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ABSTRACT

Label Smoothing (LS) aims to prevent Neural Networks from making overcon-
fident predictions and improve generalization. Due to its effectiveness, it has
become an indispensable ingredient in the training recipe for tasks such as Im-
age Recognition and Neural Machine Translation. Despite this, previous work
shows it encourages an overly tight cluster in the feature space, which ‘erases’
the similarity information of individual examples. A more recent study empir-
ically shows that LS also makes the network more confident in its wrong pre-
dictions. By isolating the loss induced by Label Smoothing into a combina-
tion of a regularization term and an error-enhancement term, we reveal the un-
derlying mechanism behind such defects of Label Smoothing. To remedy this,
we present a solution called Max Suppression (MaxSup), which consistently ap-
plies the intended regularization effect during training, independent of the cor-
rectness of prediction. By examining the learned features, we demonstrate that
MaxSup successfully enlarges intra-class variations, while improving inter-class
separability. We further conduct experiments on Image Classification and Ma-
chine Translation tasks, validating the superiority of Max Suppression. The code
implementation is available at https://anonymous.4open.science/r/
Maximum-Suppression-Regularization-DB0C.

African chameleon CAM with MaxSup CAM with LS

1 INTRODUCTION

In multi-class classification (Russakovsky et al., 2015; LeCun, 1998), different categories are widely
represented by one-hot vectors, assuming them to be cardinal and orthogonal. However, many
classes often share common low-level features (Zeiler and Fergus, 2014; Silla and Freitas, 2011) or
high-level similarities (Chen et al., 2021; Yi et al., 2022; Novack et al., 2023). The assumption of
orthogonality underlying the one-hot labels apparently deviates from this observation, which tends
to produce over-confident classifiers with reduced generalization ability (Guo et al., 2020).

To prevent the network from being over-confident about its predictions and thus generalize better,
Szegedy et al. (2016) proposed Label Smoothing (LS), which replaces the one-hot label with a con-
vex combination of the original label and a vector of ones. Thanks to its simplicity and effectiveness,
it has been widely adopted for tasks such as Image Recognition (He et al., 2016; Touvron et al., 2021;
Liu et al., 2021; Zhou et al., 2022b) and Neural Machine Translation (Gao et al., 2020; Alves et al.,
2023). Despite the improved classification performance, Müller et al. (2019) identified an inherent
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flaw in Label Smoothing: it tends to compress samples of the same class into overly tight clusters
in the feature space, which consequently ‘erases’ the similarity information that an individual ex-
ample has to different classes. Such information loss might not be well reflected in the classification
performance, but it potentially harms the effectiveness of the learned representation in broader
downstream applications, such as linear transfer accuracy (Kornblith et al., 2021). More recently,
Zhu et al. (2022) empirically identified that Label Smoothing results in more confident errors,
but the reason behind such an issue is not yet understood.

In this paper, we reveal that the part of the training objective introduced by Label Smoothing sur-
prisingly contains two problematic components: a regularization component that only functions as
expected when the predictions are correct, and an error-enhancement term that emerges when the
predictions are incorrect, encouraging the network to become overconfident in its wrong predictions.
In line with Zhu et al. (2022), the term ”overconfidence” in our work specifically refers to the net-
work’s confidence in its top-1 prediction, which is different from the overconfidence in the context
of model calibration. This work uncovers the underlying mechanism of the recently observed
defect of Label Smoothing (Zhu et al., 2022), and shows that it is also the cause of the overly
tight clusters.

In light of this observation, we further propose a solution called Max Suppression (MaxSup), which
consistently applies the intended regularization effect during training, regardless of whether the pre-
diction is correct or not. The quantitative evaluation of the features from the penultimate layer high-
lights that MaxSup successfully allows for a larger intra-class variation, while improving the inter-
class separability in the feature space compared to Label Smoothing. The improved performance on
Image Classification and Machine Translation tasks additionally supports that Max Suppression is a
superior alternative to Label Smoothing.

Our contributions are as follows:

• We reveal the underlying mechanism of the previously observed defects of Label Smooth-
ing, highlighted by the Inconsistent Regularization term as well as the Error-Enhancement
term via our novel decomposition of the training objective.

• We propose Max Suppression as a closed-form solution to the identified issue, which is
demonstrated to be a superior alternative to Label Smoothing.

• We show that training with Max Suppression not only improves the classification perfor-
mance, but also better retains the similarity information of individual samples to different
classes.

2 RELATED WORK

2.1 REGULARIZATION

Regularization techniques aim to enhance the generalization ability of deep neural networks. L2
(Krogh and Hertz, 1991) and L1 (Zou and Hastie, 2005) Regularization control model complexity by
penalizing large or sparse weights, respectively. Dropout (Srivastava et al., 2014) randomly deacti-
vates neurons during training, helping to reduce over-fitting by preventing co-adaptation of features.
Loss-based regularization techniques, such as Label Smoothing (Szegedy et al., 2016), soften target
labels to mitigate overconfidence in predictions, which leads to more accurate and better calibrated
classifiers (Müller et al., 2019). To exploit the clues in the model’s prediction, Zhang et al. (2021);
Liang et al. (2022) further introduced Online Label Smoothing (OLS) and Zipf Label Smoothing
(Zipf-LS) to replace the uniform distribution with the predicted distribution based on the previous
and current model weights, respectively. Other approaches, like Confidence Penalty (Pereyra et al.,
2017), directly penalize overly confident outputs to enhance model calibration. Moreover, Logit
penalty (Dauphin and Cubuk, 2021) that minimizes the l2-norm of the logits is also shown to be
effective (Kornblith et al., 2021).

2.2 STUDY ON LABEL SMOOTHING

A line of studies investigates Label Smoothing in the context of knowledge distillation: Yuan et al.
(2020) revealed the underlying connection between Label Smoothing and Knowledge Distillation,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Shen et al. (2021) provided a comprehensive evaluation of the compatibility between Label Smooth-
ing and Knowledge Distillation, and Chandrasegaran et al. (2022) emphasized the importance of
using an LS-trained teacher with a low-temperature transfer. Kornblith et al. (2021) empirically val-
idated that Label Smoothing leads to increased tightness and separation of feature clusters, as well
as degraded transfer learning performance. The impact of Label Smoothing on the learned feature
space is also investigated in the context of neural collapse (Zhou et al., 2022a; Guo et al., 2024), by
examining the properties of feature clusters.

