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ABSTRACT

Algorithmic fairness plays an important role in machine learning and imposing fair-
ness constraints during learning is a common approach. However, many datasets
are imbalanced in certain label classes (e.g. "healthy") and sensitive subgroups
(e.g. "older patients"). Empirically, this imbalance leads to a lack of general-
izability not only of classification, but also of fairness properties, especially in
over-parameterized models. For example, fairness-aware training may ensure equal-
ized odds (EO) on the training data, but EO is far from being satisfied on new users.
In this paper, we propose a theoretically-principled, yet Flexible approach that is
Imbalance-Fairness-Aware (FIFA). Specifically, FIFA encourages both classifica-
tion and fairness generalization and can be flexibly combined with many existing
fair learning methods with logits-based losses. While our main focus is on EO,
FIFA can be directly applied to achieve equalized opportunity (EqOpt); and under
certain conditions, it can also be applied to other fairness notions. We demonstrate
the power of FIFA by combining it with a popular fair classification algorithm,
and the resulting algorithm achieves significantly better fairness generalization on
several real-world datasets.

1 INTRODUCTION

0.0 0.1 0.2 0.3 0.4 0.5

Classification Error

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
ai

rn
es

s
(E

O
)

V
io

la
ti

on Train

Test

0.0460 0.0465 0.0470

0.56

0.58

0.60

Figure 1: Each marker corresponds to a suffi-
ciently well-trained ResNet-10 model trained on
an imbalanced image classification dataset CelebA
((Liu et al., 2015)). The generalization of fairness
constraints (EqualizedOdds) is substantially worse
than the generalization of classification error.

Machine learning systems are becoming increasingly vital in
our daily lives. The growing concern that they may inad-
vertently discriminate against minorities and other protected
groups when identifying or allocating resources has attracted
numerous attention from various communities. While signif-
icant efforts have been devoted in understanding and correct-
ing biases in classical models such as logistic regressions and
supported vector machines (SVM), see, e.g., (Agarwal et al.,
2018; Hardt et al., 2016), those derived tools are far less ef-
fective on modern over-parameterized models such as neural
networks (NN). Furthermore, in large models, it is also dif-
ficult for measures of fairness (such as equalized odds to be
introduced shortly) to generalize, as shown in Fig. 1. In other

∗This work was done when the author was at Harvard University.
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words, fairness-aware training (for instance, by imposing fairness constraints in training) may ensure
measures of fairness on the training data, but those measures of fairness are far from being satisfied
on test data. Here we find that sufficiently trained ResNet-10 models generalize well on classification
error but poorly on fairness constraints—the gap in equalized odds between the test and training data
is more than ten times larger than the gap for classification error between test and training.

In parallel, another outstanding challenge for generalization with real-world datasets is that they are
often imbalanced across label and demographic groups (see Fig. 2 for imbalance in three commonly
used datasets across various domains). This inherent nature of real-world data, greatly hinders
the generalization of classifiers that are unaware of this innate imbalance, especially when the
performance measure places substantial emphasis on minority classes or subgroups without sufficient
samples (e.g., when considering the average classification error for each label class). Although
generalizations with imbalanced data has been extensively studied and mitigation strategies are
proposed (Cao et al., 2019; Mani & Zhang, 2003; He & Garcia, 2009; An et al., 2021; He & Ma,
2013; Krawczyk, 2016), it’s unclear how well fairness properties generalize. And in this paper, we
initiate the study of the open challenge: how to ensure fairness generalization of over-parameterized
models for supervised classification tasks on imbalanced datasets?
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Figure 2: The subgroups (sensitive attribute, ei-
ther Male or Female, and label class, either + or
-) are very imbalanced in many popular datasets
across different domains.

Our contributions. Inspired by recent works on regularizing
the minority classes more strongly than the frequent classes by
imposing class-dependent margins (Cao et al., 2019) in stan-
dard supervised learning, we design a theoretically-principled,
Flexible and Imbalance-Fairness-Aware (FIFA) approach that
takes both classification error and fairness constraints violation
into account when training the model. Our proposed method
FIFA can be flexibly combined with many fair learning meth-
ods with logits-based losses such as the soft margin loss (Liu
et al., 2016) by encouraging larger margins for minority sub-
groups. While our method appears to be motivated for over-
parameterized models such as neural networks, it nonetheless
also helps simpler models such as logistic regressions. Experiments on both large datasets using over-
parameterized models as well as smaller datasets using simpler models demonstrate the effectiveness,
and flexibility of our approach in ensuring a better fairness generalization while preserving good
classification generalization.

Related work. Supervised learning with imbalanced datasets have attracted significant interest in the
machine learning communities, where several methods including resampling, reweighting, and data
augmentation have been developed and deployed in practice (Mani & Zhang, 2003; He & Garcia,
2009; An et al., 2021). Theoretical analyses of those methods include margin-based approaches
(Li et al., 2002; Kakade et al., 2008; Khan et al., 2019; Cao et al., 2019). Somewhat tangentially,
an outstanding and emerging problem faced by modern models with real-world data is algorithmic
fairness (Dwork et al., 2012; Coley et al., 2021; Deng et al., 2023), where practical algorithms are
developed for pre-processing (Feldman et al., 2015), in-processing (Zemel et al., 2013; Edwards
& Storkey, 2015; Zafar et al., 2017; Donini et al., 2018; Madras et al., 2018; Martinez et al., 2020;
Lahoti et al., 2020; Deng et al., 2020), and post-processing (Hardt et al., 2016; Kim et al., 2019) steps.
Nonetheless, there are several challenges when applying fairness algorithms in practice (Beutel et al.,
2019; Saha et al., 2020; Deng et al., 2022; Holstein et al., 2019). Specifically, as hinted in Fig. 1, the
fairness generalization guarantee, especially in over-parameterized models and large datasets, is not
well-understood, leading to various practical concerns. We remark that although Kini et al. (2021)
claims it is necessary to use multiplicative instead of additive logits adjustments, their motivating
example is different from ours and they studied SVM with fixed and specified budgets for all inputs.
Cotter et al. (2019) investigate the generalization of optimization with data-dependent constraints,
but they do not address the inherent imbalance in real datasets, and their experimental results are not
implemented with large neural networks used in practice. To the best of our knowledge, this paper is
the first tackling the open challenge of fairness generalization with imbalanced data.

2 BACKGROUND

Notation. For any k ∈ N+, we use [k] to denote the set {1, 2, · · · , k}. For a vector v, let vi be the
i-th coordinate of v. We use 1 to denote the indicator function. For a set S, we use |S| to denote
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the cardinality of S. For two positive sequences {ak} and {bk}, we write ak = O(bk) (or an ≲ bn),
and ak = o(bk), if limk→∞(ak/bk) < ∞ and limk→∞(ak/bk) = 0, respectively. We use P for
probability and E for expectation, and we use P̂ and Ê for empirical probability and expectation.
For the two distributions D1 and D2, we use pD1 + (1− p)D2 for p ∈ (0, 1) to denote the mixture
distribution such that a sample is drawn with probabilities p and (1− p) from D1 and D2 respectively.
We use Np(µ,Σ) to denote p-dimensional Gaussian distribution with mean µ and variance Σ.

Fairness notions. Throughout the paper, we consider datasets consisting of triplets of the form
(x, y, a), where x ∈ X is a feature vector, a ∈ A is a sensitive attribute such as race and gender,
and y ∈ Y is the corresponding label. The underlying random triplets corresponding to (x, y, a) is
denoted as (X,Y,A). Our goal is to learn a predictor h ∈ H : X 7→ Y , where h(X) is a prediction
of the label Y of input X . In this paper, we mainly consider equalized odds (EO) (Hardt et al., 2016)
that has been widely used in previous literature on fairness. But our method could also be directly
used to equalized opportunity (EqOpt) given that EqOpt is quite similar to EO. In addition, under
certain conditions, our method could also be used to demographic parity (DP), which we will mainly
discuss in the Appendix.

(i). Equalized odds (EO) and Equalized opportunity (EqOpt). A predictor h satisfies equalized odds
if h(X) is conditionally independent of the sensitive attribute A given Y : P(h(X) = y|Y = y,A =
a) = P(h(X) = y|Y = y). If Y = {0, 1} and we only require P(h(X) = 1|Y = 1, A = a) =
P(h(X) = 1|Y = 1), we say h satisfies equalized opportunity.

(ii). Demographic parity (DP). A predictor h satisfies demographic parity if h(X) is statistically
independent of the sensitive attribute A: P(h(X) = Y |A = a) = P(h(X) = Y ).

3 THEORY-INSPIRED DERIVATION

While we will formally introduce our new approach in Section 4, this section gives an informal
derivation, with an emphasis on insights. We design an imbalance-fairness-aware approach that can
be flexibly combined with fair learning methods with logits-based losses.

Throughout the paper, we use the lower letters, e.g. x, for realizations and capital letters, e.g.
X , for random variables. Consider the supervised k-class classification problem, where a model
f : X 7→ Rk provides k scores, and the label is assigned as the class label with the highest score. The
corresponding predictor h(x) = argmaxi f(x)i if there are no ties. Let us use Pi = P(X|Y = i) to
denote the conditional distribution when the class label is i for i ∈ [k] and Pbal to denote the balanced
distribution PIdx, where Idx is uniformly drawn from [k], i.e.

