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ABSTRACT

We study scaling laws of signSGD under a power-law random features (PLRF)
model that accounts for both feature and target decay. We analyze the popula-
tion risk of a linear model trained with one-pass signSGD on Gaussian-sketched
features. We express the risk as a function of model size, training steps, learning
rate, and the feature and target decay parameters. Comparing against the SGD risk
analyzed by |Paquette et al.|(2024), we identify a drift-normalization effect and a
noise-reshaping effect unique to signSGD. We then obtain compute-optimal scal-
ing laws under the optimal choice of learning rate. Our analysis shows that the
noise-reshaping effect can make the compute-optimal slope of signSGD steeper
than that of SGD in regimes where noise is dominant. Finally, we observe that
a stable-decay schedule—a simplified variant of the widely used warmup-stable-
decay (WSD) schedule—further reduces the noise term and sharpens the compute-
optimal slope, when feature decay is fast but target decay is slow.

1 INTRODUCTION

In large-scale language model training, neural scaling laws are a well-documented empirical regu-
larity: performance tends to improve predictably as data, parameters, and compute increase. |Kaplan
et al.| (2020) observed that the language model cross-entropy loss scales as a power-law of model
size M and number of steps N in terms of the risk formula R(M,N) ~ M~ ™ + N‘T"‘P_-] Also,
they observe that loss scales as the power of training compute, under optimal allocation of compute
between model size and number of steps.

A growing body of theory has sought to explain this phenomenon, most prominently by analyz-
ing the stochastic gradient descent (SGD) optimizer under the power-law random features (PLRF)
model (Paquette et al.l [2024; [Lin et al.| 2024} 2025). Yet, in practice, SGD is not the optimizer
that powers today’s state-of-the-art LLMs. Instead, training is dominated by Adam (Kingma & Bal
2014) and its variants. While Adam is considerably more difficult to analyze theoretically, it is of-
ten approximated in theory by the simpler signSGD (Bernstein et al., |2018a), which captures its
coordinate-wise adaptivity. This gap between practice and theory motivates a natural question: how
do scaling laws change when we replace SGD with signSGD? Addressing this question can help
align theory with optimizer choices used in practice, and clarify how adaptive updates could reshape
compute-optimal scaling regimes in the PLRF setting.

1.1 OUR CONTRIBUTION

We study the scaling law of signSGD in the power-law random features (PLRF) model, and our
contributions are as follows.

1. We derive a scaling law of signSGD with constant learning rates involving three variables (model
size M, training steps [NV, learning rate 7) and two PLRF model parameters (feature decay «,
target decay (3); see (I2). By comparing with the SGD scaling laws of [Paquette et al| (2024) and
Lin et al.| (2024), we observe two effects of signSGD: a drift-normalization effect and a noise-

reshaping effect, inside the scaling law (see[Section 4.T).

"Here ~ denotes equality up to a multiplicative constant, i.e., f(x) =~ g(z) means c1g(z) < f(x) < cag(z)
for some constants ¢, c2 > 0.
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Figure 1: Left: SGD vs. signSGDj; Right: signSGD with constant vs. stable-decay schedules.
Colored lines represent the training trajectories of each algorithm, and black lines denote the
compute-optimal curves. The upper right legend shows the theoretical value of the compute-optimal
slope. SignSGD achieves a steeper compute-optimal slope than SGD (left panel), and stable-decay
scheduling sharpens the compute-optimal slope relative to a constant schedule (right panel), for
some parameter configurations. See Appendix@ for parameters used in the experiment.

2. Under the fixed compute budget, we balance model size M and training steps IV, and optimize
over learning rate vo. This allows us to characterize the compute-optimal loss decay rate and
optimal model size with respect to the compute budget (see [Table I)). Comparing against the
compute-optimal scaling laws of SGD from [Paquette et al.[(2024) across regimes of the («a, 3)-
parameter plane, we find that signSGD can achieve better exponents in the SGD noise bottleneck

regimes, due to the noise-reshaping effect (see [Figure ).

3. We show that learning rate scheduling can further reduce the stochastic noise of signSGD. We
analyze a stable-decay schedule, a simplified version of the warmup-stable-decay (WSD) sched-
ule (Wen et al.| 2024) widely used in large language model training. By maintaining drift velocity
by the stable interval and reducing stochastic noise by the polynomially decaying interval, this
schedule increases the compute-optimal slope in the PLRF setting for large v and small 3 (see
[Section 4.3|and [Figure I)).

4. We empirically validate our theory; see Figure[I]and Appendix [C|for details.

1.2 RELATED WORK

Here we discuss directly relevant results; additional related work is deferred to Appendix

Empirical Scaling Laws. Modern empirical work shows that performance improves with scale
across data, parameters, and compute, following power laws across many domains (Hestness et al.,
2017). In language modeling, Kaplan et al.|(2020) document power-law loss trends over multiple
orders of magnitude and simple budgeting rules linking model size, data, and compute. Henighan
et al.[(2020) extend these curves to images, video, and multimodal settings. Building on this, [Hoftf-
mann et al.|(2022) argue that many LMs were under-trained on tokens and proposed data-optimal
scaling that substantially improves accuracy at fixed compute. Tissue et al.| (2024) investigate the
empirical scaling law with learning rate annealing.

Scaling Law Theory. Our work starts from the SGD scaling law in the PLRF model in |Paquette
et al. (2024) and|Lin et al.| (2024)). In particular, Paquette et al. (2024} derive a scaling-law formula
for one-pass SGD, where M, N, and vy denote the model size, number of training steps, and learning
rate, respectively, and « and S are the feature- and target-decay parameters.

) _ _20+42p5-1 B _2a-1 _4a-—1

R(M,N,79) =~ M_20max(01720) 4 (Nyo)™ " 20 + M ' (Ny)™ 20 +70(Nyo) ™ 2o
=:A(M) =DSEP (N y0) =DSEP (M, N,70) =:NSGD (N y5)
(1)
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The A(M) corresponds to the approximation error, i.e., the loss as N — oo. [Paquette et al.
(2024) explained that DSEP (V, 7o) represents the aligned feature loss, as it coincides with the loss
for a diagonal sketch matrix S (see for formal description). They also explained that
DESD(M , N, v0) corresponds to the distorted feature loss, arising from projection with a random
matrix S, and it decays more slowly than the aligned feature loss. Finally, N59P (N, ~,) captures

the SGD noise, stemming from the quadratic term in the Taylor expansion of the SGD update.

Several subsequent papers extend this baseline along two axes: (i) optimizer changes and (ii)
model/training-protocol changes. On the optimizer side, Ferbach et al.| (2025) investigate dimension-
adapted Nesterov acceleration in the PLRF model and argued that it gives a better scaling law for
2a > 1 regime. [Kunstner & Bach|(2025) compare the gradient descent and sign descent scaling law
in the linear bigram model. Comparison with their work is in Appendix @ Lin et al.| (2025) cover
the multi-pass SGD scaling law identifies the effect of data reuse for the scaling law. Discussion on
the model side is deferred to Appendix [B]

Scaling Behavior of Linear Models in the Context of Kernel Methods. The power-law settings
for data and targets adopted in our work are deeply rooted in the literature on kernel methods and
their finite-width approximations. In this context, the power-law decays of the covariate spectrum
and target coefficients are analogous to the classical capacity and source conditions, respectively.
These spectral assumptions have been extensively investigated in kernel ridge regression (Capon-
netto & De Vito| 2007} |Cui et al.l 2021) and random-features ridge regression (Rudi & Rosasco,
2017; Bach, [2017; Defilippis et al.| 2024)). Furthermore, similar conditions are fundamental to prior
theoretical works on SGD that are closely related to our setting, including studies on one-pass SGD
(Yao et al., 2007; |Ying & Pontil, 2008; |Carratino et al.| 2018 |Berthier et al., [2020) and multi-pass
SGD (Pillaud-Vivien et al.,2018)). Detailed comparison with these works is in Appendix@

SignSGD Dynamics. Bernstein et al.|(2018a)) give the non-convex convergence rate of signSGD.
Xiao et al.| (2024) derive the SDE and ODE of signSGD risk. The ODE we derive matches theirs
in final form; however, we obtain it in an alternative route that does not require a spectral lower
bound on the covariance matrix that they imposed. Detailed comparison with Xiao et al.[(2024) is in
Appendix [B.2] [Compagnoni et al| (2024) derive SDEs for adaptive methods, including signSGD.

2 PROBLEM SETUP

2.1 NOTATION

We use bold lowercase letters (e.g., w) to denote vectors and bold uppercase letters (e.g., A) to
denote matrices. For vectors u and v, we denote the outer product by u ® v := uw'. And \;(A)
denotes the i-th eigenvalue of the matrix A. For positive-valued functions f(z) and g(x), we use
f(z) < g(z) if there exists C' > 0 such that f(z) < Cg(x) for sufficiently large x, and we use
f(z) = g(z) if there exist ¢, C > 0 such that cg(z) < f(z) < Cg(x) for sufficiently large z.

2.2 MODEL

We consider the power-law random features (PLRF) model, parameterized by & € R . Given a
feature-label pair (,y) € R? x R, the parameter @ plays the role of a linear regression coefficient
vector on the sketched features Sz (for some S € R *4), and the population risk function is

L(8) = Ez [((Sx,0) — y)?].
The data are generated as follows: the feature vector z € R< is drawn from A (0, H) with H =
diag(1722,272> . d*2°‘>EL and the label is y = (z, w*) with w* = [177,278 ... d7A]T; we
call o and f3 feature-decay and target-decay parameters, respectively. The sketch matrix § € R x4

is a random matrix that has i.i.d. entries A/(0,1/M), is drawn once and then held fixed throughout
training; we refer to M (with M < d) as the model size. Under these model assumptions,

L(6) = |H'*(ST6 —w")|*.

2Since the distribution of Gaussian sketch matrix S is identical to the distribution of SU for any or-
thogonal matrix U, our analysis on diagonal H covers the case with general matrix H with eigenvalues
1722, 272> d72* We elaborate more on this in Appendix
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We assume d > rM for some r > 1, and let d/M — (1,00] as d, M — oo when 2« > 1, and
d/M — (1,00) when 2a < 1. The projected optimal parameter is
0" = (SHST) 'SHw". 2)
Define w; = w* — STO* so that w* = STO* + w, and SHw, = 0. The loss decomposes as
L(9) = | H'?ST(0 - 6")|° + | H *w. |,

where the second term represents the approximation error.

SignSGD. We estimate the minimizer of the population risk via empirical risk minimization using
signSGD. At step k, we draw a fresh sample (zy, y) from the model in and form the
stochastic gradient

gk = (<S$k70k> - yk)S.’Ek (3)
The signSGD update rule is

041 = O — i sign(gr) = O, — i sign ((Szy, Ox) — yi) sign(Sxy).
2.3  REPRESENTATION OF THE RESULT

Let R(M, N, o) denote the L(0y) under learning rate o and fixed model size M. We define the
computational budget in terms of FLOPs as f = M N, and consider the optimal model size M*
under fixed f, and optimal scaling of learning rate in the form 5 = M —¢". For SGD, |Paquette et al.
(2024) derive compute-optimal scaling laws of the following form:

M= R(MY ) =i

Our objective is to derive analogous formulas for signSGD, namely R(M,N,~q) and

R(M * %7 07 ), and to compare them with the corresponding results for SGD.

3 ANALYZING THE SIGNSGD

In this section, we formulate the implicit integral equation for signSGD. We define
K =SHS", K =diag(K) '?K, K, = arcsin(diag(K) /2K diag(K)~'/?), (@)

where arcsin is applied entry-wise; we use these matrices and notation throughout the paper. We
decompose the loss via

’I“i(N) = (0]\/ — 9*)T(K'U,l ® wl)(BN — 0*),

where wu;, w; are the right/left eigenvectors of K corresponding to the ith eigenvalue \;(K). This
modal decomposition matches that of Xiao et al.|(2024). For brevity we write L(N) = L(0x).

M

L(N) =) ri(N) + [|[H 2w, |*. (5)

i=1
In Appendix [E.I] we derive the one-step update formula for signSGD on a quadratic objective, using
a second-order Taylor expansion and sign—Gaussian identities. Applying this to r; yields

2
YR ) + 2k wT K, K 6)
L(k) ™

| —
drift

E[Tl(k + 1) — Tz(k) |-7:k] = —
quadratic noise

1. Drift. The first term in (6)) yields a systematic decrease of mode i: it is proportional to the

curvature \;(K) and the learning rate -y, while the factor 1/,/L(k) self-normalizes the
step. Note that the directions corresponding to larger eigenvalues contract faster.

2. Quadratic noise. The second term in (@) is an O(?) variance injection shaped by
curvature and the sign-noise covariance. It is independent of r;(k) and may set a
mode—dependent noise floor, unless v decays.
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Overall, one-step progress reflects a balance between drift and quadratic noise: when r;(k) is large,
the drift decreases r; (k); near the optimum, quadratic noise can dominate and cause ; (k) to plateau.

Converting the one-step update formula to the continuous-time ODE, we obtain

L:_A)\i(K) Ti(t)—kﬂwiTKgKui. 7
dt ™0y L(t) Y0
::Qgrift(t) ::q;.l;oisc(t)

Compared to SGD, the drift is self-normalized by 1/+/L(t) and the quadratic noise term does not
carry the extra L(t) factor present in SGD. So, for the constant learning rate, the quadratic noise does
not decrease over time. The variation-of-constants formula gives the implicit integral representation

N N N _
ri(N) = r;(0) exp{—/ Pdrift () du} + / exp{—/ Pdrift () du} x OB (2) dz. (8)
0 0 z

Summing over modes, we define

M

LN = ZT,_(O) exp{ /N ATt () du} ©)
7 o K3 ’

i=1
A M N N . .
L™ (N) = Z/ exp{—/ CIDg“ﬂ(u) du} x PIOE(2) dz. (10)
i=170 z

Exact formulation of L¥(N) and L™¢(V) can be find in (27) of Appendix Then by (5) our
risk is decomposed as

L(N) = L¥(N) + L"(N) + | H ?w_ ||°. (11)
N—————

approx

4 MAIN RESULTS

4.1 LoSS FORMULA FOR CONSTANT LEARNING RATE

We now analyze to get R(M, N, ), which is L(N) under learning rate -, and model size M.

* For LY(V), we use a deterministic approximation (Appendix [E.2.2) similar to |Paquette et al.
(2024), and obtain the asymptotic self-consistent equation: with T'y; = M™in(@0-5)~,

_2a+428-1 2a—1

B N . 2a N ) T 2a
Ldrltt<N) — (FM/ Ldrlft(u)—1/2 du) + M1 (FM/ Ldr]ft(u>—1/2 du)
0 0

Solving this yields signSGD counterparts of the aligned- and distorted- feature loss terms in (1),
denoted by D}*" (M, N,~o) and D" (M, N,~o); see below for their precise forms.

al

* For L"*¢( V') and approximation term, we calculate the limit loss L, and get
Lo~ max{fyg M2 min(1,20), ||H1/2wﬂ|2}

Lastly we use approximation error result from Paquette et al.| (2024); Lin et al.| (2024),

HH1/2’UU_||2 = M—2a+max(0,1—26).

3We treat L and r; as their continuous extensions, allowing arbitrary positive real inputs.
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Combining two parts yields a proxy, and we prove that it satisfies the implicit integral equation (TT)
in Appendix and Finally, we get the following four-term scaling law formula for one-
pass signSGD on area —a+ 0.5 < f < a + 0.5:E|
2(2a428—1)
R(M, ]\/'7 ,_YO) = M—QOL-‘rmaX(O, 1-2p3) + (Mmin(a,O.E))N,yO) _m

=:A(M)

=D (M,N 7o)

6a—1 2(2a—1) )
+ M 2a+1 (nyo)f 2a+1 +'Y§ M2—m1n(1,2a) )

(12)

=DE (M, N o) =:Ns1en (M, 7o)

Interpretation. The term A(M) is the approximation error (irreducible as N — o0).
The terms D" (M, N,~) and DiZ"(M,N,~o) arise from the drift's exponential damping
r;(0) exp{— fON Prift () du} and correspond to the aligned and distorted feature losses of SGD

scaling law in Paquette et al. (2024). The term N*8" (M, ~y) captures the quadratic noise from the
one-step Taylor expansion, specific to one-pass signSGD.

