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Abstract

The past decade has witnessed an increasing demand for enhancing image quality
through exposure, and as a crucial prerequisite in this endeavor, Image Exposure
Assessment (IEA) is now being accorded serious attention. However, IEA en-
counters two persistent challenges that remain unresolved over the long term: the
accuracy and generalizability of No-reference IEA are inadequate for practical
applications; the scope of IEA is confined to qualitative and quantitative analysis
of the entire image or subimage, such as providing only a score to evaluate the
exposure level, thereby lacking intuitive and precise fine-grained evaluation for
complex exposure conditions. The objective of this paper is to address the persistent
bottleneck challenges from three perspectives: model, dataset, and benchmark. 1)
Model-level: we propose a Pixel-level IEA Network (P-IEANet) that utilizes Haar
discrete wavelet transform (DWT) to analyze, decompose, and assess exposure
from both lightness and structural perspectives, capable of generating pixel-level
assessment results under no-reference scenarios. 2) Dataset-level: we elaborately
build an exposure-oriented dataset, IEA40K, containing 40K images, covering 17
typical lighting scenarios, 27 devices, and 50+ scenes, with each image densely
annotated by more than 10 experts with pixel-level labels. 3) Benchmark-level:
we develop a comprehensive benchmark of 19 methods based on IEA40K. Our
P-IEANet not only achieves state-of-the-art (SOTA) performance on all metrics but
also seamlessly integrates with existing exposure correction and lighting enhance-
ment methods. To our knowledge, this is the first work that explicitly emphasizes
assessing complex image exposure problems at a pixel level, providing a signifi-
cant boost to the IEA and exposure-related community. The code and dataset are
available in here.

1 Introduction

Exposure, one of the 3A factors (Auto Exposure, Focus and White Balance) in camera technology,
plays a crucial role in controlling image quality. Image exposure assessment (IEA) is a prerequisite
for improving exposure [1–3]; however, even leading phone and camera manufacturers heavily rely
on manual evaluations due to the unavailability and high cost of human raters. Nevertheless, large-
scale adoption of manual assessments is impractical. Similar to mainstream AI applications, deep
learning and data-driven approaches hold promise as potential solutions to overcome this limitation.
Nevertheless, the traditional data-driven IEA paradigm encounters two major challenges:

1) A Dilemma between Applicability and Practicability: While full-reference IEA methods deliver
satisfactory results [4–9], their applicability in non-preset scenarios is limited due to the general
unavailability of reference images. Conversely, no-reference IEA methods, which do not rely on
reference information, struggle with natural images distorted by unknown factors. This difficulty
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Figure 1: Comparison between the brightness histogram (a) and our method (b) for assessing image
exposure. (b) offers a more intuitive and accurate reflection of the exposure conditions in each area.
(c) shows how to determine exposure levels for each area using Adams’ zone system theory [14, 15].

arises from the inability to identify specific features for assessing exposure, as the quality prediction
problem becomes agnostic to the type of exposure distortion, thereby restricting both performance
and practicality [10, 11].

2) Restricted Generalization Capacity: Traditional IEA annotation relies on scenario-specific criteria,
leading to significant subjectivity across datasets. These datasets typically provide only a holistic
quantitative score reflecting the overall exposure condition [12], lacking detailed and fine-grained
assessments. Consequently, the subjective and coarse-grained labels introduce restricted generaliza-
tion capacity into learning-based IEA methods, reducing their adaptability to diverse scenarios and
assessment criteria.

How can an ideal method be designed to tackle the aforementioned challenges? The method should
primarily address three key issues: firstly, as a no-reference method, it should effectively simulate
reference images in non-preset scenarios, functioning like full-reference methods; secondly, it should
achieve fine-grained assessments by adapting to diverse high-level evaluation criteria or application
scenarios directly or through fine-tuning; finally, the learned features should be decoupled from
subjective criteria and aligned with naive exposure features to mitigate narrow inductive biases.

This paper presents P-IEANet, an innovative method that leverages large-scale, pixel-level annotated
datasets to delve into the fundamental unit of IEA: pixels. This approach allows us to identify
exposure issues with unprecedented precision and to handle IEA tasks of varying granularity
beyond the pixel level, without being influenced by subjective criteria. Grounded in the well-
established theory that the power spectrum of natural images is a function of frequency, represented
as 1/fγ where γ varies slightly at specific frequencies [11, 13], we leverage this insight to analyze
exposure characteristics in specific frequency domains for improved adaptability across varying
criteria and scenarios. Through employing the dedicated Haar Discrete Wavelet Transform (DWT),
P-IEANet decomposes the original image to criteria-agnostic frequency features, thus avoiding
narrow inductive biases. Additionally, with pixel-level supervision, P-IEANet enables ideal exposure
reconstruction from frequency space, effectively creating reference images for further analysis.