∑k
i=1 Pi/k. Pbal can be viewed as a

distribution weighting each class equally. Similarly, let us use Pi,s = P(X|Y = i, A = s) to denote
the conditional distribution when Y = i and A = s. The corresponding empirical distributions
induced by the training data are P̂i, P̂bal and P̂i,s. For the training dataset {(xj , yj , aj)}j , let
Si = {j : yj = i}, Si,a = {j : yj = i, aj = a}, and the corresponding sample sizes be ni and
ni,a, respectively. Although Pi, Pbal and Pi,s are all distributions on X , we sometimes use notations
like (X,Y ) ∼ Pi to denote the distribution of (X, i), where X ∼ Pi. In classical imbalanced data
analysis, the goal is to ensure a small Lbal[f ] = P(X,Y )∼Pbal [f(X)Y < maxl ̸=Y f(X)l]. For our
goal, we not only want to ensure a small Lbal[f ], we also hope to keep the fairness violation error
to be as small as possible. In order to do that, we need to take the margin of subgroups divided
according to sensitive attributes in each label class (so called demographic subgroups in different
classes) into account.

Margin trade-off between classes of equalized odds. In the setting of standard classification with
imbalanced training datasets such as in Cao et al. (2019); Sagawa et al. (2020), the aim is to reach a
small balanced test error Lbal[f ]. However, in a fair classification setting, our aim is not only to reach
a small Lbal[f ], but also to satisfy certain fairness constraints at test time. Specifically, for EO, the
aim is:

min
f

Lbal[f ]

s.t. ∀y ∈ Y, a ∈ A, P(h(X) = y|Y = y,A = a) = P(h(X) = y|Y = y),

where we recall that h(·) = argmaxi f(·)i. We remark here that in addition to the class-balanced
loss Lbal[f ], we can also consider the loss function that is balanced across all demographic subgroups
in different classes, the derivation is similar and we omit it here.
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Recall our motivating example in Figure 1. Whether the fairness violation error is small at test time
should also be taken into account. Thus, our performance criterion for optimization should be:

Lbal[f ] + αLfv, (1)

where Lfv is a measure of fairness constraints violation that we will specify later, and α is a weight
parameter chosen according to how much we care about the fairness constraints violation.

For simplicity, we start with Y = {0, 1} and A = {a1, a2}. In the Appendix, we will further discuss
the case when there are multiple classes and multiple demographic groups. We also want to clarify
here the case we study is different from by naively viewing each demographic groups as a class
and applying the method in Cao et al. (2019). The main difference is that our aim is to identify the
class labels at test time, and we do not assume we have access to sensitive attributes at test time. As
a result, the method in Cao et al. (2019) can not be directly used. Given that we mainly consider
over-parameterized models, we assume the training data is well-separated that all the training samples
are perfectly classified and fairness constraints are perfectly satisfied. The setting has been considered
in (Cao et al., 2019) and can be satisfied if the model class is rich, for instance, for over-parameterized
models such as neural networks. We also want to emphasize even though our theory-derived method
assumes well-separation, our method can be applied to not well-separated datasets, please refer to
the Section 6 for more details. If all the training samples are classified perfectly by h, not only
P(X,Y )∼P̂bal

(h(X) ̸= Y ) = 0 is satisfied, we also have that P(X,Y )∼P̂i,aj
(h(X) ̸= Y ) = 0 for all

i ∈ Y and aj ∈ A. We remark here that P(h(X) = i|Y = i, A = a) = 1−P(X,Y )∼Pi,a
(h(X) ̸= Y ).

Our performance criterion for optimization in (A.4) is:

M[f ] = Lbal[f ] + α
∑
i∈Y

|P(h(X) = i|Y = i, A = a1)− P(h(X) = i|Y = i, A = a2)| .

By using classical margin theory bounds, We can establish the connection between margins for
each demographic subgroups and the generalization performance in classification as well as fairness
constraint, as proved in Theorem 3.1. Denote the margin for class i by γi = minj∈Si γ(xj , yj),
where γ(x, y) = f(x)y −maxl ̸=y f(x)l. One natural way to choose Lfv is to take

∑
i∈Y |P(h(X) =

i|Y = i, A = a1)− P(h(X) = i|Y = i, A = a2)|.

Theorem 3.1 (Informal) With high probability over the randomness of the training data, for Y =
{0, 1}, A = {a1, a2}, and for some proper complexity measure of class F , i.e. C(F) (see more
details in the Appendix), for any f ∈ F ,

M[f ] ≲
∑
i∈Y

1

γi

√
C(F)

ni
+

∑
i∈Y,a∈A

2α

γi,a

√
C(F)

ni,a
≤

∑
i∈Y

1

γi

√
C(F)

ni
+

∑
i∈Y,a∈A

2α

γi

√
C(F)

ni,a
,

(2)

where γi is the margin of the i-th class’s sample set Si and γi,a is the margin of demographic
subgroup’s sample set Si,a.

Optimizing the upper bound in (2) with respect to margins in the sense that g(γ0, γ1) ≤ g(γ0 −
δ, γ1 + δ) for g(γ0, γ1) =

∑
i∈Y

1
γi

√
ni

+ 2α
∑

i∈Y,a∈A
1

γi
√
ni,a

and all δ ∈ [−γ1, γ0], we obtain

γ0/γ1 = ñ
1/4
1 /ñ

1/4
0 ,

where the adjusted sample size ñi =
niΠa∈Ani,a

(
√

Πa∈Ani,a+2α
∑

a∈A
√
nini,a)2

for i ∈ {0, 1}. From Theo-

rem 3.1, we see how sample sizes of each subgroups are taken into account and how they affect
the optimal ratio between class margins. Based on this theorem, we will propose our theoretical
framework in Section 4. A closely related derivation has been used in Cao et al. (2019), but their
focus is only on the classification error and its generalization. As we will show in Example 3.1, when
fairness constraints are also considered, their methods could sometimes perform poorly with respect
to the generalization of those constraints. We remark here that if we do not consider the fairness
constraints violation, then α = 0, and the effective sample sizes degenerate to ñi = ni.

For illustration, we demonstrate the advantage of applying our approach to select margins over
directly using the margin selection in Cao et al. (2019) by considering Gaussian models, which is

4



Published as a conference paper at ICLR 2023

widely used in machine learning theory (Schmidt et al., 2018; Zhang et al., 2021; Deng et al., 2021).
Specifically, our training data follow distribution: X|Y = 0 ∼ ∑2

i=1 π0,ai
Np(µi, I), X|Y =

1 ∼ ∑2
i=1 π1,ai

Np(µi + β∗, I). Here, in class j, subgroup ai is drawn with probability πj,ai
, then,

given the sample is from subgroup ai in class j, the data is distributed as a Gaussian random vector.
Recall the corresponding training dataset indices of subgroup ai in class j is denoted as Sj,ai

, and
|Sj,ai

| = nj,ai
. Consider the case α = 1 , π0,a1

= π0,a2
, and the following class of classifiers:

F =
{
1{β∗⊤x > c} : c ∈ R

}
, which is a linear classifier class that contains classifiers differ from

each other by a translation in a particular direction.

Example 3.1 Given function f and set S, let dist(f, S) = minx,s∈S ∥f(x)−s∥2. Consider two clas-
sifiers f̃ , f ∈ F such that dist(f̃ , S0)/ dist(f̃ , S1) = ñ

1/4
1 /ñ

1/4
0 and dist(f ′, S0)/ dist(f

′, S1) =

n
−1/4
0 /n

−1/4
1 . Suppose ∥β∗∥ ≫ √

p log n, ∥µi∥ < C, (µ∗
1 − µ∗

2)
⊤β = 0, and π1,a2 ≤ c1π1,a1

for a sufficiently small c1 > 0, then when n0, n1 are sufficiently large, with high probability we
have M[f̃ ] < M[f ]. Here Lbal[f ] =

1
2P[f(X)1 < f(X)0|Y = 1] + 1

2P[f(X)0 < f(X)1|Y = 0]
denotes the balanced mis-classification error.

Remark. We provide analyses for the 0-1 loss as our ultimate goal is to strike a balance between
good test accuracy and small fairness constraints violation. If we use surrogates such as the
softmax-cross-entropy loss for the 0-1 loss in training, our theoretical analyses still stand since we
always adjust margins based on the 0-1 loss as our interests are in quantities such as test accuracy.
We provide analyses and experiments for DP in the Appendix.

4 FLEXIBLE COMBINATION WITH LOGITS-BASED LOSSES

f

δ1,a1

γ1

Label Class Sensitive Attribute

0

1 a2

a1

Figure 3: Illustration of δi,a and
the margin γ of classifier: δ1,a1 is
set to be non-negative and δ1,a2
is set to be zero as the subgroup
(1, a2) is closer to the decision
boundary than (1, a1).