Comparison. We compare our signSGD scaling law formula with the SGD formula (TJ) of Paque-
tte et al.| (2024). Since the approximation error is optimizer-independent, the term A(M ) remains un-
changed. For the N-exponent in D,; and Dg;s, Wwhen the absolute value of the exponent is x for SGD,
then it changes to 52— in signSGD, which is strictly larger than z. Therefore, D},#" (M, N, 7o) and

D(Siiiin (M, N, o) decrease faster in the number of steps NV under signSGD. By contrast, the signSGD
noise term N*1% (M, v,) does not decay with IV, whereas the SGD noise NS4P (N, 7)) doesﬂ

We discuss the underlying mechanism that modifies the drift terms D,;, Dqjs, and the noise term A

=N
for SGD it is 2;, \; (K ); see (4) for the definition of K and K. The diagonal preconditioning em-
bedded in K contributes an extra factor M™n(21/2) since the scale of the matrix diag(K )’1/ 2,
which is multiplied in K, is M™*(:1/2) The normalization by + / L(k) replaces the effective flow
time N~g with g fON L(u)~"/? du, which accelerates progress in training whenever L(u) < 1.
Thus, in the aligned/distorted drift terms, (N~y) is replaced by M™in(e1/2)~, fON L(u)~ Y2 du.
It leads to the self-consistent equation, which did not occur in SGD, and the solution of the self-

consistent equation is a sum of powers of M™"(*:1/2) N~ The absolute value of the exponent
increases compared to SGD due to the acceleration in the regime L(u) < 1.

* Drift terms (Drift-normalization effect): In signSGD, the drift in ﬁ) is —2:_ )\, (K), whereas

* Noise term (Noise-reshaping effect): The signSGD noise in (EI) is 2%’3 wiT K, Ku;, while for
SGD it is 77 (v,) Kv;) L(k) with v; an eigenvector of K. The normalization removes the mul-
tiplicative L(k) in signSGD, eliminating the Volterra structure present in [Paquette et al.| (2024).
This difference is crucial: the lack of L(k) in the quadratic term ultimately yields a noise term that
does not decay in N. In the final formula, it deletes (N~o)~ S term, which existed in the SGD
noise term, and therefore the noise term of signSGD increases as the learning rate vy, grows for all
(c, B). In contrast, when the learning rate -y, grows, the noise term of SGD decreases for a > 0.5
and increases for o < 0.5. Meanwhile, an additional M -dependence arises from working in the
K- (rather than K -) eigenbasis due to diagonal preconditioning.

4.2 COMPUTE-OPTIMAL RESULT UNDER OPTIMAL CONSTANT LEARNING RATE

In the constant learning-rate schedule, we allow ~q to scale with the model size via vy = M ~°. The
hyperparameter e directly influences the compute-optimal scaling lawﬂ

2(2a428-1)
“For the case 8 > a + 0.5, D3 (M, N, o) takes form of (1 — kM™"(*0-2) Niyg) ™ "2a=25+T | See
Appendix |E;_5] for more details.
3 As we set o as M ¢ later, decay with respect to M depends on the choice of ~o.
0One may wonder why we do not parameterize by N. Setting vo = M ¢ is without loss of generality, since

in the compute-optimal case both M and N are expressed as powers of the total compute §.
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Figure 2: Left: Phase plane for signSGD; Right: Phase plane for SGD. The white region indicates
parameter values with no power-law scaling. The dark blue area represents the region where stable-
decay scheduling (Section yields a better compute-optimal exponent.

Following |Paquette et al.| (2024)), we distinguish the maximal and optimal learning rates for SGD.
The maximal rate is the largest step that yields a stable (non-exploding) recursion; for signSGD,
it leads to a zero compute-optimal slope (see Appendix [FI). We therefore focus on the optimal
learning rate ~;, which maximizes the decay exponent 7 in

R(M™, §/M*, v5) = 7",
where M™* denotes the model size minimizing R(-) at fixed compute budget §.

To characterize the compute-optimal scaling, set vg = M ¢, M = %, and N = §1=% (with
x € [0, 1]), and solve

(e*,z*) € argmin R(M, N, ) = argmin R(F*,§' 7%, §°"). (13)

e,z e,z

Then M* = §*°, N* = §172" and v¢ = (M*)~°", and at the optimum
R(M*, §/M*, 33) = 9,

for some 1(a, ) > 0, which we refer to as the compute-optimal slope.

In problem , each of the four terms in lb scales as f’zi(e’“’), so minimizing R is equivalent
to maximizing min{¢y, £a, {3, £, }. The optimal value (e*, x*) is obtained by balancing three active
exponents. The resulting formulas and dominant and balancing terms are summarized in Table
see Appendix [F2]for details.

We follow |Paquette et al| (2024) in defining phases by dominant terms; to avoid confusion with
their SGD phases, we label our signSGD phases by uppercase letters. Accordingly, any reference to
Phase I-IV hereafter refers exclusively to the SGD phases of |[Paquette et al.| (2024). For signSGD,
the phase plane is simpler: when a > 0.5 and 8 > 0.5 (Phase B) all four terms are dominant; oth-
erwise (Phase A) the dominant terms are A(M), D5\%" (M, N, 7o), and 518" (M, ~o). We declare
subphases whenever the formula of at least one of yo = M ¢, M*, or R(M*,§/M*,~5) changes.
These changes occur across the boundaries o« = 0.5, 8 = 0.5, and § = « + 0.5, yielding six sub-
phases in total (Phase A split into four, Phase B into two). We provide a formula of approximation,
drift, and noise term for each subphase in Table 2| For context, |Paquette et al.| (2024) also partition
the (v, 3)-plane into four phases with six subphases for optimal learning rate.

Remark 1 (Dominant vs. balancing terms). Dominant terms are those that can lead the risk for some
(Y0, M, N). Balancing terms are the ones that tie (hence “balancing”) at the compute-optimal choice
(7%, M*, N*) and therefore determine the slope; they form a subset of the dominant terms.

Comparison of Compute-optimal Results. For the intersection of Phase Aa, Ab, Ac, Ba and
Phase I, I, the compute-optimal slope 7(«, 3) and optimal model size M* are the same for signSGD
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Table 1: Dominant and balancing terms, optimal learning rate, compute-optimal model size, and
risk across different (v, 3) phases. Refer to for the definitions of the terms A, Da;,Dais, N. See
Figures E] to[13[in the Appendix for empirical validation of the theoretical exponents.

Term structure Compute—optimal
Phase  Dominant terms Balancing terms 5 M* R (M *, %, Y5 )
Aa M*(aJrB) f2a1+1 f_%
28+1 1 2a+26—1
Ab M~ 2 f2 -2
Phase A A, D, N A, Da, N 2a428-1 _ a(2a428-1)
Ac M1 f202F—a(28-3)-1) § 2B-a(2B-3)-1
-1 =a -
Ad M f2 o f 2—a
Ba a1 et e
a « [e3
Phase B A, Da1,Dis, N Da1,Dass, N 6a+1 2041 4o
Bb M Zat2 faa+T § Fa+T

and SGD. In contrast, for the area of Phase III, IV excluding the case 0.25 < a < 1/3, 8 >
(1 —a)(1 —22)/(2(1 — 3c)) (See Figure[5)in the Appendix for the visualization of this area), the
compute-optimal slope 7(«, 3) for signSGD is steeper than that for SGD, and the optimal model
size is bigger in signSGD. We refer to this region as the Area III-IV,,. Finally, for the optimal
learning rate yp = M ¢, the exponent e* is always bigger in signSGD, which means signSGD
always has a smaller optimal learning rate.

4.3 EFFECT OF STABLE-DECAY SCHEDULING

. Stable Regi
For a stable-decay schedule, we set the learning it i

rate to v = o f (k) with

_JL k < pN,
fk) = {(1 +7(k—pN))"°, k>pN, (19

where p,c € (0,1) and 7 > 0. In other words,
the learning rate remains constant for the first pN
steps, and then decays polynomially with exponent
¢ for the remaining (1 — p) N steps. Iteration &

Learning-rate factor f(k)

In Phase Aa, the f-scheduled noise bound can im-

Figure 3: Visualization of Stable-decay
prove over constant LR:

Scheduling.
Lnoise(N) < ,YSMN72C + ,y()g%MﬁNf(lfc)(lfﬁ).
Combining this with the drift and approximation terms, and then optimizing over e of vo = M ~¢,

the decay parameter ¢, and the model size M, yields the f-scheduled risk bound

. _ _2(4a=1)(2a+424-1)
Rf(M*,f/M*,(M*)ie) < ¥ 16024+8af+2a—26—1 (15)

The absolute value of the exponent in (I3) exceeds the compute-optimal slope under constant learn-

ing rate when o > 0.5and 0.5 —a < 8 < %. Thus, stable-decay scheduling yields a strictly

larger compute-optimal slope in the upper left region of Phase Aa (marked with dark blue in Fig-
ure[2). We will refer to this region as Area Aa* throughout the paper.

Scheduling does not improve the SGD compute-optimal exponent in Phases I-II (see Appendix|G.5).
Thus, with E]scheduling.;, signSGD achieves a larger compute-optimal exponent compared to SGD in
Area Aa*.

"Whether scheduling benefits other regions of signSGD or other phases of SGD remains open, since for
both methods the scheduled noise upper and lower bounds do not match tightly, even up to constant factors.
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5 DISCUSSION: WHERE AND WHY SIGNSGD PROVIDES BENEFITS?

With a constant learning rate vo = M ¢, signSGD yields improvements over SGD in Area III-1V .
Under stable-decay scheduling, we find signSGD also provides benefits in Area Aa*.

Mechanisms. These gains can be explained by noise-reshaping, together with drift-normalization.
In [Paquette et al. (2024), Phases III-IV are the SGD noise-bottleneck regimes. By contrast,
noise-reshaping in signSGD can alleviate this bottleneck with a suitable learning-rate choice, yield-
ing improved compute-optimal slopes.

Role of Learning-rate Scaling. The signSGD noise term with constant LR is A58 (M, ) =
7¢ M2—min(1,20) " whereas for SGD it is NSCP(N,70) = 7o(Nyp) e D/C) If oy < 1,
N8 (M ~4) is much larger than NSSP (N, ~4), making the compute-optimal slope asymptotically
zero. Hence, we set 9 = M ~¢ and optimize e to balance terms and obtain a steep compute-optimal
curve: decreasing o lowers N*8" (M, ~o) while increasing the drift terms D*8" (M, N,~o) and

- al
D" (M, N, o), and the optimal e strikes the balance.

Why Gains Arise in Area III-IVg,,. For SGD, the shape of N59P (N, ~,) makes it dominate

DSCEP (N, ~p) at the compute-optimal point in Phases III-IV. It is because the absolute value of ex-
_ 20428-1

ponent in NSGP (N, ~0) = 49 (N’yo)’% is smaller than that of DSEP (N, ) = (Nvo) ™~ 2

in Area III-IVg,. For signSGD, noise-reshaping alters N8 (M, ~q) so it can balance against
D" (M, N, 7). Note that the noise term takes a completely different form: A58%(M, ;) =
72 M2—min(1,20) therefore dominance against the aligned drift term disappears. On the other hand,

drift-normalization steepens the decay of Dzilgn(M , N, 7o) by increasing the absolute value of the
exponent with respect to N. This creates room for a balance in which both terms are smaller than the

SGD noise NSSP (N, ~) at optimum, explaining the improvements in Area HI-IV g5 For example,
in the intersection between Phase Ba and Phase 111, balancing A/8" (M, o) and D" (M, N, 7o)

al
_ 20+42B8-1
leads to f~ 2o+28

, whereas N'SCD (N, o) takes bigger value f~ % .

Why Stable-decay Scheduling Helps. For a learning-rate schedule v, = o f (k) with general f,
the drift-only self-consistent solution in Phase Aa takes the form

_ 2(2042B8-1)

N
(Ml/nyOF(N)) JECRELE T where F(N) 5:/0 f(u) du.

This can be viewed as D;ilg“ (M, N,~o) with N replaced by F'(IV). This aligns with empirical obser-
vations that a loss term can decay polynomially with the area under the learning-rate curve (Tissue
et al., 2024)).

In contrast, the noise term depends most heavily on the learning rate near the end of training, since
earlier noise can be damped by later drift; see . Stable-decay preserves the total area F'(N') asymp-
totically while shrinking the late-stage learning rate, thereby reducing noise without sacrificing drift.
As a result, stable-decay scheduling yields a larger compute-optimal slope in Area Aa* (upper-left
Phase Aa; see Section [5.1] for intuition). More broadly, we conjecture that appropriate scheduling
can further reduce the signSGD noise term, enabling improvements beyond Area III-IV .

5.1 HYPOTHESIS FOR THE POSITION OF THE BENEFICIAL AREA

Here, we hypothesize why the areas with improved scaling law lie near the left edge (small 3) and
the right side (8 > «) of the phase plane.

Heuristic Criterion. Let “target decay” denote the decay of the projected optimum 6* in (2), and
“stochastic-gradient decay” the decay of the stochastic gradient in (3). SignSGD is advantageous
when the target decays more slowly than the stochastic gradient. Under SGD, coordinates with
smaller gradients take smaller updates; if the target does not decay much, those coordinates still
require learning targets of comparable magnitude, so more iterations are needed—an inefficiency
that signSGD mitigates by normalizing per-coordinate updates via the sign operation.
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When Does This Occur? Observations and Conjecture Writing S H ST = UAUT, the ex-
pected stochastic-gradient along the U basis decays as i 2. See Appendixfor details of analysis.

Next, we examine how the target decays in the basis of the columns of U. For that, we have to
consider UT@*. Since E[STS] = I, we decompose

STS=I+E, E.=8"Ss-1,

so that E represents the zero-mean fluctuation around the identity. Then we have

U'e*=U"(SHS") 'SHw"
=U"(SHS")'SH(S"S — E)w*
=U'Sw* - U"(SHS") 'SHEw".

Since SHST = UAU " and the columns of U and S are well aligned, we expect that U " Sw*
would exhibit a decay pattern similar to w*. The second term U (SHST)~'SH Ew* could be
thought of as a stochastic error which hinders the decay. For small 3, as the decay of w* is slow,
the decay of U T Sw* is expected to be slow, and therefore the overall decay of U ' 6* will be slow
as well. If we increase the (3, the decay of UT Sw* will become faster, which also drives a faster
decay of U T6*. However, when /3 becomes too big, as the first term UT Sw* decays rapidly, the
second term U T (SH ST)~'S H Ew* dominates quickly, and therefore U T@* will plateau quickly
after some steep decay.

Figure ] empirically validates our intuition for the
decay of UT@*. For (o, 3) = (0.7,1.1), U 6*
plateaus quickly; for (0.7,0.6) it decays longer;
and for (0.7,0.1), since w* hardly decays, the tar-
get also shows little decay.

These observations suggest that in the left region
(small /) and the right region (8 > «), the tar-
gets decay more slowly than the stochastic gradi-
ent, whereas in the middle band (0.5 < § < «)
they do not. This could potentially explain why the
signSGD-beneficial area appears near the left edge
and the right side of the phase plane.

5.2 CONJECTURE FOR ADAM

We conjecture that Adam with (85 parameter suffi-
ciently close to 1 follows the same scaling law with
signSGD, based on the heuristic analysis in Ap-
pendix J} In detail, we expect Adam to follow the

— (0.7,0.1,-0.06) —— (0.7, 1.1, -0.11)
—— (0.7.0.6,-0.23)

100 <

._
<
1

Absolute Value of Components
S
|

102
Index i

Figure 4: Decay of 0 in the basis of
columns of U compared to w*. The legend
on the top shows (a, 3, fitted slope of U T*).

same asymptotic loss formula (I2) with signSGD,

and therefore to follow the same compute-optimal scaling law with respect to flops f in the Table[T]
We also did an experiment on Adam and checked that the exponents in the Table [T] and measured
the compute-optimal loss exponent and optimal model size exponent for Adam match well. (See

Figure[24)

6 CONCLUSION

We derived the scaling law of signSGD under the PLRF model and identified two distinctive
effects—drift-normalization and noise-reshaping—relative to SGD. Analyzing compute-optimal
tradeoffs, we showed that signSGD achieves steeper slopes than SGD in the noise-bottleneck
regimes, and that a stable-decay schedule further improves performance in the Area Aa*. Deriving
Adam’s scaling law without heuristic assumptions is a compelling direction. We defer limitations
and additional future works to Appendix [A]

10
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SUPPLEMENTARY MATERIALS FOR
“SCALING LAWS OF SIGNSGD IN LINEAR REGRESSION:
WHEN DOES IT OUTPERFORM SGD?”

USAGE OF LLM

We primarily used LLMs to polish the English writing throughout the paper. They were also em-
ployed to help us identify additional related work beyond those we were already familiar with. When
preparing well-formatted tables, we relied on LLMs for assistance. We also used LLMs to refine La-
TeX code so that complicated formulas appeared clean and readable in the manuscript. Finally, we
sought LLM support for debugging code used in our experiments.

OVERVIEW OF APPENDIX

(1) In Appendix [A]we discuss limitations and future works.

(2) In Appendix [B] we discuss more related works beyond those discussed in Section[I.2] and pro-
vide a detailed comparison with closely related works.

(3) In Appendix [C] we present experimental results which support our theory.

(4) In Appendix [D} we explain that our analysis also covers the general covariate H due to the
equivalence to the diagonal covariate case.

(5) In Appendix we derive the scaling law formula of R(M, N,~p) under constant learning
rate. We first derive a one-step update formula and convert it to an ODE to get an integral
equation. We use a deterministic approximation for the integral equation with experimental
results. Then we set a proxy of the loss function and verify that it satisfies the integral equation.

