

1542 **Lemma F.2** (Projection reduction). *Fix \mathcal{F} a hypothesis class of two-layer neural networks. Let \mathcal{P} be
1543 a joint distribution on (\mathbf{x}, y) supported on $\mathbb{R}^d \times [-D, D]$ such that the marginal distribution $\mathcal{P}_{\mathbf{X}}$ of
1544 \mathbf{x} supports on V . For any dataset $\mathcal{D} := \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ drawn i.i.d. from \mathcal{P} ,*
1545

1546
$$\sup_{f \in \mathcal{F}} \text{Gap}_{\mathcal{P}}(f; \mathcal{D}) = \sup_{f \in \mathcal{F}} \text{Gap}_{\mathcal{P}}(\text{proj}_V^* f; \mathcal{D}). \quad (39)$$

1547

1548 *Proof.* Because $\mathbf{x} \in V$ almost surely and in the sample, we have $f(\mathbf{x}) = (f \circ \text{proj}_V)(\mathbf{x})$ for every
1549 f and every $\mathbf{x} \in \mathbb{B}_1^V$. Using the identity $\mathbf{w}_k^T (\text{proj}_V \mathbf{x}) = (\text{proj}_V \mathbf{w}_k)^T \mathbf{x}$, we obtain $f \circ \text{proj}_V =$
1550 $\text{proj}_V^* f$ pointwise on \mathbb{B}_1^V . Hence for any $f \in \mathcal{F}$, $\text{Gap}_{\mathcal{P}}(f; \mathcal{D}) = \text{Gap}_{\mathcal{P}}(\text{proj}_V^* f; \mathcal{D})$. \square
1551

1552 **Theorem F.3.** *Let \mathcal{P} denote the joint distribution of (\mathbf{x}, y) . Assume that \mathcal{P} is supported on $\mathbb{B}_1^d \times$
1553 $[-D, D]$ for some $D > 0$ and that the marginal distribution of \mathbf{x} is $\text{Uniform}(\mathbb{B}_1^V)$. Fix a dataset
1554 $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$, where each (\mathbf{x}_i, y_i) is drawn i.i.d. from \mathcal{P} . Then, with probability $\geq 1 - \delta$,*
1555

1556
$$\sup_{\mathbf{f}_{\boldsymbol{\theta}} \in \Theta_{g_{\mathcal{D}}}(\mathbb{B}_1^{V_j}; M, C)} \text{Gap}_{\mathcal{P}}(\mathbf{f}_{\boldsymbol{\theta}}; \mathcal{D}) \lesssim_d C^{\frac{m}{m^2+4m+3}} M^2 n^{-\frac{1}{2m+4}} + M^2 \left(\frac{\log(4/\delta)}{n} \right)^{-\frac{1}{2}},$$

1557

1558 where $M := \max\{D, \|\mathbf{f}_{\boldsymbol{\theta}}\|_{L^\infty(\mathbb{B}_1^V)}, 1\}$ and \lesssim_d hides constants (which could depend on d).
1559

1560 *Proof.* By Lemma F.2, it remains to consider the case of $\text{proj}_V^* f_{\boldsymbol{\theta}}$. Similarly, for any $\mathbf{u} \in \mathbb{S}^{d-1}$ and
1561 any data set $\mathcal{D} \subset V$, we have $g(\mathbf{u}, t) = g(\text{proj}_V(\mathbf{u}), t)$. Therefore, we just need to consider the
1562 generalization gap with respect to the $\Theta_{g_{\mathcal{D}}}^V(\mathbb{B}_1^{V_j}; M, C) = \{\text{proj}_V^* f_{\boldsymbol{\theta}} : f_{\boldsymbol{\theta}} \in \Theta_{g_{\mathcal{D}}}(\mathbb{B}_1^{V_j}; M, C)\}$.
1563

1564 Therefore, we just need consider the case where the whole algorithm with any dataset sample from
1565 V operates in V and we get the result from (Liang et al., 2025, Theorem F.8) by replacing \mathbb{R}^d with
1566 $V \cong \mathbb{R}^m$. \square

1566
1567

F.2 PROOF OF THEOREM 3.10

1568
1569
1570
1571
1572
1573

In this section, we extend the generalization analysis from a single low-dimensional subspace to a more complex and practical scenario where the data is supported on a finite union of such subspaces. This setting is crucial for modeling multi-modal data, where distinct clusters can each be approximated by a low-dimensional linear structure. Our main result demonstrates that the sample complexity of stable minima adapts to the low intrinsic dimension of the individual subspaces, rather than the high ambient dimension of the data space.

1574
1575

F.2.1 ANALYSIS OF THE GLOBAL WEIGHT FUNCTION

1576
1577
1578
1579
1580
1581
1582

A critical step in our proof is to understand the relationship between the global weight function $g(\mathbf{u}, t)$, which is induced by the mixture distribution \mathcal{P} , and the local weight functions $g_j(\mathbf{u}, t)$, each induced by a single component distribution \mathcal{P}_j defined on V_j , which should be understood as the distribution conditioned to $\mathbf{x} \in V_j$. Fix a dataset \mathcal{D} , the function class $\Theta_{\text{BEoS}}(\eta; \mathcal{D})$ is defined by the properties of the global function g . To analyze the performance on a specific subspace V_j , we must ensure that the global regularity constraint is sufficiently strong when viewed locally. The following lemma provides this crucial guarantee.

1583
1584
1585

Lemma F.4 (Global-to-Local Weight Domination). *For any mixed distribution $\mathcal{P}_X = \sum_{j=1}^J p_j \mathcal{P}_{\mathbf{X},j}$ with $\text{supp}(\mathcal{P}_{\mathbf{X},j}) = V_j$. Let g be the global weight induced by the mixture \mathcal{P}_X , and g_j the weight induced by $\mathcal{P}_{\mathbf{X},j}$. For every $j \in \{1, \dots, J\}$,*

1586
1587
1588

$$g(\mathbf{u}, t) \geq \frac{p_j^2}{\sqrt{2}} g_j(\mathbf{u}, t), \quad \text{for all } (\mathbf{u}, t) \in \mathbb{S}^{d-1} \times \mathbb{R}. \quad (40)$$

1589

Consequently, for any $M, C > 0$,

1590
1591

$$\mathcal{F}_g(\mathbb{B}_1^{V_j}; M, C) \subseteq \mathcal{F}_{g_j}(\mathbb{B}_1^{V_j}; M, \sqrt{2}C/p_j^2). \quad (41)$$

1592
1593
1594

Proof. Fix j and the activation event $A := \{\mathbf{x} : \mathbf{u}^\top \mathbf{x} > t\}$. By definition of g (global) and g_j (local) we can write

1595
1596
1597
1598
1599
1600
1601

$$\begin{aligned} g(\mathbf{u}, t) &= \mathcal{P}_X(A)^2 \cdot \mathbb{E}_{\mathbf{x} \sim \mathcal{P}_X} [\mathbf{X}^\top \mathbf{u} - t \mid A] \cdot \sqrt{1 + \|\mathbb{E}_{\mathbf{x} \sim \mathcal{P}_X} [\mathbf{X} \mid A]\|_2^2} \\ g_j(\mathbf{u}, t) &= \mathcal{P}_X(A \mid \mathbf{x} \in V_j)^2 \cdot \mathbb{E}_{\mathbf{x} \sim \mathcal{P}_X} [\mathbf{X}^\top \mathbf{u} - t \mid A, \mathbf{x} \in V_j] \cdot \sqrt{1 + \|\mathbb{E}_{\mathbf{x} \sim \mathcal{P}_X} [\mathbf{X} \mid A, \mathbf{x} \in V_j]\|_2^2} \\ &= \mathcal{P}_{\mathbf{X},j}(A)^2 \cdot \mathbb{E}_{\mathbf{x} \sim \mathcal{P}_{\mathbf{X},j}} [\mathbf{X}^\top \mathbf{u} - t \mid A] \cdot \sqrt{1 + \|\mathbb{E}_{\mathbf{x} \sim \mathcal{P}_{\mathbf{X},j}} [\mathbf{X} \mid A]\|_2^2} \end{aligned}$$

1602
1603
1604

Using the law of total probability and total expectation for the mixture distribution $\mathcal{P}_X = \sum_{i=1}^J p_i \mathcal{P}_{\mathbf{X},i}$, and the non-negativity of $(\mathbf{X}^\top \mathbf{u} - t) \mathbb{1}_A$, we get

1605
1606
1607

$$\mathcal{P}_X(A) \geq p_j \mathcal{P}_{\mathbf{X},j}(A), \quad \mathbb{E}_{\mathbf{x} \sim \mathcal{P}_X} [(\mathbf{X}^\top \mathbf{u} - t) \mathbb{1}_A] \geq p_j \mathbb{E}_{\mathbf{x} \sim \mathcal{P}_{\mathbf{X},j}} [(\mathbf{X}^\top \mathbf{u} - t) \mathbb{1}_A].$$

Hence, by combining the first two terms of $g(\mathbf{u}, t)$ as $\mathcal{P}_X(A) \mathbb{E}_{\mathbf{x} \sim \mathcal{P}_X} [(\mathbf{X}^\top \mathbf{u} - t) \mathbb{1}_A]$, we have:

1608
1609

$$g(\mathbf{u}, t) \geq (p_j \mathcal{P}_{\mathbf{X},j}(A)) \cdot (p_j \mathbb{E}_{\mathbf{x} \sim \mathcal{P}_{\mathbf{X},j}} [(\mathbf{X}^\top \mathbf{u} - t) \mathbb{1}_A]) \cdot 1 = p_j^2 \mathcal{P}_{\mathbf{X},j}(A) \mathbb{E}_{\mathbf{x} \sim \mathcal{P}_{\mathbf{X},j}} [(\mathbf{X}^\top \mathbf{u} - t) \mathbb{1}_A].$$

1610

For the local weight function g_j , the same algebra gives

1611
1612
1613

$$g_j(\mathbf{u}, t) = \mathcal{P}_{\mathbf{X},j}(A) \mathbb{E}_{\mathbf{x} \sim \mathcal{P}_{\mathbf{X},j}} [(\mathbf{X}^\top \mathbf{u} - t) \mathbb{1}_A] \cdot \sqrt{1 + \|\mathbb{E}_{\mathbf{x} \sim \mathcal{P}_{\mathbf{X},j}} [\mathbf{X} \mid A]\|_2^2}.$$

1614
1615
1616

Since the support of $\mathcal{P}_{\mathbf{X},j}$ is $\mathbb{B}_1^{V_j}$, we have $\|\mathbf{X}\|_2 \leq 1$ almost surely under $\mathcal{P}_{\mathbf{X},j}$. This implies $\|\mathbb{E}_{\mathbf{x} \sim \mathcal{P}_{\mathbf{X},j}} [\mathbf{X} \mid A]\|_2 \leq 1$, and therefore $\sqrt{1 + \|\mathbb{E}_{\mathbf{x} \sim \mathcal{P}_{\mathbf{X},j}} [\mathbf{X} \mid A]\|_2^2} \leq \sqrt{2}$.

1617

Combining these results, we establish the lower bound:

1618
1619

$$g(\mathbf{u}, t) \geq \frac{p_j^2}{\sqrt{2}} \left(\mathcal{P}_{\mathbf{X},j}(A) \mathbb{E}_{\mathbf{x} \sim \mathcal{P}_{\mathbf{X},j}} [(\mathbf{X}^\top \mathbf{u} - t) \mathbb{1}_A] \cdot \sqrt{1 + \|\mathbb{E}_{\mathbf{x} \sim \mathcal{P}_{\mathbf{X},j}} [\mathbf{X} \mid A]\|_2^2} \right) = \frac{p_j^2}{\sqrt{2}} g_j(\mathbf{u}, t),$$

which proves (40). The class embedding (41) follows directly from the definition of the weighted variation seminorm. \square

Proposition F.5. *Let \mathcal{P} be a distribution defined in Assumption F.1 and recall that \mathcal{P}_j is \mathcal{P} conditional to $\mathbf{x} \in V_j$. Fix $j \in \{1, \dots, J\}$ and a data set $\mathcal{D} \sim \mathcal{P}^{\otimes n}$. Let $\mathcal{D}_j := \mathcal{D} \cap V_j$ and $n_j := |\mathcal{D}_j|$. Then with probability $1 - \delta$,*

$$\sup_{f_{\theta} \in \Theta_{\text{BEOs}}(\eta, \mathcal{D})} \text{Gap}_{\mathcal{P}_j}(f_{\theta}; \mathcal{D}_j) \lesssim_d \left(\frac{\frac{1}{\eta} - \frac{1}{2} + 4M}{p_j^2} \right)^{\frac{m}{m^2+4m+3}} M^2 n_j^{-\frac{1}{2m+4}} + M^2 \left(\frac{\log(4/\delta)}{n} \right)^{-\frac{1}{2}}. \quad (42)$$

where $M := \max\{D, \|f_{\theta}\|_{L^{\infty}(\mathbb{B}_1^{V_j})}, 1\}$ and \lesssim_d hides constants (which could depend on d).

Proof. Note that the notation $\text{Gap}_{\mathcal{P}_j}(f_{\theta}; \mathcal{D}_j)$ can be expanded into

$$\begin{aligned} \text{Gap}_{\mathcal{P}_j}(f_{\theta}; \mathcal{D}_j) &= \left| R_{\mathcal{P}_j}(f_{\theta}) - \widehat{R}_{\mathcal{D}_j}(f_{\theta}) \right| \\ &= \left| \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{P}_j} [(f_{\theta}(\mathbf{x}) - y)^2] - \widehat{R}_{\mathcal{D}_j}(f_{\theta}) \right| \\ &= \left| \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{P}} [(f_{\theta}(\mathbf{x}) - y)^2 \mid \mathbf{x} \in V_j] - \widehat{R}_{\mathcal{D}_j}(f_{\theta}) \right| \end{aligned}$$

Let $C = \frac{1}{\eta} - \frac{1}{2} + 4M$. According to (Liang et al., 2025, Corollary 3.3), we have that

$$f_{\theta} \in \Theta_{g_{\mathcal{D}}}(\mathbb{B}_1^{V_j}; M, C), \quad \forall \theta \in \Theta_{\text{BEOs}}(\eta; \mathcal{D}).$$

Then by Lemma F.4, we conclude that

$$\Theta_g(\mathbb{B}_1^{V_j}; M, C) \subseteq \Theta_{g_j}(\mathbb{B}_1^{V_j}; M, \sqrt{2}C/p_j^2),$$

where the weight functions g and g_j can be either empirical or population.