Our contributions are summarized as follows:

• To our knowledge, this is the first work to implement a pixel-level evaluation paradigm
in IEA. It enhances the generalizability and accuracy of no-reference IEA tasks, while
effectively addressing challenges associated with reusing underlying data and architectures.

• We present the P-IEANet, showcasing that pixel-level IEA can be decomposed into criteria-
agnostic lightness and structure information via the dedicated Haar DWT. This design
enables efficient execution of pixel-level IEA while minimizing parameter usage.

• To convincingly validate our method, we have developed a dataset exclusively tailored for
IEA, called IEA40K. This dataset specifically focuses on exposure and comprises 40,000 of
images with the most comprehensive annotations to date, including pixel-level annotations.

• Building upon IEA40K, we have evaluated 19 baselines, establishing our benchmark as the
most comprehensive to date for IEA. Our work not only achieves SOTA performance but
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Figure 2: Images visualized along with their corresponding pixel-level (heat map of exposure residual)
and holistic IEA results by P-IEANet (where a higher score shows more visually pleasing exposure).

also serves as a pivotal catalyst, offering the community a new roadmap to explore further
solutions for IEA.

2 Related Work
No-reference IEA Methods and Datasets. Previous studies on no-reference IEA can be broadly
classified into two primary categories: 1) Statistical-feature based methods. Datta et al. [4] utilized
average pixel intensity to evaluate light usage. Liu et al.[5] explored image brightness histograms,
and Hanmandlu et al.[7] developed indicators based on the image brightness histogram for crucial
auto-exposure control. Rahman et al. [8] and Lu et al. [9] adopted information entropy as a criterion
for exposure evaluation. In some auto-exposure work, [16–19] incorporated gradient information to
determine the ideal exposure settings for cameras, suggesting that maximum information entropy
indicates ideal image exposure. Efimov et al. [20] and Dong et al. [21] proposed subdividing
images into blocks for individual assessment, classifying each based on its brightness histogram
into categories. 2) Data-driven methods. The increasingly popular methods [12, 22–24] utilize
human-labeled datasets to develop scenario-specific features.

However, when it comes to statistical-feature based methods, manual features often assume only one
type of distortion, which is problematic in complex situations where overexposure and underexposure
coexist [11, 25]. On the other hand, data-driven methods become less effective when assessment
criteria or application scenarios change; moreover, the holistic scores from these datasets lack the
detailed supervisory information required for the precision and granularity demanded in applications.

Pixel-level Tasks. In conventional terms, the concept of “exposure” refers to not only exposure time
but also two other parameters (aperture and ISO, referred to [26]). Rather than being characterized as
a global attribute of the image, the parameters would be more appropriate to be described as a global
attribute associated with the camera for capturing the image. However, according to the claim made
by the classical photographic theory (Adams’ theory) [27] that “The exposure time is the same for
all elements, but the image exposure varies with the luminance of each subject element,” the coarse
global camera exposure attribute fails to match each subject element in an image, potentially resulting
in some subject elements being under-exposed and others being over-exposed. Given this, in the
context of evaluating images, the term “exposure” is no longer a global attribute, as referred to
[27] that “Any scene of photographic interest contains elements of different luminance; consequently,
the ‘exposure’ actually is many different exposures.” Therefore, the pixel-level IEA is highly
desired.

However, to our knowledge, there are currently no pixel-level IEA methods, despite advancements
in related visual tasks such as semantic understanding and fine-grained analysis. For instance,
DiffuMask [28] exploits powerful zero-shot text-to-image generative models to provide pixel-level
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Figure 3: After Haar DWT decomposes an image, swapping its low-frequency component (③)
with the high-frequency components (①②④) of the same image under different exposures produces
visually similar results (a-d) as well as similar t-SNE features (e).
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Figure 4: Pipeline of P-IEANet. The original image is decomposed into low/high-frequency com-
ponents via Haar DWT. Subsequently, the Structure Feature Module analyzes the high-frequency
components with gradient maps to extract structural features (cf. Sec. 3.1). Simultaneously, the
Lightness Feature Module handles the low-frequency component and extracts lightness features by
attention mechanisms (cf. Sec. 3.2). These features are then composed through Haar inverse DWT
for pixel-level IEA. Dedicated convolution kernels (d) are employed to facilitate the DWT process.

segmentation annotations across diverse classes. Similarly, PixelLM [29] leverages GPT4V to
produce 246,000 pixel-level question-answer pairs, enhancing its capabilities in pixel-level reasoning
and comprehension.