(6) In Appendix [F]we discuss the maximal learning rate deferred from the main text, and derive the
optimal learning rate, compute-optimal loss, and optimal model size in Table[I]

(7) In Appendix [G]we derive the result for stable-decay learning rate in Section

(8) In Appendix [H] we provide an analysis for the linear decaying scheduling and the cosine
scheduling.

(9) In Appendix [[] we provide analysis for stochastic gradient decay deferred from Section[5.1]

(10) In Appendix J] we derive scaling law of Adam under heuristic proposed by [Xiao et al.| (2024),
and verify our results with experiment.

(11) In Appendix [K] we provide omitted analysis from Appendix [E]

(12) In Appendix[[] we provide an analysis for the case with noisy labels.

A LIMITATION AND FUTURE WORK

Limitation. Our analysis assumes batch size 1 and focuses on the PLRF setting with diagonal
covariance H; extensions to mini-batch and more general covariances are not covered here. For
scheduling, we analyze a stable-decay template; exact asymptotics for broader schedules remain
open. We also use a deterministic approximation whose accuracy we verify empirically; tightening
constants and extending the formal guarantees are left for future work.

Future Work. Combining signSGD with dimension-adapted acceleration (Ferbach et al.| [2025)
and extending the framework to more complex architectures (e.g., two-layer linear networks or
self-attention) are promising avenues.

14
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B ADDITIONAL RELATED WORK

More Related Works on Empirical Scaling Laws. [Porian et al.| (2024) resolve discrepancy be-
tween |[Kaplan et al.| (2020) and Hoffmann et al.| (2022)). [Kumar et al.| (2024) investigate precision-
aware scaling law.

More Related Works on Scaling Law Theory. There are lines of work analyzing more complex
models compared to the power-law random features (PLRF) model. Bordelon et al.| (2025) investi-
gate the scaling law of a two-layer linear neural network with projected gradient descent, and argued
the benefit compared to the PLRF model, which is one-layer. Ding et al|(2025) cover the scaling
law of quadratically parameterized linear regression with SGD. [Lyu et al.| (2025) cover the scaling
law of linear self-attention under gradient flow.

Sharma & Kaplan| (2020) show that test loss scales as a power-law of model size in regression prob-
lems. Hutter| (202 1)) investigates binary classification using a tabulation learning algorithm, deriving
a power-law scaling with respect to dataset size. Bahri et al.|(2024) analyze a linear random features
model with SGD, showing a power-law decay in test loss with respect to sample size (or model size,
when the other is infinite). Bordelon et al.| (2024) derive a power law over model size, dataset size,
and time for the linear random features model under gradient flow dynamics.

More Related Works about signSGD and sign descent. [Balles et al.|(2020) investigate the ge-
ometry of sign gradient descent. Kunstner et al.| (2023)) discover that sign descent could be the key
factor making the gap between SGD and Adam on Transformers. Bernstein et al.| (2018b)) propose
signSGD with majority vote, which is communication efficient and fault-tolerant. Karimireddy et al.
(2019) prove that error-feedback can make the rate of convergence of signSGD better.

B.1 COMPARISON WITH KUNSTNER & BACH|(2025)

First, their work compares the scaling laws of sign descent and gradient descent, whereas our work
compares the scaling laws of signSGD and SGD. Second, they analyze for a Linear Bigram Model,
while we analyze for the power-law random features (PLRF) model. The advantage of the PLRF
model is that it models two parameters each for feature vector decay and target decay, while the
Linear Bigram Model has one parameter for data frequency decay. Lastly, they derived a scaling law
where the model size goes to infinity; in contrast, our scaling law covers both finite model size and
infinite limit by representing the loss as a function of model size, number of steps, and learning rate.
This made us possible to analyze the compute-optimal scaling law.

B.2 COMPARISON WITH | XIAO ET AL.| (2024

ODE for signSGD in Xiao et al.| (2024) is equivalent to the ODE that occurred during our analysis.
The reason that we were not able to directly use their ODE is that they derived it under the spectrum
lower bound assumption for the covariance matrix. In our case spectrum of the covariance matrix
SHST is asymptotically the same as i~2%, so their assumption does not hold for our setup. So
we re-derived the ODE without the spectrum lower bound assumption. Due to the spectrum lower
bound assumption, they led to an exponential decay to limit risk, which is completely different
from the polynomial neural scaling law derived from our paper. They discussed the noise-reshaping
effect on the level of SDE. In contrast, we observed noise reshaping on the level of scaling law and
investigated its effect on compute-optimal scaling.

B.3 COMPARISON WITH THE WORKS IN THE CONTEXT OF KERNEL METHODS

Yao et al.| (2007) study deterministic Gradient Descent and SGD under the reproducing kernel
Hilbert space (RKHS) model. Their setup captures the infinite-dimensional case, while our paper
handles model size M as a tunable parameter to achieve optimal risk. They analyze the Early Stop-
ping and that concept is closely related to the number of optimal steps N = §/M* under fixed
compute in our paper. Both imply that stopping the algorithm before the convergence can be help-
ful. The strength of our paper compared to theirs is that we provide an asymptotic loss function with
model size and number of steps (which is the same as sample count in one-pass setting), while they

15



Under review as a conference paper at ICLR 2026

provide an upper bound of loss by a polynomial of the sample count. They use the source parameter
r and relation r = (2« + 28 — 1)/(4c) was indicated in|[Paquette et al|(2024). The authors derive
m~(@+8=0.5)/(6a+25-1) rate under condition o + 3 > 0.5, where m is sample count. Our signSGD
rate with respect to IV for noisy labels in Section|[]is better than their rate. Their strength compared
to our paper is that they also cover the classification setting, not only the regression setting. We left
the classification setting as future work.

Ying & Pontil| (2008) study online gradient descent without regularization under the reproducing
kernel Hilbert space (RKHS) model. They represent the expected loss as a function of the number of
online steps 7'. They derive loss formula 7'~ (2a+26=1)/(4a+28-1) I 7' Similar to ,
our signSGD rate with respect to N for noisy labels in Section [[] is better than their rate. Their
source parameter (3 is related to the target decay parameter 3 in our paper. Note that they use the
same Greek letter but have different meanings. They focus on the number of online steps 7', while we
handle two variables: model size M and number of steps /N. Their paper investigates the universal
polynomially decaying step size and constant step size depending on the number of online steps 7.
The first one is similar to the polynomially decay part of our stable-decay scheduling. One major
difference is that we tune the learning rate based on model size M.

Carratino et al.| (2018)) study both multiple and single pass SGD under a random feature model with
a connection to the RHKS setting. In their random feature model, non-linearity is included by the
continuous map v, we left the analysis of signSGD under the nonlinear model for future work. They
provide a bound of risk with high probability, while we focus on the average asymptotic behavior
of signSGD. They handle both model size M and number of iterations ¢, and it is the same as our
setting. Their strength compared to our paper is that they cover minibatching, while we focus on
batch size 1. For the signSGD batch size bigger than 1 makes the problem significantly complicated
to solve compared to the case of SGD, so we left minibatching for future work. Their rate with
sample count 7 is n~(22+28=1/(2(a+8))  Our signSGD rate with respect to N for noisy labels in
Section [[Jis better than their rate for the case 8 > 0, and theirs is better for the case 5 < 0.

Berthier et al.[(2020) has a closer setting to our paper. They study linear regression with SGD and
assume a noiseless label. Their upper bound of loss is .~ ™in((2a+26-1)/(20),1-1/(20)) \where n is
number of samples. Later work [Paquette et al.| (2024) has the same exponents for drift terms, as
they also use SGD and assume a noiseless label. The difference between exponents in Berthier et al.|
and the exponents of the drift term in our work stems from the drift-normalization effect of
signSGD. Also note that our work is different in several other aspects: (i) we consider a model size
parameter M (ii) we cover the regime 2o < 1; (iii) we derive the asymptotic loss formula rather
than an upper bound; (iv) we consider the compute-optimal aspect.

[Pillaud-Vivien et al (2018) investigate multi-pass SGD in least-squares regression with bounded
label noise. They got a rate n~(2¢+28=1)/(2a+26) where n is the number of samples, and it is better
than single-pass SGD in the regime 5 < 0. Compared to the signSGD rate with respect to N for
noisy labels in Section [[] our signSGD rate is better when 5 > 0 and worse for regime 3 < 0
than the single-pass SGD. Investigating multi-pass signSGD for 8 < 0 will be an interesting future
direction.

Much earlier work [Caponnetto & De Vito| (2007) study kernel ridge regression in the RHKS model.

Their rate is [~ 22+27  where [ is number of samples. Their rate is better than our signSGD rate

with respect to IV for noisy labels in Section L[] for the case 5 < 0, and worse for the case 3 > 0.

Later work [Cui et al| (2021)) also investigate kernel ridge regression in the RHKS model. Dif-
ferent from |Caponnetto & De Vito| (2007), they also consider a noiseless target and get a rate
of n~(2a+26=1) for that case, where n is the number of samples. Our noiseless drift exponent

—% is better when o > 8 + 0.5, and worse otherwise.

Rudi & Rosasco| (2017)) consider random-features ridge regression under the RHKS model. They
give a rate of n~ (2¢+28)/(2¢+26+1) where n is the number of samples. Compared to our signSGD
rate with respect to N for noisy labels in Section@, ours is better when 8 > 0, « > 1/(48) — 8
holds, and worse otherwise.

(2017) also considers random-features ridge regression under the RHKS model, and gives a
different upper bound rate n~* where n is the number of samples. Compared to our signSGD rate
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with respect to N for noisy labels in SectionD ours is better when 3 > a? — a + 0.5, and worse
otherwise.

Defilippis et al.| (2024) derive a deterministic equivalent for random-features ridge regression under
the RHKS model. Their rate is n~(2#=1)/(28) for 3 < 0.5+ 2a and n~ 4/ (441 for B > 0.5+ 20
Compared to our signSGD rate with respect to N for noisy labels in Section|[[] ours is better when
a>-2824+3,8<05+2co0r > (2a+1)/(8a+2), B > 0.5+ 2a holds, and worse otherwise.

B.4 TABLE OF ASYMPTOTIC FORMS OF APPROXIMATION, DRIFT, AND NOISE TERM FOR
SIGNSGD AND SGD

We added Table[2]and Table[3] which show asymptotic forms of approximation, drift, and noise term
for signSGD and SGD, for comparison.

Table 2: Asymptotic forms of approximation, drift, and noise term for signSGD in different («, 3)
phases. In this table, we provide a formula of approximation, drift, and noise term for 6 subphases.

Phase  Approx Drift Noise
_ 2(20428-1)
Phase Aa M~ (2e+28-1) (M2 N~q) " 20-25+1 WM
_ 2(2a426-1)
Phase Ab M~ (24261 (Ao N~g)~ 20-25+1 M2
_ 2(2a+26-1)
Phase Ac M2 (M®N~p)~ 2a=25+1 M2 2
2(2a428-1)
Phase Ad M2« (max(l — M*N~p,0)) —20+28-1 YEMZ 2
_ 2(2042B-1) _ 6a—1 _2(2a-1)
Phase Ba M2 (MY2N~g)™ 20=28+1 4 M 2aF1 (Nryg) 20+l WM
2(2a+2B—1) _6a—1 _2(2a-1)
Phase Bb M2 (max(1 — M'Y/2N~g,0)) —2a+28-1 4 M~ 2041 (Nrg)~ 201 AZM

Table 3: Asymptotic forms of approximation, drift, and noise term for SGD in different («, )
phases. In this table, we provide a formula of approximation, drift, and noise term for 6 subphases.

Phase Approx Drift Noise
2041261 4a—1
Phase Ia M~ (2oF26-1 (N~;)~ " 2a Yo(Nvo) ™ 2
204+268-1 da—1
Phase Ib M~ (2026~ (Nyg)~ " 2a Yo(Nyo) ™ 20
 20428-1 _da-—1
Phase Ic M 2@ (N7o) 20 Yo(Nvo) ™ 2
2a4+28—1 2a—1 da—1
Phase T M2« (Nv)~ 2o + M~Y(Nvp)~ 20 ~9(Ny) 20
2a+28—1 200—1 4da—1
Phase Il M 22 (Nv)~ 20+ M YNy)~ 2a  79(Nyp)™ 20
20428-1 da-1
Phase IV M2 (Nyo)™ 20 Yo(Nyo) ™ 20

B.5 ADDITIONAL PHASE PLANE PLOTS TO COMPARE WITH PRIOR WORK

Figure [5indicates the area where signSGD has a steeper compute-optimal slope compared to SGD,
by coloring it with Mint green. It lies in Phase Ac, Ad, Ba, Bb, and covers all areas of Phase Bb. In
terms of the SGD Phase, it covers all areas of Phase III and most of the areas of Phase IV.

Figure[f|indicates the area where signSGD has a steeper compute-optimal slope compared to DANA-
decaying in |[Ferbach et al.| (2025), by coloring it with Lime green. It lies in Phase Ac, Ad, Ba, Bb.
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Figure 5: Phase planes to compare signSGD and SGD. Mint green area covering all of Phase Bb
and III, and some part of Phase Ac, Ad, Ba, IV is the area where signSGD has a steeper compute-
optimal slope compared to SGD. The left side is the signSGD phase plane, and the right side is the
SGD phase plane. We placed the Mint green area for both of them for clarity. We will call this Mint
green area as Area III-IV .
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Figure 6: Phase plane to compare signSGD and DANA-decaying in Ferbach et al. (2025). Lime
green area covering some part of Phase Ac, Ad, Ba, Bb is the area where signSGD has a steeper
compute-optimal slope compared to DANA-decaying in [Ferbach et al.| (2025).

It is smaller than the Mint green area, and this is natural, since DANA-decaying in |[Ferbach et al.
(2025) has a steeper slope compared to SGD.

C EXPERIMENTS

C.1 EXPLAINATION FOR FIGURE[T]

Parameters. Left parameters: («, 8) = (0.4,0.8), 7o = 0.006, e* = 1.0 for signSGD, e* = 0.4571
for SGD, 20 runs. Right parameters: (o, 8) = (1.0,0), vo = 0.002, e* = 1.0 for constant, e* =
0.833 for stable-decay, ¢ = 0.091, p = 0.1, 7 = 1 for stable-decay, 10 runs.

Takeaways. In Figure|l} the left panel demonstrates the steeper compute-optimal slope of signSGD
for (a, 8) = (0.4,0.8) in the area of Phase Ac. The right panel shows the increase in compute-
optimal slope achieved by stable-decay scheduling for («, 3) = (1.0, 0). The theoretical and exper-
imental compute-optimal slopes agree within errors of 0.04 (left) and 0.01 (right), which are well
within the error margins reported in prior works.

Additionally Figure [7, demonstrates the steeper compute-optimal slope of signSGD for («, ) =
(0.4, 1.0) in the Phase Ad and («, 5) = (0.7,1.1) in Phase Ba.
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Figure 7: comparison of SGD and signSGD on Compute-Optimal Scaling. Colored lines rep-
resent the training trajectories of each algorithm, while black lines denote the compute-optimal
curves. In both panels, the theoretical compute-optimal predictions closely follow the observed scal-
ing. Both plot shows that signSGD has a steeper compute-optimal slope than SGD. Left parameters:
(o, B) = (0.4,1.0), 7o = 0.01, e* = 1.0 for signSGD, e* = 0.533 for SGD, 5 runs. Right parame-
ters: (o, 8) = (0.7,1.1), 70 = 0.01, ¢* = 1.09 for signSGD, e¢* = 0 for SGD, 20 runs.
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Figure 8: D] " (M, N,~o) term exponent. Blue curves: true signSGD trajectories. Black dot-
ted curves: linear fits over the early-iteration interval in log-log scale. Left: parameters («, 5) =
(0.75,0), v = 0.0012, f(z) = 1, M = 200, d = 400. The theoretical exponent is
—2(20 + 26 — 1)/(2cc — 28 + 1) = —0.4, which matches the experiment. Right: parameters
(o, B) = (1.0,0.2), 70 = 0.0006, f(z) = 1, M = 400, d = 1600. The theoretical exponent is
—22a+28-1)/(2a — 26 + 1) = —1.077, again consistent with the experiment.