3 MAX SUPPRESSION REGULARIZATION

In this section, we begin by disentangling the training objective into two components: the standard
Cross-Entropy loss with one-hot labels and Label Smoothing (LS) loss. We then focus on the LS loss
component, reformulating it at the logit level for a clearer understanding of its internal mechanisms.
This logit-level formulation allows us to further decompose LS into two key terms: a Regularization
term and an Error-Enhancement term. Based on this decomposition, we highlight the limitations
of LS, particularly its tendency to amplify errors through the Error-Enhancement term. To address
these limitations, we propose Max Suppression Regularization (MaxSup) as a remedy.

3.1 REVISITING LABEL SMOOTHING

Label Smoothing (LS) is a commonly used regularization technique to prevent models from becom-
ing overly confident in their predictions. Instead of assigning a probability of 1 to the ground-truth
class and 0 to all other classes, LS smooths the target distribution by distributing a small portion of
the probability mass uniformly across all classes. Below is the formal definition:
Definition 3.1. For a classification task with K distinct classes, Label Smoothing transforms a one-
hot encoded label y ∈ RK into a soft label s ∈ RK by taking a convex combination of y and a
uniform distribution over all classes:

sk = (1− α)yk +
α

K
(1)

where yk = 1k=gt, i.e., yk = 1 if class k is the ground-truth class; otherwise yk = 0. The
scalar α ∈ [0, 1] is the smoothing weight, and gt denotes the index of the ground-truth class. Label
Smoothing assigns a portion of the probability mass α

K uniformly across all non-ground-truth classes
while reducing the probability of the ground-truth class by a factor of α.

To analyze the effect of LS on the training objective, we decompose the Cross-Entropy loss into
two parts: the standard Cross-Entropy loss without Label Smoothing and the additional loss term
introduced by Label Smoothing:
Lemma 3.2. Decomposition of Cross-Entropy Loss with Soft Label

H(s,q)︸ ︷︷ ︸
CE with Soft Label

= H(y,q)︸ ︷︷ ︸
CE with Hard Label

+ LLS︸︷︷︸
Label Smoothing Loss

(2)

where the Label Smoothing Loss LLS is given by:

LLS = α

(
H

(
1

K
,q

)
−H(y,q)

)
, (3)

where q denotes the predicted probability vector, H(·) denotes Cross-Entropy (CE) between two
distributions, and LLS indicates the loss component introduced by Label Smoothing, termed Label
Smoothing Loss. Note that the original Cross-Entropy Loss H(y,q) is unweighted by α because
the weight is implicitly incorporated in LLS . 1

K denotes the uniform distribution introduced by
Label Smoothing. This decomposition shows that LS not only modifies the ground-truth label but
also adds a regularization effect through LLS, which encourages a smoother output distribution and
helps reduce overfitting.

(Please refer to Appendix A for the proof.)

Based on the decomposition in Lemma 3.2, we further simplify the Label Smoothing Loss into a
formulation of logit operations, which allows for a closer inspection of the underlying mechanism
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of Label Smoothing. Due to the broad usage of CutMix and Mixup in the training recipe of modern
Neural Networks, we additionally take their impact into account together with Label Smoothing.
For training a classifier with Label Smoothing, we show that the following holds:
Theorem 3.3. Logit-Level Formulation of Label Smoothing Loss

1. Without CutMix or Mixup:

LLS = α

(
zgt −

1

K

K∑
k=1

zk

)
(4)

where LLS is the Label Smoothing loss component. This formulation expresses the loss as
the difference between the logit corresponding to the ground-truth class zgt and the average
of all logits across the K classes, 1

K

∑K
k=1 zk. This shows that LS regularizes the difference

between the ground-truth logit and the average logit across all classes, preventing the
model from becoming overly confident in its predictions.

2. With CutMix and Mixup:

L′
LS = α

(
λzgt1 + (1− λ)zgt2 −

1

K

K∑
k=1

zk

)
(5)

where L′
LS is the Label Smoothing loss component in the presence of CutMix or Mixup. In

this case, zgt1 and zgt2 are the logits corresponding to the two ground-truth classes in-
troduced by CutMix or Mixup, and λ is the mixing ratio between these two classes. The
formulation captures how LS smooths the two logits, zgt1 and zgt2, and applies regulariza-
tion across all classes.

(Please refer to Appendix B for the proof.)

Depending on whether the logits are larger or smaller than zgt, i.e., whether the prediction is correct
or not, the Label Smoothing Loss LLS can be further decomposed into two key components: a Regu-
larization term, which reduces overconfidence in correct predictions, and an Error-Enhancement
term, which exacerbates overconfidence in incorrect predictions. Note that the Overconfidence we
discuss here is different from the Overconfidence in Model Calibration.
Corollary 3.4. Decomposition of Label Smoothing Loss

LLS =
α

K

M∑
zm<zgt

(zgt − zm)

︸ ︷︷ ︸
Regularization

+
α

K

N∑
zn>zgt

(zgt − zn)︸ ︷︷ ︸
Error-Enhancement

(6)

where M and N denote the number of logits smaller than or greater than zgt and M + N = K −
1. Note that the second summation term in Equation (6) is always zero except when zgt ̸= zmax,
i.e., when the classifier makes a incorrect prediction. (1) Regularization term corresponds to the
part where logits are smaller than zgt and is always non-negative. (2) Error-Enhancement term
corresponds to the logits larger than zgt and is non-positive.