For ease of exposition, we focus solely on the EO constraint hereafter and
discuss other constraints in the Appendix. Inspired by the margin trade-
off characterized in Section 3, we propose our FIFA approach for Flexible
Imbalance-Fairness-Aware classification that can be easily combined with
different types of logits-based losses, and further incorporated into any
existing fairness algorithms such as those discussed in Section 5. Recall
γi,a is the margin for demographic subgroups in Theorem 3.1, and it could
be written as γi,a = γi + δi,a and δi,a ≥ 0 (since γi = min{γi,a1 , γi,a2},
also see Fig. 3 for illustration), hence the middle term of Eq. (3) can be
further upper bounded by the last term in Eq. (2). The final upper bound
in Eq. (2) is indeed sufficient for obtaining the margin trade-off between
classes. Nonetheless, if we want to further enforce margins for each
demographic subgroup in each class, we need to use the refined bound.
Specifically, in Section 3, we have identified a way to select γ0/γ1, based on which we propose to
enforce margins for each demographic subgroup’s training set Si,a of the form

γi,a = C/ñ
1/4
i + δi,a, (3)

where δi,a and C are all non-negative tuning parameters. In light of the trade-off between the class
margins γ0/γ1 = ñ

1/4
1 /ñ

1/4
0 , we can set γi of the form C/ñ

−1/4
i . Given γi,a ≥ γi, a natural choice

for margins for subgroups is Eq. (3).

How to select δi,a? Knowing the form of margins from the preceding discussions, an outstanding
question remains: how to select δi,a for imbalanced datasets? Let Y = {0, 1} and A = {a1, a2},
within each class i, we identify Si,a with the largest cardinality |Si,a| and set the corresponding
δi,a = 0. The remaining δi,A\a are tuned as a non-negative parameter. As a further illustration,
without loss of generality, assume for all i, |Si,a1

| ≥ |Si,a2
|. Thus selected {δi,a}i,a ensures the

upper bound in the middle of Eq. (2) is tighter in the sense that for any δ > 0,∑
i∈Y

( 1

γi
√
ni,a1

+
1

(γi + δ)
√
ni,a2

)
≤

∑
i∈Y

( 1

(γi + δ)
√
ni,a1

+
1

γi
√
ni,a2

)
.

In the Appendix, we will present how to choose δi,a’s when there are multiple demographic groups.
Briefly speaking, our results similar to the above inequality are proved by an application of the
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rearrangement inequality. Simple as it is, the high-level view is meaningful – the decision boundaries
of a fair predictor should be farther away from the less-frequent subgroup than the more-frequent
subgroup to ensure better fairness generalization.

Flexible imbalance-fairness-aware (FIFA) approach. We will demonstrate how to apply the above
motivations to design better margin losses. Loosely speaking, we consider a logits-based loss

ℓ((x, y); f) = ℓ(f(x)y, {f(x)i}i∈Y\y),

which is non-increasing with respect to its first coordinate if we fix the second coordinate. Such
losses include (i). 0-1 loss: 1{f(x)y < maxi∈Y\y f(x)i}. (ii). Hinge loss: max{maxi∈Y\y f(x)i −
f(x)y, 0}. (iii). Softmax-cross-entropy loss: − log ef(x)y/(ef(x)y +

∑
i ̸=y e

f(x)i).

Our flexible imbalance-fairness-aware (FIFA) approach modifies the above losses by enforcing
margin of the form in Eq. (3). Specifically, we use the following loss function during training

ℓFIFA((x, y, a); f) = ℓ(f(x)y −∆y,a, {f(x)i}i∈Y\y), (4)

where ∆i,a = C/ñ
1/4
i + δi,a. We remark here ℓFIFA((x, y, a); f) is used only during training phase,

where we allow access to sensitive attribute a. In the test time, we only need to use f but not a.

5 EXAMPLE: COMBINING FIFA WITH REDUCTIONS-BASED FAIR ALGORITHMS

Algorithm 1 FIFA Combined Grid Search
Input: Training data set {xi, yi, ai}ni=1, fairness toler-

ance ϵ, margins {∆y,a}y,a, a classifier h(·; θ).
Output: the learnt classifier h∗.
1: Load training data to GridS.
2: GridS produces a set of reduction-labels ŷtrain and

a set of sample weights wtrain based on the type of
fairness constraint and tolerance ϵ.

3: for t = 1, 2, . . . , T do
4: Compute the FIFA loss ℓFIFA via (4) using

reduction-labels ŷtrain (in mini-batches).
5: Update θ in h using back-propagation.
6: Logging training metrics using true labels

{yi}ni=1 and attributes {ai}ni=1.
7: end for

In this section, we demonstrate the power of
our approach by combining it with a popu-
lar reduction-based fair classification algorithm
(Agarwal et al., 2018) as an example. In Sec-
tion 6, we show that incorporating our ap-
proach can bring a significant gain in terms of
both combined loss and fairness generalization
comparing with directly applying their method
in vanilla models trained with softmax-cross-
entropy losses. The reduction approach pro-
posed in Agarwal et al. (2018) has two versions:
(i). Exponentiated gradient (ExpGrad) that
produces a randomized classifier; and (ii). Grid
search (GridS) that produces a deterministic
classifier. Our approach can be combined with

both. From a high level point, the above two methods are mainly based on putting the fairness
constraint as a penalty along with the objective loss function then perform a min-max optimization.
The only difference is that the first algorithm ExpGrad aims to produce a randomized classifier
and GridS aims to produce a deterministic classifier. To incorporate our framework with the two
algorithms above, we only need to slightly modify the error function by adding a margin related term.

Exponentiated gradient (ExpGrad). We first briefly describe the algorithm here. For Y = {0, 1},
by Agarwal et al. (2018), EO constraints could be rewritten as Mµ(h) ≤ c for certain M and c,
where µj(h) = E[h(X)|Ej ] for j ∈ J , M ∈ R|K|×|J |, and c ∈ RK. Here, K = A× Y × {+,−}
(+,− impose positive/negative sign so as to recover | · | in constraints) and J = (A ∪ {∗}) ×
{0, 1}. E(a,y) = {A = a, Y = y} and E(∗,y) = {Y = y}. Let err(h) = P(h(X) ̸= Y ),
instead of considering minh∈H err(h) such that Mµ(h) ≤ c, ExpGrad obtains the best randomized
classifier, by sampling a classifier h ∈ H from a distribution over H. Formally, this optimization
can be formulated as minQ∈∆H err(Q) such that Mµ(Q) ≤ c, where err(Q) =

∑
h∈H Q(h) err(h),

µ(Q) =
∑

h∈H Q(h)µ(h), Q is a distribution over H, and ∆H is the collection of distributions on
H. Let us further use êrr(Q) and µ̂(Q) to denote the empirical versions and also allows relaxation on
constraints by using ĉ = c+ ϵ, where ĉk = ck + ϵk for relaxation εk ≥ 0. By classic optimization
theory, it could be transferred to a saddle point problem, and Agarwal et al. (2018) aims to solve the
following prime dual problems simultaneously for L(Q,λ) = êrr(Q) + λ⊤(Mµ̂(Q)− ĉ):

(P) : min
Q∈∆

max
λ∈R|K|

+ ,∥λ∥1≤B

L(Q,λ), (D) : max
λ∈R|K|

+ ,∥λ∥1≤B

min
Q∈∆

L(Q,λ).

To summarize, ExpGrad takes training data {(xi, yi, ai)}ni=1, function class H, constraint parame-
ters M, ĉ, bound B, accuracy tolerance v > 0, and learning rate η as inputs and outputs (Q̂, λ̂), such

6



Published as a conference paper at ICLR 2023

that L(Q̂, λ̂) ≤ L(Q, λ̂)+ν for all Q ∈ ∆H and L(Q̂, λ̂) ≤ L(Q̂, λ)−ν for all λ ∈ R|K|
+ , ∥λ∥1 ≤ B,

and (Q̂, λ̂) is called a ν-approximate saddle point. As implemented in Agarwal et al. (2018), H
roughly consists of h(x) = 1{f(x)1 ≥ f(x)0} for f ∈ F (in fact, a smoothed version is considered
in Agarwal et al. (2018)) and gives

êrr(Q) =
∑
h∈H

P̂(h(X) ̸= Y )Q(h) = P̂(f(X)Y < f(X){0,1}\Y )Q(h).

To combine our approach, we consider optimizing êrr
new

(Q) =
∑

h∈H P̂(f(X)Y − ∆Y,A ≤
f(X){0,1}\Y )Q(h), such that Mµ̂new(Q) ≤ ĉ, where µ̂new(Q) =

∑
h∈H Q(h)µ̂new(f) and

µ̂new
j (f) = P̂(f(X)Y − ∆Y,A > f(X){0,1}\Y |Ej). We can modify ExpGrad to optimize prime

dual problems simultaneously for Lnew(Q,λ) = êrr
new

(Q) + λ⊤(Mµ̂new(Q)− ĉ). In practice, while
Section 3 is motivated for deterministic classifiers, FIFA works for the randomized version too –
the modified ExpGrad can be viewed as encouraging a distribution Q that puts more weights on
classifiers with a certain type of margin trade-off between classes. Moreover, the modified algorithm
enjoys similar convergence guarantee as the original one.

Theorem 5.1 Let ρ = maxf ∥Mµ̂new(f) − ĉ∥∞. For η = ν/(2ρ2B), the modified ExpGrad will
return a ν-approximate saddle point of Lnew in at most 4ρ2B2 log(|K|+ 1)/ν2 iterations.