C.2 EXPERIMENT FOR ALIGNED DRIFT

In Figure|8} we examine the exponent of the D&" (M, N, yo) term,
2(2a428-1)
(Mmin(oz,O.S) " N) T 2a—-2B+1 ,

of signSGD. For the Phase Aa, the D3#" (M, N, ) term dominates in the early iterations over a

sufficient interval, allowing us to evaluate the exponent by line fitting on a log-log plot. The experi-
mental results align well with the theoretical formula — 2(22(;)?722/?;11)

C.3 VALIDATION OF THE TABLE[I

In Figure |§| to [13| validates the exponent in Table [I| for various («, 8). On the left plots, we draw
multiple curves with different model size M while setting the learning rate as vo = M ¢ . Then
the lower envelope becomes the compute-optimal curve, and by measuring the slope in a log-log
plot, we can validate the compute-optimal loss exponent in the Table[T] On the right plots, we draw
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the optimal model size at each flops. Here, the optimal model size is the model size of the curve
that meets the lower envelope at that flop. By measuring the slope in a log-log plot, we can validate
the optimal model size exponent in the Table [T} Note that we use a similar experimental setting to
Paquette et al.| (2024). In most cases, the error between the measured exponent and the theoretical
exponent was less than 0.04, and the error was less than 0.06 even for the worst case. This error lies
within the error margins reported in prior works (Paquette et al.,|2024; |[Ferbach et al.l 2025).
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Figure 9: Measure of compute-optimal loss slope and optimal model size slope. We validate the

exponent of R (M *

g
Y M*

75 ) and M™* with respect to f in the Table |1} The left plot shows the

compute-optimal loss with respect to flops 61/ N. The right plot shows the optimal model size with
respect to flops 6 M N. Each plot includes the measured slope and the theoretical slope from the
Table|[T] 21
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Figure 11: Measure of compute-optimal loss slope and optimal model size slope. We validate

the exponent of R (M * %, 75) and M™* with respect to f in the Table The left plot shows the

compute-optimal loss with respect to flops 6/ N. The right plot shows the optimal model size with
respect to flops 6M N. 23
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Figure 12: Measure of compute-optimal loss slope and optimal model size slope. We validate
the exponent of R (M o ML*, 76) and M™* with respect to f in the Table The left plot shows the

compute-optimal loss with respect to flops 6 M N. The right plot shows the optimal model size with
respect to flops 6/ N. Each plot includes the measured slope and the theoretical slope from the
Table[T}
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Figure 13: Measure of compute-optimal loss slope and optimal model size slope. We validate

the exponent of R (M *, %, ’yg) and M™* with respect to f in the Table The left plot shows the

compute-optimal loss with respect to flops 6 M N. The right plot shows the optimal model size with
respect to flops 6 N. Each plot includes the measured slope and the theoretical slope from the
Table[T}
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C.4 EXPERIMENT FOR MINIBATCHING

In this subsection, we provide an experiment with batch sizes 10 and 128. Figures[T4] and [T3] show
the measured compute-optimal loss slope and optimal model size slope for batch sizes 10 and 128,
respectively. The theory slope in the figure is the theory value for batch size 1. We can see that the
difference between the measured value for batch sizes 10 and 128 and the theoretical value for batch
size 1 is less than or equal to 0.042. Therefore, we conjecture that mini-batching with a constant-
order batch size has the same compute-optimal exponents as the batch size 1 case; this is plausible
because constant factors in the loss formula are ignored in the exponent analysis. Mathematically
analyzing mini-batch signSGD is an important direction for research, which we leave for future
work.
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Figure 14: Measure of compute-optimal loss slope and optimal model size slope for batch size
10. We calculate the exponent of R (M *, %, 5 ) and M™* with respect to f. The left plot shows

the compute-optimal loss with respect to flops 6/ N. The right plot shows the optimal model size
with respect to flops 6/ N. Each plot includes the measured slope and the theoretical slope for the

batch size 1 case.
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Figure 15: Measure of compute-optimal loss slope and optimal model size slope for batch size

128. We calculate the exponent of R (M *

» M

Y5 ) and M™ with respect to f. The left plot shows

the compute-optimal loss with respect to flops 6/ N. The right plot shows the optimal model size
with respect to flops 6 M N. Each plot includes the measured slope and the theoretical slope for the
batch size 1 case.
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C.5 EXPERIMENT OF ADAMW AND SGD WITH TRANSFORMER

C.5.1 COMPUTE-OPTIMAL EXPONENT

We calculated the loss decaying exponent with respect to the compute for AdamW (Loshchilov|
and SGD optimizer on the Transformer architecture (Vaswani et al., [2017).
We conducted an experiment based on the GitHub code of [Shehper| (2025). In our exper-
iment, we evaluated five different model sizes: (number of layers, embedding dimension) =
(4,64),(8,64),(8,96), (8,128), (8,160). We used a constant learning rate and gradient clipping
with 1.0 for both AdamW and SGD. We set 8; = 0.9, 82 = 0.95 for AdamW. We trained for 10°
steps for each run. We set both batch size and gradient accumulation steps as 1. We set dropout as
0.1, and set weight decay as 0.1. We used 1024 tokens per iteration. Amount of compute is calculated
by 6 x (number of model parameters) x (iterations) x (tokens per iteration). The validation loss is
a cross-entropy loss with 200 sets of 1024 tokens. We used the OpenWebText dataset

2024) for training.

Figure[T6|shows that the exponent of AdamW is -0.021 and the exponent of SGD is -0.005. It means
AdamW has better compute-optimal scaling compared to SGD in this experiment. Our experiment
implies that a practical optimizer, AdamW, on a practical deep network, Transformer, can have a bet-
ter compute-optimal exponent compared to SGD. Although our analysis is about signSGD—studied
as an approximate surrogate of Adam and its variants—and a simple linear model, our experiment
implies that an advantage in the compute-optimal scaling aspect may also occur in a practical opti-
mizer, AdamW, with a deep neural network Transformer.

C.5.2 DRIFT-NORMALIZATION EFFECT AND NOISE-RESHAPING EFFECT

To observe the drift-normalization effect, we experimented with a batch size of 16 and gradient ac-
cumulation steps of 32 to decrease the noise term. As the loss curve is the sum of the drift term, noise
term, and approximation term, decreasing the noise term allows us to observe the drift-normalization
effect more clearly. We experimented for (number of layers, embedding dimension) = (8, 96) for
each AdamW and SGD. Other experimental settings are the same as the section[C.3.1} In Figure [T7]
we measure the slope of the loss curve in a log-log plot for the linear decaying interval, where the
drift term is dominant. We can observe that the slope for AdamW is larger than SGD, and this is
consistent with the drift-normalization effect in PLRF, which increased the exponent of the drift
term in signSGD compared to SGD.

To observe the noise-reshaping effect, we focus on the plateau regime of the batch size 1 experiment.
To see how the loss value of the plateau regime is influenced by the size of the learning rate, we
experiment with two learning rate values: 0.00266 and 0.00133 for both AdamW and SGD. We
experimented for (number of layers, embedding dimension) = (8,96) for each AdamW and SGD.
Other experimental settings are the same as the section [C.53.1] including batch size 1 and gradient
accumulation steps 1. In Figure [T8] we can see that the loss value at the plateau regime, which is
dominated by the noise term, increases for AdamW when we take a bigger learning rate, but does
not increase for SGD. This is consistent with the noise-reshaping effect in PLRF, which made the
size of the noise term in signSGD increase as we take a larger learning rate, in contrast to SGD.

C.6 OTHER SYNTHETIC TASK EXPERIMENT

We experimented with feature learning based on the setting of Bordelon et al.| (2025). In the feature
learning, the sketch matrix S becomes learnable, in contrast to the fixed Gaussian sketch setting of
the PLRF model. We let S = B(t)Sy, where B(t) is N x N squre matrix and B(0) = I. And
during the training, we update the square matrix B(t) at each time step with the optimizer. Other
settings, except for this learnable sketch matrix, are the same as the settings for PLRF.

Figure [T9] shows our evaluation of the compute-optimal slope for Adam, signGD, and GD in the
feature learning setting. We experimented with a full batch due to the training instability of small
batch cases. We experimented for the parameter (o, ) = (1.0,1.25) which is included in the
Area III-IVgyy. In this feature learning experiment, Adam and signGD had similar slopes, and those
two had a steeper slope compared to GD. The result is consistent with the phenomena in PLRF
that signSGD has a steeper compute-optimal slope compared to SGD in the Area III-IV,, and also
consistent with the conjecture in PLRF that Adam has the same compute-optimal slope as signSGD.
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Figure 16: Measure of compute-optimal loss slope for AdamW and SGD on Transformer ar-
chitecture. Left: AdamW, Right: SGD The x-axis shows the amount of compute calculated by
6 x (number of model parameters) x (iterations) x (tokens per iteration). The y-axis shows the val-
idation loss, which is a cross-entropy loss with 200 sets of 1024 tokens.
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Figure 17: Measure of drift term slope for AdamW and SGD on Transformer architecture.
Left: AdamW, Right: SGD The x-axis shows the iterations. The y-axis shows the validation loss,
which is a cross-entropy loss with 200 sets of 1024 tokens.
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Figure 18: Plateau loss value for two different learning rate. Left: AdamW, Right: SGD The
blue curve is the trajectory with a learning rate of 0.00133, and the yellow curve is the trajectory
with a learning rate of 0.00266. The x-axis shows the iterations. The y-axis shows the validation
loss, which is a cross-entropy loss with 200 sets of 1024 tokens.
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D EQUIVALENCE TO GENERAL COVARIATE H
In this section, we will prove that general covariate H with eigenvalues 172,272 .. d~2% can
be reduced to diagonal covariate diag (172,272 ... d~2%).

Note that for the general covariate case, we assume (v;, w*) = i~? where v; is a eigenvector of H
corresponding to eigenvalue :~“ fori =1,...,d.

Let D = diag(172%,272% ... d=2%). Then H = UDU " holds for some orthogonal matrix U by
the eigenvalue decomposition. And i-th column of U can be thought v,. Then the following holds
forwg = [17°,278,... d=P|T.

d
* —f _ *
w" = i 7 v = Uwy.
i=1

The signSGD update rule is

041 = O — i sign ((Szy, O) — y) sign(Swi).

With label assumption yi, = (xx, w*), the signSGD update rule converts to

0111 = O — Y, sign ((ka7 0;) — (wk7w*>) sign(Sxy,).

We let ), = U x;. And by substituting z, = Uz, and w* = Uwy, we get

01 = 01, — v sign ((SUx), 0;) — (Uxy, Uwg)) sign(SUxy,).

As U is orthogonal, it leads to
Or+1 = 01, — v sign ((SUm), 0;) — (x},, wy)) sign(SUxy,). (16)

Also, the loss formula
L(6) = |H"*(ST0 —w")|> = (576 —w*)TH(ST0 — w")
converts to

L(0)= (ST - Uw))'UDUT (ST — Uw}) = (SU)'0 — wy)"D((SU)TO — wy).

Now a covariate of ), is D = diag(172%,272% ... d~2%) and target w = [177,277 ... d=#]T
is same with the diagonal covariate case. Lastly, the distribution of SU is identical to the distribution
of S. This is because each row s; of S follows the distribution N'(0, I;/M), and s;U, which is
each row of SU, follows the distribution N'(0, U TI,U /M) = N(0, I;/M). Also note that s;s are
independent and s;U's are independent.

So the converted update rule (I6) is equivalent to the case with diagonal covariate
diag(172%,272 ... d—29).

E DERIVATION OF THE SCALING LAW FORMULA R(M, N, o)

Goal. In this section, our goal is to derive the scaling law formula of R(M, N,~p). On the

area a < 0.5 0or 8 < 0.5 with —a+ 0.5 < 8 < a + 0.5, DZE“(M, N, 7p) term is smaller than at
least one of the other three terms. So it is enough to show

_ _2(20425-1) .
R(M, N, 'YO) = ]\4—2(1—&-max(07 1-28) + (Mmm(a’o's)N’YO) 2a—28+1 +,yg M2—m1n(1,20¢) )
=A(M) =D (M,N ) =N (M)

for that area.

32



Under review as a conference paper at ICLR 2026

For the area o > 0.5 and 8 > 0.5 with —a+ 0.5 < 8 < a4+ 0.5, as all four terms are dominant,
we will prove

. 2(2a428—1)
]%(]\47 N, '70) — M72a+max(0,1725) + (Mmm(oz,O.E))N,yO)— 20—2B+1

=:A(M)

=D (M,N,70)

ba—1 2(2a—1)
+M 200+1 (N’)/O)7 2a+1 +’YO M2 min(1,2a) )

=DE (M, N o) =:Nsisn (M, )

Proof Overview. As a first step, we obtain the ODE

dpi 4 T ‘ 2f(t/70)*0 «,
& =~ r7p ME) ft) ) + SRR (17

where P(t) = L(t/v0) and p;(t) = r;(t/v0).

Then we derive the following integral equation from the ODE.

M du u
LOV) = | HY 2w, 43 r(0) Vi 2”°ZV [TV e
=1
(18)

Going through the arguments, including the contour integral, our integral equation converts to the
following equation, where Q(z) = %2 [~ EON

v/ L(u)
204281

L(N) = M—2o¢+max(0,1—2ﬂ) + (Mmin(a,o.5) Q(N))_ 2a (19)

approx

4)\1’)’0 [‘N f(u) 4>‘ 2AiY0 /‘N f(u) d

drift

272 M
0 E Vv 2
i=1 ' /; p / A /L ( O)

noise

for a < 0.5 or B < 0.5, and

20+28—1
L(N) = M~ + (MY?Q(N))” 2@+ M*l(M1/2Q(N))’H% (1)

approx

drifty drifto

2792 M ‘ N 47 N du
+ 7ri_ZlVl/o exp( —/\ (K) \/7) (22)

noise

for a > 0.5 and 5 > 0.5.

Solving the early stage and the limit stage separately, we get the following proxy for o < 0.5 or
£ < 0.5.

. _ o _ _ 22a+28-1)
Loo(N) = Mmln(a,O.5) N p 2 112 2 min(«, 0.5) M 2a+max(0,1-23) _
px(IV) ('VO ) +0 N ’ 4 20+ 1—-2p
=:C
(23)
For v > 0.5 and 8 > 0.5, we get the proxy
Lox(N) = (3o MOPN) ™1+ (yo MEa2N) ™2 4+ C, (24)
where
22a+26-1) da— 2
Pr= (577 55 p2=-—"=-
200+ 1—-2p 2a+1

As alast step, we verify the proxies by proving that they satisfy the converted integral equations.
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E.1 ONE-STEP UPDATE FORMULA OF SIGNSGD

Xi1ao et al.| (2024) approximate the signSGD trajectory using SDE and ODE techniques. Their proof
relies on a spectral lower bound assumption of the covariance matrix, so their results are not directly
applicable to our setting.

For a quadratic function ¢, by Taylor’s theorem, we have
E[q(81+1) — a(0x) | Fir] = E[Va(O1), Oxr1 — 1) | Fi] + 3 E[(V?q, (1 — 0k)%%) | Fi]
where Fi, = (S, 0y, ..., 0%). Since
11 — O = =i, sign((Swr, Or) — yx) sign(Sxy),
We can expand the two terms using sign-Gaussian identities.

Gradient term.
E[(Va(6k), Or+1 — k)| Fi]
= — <Vq(0k) , E[sign(S:ck) sign((mk, STe, — 'w*>) |]-'k}>
diag(SHST) ™"/ SH (576 — w*) >
V(870, —w*)T H (ST, — w*)

2 (diag(K)"Y? K (6), — 6%)
= - <Vq(0;g), - arcsm( [H3(576, —w)| ;

where K = SHST.

2
= — <Vq(0k), — arcsin
™

Quadratic term.

Kv ¢, (Ory1 — > ‘]:k}
Yie Vg, E[ sign(Sxy) s1gn(<a:k, ST6, —w > ®2 ‘}"k}>

£
02 (Va, E(sign(Swi)** | 7] )
3

1/2

I
=2
N

Vg, %arcmn(dlag(SHST) SHST diag(SHST)1/2)>

2 - —_
=7k <V2q, = arcsin(diag(K) 12 g diag(K) 1/2>> .
™

One-step update formula. Substituting the gradient and quadratic terms yields the desired one-
step update formula for signSGD.

E[q(Brs1) — q(6) | Fu] = 2;’“ <Vq(9k) arcsin<K("kL(—k)6”)>> + %’3 (V?q, K,).

Let \; (f) u;, and w; denote the eigenvalue, right eigenvector, and left eigenvector of K, respec-
tively. Then K = Zf\il Ni(K)u; @w; and I = Zf\il u; @ w;.
Define
Ti(k?) = (Bk — 0*)1—(1'("(1,z X wz)(Gk — 0*)
The loss decomposes as
d
HY 2w, | = (000 ) K (0,0 )+ | H w | = 3 ri(k) + [ H 2

i=1

k) = HHl/QsT(ek -

We now apply the one-step update formula to r;(k). Note that
Vri(k) = Ku; (w;, 0 — 0%) + w; (Ku;, 0, — 0™), Vi = Ku;w! +wu] K.