However, directly applying these methods to IEA tasks is very challenging due to specific require-
ments in data collection and annotation processes, which entail avoiding selection bias, accurately
aligning images, obtaining ideal references, and providing detailed annotations (cf. Sec. 4).

3 Architecture of P-IEANet
Preliminaries. Images captured with incorrect exposure settings often suffer from visual problems,
including lightness and structure distortions [30–32]. For instance, overexposed images exhibit
unnatural artifacts, inconsistencies in exposure blending, and blurred structural details. This paper
demonstrates the potential of the Haar DWT for analyzing IEA issues. The mathematical representa-
tion of the Haar DWT can be formulated as follows:

DWT (L,H) =
1√
2m

∑
k

f(k)(ϕ
(
n− k2m

2m

)
,ψ
(
n− k2m

2m

)
). (1)

The mother waveletϕ andψ of the Haar DWT can decompose an image into low frequency compo-
nents L (approximation coefficients), and high frequency components H (coefficients in horizontal,
vertical, and diagonal directions), as shown in Fig. 3. We label the underexposed, overexposed, and
ideal images as Xover, Xunder, and Xideal, respectively. Their corresponding Haar DWT represen-
tations in frequency are denoted as DWT (L(Xover), H(Xover)), DWT (L(Xunder), H(Xunder))
and DWT (L(Xideal), H(Xideal)), respectively.

For IEA tasks, we examine whether the low-frequency and high-frequency components corre-
spond to the frequency-domain representations of lightness and structure, respectively. The
images obtained by reversing these components, such as DWT−1(L(Xideal), H(Xunder)) and
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DWT−1(L(Xideal), H(Xover)), show an exposure close to Xideal (Fig. 3(c)(d)). Conversely,
DWT−1(L(Xover), H(Xunder)) exhibits a exposure similar to that of Xover, as shown in Fig.
3(b). To further validate these findings, we conducted a similar analysis using t-SNE dimensionality
reduction [33] on 200 sample images in Fig. 3(e). The t-SNE results reveal that the high fre-
quency components remain relatively consistent across different exposures, while the low frequency
components exhibit significant variation.

Based on the above observations, we deduce that the low-frequency components primarily represent
an image’s lightness, while the high-frequency components indicate structural details and are less
affected by lightness variations. By exploiting this characteristic, we can decompose the exposure
of a distorted input image into two frequency representations and then construct an ideal reference
image in the frequency space. Subsequently, differences in the frequency domain are mapped to
pixel-level IEA results. This approach effectively mitigates any influence from irrelevant image
semantics or noise associated with IEA.

Pipeline. P-IEANet comprises three essential modules (Fig. 4). The Structure Feature Module
(cf. Sec. 3.1) and Lightness Feature Module (cf. Sec. 3.2) are responsible for extracting structural
features from high-frequency components and lightness features from low-frequency components,
respectively. Ultimately, the Prediction Module (cf. Sec. 3.3) integrates these features to predict
pixel-level IEA results and generate the final prediction.

3.1 Structure Feature Module

There are two categories of structural features relevant to the IEA tasks: 1) Long-range features
encompassing the overall layout and distant objects of an image, which provide a comprehensive
understanding of its structure and global exposure [34–38]. 2) Short-range features focusing on fine
details and textures, such as edges and localized patterns, are crucial for capturing local exposure
variations [38–41]. To obtain these features effectively, we first derive gradient maps from the
high-frequency components of the Haar DWT. These maps highlight edge regions, thus enhancing the
representation of basic structural details [30, 38, 42]. Subsequently, we refine the extraction process
by subjecting these gradient maps to a Long-Range Encoder (LRE) and a Short-Range Encoder
(SRE). Further details are provided below.

Gradient Maps. The input image X is decomposed by the Haar DWT to obtain high-frequency
components, and then processed by a multi-layer encoder to extract naive features. For each layer zi,
where i ranges from 1 to N (the total number of layers), we compute the gradient map as follows:

∇zi = {gd(zi)|d ∈ D}, (2)

where gd(zi) applies the first-order gradient function g to zi in direction d. The set D includes all
directions under consideration: +x,−x,+y,−y,+x+y,+x−y,−x+y,−x−y, which correspond
to the x-axis, y-axis, and their diagonals. These directions ensure comprehensive emphasis on edges,
thereby enhancing the formulation of structural features.