Therefore,

$$\sup_{\theta \in \Theta_{\text{BEOs}}(\eta; \mathcal{D})} \text{Gap}_{\mathcal{P}_j}(f_{\theta}; \mathcal{D}_j) \leq \sup_{f \in \Theta_{g_j}(\mathbb{B}_1^{V_j}; M, \sqrt{2}C/p_j^2)} \text{Gap}_{\mathcal{P}_j}(f; \mathcal{D}_j)$$

Then by Theorem F.3, we may conclude that

$$\sup_{f_{\theta} \in \mathcal{F}_{g_j}(\mathbb{B}_1^{V_j}; M, \sqrt{2}C/p_j^2)} \text{Gap}_{\mathcal{P}_j}(f_{\theta}; \mathcal{D}_j) \lesssim_d \left(\frac{\frac{1}{\eta} - \frac{1}{2} + 4M}{p_j^2} \right)^{\frac{m}{m^2+4m+3}} M^2 n_j^{-\frac{1}{2m+4}}$$

\square

Theorem F.6 (Generalization Bound for Mixture Models). *Let the data distribution \mathcal{P} be as defined in Assumption 1. Let $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ be a dataset of n i.i.d. samples drawn from \mathcal{P} . Then, with probability at least $1 - 2\delta$,*

$$\sup_{\theta \in \Theta_{\text{BEOs}}(\eta, \mathcal{D})} \text{Gap}_{\mathcal{P}}(f_{\theta}; \mathcal{D}) \lesssim_d \left(\frac{1}{\eta} - \frac{1}{2} + 4M \right)^{\frac{m}{m^2+4m+3}} M^2 J^{\frac{4}{m}} n^{-\frac{1}{2m+4}} + M^2 J \sqrt{\frac{\log(4J/\delta)}{2n}}. \quad (43)$$

where $M := \max\{D, \|f_{\theta}\|_{L^{\infty}(\mathbb{B}_1^V)}, 1\}$ and \lesssim_d hides constants (which could depend on d).

The proof proceeds in several steps. First, we establish a high-probability event where the number of samples drawn from each subspace is close to its expected value. Second, we decompose the total generalization gap into several terms. Finally, we bound each of these terms, showing that the dominant term is determined by the generalization performance on the individual subspaces, which scales with the intrinsic dimension m .

1674 *Proof.* Let $n_j = \sum_{i=1}^n \mathbb{1}_{\{x_i \in V_j\}}$ be the number of samples from the dataset \mathcal{D} that fall into the
 1675 subspace V_j . Each n_j is a random variable following a Binomial distribution, $n_j \sim \text{Bin}(n, p_j)$. We
 1676 need to ensure that for all subspaces simultaneously, the empirical proportion n_j/n is close to the
 1677 true probability p_j .

1678 We use Hoeffding's inequality for each $j \in \{1, \dots, J\}$. For any $\epsilon > 0$, $\mathbb{P}(|\frac{n_j}{n} - p_j| \geq \epsilon) \leq$
 1679 $2e^{-2n\epsilon^2}$. To ensure this holds for all J subspaces at once, we apply a union bound. Let δ_j be the
 1680 failure probability allocated to the j -th subspace. The total failure probability is at most $\sum_{j=1}^J \delta_j =$
 1681 δ , so we set $\delta_j = \delta/J$ and yields $\epsilon = \sqrt{\frac{\log(2J/\delta)}{2n}}$.

1682 Let \mathcal{E} be the event that $|\frac{n_j}{n} - p_j| \leq \epsilon$ holds for all $j = 1, \dots, J$. We have shown that $\mathbb{P}(\mathcal{E}) \geq 1 - \delta$.
 1683 The remainder of our proof is conditioned on this event \mathcal{E} . A direct consequence of this event is a
 1684 lower bound on each n_j

$$n_j \geq np_j - n\epsilon = np_j - \sqrt{\frac{n}{2} \log \frac{2J}{\delta}}. \quad (44)$$

1688 Now we decompose the generalization gap using the law of total expectation for the true risk and by
 1689 partitioning the empirical sum for the empirical risk.

1690 Let \mathcal{P}_j denote the distribution \mathcal{P} conditioned on $x \in V_j$, and let $\mathcal{D}_j = \mathcal{D} \cap V_j$.

$$\begin{aligned} \text{Gap}_{\mathcal{P}}(f_{\theta}; \mathcal{D}) &= \left| R(f_{\theta}) - \widehat{R}_{\mathcal{D}}(f_{\theta}) \right| \\ &= \left| \sum_{j=1}^J p_j \mathbb{E}_{\mathbf{x} \sim \mathcal{P}} [(f(\mathbf{x}) - y)^2 \mid \mathbf{x} \in V_j] - \sum_{j=1}^J \frac{n_j}{n} \frac{1}{n_j} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}_j} (f(\mathbf{x}_i) - y_i)^2 \right| \\ &\leq \left| \sum_{j=1}^J p_j \mathbb{E}_{\mathbf{x} \sim \mathcal{P}_j} [(f_{\theta}(\mathbf{x}) - y)^2] - \sum_{j=1}^J p_j \frac{1}{n_j} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}_j} (f_{\theta}(\mathbf{x}_i) - y_i)^2 \right| \\ &\quad + \left| \sum_{j=1}^J p_j \frac{1}{n_j} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}_j} (f_{\theta}(\mathbf{x}_i) - y_i)^2 - \sum_{j=1}^J \frac{n_j}{n} \frac{1}{n_j} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}_j} (f_{\theta}(\mathbf{x}_i) - y_i)^2 \right| \\ &\leq \sum_{j=1}^J p_j \left| R_{\mathcal{P}_j}(f_{\theta}) - \widehat{R}_{\mathcal{D}_j}(f_{\theta}) \right| + \sum_{j=1}^J \left| p_j - \frac{n_j}{n} \right| \widehat{R}_{\mathcal{D}_j}(f_{\theta}) \\ &= \underbrace{\sum_{j=1}^J p_j \text{Gap}_{\mathcal{P}_j}(f_{\theta}; \mathcal{D}_j)}_{\text{Term A}} + \underbrace{\sum_{j=1}^J \left| p_j - \frac{n_j}{n} \right| \widehat{R}_{\mathcal{D}_j}(f_{\theta})}_{\text{Term B}} \end{aligned}$$

1718 where $\widehat{R}_{\mathcal{D}_j}(f) = \frac{1}{n_j} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}_j} (f(\mathbf{x}_i) - y_i)^2$.

1720
 1721
 1722
 1723 • **Bounding the Weighted Sum of Conditional Gaps (Term A):** According to Proposition
 1724 F.5, with probability at least $1 - \delta$, for each j ,

$$\text{Gap}_{\mathcal{P}_j}(f_{\theta}; \mathcal{D}_j) \lesssim_d \left(\frac{\frac{1}{\eta} - \frac{1}{2} + 4M}{p_j^2} \right)^{\frac{m}{m^2 + 4m + 3}} M^2 n_j^{-\frac{1}{2m+4}} + M^2 \left(\frac{\log(4J/\delta)}{n} \right)^{-\frac{1}{2}}.$$

1728 Conditioned on \mathcal{E} , we use the lower bound on n_j from (44), $n_j \leq np_j(1 - \epsilon/p_j)$.
1729

1730 $\text{Term A} = \sum_{j=1}^J p_j \text{Gap}_{\mathcal{P}_j}(f_{\theta}; \mathcal{D}_j)$
1731
1732
1733 $\lesssim_d \sum_{j=1}^J p_j \left(\frac{\frac{1}{\eta} - \frac{1}{2} + 4M}{p_j^2} \right)^{\frac{m}{m^2+4m+3}} M^2 (np_j(1 - \epsilon/p_j))^{-\frac{1}{2m+4}}$
1734
1735
1736 $= \left(\frac{1}{\eta} - \frac{1}{2} + 4M \right)^{\frac{m}{m^2+4m+3}} M^2 n^{-\frac{1}{2m+4}} \sum_{j=1}^J p_j \cdot (p_j^{-2})^{\frac{m}{m^2+4m+3}} \cdot \left(p_j - \sqrt{\frac{\log(2J/\delta)}{2n}} \right)^{-\frac{1}{2m+4}}$
1737
1738
1739 $\lesssim_d \left(\frac{1}{\eta} - \frac{1}{2} + 4M \right)^{\frac{m}{m^2+4m+3}} M^2 n^{-\frac{1}{2m+4}} \sum_{j=1}^J p_j^{1 - \frac{2m}{m^2+4m+3} - \frac{1}{2m+4}}.$
1740
1741

1742 The exponent of p_j simplifies to
1743

1744 $1 - \frac{2m}{(m+1)(m+3)} - \frac{1}{2m+4} = \frac{2m^3 + 7m^2 + 10m + 9}{2(m+1)(m+2)(m+3)}.$ (45)
1745

1746 For positive integers m , (45) is strictly increasing and bounded above by 1. In particular,
1747 when $m = 1$, (45) = $\frac{7}{12}$. Therefore, a brute-force upper bound is
1748

1749 $\sum_{j=1}^J p_j^{\frac{2m^3+7m^2+10m+9}{2(m+1)(m+2)(m+3)}} \leq J$
1750
1751

1752 and thus

1753 $\text{Term A} \lesssim_d \left(\frac{1}{\eta} - \frac{1}{2} + 4M \right)^{\frac{m}{m^2+4m+3}} M^2 n^{-\frac{1}{2m+4}} \sum_{j=1}^J p_j^{1 - \frac{2m}{m^2+4m+3} - \frac{1}{2m+4}}$
1754
1755
1756 $\lesssim_d \left(\frac{1}{\eta} - \frac{1}{2} + 4M \right)^{\frac{m}{m^2+4m+3}} M^2 J n^{-\frac{1}{2m+4}}.$
1757

1758 Note that the dependence of Term A on J is very mild. Indeed, if we denote
1759

1760 $\alpha(m) = 1 - \frac{2m}{m^2+4m+3} - \frac{1}{2m+4},$
1761

1762 then

1763 $\sum_{j=1}^J p_j^{\alpha(m)} \leq J^{1-\alpha(m)} \leq J^{\frac{2m}{m^2+4m+3} + \frac{1}{2m+4}} \leq J^{\frac{4}{m}},$
1764
1765

1766 since $\sum_j p_j = 1$. For large m , the exponent $\alpha(m)$ is close to 1, hence $\sum_j p_j^{\alpha(m)}$ remains
1767 essentially of order one. Consequently, the bound on Term A grows at most linearly with
1768 J , and in practice the J -dependence is negligible in high m . Here we use the power $4/m$
1769 upper for clean format.

1770 **• Bounding the Sampling Deviation Error (Term B):** Conditioned on the event \mathcal{E} , we have
1771 $|p_j - n_j/n| \leq \epsilon$ for all j . The empirical risk term is bounded because $\max\{|f(\mathbf{x})|, |y|\} \leq$
1772 M , which implies $|\frac{1}{n_j} \sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}_j} (f_{\theta}(\mathbf{x}_i) - y_i)^2| \leq 4M^2$. Thus, Term B is bounded by:
1773

1774 $\text{Term B} \leq \sum_{j=1}^J \epsilon 4M^2 = 4M^2 \epsilon = 4JM^2 \sqrt{\frac{\log(4J/\delta)}{2n}}.$ (46)
1775
1776

1777 The total generalization gap is bounded by the sum of the bounds for Term A and Term B.
1778

1779 $\text{Gap}_{\mathcal{P}}(f_{\theta}; \mathcal{D}) \lesssim_d \left(\frac{1}{\eta} - \frac{1}{2} + 4M \right)^{\frac{m}{m^2+4m+3}} M^2 J^{\frac{4}{m}} n^{-\frac{1}{2m+4}} + M^2 J \sqrt{\frac{\log(4J/\delta)}{2n}}.$
1780
1781

1782 This completes the proof. \square

1782 **G GENERALIZATION UPPER BOUNDS: ISOTROPIC BETA FAMILY**
1783

1784 In this section, the data generalization process is considered to be a family of isotropic Beta-radial
1785 distributions.

1786 **Definition G.1** (Isotropic Beta-radial distributions). *Let \mathbf{X} be a d -dimensional random vector in
1787 \mathbb{R}^d . For any $\alpha \in (0, \infty)$, the isotropic Beta(α)-radial distribution is defined by the generation
1788 process*

1789
$$\mathbf{X} = h(R)\mathbf{U} \sim \mathcal{P}_X(\alpha), \quad (47)$$

1790 where $R \sim \text{Uniform}[0, 1]$ is a random variable drawn from a continuous uniform distribution on
1791 the interval $[0, 1]$, $\mathbf{U} \sim \text{Uniform}(\mathbb{S}^{d-1})$ is a random vector drawn uniformly from the unit sphere
1792 \mathbb{S}^{d-1} in \mathbb{R}^d and $h(r) = 1 - (1 - r)^{1/\alpha}$ is a radial profile.

1793 **Lemma G.2.** *Let $\mathcal{P}_X(\alpha)$ be the isotropic Beta(α)-radial distribution in Definition 3.2. For $\mathbf{X} \sim$
1794 $\mathcal{P}_X(\alpha)$ any $t \in [0, 1]$, $\mathbb{P}(\|\mathbf{X}\| > 1 - t) = t^\alpha$. In particular, $\|\mathbf{X}\|_2$ is a Beta($1, \alpha$) distribution.*

1795 *Proof.* The proof follows from a direct calculation based on the properties of the data-generating
1796 process.