The regularization is intended to prevent a model from overfitting to the training datapoints. For
classification problems, this may occur when a model is highly confident on the ground truth train-
ing label. However, overfitting is not occurring when a model is incorrect as it is inherently not
fit to the training data. By penalizing the ground truth logit and enhancing the error on incorrect pre-
dictions, label smoothing does not prevent overfitting and instead worsens the learning on poorly
fit or incorrectly classified samples. Let us consider the following two cases separately:

• When the network makes a correct prediction, i.e., zgt = zmax, the error-enhancement
term equals zero, and the regularization term penalizes the network for being over-confident
about its prediction (the peak position, i.e., zmax, is regarded as the prediction of a classi-
fier) as desired.

• When the network makes an incorrect prediction, i.e., zgt ̸= zmax, Label Smoothing
faces two problems:

4
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1. Error-Enhancement: The non-zero error-enhancement term encourages an increase in
the gap between the ground-truth logit and the larger logits, further enhancing the
over-confidence in the incorrect prediction.

2. Inconsistent Regularization: The regularization term α
K

∑M
zm<zgt

(zgt − zm) of LS
fails to penalize the network for being over-confident about its prediction (the peak
position, i.e., zmax). Instead, it further reduces the already underestimated zgt.

Note that concurrent work (Xia et al., 2024) arrives at a similar observation through gradient analy-
sis. The findings from both studies can be seen as mutually validating. However, our decomposition
offers an additional advantage, as it allows us to derive MaxSup as a direct solution to the observed
problem.

To verify the effects of the different components of Label Smoothing, we conduct an ablation study
using the Deit-Small model (Touvron et al., 2021), trained on ImageNet-1K. For clarity and to isolate
the impact of Label Smoothing, we remove Mixup and CutMix from the data augmentation pipeline.
This allows us to assess the contributions of each component of Label Smoothing in a clean ablation
setting. The results are summarized in Table 1.

Table 1: Preliminary study on Label Smoothing Loss components on ImageNet-1K using Deit-Small
model as baseline. Note that we remove CutMix&Mixup.

Method Formulation Accuracy

Baseline - 74.21
+ Label Smoothing α

K

∑M
zm<zgt

(zgt − zm) + α
K

∑N
zn>zgt

(zgt − zn) 75.91

+ Regularization α
M

∑M
zm<zgt

(zgt − zm) 75.98

+ Error-Enhancement α
N

∑N
zn>zgt

(zgt − zn) 73.63

+ Error-Enhancement α(zgt − zmax) 73.69
+ MaxSup α(zmax − 1

K

∑
k∈K zk) 76.12

As demonstrated in Table 1, the performance improvements from Label Smoothing are solely at-
tributed to the Regularization term. The Error-Enhancement term, on the other hand, consistently
leads to performance degradation. This is evident from the reduced accuracy when only the Error-
Enhancement term is applied. For a fair comparison, we use the default smoothing weight α = 0.1
from the baseline. The ablation study confirms that the subtraction of the maximum logit (zmax)
is the main cause of the performance drop, as demonstrated by the comparable degradation when
only the Error-Enhancement term is included. This indicates that Label Smoothing’s effectiveness
stems entirely from its Regularization component, while the Error-Enhancement component nega-
tively impacts model performance by increasing overconfidence in incorrect predictions. Moreover,
using the regularization term alone (75.98%) only brings marginal improvement (+0.07%) over
Label Smoothing (75.91%), whereas MaxSup (76.12%) leads to larger improvement (0.21%) over
Label Smoothing (75.91%), supporting our analysis that MaxSup fixes the issues of Label Smooth-
ing by applying the intended regularization and removing the error-enhancement upon incorrect
predictions.

3.2 MAX SUPPRESSION REGULARIZATION (MAXSUP)

To address the Inconsistent Regularization and Error-Enhancement issue in Label Smoothing, we
introduce Max Suppression (MaxSup), which penalizes the max logit instead of the ground-truth
logit. By contrasting Equation (6) and Equation (7), it is obvious that MaxSup behaves identically
to Label Smoothing when the classifier makes a correct prediction, but crucially, it consistently
applies the desired regularization effect and eliminates the Error-Enhancement term for incorrect
predictions. In essence, MaxSup penalizes both overfitting on well-fit datapoints (when the predic-
tion is correct with very high confidence), as well as encouraging learning on poorly fit datapoints
(when the prediction does not fit the ground truth).
Definition 3.5. Max Suppression Regularization

L = α(zmax −
1

K

K∑
k=1

zk) (7)
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For intuitive understanding, we also provide another formulation of the proposed Max Suppression
loss by transforming its current logit-level formulation back into the label form in Equation (8).
Since a negative amount of the probability mass is assigned to the position with the maximum
likelihood, the soft label generated by Max Suppression is no longer a proper distribution. However,
it is straightforward to grasp the impact of the negative probability mass, i.e., it consistently prevents
the model for being over-confident in its prediction.

Definition 3.6. Max Suppression Regularization as Label Smoothing

For the classification of K distinct classes, Max Suppression transforms the one-hot label y ∈ RK

into a soft label s ∈ RK via a convex combination of y and a vector with all entries equal to one:

sk = yk +
α

K
− α1k=Argmax(q) (8)

where yk = 1k=gt and 1k=gt is an indicator function with the subscript k denoting the kth entry of
the label and gt denoting the ground-truth class. Additionally, α ∈ [0, 1] is the hyperparameter.

We also explore the relationship between Label Smoothing and Max Suppression in terms of their
gradients. The analysis shows that Max Suppression Regularization redistributes a gradient of mag-
nitude α between the True Class and the incorrect Prediction Class. Please refer to Appendix C for
more details.

4 IMPROVED INTRA-CLASS VARIATION AND INTER-CLASS SEPARABILITY

Beyond improving inter-class separability, which enhances classification performance, we argue that
the key strength of MaxSup lies in its ability to capture greater intra-class variation—an indicator of
improved representation learning. As analyzed in Section 3.1, Label Smoothing only performs the
desired regularization on the correct predictions (top-1 probability), whereas MaxSup regularizes
both the correct and incorrect predictions (top-1 probability), thereby leaning to even larger inter-
class separability. Moreover, MaxSup eliminates the error-enhancement defect of Label Smoothing,
which may be the cause of the severely reduced intra-class variance. We validate the improved
intra-class variation and inter-class separability using the metrics in Kornblith et al. (2021), and the
results are listed in Table 2.