Long-range and Short-range Encoders. To enhance the extraction of structural features, we
feed both the original input feature, zi, and its gradient maps ∇zi into two distinct modules: a
Transformer-based LRE Zl and a CNN-based SRE Zs. The feature extraction process is as follows:

li = Zl
i(zi), si = Zs

i (zi), ∇li = ∇Zl
i(∇zi), ∇si = ∇Zs

i (∇zi), (3)

where li and si represent the long-range and short-range features, respectively, these features are then
integrated using a Structure Fusion Module Zf , which employs multiple MLPs, as follows:

Zo =
∥∥∥Zf

i (li, si), Z
f
i (∇li,∇si)

∥∥∥N
i
. (4)

In this formulation, ∥...∥ signifies the stacking of operations along the feature channel dimensions,
facilitating a comprehensive synthesis of the extracted features.

3.2 Lightness Feature Module

The human visual system, possessing a high dynamic range, is skilled at globally detecting varying
light levels of objects. However, due to limited attention capacity, it also tends to focus on specific
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Figure 5: Visualization of different components in P-IEANet. Long-range (a) and Short-range (b)
features highlight the important structural information for IEA tasks, while pixel-level attention (c)
and channel-based attention (d-e) characterize its distribution in terms of light information.

regions with distinct lightness levels. Our method selectively processes global channels and local
pixel regions to enhance the network’s management of a broad spectrum of information.

Lightness Channel Attention. Firstly, our lightness channel attention (LCA) processes the channel-
wise global spatial information, Lc (C ×H ×W ), through global average pooling to create a channel
descriptor, Ac (C × 1× 1). To determine the weights for different channels, the descriptor undergoes
further refinement in two convolution layers, followed by sigmoid σ and ReLU γ activation functions.
This procedure is formalized as follows:

Ac = σ(MLP(γ(MLP(
1

H ×W

H∑
i=1

W∑
i=1

Lc(i, j))))), (5)

where Lc(i, j) represents the lightness value at position (i, j) in the c-th channel Lc, this channel
attention strategy highlights that lightness variations across different channels convey distinct and
weighted information. Finally, the channel weights are element-wise multiplied with the input to
generate the output Fc = Ac ⊗ Lc (C ×W ×H).

Lightness Pixel Attention. The variable distribution of lightness among image pixels necessitates
our lightness pixel attention (LPA) mechanism. This mechanism processes the output Fc from the
LCA using self-attention (SA) and convolution layers, coupled with ReLu and sigmoid activation
functions. The attention mechanism is formulated as follows:

Ap = σ

(∑
k∈K

wk · Convk(γ(SA(Fc)))

)
. (6)

Here, Convk denotes a convolution operation with multi-scale kernel sizes k, which aims to enhance
the network’s focus on fine-grained and multi-scale exposure features under complex scenario. Larger
kernel sizes help perceive overall brightness and contrast, while smaller kernel sizes detect localized
overexposure or underexposure issues. Additionally, self-attention allows the system to analyze
lightness distribution and recognize patterns at multiple scales.

We then perform element-wise multiplication to merge the input Lc with Ap (1×H×W ), generating
the output Fp = Lc ⊗Ap (C ×H ×W ). The final stage integrates the outputs from both channel
and pixel attention mechanisms to yield the comprehensive output Ao = MLP(Fc, Fp).

3.3 Prediction Module

We employed Haar DWT−1 to integrate lightness and structure features for ideal exposure representa-
tion reconstruction in the frequency space, then using the formula Pp = MLP(DWT−1(Ao, Zo)) to
predict the exposure residual, which measures the deviation of each pixel from the ideal exposure.
Both Haar DWT and DWT−1 involve four dedicated convolutional kernels to simulate the wavelet
transform’s decomposition and reconstruction processes (Fig. 4(d)). To evaluate prediction accuracy,
we define a loss function as:

Lpixel =
1

H ×W

H∑
i=1

W∑
j=1

∣∣∣Pp(i, j)− P̃p(i, j)
∣∣∣ , (7)

where P̃p is the pixel-level ground truth, these residual maps can be converted into a coarser-grained
prediction above pixel, e.g., holistic IEA score (cf. Sec. 5.2).
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Figure 6: Proposed IEA40K dataset. (a) Visualization of images with different exposure conditions;
(b) Scenes containing 8 super-classes with 50+ sub-classes; (c) 17 typical lighting scenarios.

4 Proposed IEA40K Dataset

4.1 Image Collection

How to Avoid Selection Bias when Building a Comprehensive IEA Dataset. Selection bias can arise
when certain types of intended exposure conditions, scenes and devices are underrepresented in the
dataset, which may compromise the validity and generalizability of training models. To mitigate
this issue, we considered 5 key aspects: varied scenes, diverse light conditions, sufficient devices,
uniform resolution and comprehensive simulations (Fig. 6). These factors can significantly impact
the quality of the dataset. Further details are provided in Appendix A.1.