Grid search (GridS). When the number of constraints is small, e.g., when there are only few sensitive
attributes, one may directly perform a grid search on the λ vectors to identify the deterministic
classifier that attains the best trade-off between accuracy and fairness. In practice, GridS is preferred
for larger models due to its memory efficiency, since ExpGrad needs to store all intermediate models
to compute the randomized classifier at prediction time, which is less feasible for over-parameterized
models. We describe our flexible approach in Algorithm 1 that combines with GridS used in practice
in the official code base FairLearn (Bird et al., 2020).

6 EXPERIMENTS

We now use our flexible approach on several datasets in the classification task with a sensitive
attribute. Although our method is proposed for over-parameterized models, it can also boost the
performance on small models. Depending on the specific dataset and model architectures, we use
either the grid search or the exponentiated gradient method developed by Agarwal et al. (2018) as
fairness algorithms to enforce the fairness constraints, while adding our FIFA loss in the inner training
loop. Note that our method can be combined with other fairness algorithms.

Datasets. We choose both a large image dataset and two simpler datasets. We use the official
train-test split of these datasets. More details and statistics are in the Appendix. (i). CelebA ((Liu
et al., 2015)): the task is to predict whether the person in the image has blond hair or not where the
sensitive attribute is the gender of the person. (ii). AdultIncome ((Dua & Graff, 2017)): the task is to
predict whether the income is above 50K per year, where the sensitive attribute is the gender. We
also use the new AdultIncome (from California in 2021) introduced by Ding et al. (2021), where the
sensitive attribute is the race. (iii). DutchConsensus ((voor de Statistiek , Statistics Netherlands)):
the task is predict whether an individual has a prestigious occupation and the sensitive attribute is the
gender. Both AdultIncome and DutchConsensus datasets are also used in Agarwal et al. (2018).

Method. Due to computational feasibility (ExpGrad needs to store all intermediate models at
prediction time), we combine Grid Search with FIFA for the CelebA dataset and ResNet-18 and use
both Grid Search and Exponentiated Gradient on the AdultIncome with logistic regression. Besides
C and δi,a, we also treat α as tuning parameters (in Eq. (2)). We then perform hyper-parameter
sweeps on the grids (if used) over C, δi,a and α for FIFA, and grids (if used) for vanilla training
(combine fairness algorithms with the vanilla softmax-cross-entropy loss). More details are included
in the Appendix.

Evaluation and Generalization. When evaluating the model, we are mostly interested in the
generalization performance measured by a combined loss that take into consideration both fairness
violation and balanced error. We define the combined loss as Lcb[f ] =

1
2Lbal[f ] +

1
2Lfv[f ], which

favors those classifiers that have a equally well-performance in terms of classification and fairness.
We consider both the value of the combined loss evaluated on the test set Stest, and the generalization
error for a loss L is defined as GenErr[L, f ] = |L[f ](Stest)− L[f ](Strain)| .
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Fairness Tolerance ϵ 0.01 0.05 0.10
Method FIFA LDAM Vanilla FIFA LDAM Vanilla FIFA LDAM Vanilla

Combined Loss Test 6.71% 7.29% 14.01% 6.34% 7.38% 13.05% 6.54% 7.34% 16.71%
Gen Error 0.66% 2.07% 6.87% 0.88% 1.91% 4.21% 0.62% 1.14% 7.82%

Fairness Violation Test 2.75% 5.39% 20.29% 3.29% 5.57% 17.92% 2.65% 2.96% 26.15%
Gen Error 2.57% 3.07% 13.59% 0.66% 3.00% 8.47% 0.46% 3.97% 14.78%

Balanced Error Test 10.67% 9.20% 7.74% 9.39% 9.19% 8.17% 10.43% 11.72% 7.27%
Gen Error 1.25% 1.07% 0.15% 1.10% 0.83% 0.05% 1.70% 1.68% 0.85%

Table 1: Grid search with EO constraint on CelebA dataset (Liu et al., 2015) using ResNet-18, best results with respect to test combined loss
among sweeps of hyper-parameters are shown. As an interesting special case of our FIFA method, we note that although the LDAM method
improves the performance compared with vanilla GS, it is not as effective as our method.
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Figure 4: Loss on test set (4a,4b) and generalization gaps (4c,4d) of the combined loss and the fairness loss on CelebA dataset. We repeat the
experiment for 20 times using the hyper-parameters corresponding to the best-performing models in Table 1. Solid blue line marks the grid
search combined with vanilla training whereas dashed orange line marks grid search combined with the FIFA loss. We also plot 95% confidence
band based on 20 repeated runs. We observe that our method FIFA has significantly better generalization performance in terms of both smaller
losses on the test set as well as narrower generalization gaps.

6.1 EFFECTIVENESS OF FIFA ON OVER-PARAMETERIZED MODELS

In this subsection, we thoroughly analyze the results from applying FIFA to over-parameterized
models for the CelebA dataset using ResNet-18. We use the grid search algorithm with fairness
violation tolerance parameter ϵ ∈ {0.01, 0.05, 0.1} (with a little abuse of notation) for all constraints.
We perform sweeps on hyper-parameters C ∈ [0, 0.01], α ∈ [0, 0.01], δ0,Male, δ1,Male ∈ [0, 0.01],
and δ0,Female = δ1,Female = 0. As a special case that may be of interest, when α = 0 and δ0,Male =
δ1,Male = 0, the FIFA loss coincides with the LDAM loss proposed in Dua & Graff (2017), with one
common hyper-parameter C ∈ [0, 0.01]. We log the losses on the whole training and test set. We
summarize our main findings below and give more details in the Appendix including experiments
with DP constraints, delayed-reweighting (DRW, (Cao et al., 2019)), and reweighting methods.

Logits-based methods improve fairness generalization. We summarize the best results for each
method under different tolerance parameter ϵ in Table 1. Note that the actual violation may exceed the
tolerance ϵ on test data. We note that both FIFA and LDAM significantly improve the test performance
of both combined loss and fairness violation among all three choices of ϵ, while having comparable
training performance (omitted in the table). Interestingly, directly applying reductions-based method
using a vanilla model in the inner loop (the “Vanilla” columns) seems inferior, likely due to the
imbalance across subgroups. This implies the effectiveness and necessity of using logits-based
methods to ensure a better fairness generalization.

FIFA accommodates for both fairness generalization and dataset imbalance. Although both
logits-based method improve generalization as seen in Table 1, our method FIFA has significantly
better generalization performance compared with LDAM, especially in terms of fairness violation. For
example, when ϵ = 0.01 and 0.05, FIFA achieves a test fairness violation that is at least 2% smaller
compared with LDAM. This further demonstrates the importance of our theoretical motivations.

Improvements of generalization are two-fold for FIFA. When it comes to generalization, two
relevant notions are often used, namely the absolute performance on the test set, and also the
generalization error between the training and test set. We compute the generalization error in Table 1
for both combined loss and fairness violation. We observe that FIFA generally dominates LDAM and
vanilla in terms of both test performance and generalization error. We further illustrate this behavior
in Fig. 4, where we give 95% confidence band over randomness in training. We note that our FIFA
significantly outperforms vanilla in a large margin in terms of both generalization notions, and the
improvements are mostly due to better fairness generalization. In fact, as suggested by the similarity
in the shapes of curves between Fig. 4c and Fig. 4d, fairness generalization dominates classification
generalization, and thus improvements in fairness generalization elicit more prominently overall.
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Dataset AdultIncome DutchConsensus
Metric Combined Loss Fairness Violation Combined Loss Fairness Violation

ϵ Method Train Test Train Test Train Test Train Test

0.01 FIFA 15.7217% 13.4812% 7.8863% 2.7776% 12.8013% 13.1686% 3.7220% 4.3532%
Vanilla 13.9561% 14.3001% 6.7861% 6.7475% 12.8444% 13.2267% 3.7935% 4.4323%

0.05 FIFA 13.5634% 13.5491% 5.7088% 4.9315% 12.8820% 13.2228% 3.8525% 4.4323%
Vanilla 14.4697% 14.8647% 7.5962% 7.8575% 12.8818% 13.2236% 3.8525% 4.4323%

0.10 FIFA 13.5857% 13.9043% 6.1217% 5.9689% 12.8717% 13.1748% 3.8326% 4.3532%
Vanilla 15.5342% 15.9387% 9.7514% 10.0750% 12.8757% 13.2099% 3.8392% 4.4059%

Table 2: Exponentiated gradient with EO constraint on the AdultIncome and DutchConsensus datasets using logistc regression (as a one-layer
neural net), best results with respect to test combined loss among sweeps of hyper-parameters are shown.
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Figure 5: Pareto frontiers of the balanced loss (Lbal) and fairness loss (Lfv) of CelebA using ResNet-18 with grid search combined with FIFA
and vanilla softmax-cross-entropy loss respectively. (a)-(c) exhibit Porento frontier and (d)-(f) illustrate λ-combined loss. Best-performing
hyper-parameters from Table 1 are used, where each configuration is repeated 20 times independently. Here blue and orange markers correspond
to vanilla and FIFA respectively, and circular and cross markers correspond to training and testing metrics respectively. We observe that our
FIFA method is effective in significantly lowering the Pareto frontier comparing with the vanilla method, implying that FIFA mitigates fairness
generalization issues as seen in Figure 1.