1797 First, the norm simplifies to: $\|\mathbf{X}\| = \|h(R)\mathbf{U}\| = h(R)$. Next, it is equivalent to calculating the
1798 probability that the scalar random variable $h(R)$ is greater than $1 - t$:

1799
$$\mathbb{P}(\|\mathbf{X}\| > 1 - t) = \mathbb{P}(h(R) > 1 - t).$$

1800 To proceed, we need to apply the inverse of the function h to both sides of the inequality. The function
1801 $h(r)$ is monotonically increasing for $r \in [0, 1]$, so applying its inverse preserves the direction
1802 of the inequality. Note that the inverse function is $h^{-1}(y) = 1 - (1 - y)^\alpha$.

1803 Applying the inverse function h^{-1} to the inequality $h(R) > 1 - t$, we get

1804
$$R > h^{-1}(1 - t).$$

1805 Substituting the expression for h^{-1} :

1806
$$R > 1 - (1 - (1 - t))^\alpha = 1 - t^\alpha.$$

1807 Finally, we compute the probability of this event for the random variable R . By our initial assumption,
1808 R is uniformly distributed on the interval $[0, 1]$, i.e., $R \sim \text{Uniform}[0, 1]$. The cumulative
1809 distribution function (CDF) of R is $F_R(x) = x$ for $x \in [0, 1]$. The tail probability is therefore,

1810
$$\mathbb{P}(R > x) = 1 - F_R(x) = 1 - x.$$

1811 Applying this to our inequality $R > 1 - t^\alpha$:

1812
$$\mathbb{P}(R > 1 - t^\alpha) = 1 - (1 - t^\alpha) = t^\alpha.$$

1813 Combining all steps, we have rigorously shown that

1814
$$\mathbb{P}(\|\mathbf{X}\| > 1 - t) = t^\alpha.$$

1815 To show that this implies $\|\mathbf{X}\|$ is a Beta($1, \alpha$) distribution, we can examine its cumulative distribution
1816 function (CDF). Let $Y = \|\mathbf{X}\|$. The CDF is $F_Y(y) = \mathbb{P}(Y \leq y)$. Substituting $y = 1 - t$, we
1817 have $t = 1 - y$. Then the tail probability becomes:

1818
$$\mathbb{P}(\|\mathbf{X}\| > y) = (1 - y)^\alpha.$$

1819 From this, the CDF can be derived as

1820
$$F_Y(y) = \mathbb{P}(\|\mathbf{X}\| \leq y) = 1 - \mathbb{P}(\|\mathbf{X}\| > y) = 1 - (1 - y)^\alpha.$$

1821 This is the characteristic CDF of a Beta($1, \alpha$) distribution, thus completing the proof. \square

1822 **Assumption G.3.** *Fix $\alpha \in (0, \infty)$. Let $\mathcal{P}(\alpha)$ be a joint distribution over $\mathbb{R}^d \times \mathbb{R}$ such that the
1823 marginal distribution of the features x is $\mathcal{P}_X(\alpha)$. The corresponding labels y are generated from
1824 a conditional distribution $\mathcal{P}(y|x)$ and are assumed to be bounded, i.e., $|y| \leq D$ for some constant
1825 $D > 0$. Similarly, we define $\mathcal{P}_j(\mathbf{x}, y) = \mathcal{P}(\mathbf{x}, y \mid \mathbf{x} \in V_j)$.*

1836 **G.1 CHARACTERIZATION OF THE WEIGHT FUNCTION FOR A CUSTOM RADIAL**
 1837 **DISTRIBUTION**

1839 In this section, we analyze the properties of the weight function $g_\alpha(\mathbf{u}, t) = g_{\mathcal{P}_{\mathbf{X}, \alpha}}(\mathbf{u}, t)$ with respect
 1840 to the population distribution $\mathcal{P}_{\mathbf{X}, \alpha}$ we defined in Definition 3.2 and Assumption G.3. Recall that
 1841 $g_\alpha(\mathbf{u}, t) = \min(\tilde{g}_\alpha(\mathbf{u}, t), \tilde{g}_\alpha(-\mathbf{u}, -t))$, where

$$1842 \quad \tilde{g}_\alpha(\mathbf{u}, t) := \mathbb{P}_{\mathcal{P}_{\mathbf{X}, \alpha}}(\mathbf{X}^\top \mathbf{u} > t)^2 \cdot \mathbb{E}_{\mathcal{P}_{\mathbf{X}, \alpha}}[\mathbf{X}^\top \mathbf{u} - t \mid \mathbf{X}^\top \mathbf{u} > t] \cdot \sqrt{1 + \|\mathbb{E}_{\mathcal{P}_{\mathbf{X}, \alpha}}[\mathbf{X} \mid \mathbf{X}^\top \mathbf{u} > t]\|^2}. \quad (48)$$

1844 Due to rotational symmetry, we analyze the projection $X_d = \mathbf{X}^\top \mathbf{e}_d$ without loss of generality. Our
 1845 primary goal is to establish rigorous bounds on the tail probability $Q(t) := \mathbb{P}(X_d > t)$ and the
 1846 conditional expectation for t in a specific range close to 1.

1848 **Proposition G.4** (Tail Probability). *Let \mathbf{X} be a random vector from the distribution defined above.
 1849 Let X_d be its projection onto a fixed coordinate, and let its tail probability be $Q(t) := \mathbb{P}(X_d > t)$ for
 1850 $t \in (-1, 1)$. Then there exists a fixed $t_0 \in [0, 1)$ such that for all $t \in [t_0, 1]$:*

$$1851 \quad c_2(\alpha, d)(1-t)^{\alpha+\frac{d-1}{2}} \leq Q(t) \leq c_3(\alpha, d)(1-t)^{\alpha+\frac{d-1}{2}},$$

1853 where $c_2(\alpha, d)$ and $c_3(\alpha, d)$ are positive constants depending on α and d .

1854 *Proof.* The tail probability is $Q(t) = \mathbb{P}(h(R)U_d > t)$. We compute this by integrating over the
 1855 distribution of $R \sim \text{Uniform}[0, 1]$:

$$1857 \quad Q(t) = \int_{h^{-1}(t)}^1 \mathbb{P}(U_d > t/h(r)) dr,$$

1860 where the lower limit $h^{-1}(t) = 1 - (1-t)^\alpha$ ensures $h(r) > t$. The term $\mathbb{P}(U_d > x)$ is the
 1861 normalized surface area of a spherical cap on \mathbb{S}^{d-1} . For $x \in [0, 1)$, this area can be bounded.
 1862 Let $\theta_0 = \arccos(x)$. The area is proportional to $\int_0^{\theta_0} (\sin \phi)^{d-2} d\phi$. For $\phi \in [0, \pi/2]$, we have
 1863 $2\phi/\pi \leq \sin \phi \leq \phi$. This provides lower and upper bounds on the cap area

$$1864 \quad C_{d,L}(1-x)^{(d-1)/2} \leq \mathbb{P}(U_d > x) \leq C_{d,U}(1-x)^{(d-1)/2},$$

1866 where $C_{d,L}$ and $C_{d,U}$ are constants depending on d . Let's apply this to our integral, substituting
 1867 $x = t/h(r)$:

$$1868 \quad Q(t) \geq \int_{h^{-1}(t)}^1 C_{d,L} \left(1 - \frac{t}{h(r)}\right)^{(d-1)/2} dr.$$

1870 We analyze this for $t \rightarrow 1^-$. Let $t = 1 - \epsilon$. The lower limit is $1 - \epsilon^\alpha$. For $r \in [1 - \epsilon^\alpha, 1]$, $h(r)$ is
 1871 close to 1. Let's choose t_0 such that for $t \in [t_0, 1)$, $h(r) \geq h(t_0) > 1/2$. Then $h(r)$ is bounded away
 1872 from 0. The term $1 - t/h(r) = (h(r) - t)/h(r)$. Let's bound the denominator: $h(t_0) \leq h(r) \leq 1$.

$$1874 \quad Q(t) \geq C_{d,L} \int_{1-\epsilon^\alpha}^1 (\epsilon - (1-r)^{1/\alpha})^{(d-1)/2} dr.$$

1876 The integrand is $h(r) - (1-\epsilon) = \epsilon - (1-r)^{1/\alpha}$. The integral becomes:

$$1878 \quad \int_{1-\epsilon^\alpha}^1 (\epsilon - (1-r)^{1/\alpha})^{(d-1)/2} dr.$$

1881 Let $y = (1-r)^{1/\alpha}$, so $r = 1 - y^\alpha$ and $dr = -\alpha y^{\alpha-1} dy$. Limits for y are $[\epsilon, 0]$.

$$1882 \quad \int_\epsilon^0 (\epsilon - y)^{(d-1)/2} (-\alpha y^{\alpha-1} dy) = \alpha \int_0^\epsilon (\epsilon - y)^{(d-1)/2} y^{\alpha-1} dy.$$

1884 Let $y = \epsilon z$, $dy = \epsilon dz$. Limits for z are $[0, 1]$.

$$1886 \quad \alpha \int_0^1 (\epsilon - \epsilon z)^{(d-1)/2} (\epsilon z)^{\alpha-1} \epsilon dz = \alpha \epsilon^{\alpha+\frac{d-1}{2}} B\left(\alpha, \frac{d+1}{2}\right).$$

1889 Combining all constants, we establish the lower bound $Q(t) \geq c_2(\alpha, d)(1-t)^{\alpha+\frac{d-1}{2}}$. The upper
 1890 bound follows an identical procedure, absorbing the $1/h(r)$ term into the constant $c_3(\alpha, d)$. \square

1890 **Proposition G.5** (Conditional Expectation). *For $t \in [t_0, 1]$, the conditional expectation $\mathbb{E}[X_d | X_d > t]$ is bounded by*

$$1 - c_5(\alpha, d)(1 - t) \leq \mathbb{E}[X_d | X_d > t] \leq 1 - c_4(\alpha, d)(1 - t),$$

1894 where $c_4(\alpha, d)$ and $c_5(\alpha, d)$ are positive constants.

1895 *Proof.* We analyze $\mathbb{E}[1 - X_d | X_d > t] = \frac{1}{Q(t)} \int_t^1 (1 - s) f_{X_d}(s) ds$, where $f_{X_d}(s) = -Q'(s)$.

1896 From Proposition G.4, we know $f_{X_d}(s) \propto (1 - s)^{\alpha + \frac{d-3}{2}}$. The numerator is:

$$1899 N(t) = \int_t^1 (1 - s) f_{X_d}(s) ds.$$

1900 Bounding the constant of proportionality for $f_{X_d}(s)$ by $c_{1,L}$ and $c_{1,U}$:

$$1902 c_{1,L} \int_t^1 (1 - s)^{\alpha + \frac{d-1}{2}} ds \leq N(t) \leq c_{1,U} \int_t^1 (1 - s)^{\alpha + \frac{d-1}{2}} ds.$$

1903 The integral evaluates to $\frac{(1-t)^{\alpha + \frac{d+1}{2}}}{\alpha + \frac{d+1}{2}}$. So, $N(t) \propto (1 - t)^{\alpha + \frac{d+1}{2}}$. Dividing $N(t)$ by $Q(t) \propto (1 - t)^{\alpha + \frac{d-1}{2}}$, we get:

$$1908 \mathbb{E}[1 - X_d | X_d > t] \propto \frac{(1 - t)^{\alpha + \frac{d+1}{2}}}{(1 - t)^{\alpha + \frac{d-1}{2}}} = 1 - t.$$

1909 By carefully tracking the constants c_2, c_3 from Proposition G.4 and the constants from the integration of $f_{X_d}(s)$, we can construct explicit (though complex) expressions for c_4 and c_5 that provide rigorous two-sided bounds for t in the specified range $[t_0, 1]$. \square

1910 **Proposition G.6** (Asymptotic Behavior of $g_\alpha^+(t)$). *Let the function $g_\alpha^+(t)$ be defined as in (48). Then for $t \in [t_0, 1]$, we have:*

$$1916 c_L^{(g)}(\alpha, d)(1 - t)^{2\alpha+d} \leq g_\alpha^+(t) \leq c_U^{(g)}(\alpha, d)(1 - t)^{2\alpha+d},$$

1917 where $c_L^{(g)}(\alpha, d)$ and $c_U^{(g)}(\alpha, d)$ are positive constants.

1918 *Proof.* Let $Q(t) = \mathbb{P}(X_d > t)$ and $E(t) = \mathbb{E}[X_d | X_d > t]$. The function is $g_\alpha^+(t) = Q(t)^2 \cdot (E(t) - t) \cdot \sqrt{1 + E(t)^2}$. We establish bounds for $t \in [t_0, 1]$ for a sufficiently large t_0 .

1919 1. **Bounds for $Q(t)^2$:** From Proposition G.4, we have:

$$1920 (c_2(\alpha, d))^2 (1 - t)^{2\alpha+d-1} \leq Q(t)^2 \leq (c_3(\alpha, d))^2 (1 - t)^{2\alpha+d-1}.$$

1921 Let $A_L(\alpha, d) = (c_2(\alpha, d))^2$ and $A_U(\alpha, d) = (c_3(\alpha, d))^2$.

1922 2. **Bounds for $E(t) - t$:** This is $\mathbb{E}[X_d - t | X_d > t]$. From Proposition G.5, we have $(1 - t) - c_5(1 - t) \leq E(t) - t \leq (1 - t) - c_4(1 - t)$. This gives:

$$1923 B_L(\alpha, d)(1 - t) \leq E(t) - t \leq B_U(\alpha, d)(1 - t),$$

1924 where $B_L(\alpha, d) = 1 - c_5(\alpha, d)$ and $B_U(\alpha, d) = 1 - c_4(\alpha, d)$. We can choose t_0 close enough to 1 to ensure these constants are positive.