How to Align a set of Images through Pre-processing Strategies. Effectively aligning a set of images
captured under various exposure conditions is a significant challenge. Factors like camera shake and
slight subject movement during shooting parameter adjustments can lead to misalignment [43]. Such
misalignment adversely affects the generation of supervised information and the training process. To
tackle this issue, we first apply the Structural Similarity Index Measure (SSIM) algorithm to filter out
misalignment images from the series. Those falling below a specified SSIM threshold are eliminated.
Subsequently, we employ image alignment algorithms [43] to further enhance the alignment of the
remaining images. This entire process is automated and can be executed in an unsupervised manner.

4.2 Data Annotation

How to Obtain an Ideal Reference. Obtaining a reference image with ideal exposure in each region is
crucial for our subsequent image annotation. However, ensuring the representatives of the reference
image while minimizing the randomness and subjectivity introduced by humans presents significant
challenges. To address this, we start by creating a preliminary reference image using a multi-exposure
fusion algorithm. Subsequently, we segment this image into blocks with the super-pixel segmentation
algorithm [44] based on lightness and structure. Finally, experts optimize each block’s exposure
conditions utilizing Adams’ zone system theory of classical photography [14, 15] (Fig. 1(c)). This
theory provides precise guidelines for achieving ideal exposure across different elements.

How to Obtain Pixel-Level Labels by Human-in-the-Loop Methods. Given the exorbitant cost
and intricate nature of pixel-level annotation, we have streamlined the process using a combination
of expert judgment and weak supervision techniques (Fig. 7). The initial pixel-level annotations
were generated by comparing a reference image with the 8 distorted images, documenting exposure
residual across pixels. Subsequently, experts further refined the final pixel-level annotations to
rectify potential errors, such as accurately identifying areas with logos as severely overexposed and
addressing discrete anomalous pixel labeling, to ensure that the final exposure residual closely aligns
with the perceived deviation of each pixel from ideal exposure. For experts, distinguishing between
the reference and distorted images is relatively straightforward and far more accurate, thus facilitating
practical data annotation.
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Figure 8: Example exposure residuals, a robust quantitative indicator for precise assessment, uniquely
generated by P-IEANet (a lower absolute exposure residual suggests a visually more pleasing result).
(a) Inputs: an original image and its enhanced counterparts by classical light enhancement methods.
(b) Outputs: the exposure residuals hilighting the disparity between the input and the ideal exposure.

5 Experiments
5.1 Settings

Benchmark Models and Training Protocols. To the best of our knowledge, there is no publicly
available pixel-level IEA model. Therefore, we have selected several deep learning baselines based
on the following criteria: classical architectures with publicly available code and SOTA performance
in a specific domain. For pixel-level IEA, we selected light enhancement, light-aware, and image
quality assessment (IQA) models as backbones, complemented by appropriate output heads. For
holistic IEA, we chose IQA and image aesthetics assessment (IAA) models to regress scores. Further
details regarding training protocols can be found in Appendix A.3.

Evaluation Metrics. For pixel-level IEA, we adopt SSIM and MAE to measure the structure and
lightness similarity between the ground truth and predicted exposure residual. For holistic IEA, we
adopt the Spearman’s rank correlation coefficient (SRCC) and the linear correlation coefficient (LCC),
to measure the correlation between the predicted IEA score and human opinion [45].

5.2 Performance Evaluations
Pixel-level Assessment. Table 1 presents the results of P-IEANet and 12 other models on the
IEA40k dataset. Our P-IEANet achieves SOTA performance, surpassing the second-best model with
a remarkable -40% reduction in MAE loss and a significant +25% improvement in SSIM, while
using an impressive -97% fewer training parameters. The efficiency of P-IEANet can be largely
attributed to Haar DWT, which effectively minimizes the number of required feature extraction layers.
Additionally, both the Lightness Feature Module and Structure Feature Module effectively utilize
information, contributing to its exceptional performance with fewer parameters.

Holistic Level Assessment. We validated the effectiveness of P-IEANet on the holistic IEA task
using the representative SPAQ dataset [12]. This dataset provides annotations for holistic exposure,
allowing us to test the capabilities of various baseline models. P-IEANet supports three prediction
methods: 1) With Fine-tuning: after obtaining the residual map, it is processed through additional
MLPs to predict the holistic exposure score, supervised by the MAE loss. A comparison of P-IEANet
with 18 other models is presented in Table 2, where P-IEANet achieves SOTA performance. 2)
Without Fine-tuning: after obtaining the residual map, we compute the average of absolute values
and subtract this average from 1, mapping it to a scale of 0-10 (Fig. 2). Remarkably, without requiring
fine-tuning for holistic exposure scoring on SPAQ, we achieved a LRCC of 0.69 and SRCC of 0.65,
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Table 1: Comparing the pixel-level IEA performance of 13 models on IEA40K. We adjusted the
output headers of all light enhancement/awareness and IQA/IAA models to ensure their support for
fine-tuning on our IEA40k. All models utilized only the exposure residual as pixel-level ground truth
and were retrained for the best performance.