34



Under review as a conference paper at ICLR 2026

Approximating arcsin(z) ~ x and using K" = K together with KT K = K 'K T, we obtain
2’}/]C K (Hk - 0*) K (Hk - 0*)
Elri(k+1) —ri(k) | Fi] = ——— | (wi, O — 0%) { Ku;y, —— ) + (Ku,;, 0, — 0") ( W, ——F———
ralh+ 1) = (k) | 5 W(< k >< ) 60 o

2
+ & wTK Ku;
s

my/L(k)

It is possible to replace the linear approximation arcsin(z) &~ x by an inequality, and the main
results of our paper remain unchanged. We explain it in Appendix Hence,

Ay,

my/L(k)

E.2 ODE APPROXIMATION AND IMPLICIT INTEGRAL EQUATION OF SIGNSGD

2
E[ri(k 4+ 1) — ri(k) | Fi] = — i (K) ri(k) + 2% w, K, Ku,;.

Let the learning rate be v = 7o f(k). Define V; = w] K, Ku,;, then our one-step update formula

becomes

247

4 R

7w/ L(k)

E[?”l(k —+ 1) — Tl(k) | fk] = —

Dividing by ~q gives

ri(k+1) —ri(k)
Yo

E H e AR ) ) + 2L

Interpreting v as the time step, the discrete index k corresponds to continuous time ¢ = k~g. Let
P(t) = L(t/~0) and p;(t) = ri(t/v0). We then obtain the ODE

dpi _ 4 e _ 2f(t/70)*0 «,
i ——W )\z(K)f(t/'VO)pz(t)"‘fv} (25)

From this point onward in the analysis, we treat P, p;, L, and r; as their continuous extensions,
allowing arbitrary positive real inputs.
Integral formulation. Solving the ODE yields

4/\ ft f(u/’yO) du

VP f (/)% d

. C = du 2 t
pilt) =pi0)e * 7 VP@ T Ty

Since P(t) = S.M, pi(t) + || H'/ 2w ||2, we obtain

I 2.V f(u/’)’o)d %Y fsf fu/v0)

M
s w 2 s
P(t) = [HY?w, [P+3 " pi(0)e " " VP 20 Zv /
=1

Integral equation in discrete form. Note that L(N) = P(N~y). With a change of variables, we
obtain

M Ao N _fw) du 9 4Am N flu)
m 0
L(N) = [|H 2w, >+ ri(0) ¢ VL) %Zv / e VI ™ p o2
i=1
(26)
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Drift and noise decomposition. Define

M Ay o~ _fW) du 272 M N _ 4% TN f(u) du
LAt ATy — (0 w 70 L(u) Lpoise pry — 270 Vi/ moE L(u) 2 s
) =Yone VI e -2y [ e
27
Then A .
L(N) — ”Hl/QwLHQ +Ldr1ft(N) +L"Olse(N), (28)

and we will analyze | HY/?w, ||? + L¥f(N) and L""¢(N) separately.

Figure [20 show dynamics of three terms ||H /2w ||?, LYf(N), L"5¢(N) referring each as Ap-
prox, Drift, Noise. The right plot in Figure 20] validates the equality in (28).

10°4 — \ 10°4
10714 A 107t
B signSGD
10724 — ODE 1024 N
v Nz
" Drift X | — ZSESGD
4 ) =
10-3 Noise 10-31 Drift
—— Approx .
Noise
104 1074 —— Approx
—— Sum of three terms
101 10° 10' 102 10° 10% 10° 101 10° 10' 102 10° 10% 10°
Iterations (k) Iterations (k)

Figure 20: Dynamics of Drift and Noise. Left: the purple curve is the 80% confidence interval of the
true signSGD trajectory, while the blue curve is the numerical ODE solution. The yellow, orange,
and green curves correspond to the approximation, drift, and noise terms in (28). Right: the red
curve shows the sum of these three terms, matching both the true trajectory and the ODE solution.
Parameters: « = 1.0, 5 = 0, y9 = 0.003, f(z) = 1, M = 200, d = 800.

E.2.1 TRANSFORMATION OF THE DRIFT TERM AND APPROXIMATION ERROR

Let
4yo [7 _
Q) = 2 O du, K, = HY?*STdiag(SHST)"Y/2SH"'/>.
T Jo /L(u)
Then
KK" = SHY?K H'/*ST
holds.
Define

A = H 27K g2y = §79,— ST0" —w, = ST, — w*.

From SHw,; = 0 we get
Ki(HY?w,) =0,
and this implies
e‘ﬁlQ(N)(HlﬂwL) = 60(H1/2'LUJ_) =H"w,.

Thus,
Aw, = Hw,, wJT_A'wJ_:'wJT_H'wJ_,

and
uw Aw, =u'Hw, = (6 — 9*)TSHwL —wIH'wL = —wIH'wL.
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Using these identities, we can convert the drift term as follows:
M JE—
Ldrift(N) _ Z r; (0) . e—)\i(K)Q(N)
i=1

M
= (6) — 0")T(Ku; @ w;) (6 — 07) - e~ I

I
M= 1§

Il
—

8y — 04)T ((Kui ® w;) - e—Aﬁ)Q(N)) 8y — 6%)

i
= (8) — 6°)TKe KQWN) (g, — %)

= (60 — 0*)TSH1/2 (H1/2S€7EQ(N))(90 —0%)

= (6y — 0*)TSH1/2 (efle(N)Hlﬂs) (00 — 6%)
=(u+w, ) "A(u+w,)

—u'Au+u'Aw, + w! Au+w] Aw,

=u H'/2e K1 QW) fr1/2y, w! Hw, —w] Hw, +w! Hw,

_ uTH1/2e—?1Q(N)H1/2u _ HH1/2UU_||2.

Drift term plus approximation error. Adding the approximation error gives
Ldrift(N) + ||H1/2Uu||2 _ UTH1/26—?1Q(N)H1/QU

= (e TN, (H'2(ST6, - w") ).

Also we assume 6y = 0, then
<e—?1Q(N)7 (H1/2(5T00 _ w*))®2> _ <e—?1Q(N)7 (Hl/gw*)®2>.

In the next subsection, we will describe how to apply a deterministic approximation, similar to
Paquette et al.|(2024), to the following term:

H = <e*K1Q(N), v®2>

)

where v := H/?2w* € RY.

E.2.2 DETERMINISTIC APPROXIMATION

Note that we assume d > rM for some r > 1, and let d/M — (1, 00] as d, M — oo when 2a > 1,
and d/M — (1,00) when 2a < 1. In our setup, S € RM*4 have i.i.d. N'(0,1/M) entries, and we
1

will write the kth column of ST as i Sk € R%; columns are independent.

Define

1 v M
k :: pr—
\/ﬁylyk \/SZHSk

The unnormalized baseline and the column—normalized matrices are

Yi = H1/25k € Rd, a > 0.

M M

—~ 1 _ 1

K .= HY?STSH'? = 7 § TS K, := H'/?S" diag(SHST)"Y/?SH'? = 7 § ar Yryyr.
k=1 k=1
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For z € CT := {2 : 3z > 0}, define the resolvents

-1

_ 1
L(Z) = (Kl _ ZI)il, R(k)(z) = M Za[yey} - ZI

04k
Note that
yrByr =~ Tr(HB)
for matrix B. In particular,
vV M
ygyszrH, ap =~ Navy:2
Also note that
vM
T (k) ~ (k)
a RR ~ -Tr(H RR\Y),
k yk Yk \/ﬁ ( )
and
aryg RNy, ~ Tr(H R™M).

r
By the Sherman—Morrison expansion,

R=RW — :
1+ M-1a y,IR(k)yk

Multiplying on the left by R and sandwiching with yg( )Yk, we get

M layTRRF)q, . TR
aryr RRyy, = aryf RRWy; — kY Yr - kY By

1+ M-la,yf RWy,,

Now we will replace terms on the right side by

aryp RRWy; ~ Tr(H RR™),

I

and

VM
aryp RMyp ~ = Tr(H R™).

Thus

VM_ Ty (H RR™)

]

aky,IR Ry, ~

1+ M~ AL Tr(H R®)

Replacing R™%) by R and averaging over k, we obtain

1 & T(HRR M
37 2 YRR +pﬂd4*1(pd Tr(I}R)’ pa = \/\;Y;H
It implies
Te(R(R™ +:D)R) ~ fifﬂ(}i i (12 ok
This implies
L@YJ+ZI”1+Jw4pﬁﬁuJL@»H7
Let

1
1+ M—py Tr(H L(2))

m(z/pa) =

38
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Then
L(z)~ (—z1I +pdm(z/pd)H)_1.
Thus o
(K1 —2I)"" = (=21 + pam(z/pa) H) .
And

1 1
T 1+ M-'pyTe(H R(pgz)) 1+ M-1Te(H(—zI +m(2)H) 1)
holds. This fixed—point equation is identical to the one in [Paquette et al.| (2024)).

Contour representation. Let v := H'/2w* € R% and consider
H = <6_?1Q(N)7 v®2>.

For any analytic g on a contour I'y enclosing Spec(K ),
— 1

g(K;) = “omi g(2) (K, — 2I)" ! dz.

We prove
1 Mmm(O.S,a)I < diag(SHST)fl/Q < ey Mmln(0‘5,a) I
in Section K4l It leads to
e Mmin(O.S,a)f(\j K < ¢y Mmin(().s,oz)f(\-
K has eigenvalues scaled by M™n(0-5:%) compared to K excluding constant. Note that p; ~

Mm™in(0-5,0) §q there exists a contour I’ enclosing the spectrum of K4, andits 1 /pa—scaled version
T" encloses the spectrum of K.

Taking g(z) = e~ 9Nz,

1 .

= QN2 (K, — 2L 0®2) ¢4

H 27 1‘28 <(1 Z)’U>Z

1

~N—— ¢ e QW)= ((=2I + pam(z/pa) H) ", v®?) dz
2mi Jp,

= _L‘ e~ PaQ(N)z <(—ZI+m(z)H)_1, v®2> dz.
2wt Jr

Let R(z) = (—zI +m(z)H)™!, then our objective converts to

1
H~ o Fefde(N)Z <R(z), v®2> dz.

E.2.3 FINAL TRANSFORMATION RESULT

Paquette et al.| (2024) evaluate the contour integrals with R(z). When o« < 0.5 or 5 < 0.5, they
show
1 T
——— ¢ (1 -2yBz +72B(B +1)2%)" (L(2), v¥?) dz = M—20max(0.1-25)

27 Jr
20426-1

+ (2yBr)” " 2a . (29)
When o > 0.5 and 5 > 0.5, they obtained

1 X
“5 (1-2vBz+ v?*B(B + 1)22)7 (L(z), v®2> dz =~ M—2etmax(0,1-26)
T 1
20+28—1
+ (29yBr)” " 2a

1
+ MY (2yBr)"*T2a.  (30)
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For the case oo < 0.5 or 5 < 0.5, applying a similar method to our objective yields

_L e~ Pd Q(N)z <L‘(Z) U®2> dz = M—2a+max(0,1—2ﬂ)
27i T ’
204281
+ <Mmin(a,0‘5) Q(N)) 2a ’ 31)
with details provided in Appendix [K.I} Hence,
<e—?1Q(N)’ (Hl/Qw*)®2> — Jf—2a+max(0,1-28)
204281
+ (Mmin(a, 0.5) Q(N)) 2a ) (32)
For the case oo > 0.5 and 3 > 0.5, a similar argument gives
_ ! e~ PaQ(N)z <£(z) v®2> dey =~ M —2ctmax(0,1-25)
27Ti T '
204281
+ (Mmin(a,0.5) Q(N)) 20
, gk
+ M1 <Mm1n(o¢,0.5) Q(N)) , (33)

with details in Appendix [K:I] Consequently,
<eff1Q(N)’ (Hl/zw*)®2> — pf—20+max(0,1-28)

2a+28—1
+ (Mmin(a70.5) Q(N))_ 2a
1

) —145-
+ Mt (Mmm(a,O.S) Q(N)) 201. (34)
In summary, we obtain
_ 204281
LN + ||H1/2wL||2 ~ M 20tmax(0,1-26) (Mmin(a,0.5) Q(N)) 20 . 39)
for a < 0.5 0r 8 < 0.5, and
Ldrift(N) + ||H1/2wLH2 = M72a+max(0, 1-28)
204281
+ (Mmin(a,0.5) Q(N)) 20
. 1
+ M—l (Mmm(a,o.&')) Q(N)) , (36)

for a > 0.5 and 3 > 0.5.

Figure 2] shows our transformed result in (33) and (36) based on deterministic approximation
matches the true signSGD trajectory up to a constant factor. When interpreting the figure, note that
our analysis is asymptotic; hence, discrepancies may appear in the very early iterations.
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B signSGD 80% 3
10%4 — signODE —— ratio mean
deterministic
2] +1 std
N~ 10°4 .
(%] +
BN
1,
10—1_
0 1 N2 N3 N4
10-2 10 10 10 10
LI S | 10° 100100 lterations
terations
101.
I signSGD 80% 2.0
— signODE | [— ratio mean
o deterministic
10°4 1.5 +1 std
o
% 2 1.0
o« o
0.5+
0.0 T T .
10! 102 103 104
10! 102 103 104 105 Iterations
Iterations
1024 I signSGD 80% 8
—— signODE .
deterministic ratio mean
6 +1 std
o 101 ke
2 B4
1004 27
‘x 0 , ‘ j
101! 102 103 104
101 102 103 104 105 Iterations
Iterations
1044 B signSGD 80% 8
3] —— signODE 3
10 o —— ratio mean
deterministic
1021 61 +1 std
o
% 104 = 4
< 100 o
10~ 2]
10724 0 : .
10! 102 103
1073 , . | .
10! 102 10° 104 Iterations

Iterations

Figure 21: Verification of the deterministic approximation and drift-term transformation. Left:
the purple curve denotes the 80% confidence interval of the true signSGD trajectory, the blue curve
represents the numerical ODE solution, and the yellow curve corresponds to the deterministic ap-
proximation after drift-term transformation in (35) and (36). Deterministic approximation matches
the true trajectory up to a constant factor. It should be noted that our analysis is asymptotic, and
thus, discrepancies may occur in the very early iterations. Right: the ratio between the approxi-
mation and the true trajectory remains bounded by a constant factor, confirming the validity of
our approach. Parameters: («, 8) = (0.7,0.3),(1.0,0), (0.4,0.4), (0.7,1.1) from top to bottom,
Yo = 0.003, f(z) = 1, M = 200, d = 800, 100 runs.
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E.3 CONSTANT LEARNING RATE: PROXY AND VERIFICATION FOR THE CASE o < 0.5 OR
B < 0.5 (PHASE A)

Throughout this section, we set f(z) = 1; hence
4’}/0 N du
o) =2 [ .
™ Jo /L(w)

Applying the drift/approximation-term transformation to the ODE solution yields the implicit rela-
tion

. _2a42p-1
L(N) = M*Q()H*max((),lfQﬁ) 4 (Mmln(a,()f)) Q(N)) 200 (37)

approx

drift
M N N
22 / L p— / du
+ —=> N exp| ——— (K — ) dz. 38
TV, o(-TNE) | =) (38)

noise

E.3.1 EARLY STAGE (DOMINANCE OF THE DRIFT TERM)

At N = 0, the noise integral is 0, the approximation term is independent of N, and the drift term is
large and decreases with N. Thus, in the early phase,

_ 2a+2B-1

L(N) = (Mmin(a, 0.5) Q(N)) 2« . (39)
Since Q(N) = 12 fON L(u)~Y? du, is equivalent (up to absolute constants) to
20 . . N d
L(N) 2e+26-1 = Mmin(e; 0.5) ’70/ u ) (40)
0 L(uw)
To obtain a proxy profile, we replace ~ by equality in and differentiate both sides:
2c _270‘_1 . - 1
—  — L(t) 2a+2p-1 L'(t) = Mmm(a,o.o) ) 41
atop—1 W ®) R0 @D
Solving (@1)) for L'(t) and separating variables gives the separable ODE
dL 2 1 2a+28-1
= LC - == - _ 4= rer - Mmln(a,0.5) )
i~ " T hagepoity f 20 o
Assuming ¢ > 1 (i.e. 2a + 28 < 4a + 1), we integrate to obtain
L(t)~(-1 —1/(¢-1)
_(C)l = —kt +constant — L(t) = {(C -1) nt} . (42)
Substituting { = #gﬁ—l + % and k = % Mmin(e, 0-5) ~ vields the early-phase proxy
‘ _ 220 + 28 — 1)
L(N) = ]\4111111(047 0.5) N P — ) 43
(V) =~ (0 ) PE 1o (43)

By construction, ([43) satisfies (hence (39)) up to absolute constants.

E.3.2 LIMIT STAGE (STATIONARY ANALYSIS AND FLOOR)

With f = 1, the mode-wise ODE is
dpi 4 7 2%

= XNE)pit Vi.
i = MBI+
At stationarity, p;(t) — s; and P(t) — Lo, we must have
4 _ 2 VI N
e AE) s+ LY =0 = s = Ve L VI TR Kuy).
7'l'\/LOC ™ 2)\l(K) QAZ(K)
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Using the loss decomposition P(t) = "M p(t) + || H/2w ||, we obtain

=z 1/2 2 _ Y0 z w! K, Ku, 1/2 2
Loo = 3 sict |H s [P = 2 (30 S0 ) Ve [ H P
i=1 i=1 v

. s .
= 5 Tdiag(K)2 K )/ Loo + | H' w2 = T Tr(ding(K)'/%) Voo + | H' P20

Solving the quadratic in v/ L, gives

2
L vofr Tr(dlag 1/2 +\/WT d1ag )1/2))2+4|\H1/2uu||2 )

~ maX{(% Tr(diag(K)'/2))?, HH”%llQ}. (45)

Under our setup,

Tr(diag(K 1/2 Z \/W . %Mmax(l—za,o) — pyl-min(a,0.5)

By the results from [Paquette et al.|(2024); |Lin et al.| (2024), and note in Appendix
HH1/2IUJ_||2 = M—Qa—i—max(o, 1—2,6).