Methods d̄within ↑ d̄total R2(1 − d̄within
d̄total

) ↑

Train Val Train Val Train Val

Baseline 0.3114 0.3313 0.5212 0.5949 0.4025 0.4451
LS 0.2632 0.2543 0.4862 0.4718 0.4690 0.4611

MaxSup 0.2926 (+0.03) 0.2998 (+0.05) 0.6081 (+0.12) 0.5962 (+0.12) 0.5188 (+0.05) 0.4972 (+0.04)
Logit Penalty 0.2840 0.3144 0.7996 0.7909 0.6448 0.6024

Table 2: Quantitative measures for inter-class separability and intra-class variation of feature rep-
resentations, using ResNet-50 trained on ImageNet-1K. Results are provided for Training Set and
Validation Set.

The expanded intra-class variation suggests that MaxSup enables the model to capture richer, more
detailed similarity information—reflecting how individual examples relate to different classes. In
contrast, Label Smoothing tends to ‘erase’ these finer distinctions, as noted by Müller et al. (2019).
It can be further validated by the linear transfer performance (please refer to Table 3) on the CIFAR-
10 dataset, using the pretrained ResNet50, following Kornblith et al. (2021). Note that Kornblith
et al. (2021) also examines Logit Penalty, a regularizer which is closely related to MaxSup: Logit
Penalty regularizes the l2-norm of the logits, whereas MaxSup specifically regularizes the peak
logits. Indeed, Logit Penalty imposes much stronger constraints on the logits, since it reduces the
absolute magnitudes of individual logits, while MaxSup only encourages the peak logit value to be
close to the mean value of all logits. The stronger regularization effect of Logit Penalty leads to
larger inter-class separability in Table 2, but performs poorly on both Linear Transfer task in Table 3
and ImageNet Classification task in Table 4.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Methods Linear Transfer val. acc

Baseline 0.8143
Label Smoothing 0.7458

Logit Penalty (Dauphin and Cubuk, 2021) 0.7242
MaxSup 0.8102 (+0.06)

Table 3: Validation performance of different methods based on multi-nominal Logistic Regression
with l2 regularization in CIFAR10 validation set. We searched the strength of the regularization
from 1e− 4 to 1e2, the search step size is increasing by an order of magnitude.

5 EXPERIMENTS

5.1 EVALUATION ON IMAGENET CLASSIFICATION

In this section, we evaluate the efficacy of MaxSup, comparing its performance against standard
Label Smoothing and its variants on Imagenet-1k.

5.1.1 EXPERIMENT SETUP

Model Training recipes We adopt the most representative models for CNNs and Transformers:
ResNet families (He et al., 2016), MobileNetV2 (Sandler et al., 2018), and DeiT-Small (Touvron
et al., 2021) conducting evaluations on the large-scale ImageNet dataset (Krizhevsky et al., 2012).
For ResNet-50 training, we use baseline recipes in TorchVision1. Specifically, the ResNet50 model
was trained for 90 epochs using stochastic gradient descent (SGD) with a momentum of 0.9 and
weight decay of 1e-4. The initial learning rate was set to 0.5, employing a cosine annealing learning
rate scheduler. A linear warmup strategy was applied for the first 5 epochs with a warmup decay
of 0.01. For regularization, we used a weight decay of 2e-05, while excluding normalization layers
from weight decay. For DeiT-Small, we use the official implementation provided by the authors and
train the model from scratch without applying knowledge distillation. While knowledge distillation
is a prominent feature of the original DeiT paper, we intentionally exclude it in our setup to ensure
a clear and unbiased reflection of MaxSup’s performance.

Hyperparameters for Methods Used for Comparison We compare Max Suppression Regulariza-
tion with several variants of Label Smoothing methods, such as Zipf Label Smoothing (Liang et al.,
2022) and Online Label Smoothing (Zhang et al., 2021). In cases where official implementations
are available for other approaches, we adopt them directly; otherwise, we meticulously adhere to
the descriptions in the respective papers for our implementations. To ensure experimental rigor and
facilitate fair comparisons, all training hyperparameters are maintained identical to those of the base-
line models, except for method-specific hyperparameters unique to each approach. We additionally
adopt a specially designed linearly increasing α scheduler, which is shown to benefit the training in
general, please refer to details in appendix E. It is adopted by default for both MaxSup and Label
Smoothing.

5.1.2 EXPERIMENT RESULTS

Convnet Comparison The results presented in Table 4 demonstrate the effectiveness of MaxSup
regularization compared to other smoothing and self-distillation methods for training different con-
volutional networks on ImageNet and CIFAR100. MaxSup consistently achieves the highest ac-
curacy among label smoothing alternatives, whereas OLS (Zhang et al., 2021) and Zipf-LS (Liang
et al., 2022) fail to deliver stable performance, demonstrating that the previous empirical justification
of such empirical methods is limited to certain training schemes.

In our implementation of OLS and Zipf-LS, we adhered to the methodologies and method-specific
hyperparameters as outlined in their respective official codebases. However, it is important to note
that we did not adopt their training recipes. For instance, the original OLS paper employs a Step
Learning Rate Scheduler over 250 epochs with an initial learning rate of 0.1. Similarly, the Zipf-LS
implementation utilizes 100 epochs alongside other improved training recipes.

1https://github.com/pytorch/vision
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Table 4: Comparison of the performance of classic convolutional neural networks on ImageNet and
CIFAR100. The training script used was consistent with TorchVision V1 Weight, but a larger batch
size was employed to accelerate the experimental process. We adjusted the learning rate based on
the linear scaling principle of the learning rate and batch size.