Light Enhancement / Awareness IQA / IAA
Pixel
level FEC

[32]
MSLT
[46]

Retinex
[47]

PyDiff
[48]

SMG
[38]

SKF
[49]

GSAD
[50]

LIT
[51]

ArnIQA
[52]

ReIQA
[53]

DEIQT
[54]

MUSIQ
[55] Ours

Params 9M 8M 5M 374M 575M 22M 67M 146M 106M 560M 363.5M 298M 2.7M
MAE ↓ 0.08 0.10 0.10 0.07 0.09 0.07 0.08 0.05 0.11 0.08 0.08 0.15 0.03
SSIM ↑ 0.35 0.33 0.42 0.50 0.46 0.44 0.41 0.60 0.50 0.37 0.39 0.24 0.75

Table 2: Comparing the holistic level IEA performance of 19 models on SPAQ. All models utilized
only the exposure score as holistic-level ground truth, and were retrained for the best performance.

Light Enhancement / Awareness IQA / IAA
Holistic

level FEC
[32]

MSLT
[46]

Retinex
[47]

PyDiff
[48]

SMG
[38]

SKF
[49]

GSAD
[50]

LIT
[51]

ArnIQA
[52]

ReIQA
[53]

DEIQT
[54]

MUSIQ
[55]

NIMA
[45]

Alamp
[56]

MLSP
[57]

TANet
[58]

EAT
[59]

Q-align
[60]

Ours

Params 9M 8M 5M 374M 575M 22M 67M 146M 106M 560M 363.5M 298M 56M 99M 24M 40M 87M 7B 2.7M
LRCC↑ 0.74 0.75 0.71 0.70 0.69 0.68 0.71 0.72 0.70 0.71 0.63 0.64 0.63 0.67 0.71 0.75 0.74 0.75 0.78
SRCC↑ 0.69 0.70 0.67 0.68 0.67 0.66 0.68 0.69 0.68 0.65 0.54 0.60 0.60 0.64 0.68 0.69 0.71 0.70 0.73

even surpassing some methods that do require fine-tuning. The above results show that P-IEANet
exhibits strong criteria and scenario robustness beyond pixel-level tasks. 3) Criteria-oriented without
Fine-tuning: Moreover, we additionally discuss an industry-applicable criteria-oriented scoring
methodology in Appendix A.2.

Ablation Studies. Table 3 evaluates the effectiveness of P-IEANet’s modules. The absence of the
Haar DWT and two other modules, Structure and Lightness, significantly impact the performance
of P-IEANet. Specifically, the SSIM decreases by 42.6%, 28.0%, and 44.0% respectively, while
the SRCC falls by 14.3%, 7.1%, and 15.8%. These results confirm that each module, particularly
the Lightness Feature Module which processes low-frequency information, plays a crucial role in
enhancing the model’s overall performance. Qualitative visual effects analysis is provided in Fig. 5.

Predictions for Images. The prediction examples are shown in Fig. 2. Similar to human perception,
P-IEANet’s pixel-level evaluation results effectively identify areas of overexposure and underex-
posure that are visually displeasing, even in unconventional scenes where both underexposure and
overexposure coexist. Moreover, when combined with semantic segmentation algorithms, P-IEANet
enables more precise object- and pixel-level IEA results (Appendix A.2).

5.3 Advancing Light Enhancement Methods

P-IEANet, owing to its exceptional sensitivity towards exposure, offers advantages for the exposure
enhancement community in the following two aspects:

1) Analyzing Performance Better: Traditionally, assessing the efficacy of image enhancement
algorithms has been a time-consuming and imprecise task, relying solely on human observations.
The exposure residual, uniquely generated by P-IEANet, serves as a robust quantitative indicator for
precise assessment (refer to Fig. 8, where input can be either an original image or an enhanced one).