Hence
Lo = max{,ngQ—Qmin(a,Oﬁ), M—Qa—‘—max(O,l—Zﬁ)}. (46)
E.3.3 PROXY

Combining the early-phase decay (43)) with the floor (6), we adopt

min(a, 0.5 - —2min(a, 0.5 —2a+max — 22a+2671
Lox(N) = (%M ( ,o.)N) p+,ng2 2min(e,0.5) 4 3 r—2a+max(0,1 2ﬁ), p:ﬁ.
=:C
(47

E.3.4 VERIFICATION OF THE PROXY
We show that L, satisfies up to absolute constants. Equivalently, writing Qr_ (N) :=

N
=0

, we establish

Lpx(u)

_ _2a+428-1 9
(Mrnln(a,o.5) Qpr(N)) 20 + M~ 2a+max(0, 1-28) + ’yo ZV/ eXp fYO

approx / v

drift
noise
(48)
= (’YO Mmin(oz,().S) N) -p +C.
Lpx(N)
(49)
Lower Bound We prove
drift + approx + noise > (yo M™™(* 05 N)7P 4 O, (50)
Since Ly (u) > (yo M™in(@:0:5) 4)=p
2a+28—1

. . — 204261 : 5 N i 5 /2 2
drift = (Mmm(a, 0.5) Qpr (N)) 2 Z (Mmm(a, 0.5) . '70/ (70 Mmln(a, 0.5) u)l’ du) ey
0

= (,YO Mmin(a,O.E')) N) _P.
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Since Lpy(u) > C for all u,

N du N —=z
» Lpx(u) — Nl
Hence
M N
. 278 4y, = N —=z
> -0 . _ 2P
noise > - ;VZ/O exp( - Ai(K) Niei )dz (51
M
273 \/5 — 20 )\ (K)2L
= -_—  — — T T V<
r 2 e ) &
M v .
i 0 . —min(ca, 0. —2min(a, 0.
20VE Y. e = 5 i) VT = 90 MDDV 2 o 3ttt
i=1 7"

(53)

Adding the approximation term M —2e+tmax(0,1-28) ojyeg noise + approx > C. Combining with
the drift contribution yields (50).

Upper Bound We establish

drift + approx + noise < (yo M™™(* 05 N)7P 4 O, (54)
ket 2(2 28 —1)
A(N) = { Mmln(oz,().S)N —p C} — @ .
(N) = maxq (70 )77, ) % +1— 23

Then L, (N) =~ A(N). Define Ny by (yo M™n(@:05) Np)=P = C, i.e.
Mmin(a,O.E)) N)"P. N < N,
A(N) — (rYO ) ) —_ 0>
C, N > Ny.

There exists a constant B > 1 such that

Lox(N) < BA(N) (VYN >0). (55)

Upper bound for the drift term. Since L < BA by and () is decreasing in its denominator,

_ 2a428-1 . _Zod2io]
drift — (Mrmn(a, 0.5) QL(N)) 20 5 (Mmm(a, 0.5) QBA (N)) 2a

We evaluate the right-hand side by cases.
Case N < Ny. Then A(u) = (yo M™(@:0-5) )= for u < N, so

4’Yo

QBA Mmin(a, 0.5) u)p/2 du

/ \ /BA ~ VB 70/ 7
for an absolute constant ¢ > 0, which 1rnphes

i _ 204281 ) _
drift 5 (’YO Mm1n(a,0.5) N) 200 (1+p/2) = (’YO Mmm(oz,O.S) N) p.

Case N > Nj. Split the integral at Ny:

in(a, 0.5) @05 | [ in(a, 0.5)  \P/2 N du
Min(a, 0. QBA( ) 7,)/ Mrnm a, / 5 Min(a, 0. du +
VB " 0 (o ) Ny VBC
N — N
v Mmln «,0.5) N, 1+p/2 + Mmm(a 0.5) O:| )
-5 [ b ’) VBC
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Raising to the power —2°t28=1 and using (o M™"(®05) Np)=P = C,

_2a+26-1 204241
2a I - 200
S (C (2&+2B—1)/(2a)) ) =C.

/2+ N—No
Y0 BC

Combining the two cases,

drift < |C™ 7

drift < (oM™ 09 NP 4 O (56)

Upper bound for the noise integral. By the monotonicity of r — 7~ 1/2,

1 N du
F VB ). AW
Therefore,
M N N

. 273 / 4o - du

noise < — Y V; exp(— Ai (K) ) (57)

We again split into two cases.
Case N < Ny. Then A(u) = (yo M™n(:0-5) 44)=P on [0, N], hence

/2 N1+p/2 _ Zl+p/2

/N du _ (70 Mmirl(a,0.5))p/2 /N up/g du = (,70 MInin((x,O.5))

Au) 1+p/2
Plugging this into and factoring,
al N 1+p/2 _ 1+p/2
. 2’}/8 / 4’}/0 R . 0.5)\P/2 NP 21tp
noise = — Vi ex (_7 (K Z\4m1n(oz7 .5) ) dz
i ; o Ny (o ) 1+p/2

M
273 > ( 49\ ) (o gpmin(as 0.5)yp/2 NP2
_ f o >\z K min(a, 0.5) )
1+p/2 )

N
479 — ; s\p/2 2
% e (K Mmln(oc,OAo) p
| e 2 ) o e

Make the change of variables y = z'*?/2 5o that dz =

becomes N1+r/2:

T;/Q y1+1p/2 -1 dy and the upper limit

2’)/2 M 1+p/2 NP/ 1 1
. 0 —aq; N* TP a; = —1
noise = — Vie < ey 727" dy,
. ; /O 1+p/27 4
4 o Mmin(a,O.5) p/2
;= 0 Az(K) (70 )
/B 1+p/2
Let X := N'*2/2 and
1 1 p
= Tzl = ~ T
W) =1 ,mY 1+p/2Y

Since e*#¥ is increasing and g(y) is decreasing on (0, X|, Chebyshev’s integral inequality (oppo-
sitely monotone) yields

% OX eVg(y)dy < (% /OX e””ydy) (% /OXQ(?J) dy>~
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Hence
X
e 11
efaiX/ ey d <6*OziX — d
; g(y)dy < o X/, 9(y) dy
—OL;,X
_ 1—e 1 1 Y-
1o v ince (1 — 52 )(1+2) =1
i » (smce( —m)( +5)= )
< ixfﬁ — iN—p/Z_
- (673 (673
Therefore
72 L y
noise < —2 N Vv, — N7P/2
ST z_: "
. - Amin(en, 0.5) p/2 )
and with o; = :\}% Ai(K) (o EyD ) this becomes
noise < %\2/> 1+p/2) ) 2

i=1

Using ), /\i‘(%) = Tr(diag(K)'/?) = M*—min(@.05) we get

noise < 5o M 05) (yg ppmin(e,0-3) Ny mp/2
= g 1—min(e, 0.5) (Yo pmin(e, 0.5) N)P/2 (7o Jmin(a, 0.5) N)~?
<% lemin(a,O.E)) L

Ve
where we used (’YO Mmin(a,0.5) N)p/Q < (,YO Mmin(a,0.5) No)p/Q _ 0—1/2'

(70 Mmin(a,0.5) N)fp /S ('YO Mmin(a,O.E)) N)fp

Case N > Nj. Split the z—integral at Ny:

28 /N° 40\ e [N du /N 4o | = [N du
<20 N SN NE) ] ) de+ ~ N NE
noise < — ; ; exp( B (K) j \/m) z . exp( B (K) \/7)

The first integral is the N = Ny case just handled, hence

No _
/ e dz 5 (,70 Mmm(a,O.5) NO)—p - C.
0

For the second integral, we use that A = C on [N,

N]
N 4 N N A .
/No exp<_%)\i(K)/z W) dZZ/NO exp(—ﬁ Mi(K) N )dz
= L (1_6_:}%)\7:(?) NfNo)

IN

Therefore,




Under review as a conference paper at ICLR 2026

Combining both cases,
noise < (o M™n(* 05 N)YTF 4 (. (58)

Conclusion of the upper bound. From , , and approx = M —20tmax(0,1-26) < ' we
obtain (54).

Finally, combining the lower bound (50) and the upper bound (54) proves (@9). Therefore, the proxy
satisfies the implicit relation up to absolute constants, with the three contributions labeled
as approx, drift, and noise.

E.4 CONSTANT LEARNING RATE: PROXY AND VERIFICATION FOR THE CASE « > 0.5 AND
B > 0.5 (PHASE B)

We now handle the case o > 0.5 and 8 > 0.5. Since « > 0.5, we have min(«a,0.5) = 0.5, and
because § > 0.5, we have min(2c¢, 2ac + 2 — 1) = 2. Applying the drift/approximation-term
transformation to the ODE solution yields

204+28-1 1
L(N) = M7 + (M'2Q(N))™ 22 4 M~Y(M'2Q(N)) ' F2a (59)
approx drift, drifts
M N N
278 / I Yp— du
+ — Vi expl ——— N\ (K) dz, (60)
s Zzzl 0 ( iy 2 A /L(u))

noise

where

Ay [N du
e

E.4.1 EARLY STAGE PROXIES (DRIFT; AND DRIFT5)

We extract proxies from the two drift terms in (59) by the same differentiate-and-separate trick as
before.

drift;: (M'/2Q(N)) (a2 (2a) Assuming this term dominates and replacing ~ by equal-

ity,
2 N
L(N)” 22T = MWVO/ o
0o /L(u)
Differentiation gives the separable ODE L' (t) = —ry L(t)% with
20 1 20+28-1
- == 4z b Nl /2 Ve PV
h=gaios-1 Ty ™ 2 o
For 31 > 1 (equivalently 2« + 23 < 4a + 1) we obtain
_ 22a4+28-1)
Li(N) = (yoM'Y2N)=P == 61
1(V) = (70 )P m 50125 (61)

1
drift,: M1 (Ml/ZQ(N)) ~1taa . Assume o > % and, in the early phase, the second drift term
dominates:

1(pr1/2 -2l N du
LN) = MOTEQN) T Q) = o |
0 L(u)
Expanding the M —exponent,
2a—1 — (— o—
(M2Q) T — M Q5
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hence
_6a—1 _2a-1 N du
L(N) =~ M~ 4a (’on(N)) 200 I(N) := / . (62)
0 L(u)
Raise both sides of li to the power — 2231 so that the integral becomes linear:
2 6a—1 6a—1 N
L(N) 2a—1 = M4a=2 g I(N) ~ M 4a=2 70/ : (63)
o v L(u)

Differentiating (63]) with respect to ¢ yields

2 _2a_ a1l 1
“5a 1 L(t)” 22=17" [/(t) = M 4a=2 ~, 708
Rearranging gives a separable ODE of the usual power form
L'(t) = —m L), p2 = 20[2i1 +% = 23:; > 1, (64)
with 90 1 -
Ky = —— Yo M 4a=2 > 0. (65)

Since 2 > 1, solving gives
L(t)=P==Y = (By — 1) ky t + const.

Absorbing harmless absolute constants into ~ and setting t = N,

6a=1 \-ps 1 2(2a — 1)
Ly(N) = M 4a=2 N = = . 66
2(N) (Wo ) ) D2 B —1 %0 -1 (66)

Crossover scale. Equating (61) and (66) gives
20 +1-48
77 - 45 9
so R; dominates for N < Ny and Lo for N 2 Ny (when a > 0.5 and 0.5 < 8 < o + 0.5).

Nl ~ ’7(;1 M"/’

E.4.2 LIMIT STAGE (APPROX AND NOISE FLOORS)
As in the case o < 0.5 or § < 0.5, the stationary analysis with f = 1 yields
Lo = max{'yg "[‘1r(diaug([(')1/2)27 HH1/2wJ_||2}.

Under our standing model Tr(diag(K)'/?) =~ M%® and by the results from Paquette et al.| (2024);
Lin et al|(2024), and note in Appendix [K.3] | H'/?w ||* = M ~2%, hence the floor

C = ’ng + M2«

E.4.3 COMBINED PROXY
L« (N) = Li(N)+ Ly(N)+ C

am1 (67)
= (MO N)™ + (pM%=N)™" + C,
where
220+ 28 — 1) 4o —2
P1r=—F—F———F+ > p2 = .
2041 —23 20+ 1

E.4.4 VERIFICATION OF THE PROXY

We show that L, satisfies @]) up to absolute constants.

48



Under review as a conference paper at ICLR 2026

Lower bound. We claim

0.5 —2adid ~1(770.5 —1+5g —2a
(M**Qy,.(N)) + M~ (M**Qr,, (N)) + M (68)
drifty drifty approx
270 ZV 40 \
exp m 2 Lpx(IV). (69)
noise
Drift part. Using L« > Ry inside @,
(MO3Qy, ( ))—72“22’371 > 0.5 72”22&571 ( 05 ) )
M prN * NM’VQ/ % Z’yoM'N_lchlN.

Similarly, using L« > Lo inside @),
4L —1+5=
I R VAV T
drift; + drifty, 2 Lq(N) + La(N). (70)
Noise + approx. Since Ly > C,

Therefore,

N du < N —z
: VIw(uw) = VO
As in the Equation
V;
noise > - % Ti(diag(K)/2) VC = 7o M*5VC 2 42 M.

Thus noise + approx 2, C. Together with (70}, this proves (69).

Upper bound. We will prove

0.5 —2atii 0.5 —l43g —2a
(M™*Qr, . (N))™ > + M~ Y(M°*Qr, (N)) "> + M (71)
drifty drifto approx
2'78 < N 4 7 N d
+ 72%/0 exp(—ﬂ (K)/ m)dz < Lpe(N). (72)
i=1 z

noise

Let
(yo MPSN)=P1, N < Ny,
A(N)=1{ (o M==N) ", Ny <N <N,
C, N > No,

where N1 and N are the crossover points between the three terms. There exists a constant B > 1
such that

Ln(N) < BA(N) (YN 20). 73)
It suffices to show

_ 2a+428-1 _ 5 14l 9
(MO5Qp a(N))™ 2 + M Y(M°5Qpa(N)) "2 4+ M2 (74)

drifty drifty approx

M N N
273 4 / d

20Ny SELTRY u_\dy < L.(N). 75
=D e NE) [ ) de S () (75)

noise
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Case N < N;. Itis enough to prove

05 SRR L MM Sk L are2a
(M°°Qp.a(N)) 4+ M MPQp.a(N)) S 4 M (76)
drifty drifto approx
272 L N . N
= i —20 N\ (K du < 0.5 —p1
+ . ;%A exp( T )\Z(K) . \/m) dz S (’yOM N) . (77)

noise

We have M 2% < (o M2 N) =Pt directly. Also, the following holds with straightforward integra-
tion.

+28—1
(M°°Qp.a(N)) = (noM°°N)™P.

Since N < N1 = 7y L M7 withn = w, following holds by integration and calculation.

. I
MY (MOPQpa(N)) ™2 S (70 MON) T,

~

Finally, arguing as in the N' < Nj case of Section[E.3.4}

M
27321/1»/N exp(— 122 0(F) Yo )dz S (v MOPN) P
™ i1 0 ™ P V BA(“) ~
Hence, the claim holds for N < Nj.
Case N; < N < N,. We will show
0.5 e —1(2/0.5 —1455 —2a
(M°*Qpa(N)) + M (M5 Qpa(N)) + M (78)
drifty drifty approx
M N N
+ 27321/;-/ exp(—‘mAi(F) du )dz < (o M%7 N) P2, (79)
™ =1 0 & 2V BA(u) ~
noise
where
_2(2a+28-1) _2(2a—1) Au) = (yo MOBu)=P1,  w < Ny,
=0 +1-28 0 7 T2a+1 "o METFW) T N <u< N,

N u
and Qpa(N) = 4% Jo \/;T(u)'

Approx term. Since N < No,

6a—1
M™% < (yo M1a=2 N) 7.

Drift term. If N; < N < 2N, using the case N < Nj, we get an inequality for two drift terms.

0.5 —2ad 3P4 —1(240.5 —1450
(MOPQpa(N)) + M (M5 Qpa(N)) (80)
drift, drifts
0.5 — 24381 1705 —ltgg
< (M°°Qpa(N1)) + M~ (M*°Qpa(Ny)) (81)
drifty drift
6a—1 —p
S (o MOPNy) P S (o M a2 N) 2, (82)

So while covering the drift term, we will temporarily assume 2N; < N.