Method ImageNet CIFAR100
Resnet-18 Resnet-50 Resnet-101 MobileNetV2 Resnet-18 Resnet-50 Resnet-101 MobileNetV2

Baseline 69.11±0.12 76.44±0.10 76.00±0.18 71.42±0.12 76.16±0.18 78.69±0.16 79.11±0.21 68.06±0.06
Label Smoothing 69.38±0.19 76.65±0.11 77.01±0.15 71.40±0.09 77.05±0.17 78.88±0.13 79.19±0.25 69.65±0.08
Zipf-LS∗ 69.43±0.13 76.89±0.17 76.91±0.14 71.24±0.16 76.21±0.12 78.75±0.21 79.15±0.18 69.39 ±0.08
OLS∗ 69.45±0.15 76.81±0.21 77.12±0.17 71.29±0.11 77.33±0.15 78.79±0.12 79.25±0.15 68.91±0.11
MaxSup 69.59±0.13 77.08±0.07 77.33±0.12 71.59±0.17 77.82±0.15 79.15±0.13 79.41±0.19 69.88±0.07
Logit Penalty(single run) 66.97 74.21 75.17 70.39 76.41 78.90 78.89 69.46

Table 5: Comparison of DeiT-Small accuracy (%) with Other Label Smoothing Variants. Note that
due to time limit, only the results of single runs for the setup without CutMix&Mixup are available.

Model Method Acc. w/ CutMix&Mixup Acc. w/o CutMix&Mixup

Mean Std run 1 std

Deit-Small (Touvron et al., 2021)

Baseline 79.69 0.11 74.21 -
Label Smoothing 79.81(+0.12) 0.09 76.12 -
Zipf-LS 79.88(+0.19) 0.08 75.48 -
OLS 79.95(+0.27) 0.12 75.98 -
MaxSup 80.16(+0.47) 0.09 76.58 -

Deit Comparison Table 5 presents the performance comparison of various regularization methods
applied to the DeiT-Small model on ImageNet. MaxSup demonstrates strong performance, achiev-
ing an accuracy of 80.16%, which surpasses Label Smoothing by 0.35% points.

Label Smoothing variants such as Zipf’s and OLS show only comparable performance to standard
Label Smoothing. The marginal increase of 0.07% and 0.14% are statistically insignificant compared
to the standard deviations, suggesting these techniques may be less effective for vision transformer
architectures probably due to their heavy data augmentation pipline. These results further support
the effectiveness of MaxSup across different model architectures, particularly in scenarios where
other regularization techniques may struggle.

5.2 EXTENDED EVALUATION BEYOND IMAGE CLASSFICATION

In order to verify that MaxSup can generalize to different applications, we also evaluate our method
on the task of Machine Translation and Semantic Segmentation.

Machine Translation We train a 12-layer Transformer model with encoder-decoder architecture
(Vaswani, 2017) from scratch on the IWSLT 2014 German to English dataset (Cettolo et al., 2017),
following the training setup of fairseq repository 2. Under the same setting, we also train the trans-
former with MaxSup in place of Label Smoothing in the attention layers, following the common
setup in previous work. The single best checkpoint and a beam size of 5 is adopted. The detok-
enized SacreBLEU (Post, 2018) scores of 3 runs are compared in table 6. The results demonstrate
that MaxSup yields an improvement of 0.3 over baseline, which is 200% relatively larger compared
to the 0.1 improvement of Label Smoothing. While this enhancement may not appear substantial, it
likely stems from the constraints of downstream tasks. Nevertheless, the improvement is statistically
significant, as it exceeds the standard deviation.

Semantic Segmentation We employ the MMSegmentation framework3 for this task. Specifically,
we utilized the UperNet architecture (Xiao et al., 2018) with the DeiT-Small backbone to perform
semantic segmentation on the ADE20K dataset. The backbones trained with both Label Smoothing
and MaxSup on ImageNet1K are compared to the baseline. In the fine-tuning stage, the vanilla
Cross-Entropy loss is used for all models. In table 7 our results show that MaxSup achieves a

2https://github.com/facebookresearch/fairseq
3https://github.com/open-mmlab/mmsegmentation
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mean Intersection over Union (mIoU) of 44.1, outperforming the 43.7 mIoU obtained with Label
Smoothing. This also supports the improved feature representation of models trained with MaxSup.

Table 6: Comparison of Label Smoothing and MaxSup on IWSLT 2014 German to English Dataset.

Model Param. Method BLEU score

Transformer(Vaswani, 2017) 38 M
Baseline 34.3 ± 0.09

Label Smoothing 34.4 (+0.1) ± 0.07
MaxSup 34.6 (+0.3) ± 0.09

Table 7: Comparison of Label Smoothing and MaxSup on on ADE20K validation set, and the best
result on ADE20K with only ImageNet-1K as training data in pretraining.

Backbone Segmentation Architecture Method mIoU(MS)

DeiT-Small (Touvron et al., 2021) UperNet(Xiao et al., 2018)
Baseline 43.4

Label Smoothing 43.7 (+0.3)
MaxSup 44.1 (+0.7)

(a) Label Smoothing is
severely distracted by the
pole.

(b) Label Smoothing is
severely distracted by the
tube, and Baseline almost
overlooks the gold fish at
bottom.

(c) Label Smoothing
completely focuses on the
wrong position, whereas
Baseline is distracted by
the surrounding objects.

(d) Label Smoothing and
Baseline are both severely
distracted by the waves.

(e) Label Smoothing fails
to consider the tail of
the monkey, and Baseline
mostly focus on the head
forehead.

Figure 2: We visualize the class activation map using GradCAM (Selvaraju et al., 2019) from Deit-Small
models trained with MaxSup (2nd row), Label Smoothing (3rd row) and Baseline (4th row). The first row are
original images. The results show that MaxSup training with MaxSup can reduce the distraction by non-target
class, whereas Label Smoothing increases the model’s vulnerability to interference, causing the model partially
or completely focusing on incorrect objects, due to the loss of richer information of individual samples.
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5.3 CLASS ACTIVATION MAP

To visualize the impact of MaxSup on the model’s decision-making compared to label smooth-
ing, we adopt Gradient-weighted Class Activation Mapping (Grad-CAM), a technique by (Selvaraju
et al., 2019) that generates class-discriminative localization maps. We employed the DeiT-Small to
perform our experiments, comparing the models trained with MaxSup (second row), Label Smooth-
ing (third row) and standard Cross-Entropy baseline (fourth row) in Figure 2.