2) Enhancing Performance Better: P-IEANet is compatible with many existing light enhancement
methods, enabling it to boost their performance. To demonstrate this, we chose two open-source and
SOTA methods, Retinex [47] and GASD [50], as baseline models. We incorporated P-IEANet as a
sample evaluator in these models after enhancement, freezing P-IEANet’s parameters and obtaining
the absolute exposure residual as loss to include in the baseline models. Table 4 shows that on both
representative datasets, LOL-v1 [61] and LOLv2-real [62], the performance is improved to some
extent, suggesting that P-IEANet has the potential to become an important enhancer in this field.
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Table 3: Ablation studies conducted on IEA40K.

Pixel-level Holistic levelMethod Params MAE SSIM ACC LRCC SRCC
w/o DWT 2.7M 0.08 0.43 0.81 0.74 0.72

w/o Structure 1.6M 0.05 0.54 0.84 0.81 0.78
w/o Lightness 1.0M 0.08 0.42 0.73 0.74 0.71

P-IEANet 2.7M 0.03 0.75 0.88 0.89 0.84

Table 4: Our P-IEANet can enhance some low-light enhancement methods. Our retrained results are
marked by ‘*’.

LOL-v1 LOLv2-realModel PSNR↑ SSIM↑ PSNR↑ SSIM↑
Retinex (ICCV’23) 25.16 0.845 22.80 0.840

Retinex* 24.7 0.80 21.9 0.82
Retinex* + P-IEANet 25.3 0.85 23.0 0.86

GASD (NIPS’23) 27.839 0.877 28.818 0.895
GASD* 27.1 0.85 28.4 0.86

GASD* + P-IEANet 28.2 0.88 29.5 0.91

6 Conclusion
This paper investigates IEA with a novel paradigm: from holism to pixel. To our knowledge, our
work introduces a new roadmap by proposing a model, dataset, and benchmark for the community.
However, several challenges still remain to be addressed. For instance, evaluating images with severe
misalignment issues caused by high-speed moving objects poses significant challenges. In future
work, we aim to optimize our framework to support multimodal outputs and enhance the exposure
perception in artificial intelligence generated content (AIGC).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and/or introduction clearly state the claims made, as shown at the
end of the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We briefly discuss the limitations of this paper’s work in Appendix A.6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: This paper is not concerned with proving specific theorems, all assumptions
have been clearly stated or referenced.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code and dataset are available in the supplementary material to support
the reproducibility of experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code and dataset are available in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the training details and protocols are provided in Appendix A.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: All results of this paper are not accompanied by error bars, confidence intervals,
or statistical significance tests, and, at the same time, do not affect the conclusions of this
paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experiments compute resources are provided in Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our code strictly follows the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: At the end of the abstract and introduction, we briefly discuss the potential
positive societal impacts, and we found no negative societal impacts of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We describe safeguards in Appendix A.7.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We describe Licenses in Appendix A.7.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All new assets introduced in the paper well documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper is not crowdsourcing experiments and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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(b) Our pixel-level IEA results(a) Semantic segmentation results (c) IEA criteria

Score Overall Exposure

100 Appropriate
90 Appropriate
80 Somewhat Appropriate
70 Slightly High/Low or 10% Overexposed/Underexposed
60 High/Low or 20% Overexposed/Underexposed
50 Overall Too Dark/Bright
40 Slightly High/Low or 30% Overexposed/Underexposed
30 Very High/Low or 30% Overexposed/Underexposed
20 Very High/Low or 40% Overexposed/Underexposed
10 Large Brightness/Contrast/Dynamic Range Problems
0 (Almost) Completely Black/White

IEA Score = 40

Figure 9: Based on the IEA criteria provided by different manufacturers, our pixel-level IEA results
can be mapped to the corresponding IEA scores according to the provided criteria without fine-tuning.

A Appendix

A.1 Image Collection Details

1) Varied Scenes. The scene defines the image’s content and overall lighting conditions. As shown
in Fig. 6(a)(b), IEA40K spans over 50 scene categories, enabling a comprehensive understanding
of image exposure in dynamic scenes. 2) Diverse Light. The type and direction of the light source
greatly influence light distribution within an image. Our dataset includes a variety of light sources
and directions, as shown in Fig. 6(c). We also consider the shading tone’s impact on an image’s visual
appeal, selecting images with dark, clear, and neutral tones. 3) Sufficient Devices. The performance
of the capturing device can affect image quality and exposure. To address this, our dataset features
images from over 27 different devices, ranging from smartphones like the iPhone 13 and Huawei
Mate40 to digital cameras from Canon, Nikon, and others. 4) Uniform Resolution. Initially captured
at high resolutions, our images were downsized for manageability. Keeping the aspect ratio intact, we
reduced the image size so that the shorter side measures 512 pixels, storing them in PNG format to
balance quality and model compatibility. 5) Comprehensive Simulations. Capturing varied exposure
levels for the same scene poses a challenge. To overcome this, we simulated 80% of the images at
different exposure EV levels from the original raw files, or collected images from MIT-Adobe FiveK
dataset [63]. After expert selection and adjustment, we compiled a set of 8 specific exposure levels
for each raw image, resulting in 1 ideal reference and 8 exposure distorted images per scene.