Towards a more efficient Pareto frontier. In Fig. 5(a)-(c) we plot the Pareto frontier of balanced
classification error (Lbal) and fairness violation (Lfv) for all three choices of ϵ. In practice, one may
be interested in a specific convex combination of the fairness violation and balanced error. We thus
consider λ-weighted combined loss Lλ = λLfv + (1− λ)Lbal with λ ∈ [0, 1] being a user-specific
weight. In Fig. 5(d)-(f), we compute Lλ for a grid of 100 values of λ under the same setup. We
observe that FIFA with GridS achieves frontiers that are lower and more centered compared with
those trained in vanilla losses with GridS. Furthermore, for most of the combining weight λ, FIFA
achieves better test performance.

6.2 EFFECTIVENESS OF FIFA ON SMALLER DATASETS AND MODELS

We use logistic regression (implemented as a one-layer neural net) for the AdultIncome and Dutch-
Consensus datasets with similar sweeping procedure are similar to those described in Section 6.1.

Results. We tabulate the best-performing models (in terms of test combined loss) among sweeps
in Table 2 and include more details in the Appendix. The observations are similar as in Section 6.1:
FIFA outperforms vanilla on both dataset across three different tolerance parameter ϵ; since the
datasets are much simpler in this case, the improvements are less significant.

7 DISCUSSIONS AND CONCLUSIONS

Generalization (especially in over-parameterized models) has always been an important and difficult
problem in machine learning research. In this paper, we set out the first exposition in the study of the
generalization of fairness constraints that has previously been overlooked. Our theoretically-backed
FIFA approach is shown to mitigate poor fairness generalization observed in vanilla models large or
small. We leave a more fine-grained analysis of the margins to the future work.
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Appendix

A OMITTED DERIVATION

In this section, we will talk about several missing details in the main context.

A.1 EXTENSION TO MULTI-CLASSES AND MULTI-GROUPS FOR EQUALIZED ODDS

We discussed the case that Y = {0, 1} and A = {a1, a2} in the main context. In this subsection, we
discuss the extension to multi-classes and multi-groups.

First, we extend the case to Y = {0, 1} and |A| ≥ 2. In that case, we can consider the constraints∑
a,a′∈A,a ̸=a′

∑
i∈Y

|P(h(X) = i|Y = i, A = a)− P(h(X) = i|Y = i, A = a′)| ,

regardless of the order of (a, a′), and there are
(|A|

2

)
pairs of (a, a′)’s.

Thus, our performance criteria Mmulti-groups[f ] can be taken as:

Lbal[f ] + α
∑

a,a′∈A,a ̸=a′

∑
i∈Y

|P(h(X) = i|Y = i, A = a)− P(h(X) = i|Y = i, A = a′)| .

Then, via Lemma A.2, for all f ∈ F

Mmulti-groups[f ] ≲
∑
i∈Y

1

γi

√
C(F)

ni
+

∑
i∈Y,a∈A

2α(|A| − 1)

γi,a

√
C(F)

ni,a

≤
∑
i∈Y

1

γi

√
C(F)

ni
+

∑
i∈Y,a∈A

2α(|A| − 1)

γi

√
C(F)

ni,a
.

We overload the notation ᾱ = 2α(|A| − 1), then we have

Mmulti-groups[f ] ≲
∑
i∈Y

1

γi

√
C(F)

ni
+

∑
i∈Y,a∈A

ᾱ

γi

√
C(F)

ni,a
. (A.1)

Notice the difference between Eq. (A.1) and Eq. (2) is that in Eq. (A.1), |A| ≥ 2. Thus, by similar
proof as in Theorem A.1, we can obtain

γ0/γ1 = ñ
−1/4
0 /ñ

−1/4
1 ,

where the adjusted sample size

ñi =
niΠani,a

(
√
Πani,a + ᾱ

∑
j∈A

√
niΠa∈A\jni,a)2

,

for i ∈ {0, 1}.

Given the results above, for multiple classes with multiple groups, for i, j ∈ Y ,

γi/γj = ñ
−1/4
i /ñ

−1/4
j ,

where the adjusted sample size ñi =
niΠani,a

(
√

Πani,a+̄α
∑

j∈A
√

niΠa∈A\jni,a)2
for i ∈ Y .

FIFA for multi-classes and multi-groups. We will demonstrate how to apply the above motivations
to design better margin losses. Consider a logits-based loss

ℓ((x, y); f) = ℓ(f(x)y, {f(x)i}i∈Y\y),

which is non-increasing with respect to its first coordinate if we fix the second coordinate.

Our flexible imbalance-fairness-aware (FIFA) approach modifies the above losses during training
ℓFIFA((x, y, a); f) = ℓ(f(x)y −∆y,a, {f(x)i}i∈Y\y) (A.2)

where ∆i,a = C/ñ
1/4
i + δi,a, and δi,a ≥ 0. The specific assignment of δi,a ≥ 0 is described in

Section A.2.
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A.2 ASSIGNMENT OF δi,a FOR MULTI-GROUPS

In this subsection, we describe how to choose δi,a for multiple demographic groups. Recall in
Section A.1, for multiple demographic groups,

Mmulti-groups[f ] ≲
∑
i∈Y

1

γi

√
C(F)

ni
+

∑
i∈Y,a∈A

ᾱ

γi,a

√
C(F)

ni,a
. (A.3)

Given γi,a ≥ γi, similar as in the main context, we can take γi,a = γi + δi,a, where δi,a ≥ 0 are
tuning parameters.

Assume there are k groups. Let us first ordering |Si,a| by in a decreasing order. Without loss of
generality, |Si,a1

| ≥ |Si,a2
| ≥ · · · ≥ |Si,ak

|. Thus, when tune the parameters δi,a’s, we set δi,a1
= 0

(or we can randomly choose other a’s to set δi,a = 0 if there are ties and |Si,a| = |Si,a1
|, but for

simplicity, we ignore this case), and we make sure δi,a1
≤ δi,a2

≤ · · · δi,ak
. This is optimal in the

sense that if there are k constants 0 = δ1 ≤ δ2 ≤ δ3 ≤ · · · ≤ δk, then∑
i∈Y,aj∈A

ᾱ

γi + δi,aj

√
C(F)

ni,aj

≤
∑

i∈Y,aj∈A

ᾱ

γi + δi,aσ(j)

√
C(F)

ni,aj

,

where σ(·) is a permutation. In other words, our way to assign δi,a’s can make the upper boupnd on
RHS of Eq. (A.3) optimal. This is a direct application of rearrangement inequality, see Lemma A.1.

Lemma A.1 For x1 ≤ x2 ≤ · · · ≤ xk, y1 ≤ y2 ≤ · · · ≤ yk, any permutation σ(·)
xky1 + xk−1y2 + · · ·+ x1yk ≤ xσ(1)y1 + xσ(2)y2 + · · ·+ xσ(k)yk ≤ x1y1 + x2y2 + · · ·+ xkyk.

A.3 DERIVATION FOR OTHER FAIRNESS NOTIONS

In this subsection, we consider theory-inspired derivation for other fairness notions. For simplicity,
we still focus on the case that Y = {0, 1} (this is necessary for EqOpt) and A = {a1, a2}. Given the
derivation in this subsection, we can further derive FIFA for other fairness notions as in Section A.1.

Equalized opportunity. Specifically, for EqOpt, the aim is:

min
f

Lbal[f ]

s.t. ∀y ∈ Y, a ∈ A, P(h(X) = 1|Y = 1, A = a) = P(h(X) = 1|Y = 1),

This is a simple version of EO in some sense. Directly using the derivation in Section A.1, we have

γ0/γ1 = n
−1/4
0 /ñ

−1/4
1 ,

where the adjusted sample size

ñ1 =
n1n1,a1

n1,a2

(
√
n1,a1

n1,a2
+ 2α(

√
n1n1,a2

+
√
n1n1,a1

))2
.

Demographic parity. Similar to EO, for DP, the optimization aims to:

min
f

Lbal[f ]

s.t. ∀y ∈ Y, a ∈ A, P(h(X) = y|A = a) = P(h(X) = y).

In this setting, we no longer can expect all the training samples are perfectly classified and fairness
constraints violation is perfectly satisfied because there exists fairness and accuracy trade-off in
training phase for DP. However, in real application, people always adopt relaxation in fairness
constraints, i.e. |P(h(X) = y|A = a) − P(h(X) = y)| < ϵ for some ϵ > 0 (if there are only two
groups, one can alternatively use |P(h(X) = y|A = a1) − P(h(X) = y)|A = a2| ≤ ϵ). When ϵ

is large enough (or P̂(Y = 1|A = a1) is close to P̂(Y = 1|A = a2)), if we use suitable models,
similar as in the EO setting, we would expect all the training examples are classified perfectly while
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satisfying |P̂(h(X) = y|A = a1)− P̂(h(X) = y)|A = a2| ≤ ϵ. Then, we can use similar techniques
to characterize a trade-off between margins.