As illustrated in Figure 2, the model trained with MaxSup demonstrates a clear advantage when
non-target salient objects are present in the background. MaxSup reduces the model’s distraction
by these objects, such as the pole in the ‘Bird’ image, the tube in the ‘Goldfish’ image, and the
cap in the ‘House Finch’ image. In contrast, the model trained with Label Smoothing often loses
focus or incorrectly attends to these background objects. Figure 2a and 2b demonstrate a pattern
of distraction, where the attention of the model trained with Label Smoothing is partially disrupted,
although the classification remains correct. Figure 2c depicts overconfidence in incorrect samples,
leading to misclassification, highlighting the negative impact of the Error-Enhancement component.
Beyond the robustness to background distractions, MaxSup also improves the coverage of object
features. For instance, the model trained with Label Smoothing misses important details, such as the
fin in the ‘Shark’ image and the tail in the ‘Monkey’ image, both of which are successfully captured
by the model trained with MaxSup. This supports our analysis in Appendix E that MaxSup better
preserves the richer information of individual class samples beyond the class-specific information.

6 CONCLUSION

In this work, we have uncovered the underlying mechanism behind the previously identified issues
in Label Smoothing and proposed MaxSup as a remedy. Our analysis reveals that Label Smoothing
inherently fails to regularize the incorrect predictions and even encourages overconfidence in them,
potentially hindering the model’s ability to learn from challenging examples. MaxSup addresses
this limitation by consistently applying the intended regularization effect during training, regardless
of whether the prediction is correct or not. Our extensive analysis and experiments demonstrate that
MaxSup not only improves task performance but also leads to larger intra-class variance as well as
inter-class separation in the feature space over Label Smoothing. This enables the model to retain
richer information of individual samples, leading to improved transfer learning. The class activation
maps further support our analysis, through the more accurate localization and better coverage of
class objects, as well as reduced distraction by irrelevant background objects.

Limitation and Future Work Müller et al. (2019) show that teachers trained on LS lead to degraded
performance in Knowledge Distillation (Hinton, 2015), and Guo et al. (2024) observed accelerated
convergence with LS via the conditioning number analysis. Thus it would be interesting to ex-
plore the impact of MaxSup on Knowledge Distillation and training convergence. We leave such
investigations to future work.
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7 REPRODUCIBILITY STATEMENT

The results of the code are reproducible, as detailed in Appendix D and the training setups in Sec-
tion 5.1.1 and Section 5.2. We have also provided the link to the anonymous code repository for this
paper in the Abstract.
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A PROOF OF LEMMA 3.2

Proof. We aim to demonstrate the validity of Lemma 3.2, which states:

H(s,q) = H(y,q) + LLS (9)

where LLS = α
(
H
(

1
K ,q

)
−H(y,q)

)
Let us proceed with the proof:

We begin by expressing the cross-entropy H(s,q):

H(s,q) = −
K∑

k=1

sk log qk (10)

In the context of label smoothing, sk is defined as:

sk = (1− α)yk +
α

K
(11)

where α is the smoothing parameter, yk is the original label, and K is the number of classes.

Substituting this expression for sk into the cross-entropy formula:

H(s,q) = −
K∑

k=1

(
(1− α)yk +

α

K

)
log qk (12)

Expanding the sum:

H(s,q) = −(1− α)

K∑
k=1

yk log qk − α

K

K∑
k=1

log qk (13)

We recognize that the first term is equivalent to (1−α)H(y,q), and the second term to αH( 1
K ,q).

Thus:

H(s,q) = (1− α)H(y,q) + αH

(
1

K
,q

)
(14)

Rearranging the terms:

H(s,q) = H(y,q) + α

(
H

(
1

K
,q

)
−H(y,q)

)
(15)

We can now identify H(y,q) as the original cross-entropy loss and LLS =
α
(
H
(

1
K ,q

)
−H(y,q)

)
as the Label Smoothing loss.

Therefore, we have demonstrated that:

H(s,q) = H(y,q) + LLS (16)

with LLS as defined in the lemma. It is noteworthy that the original cross-entropy loss H(y,q)
remains unweighted by α in this decomposition, which is consistent with the statement in Lemma
3.2
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B PROOF OF THEOREM 3.3

Proof. We will prove both cases of Theorem 3.3 separately.

Without Cutmix and Mixup

We aim to prove Equation equation 4:

LLS = α(zgt −
1

K

K∑
k=1

zk) (17)

Let s be the smoothed label vector and q be the predicted probability vector. We start with the
cross-entropy between s and q:

H(s,q) = −
K∑

k=1

sk log qk (18)

With label smoothing, sk = (1−α)yk +
α
K , where y is the one-hot ground truth vector and α is the

smoothing parameter. Substituting this:

H(s,q) = −
K∑

k=1

[(1− α)yk +
α

K
] log qk (19)

Expanding:

H(s,q) = −(1− α)

K∑
k=1

yk log qk − α

K

K∑
k=1

log qk (20)

Since y is a one-hot vector,
∑K

k=1 yk log qk = log qgt, where gt is the index of the ground truth
class:

H(s,q) = −(1− α) log qgt −
α

K

K∑
k=1

log qk (21)

Using the softmax function, qk = ezk∑K
j=1 ezj

, we can express log qk in terms of logits:

log qk = zk − log(

K∑
j=1

ezj ) (22)

Substituting this into our expression:

H(s,q) = −(1− α)[zgt − log(

K∑
j=1

ezj )]− α

K

K∑
k=1

[zk − log(

K∑
j=1

ezj )] (23)

= −(1− α)zgt + (1− α) log(

K∑
j=1

ezj )− α

K

K∑
k=1

zk + α log(

K∑
j=1

ezj ) (24)

= −(1− α)zgt −
α

K

K∑
k=1

zk + log(

K∑
j=1

ezj ) (25)

Rearranging:
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H(s,q) = −zgt + log(

K∑
j=1

ezj ) + α[zgt −
1

K

K∑
k=1

zk] (26)

We can identify:

• H(y,q) = −zgt + log(
∑K

j=1 e
zj ) (cross-entropy for one-hot vector y)

• LLS = α[zgt − 1
K

∑K
k=1 zk]

Thus, we have proven:
H(s,q) = H(y,q) + LLS (27)

With Cutmix and Mixup

Now we prove Equation equation 5:

L′
LS = α((λzgt1 + (1− λ)zgt2)−

1

K

K∑
k=1

zk) (28)

With Cutmix and Mixup, the smoothed label becomes:

sk = (1− α)(λyk1 + (1− λ)yk2) +
α

K
(29)

where yk1 and yk2 are one-hot vectors for the two ground truth classes from mixing, and λ is the
mixing ratio.