1925 3. **Bounds for $\sqrt{1 + E(t)^2}$:** For $t \in [t_0, 1]$, we have $t_0 \leq t < E(t) \leq 1$. By choosing, for instance, $t_0 = 3/4$, we have $3/4 \leq E(t) \leq 1$. Thus,

$$1926 \sqrt{1 + (3/4)^2} \leq \sqrt{1 + E(t)^2} \leq \sqrt{1 + 1^2}.$$

1927 This gives constant bounds $C_L = 5/4$ and $C_U = \sqrt{2}$.

1928 Combining these three bounds, for $t \in [t_0, 1]$:

$$1929 A_L B_L C_L (1 - t)^{2\alpha+d-1} (1 - t) \leq g_\alpha^+(t) \leq A_U B_U C_U (1 - t)^{2\alpha+d-1} (1 - t).$$

1930 This simplifies to the final result:

$$1931 c_L^{(g)}(\alpha, d)(1 - t)^{2\alpha+d} \leq g_\alpha^+(t) \leq c_U^{(g)}(\alpha, d)(1 - t)^{2\alpha+d},$$

1932 where the bounding constants are given by $c_L^{(g)}(\alpha, d) = A_L B_L C_L$ and $c_U^{(g)}(\alpha, d) = A_U B_U C_U$. \square

1944
1945

G.2 PROOF OF THEOREM 3.4

1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
270100
270101
270102
270103
270104
270105
270106
270107
270108
270109
270110
270111
270112
270113
270114
270115
270116
270117
270118
270119
270120
270121
270122
270123
270124
270125
270126
270127
270128
270129
270130
270131
270132
270133
270134
270135
270136
270137
270138
270139
270140
270141
270142
270143
270144
270145
270146
270147
270148
270149
270150
270151
270152
270153
270154
270155
270156
270157
270158
270159
270160
270161
270162
270163
270164
270165
270166
270167
270168
270169
270170
270171
270172
270173
270174
270175
270176
270177
270178
270179
270180
270181
270182
270183
270184
270185
270186
270187
270188
270189
270190
270191
270192
270193
270194
270195
270196
270197
270198
270199
270200
270201
270202
270203
270204
270205
270206
270207
270208
270209
270210
270211
270212
270213
270214
270215
270216
270217
270218
270219
270220
270221
270222
270223
270224
270225
270226
270227
270228
270229
270230
270231
270232
270233
270234
270235
270236
270237
270238
270239
270240
270241
270242
270243
270244
270245
270246
270247
270248
270249
270250
270251
270252
270253
270254
270255
270256
270257
270258
270259
270260
270261
270262
270263
270264
270265
270266
270267
270268
270269
270270
270271
270272
270273
270274
270275
270276
270277
270278
270279
270280
270281
270282
270283
270284
270285
270286
270287
270288
270289
270290
270291
270292
270293
270294
270295
270296
270297
270298
270299
270300
270301
270302
270303
270304
270305
270306
270307
270308
270309
270310
270311
270312
270313
270314
270315
270316
270317
270318
270319
270320
270321
270322
270323
270324
270325
270326
270327
270328
270329
270330
270331
270332
270333
270334
270335
270336
270337
270338
270339
270340
270341
270342
270343
270344
270345
270346
270347
270348
270349
270350
270351
270352
270353
270354
270355
270356
270357
270358
270359
270360
270361
270362
270363
270364
270365
270366
270367
270368
270369
270370
270371
270372
270373
270374
270375
270376
270377
270378
270379
270380
270381
270382
270383
270384
270385
270386
270387
270388
270389
270390
270391
270392
270393
270394
270395
270396
270397
270398
270399
270400
270401
270402
270403
270404
270405
270406
270407
270408
270409
270410
270411
270412
270413
270414
270415
270416
270417
270418
270419
270420
270421
270422
270423
270424
270425
270426
270427
270428
270429
270430
270431
270432
270433
270434
270435
270436
270437
270438
270439
270440
270441
270442
270443
270444
270445
270446
270447
270448
270449
270450
270451
270452
270453
270454
270455
270456
270457
270458
270459
270460
270461
270462
270463
270464
270465
270466
270467
270468
270469
270470
270471
270472
270473
270474
270475
270476
270477
270478
270479
270480
270481
270482
270483
270484
270485
270486
270487
270488
270489
270490
270491
270492
270493
270494
270495
270496
270497
270498
270499
270500
270501
270502
270503
270504
270505
270506
270507
270508
270509
270510
270511
270512
270513
270514
270515
270516
270517
270518
270519
270520
270521
270522
270523
270524
270525
270526
270527
270528
270529
270530
270531
270532
270533
270534
270535
270536
270537
270538
270539
270540
270541
270542
270543
270544
270545
270546
270547
270548
270549
270550
270551
270552
270553
270554
270555
270556
270557
270558
270559
270560
270561
270562
270563
270564
270565
270566
270567
270568
270569
270570
270571
270572
270573
270574
270575
270576
270577
270578
270579
270580
270581
270582
270583
270584
270585
270586
270587
270588
270589
270590
270591
270592
270593
270594
270595
270596
270597
270598
270599
270600
270601
270602
270603
270604
270605
270606
270607
270608
270609
270610
270611
270612
270613
270614
270615
270616
270617
270618
270619
270620
270621
270622
270623
270624
270625
270626
270627
270628
270629
270630
270631
270632
270633
270634
270635
270636
270637
270638
270639
270640
270641
270642
270643
270644
270645
270646
270647
270648
270649
270650
270651
270652
270653
270654
270655
270656
270657
270658
270659
270660
270661
270662
270663
270664
270665
270666
270667
270668
270669
270670
270671
270672
270673
270674
270675
270676
270677
270678
270679
270680
270681
270682
270683
270684
270685
270686
270687
270688
270689
270690
270691
270692
270693
270694
270695
270696
270697
270698
270699
270700
270701
270702
270703
270704
270705
270706
270707
270708
270709
270710
270711
270712
270713
270714
270715
270716
270717
270718
270719
270720
270721
270722
270723
270724
270725
270726
270727
270728
270729
270730
270731
270732
270733
270734
270735
270736
270737
270738
270739
270740
270741
270742
270743
270744
270745
270746
270747
270748
270749
270750
270751
270752
270753
270754
270755
270756
270757
270758
270759
270760
270761
270762
270763
270764
270765
270766
270767
270768
270769
270770
270771
270772
270773
270774
270775
270776
270777
270778
270779
270780
270781
270782
270783
270784
270785
270786
270787
270788
270789
270790
270791
270792
270793
270794
270795
270796
270797
270798
270799
270800
270801
270802
270803
270804
270805
270806
270807
270808
270809
270810
270811
270812
270813
270814
270815
270816
270817
270818
270819
270820
270821
270822
270823
270824
270825
270826
270827
270828
270829
270830
270831
270832
270833
270834
270835
270836
270837
270838
270839
270840
270841
270842
270843
270844
270845
270846
270847
270848
270849
270850
270851
270852
27

1998 so we may also conclude that
 1999
 2000
 2001

$$(53) \lesssim M^2 \sqrt{\frac{\varepsilon \log(1/\delta)}{n}} \quad (57)$$

2002 For the part of the interior (54), the scalar $\mathbb{P}(\mathbf{x} \in \mathbb{I}_\varepsilon^d)$ is less than 1 with high-probability. Therefore,
 2003 we just need to deal with the term

$$\mathbb{E}_{\mathbb{I}} \left[(f(\mathbf{x}) - y)^2 \right] - \frac{1}{n_I} \sum_{i \in I} (f(\mathbf{x}_i) - y_i)^2. \quad (58)$$

2007 Since both the distribution and sample points only support in \mathbb{I}_ε^d , we may consider f by its restrictions
 2008 in \mathbb{I}_ε^d , which are denoted by f^ε . Furthermore, according to the definition, we have

$$\begin{aligned} f(\mathbf{x}) &= \int_{\mathbb{S}^{d-1} \times [-1, 1]} \phi(\mathbf{u}^\top \mathbf{x} - t) d\nu(\mathbf{u}, t) + \mathbf{c}^\top \mathbf{x} + b \\ &= \int_{\mathbb{S}^{d-1} \times [-1+\varepsilon, 1-\varepsilon]} \phi(\mathbf{u}^\top \mathbf{x} - t) d\nu(\mathbf{u}, t) + \underbrace{\int_{\mathbb{S}^{d-1} \times [-1, -1+\varepsilon] \cup (1-\varepsilon, 1]} \phi(\mathbf{u}^\top \mathbf{x} - t) d\nu(\mathbf{u}, t)}_{\text{Annulus ReLU}} \\ &\quad + \mathbf{c}^\top \mathbf{x} + b \end{aligned} \quad (59)$$

2007 where the Annulus ReLU term is totally linear in the strictly interior i.e. there exists \mathbf{c}', b' such that
 2008

$$\mathbf{c}'^\top \mathbf{x} + b' = \int_{\mathbb{S}^{d-1} \times [-1, -1+\varepsilon] \cup (1-\varepsilon, 1]} \phi(\mathbf{u}^\top \mathbf{x} - t) d\nu(\mathbf{u}, t), \quad \forall \mathbf{x} \in \mathbb{I}_\varepsilon^d. \quad (60)$$

2009 Therefore, we may write
 2010

$$f(\mathbf{x}) = f^\varepsilon(\mathbf{x}) = \int_{\mathbb{S}^{d-1} \times [-1+\varepsilon, 1-\varepsilon]} \phi(\mathbf{u}^\top \mathbf{x} - t) d\nu(\mathbf{u}, t) + (\mathbf{c} + \mathbf{c}')^\top \mathbf{x} + \mathbf{b} + \mathbf{b}', \quad \mathbf{x} \in \mathbb{I}_\varepsilon^d. \quad (61)$$

2011 According to the definition, we have that
 2012

$$|f^\varepsilon|_{V(\mathbb{I}_\varepsilon^d)} \leq \int_{\mathbb{S}^{d-1} \times [-1+\varepsilon, 1-\varepsilon]} |\phi(\mathbf{u}^\top \mathbf{x} - t)| d\nu(\mathbf{u}, t). \quad (62)$$

2013 From empirical process we discussed in Section E.2, especially Theorem E.6, we know that with
 2014 probability at least $1 - \delta$,

$$\sup_{\mathbf{u}, t} |g_{\mathcal{D}}(\mathbf{u}, t) - g_\alpha(\mathbf{u}, t)| \lesssim_d \sqrt{\frac{d + \log(2/\delta)}{n}} =: \epsilon_n. \quad (63)$$

2015 This implies a lower bound on the empirical minimum weight in the core with probability at least
 2016 $1 - \delta/3$,

$$g_{\mathcal{D}, \min} = \inf_{|t| \leq 1-\varepsilon} g_{\mathcal{D}}(\mathbf{u}, t) \geq \inf_{|t| \leq 1-\varepsilon} g_\alpha(\mathbf{u}, t) - \epsilon_n = g_{\alpha, \min} - \epsilon_n. \quad (64)$$

2017 Here, $g_{\alpha, \min} \asymp \varepsilon^{d+2\alpha}$ is the minimum of the population weight function in the core.

2018 For the bound $|f^\varepsilon|_{V(\mathbb{I}_\varepsilon^d)} \leq A/g_{\mathcal{D}, \min} \leq A/(g_{\alpha, \min} - \epsilon_n)$ to be meaningful with high probability, we
 2019 must operate in a regime where $g_{\alpha, \min} \geq \epsilon_n$. We enforce a stricter **validity condition** for our proof
 2020

$$g_{\alpha, \min} \geq 2\epsilon_n \implies \varepsilon^{d+2\alpha} \gtrsim_d \sqrt{\frac{d + \log(6/\delta)}{n}}. \quad (65)$$

2021 Under this condition, we have $g_{\mathcal{D}, \min} \geq g_{\alpha, \min} - \epsilon_n \geq g_{\alpha, \min}/2 \asymp \varepsilon^{d+2\alpha}$. Thus, for any $f \in$
 2022 $\Theta_{\text{BEoS}}(\eta, \mathcal{D})$, its restriction f^ε has a controlled unweighted variation norm with high probability:

$$|f^\varepsilon|_{V(\mathbb{I}_\varepsilon^d)} \leq \frac{A}{g_{\mathcal{D}, \min}} \leq \frac{A}{g_{\alpha, \min}/2} \asymp \frac{A}{\varepsilon^{d+2\alpha}} =: C_\varepsilon.$$

2023 According to the assumption, we have that $|f|_{V_g(\mathbb{B}_1^d)} \leq A$, and thus we have
 2024

$$\int_{\mathbb{S}^{d-1} \times [-1+\varepsilon, 1-\varepsilon]} |g_{\mathcal{D}}| d\nu \leq \int_{\mathbb{S}^{d-1} \times [-1, 1]} |g_{\mathcal{D}}| d\nu \leq A. \quad (66)$$

2052 Suppose the validity condition (65) holds (we will verify it later), we have $g(\mathbf{u}, t) \gtrsim_d \varepsilon^{d+2\alpha}$ when
 2053 $t \leq 1 - \varepsilon$ with probability $1 - \delta/3$, we may use (66) to deduce that
 2054

$$2055 \varepsilon^{d+2\alpha} \cdot \int_{\mathbb{S}^{d-1} \times [-1+\varepsilon, 1-\varepsilon]} |d\nu| \leq \int_{\mathbb{S}^{d-1} \times [-1+\varepsilon, 1-\varepsilon]} g_{\mathcal{D}} |d\nu| \leq A. \quad (67)$$

2057 Combining (62) and (67), we deduce that
 2058

$$2059 |f^\varepsilon|_{V(\mathbb{B}_{1-\varepsilon}^d)} \lesssim_d \frac{A}{\varepsilon^{d+2\alpha}} =: C.$$

2061 Therefore, we may leverage Lemma D.11 to $f^\varepsilon \in V_C(\mathbb{B}_{1-\varepsilon}^d)$, we may conclude that with probability
 2062 at least $1 - \delta$,

$$2063 (54) \lesssim_d C^{\frac{d}{2d+3}} M^{\frac{3(d+2)}{2d+3}} n^{-\frac{d+3}{4d+6}}, \quad (68)$$

2065 where \lesssim_d hides the constants that could depend on d and logarithmic factors of $1/\delta$.