Specifically, simple calculation leads to
∑

i∈Y |P(h(X) = i|A = a1) − P(h(X) = i|A = a2)| ≤∑
j∈{1,2}

∑
i∈{0,1} P(Y = i|A = aj)Li,aj

[f ] + I , where I is a term not related to f . Thus, our
optimization objective (not performance criterion) for DP can be taken as:

Lbal[f ] + α
∑
i,a

P(Y = i|A = a)Li,a[f ], (A.4)

for weight α. We can use training data to estimate P(Y = i|A = a). For simplicity, we can also use
Lbal[f ] + α

∑
i,a Li,a[f ], which shares the same upper bound as in Theorem 3.1 and also implies

γ0/γ1 = ñ
−1/4
0 /ñ

−1/4
1 , that will also be used in the experiments in later sections. We should also

remark that when ϵ is too small, our method may not work, this can also be reflected in Table 4, when
ϵ = 0.01.

A.4 OMITTED PROOFS

A.4.1 PROOF OF THEOREM 3.1

Theorem A.1 (Restatement of Theorem 3.1) With high probability over the randomness of the
training data, for Y = {0, 1}, A = {a1, a2}, and for some proper complexity measure of class F , i.e.
C(F), for any f ∈ F ,

M[f ] ≲
∑
i∈Y

1

γi

√
C(F)

ni
+

∑
i∈Y,a∈A

2α

γi,a

√
C(F)

ni,a
≤

∑
i∈Y

1

γi

√
C(F)

ni
+

∑
i∈Y,a∈A

2α

γi

√
C(F)

ni,a
,

where γi is the margin of the i-th class’s sample set Si and γi,a is the margin of demographic
subgroup’s sample set Si,a.

This following lemma is the key lemma we will use. Let us define the empirical Rademacher
complexity of F of subgroup/class margin on S∗ as

R̂i(F) =
1

ni
Eξ[sup

f∈F

∑
j∈Si

ξj [f(xj)i −max
i′ ̸=i

f(xj)i′ ]],

R̂i,a(F) =
1

ni,a
Eξ[sup

f∈F

∑
j∈Si,a

ξj [f(xj)i −max
i′ ̸=i

f(xj)i′ ]],

where ξj is i.i.d. drawn from a uniform distribution {−1, 1}.

Lemma A.2 Let L̂γ,i[f ] = PX∼P̂i
(maxj ̸=i f(X)j > f(X)i − γ) and L̂γ,(i,a)[f ] =

PX∼P̂i,a
(maxj ̸=i f(X)j > f(X)i − γ). With probability at least 1 − δ over the the random-

ness of the training data, for some proper complexity measure of class F , for any f ∈ F ,
∗ ∈ {i, (i, a)|i ∈ Y, a ∈ A}, and all margins γ > 0

L∗[f ] ≲ L̂γ,∗[f ] +
1

γ
R̂∗(F) + ϵ∗(n∗, δ, γ∗), (A.5)

where R̂∗(F) is the empirical Rademacher complexity of F of subgroup/class margin on training

dataset corresponding to index set S∗, which can be further upper bnounded by
√

C(F)
n∗

. Also,
ϵ∗(n∗, δ, γ∗) is usually a low-order term in n∗

Proof: This is a direct application of the standard margin-based generalization bound in Kakade et al.
(2008). □
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Proof of Theorem A.1. Notice that all the training samples are classified perfectly by h, not only
P(X,Y )∼P̂bal

(h(X) ̸= Y ) = 0 is satisfied, we also have that P(X,Y )∼P̂i,aj
(h(X) ̸= Y ) = 0 for all

i ∈ Y and aj ∈ A. We remark here that P(h(X) = i|Y = i, A = a) = 1 − P(X,Y )∼Pi,a
(h(X) ̸=

Y ) = 1− P(f(X)Y < maxj ̸=Y f(X)j). Thus, we have

Lbal[f ] + α
∑
i∈Y

|P(h(X) = i|Y = i, A = a1)− P(h(X) = i|Y = i, A = a2)|

≤ Lbal[f ] + α(P(X,Y )∼Pi,a1
(h(X) ̸= Y ) + P(X,Y )∼Pi,a2

(h(X) ̸= Y )).

Notice Lbal = 1/2
∑

i∈Y P(X,Y )∼Pi
(h(X) ̸= Y ), then, plug in Lemma A.2 and realizing L̂γ,∗ = 0

(all training errors are 0) by our assumption and ignoring low order terms ϵ∗(n∗, δ, γ∗), we have

Lbal[f ] + α(P(X,Y )∼Pi,a1
(h(X) ̸= Y ) + P(X,Y )∼Pi,a2

(h(X) ̸= Y ))

≤
∑
i∈Y

1

2
Li[f ] + α

∑
i∈Y,a∈A

Li,a[f ] (Notice Li,a[f ] = P(X,Y )∼Pi,a
(h(X) ̸= Y ))

≲
√
C(F)(

∑
i∈Y

1

γi
√
ni

+ 2α
∑

i∈Y,a∈A

1

γi,a
√
ni,a

).

In the last formula, we multiple 2 for a nicer looking expression, it won’t affect the optimal ratio for
γ0/γ1. Also, notice that γi,a ≥ γi, we have√

C(F)(
∑
i∈Y

1

γi
√
ni

+ 2α
∑

i∈Y,a∈A

1

γi,a
√
ni,a

) ≤
√
C(F)(

∑
i∈Y

1

γi
√
ni

+ 2α
∑

i∈Y,a∈A

1

γi
√
ni,a

).

The proof is complete.

A.4.2 OPTIMIZATION OF γ0/γ1

Theorem A.2 For binary classification, let F be a class of neural networks with a bias term, i.e.
F = {f + b} where f is a neural net function and b ∈ R2 is a bas, with Rademacher complexity

upper bound R̂∗(F) ≤
√

C(F)
n∗

. Suppose some classifier f ∈ F can achieve a total sum of margins
γ′
0 + γ′

1 = β with γ′
0, γ

′
1 > 0. Then, there exists a classifier f∗ ∈ F with margin ratio

γ∗
0/γ

∗
1 = ñ

−1/4
0 /ñ

−1/4
1 = ñ

1/4
1 /ñ

1/4
0 ,

where the adjusted sample size ñi =
niΠani,a

(
√

Πani,a+α
∑

j∈A
√

niΠa∈A\jni,a)2
for i ∈ Y .

Proof: This can directly follow the proof in Theorem 3 in Cao et al. (2019). The only difference is
that we need to solve

min
γ0+γ1=β

∑
i∈Y

1

γi

√
C(F)

ni
+

∑
i∈Y,a∈A

2α

γi

√
C(F)

ni,a
.

More specifically, by simple calculation, for Y = {0, 1}, A = {a1, a2},

∑
i∈Y

1

γi

√
1

ni
+

∑
i∈Y,a∈A

2α

γi

√
1

ni,a
=

1

γ0

√
C(F)

ñ0
+

1

γ1

√
C(F)

ñ1
,

then by applying Theorem 3 in Cao et al. (2019) by replacing ni’s with ñi’s, it gives the final result.

□
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A.4.3 PROOF OF EXAMPLE 3.1.

Example A.1 (Restatement of Example 3.1) Given function f and set S, let

dist(f, S) = min
x,s∈S

∥f(x)− s∥2.

Consider two classifiers f̃ , f ∈ F such that

dist(f̃ , S0)/dist(f̃ , S1) = ñ
−1/4
0 /ñ

−1/4
1

and dist(f ′, S0)/ dist(f
′, S1) = n

−1/4
0 /n

−1/4
1 . Suppose ∥β∗∥ ≫ √

p log n, ∥µi∥ < C, (µ∗
1 −

µ∗
2)

⊤β = 0, and π1,a2
≤ c1π1,a1

for a sufficiently small c1 > 0, then when n0, n1 are sufficiently
large, with high probability we have M[f̃ ] < M[f ].

Proof: Recall that ñi =
niΠa∈Ani,a

(
√

Πa∈Ani,a+α
∑

a∈A
√
nini,a)2

for i ∈ {0, 1}, and our training data follow

distribution: x | y = 0 ∼ ∑2
i=1 π0,ai

Np(µi, I), x | y = 1 ∼ ∑2
i=1 π1,ai

Np(µi + β∗, I).

M[f ] =
1

2
P(h(X) = 1|Y = 0) +

1

2
P(h(X) = 0|Y = 1)

+ α
∑
i∈Y

|P(h(X) = i|Y = i, A = a1)− P(h(X) = i|Y = i, A = a2)|

=
1

2

2∑
i=1

π0,ai
Φ(

β∗⊤µi − c

∥β∗∥ ) +
1

2

2∑
i=1

π1,ai
Φ(

c− β∗⊤µi − ∥β∗∥2
∥β∗∥ )

+ α · |Φ(β
∗⊤µ0 − c

∥β∗∥ )− Φ(
β∗⊤µ1 − c

∥β∗∥ )|+ α · |Φ(β
∗⊤µ0 + ∥β∗∥2 − c

∥β∗∥ )− Φ(
β∗⊤µ1 + ∥β∗∥2 − c

∥β∗∥ )|

For different margin ratio γ, we have c = µ⊤
1 β

∗ + 1
1+γ ∥β∗∥2 + OP (

√
p log n), where the

OP (
√
p log n) term accounts for the variation of random samples and is based on the fact that

∥Z∥2 ∼ χ2
p if Z ∼ Np(0, I) and maxZi = OP (p log n) if Z1, ..., Zn

i.i.d.∼ χ2
p.