Starting with the cross-entropy:

H(s,q) = −
K∑

k=1

sk log qk (30)

= −
K∑

k=1

[(1− α)(λyk1 + (1− λ)yk2) +
α

K
] log qk (31)

= −(1− α)

K∑
k=1

(λyk1 + (1− λ)yk2) log qk − α

K

K∑
k=1

log qk (32)

Since yk1 and yk2 are one-hot vectors:

H(s,q) = −(1− α)(λ log qgt1 + (1− λ) log qgt2)−
α

K

K∑
k=1

log qk (33)

where gt1 and gt2 are the indices of the two ground truth classes.

Using qk = ezk∑K
j=1 ezj

, we express in terms of logits:

H(s,q) = −(1− α)[λ(zgt1 − log(

K∑
j=1

ezj )) + (1− λ)(zgt2 − log(

K∑
j=1

ezj ))] (34)

− α

K

K∑
k=1

[zk − log(

K∑
j=1

ezj )] (35)

Simplifying:
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H(s,q) = −(1− α)[λzgt1 + (1− λ)zgt2] + (1− α) log(

K∑
j=1

ezj ) (36)

− α

K

K∑
k=1

zk + α log(

K∑
j=1

ezj ) (37)

= −(1− α)[λzgt1 + (1− λ)zgt2]−
α

K

K∑
k=1

zk + log(

K∑
j=1

ezj ) (38)

Rearranging:

H(s,q) = −[λzgt1 + (1− λ)zgt2] + log(

K∑
j=1

ezj ) (39)

+ α[λzgt1 + (1− λ)zgt2 −
1

K

K∑
k=1

zk] (40)

We can identify:

• H(y′,q) = −[λzgt1 + (1− λ)zgt2] + log(
∑K

j=1 e
zj ) (cross-entropy for mixed label y′)

• L′
LS = α[λzgt1 + (1− λ)zgt2 − 1

K

∑K
k=1 zk]

Thus, we have proven:
H(s,q) = H(y′,q) + L′

LS (41)

This completes the proof for both cases of Theorem 3.3.

C GRADIENT ANALYSIS

C.1 NEW OBJECTIVE FUNCTION

The Cross Entropy with Max Suppression is defined as:

LMaxSup,t(x, y) = H
(
yk +

α

K
− α · 1k=argmax(q), q

S
t (x)

)
where H(·, ·) denotes the cross-entropy function.

C.2 GRADIENT ANALYSIS

The gradient of the loss with respect to the logit zi for each class i is derived as:

∂MaxSup,t
i = yt,i − yi −

α

K
+ α · 1i=argmax(q)

We analyze this gradient under two scenarios:

Scenario 1: Model makes correct prediction

In this case, Max Suppression is equivalent to Label Smoothing. When the model correctly predicts
the target class (argmax(q) = GT), the gradients are:
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• For the target class (GT): ∂MaxSup,t
GT = qt,GT −

(
1− α

(
1− 1

K

))
• For non-target classes: ∂MaxSup,t

i = qt,i − α
K

Scenario 2: Model makes wrong prediction

When the model incorrectly predicts the most confident class (argmax(q) ̸= GT), the gradients
are:

• For the target class (GT): ∂MaxSup,t
GT = qt,GT −

(
1 + α

K

)
• For non-target classes (not most confident): ∂MaxSup,t

i = qt,i − α
K

• For the most confident non-target class: ∂MaxSup,t
i = qt,i + α

(
1− 1

K

)
The Max Suppression regularization technique implements a sophisticated gradient redistribution
strategy, particularly effective when the model misclassifies samples. When the model’s prediction
(argmax(q)) differs from the ground truth (GT), the gradient for the incorrectly predicted class is
increased by α(1 − 1

K ), resulting in ∂MaxSup,t
argmax(q) = qt,argmax(q) + α(1 − 1

K ). Simultaneously, the

gradient for the true class is decreased by α
K , giving ∂MaxSup,t

GT = qt,GT − (1 + α
K ), while for all

other classes, the gradient is slightly reduced by α
K : ∂MaxSup,t

i = qt,i− α
K . This redistribution adds a

substantial positive gradient to the misclassified class while slightly reducing the gradients for other
classes. The magnitude of this adjustment, controlled by the hyperparameter α, effectively penalizes
overconfident errors and encourages the model to focus on challenging examples. By amplifying
the learning signal for misclassifications, Max Suppression regularization promotes more robust
learning from difficult or ambiguous samples.

D PSEUDO CODE

We provide pseudo code to give a clearer explanation of the implementation.

Algorithm 1 Gradient Descent with Max Suppression (MaxSup)

Require: Dataset D = {(x(i),y(i))}Ni=1, learning rate η, number of iterations
T , regularization factor α, a classifier fθ(·)

1: Initialize the network weights θ randomly
2: for t = 1 to T do
3: for each (x(i),y(i)) in D do
4: Compute logits: z(i) = fθ(x

(i))
5: Compute predicted probabilities: q(i) = softmax(z(i))
6: Compute Cross-Entropy loss: LCE = H(y(i), q(i))
7: Compute Max Suppression loss: LMaxSup = zmax − 1

K

∑
k∈K zk

8: Compute the sum: L = LCE + αLMaxSup

9: Update the weights: θ −= η ∂L
∂θ

10: end for
11: end for

E INCREASING SMOOTHING WEIGHT SCHEDULE

We hypothesize that, as the number of training epochs increases, the model improves its accuracy
progressively and potentially becomes more confident about its predictions. In consequence, it
might be necessary to gradually increase α to discourage the model’s over-confidence. Therefore,
we additionally propose to adopt a linearly increasing α schedule.