2066 Now we combine the upper bounds (55), (57) and (68) to deduce an upper bound of the generaliza-
 2067 tion gap. We have for any fixed $\epsilon > 0$, with probability $1 - \delta$,

$$2069 |R(f) - \hat{R}_{\mathcal{D}}(f)| \lesssim_d M^2 \varepsilon^\alpha + \left(\frac{A}{\varepsilon^{d+2\alpha}} \right)^{\frac{d}{2d+3}} M^{\frac{3(d+2)}{2d+3}} n^{-\frac{d+3}{4d+6}}. \quad (69)$$

2071 Then we may choose the optimal ε^* such that
 2072

$$2073 M^2(\varepsilon^*)^\alpha = \left(\frac{A}{(\varepsilon^*)^{d+2\alpha}} \right)^{\frac{d}{2d+3}} M^{\frac{3(d+2)}{2d+3}} n^{-\frac{d+3}{4d+6}}$$

2075 and by direct computation, we get

$$2077 \varepsilon^* = \left(A^{\frac{d}{d^2+4\alpha d+3\alpha}} M^{-\frac{d}{d^2+4\alpha d+3\alpha}} n^{-\frac{d+3}{2(d^2+4\alpha d+3\alpha)}} \right).$$

2080 To satisfy the validity condition (65), we require

$$2081 (\varepsilon^*)^{d+2\alpha} = O\left(n^{-\frac{d+3}{2(d^2+4\alpha d+3\alpha)}}\right)^{d+2\alpha} \geq \tilde{O}(n^{-\frac{1}{2}}). \quad (70)$$

2084 By adjusting some universal constants, it suffices to show whether
 2085

$$2086 \frac{(d+3)(d+2\alpha)}{2(d^2+4\alpha d+3\alpha)} < \frac{1}{2}. \quad (71)$$

2088 After direct computation, (71) is equivalent to $\alpha \in (\frac{3d}{2d-3}, \infty)$. With this assumption, we may
 2089 evaluate the optimal ε^* in the inequality (69) to deduce the optimal results that
 2090

$$2091 |R(f) - \hat{R}_n(f)| \lesssim_d \left(\frac{1}{\eta} - \frac{1}{2} + 4M \right)^{\frac{\alpha d}{d^2+4d+3}} M^{\frac{2d^2+7\alpha d+6\alpha}{d^2+4\alpha d+3\alpha}} n^{-\frac{\alpha(d+3)}{2(d^2+4\alpha d+3\alpha)}}. \quad (72)$$

2094 In the case where $\alpha \leq \frac{3d}{d+2\alpha}$, we set
 2095

$$2096 \varepsilon^* = \tilde{O}\left(n^{-\frac{1}{2d+4\alpha}}\right)$$

2098 and adjust some universal constant to satisfy the validaty condition. Then (69) has the form
 2099

$$2100 |R(f) - \hat{R}_{\mathcal{D}}(f)| \leq \tilde{O}\left(n^{-\frac{2\alpha}{2d+4\alpha}}\right) + \tilde{O}\left(n^{-\frac{3}{4d+6}}\right).$$

2102 Then assumption $\alpha < \frac{3d}{d+2\alpha}$ implies that $n^{-\frac{2\alpha}{2d+4\alpha}} > n^{-\frac{3}{4d+6}}$ and thus
 2103

$$2104 |R(f) - \hat{R}_{\mathcal{D}}(f)| \leq \tilde{O}\left(n^{-\frac{2\alpha}{2d+4\alpha}}\right).$$

2105 Note that the other constants in the front of $1/n$ does not change, so we finish the proof. \square

2106 H GENERALIZATION GAP LOWER BOUND VIA POISSONIZATION

2108 This section provides a self-contained proof for a lower bound on the generalization gap in a noise-
 2109 less setting. We employ the indistinguishability method, where the core technical challenge is to
 2110 construct two functions that are identical on a given training sample yet significantly different in
 2111 population. The Poissonization technique is the key tool that simplifies the probabilistic analysis
 2112 required to guarantee the existence of such a pair. The paradigm is almost the same as the one in
 2113 (Liang et al., 2025, Appendix H & I), but the assumption on distributions are different.

2115 H.1 CONSTRUCTION OF “HARD-TO-LEARN” NETWORKS

2117 Our strategy relies on functions localized on small, disjoint regions near the boundary of the unit ball.
 2118 We first establish key geometric properties of these regions, called spherical caps. Let $\mathbf{u} \in \mathbb{S}^{d-1}$ be
 2119 a unit vector. Let $\varepsilon \in \mathbb{R}_+$ be a constant with $\varepsilon \leq 1/2$. Consider the ReLU atom:

$$2120 \varphi_{\mathbf{u}, \varepsilon^2}(\mathbf{x}) = \phi(\mathbf{u}^\top \mathbf{x} - (1 - \varepsilon^2)). \quad (73)$$

2122 **Lemma H.1.** *The $L^2(\mathcal{P}_X(\alpha))$ -norm of $\varphi_{\mathbf{u}, \varepsilon^2}$, where the measure $\mathcal{P}_X(\alpha)$ is defined in Definition
 2123 3.2, is given by*

$$2124 c_L(d, \alpha) \varepsilon^{\frac{d+3+2\alpha}{2}} \leq \|\varphi_{\mathbf{u}, \varepsilon^2}\|_{L^2(\mathcal{P}_X(\alpha))} \leq c_U(d, \alpha) \varepsilon^{\frac{d+3+2\alpha}{2}}, \quad (74)$$

2126 where $c_L(d, \alpha)$ and $c_U(d, \alpha)$ are constants that depend on the dimension d and the parameter α .

2128 Before the formal proof, we offer a geometric justification for the result. The squared norm is
 2129 an integral of $(\phi(\dots))^2$, and we can estimate its value as the product of the integrand’s average
 2130 magnitude and the measure of the small domain where it is non-zero. We estimate the measure of
 2131 this “active” domain, where $r\mathbf{u}^\top \mathbf{U} > 1 - \varepsilon^2$, using a polar coordinate perspective.

- 2132 • **Integrand’s Magnitude:** Within the active domain, the term $r\mathbf{u}^\top \mathbf{U} - (1 - \varepsilon^2)$ represents
 2133 the positive “height” above the activation threshold. This height varies from 0 to a maxi-
 2134 mum on the order of $O(\varepsilon^2)$. A reasonable estimate for the squared term’s average value is
 2135 thus $O((\varepsilon^2)^2) = O(\varepsilon^4)$.
- 2136 • **Measure of the Domain:** We decompose the domain’s volume into radial and angular
 2137 parts.
 - 2139 – **Radial Measure:** The condition requires the radius r to be near 1. For the $\mathcal{P}_X(\alpha)$
 2140 distribution, this confines r to a region of length $\Delta r \sim O(\varepsilon^{2\alpha})$.
 - 2141 – **Angular Measure:** The vector \mathbf{U} is confined to a small spherical cap around \mathbf{u} . A cap
 2142 defined by a “height” of $h \sim O(\varepsilon^2)$ has a surface area on \mathbb{S}^{d-1} of order $O(h^{(d-1)/2})$.
 2143 This gives an angular measure of $\Delta\Omega \sim O((\varepsilon^2)^{(d-1)/2}) = O(\varepsilon^{d-1})$.

2144 Combining these estimates, the squared norm I scales as the product of the integrand’s magnitude
 2145 and the two components of the domain’s measure:

$$2147 I \approx \underbrace{O(\varepsilon^4)}_{\text{Integrand}} \times \underbrace{O(\varepsilon^{2\alpha})}_{\text{Radial}} \times \underbrace{O(\varepsilon^{d-1})}_{\text{Angular}} = O(\varepsilon^{d+3+2\alpha}).$$

2150 Taking the square root provides the claimed scaling for the L^2 -norm. The formal proof makes this
 2151 geometric heuristic rigorous.

2153 *Proof.* The squared L^2 norm of $\varphi_{\mathbf{u}, \varepsilon^2}$ over the distribution $\mathcal{P}_X(\alpha)$ is defined by the expectation

$$2155 I = \|\varphi_{\mathbf{u}, \varepsilon^2}\|_{L^2(\mathcal{P}_X(\alpha))}^2 = \mathbb{E}_{\mathbf{X} \sim \mathcal{P}_X(\alpha)} [|\varphi_{\mathbf{u}, \varepsilon^2}(\mathbf{X})|^2]$$

2156 Substituting the definition of $\varphi_{\mathbf{u}, \varepsilon^2}(\mathbf{x})$ and using the property of the ReLU function, we get

$$2158 I = \mathbb{E}_{R, \mathbf{U}} \left[(\phi(h(R)\mathbf{u}^\top \mathbf{U} - (1 - \varepsilon^2)))^2 \right] \quad (75)$$

$$2159 = \mathbb{E}_{R, \mathbf{U}} [\mathbb{1}_{\{h(R)\mathbf{u}^\top \mathbf{U} > 1 - \varepsilon^2\}} (h(R)\mathbf{u}^\top \mathbf{U} - (1 - \varepsilon^2))^2]$$

2160 where $R \sim \text{Uniform}[0, 1]$ and $\mathbf{U} \sim \text{Uniform}(\mathbb{S}^{d-1})$.
 2161

2162 Due to the rotational symmetry of the distribution of \mathbf{U} , we can perform a rotation of the coordinate
 2163 system such that \mathbf{u} aligns with the d -th standard basis vector $\mathbf{e}_d = (0, \dots, 0, 1)$ without changing
 2164 the value of the integral. In these new coordinates, $\mathbf{u}^\top \mathbf{U} = U_d$. The expectation becomes an iterated
 2165 integral:

$$2166 I = \int_0^1 \mathbb{E}_{\mathbf{U}} [\mathbf{1}_{\{h(r)U_d > 1-\varepsilon^2\}} (h(r)U_d - (1-\varepsilon^2))^2] \, dr \\ 2167$$

2168 Let $z = U_d$. The probability density function of z is $p(z) = C_d(1-z^2)^{(d-3)/2}$ for $z \in [-1, 1]$,
 2169 where $C_d = \frac{\Gamma(d/2)}{\sqrt{\pi}\Gamma((d-1)/2)}$. The integral is non-zero only if $h(r) > 1 - \varepsilon^2$, which implies $r >$
 2170 $1 - \varepsilon^{2\alpha}$.
 2171

$$2172 I = C_d \int_{1-\varepsilon^{2\alpha}}^1 \int_{\frac{1-\varepsilon^2}{h(r)}}^1 (h(r)z - (1-\varepsilon^2))^2 (1-z^2)^{\frac{d-3}{2}} \, dz \, dr \quad (76) \\ 2173$$

2174 We perform a change of variable $z = 1-t$, so $dz = -dt$ and the integration limits change from
 2175 $[\frac{1-\varepsilon^2}{h(r)}, 1]$ to $[1 - \frac{1-\varepsilon^2}{h(r)}, 0]$.
 2176

$$2177 \text{Inner integration of (76)} = C_d \int_{1-\frac{1-\varepsilon^2}{h(r)}}^0 (h(r)(1-t) - (1-\varepsilon^2))^2 (1-(1-t)^2)^{\frac{d-3}{2}} (-dt) \\ 2178 = C_d \int_0^{t_0(r)} (h(r)t_0(r) - h(r)t)^2 (2t-t^2)^{\frac{d-3}{2}} \, dt \quad (77) \\ 2179 \\ 2180 \\ 2181 \\ 2182$$

2183 where $t_0(r) = 1 - \frac{1-\varepsilon^2}{h(r)} = \frac{h(r)-1+\varepsilon^2}{h(r)}$. Since $r \in [1 - \varepsilon^{2\alpha}, 1]$ and for small ε , $h(r)$ is close to 1, we
 2184 know $t_0(r)$ is small. For a sufficiently small ε , we can ensure $t \leq t_0(r) < 1/4$. Thus, we can bound
 2185 the term $2-t$ as $7/4 \leq 2-t \leq 2$. This gives bounds on $(2t-t^2)^{(d-3)/2} = ((2-t)t)^{(d-3)/2}$:
 2186

$$2187 \left(\frac{7}{4}\right)^{\frac{d-3}{2}} t^{\frac{d-3}{2}} \leq (2t-t^2)^{\frac{d-3}{2}} \leq 2^{\frac{d-3}{2}} t^{\frac{d-3}{2}} \\ 2188 \\ 2189$$

2190 The integral I is therefore bounded by:
 2191

$$2192 \underline{C}_d \int_{1-\varepsilon^{2\alpha}}^1 J(r) \, dr \leq I \leq \overline{C}_d \int_{1-\varepsilon^{2\alpha}}^1 J(r) \, dr \quad (78) \\ 2193$$

2194 where $\underline{C}_d, \overline{C}_d$ are new constants and $J(r) = \int_0^{t_0(r)} (h(r)t_0(r) - h(r)t)^2 t^{\frac{d-3}{2}} \, dt$.
 2195

2196 Consider the integral $J(r)$ and change variable by setting $t = t_0(r)s$, then $dt = t_0(r) \, ds$.
 2197

$$2198 J(r) = \int_0^1 (h(r)t_0(r) - h(r)t_0(r)s)^2 (t_0(r)s)^{\frac{d-3}{2}} (t_0(r) \, ds) \\ 2199 \\ 2200 = (h(r)t_0(r))^2 (t_0(r))^{\frac{d-3}{2}} t_0(r) \int_0^1 (1-s)^2 s^{\frac{d-3}{2}} \, ds \quad (79) \\ 2201 \\ 2202 \\ 2203 \\ 2204 \\ 2205$$

$$2206 = h(r)^2 (t_0(r))^{\frac{d+3}{2}} \underbrace{\left(\int_0^1 (1-s)^2 s^{\frac{d-3}{2}} \, ds \right)}_{\text{constant}}$$

2207 To analyze $t_0(r)^{\frac{d+3}{2}}$, we let $r = 1 - \delta$, so $dr = -d\delta$ and the integration limits for δ are $[\varepsilon^{2\alpha}, 0]$.
 2208 $h(r) = 1 - (1 - (1 - \delta))^{1/\alpha} = 1 - \delta^{1/\alpha}$. As $\delta \rightarrow 0$, $h(r) \rightarrow 1$. $t_0(r) = \frac{(1-\delta^{1/\alpha})-1+\varepsilon^2}{1-\delta^{1/\alpha}} = \frac{\varepsilon^2-\delta^{1/\alpha}}{1-\delta^{1/\alpha}}$.
 2209 For small δ , $1 - \delta^{1/\alpha}$ is close to 1, providing upper and lower bounds. Thus I is bounded by integrals
 2210 of the form

$$2211 C \int_{\varepsilon^{2\alpha}}^0 \left(\varepsilon^2 - \delta^{1/\alpha}\right)^{\frac{d+3}{2}} (-d\delta) = C \int_0^{\varepsilon^{2\alpha}} \left(\varepsilon^2 - \delta^{1/\alpha}\right)^{\frac{d+3}{2}} \, d\delta \\ 2212 \\ 2213$$

for some mild constant C .