Using the fact that ∥β∗∥ ≫ √
p log n and ∥µi∥ < C, we then have c = ( 1

1+γ + oP (1))∥β∗∥2.
Similarly, we have

M[f ] = Φ(− c

∥β∗∥ ) + Φ(
c− ∥β∗∥2

∥β∗∥ ) + o(1)

Then let’s consider the two ratios γ = n
−1/4
0 /n

−1/4
1 and γ̃ = ñ

−1/4
0 /ñ

−1/4
1 .

In the following we compute ñ0 and ñ1:

When π1,a2 ≤ c1π1,a1 ñ1 =
n1Πa∈An1,a

(
√

Πa∈An1,a+α
∑

a∈A
√
n1n1,a)2

∈ (0.9n1, n1)

When π0,a2
= π0,a1

ñ0 =
n0Πa∈An0,a

(
√

Πa∈An0,a+α
∑

a∈A
√
n0n0,a)2

= ( 1
1+2

√
2
)2n0.

As a result, we have γ̃
γ ∈ [1.9, 2]. When the data is imbalanced such that γ = (n1

n0
)1/4 > 1, we have

0 < 1
1+γ̃ < 1

1+γ < 1/2, and consequently

Φ(−
1

1+γ̃ ∥β∗∥2
∥β∗∥ ) + Φ(

1
1+γ̃ ∥β∗∥2 − ∥β∗∥2

∥β∗∥ ) < Φ(−
1

1+γ̃ ∥β∗∥2
∥β∗∥ ) + Φ(

1
1+γ̃ ∥β∗∥2 − ∥β∗∥2

∥β∗∥ ).

Additionally, we have that when ∥β∗∥ → ∞, the second term in the M[f ], the fairness violation
error is o(1). Combining all the pieces, we have M[f̃ ] < M[f ].

□
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A.4.4 PROOF OF THEOREM 5.1.

Theorem A.3 (Restatement of Theorem 5.1) Let ρ = maxf ∥Mµ̂new(f) − ĉ∥∞. For η =
ν/(2ρ2B), the modified ExpGrad will return a ν-approximate saddle point of Lnew in at most
4ρ2B2 log(|K|+ 1)/ν2 iterations.

Proof: We consider an extended version of h in Agarwal et al. (2018), which is a function of
(x,y,a) instead of just be a function of x. h : (x, y, a) 7→ {0, 1}. Notice that µ(h) also satisfies the
requirement in Agarwal et al. (2018) with the extend version h. Thus, directly by classic result of in
Freund & Scapire (1996) and theorm 1 in Agarwal et al. (2018), the result follows. □

A.5 COMBINATION WITH OTHER ALGORITHMS

As we stated, the algorithm stated in the main context is just one of the examples that can be
combined with our approach. FIFA can also be applied to many other popular algorithms such as fair
representation (Madras et al., 2018). We here show how to combine with fair representation.

In Madras et al. (2018), there are several parts, an encoder ρ, an adversary v, a decoder k and a
predictor g. The optimization is:

min
g,ρ,k

max
v

EX,Y,AL(g, ρ, k, v),

where

L(g, ρ, k, v) = λ1ℓc(g(ρ(X)), Y ) + λ2ℓdec(k(ρ(X), A), X) + λ3ℓadv(v(ρ(X), A)),

for cross entropy loss ℓc, decoding loss ℓdec, and adversary loss ℓadv. We can modify the cross entropy
loss to ℓc to ℓFIFA. So,

LFIFA(g, ρ, k, v) = λ1ℓFIFA(g(ρ(X)), Y ) + λ2ℓdec(k(ρ(X), A), X) + λ3ℓadv(v(ρ(X), A)).

Actually, for ℓadv, we can similarly modify for indices, but it is a little complicated and notation heavy,
so we omit it here.

B IMPLEMENTATION DETAILS

Data AdultIncome CelebA
Label — + — +
Gender Female Male Female Male Female Male Female Male

Train 9592 15128 1179 6662 71629 66874 22880 1387
Test 4831 7604 590 3256 9767 7535 2480 180

Table 3: Training and testing sample sizes for CelebA and AdultIncome
datasets across labels (Label) and sensitive attributes (Gender).

We use the official train-test split for the CelebA
dataset. For AdultIncome and DutchConsensus,
we use the train_test_split procedure
of the scikit-learn package with training-
test set ratio of 0.8 and random seed of 1 to
generate the training and test set. We tabulate the sizes for subgroups in Table 3.

The sweeps are done on the wandb platform (Biewald, 2020), where all hyper-parameters except
for the grid, are searched using its built-in Bayesian backend. All models for the same dataset are
trained with a fixed number of epochs where the training accuracies converge. Batch training with
size 128 is used for CelebA and full batch training is used for AdultIncome. As a special case of
FIFA, when δi,a = 0 for all i, a and α = 0 the FIFA loss degenerates to non fairness-aware LDAM
loss proposed in Cao et al. (2019); FIFA further finetunes δi,a and α, and to ensure a fair comparison,
we set the same coverage for the the common hyper-parameter C in the sweeps. In Fig. 6, we show
the histogram of the hyper-parameter C in the sweeps for FIFA and LDAM. Note that the sweeps
cover approximately the same range for this common hyper-parameter.

Details on CelebA. We use the same pre-processing steps as in (Sagawa et al., 2020) to crop the
images in CelebA into 224× 224× 3 and perform the same z-normalization for both training and test
set. We use ResNet-18 models for training with the last layer being replaced to the NormLinear
layer used by Cao et al. (2019) that ensures the input as well as the columns of the wight matrix (with
2 rows corresponding to each label class) has norm 1. This ensures our adjustments on the logits are
comparable. We use the Adam optimizer with learning rate 1× 10−4 and weight decay 5× 10−5 to
train these models with stochastic batches of sizes 128. We performed pilot experiments and learnt
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(a) Total accuracy.
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(b) Combined loss.
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(c) Fairness violation.
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(d) Balanced error.
Figure 7: Training and test trajectories of different metrics of ResNet-18 on CelebA dataset under FIFA and vanilla losses respectively. We note
that the generalization performance of vanilla models are consistently poor as training time increases, suggesting that it is difficult to cultivate an
early-stopping scheme that might alleviate poor fairness generalization.

that under this configuration the models usually converges within the first 1500 iterations in terms of
training losses and thus we fix the training time as 8000 iterations which corresponds to roughly four
epochs.
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Figure 6: Histogram (cumulative density)
of hyper-parameter C in the sweeps for
FIFA and LDAM. Vertical lines mark the
values corresponding to the best performing
models in Table 1.

AdultIncome and DutchConsensus. AdultIncome and Dutch-
Consensus are two relatively smaller datasets that have been used
for benchmarking for various fair classification algorithms such as
Agarwal et al. (2018). We convert all categorical variables to dum-
mies and use the standard z-normalization to pre-process the data.
There are 107 features in AdultIncome and 59 in DutchConsensus,
both counting the senstive attribute, gender. We intend to use these
datasets to test smaller models such as logistic regression, and we im-
plement it as a one-layer neural net for consistency concerns, which
is trained using full-batch gradient descent using Adam with learning
rate 1 × 10−4 and weight decay 5 × 10−5 for 10000 epochs. We set δ0,Female, δ1,Female ∈ [0, 0.01],
and δ0,Male = δ1,Male = 0 for the AdultIncome dataset and δ0,Male, δ1,Female ∈ [0, 0.01], and
δ0,Female = δ1,Male = 0 for the DutchConsensus Dataset. All models converge after this train-
ing measured by the training metrics. Although the exact pre-processing procedures for these two
datasets are not available in Agarwal et al. (2018), we found that on vanilla models under both
GridSearch and ExponentiatedGradient methods, the training and test performance (measured by
total accuracy and fairness violation) are comparable with those reported in Agarwal et al. (2018).

Computational resource considerations. We perform all experiments on NVIDIA GPUs RTX
2080 Ti. Each experiment on CelebA usually takes less than two hours (clocktime) and each
experiment on AdultIncome and DutchConsensus takes less than ten minutes.
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C ADDITIONAL EXPERIMENTAL RESULTS

C.1 A TRAJECTORY ANALYSIS ON CELEBA

One observation we made in Table 1 is that the improvements of the generalization of combined loss
on CelebA is largely due to the improved generalization performance on fairness violations. It is
natural to wonder whether this behavior suggests that the sweet spots of generalization performance
for balanced error and fairness violation may not be aligned, i.e., there is a difference in training time
scales for these two metrics to reach their optimal generalization. Furthermore, it is also open that
whether one could enforce certain early stopping procedure (e.g., on the combined loss or the fairness
violation) such that the generalizations on vanilla models may be improved.

To explore these two questions, we plot the trajectories of training and test metrics for FIFA and
vanilla (hyper-parameter chosen to be those corresponding to the best-performing models in Table
1) in Fig. 7. We observe that it is difficulty to (i) identify sweet spots of generalization gaps for the
vanilla models; and (ii) enforce a reasonable early stopping criterion that improves the generalization
performances thereof.