A.2 Criteria-oriented IEA without fine-tuning

Different manufacturers have their own criteria for IEA scoring. Our pixel-level IEA results can
adapt well to these different criteria. In Fig. 9, we provide an example where manufacturers can map
the pixel-level IEA results to their overall scoring criteria to ultimately obtain their IEA scores.

A.3 Experimental Settings

Our model is implemented in PyTorch and trained with the Adam optimizer [64]. We set the initial
learning rate to 3× 10−5 with a decay rate of 0.1 after every 10 epochs, and the mini-batch size is
set to 36. On the Intel 10900X CPU and RTX 3090 platform, the entire training time is about 14
hours for 30 epochs (early stopping), and the inference time is 0.083 seconds for a 256× 256 image
(supports larger input sizes). To reduce the bias caused by a random splitting, we run the random
train-test splitting operation five times, and the comparison results are reported as the average of the
five evaluation experiments.

A.4 Why not Employ Light Enhancement Methods to Obtain an Exposure Residual?

There is a common misconception that subtracting the inputs and outputs from existing light enhance-
ment methods, or comparing distorted images to reference images from existing light enhancement
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datasets, will yield the pixel-level IEA prediction results or ground truth (exposure residual) described
in this paper. However, there are two fundamental differences: 1) Different Data Production Pro-
cesses: light enhancement methods only optimize reference images’ exposure in global areas through
linear adjustments, e.g., adjusting the exposure value (EV) across the entire image. Our method
involves non-linear adjustments by experts to optimize local exposure in specific areas of reference
images. Additionally, human experts correct any errors in the exposure residual. As a result, the
exposure residual obtained from these two approaches contains different amounts of information. 2)
Different Task Objectives: light enhancement methods generally aim to rectify image issues to a level
acceptable to human vision, ensuring consistency in image semantics and using complete reference
images for supervision. In contrast, our task is focused solely on resolving exposure issues. We do
not consider the impact of image semantics on predictions nor attempt to restore image semantics.
Instead, we use only the exposure residual for supervision, eliminating other factors that could impact
exposure quality.

A.5 More Performance Evaluations

Comparison of Different Wavelets. As outlined in the paper, the Haar wavelet distinctly aligns
its component decomposition with exposure characteristics, a unique attribute not shared by other
wavelets. Experimental results also show that the Haar wavelet surpasses other wavelets in perfor-
mance. Table 5 presents a comparative analysis of the Haar wavelet against other notable wavelets
(Daubechies and Symlet) on the IEA40K dataset.

Table 5: Ablation of various wavelets.
MAE↓ SSIM↑

Haar 0.03 0.75
Daubechies 0.07 0.49

Symlet 0.08 0.41

Table 6: Ablation of different loss functions.
Epoch↓ SSIM↑

L1-norm 30 0.75
L2-norm 50 0.62

Smooth L1 45 0.67

Comparison of Different Loss Functions. During training, we evaluated three primary types of
loss functions: L1-norm, L2-norm, and Smooth L1. Comparative results are detailed in Table 6.
The L1-norm demonstrates superior robustness and faster training speeds, as evidenced by earlier
convergence epochs in the IEA task.

Table 7: The PSNR results on IEA40k.
FEC MSLT Retinex SMG

PSNR↑ 23.22 21.02 23.8 24.17
SKF GSAD LIT Ours

PSNR↑ 21.68 19.37 23.51 28.04

Comparison of PSNR Performance. PSNR can also serve as an evaluation metric at the pixel level,
and comparisons of some methods are presented in Table 7, which also demonstrates our SOTA
performance.

A.6 Limitations

The dataset includes few images of high-speed moving objects because capturing well-aligned images
with different exposures for such objects is difficult. The misalignment cannot be easily corrected
using existing image alignment methods. Therefore, different exposure images for these objects can
only be simulated by adjusting the EV value of ideal images.
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Additionally, resizing high-resolution images for evaluation can significantly compress the image,
affecting pixel-level exposure assessments. Increasing the input size during network training can
address this issue but will also increase the inference time.

A.7 Safeguards and Licenses for Existing Assets

The original owners of assets (e.g., code, data, models) used in the paper are properly credited, and
the licenses and terms of use are explicitly mentioned and properly respected, ensuring that there are
no copyright issues and no risk of misuse.
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