Now we perform a new change-of-variable by setting $\delta^{1/\alpha} = \varepsilon^2 v$. This gives $\delta = (\varepsilon^2 v)^\alpha = \varepsilon^{2\alpha} v^\alpha$ and $d\delta = \alpha \varepsilon^{2\alpha} v^{\alpha-1} dv$. The limits for v become

$$\begin{aligned} \int_0^{\varepsilon^{2\alpha}} (\varepsilon^2 - \delta^{1/\alpha})^{\frac{d+3}{2}} d\delta &= \int_0^1 (\varepsilon^2 - \varepsilon^2 v)^{\frac{d+3}{2}} (\alpha \varepsilon^{2\alpha} v^{\alpha-1} dv) \\ &= (\varepsilon^2)^{\frac{d+3}{2}} \varepsilon^{2\alpha} \int_0^1 (1-v)^{\frac{d+3}{2}} \alpha v^{\alpha-1} dv \\ &= \varepsilon^{d+3+2\alpha} \underbrace{\left(\alpha \int_0^1 (1-v)^{\frac{d+3}{2}} v^{\alpha-1} dv \right)}_{\text{constant}} \end{aligned} \quad (80)$$

The squared norm I is bounded by constants times $\varepsilon^{d+3+2\alpha}$. The L^2 -norm is the square root of I :

$$c_L(d, \alpha) \varepsilon^{\frac{d+3+2\alpha}{2}} \leq \|\varphi_{\mathbf{u}, \varepsilon^2}\|_{L^2(\mathcal{P}_{\mathbf{X}}(\alpha))} = \sqrt{I} \leq c_U(d, \alpha) \varepsilon^{\frac{d+3+2\alpha}{2}} \quad (81)$$

where $c_9(d, \alpha)$ and $c_{10}(d, \alpha)$ are constants that absorb all factors depending on d and α from the bounds established in the derivation. This completes the proof. \square

Lemma H.2 (Cap mass at angular scale ε). *For $\varepsilon \in (0, \frac{1}{2}]$ and $\mathbf{u} \in \mathbb{S}^{d-1}$, define the thin cap*

$$C(\mathbf{u}, \varepsilon) = \{x \in \mathbb{B}_1^d : u^\top x > 1 - \varepsilon^2\}.$$

There exist constants depending only on (d, α) , such that $\mathcal{P}_{\mathbf{X}}(C(\mathbf{u}, \varepsilon)) \asymp \varepsilon^{d-1+2\alpha}$.

Sketch proof. The result and the proof almost the same as the ones about Lemma H.1. We omit the calculation details. \square

Lemma H.3 (Disjoint Cap Packing). *For any $\varepsilon \in (0, 1/2]$, there exists a set of N unit vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_N\} \subset \mathbb{S}^{d-1}$, with $N \asymp \varepsilon^{-(d-1)}$, such that the caps $\{C(\mathbf{u}_i, \varepsilon)\}_{i=1}^N$ are pairwise disjoint.*

Sketch proof. The angular radius of the cap $C(\mathbf{u}, \varepsilon)$ is $\vartheta = \arccos(1 - \varepsilon^2) \asymp \varepsilon$. For two caps to be disjoint, the angular separation between their centers must be at least 2ϑ . The maximum number of such points is the packing number $M(\mathbb{S}^{d-1}, 2\vartheta)$. A standard volumetric argument provides the upper bound $M(\mathbb{S}^{d-1}, 2\vartheta) = O(\varepsilon^{-(d-1)})$. The lower bound is established by relating the packing number to the covering number $N(\mathbb{S}^{d-1}, \alpha)$, which is known to scale as $N(\mathbb{S}^{d-1}, \alpha) \asymp \alpha^{-(d-1)}$, thus yielding the asserted scaling for N . \square

We now formally establish the family of functions used to construct the adversarial pair. This family resides within a function class $\mathcal{F}_g(\mathbb{B}_1^d; 1, 1)$ and is built upon normalized ReLU atoms localized on the disjoint spherical caps.

Construction H.4 (Adversarial Function Family). *Recall that $\varphi_{\mathbf{u}, \varepsilon^2}(\mathbf{x}) = \phi(\mathbf{u}^\top \mathbf{x} - (1 - \varepsilon^2))$. We define its normalized version as $\Phi_{\mathbf{u}, \varepsilon^2} := \varepsilon^{-2} \varphi_{\mathbf{u}, \varepsilon^2}$. By construction, $\|\Phi_{\mathbf{u}, \varepsilon^2}\|_{L^\infty(\mathbb{B}_1^d)} \leq 1$ and $\|\Phi_{\mathbf{u}, \varepsilon^2}\|_{\text{path}, g} \asymp \varepsilon^{-2} \varepsilon^{2d+4\alpha} = \varepsilon^{2(d-1+2\alpha)}$. We assume that these normalized atoms, for a sufficiently small ε , belong to our function class $\mathcal{F}_g(\mathbb{B}_1^d; 1, C)$.*

Let $\{\mathbf{u}_1, \dots, \mathbf{u}_N\}$ be the set of vectors from Lemma H.3 that define a disjoint cap packing. We define a family of candidate functions indexed by sign vectors $\xi \in \{\pm 1\}^N$. For each ξ , the function $f_\xi \in \mathcal{F}$ is given by:

$$f_\xi(\mathbf{x}) = \sum_{i=1}^N \xi_i \Phi_i(\mathbf{x}), \quad \text{where } \Phi_i := \Phi_{\mathbf{u}_i, \varepsilon^2}.$$

As the atoms Φ_i have disjoint supports, the squared $L^2(\mathcal{P}_{\mathbf{X}}(\alpha))$ distance between any two distinct functions f_ξ and $f_{\xi'}$ can be computed as:

$$\|f_\xi - f_{\xi'}\|_{L^2(\mathcal{P}_{\mathbf{X}}(\alpha))}^2 = \sum_{i=1}^N (\xi_i - \xi'_i)^2 \|\Phi_i\|_{L^2(\mathcal{P}_{\mathbf{X}}(\alpha))}^2 = 4 \sum_{i: \xi_i \neq \xi'_i} \|\Phi_i\|_{L^2(\mathcal{P}_{\mathbf{X}}(\alpha))}^2.$$

2268 Referring to the cap mass properties in Lemma H.1 (which implies $\|\Phi_i\|_{L^2(\mathcal{P}_X(\alpha))}^2 \asymp \varepsilon^{d-1+2\alpha}$), this
 2269 simplifies to the final distance scaling
 2270

$$2271 \|f_\xi - f_{\xi'}\|_{L^2(\mathcal{P}_X(\alpha))}^2 \asymp_{d,\alpha} \varepsilon^{d-1+2\alpha} d_H(\xi, \xi'),$$

2272 where $d_H(\xi, \xi')$ is the Hamming distance.
 2273

2274 H.2 PROOF OF THEOREM 3.5

2276 A key step in our proof is to find a large number of caps that contain no data points from the
 2277 dataset \mathcal{D} . In the standard fixed-sample-size setting, the number of points in each disjoint cap,
 2278 say $Z_i := \#\{x_j \in C(\mathbf{u}_i, \varepsilon)\}$, follows a multinomial distribution. The counts (Z_1, \dots, Z_N) are
 2279 negatively correlated because their sum is fixed to n . This dependence complicates the analysis of
 2280 finding many empty caps simultaneously.

2281 To circumvent this difficulty, we employ **Poissonization**. We replace the fixed sample size n with a
 2282 random sample size N_{poi} drawn from a Poisson distribution with mean n . This means the occupancy
 2283 counts Z_i become independent Poisson random variables. This independence allows for the direct
 2284 use of standard concentration inequalities like the Chernoff bound.

2285 **Proposition H.5** (Abundance of Empty Caps under Poissonization). *Let $\{C(\mathbf{u}_i, \varepsilon)\}_{i=1}^N$ be the set
 2286 of disjoint caps from Lemma H.3. Let the sample size be $N_{\text{poi}} \sim \text{Poi}(n)$. Let Z_i be the number
 2287 of samples falling into cap $C(\mathbf{u}_i, \varepsilon)$. Define the expected number of points per cap as $\lambda := n \cdot \mathcal{P}_X(C(\mathbf{u}_1, \varepsilon))$. If we choose ε such that $\lambda \asymp 1$, then there exists a constant $c > 0$ such that with
 2288 probability at least $1 - \exp(-cN)$:*

$$2291 \#\{i \in \{1, \dots, N\} : Z_i = 0\} \geq \frac{1}{2} e^{-\lambda} N.$$

2293 *Proof.* Under Poissonization, the random variables $Z_i = \#\{x_j \in C(\mathbf{u}_i, \varepsilon)\}$ are independent Pois-
 2294 son variables with mean $\lambda_i = n \cdot \mathcal{P}_X(C(\mathbf{u}_i, \varepsilon))$. By Lemma H.2 and our choice of scale, $\lambda_i = \lambda \asymp 1$
 2295 for all i .

2296 Let $Y_i = \mathbb{1}\{Z_i = 0\}$ be the indicator that the i -th cap is empty. The variables Y_1, \dots, Y_N are i.i.d.
 2297 Bernoulli random variables. The probability of success (a cap being empty) is:
 2298

$$2299 p := \mathbb{P}(Y_i = 1) = \mathbb{P}(Z_i = 0) = \frac{e^{-\lambda} \lambda^0}{0!} = e^{-\lambda}.$$

2301 Since $\lambda \asymp 1$, p is a positive constant. The expected number of empty caps is $\mathbb{E}[\sum Y_i] = Np =$
 2302 $N e^{-\lambda}$. By a standard Chernoff bound on the sum of i.i.d. Bernoulli variables, we have that for any
 2303 $\delta \in (0, 1)$:

$$2304 \mathbb{P}\left(\sum_{i=1}^N Y_i < (1 - \delta)Np\right) \leq \exp\left(-\frac{\delta^2 Np}{2}\right).$$

2307 Choosing $\delta = 1/2$, we find that the number of empty caps is at least $\frac{1}{2}Np = \frac{1}{2}e^{-\lambda}N$ with proba-
 2308 bility at least $1 - \exp(-cN)$ for some constant $c > 0$. \square
 2309

2310 The condition $\lambda \asymp 1$ is central. It balances the sample size n with the geometric scale ε . Using
 2311 Lemma H.2, this balance is achieved when:

$$2312 n \cdot \varepsilon^{d-1+2\alpha} \asymp 1 \iff \varepsilon \asymp n^{-1/(d-1+2\alpha)}. \quad (82)$$

2314 With this choice, Proposition H.5 guarantees that a constant fraction of the $N \asymp \varepsilon^{-(d-1)}$ caps are
 2315 empty with overwhelmingly high probability. Informally speaking, this hints appearance of the neural
 2316 network with dedicated neurons, each of which has at most one activation point. This paradigm
 2317 aligns with our construction stable/flat interpolation neural network discussed in Appendix I.

2318 Armed with the guarantee of many empty caps, we can now construct our adversarial pair of func-
 2319 tions, f and f' . These functions will be designed to agree on all non-empty caps but disagree on a
 2320 large number of empty caps. Since by definition no data lies in the empty caps, the functions will be
 2321 identical on the training data. However, their disagreement on a substantial portion of the space will
 create a large gap in their population risks.

2322 **Proposition H.6** (Indistinguishable yet Separated Pair). *Work under the scale choice $\varepsilon \asymp n^{-1/(d-1+2\alpha)}$ and on the high-probability event from Proposition H.5 where at least $\frac{1}{2}e^{-\lambda}N$ caps*
 2323 *are empty. There exist two functions $f, f' \in \mathcal{F}$ from Construction H.4 such that*

2326 1. **Indistinguishability on Data:** $f(\mathbf{x}_j) = f'(\mathbf{x}_j)$ for all points \mathbf{x}_j in the Poisson-drawn
 2327 sample.

2328 2. **Separation in Population:** $\|f - f'\|_{L^2(\mathcal{P}_X(\alpha))}^2 \asymp n^{-\frac{2\alpha}{d-1+2\alpha}}$.

2330 *Proof.* Let $\mathcal{J} \subset \{1, \dots, N\}$ be the set of indices corresponding to empty caps, with $|\mathcal{J}| \geq$
 2331 $\frac{1}{2}e^{-\lambda}N \asymp N$. Construct two sign vectors $\xi, \xi' \in \{\pm 1\}^N$ as follows:

2333 • For $i \in \mathcal{J}$, set $\xi_i = 1$ and $\xi'_i = -1$.

2334 • For $i \notin \mathcal{J}$, set $\xi_i = \xi'_i = 1$.

2337 Let $f = f_\xi$ and $f' = f_{\xi'}$.

2339 1. **Indistinguishability:** The function difference is $f - f' = \sum_{i \in \mathcal{J}} 2\Phi_i$. The support of this
 2340 difference is $\bigcup_{i \in \mathcal{J}} C(\mathbf{u}_i, \varepsilon)$. Since all caps indexed by \mathcal{J} are empty, no data point \mathbf{x}_j falls
 2341 into this support. Thus, $(f - f')(\mathbf{x}_j) = 0$ for all j , which implies $f(\mathbf{x}_j) = f'(\mathbf{x}_j)$.

2342 2. **Separation:** The Hamming distance is $d_H(\xi, \xi') = |\mathcal{J}| \asymp N$. Using the result from
 2343 Construction H.4:

2345 $\|f - f'\|_{L^2(\mathcal{P}_X(\alpha))}^2 \asymp \varepsilon^{d-1+2\alpha} \cdot d_H(\xi, \xi') \asymp \varepsilon^{d-1+2\alpha} \cdot N \asymp \varepsilon^{d-1+2\alpha} \cdot \varepsilon^{-(d-1)} = \varepsilon^{2\alpha}$.

2347 Substituting our choice of scale $\varepsilon \asymp n^{-1/(d-1+2\alpha)}$ yields the desired separation:

2349 $\|f - f'\|_{L^2(\mathcal{P}_X(\alpha))}^2 \asymp \left(n^{-1/(d-1+2\alpha)}\right)^{2\alpha} = n^{-\frac{2\alpha}{d-1+2\alpha}}$.