C.2 CELEBA AND THE DP CONSTRAINT

We presented in Table 1 our main results, CelebA dataset trained with grid search under EO constraint.
We show in Table 4 the results on the DP constraints. Here all training configurations are the same as
Table 1, except that we replace the EO constraint by the DP constraint. For ease of comparison, we
also recall the results on EO in Table 4. The observations are similar to those we made for Table 1,
namely, FIFA improves significantly on the combined loss compared with vanilla.

ϵ Method
EO DP

Combined Loss Fairness Violation Combined Loss Fairness Violation
Train Test Train Test Train Test Train Test

0.01 FIFA 7.37% 6.71% 5.31% 2.75% 8.65% 7.21% 4.84% 1.45%
Vanilla 7.14% 14.01% 6.69% 20.29% 10.74% 10.43% 4.72% 1.35%

0.05 FIFA 5.46% 6.34% 2.63% 3.29% 10.02% 9.40% 4.73% 1.07%
Vanilla 8.84% 13.05% 9.45% 17.92% 12.14% 11.60% 8.34% 5.17%

0.10 FIFA 5.92% 6.54% 3.11% 2.65% 9.04% 8.32% 2.98% 0.04%
Vanilla 8.90% 16.71% 11.37% 26.15% 12.13% 11.66% 9.77% 6.83%

Table 4: Grid search with EO and DP constraint on CelebA dataset (Liu et al., 2015) using ResNet-18, best results with respect to test combined
loss among sweeps of hyper-parameters are shown.

C.3 GRID SEARCH ON ADULTINCOME (DP AND EO)

ϵ Method
EO DP

Combined Loss Fairness Violation Combined Loss Fairness Violation
Train Test Train Test Train Test Train Test

0.01 FIFA 14.77618% 14.93573% 8.53851% 8.50086% 13.75700% 14.05881% 0.08609% 0.00999%
Vanilla 16.68724% 17.28659% 10.39000% 10.92794% 14.83347% 15.09909% 3.32436% 3.65903%

0.05 FIFA 14.79263% 14.91599% 8.57436% 8.50841% 13.74952% 14.03440% 0.11811% 0.01008%
Vanilla 16.68724% 17.28659% 10.39000% 10.92794% 14.83475% 15.09909% 3.32895% 3.65903%

0.10 FIFA 14.70959% 14.88935% 8.17597% 8.16283% 13.72278% 14.03193% 0.11331% 0.01011%
Vanilla 16.68724% 17.28659% 10.39000% 10.92794% 14.82782% 15.09909% 3.31507% 3.65903%

Table 5: Grid search with EO and DP constraint on AdultIncome dataset using logistic regression, best results with respect to test combined loss
among sweeps of hyper-parameters are shown.

We also give in Table 5 the grid search results on AdultIncome dataset, for both EO and DP constraints.
We observe that on this small dataset and small model, FIFA can also improve generalization
performances for both EO and DP constraints. This further exhibits the flexibility of the FIFA
approach.
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Combined Loss Fairness Violation Balanced Error
Train Test Train Test Train Test

ϵ Method

0.01 FIFA 14.26% 13.60% 5.39% 4.53% 23.12% 22.67%
Vanilla 14.22% 13.68% 5.33% 4.69% 23.10% 22.67%

0.05 FIFA 14.02% 13.22% 4.93% 3.71% 23.11% 22.73%
Vanilla 14.00% 13.23% 4.89% 3.71% 23.11% 22.74%

0.10 FIFA 14.20% 13.67% 5.29% 4.67% 23.10% 22.67%
Vanilla 14.20% 13.68% 5.30% 4.67% 23.10% 22.68%

Table 6: FIFA+ExpGrad on the New Adult Income dataset.

C.4 EXPGRAD ON THE NEW ADULTINCOME DATASET

We give in Table 6 the results by applying FIFA+ExpGrad on the new adult income dataset. We use
the employment data from California in 2021 and set the same threshold of yearly income being 50K
to construct the label. However, the sensitive attributes becomes the race, where 0 for White and 1 for
Black. We use the recommended covariates, which after dummification, results in 20 covariates and
129563 samples. We split the samples randomly into 80% training set and 20% test set. The other
configurations remain the same.

C.5 PER-GROUP RESULTS

To have a better understanding of the per-group performance, we take a deeper look at (i) CelebA using
FIFA+GridS; (ii) AdultIncome using FIFA+GridS; and (iii) New AdultIncome using FIFA+ExpGrad,
all optimizing over the EO constraint. We show in Table 7 per-group accuracies and in Table 10 the
differences between FPR and FNR across sensitive groups. Note that since the New AdultIncome
only conatins 20 covariates, the performances of different methods differ insignificantly.

Non-Blond Female Non-Blond Male Blond Female Blond Male
Train Test Train Test Train Test Train Test

ϵ Method

0.01
FIFA-GS 95.28% 95.50% 93.01% 92.70% 88.20% 87.22% 92.86% 84.44%
LDAM-GS 95.37% 95.47% 94.21% 94.19% 88.81% 87.06% 91.13% 81.67%
Vanilla-GS 89.15% 90.29% 95.85% 96.12% 92.78% 93.06% 86.88% 72.78%

0.05
FIFA-GS 95.13% 95.11% 93.50% 93.19% 88.93% 87.18% 91.56% 83.89%
LDAM-GS 94.97% 94.90% 91.83% 92.01% 87.15% 86.29% 92.86% 82.22%
Vanilla-GS 86.15% 87.50% 94.72% 95.16% 93.81% 94.03% 84.35% 76.11%

0.10
FIFA-GS 95.61% 95.75% 93.15% 93.10% 87.95% 84.68% 91.06% 82.78%
LDAM-GS 96.14% 96.15% 93.69% 93.19% 84.57% 81.85% 91.49% 79.44%
Vanilla-GS 87.07% 88.03% 97.75% 97.56% 95.58% 95.04% 84.21% 68.89%

Table 7: Per-group accuracy on the CelebA dataset from FIFA+GridS (EO).

<50K Female <50K Male >=50K Female >=50K Male
Train Test Train Test Train Test Train Test

ϵ Method

0.01 FIFA-GS 95.30% 95.22% 86.76% 86.72% 65.73% 63.56% 68.28% 67.91%
Vanilla-GS 74.64% 74.39% 64.25% 63.47% 89.91% 88.31% 85.02% 84.40%

0.05 FIFA-GS 95.29% 95.24% 86.71% 86.73% 65.65% 63.39% 68.34% 68.03%
Vanilla-GS 74.64% 74.39% 64.25% 63.47% 89.91% 88.31% 85.02% 84.40%

0.10 FIFA-GS 95.32% 95.30% 87.14% 87.14% 65.22% 63.22% 67.55% 67.05%
Vanilla-GS 74.64% 74.39% 64.25% 63.47% 89.91% 88.31% 85.02% 84.40%

Table 8: Per-group accuracy on the AdultIncome dataset from FIFA+GridS (EO).

21



Published as a conference paper at ICLR 2023

<50K White <50K Black >=50K White >=50K Black
Train Test Train Test Train Test Train Test

ϵ Method

0.01 FIFA-GS 71.34% 71.96% 70.03% 72.40% 82.79% 82.92% 77.40% 78.38%
Vanilla-GS 71.41% 71.99% 69.96% 72.22% 82.78% 82.91% 77.44% 78.22%

0.05 FIFA-GS 71.53% 72.01% 69.37% 71.68% 82.67% 82.76% 77.74% 79.04%
Vanilla-GS 71.54% 72.00% 69.30% 71.58% 82.67% 82.76% 77.78% 79.04%

0.10 FIFA-GS 71.40% 72.00% 69.96% 72.22% 82.78% 82.89% 77.48% 78.22%
Vanilla-GS 71.40% 71.98% 69.96% 72.22% 82.78% 82.89% 77.48% 78.22%

Table 9: Per-group accuracy on the New AdultIncome dataset from FIFA+ExpGrad (EO).

CelebA (GridS) AdultIncome (GridS) New AdultIncome (ExpGrad)
FPR FNR FPR FNR FPR FNR

Train Test Train Test Train Test Train Test Train Test Train Test
ϵ Method

0.01 FIFA 2.27% 2.79% 4.66% 2.77% 8.54% 8.50% 2.55% 4.35% 1.31% 0.44% 5.39% 4.53%
Vanilla 6.69% 5.83% 5.90% 20.29% 10.39% 10.93% 4.89% 3.91% 1.45% 0.23% 5.33% 4.69%

0.05 FIFA 1.63% 1.91% 2.63% 3.29% 8.57% 8.51% 2.69% 4.64% 2.17% 0.33% 4.93% 3.71%
Vanilla 8.57% 7.66% 9.45% 17.92% 10.39% 10.93% 4.89% 3.91% 2.24% 0.41% 4.89% 3.71%

0.10 FIFA 2.46% 2.65% 3.11% 1.90% 8.18% 8.16% 2.32% 3.83% 1.44% 0.22% 5.29% 4.67%
Vanilla 10.68% 9.53% 11.37% 26.15% 10.39% 10.93% 4.89% 3.91% 1.44% 0.24% 5.30% 4.67%

Table 10: FPR/FNR differences across sensitivy groups on three datasets.
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