Table 8 shows the impact of a linear α scheduler on Label Smoothing and MaxSup. Both methods
benefit from the scheduler, with LS improving from 75.91% to 76.16% and MaxSup improving from
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76.12% to 76.58% with the scheduler. It can be seen that MaxSup benefits more from increasing α
during training, with 0.46% percentage point gain over baseline compared to LS’s 0.25%. This result
also supports our analysis that MaxSup fixes the inconsistent regularization and Error-Enhancement
issue of Label Smoothing upon incorrect predictions.

Table 8: Effect of Alpha Scheduler. ∗ denotes that the baseline model does not incorporate the alpha
parameter, t and T represent the current epoch number and the total number of epochs.

Configuration Formulation Accuracy
α = 0.1 α = 0.1 + 0.1 t

T

Baseline - 74.21∗

LS α(zgt − 1
K

∑
k∈K zk) 75.91 76.16

MaxSup α(zmax − 1
K

∑
k∈K zk) 76.12 76.58

subsectionVisualization of the Learned Feature Space

To visualize the difference between Max Suppression Regularization and Label Smoothing in the
learned feature space, we project the feature representations from the penultimate layer into a 2D
space, following Müller et al. (2019). Given three semantically similar classes, we construct an
orthonormal basis for the plane intersecting their templates. We then project the penultimate layer
activations of examples from these classes onto this plane. To ensure the displayability and ease of
understanding of the images, we randomly sample 80 samples from the corresponding training or
validation sets for the three categories separately. We select these classes based on two criteria: 1)
Semantic Similarity: Select the 3 categories that are semantically similar; 2) Confusion: Select
a class, and then find two additional classes that the model trained with Label Smoothing is most
likely to confuse when predicting images of this class (fig. 3c and fig. 4c), and vice versa (fig. 3d
and fig. 4d).

15 10 5 0 5 10 15

Projection 1
15

10

5

0

5

10

15

Pr
oj

ec
tio

n 
2

Projections MaxSup
Class 66
Class 67
Class 68

15 10 5 0 5 10 15

Projection 1
15

10

5

0

5

10

15

Pr
oj

ec
tio

n 
2

Projections MaxSup
Class 281
Class 282
Class 292

15 10 5 0 5 10 15

Projection 1
15

10

5

0

5

10

15

Pr
oj

ec
tio

n 
2

Projections MaxSup
Class 709
Class 748
Class 893

15 10 5 0 5 10 15

Projection 1
15

10

5

0

5

10

15
Pr

oj
ec

tio
n 

2
Projections MaxSup

Class 664
Class 782
Class 851

15 10 5 0 5 10 15

Projection 1
15

10

5

0

5

10

15

Pr
oj

ec
tio

n 
2

Projections w/o label smoothing
Class 66
Class 67
Class 68

15 10 5 0 5 10 15

Projection 1
15

10

5

0

5

10

15

Pr
oj

ec
tio

n 
2

Projections w/o label smoothing
Class 281
Class 282
Class 292

15 10 5 0 5 10 15

Projection 1
15

10

5

0

5

10

15

Pr
oj

ec
tio

n 
2

Projections w/o label smoothing
Class 709
Class 748
Class 893

15 10 5 0 5 10 15

Projection 1
15

10

5

0

5

10

15

Pr
oj

ec
tio

n 
2

Projections w/o label smoothing
Class 664
Class 782
Class 851

15 10 5 0 5 10 15

Projection 1
15

10

5

0

5

10

15

Pr
oj

ec
tio

n 
2

Projections Label Smoothing
Class 66
Class 67
Class 68

(a) Semantically Similar Classes
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(b) Semantically Similar Classes
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(c) Confusing Classes (LS)
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(d) Confusing Classes (MaxSup)

Figure 3: Visualization of penultimate layer’s activations of Deit-small (with CutMix&Mixup) for three differ-
ent classes of ImageNet validation set: The first and second rows show Deit-Small trained with MaxSup and
Label Smoothing, respectively. (a) 68:Schipperke, 66:Saluki, 67:Grey Fox; (b) 282:Tow Truck, 281:Pickup,
292:Unicycle; (c) 784:Jean, 709:Shoe Shop, 893:Stinkhorn. Model trained with MaxSup exhibits both im-
proved inter-class separability and intra-class variation, indicating enhanced classification performance and
representation learning.
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(a) Semantically Similar Classes
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(b) Semantically Similar Classes
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(c) Confusing Classes (LS)
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(d) Confusing Classes (MaxSup)

Figure 4: Visualization of penultimate layer’s activations of Deit-small (with CutMix&Mixup) for three dif-
ferent classes of ImageNet Train set: The first and second rows show Deit-Small trained with MaxSup and
Label Smoothing, respectively. (a) 68:Schipperke, 66:Saluki, 67:Grey Fox; (b) 282:Tow Truck, 281:Pickup,
292:Unicycle; (c) 784:Jean, 709:Shoe Shop, 893:Stinkhorn. Model trained with MaxSup exhibits both im-
proved inter-class separability and intra-class variation, indicating enhanced classification performance and
representation learning.

As can be observed in Figure 4 and Figure 3, the model trained with Max Suppression has the
following two major advantages against Label Smoothing:

• Improved inter-class separability: Max Suppression makes different classes more separa-
ble, indicating improved classification performance.

• Improved intra-class variation: Max Suppression better acknowledges intra-class varia-
tions, indicating improved representation learning.

For example, images of a Schipperke may differ in terms of viewpoint, lighting, or occlusion. These
subtle variations are preserved in the feature space, where the semantic distances to other classes,
such as Saluki or Grey Fox, adjust for each image.
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