□

2353 The final step is to transfer the result from the Poissonized model back to the original fixed-sample-
 2354 size model. This is justified by the strong concentration of the Poisson distribution around its mean.

2355 **Lemma H.7** (De-Poissonization). *Let $N_{\text{poi}} \sim \text{Poi}(n)$. For any $\eta \in (0, 1)$, $\mathbb{P}(N_{\text{poi}} \notin [(1 - \eta)n, (1 + \eta)n]) \leq 2 \exp(-c_\eta n)$ for some constant $c_\eta > 0$. The conclusions of Proposition H.6 hold for a*
 2356 *fixed sample size n .*

2359 *Proof.* The existence of a large fraction of empty caps is an event that is monotone with respect to
 2360 the sample size (fewer samples lead to more empty caps). The high-probability conclusion from
 2361 Proposition H.5 holds for any sample size k within the concentration interval $[(1 - \eta)n, (1 + \eta)n]$,
 2362 as changing n to k only alters the key parameter λ by a constant factor, which does not affect the
 2363 asymptotic analysis. Since N_{poi} falls in this interval with probability $1 - o(1)$, the event of finding
 2364 an indistinguishable pair also occurs with probability $1 - o(1)$ for a Poisson sample. This high-
 2365 probability statement can be transferred back to the fixed- n setting, yielding the same rate for the
 2366 lower bound. □

2367 The existence of an indistinguishable pair allows us to establish a lower bound on the minimax
 2368 risk for estimation in the noiseless setting. This intermediate result is the foundation for the final
 2369 generalization gap bound.

2371 Let $\mathcal{F}_{\text{pack}}$ be the adversarial class defined in Construction H.4 with ε defined in Proposition H.6.

2372 **Corollary H.8** (Minimax Lower Bound). *In the noiseless setting where $y_i = f(\mathbf{x}_i)$, the minimax*
 2373 *risk for any estimator \hat{f} over the adversarial class $\mathcal{F}_{\text{pack}}$ is bounded below*

2375
$$\inf_{\hat{f}} \sup_{f_0 \in \mathcal{F}_{\text{pack}}} \mathbb{E} \left[\|\hat{f} - f_0\|_{L^2(\mathcal{P}_X(\alpha))}^2 \right] \gtrsim n^{-\frac{2\alpha}{d-1+2\alpha}}$$

2376 *Proof.* Let E be the event that an indistinguishable pair $(f, f') \in \mathcal{F}_{\text{pack}}$ exists for a fixed sample size
 2377 n . From Proposition H.6 and Lemma H.7, we know that $\mathbb{P}(E) = 1 - o(1)$. On this event E , let the
 2378 true function f_0 be chosen uniformly at random from $\{f, f'\}$.
 2379

2380 Any estimator \hat{f} receives the dataset \mathcal{D}_n of size n . Since $f(\mathbf{x}_i) = f'(\mathbf{x}_i)$ for all $\mathbf{x}_i \in \mathcal{D}_n$, the
 2381 generated data is identical whether $f_0 = f$ or $f_0 = f'$. The estimator thus has no information to
 2382 distinguish between f and f' . The expected risk of any estimator, conditioned on the event E , can
 2383 be lower-bounded
 2384

$$\mathbb{E} [\|\hat{f} - f_0\|^2 | E] = \frac{1}{2} \|\hat{f} - f\|^2 + \frac{1}{2} \|\hat{f} - f'\|^2 \geq \frac{1}{4} \|f - f'\|^2,$$

2385 where the inequality is a standard result for a choice between two points. The worst-case risk for an
 2386 estimator over $f_0 \in \{f, f'\}$ is thus at least $\frac{1}{4} \|f - f'\|^2$.
 2387

2388 Taking the expectation over the sampling of \mathcal{D}_n :
 2389

$$\begin{aligned} \inf_{\hat{f}} \sup_{f_0 \in \mathcal{F}_{\text{pack}}} \mathbb{E} [\|\hat{f} - f_0\|^2] &\geq \inf_{\hat{f}} \sup_{f_0 \in \mathcal{F}_{\text{pack}}} \mathbb{E} [\|\hat{f} - f_0\|^2 | E] \mathbb{P}(E) \\ &\geq \frac{1}{4} \mathbb{E} [\|f - f'\|^2 | E] \mathbb{P}(E). \end{aligned}$$

2390 Since on the event E , the separation $\|f - f'\|_{L^2(\mathcal{P}_X(\alpha))}^2 \asymp n^{-\frac{2\alpha}{d-1+2\alpha}}$ and $\mathbb{P}(E) \rightarrow 1$ as $n \rightarrow \infty$,
 2391 the result follows. \square
 2392

2393 Finally, we connect the minimax risk lower bound to the generalization gap. The argument reduces
 2394 the problem of bounding the generalization gap to the minimax estimation problem we just solved.
 2395

2396 **Theorem H.9** (Generalization Gap Lower Bound). *Let \mathcal{P} denote any joint distribution of (\mathbf{x}, y) where the marginal distribution of \mathbf{x} is $\mathcal{P}_X(\alpha)$ and y is supported on $[-1, 1]$. Let $\mathcal{D}_n = \{(\mathbf{x}_j, y_j)\}_{j=1}^n$ be a dataset of n i.i.d. samples from \mathcal{P} . Let $\hat{R}_{\mathcal{D}_n}(f)$ be any empirical risk estimator for the true risk $R_{\mathcal{P}}(f) := \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{P}}[(f(\mathbf{x}) - y)^2]$. Then,*
 2397

$$\inf_{\hat{R}} \sup_{\mathcal{P}} \mathbb{E}_{\mathcal{D}_n} \left[\sup_{f \in \mathcal{F}_g(\mathbb{B}_1^d; 1, 1)} \left| R_{\mathcal{P}}(f) - \hat{R}_{\mathcal{D}_n}(f) \right| \right] \gtrsim_{d, \alpha} n^{-\frac{2\alpha}{d-1+2\alpha}}.$$

2398 *Proof.* We lower-bound the supremum over all distributions \mathcal{P} by restricting it to a worst-case family
 2399 of deterministic distributions \mathcal{P}_{f_0} , where labels are given by $y = f_0(\mathbf{x})$ for some f_0 from our
 2400 adversarial packing set, $\mathcal{F}_{\text{pack}}$. The proof proceeds via a chain of inequalities.
 2401

$$\inf_{\hat{R}} \sup_{\mathcal{P}} \mathbb{E} \left[\sup_{f \in \mathcal{F}} \left| R_{\mathcal{P}}(f) - \hat{R}_{\mathcal{D}_n}(f) \right| \right] \tag{83}$$

$$\geq \inf_{\hat{R}} \sup_{f_0 \in \mathcal{F}_{\text{pack}}} \mathbb{E} \left[\sup_{f \in \mathcal{F}} \left| R_{\mathcal{P}_{f_0}}(f) - \hat{R}_{\mathcal{D}_n}(f) \right| \right] \tag{84}$$

$$\geq \sup_{f_0 \in \mathcal{F}_{\text{pack}}} \frac{1}{2} \inf_{\hat{R}} \mathbb{E} \left[R_{\mathcal{P}_{f_0}}(\hat{f}_{\text{ERM}}) - R_{\mathcal{P}_{f_0}}(f_0) \right] \tag{85}$$

$$\geq \frac{1}{2} \inf_{\hat{f}} \sup_{f_0 \in \mathcal{F}_{\text{pack}}} \mathbb{E} \left[R_{\mathcal{P}_{f_0}}(\hat{f}) - R_{\mathcal{P}_{f_0}}(f_0) \right] \tag{86}$$

$$= \frac{1}{2} \inf_{\hat{f}} \sup_{f_0 \in \mathcal{F}_{\text{pack}}} \mathbb{E} \left[\|\hat{f} - f_0\|_{L^2(\mathcal{P}_X(\alpha))}^2 \right] \tag{87}$$

$$\text{Corollary H.8} \implies \gtrsim n^{-\frac{2\alpha}{d-1+2\alpha}} \tag{88}$$

2426 The steps are justified as follows
 2427

- **Inequality (85):** This step uses a standard result relating the generalization gap to the excess risk of an Empirical Risk Minimizer (ERM), $\hat{f}_{\text{ERM}} := \arg \min_{f \in \mathcal{F}} \hat{R}_{\mathcal{D}_n}(f)$. By

2430 definition, $\widehat{R}(\widehat{f}_{\text{ERM}}) \leq \widehat{R}(f_0)$. This leads to the decomposition
 2431
$$R(\widehat{f}_{\text{ERM}}) - R(f_0) = \left(R(\widehat{f}_{\text{ERM}}) - \widehat{R}(\widehat{f}_{\text{ERM}}) \right) + \left(\widehat{R}(\widehat{f}_{\text{ERM}}) - \widehat{R}(f_0) \right) + \left(\widehat{R}(f_0) - R(f_0) \right)$$

 2432
$$\leq 2 \sup_{f \in \mathcal{F}} |R(f) - \widehat{R}(f)|.$$

 2433

2434

- 2435 • **Inequation (86)** The infimum over all risk estimators \widehat{R} (which induces a corresponding
 2436 ERM) is lower-bounded by the infimum over all possible estimators \widehat{f} of the function f_0 .
 2437 This transitions the problem to the standard minimax framework.

2438

- 2439 • **Equation (87):** In this noiseless setting with a deterministic labeling function f_0 , the pop-
 2440 ulation risk of f_0 is $R_{\mathcal{P}_{f_0}}(f_0) = 0$. The excess risk $R_{\mathcal{P}_{f_0}}(\widehat{f})$ is precisely the squared L_2
 2441 distance $\|\widehat{f} - f_0\|_{L^2(\mathcal{P}_X(\alpha))}^2$. The expression becomes the definition of the minimax risk
 2442 over the class $\mathcal{F}_{\text{pack}}$.

2443 This completes the proof. \square

2444

I FLAT INTERPOLATING TWO-LAYER RELU NETWORKS ON THE UNIT 2445 SPHERE

2446

2447 Let $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ be a dataset with $\mathbf{x}_i \in \mathbb{S}^{d-1}$, $d > 1$, and pairwise distinct inputs. Assume labels
 2448 are uniformly bounded, i.e., $|y_i| \leq D$ for all i . Consider width- K two-layer ReLU models
 2449

2450

$$f_{\boldsymbol{\theta}}(\mathbf{x}) = \sum_{k=1}^K v_k \phi(\mathbf{w}_k^T \mathbf{x} - b_k) + \beta. \quad (89)$$

2451 **Theorem I.1** (Flat interpolation with width $\leq n$). *Under the set-up above, there exists a width
 2452 $K \leq n$ network of the form (89) that interpolates the dataset and whose Hessian operator norm
 2453 satisfies*

2454

$$\lambda_{\max}(\nabla_{\boldsymbol{\theta}}^2 \mathcal{L}) \leq 1 + \frac{D^2 + 2}{n}. \quad (90)$$

2455 **Construction I.2** (Flat interpolation ReLU network). *Let $I_{\neq 0} := \{i : y_i \neq 0\}$ and set the width
 2456 $K := |I_{\neq 0}| \leq n$. For each $k \in I_{\neq 0}$ define*

2457

$$\rho_k := \max_{k \neq i} \mathbf{x}_i^T \mathbf{x}_k < 1, \quad b_k \in (\rho_k, 1) \text{ (e.g., } b_k = \frac{1 + \rho_k}{2}), \quad \mathbf{w}_k := \mathbf{x}_k. \quad (91)$$

2458 Then for any sample index i ,

2459

$$\mathbf{w}_k^T \mathbf{x}_i - b_k = \begin{cases} 1 - b_k > 0, & i = k, \\ \leq \rho_k - b_k < 0, & i \neq k, \end{cases} \quad (92)$$

2460 so the k -th unit activates on \mathbf{x}_k and is inactive on all \mathbf{x}_i with $i \neq k$. Set the output weight
 2461

2462

$$v_k := \frac{y_k}{1 - b_k}. \quad (93)$$

2463 By (92) and (93), the model interpolates on nonzero labels because $f(\mathbf{x}_k) = a_k(1 - b_k) = y_k$ for
 2464 $k \in I_{\neq 0}$, and it also interpolates zero labels since all constructed units are inactive on \mathbf{x}_i when
 2465 $i \notin I_{\neq 0}$, hence $f(\mathbf{x}_i) = 0 = y_i$.

2466 For each constructed unit, define

2467

$$\tilde{v}_k := \text{sign}(v_k) \in \{\pm 1\}, \quad \tilde{\mathbf{w}}_k := |v_k| \mathbf{w}_k, \quad \tilde{b}_k := |a_k| b_k. \quad (94)$$

2468 Then for any input \mathbf{x} ,

2469

$$\tilde{v}_k \phi(\tilde{\mathbf{w}}_k^T \mathbf{x} - \tilde{b}_k) = \text{sign}(v_k) \phi(|v_k|(\mathbf{w}_k^T \mathbf{x} - b_k)) = v_k \phi(\mathbf{w}_k^T \mathbf{x} - b_k), \quad (95)$$

2470 so interpolation is preserved. Moreover, the activation pattern on the dataset is unchanged because
 2471 (92) has strict inequalities and $|a_i| > 0$. At \mathbf{x}_i we have the (post-rescaling) pre-activation

2472

$$\tilde{z}_k := \tilde{\mathbf{w}}_k^T \mathbf{x}_k - \tilde{b}_k = |a_k| (1 - b_k) = |y_k| > 0, \quad |\tilde{v}_i| = 1. \quad (96)$$

2473 In what follows we work with the reparameterized network and drop tildes for readability, implicitly
 2474 assuming $|v_k| = 1$ for all $k \in I_{\neq 0}$ and $z_k := \mathbf{w}_k^T \mathbf{x}_k - b_k = |y_k|$.