Lower bound on Q54 (N). Split the integral at N;:

Ny N du
A(N) < =: I Is). 83
Qpa(N) 70/0 A0 +%/N1 A0 Yo (I1 + I2) (83)
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For the first part, using A(u) = (7oM%5u)~P1 on [0, Nq],

Ny MO0-5)p1/2
Il — (70M0.5)p1/2/ up1/2 du = (ryo ) N11+p1/2.
0 1+P1/2

For the second part, using A(u) = (’}/QM%U) ~P2 on [Ny, NJ,
N Sa—b 2
I, = (WOM%)M/Z/ uP?/2 dy — (oM 3==2)r2/2
N; 1+ p2/2
Since we temporarily assumed N > 2N;, we have

(N1+p2/2 _ N1:1-+P2/2) .

I > (oM fa=2 p2/2 N1+p2/2,
Hence, from (83), .
Qpa(N) = ~o (oM da=2)p2/2 N1+P2/2,
drift; vs. drifty. From N > N; and , we have Qpa(N) > Qpa(Ny). It follows that

_ 204281 -

drift, = (MOPQpa(N)) ™ 2 < M~ (MO3Qpa(N)) ™" = drifty,
so it suffices to control drifts.

drift, bound. Using (36),
—1+g5
drifty = M ! (MO'5 QB-A(N))

6a—1 P2

1L
< M’l(MO'S .701+p2/2 M N1+p2/2) 1+2f¥'

Now compute the exponents of N, g, and M separately.

(i) N—exponent:

20— 1\ 7 1 da 200 — 1 2(2a — 1)
) () - (B () -y ()
<+2 ta Jr20{—1—1 2a 200+ 1 2a 200+ 1

(ii) yo—exponent: the same calculation as in (i) gives —po.

(iii) M—exponent: the total exponent equals

6o — 1
1+ (—1+21a)(o.5 + 43_2-1;2).

A direct simplification shows this equals — 23:1 pa. Therefore, from ,

6a—1 _
drifty, < (o Ma=2 N) ™",
Since drift; < drifty, we also have drifty < (yoM BN )Pz,

Noise bound. It suffices to show

2’73 < M 4 — N d
S v e [ )i
i=1 z
298 < N 4 N e »
Ny, (fﬂxif u )d < (o M2 N) P2,
+ s ; /N1 exp T ( ) ., VB-A@) z (70 )

(84)

(85)

(86)

87)

= —Dp2.

(88)

(89)

(90)

Integral over [Ny, N]. As in the case N < N of Section with A(u) = (%M% u)~P2 on

[N, N,
ﬁgiv Nexp(—ﬂx(?) g )dz < (yo Mia=z N) P
(et ! N ™ . VB-A) ~ A0 '
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Integral over [0, N1]. First,

273 - ok 4 = (Y 27§ % M 4 Moy
— 9 V; (,ﬂ)\i[( 7u)d < X Vl/ (7 ’YO)\iK U
W;/OGXPW()Z\/WZ_ﬂ';OeXp”()
As in the case N < Ny of Section[E.3.4]
2’78 M N, A s Ny J \/7 05 p1/2 6a—1
20 ! — 47y U < : B < da—2 B
| exp ~N(K) [ i) de S VO (oMOPN) T S (o M2
If N < 2Ny, this already implies
272 M b = (N 6a—1 b
A g __ 270 . U < 4da— -
. ;Vz/o exp( = Ai(K) i \/m) dz S ('YOM ) .
If N > 2Ny, then
Ny .y N . N
_4Avoy (T7 du _doy (K du
[ ol [ e < o [ ).
6a—1
and, using e~* < 1/x together with the lower bound f]yl Bd_:( ) > N 1Hp2/2 () M 2a=2)P2/2,
we get
2 2 M Ny 2 2 M N
ﬂz‘/—i/ ) W L
™ m 270 ). U
i=1 70 i=1 p Az(K)le\/m
M
LQ 6a—1 _
S0 e (M ae—2 N) P22

Ai(K)
6a—1 6a—1
= o M5 (’yOMhN)im/2 S (fyOMAlgifQ N)ipz,

6a—1
where the last step uses voM%® < (oM 4a—2 N)*”Q/2 which holds from N < Ns.

Combining the [N7, N] and [0, N7] bounds yields

6a—1 _
noise < (fyo M 4= ) P

as required for the case N < N < No.
Case N > N,. We have M —2¢ < C directly. As in the above case,

2a428—

Qa0 <0 0107 0)
Using the estimate from the previous case,
6a

1 4L —1 _
M7H(MO5Qpa(N) T3 MTH(MOIQpa(No) T3 S (o Mtam2 ;) ™ S C
Finally, as in the N > N case of Section[E.3.4]

278 - N 4 s N d

NNy, (fi)\iK u )d < C.

PR, el [ ) s
Therefore, the bound holds for N > N5 as well.

E.5 NOTE ON THE REGIME 3 > a + 0.5

When 8 > a + 0.5, the assumption ¢ > 1 used in step[d2]no longer holds. In this case, the first drift
term takes a different form:
2(2a428—1)
28—2a—1

Lgsie, (N) = (1 — K yp Mmin(@0.5) N) )
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for a finite horizon and some constant ~. Inserting the max function, we can represent it as a global

function.
2(2a+28-1)
28—2a—1

Laiit; (N) = (max (1 — Ky M™in(@.0-5) N7 0))
Now we explain the behavior of the term. When N 1is asymptotically smaller than

(yo M™in(@.0-5))=1 " the term is asymptotically constant. On N = (o M™(@:0-5)=1 " the term
suddenly drops form constant scale to 0.

For the case o < 0.5 or 5 < 0.5 the valid proxy is

2(2a+28-1)
2B8—2a—1

Lox(N) = (max (1 — k70 Min(@05) 0)) +’y§ M 2-2min(e, 0.5) 4 r—2a+max(0,1-26)

and for the case a > 0.5 and 5 > 0.5 the valid proxy is

2(2a+28—1)

5h 21 2(2a—1)

6a—1
Lox(N) := (max (1 -k~ M°P N, 0)) 4+ M 20F1 (Nyg)~ 2071 442 M+ M2,

These satisfy the implicit integral equation, same as Sections [E.3.4and [E.4.4]
Therefore, for the case a < 0.5, 8 > a4+ 0.5,

2(2a+28-1)
R(M,N,~o) = (max (1— ko M®N, 0)) NEPV-S Y E s SR V) 91)
and for the case a > 0.5 and 8 > 0.5,
Mors a1 ey
R(M,N,~o) = (max (1 — ko MO N, O)) FM 2071 (Nyg) ™ 2aF1 42 M+M 2
92)

F DERIVATION OF THE COMPUTE-OPTIMAL RESULT

Goal. The main goal of this section is to derive compute-optimal scaling laws of signSGD in the
following form:

M= R(Mk0) =
Here R(M, N, 7o) denote the L(0 ) under learning rate -y, and fixed model size M. And we define

the computational budget in terms of FLOPs as f = M N, and consider the optimal model size M*
under fixed §, and optimal scaling of learning rate in the form v = M.

Proof Overview. Substituting the learning rate vy = M ¢ into our loss formula
2(2a+28-1)
R(M, N, ’YO) = 1\4—204-‘,-111;1)((07 1-28) + (Mmin(a,O.5)N,yo)_ 2a—28+1

6a—1 2(2a—1) )
+ M 2a+1 (N'V())_ 2a+1 4 '73 MQ—mln(1,2a)’

we can represent the risk as a function of three variables M, N, e, and two parameters «, 3.

Then for fixed compute § = M N, we substitute M = §* and N = f'~% to express the risk as the
function of three variables f, x, e and two parameters «, (3. Four terms in the loss formula convert to
four terms with exponential of flop f with exponent functions ¢1 to ¢,.

R(f,z,0,0,B) = ja@eos) | -tlweas) | ls@ens) | j—Llaens)
Since each term is a power of f, and assuming | > 1, the loss simplifies to
R(f,x,e) =~ §M@eB) " where h(z,e,a,B8) = min(fy, b, U3, La).
We find the optimal learning rate exponent e* and the optimal model size exponent by

x*,e" = argmaxh(z, e, a, f).

x,e
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As we optimize over two variables x and e, three terms among ¢; to /4 balance on the optimal values
z* and e*.

Then the optimal learning rate is v = M —¢" and the optimal model size is M* = §* . Finally, the
compute-optimal scaling law is

R(M* §/M*,~5) = §hE o),

and h(x*, e*, a, B) will be the compute-optimal slope excluding minus sign.

F.1 COMPUTE-OPTIMAL RESULT FOR MAXIMAL LEARNING RATE

We now discuss the maximal learning rate case deferred from the main text. Note that Paquette et al.
(2024) showed that the maximal learning rate for SGD is vp ~ 1 when o > 1, and 7o = M (172
when o < %

Now, we discuss the maximal learning rate for signSGD. Because the noise term is
42 M 2—min(1,20) stability requires

,yg M27min(1, 2a) S 1.
Otherwise, the signSGD noise term explodes as M grows. This condition is satisfied by choosing

Y = M71+min(a, 0.5)

)

which ensures 12 M 2~™in(1:2¢) = 1 while the other terms still decay appropriately.

For oo < 0.5, the term
. 2(2a+25-1) 2(2a428-1)
(Mmln(a70-5)N,yO)_ 20—2B8+1 — (M—(1—2a) N)_ 2a—28+1

decreases with IV but increases with M. However, under a fixed compute budget f = M N, one can
allocate resources so that this term does not cause an exploding loss; hence we do not classify it as
unstable.

Thus, the maximal learning rate for signSGD is

o = ]\4—1—‘,-11“1in((x7 0.5) ]

In this case, however, we obtain R(M, N,~y) ~ 1, so the slope of the compute-optimal curve is
always zero.

F.2 DERIVATION OF COMPUTE-OPTIMAL RESULT FOR OPTIMAL LEARNING RATE

We assume « + [ > 0.5 throughout, even for the case where it is not specified.

F2.1 a> 0.5, 8 < 0.5 (PHASE Aa)

We start from
_2(2a428-1)
R(M,N,v) = (Ml/QN'yO) 20+1-28 4 pf—(2a+25-1) _|_%2) M.
Substitute ;
= Mﬁe N = — M = z
Yo ) Ma f )
so that, up to constant factors,

R = fmax{fl (2), L2(x), £3(x) }

)

where () =— (204281,
_ 22a+2p-1)
bo(z) = 2a+1-28 (
l3(x) = (1 - 2¢) .

1
2

8

2(2a 426 — 1)
)  2a+1-28 "
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We minimize the convex, piecewise—linear function f(x,e) = max; {;(x,e) over z € (0,1) and
e € R. By convexity, any interior minimizer must occur at a kink where at least two lines are active.
In our regime o + 8 > 0.5 and 8 < « + 0.5, the only admissible triple intersection is {1, {2, {3}.
Solving ¢1 = ¢35 and {5 = {3 yields

1 2+ 25 —1

" =a+p, =T h* =bi(z") = la(2") = L3(z”) = a1

To verify that this kink is the global minimizer, note first that z* € (0,1) when a > 0.5, hence
it is interior. Next, the subgradient optimality condition for convex max-of-lines problems requires
(0,0) € Of (z*,e*). At (z*, *) the active lines have slopes that straddle zero in both coordinates:

_ C2Q2a+26-1)7, B .
001 = —(2a426-1) <0, 0Oxls = S T (e —|—§) >0, Oxlz =1-2¢" =1-2(a+p) <0,
and 220+ 28 — 1)
a+26 —
8661 0, 8562 21— 25 x>0, 8€€3 " <0

Since 0 lies in the convex hull of the active slopes in both x and e, we have (0,0) € df(z*, e*), so
the interior triple intersection is the global minimizer; no boundary check is needed.

200+28—-1
70:M7(a+ﬁ), M* = fl/(20¢+1)7 R(M*,K{L*) = ffﬁ

F2.2 «a<0.5, 8<0.5(PHASE AbD)

We start from
_2(20+28-1)
R(M, N,70) = (M Np) ™ 33139 \=0326-1) o pr22e,
Substitute ;
’YOZM_ea NZMﬂ M:fma

so that, up to constant factors,
R = fmax{fl(x)»fz(w)vfs(w)}

)

where
li(x) == (2a+28—-1)z,

22a+28-1) 22a4+28-1)
V4 = — —e—1 _ -~ "= 7
2(7) 2a+1-283 (a—e-1)x 2a+1-28
l3(z) = (2 — 200 — 2¢) .
We minimize the convex, piecewise—linear function f(z,e) = max; ¢;(x,e) over z € (0,1) and

e € R. Under our standing assumptions o + 8 > 0.5 and S < « + 0.5, the only admissible triple
intersection is {1, ¢2, ¢3}. Solving ¢; = {3 and £y = {3 gives

2a0+28 -1

G*ZB‘F%a .Z‘*:%, h*zgl(‘r*)ZEQ(x*):€3(I*): 2

To certify optimality, note that z* € (0, 1) (since z* = %) and check the subgradient condition
(0,0) € Of (x*, e*). At (z*, e*) the active lines have slopes straddling zero in both coordinates:

- C2Qa+28-1), - .
and 220+ 28 — 1)
o+ B * 9%
(9561 = 0, 3ef2 == m x> 07 8663 = -2z <0.

Hence 0 lies in the convex hull of the active slopes in both variables, so the interior kink (z*, €*) is
the global minimizer; no boundary check is required.

70:_]\47(%0.5)7 M* = f1/27 R(M*,%) _ f,%
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F.2.3 «a<0.5, 0.5 <8< a+0.5(PHASE Ac)

We start from
_2Q2a+28-1)
R(M7 N, ’70) = (MO[N’}/O) 2a+1-28 4 M2 +’Y§ M 220
Substitute

SO that, up to constant faCtOI‘S,

R = fmax{fl (2),L2(x), £3(x) }

)

where
/(z) = —2ax,
220428 —1) 2(20+ 28 — 1)
ba(w) = 2a+1-283 (O‘ € 1)”5 2a+1-28 "

l3(z) = (2 — 2a — 2e) z.

We minimize the convex, piecewise-linear objective f(z,e) = max; ¢;(x,e) over z € (0,1) and
e € R. In the regime v + 8 > 0.5 and 8 < a + 0.5 (with @ < 0.5 < (3), the only admissible triple
intersection is {1, {2, ¢3}. Solving ¢; = {3 and {5 = {3 yields

20+ 25 -1

200(2a+28-1)

er=1 2= “Jaf f6atdi_2 h* =bi(z") = la(2") = L3(z") =

One checks that the denominator is positive in this regime and exceeds the positive numerator 2c +
28 — 1, hence z* € (0, 1).

Interior optimality. At (x*, e*) the active lines’ slopes straddle zero in both coordinates:

2(20+ 28 — 1)

(99561:—2Oé<07 Oplo = 20&+1—2ﬂ

(e"+1—a) >0, Oyl =2—-2a—2¢"=—-2a <0,

and

22a+28-1)
2a0+1—-23

Thus (0,0) € 0f(z*, e*) and, with 2* € (0, 1), the interior kink is the global minimizer; no bound-

ary check is required.

0.l =0, Ocly = >0, Ol = —22* < 0.

2a428—1 2a (2a428-1)

-1 * — ST AoBi6aTii—o * — T —iahi6orii—o
Yo =M , M* =< f74aﬁ+5a+45—2’ R(M ’W[L*) = f —Zaf+6a+if—2

F2.4 a>05, 0.5 <8< a+ 0.5 (PHASE Ba)

We start from

2(2a428-1) 6 2(2a—1)

R(M,N,~0) = (MY2Nno) ™ 577 4 (M52 Nyg) ™ 0 4 M2 42 M.
Substitute vy = M ¢, N = /M, M = §*. Then, up to f-independent factors,

R = fmaxizl,mA Zi(l’ve)7

where
b(z) = — 20z,
220428 -1) 2(2a +28 - 1)
blo) =T o (+)e - ST
220 -1) 2(2a — 1)
l3(x) = (We_l)x T 20+1

ly(z) = (1 —2e) .
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We minimize the convex, piecewise-linear function f(x,e) = max; ¢;(x,e) over z € (0,1), e €
R. In the regime o > 0.5, 8 > 0.5, the only admissible interior kink with three active lines is
{la,05,£04}. Solving {5 = ¢4 and {3 = {4 yields
20+ 48 — 1 8
= ¥ = , h* =tlo(x*,e*) = l3(x™, e*) = Ly(a™,e*) =
15 P 22", €") = Ly(a”, €") = La(a", €")

200426 -1
200+ 28

*

Interior optimality. First, x* € (0,1) since a, 8 > 0.5. Second, the subgradient condition (0,0) €
Of (x*, e*) holds because the active slopes straddle zero in both variables:

Ouly = M(e*+%) >0, Opfs=220Der 1 <0, 9,0, =1-2" = 1220228 <,

2a+1—27 2a+1 € 28
and
by = 22082020 07 >0, 03 =282V 0" >0, Dby =—22" <0.