2484 **Proposition I.3.** Let θ be the model in Construction I.2. Then
 2485

$$2486 \quad 2487 \quad \lambda_{\max}(\nabla_{\theta}^2 \mathcal{L}) \leq 1 + \frac{D^2 + 2}{n}. \\ 2488$$

2491 *Proof.* By direct computation, the Hessian $\nabla_{\theta}^2 \mathcal{L}$ is given by
 2492

$$2493 \quad 2494 \quad \nabla_{\theta}^2 \mathcal{L} = \frac{1}{n} \sum_{i=1}^n \nabla_{\theta} f(\mathbf{x}_i) \nabla_{\theta} f(\mathbf{x}_i)^{\top} + \frac{1}{n} \sum_{i=1}^n (f(\mathbf{x}_i) - y_i) \nabla_{\theta}^2 f(\mathbf{x}_i). \quad (97) \\ 2495$$

2496 Since the model interpolates $f(\mathbf{x}_i) = y_i$ for all i , we have
 2497

$$2498 \quad 2499 \quad \nabla_{\theta}^2 \mathcal{L} = \frac{1}{n} \sum_{i=1}^n \nabla_{\theta} f(\mathbf{x}_i) \nabla_{\theta} f(\mathbf{x}_i)^{\top}. \quad (98) \\ 2500$$

2503 Denote the tangent features matrix by
 2504

$$2505 \quad \Phi = [\nabla_{\theta} f(\mathbf{x}_1), \nabla_{\theta} f(\mathbf{x}_2), \dots, \nabla_{\theta} f(\mathbf{x}_n)]. \quad (99) \\ 2506$$

2507 Then $\nabla_{\theta}^2 \mathcal{L}$ in (98) can be expressed by $\nabla_{\theta}^2 \mathcal{L} = \Phi \Phi^{\top} / n$, and the operator norm is computed by
 2508

$$2509 \quad 2510 \quad \lambda_{\max}(\nabla_{\theta}^2 \mathcal{L}) = \max_{\gamma \in \mathbb{S}^{(d+2)K}} \frac{1}{n} \|\Phi^{\top} \gamma\|^2 = \max_{\mathbf{u} \in \mathbb{S}^{n-1}} \frac{1}{n} \|\Phi \mathbf{u}\|^2 \quad (100) \\ 2511$$

2513 From direct computation we obtain
 2514

$$2515 \quad 2516 \quad \nabla_{\theta} f(\mathbf{x}) = \begin{pmatrix} \nabla_{\mathbf{W}}(f) \\ \nabla_{\mathbf{b}}(f) \\ \nabla_{\mathbf{\omega}}(f) \\ \nabla_{\beta}(f) \end{pmatrix} \quad (101) \\ 2517$$

2519 For the parameters $[\mathbf{w}_k, b_k, v_k]$ associated to the neuron of index j ,
 2520

$$2522 \quad \frac{\partial f(\mathbf{x})}{\partial v_k} = \mathbb{1}\{\mathbf{w}_k^{\top} \mathbf{x} > b_k\} (\mathbf{w}_k^{\top} \mathbf{x} - b_k), \quad \frac{\partial f(\mathbf{x}_i)}{\partial w_k} = \mathbb{1}\{\mathbf{w}_k^{\top} \mathbf{x} > b_k\} v_k \mathbf{x}, \\ 2523 \quad \frac{\partial f(\mathbf{x}_i)}{\partial b_k} = \mathbb{1}\{\mathbf{w}_k^{\top} \mathbf{x} > b_k\} v_k, \quad \frac{\partial f(\mathbf{x}_i)}{\partial \beta} = 1. \\ 2524 \quad 2525 \quad 2526$$

2527 By the one-to-one activation property (92), each sample \mathbf{x}_i activates exactly one unit (the unit with
 2528 the same index k when $k \in I_{\neq 0}$), and activates none when $i \notin I_{\neq 0}$. Hence the sample-wise gradient
 2529 $\nabla_{\theta} f(\mathbf{x}_k)$ has support only on the parameter triplet $(\mathbf{w}_k, b_k, v_k, \beta)$ for $k \in I_{\neq 0}$, and is zero for other
 2530 parameters. Writing the nonzero gradient block explicitly (recall $|v_k| = 1$),
 2531

$$2532 \quad 2533 \quad \nabla_{(\mathbf{w}_k, b_k, v_k, \beta)} f_{\theta}(\mathbf{x}_k) = \begin{pmatrix} \nabla_{(\mathbf{w}_k, b_k, v_k)} f_{\theta} \\ 1 \end{pmatrix}, \\ 2534 \quad 2535 \quad 2536 \quad 2537 \quad \nabla_{(\mathbf{w}_k, b_k, v_k)} f_{\theta}(\mathbf{x}_k) = \begin{cases} \begin{pmatrix} v_k \mathbf{x}_k \\ v_k \\ y_k \end{pmatrix}, & (k \in I_{\neq 0}), \\ \mathbf{0}, & (k \notin I_{\neq 0}), \end{cases} \quad (102) \\ 2538$$

2538 After row permutation and subsition by (102), (100) is of the form
 2539

$$2540 \quad \Phi = \begin{pmatrix} \nabla_{(\mathbf{w}_1, b_1, v_1)} f_{\theta}(\mathbf{x}_1) & \mathbf{0} & \cdots & \mathbf{0} \\ 2541 & \mathbf{0} & \nabla_{(\mathbf{w}_2, b_2, v_2)} f_{\theta}(\mathbf{x}_2) & \cdots \\ 2542 & \mathbf{0} & \mathbf{0} & \cdots \\ 2543 & \vdots & \vdots & \cdots \\ 2544 & \mathbf{0} & \mathbf{0} & \cdots & \nabla_{(\mathbf{w}_n, b_n, v_n)} f_{\theta}(\mathbf{x}_n) \\ 2545 & 1 & 1 & \cdots & 1 \end{pmatrix} \quad (103)$$

$$2546 \quad = \begin{pmatrix} \begin{pmatrix} v_1 \mathbf{x}_1 \\ v_1 \\ y_1 \end{pmatrix} & \mathbf{0} & \cdots & \mathbf{0} \\ 2547 & \mathbf{0} & \begin{pmatrix} v_2 \mathbf{x}_2 \\ v_2 \\ y_2 \end{pmatrix} & \cdots & \vdots \\ 2548 & \mathbf{0} & \mathbf{0} & \cdots & \vdots \\ 2549 & \vdots & \vdots & \cdots & \mathbf{0} \\ 2550 & \mathbf{0} & \mathbf{0} & \cdots & \begin{pmatrix} v_n \mathbf{x}_n \\ v_n \\ y_n \end{pmatrix} \\ 2551 & 1 & 1 & \cdots & 1 \end{pmatrix}. \quad (104)$$

2552 Let $\mathbf{u} = (u_1, \dots, u_n) \in \mathbb{S}^{n-1}$ and plug (104) in (100) to have
 2553

$$2554 \quad \lambda_{\max}(\nabla_{\theta}^2 \mathcal{L}) = \max_{\mathbf{u} \in \mathbb{S}^{n-1}} \frac{1}{n} \|\Phi \mathbf{u}\|^2 \quad (105)$$

$$2555 \quad = \frac{1}{n} \max_{\mathbf{u} \in \mathbb{S}^{n-1}} \left\| \begin{pmatrix} u_1 \nabla_{(\mathbf{w}_1, b_1, v_1)} f_{\theta}(\mathbf{x}_1) \\ u_2 \nabla_{(\mathbf{w}_2, b_2, v_2)} f_{\theta}(\mathbf{x}_2) \\ \vdots \\ u_n \nabla_{(\mathbf{w}_n, b_n, v_n)} f_{\theta}(\mathbf{x}_n) \\ \sum_{i=1}^n u_i \end{pmatrix} \right\|_2^2$$

$$2556 \quad = \frac{1}{n} \max_{\mathbf{u} \in \mathbb{S}^{n-1}} \sum_{i=1}^n u_i^2 \|\nabla_{(\mathbf{w}_i, b_i, v_i)} f_{\theta}(\mathbf{x}_i)\|_2^2 + \left(\sum_{i=1}^n u_i \right)^2 \quad (106)$$

$$2557 \quad = \frac{1}{n} \max_{\mathbf{u} \in \mathbb{S}^{n-1}} \sum_{i=1}^n u_i^2 \left(\|\mathbf{x}_i\|_2^2 + 1 + y_i^2 \right) + \left(\sum_{i=1}^n u_i \right)^2 \quad (107)$$

$$2558 \quad \leq \frac{1}{n} \left(\max_{i \in [n]} \left(\|\mathbf{x}_i\|_2^2 + 1 + y_i^2 \right) + \max_{\mathbf{u} \in \mathbb{S}^{n-1}} \left(\sum_{i=1}^n u_i \right)^2 \right) \quad (108)$$

$$2559 \quad \leq \frac{1}{n} (D^2 + 2 + n) = 1 + \frac{D^2 + 2}{n}$$

2560 If we remove the output bias term β from the parameters, then the bottom row of 104 will be removed
 2561 and thus term $\sum_i u_i$ in (106) will be removed. \square
 2562

2563 J TECHNICAL LEMMAS

2564 **Lemma J.1** (Concentration of a Poisson Random Variable). *Let $N_{\text{poi}} \sim \text{Poi}(n)$ be a Poisson random
 2565 variable with mean n . Then for any $\eta \in (0, 1)$,*

$$2566 \quad \mathbb{P}(|N_{\text{poi}} - n| \geq \eta n) \leq 2 \exp \left(-\frac{\eta^2 n}{3} \right).$$

2592 *Proof.* The proof employs the Chernoff bounding method. The Moment Generating Function
 2593 (MGF) of $N_{\text{poi}} \sim \text{Poi}(n)$ is given by:
 2594

$$2595 \quad \mathbb{E} [e^{tN_{\text{poi}}}] = e^{n(e^t - 1)}.$$

2596 We will bound the upper and lower tails separately.
 2597

2598 We want to bound $\mathbb{P}(N_{\text{poi}} \geq (1 + \eta)n)$. For any $t > 0$, Markov's inequality implies:
 2599

$$\begin{aligned} 2600 \quad \mathbb{P}(N_{\text{poi}} \geq (1 + \eta)n) &= \mathbb{P}\left(e^{tN_{\text{poi}}} \geq e^{t(1+\eta)n}\right) \\ 2601 &\leq \frac{\mathbb{E}[e^{tN_{\text{poi}}}]}{e^{t(1+\eta)n}} \\ 2602 &= \frac{e^{n(e^t - 1)}}{e^{t(1+\eta)n}} = \exp(n(e^t - 1) - tn(1 + \eta)). \\ 2603 \\ 2604 \\ 2605 \end{aligned}$$

2606 To obtain the tightest bound, we minimize the exponent with respect to t . The optimal t is found by
 2607 setting the derivative to zero, which yields $e^t = 1 + \eta$, or $t = \ln(1 + \eta)$. Substituting this value back
 2608 into the bound gives:
 2609

$$\mathbb{P}(N_{\text{poi}} \geq (1 + \eta)n) \leq \exp(n((1 + \eta) - 1) - n(1 + \eta) \ln(1 + \eta)) = \exp(n[\eta - (1 + \eta) \ln(1 + \eta)]).$$

2610 We now use the standard inequality: $\ln(1 + x) \geq x - \frac{x^2}{2}$ for $x \geq 0$. A more specific inequality for
 2611 this context is $\eta - (1 + \eta) \ln(1 + \eta) \leq -\frac{\eta^2}{2(1 + \eta/3)}$. For $\eta \in (0, 1]$, this further simplifies. A widely
 2612 used bound derived from this expression is:
 2613

$$\exp(n[\eta - (1 + \eta) \ln(1 + \eta)]) \leq \exp\left(-\frac{\eta^2 n}{3}\right).$$

2614 Next, we bound $\mathbb{P}(N_{\text{poi}} \leq (1 - \eta)n)$. For any $t > 0$, we have:
 2615

$$\begin{aligned} 2616 \quad \mathbb{P}(N_{\text{poi}} \leq (1 - \eta)n) &= \mathbb{P}\left(e^{-tN_{\text{poi}}} \geq e^{-t(1-\eta)n}\right) \\ 2617 &\leq \frac{\mathbb{E}[e^{-tN_{\text{poi}}}]}{e^{-t(1-\eta)n}} \\ 2618 &= \frac{e^{n(e^{-t} - 1)}}{e^{-t(1-\eta)n}} = \exp(n(e^{-t} - 1) + tn(1 - \eta)). \\ 2619 \\ 2620 \\ 2621 \\ 2622 \\ 2623 \\ 2624 \\ 2625 \\ 2626 \end{aligned}$$

2627 The optimal t is found by setting $e^{-t} = 1 - \eta$, or $t = -\ln(1 - \eta)$. Substituting this value gives:
 2628

$$\mathbb{P}(N_{\text{poi}} \leq (1 - \eta)n) \leq \exp(n((1 - \eta) - 1) - n(1 - \eta) \ln(1 - \eta)) = \exp(n[-\eta - (1 - \eta) \ln(1 - \eta)]).$$

2629 Using the inequality $-\eta - (1 - \eta) \ln(1 - \eta) \leq -\frac{\eta^2}{2}$ for $\eta \in (0, 1)$, we get a simple bound:
 2630

$$\exp(n[-\eta - (1 - \eta) \ln(1 - \eta)]) \leq \exp\left(-\frac{\eta^2 n}{2}\right).$$

2631 Since for $\eta \in (0, 1)$, we have $\exp(-\eta^2 n/2) \leq \exp(-\eta^2 n/3)$, the lower tail is also bounded by
 2632 $\exp(-\eta^2 n/3)$.
 2633

2634 Using the union bound, we combine the probabilities for the two tails:
 2635

$$\begin{aligned} 2636 \quad \mathbb{P}(|N_{\text{poi}} - n| \geq \eta n) &= \mathbb{P}(N_{\text{poi}} \geq (1 + \eta)n) + \mathbb{P}(N_{\text{poi}} \leq (1 - \eta)n) \\ 2637 &\leq \exp\left(-\frac{\eta^2 n}{3}\right) + \exp\left(-\frac{\eta^2 n}{2}\right) \\ 2638 &\leq 2 \exp\left(-\frac{\eta^2 n}{3}\right). \\ 2639 \\ 2640 \\ 2641 \\ 2642 \\ 2643 \end{aligned}$$

2644 This completes the proof. □
 2645