Hence (z*, e*) is the global minimizer among interior points. It remains to exclude ¢; at (z*, e*):
200+28 -1

(e 6 S - at B = h*a

a+p 2(a+ )

since 4af — 2a — 26+ 1 = 4(a — %)(ﬂ — %) > 0 for o, 8 > 0.5. Therefore the triple intersection
{l2, 43,04} is the global optimum.

0 (z*) = —2

_ 2044p-1 B _ 2a+42p-1
=M 1, M = jatp, R(M*,%) =~ 2a+28
F2.5 a<0.5, 8> a+ 0.5 (PHASE Ad)
Recall the loss formula (91))
2(2a+28—1)

28—2a—1

R(M,N,'yo):(max(l—ﬁ'yoMo‘N,O)) + 2 M2 4 M2

Note that the drift term vanishes at N = (yo M*) L.

Let 79 = M —¢. Note that because of the approximation error M ~2¢, there is no gain from setting e
bigger than 1. So we will only consider the case e < 1. In that case, loss is a constant scale before
N = M°=2, and it drops to the scale of M ~2¢—2a+2,

Since a constant scale loss cannot be compute-optimal, the loss M ~2¢722%2 at N =~ M*~* will be
a candidate for the compute-optimal point. In that case f = M N = M!'T¢~% holds and it leads to

1 . —2e—2a+2
M = §TFe== . So the loss M ~2¢722%2 has the size f~ 1+e-=
Since e = 1 minimizes %, 7o = M~ is the optimal learning rate. This leads to the follow-

ing result.

R U S s

F.2.6 «a> 0.5, 8> a+ 0.5 (PHASE Bb)
Recall the loss formula (92))

= 6a—1 2(2a—1)
+M " 20F1 (Nryg) ™ 20FT 4§ M+M >,

R(M,N,~p) = (max (1 — K7 MO‘5N,O))

Note that the first term vanishes at N ~ (yo M®)~!. At that point second term becomes
6a—1 2(2a—1) e
M~ 2a+1 (N70)7 20+1 < M~ 2at1.

As we optimize over three parameters N, M, 7y, and one constraint f = M N, we have two degrees
of freedom. So this means three terms may balance together at the compute-optimal point.
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The first possible case is the balance of the first three terms, and in this case, ng =M TagT and

N = (o M®)~" must hold. Here, the loss is M~ %37 and f = MN = M a+1 holds, so the loss is

f AT,

The second possible case is the balance of the last three terms, and after solving the equations, the
2a

loss is f 2a+T.

The first case has a steeper decay, so it is the compute-optimal. This leads to the following result.

6a+1 2a+1 f 4o
B . 20kl . o
No =M 4otz M* = flatl, R(M M7> SRy

F.3 DISCUSSION FOR THE SUBOPTIMAL LEARNING RATE

In this section, we calculate the compute-optimal exponent for a general size of learning rate in
the form of vy = M ~°. We will focus on Phase Aa. In that phase, the maximal learning rate was
70 = M~1/2 and optimal learning rate was 7% = M~ (@+5),

In this section, we will calculate the compute-optimal exponent for general e > 1/2.

Recall that we have the following loss formula for Phase Aa.

_ 2(20428-1)
R(M,N,yo) = (MY2Nro) ™ 204125 4 p—(ot26-1) | 42 ),

| 2(2a+28-1)
For the case 1/2 < e < (a + 8), (M/2N~y)~ 2e+1-25 " and 73 M are dominant terms. Substi-

tuting o = M ~¢ and balancing them, we get N = MGaTs=)(e=1/2) Aq f = M N holds, it leads

t
© o ___(2e—1)(2a+2B-1)
M* = (=) e-1/2)+1) R(M*’MLH%) < f Za(Ze-1)+(2a+25-1)

 2(20+28-1)
For the case e > (o + f3), (]V[l/zN’yo) 20+1-26  gpd M~ (22+26-1) e dominant terms. Sub-

stituting 79 = M ~° and balancing them, we get N = M*~5+¢ Asf= M N holds, it leads to

x _ 1/(a—Bretl) . _ ol
M* = § . R(M*, 5 y) = fa—prerL,

In Figure we provide a graph of the compute-optimal exponent with respect to e of vg = M ~¢
for (o, ) = (0.6,0.4). As the graph is continuous, the absolute value of the compute-optimal
exponent gradually decreases as we move away from the optimal choice. Also, we can observe that
the degradation is smaller for the learning rates with larger e in 7o = M ~° than that of the optimal
learning rate. So in terms of tuning the learning rate, we may aggressively set a high e in vy = M ~°
for the initial attempt, and gradually decrease the e for later attempts.

G DERIVATION FOR THE STABLE-DECAY SCHEDULING

We set the learning rate as v, = 7o f (k). Previously, we considered the constant-learning—rate case
(f = 1). In this section, we start with a general decaying learning rate by taking f to be a decreasing
function, and then substitute the stable-decay scheduling. Throughout, for simplicity, we assume
a > 0.5 and B < 0.5 (Phase Aa).

Recall the implicit integral equation (26):

M N
_ 1/2 2 ) _4\ivo f(w)
L(N) = |HY?w, | —I—;rl(O) eXp( = /O L(u)du) (93)
2% <, [V e [N F(w)
+7T0;V/0 exp(f < v du)f(z)zdz. (94)
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Figure 22: Compute-optimal exponent with respect to ¢ of 7o = M€ for (o, ) = (0.6,0.4).

Colored line shows the compute-optimal exponent x in the formula R(]V[ * Tﬁ*v ,YO) ~ f*.

Also recall Equation [27)and [28]

M Ay o~ _fW) du 272 M N _4Niv N f(u) du
Ldrift N) = 5 (0 77 0 L(u) Lnoise N) = <10 ‘/z/ ‘” # L(u) 2d )
()= Yri(0)e =Ry VI p(2) d
A A (95)
L(N) _ ||H1/21UJ_||2 -‘rLdn&(N) +LHOISe(N). (96)
Recall also the drift/approximation transformation (33):
4 _ 204251
Ld“ﬁ(N)—l—HHl/QwLHQ = M7(2a+2ﬁfl) + (M0'5QL(N)) 2a ’
4 z
Qr(z) := o ) du.
T Jo /L(u)
Hence,
204281
L(N) = M~Cet2070 4 (MOSQL(N))™ 2a 97)
M N N
273 / ax f(w) 2
+ — > V exp(— 10 du)f(z) dz. (98)
T ; 0 » /L(u)
204281
Remark 2 (Early-iteration proxy). In early iterations the drift term (M 95QL(N )) 2 dom-
2a+28—1
inates. Solving L(N) =~ (M?Q.(N)) 2 yields
_2(2a+28-1) N
L(N) = (M%°yF(N)) 2a+1-25 F(N) ::/ f(u) du.
0

Now we move on to stable-decay scheduling.

Stable-decay schedule. We henceforth consider the following stable-decay learning-rate sched-
ule:

1, k < pN,

F(k) = I pce (0,1), 7> 0.
(1+7(k—pN)) °, k>pN,

That is, the learning rate is constant for the first p/V steps and then decays polynomially with expo-

nent ¢ over the remaining (1 — p) N steps.

Remark 3. Note that f depends on the total training steps N. To be precise, we have to represent it
as f, but for simplicity, we write it as f throughout the analysis.

First, we will make an upper bound on the noise term under stable-decay scheduling.
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G.1 UPPER BOUND OF THE NOISE TERM

Fix p < ¢ < 1 close to 1 and split L™¢(N) as

o M qN
Lnoise(N) — % Z Vz/ exp 4/\1’Yo / \/7 f(z)2 dz
™ “ 0
i=1
M
420 >V /N eXp e / f(Z)2 dz =: T<qn + Toqn-
T = N \/7

Bounding 7~ ,n. Note that f(N) =~ f(z) holds for N < z < N. So

/quXp 4M°/ F f(z)de:f(N)Q/quxp 4“0/ F dz

For ¢ sufficiently close to 1, there exist constants cg, ¢; > 0 such that for gN < z < N

LR VT T WP V1%
N L ' '

“ Tw (V)

Therefore,

oo < 2% AN ZV / eXp(fuﬁo o N _LZ()]J;()N)> &

92 M 7 /L(N
:?ﬂmﬁﬁmc(ﬂﬁv) oI ZA

~7 f(N)L Tr(dlag 1/2) Yo f(N)\/L MO 5

To summarize, we have

Toon S Y0 f(N)VL(N)M® = v MY2N=¢\/L
Bounding 7<,n. LetQ(z, N) 470 /. N _1 (“) du Then

292 & N 03, (R) [N L gy
T<yn = % Z(w:KaKUz)/ e (K) [ V() f(Z)2dZ
= 0

2 2 M qN —
_ ﬂZTr K Ku,sz)/ efAi(K)Q(z,N)f(Z)2dz

0

2,‘/ qN M
0/ ZTr K, Ku;w] )e™ (K)Q(zN)f( )2d

2 qN _
= i/ Tr(KUKZe‘Ai(K)Q(z’N)uiwiT) f(2)%dz
0

™ :
=1

2~2 raN _
= ﬂ/ Tr(K,Ke KQEN) £(2)2d:.
0

™

Using arcsin 2 ~ x approximation on K, = arcsin(diag(K)~/? - K - diag(K)~'/?), we get

Tr(K,Ke KN = Ty(K,SH/ 2 K1Q=N) [1/28T)
= Tr(HY2STK,SHY2e K1Q=N) & Ty(K e K1QEN),
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Using same contour representation method and deterministic approximation with Section [E.2.2] we
get
qN

_ 27’}/8 57 -K.1Q(z,N) 2
Tegn ~ - Tr(Ke ) f(2)7dz
0
9~2 falN -1 —
= i/ Tr <% Zem QN (K — 1) le) f(2)*dz
T Jo 27t Jp,

2’)’3 a —1 2~ paQ(z,N) 2
Tr 37 p zje Pd R(z1)dz ) f(2)%dz
i
2’)’0 qN - 2 —paQ(z,N)z 2
—M zle d "R(z1)dz | f(2)*d=

Adopting the method in|Paquette et al.|(2024)) same as Section we get

—1
Tr ( f e PaQENAR(2) dzl) ~ (paQ(z, N)) 72/ = (MY2Q(z, N))~2FH/ (),
T

21
It leads to
2
Tep = 0 / (MY/2Q(z, NY) 41/ (2)2a
qN
<R [T Qe ) fa)2
0
Finally,
gN
I [ Qe ) (22
0
N 2 N 2
< /200 1/ () i f(z) 0 A1/ 20) pp /) I f(z)
0 0 (fN f(w) du)2-1/(20) o (fN f(u) du)2-1/(20)
Z  \/L(u) Z  \/L(u)
1/(2a) 4 r1/(4 PN 1
< Yo M /(4er) dz
0o (BR=2 f F(u)du)2=1/(2e)
\/L(0) w/ pN
4 /200 1 o) /qN f(Z)2
oN \/;quf w)du)2—1/(22)
a PN 1 o gN f P 2
S’Yé/(z )Ml/(4a)/o (prz 4N )2-1/(22) dz—i—wé/@ /e /N ( Nl“()z—l/(za)
\/Lm) L(pN) PR ONVLeN)
~ A2/ @) /) ) (( )1/ (2e) =1 _ N7 1/@a-1
~ M (pN + ) )
\/ pN L(pN)
n 71/(2a)J\41/(4a)Nrmam(l—Qc,o)( N'Te )/ (2a) =2
’ L(pN)
5,yé/(m)Ml/(m)N_(l_c)(1_1/(2a))L(pN)(1/2 1/(4a)) <~ /(2a)M1/(4a)N (1=c)(1-1/(20))

99)

So we have

Tegn S 1/<2a)M1/(4a)N (1-)(1-1/(2))

G.2 COMBINING TERMS

Combining the bounds,
2(2a+28-1)

L(N) 5 M7(2a+2ﬁ71) + (MO.E),_YON) 20+1—-28 _|_,YOMO 5N / _|_,y2a M40tN (1— c)(l—*).
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2(2a+28-1)
We replaced the drift part with (M 05~y N ) "~ 2a+1-28  temporarily based on Remark and justify
this on our selected parameters in Remark 4] Solving the inequality asymptotically yields

2(2a+2p-1)
L(N) S M—(2a+2,3—1) + (M0.5,70N) 2a+1-28 +’70MN 2@_"_72@ M406N (1— C)(lfi)

Finally, substituting v = M ¢ and N = f/M yields
_ 2(20428-1)
R(M,§) < M~@et28-1) 4 <M—e—0.5 f) 2a+1-2F | ) rl42e—2e f2e
+ Mia3a+(1-0 (1-30) §~(-0) (1= 55)
Optimizing over M gives a bound of the form R(M*,f) < f~"(@5:¢€) and we then optimize over

¢, e to maximize h(a, 3, ¢, e).

G.3 OPTIMIZING OVER ¢, e TO MAXIMIZE h(a, 8, ¢, €)

Assume throughout a > 0.5, 5 < 0.5, and 2a + 28 > 1. Consider the upper bound
_200428-1)
Ry (M, f) = M—(2a+25_1)+<M_e—045 f) S f‘2°+M4a sat1-o(1-35) - (134

For large §, define
Ruin(f) := min Ry (M, ).

We show Rpnin(f) ~ " (@F) with h*(a,8) < 0, and identify ¢*(a, ), e*(a, 3), and M =
fm (@f),

Logarithmic reduction to exponent balancing

Let M = {™ with m € R. Writing each term as f * gives

Li(m) = —(2a+28—1)m (100)
2(2a 428 — 1) 22a+25-1)
Ly(m,e) = — 501127 T 201128 m(e+0.5), (101)
Li(m,c,e) = m(1l+2c— 2e) — 2, (102)
1 1 1
La(m,c,e) = (4a2a+(10)(12a)>(10)(12a>. (103)

Thus minimizing Ry is equivalent to

min maX{Ll,LQ,Lg,L4}. (104)
m,e€R, 0<c<1

Introduce h € R and rewrite as
min h st Liy(m,ce) <h(i=1,2,3,4), 0<c<]l1. (105)

m,c,e,h
At an interior optimum (0 < ¢ < 1), constraints equalize:
Li=Ly=Ls=1L4y=h. (106)

Solving the equality yields

o —8af +2a+28—-1 (107)
1602 +8aB —6a—2B8 41"

8a? + 1608 —4a — 48 +1
- 108
¢ 204a — 1) ’ (108)

204 — 1)
' 109
" T 60 £ 8af+2a—26 1" (109)

v 2(4a-1)(2a+28-1)
= 1602 +8af +2a — 26— 1" (110)
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Feasibility. Since o > 0.5, denominators are positive. The condition ¢* > 0 is equivalent to
200 — 1
24 — 1)
which is stricter than 8 < 0.5. Moreover, ¢* < 1 holds automatically for 5 > 0. Hence, the interior

solution is feasible whenever

—8af+2a+28-1 >0 = < = B*(«),

| 05-a <8 <B(a) | wih B*(a):%. (111)

In this band,

M =",  Run(f) =~ "
with m*, h* as in (109)—(110). Note m* > 0 and h* < 0.
Result As § — 0o, the choice M = §™ with

. 2(4a — 1)

1602 +8af +2a—26 -1’
. —Baf+2a+28-1

1602 + 8aff — 6 — 2B+ 17

. 8a?+16ap —4a—4B+1
= 2(4a — 1) ’

24— 1)(2a + 26 — 1)

1602+ 8af + 20— 28 — 1
is optimal for & > 0.5, 0.5 — o < 8 < B*(«), where

200 — 1
2(4a —1)°
This choice minimizes max{ L1, Lo, L3, L4} in . Consequently,

Ruin(f) = §¥ @A with h*(a, B) < 0.

Remark 4 (Justification on drift term conversion). Note that M = " and N = §1=*" holds for
the selected parameters.

m

h =

B*(a) =

For pN iterations the stable-decay scheduling behaves same as the constant learning rate. Let N
be the crossover point in constant learning rate. Note that N 2 Ny holds, and N is asymptotically
strictly bigger than Ny. So L(u) < 42 M + M 2228+ holds for u > Np.

Also for selected vo = M ¢, VM > M~22=28+1 holds.
So we have L(u) < 42 M for u > Np.

2a+28—1
204281 N T 2
(M0.5QL(N))* S MO 5470 f(u) du

T Jo \/L(u)

_ 2a+428-1

4 pN 2c
Yo f(u) du
_ 20+28-1

204281
N -7 2
~ | yoM®5 1 du )
No ’ng
_ 2a+28-1 204-28—1
~ (pN — Np) 20 ~N~ 2a
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And for selected parameters M = fM"°, N = §1=M" ¢* and 49 = M ¢ following holds.

2a+25 1
N~ 2a  <A2MN2

 20428-1 .
As (M*PQL(N)) 2 < 42MN~2¢ | replacing the drift term with a proxy does not make
the problem.

G.4 ANALYSIS FOR WARMUP-STABLE-DECAY

Analysis for Warmup-stable-decay is almost similar to analysis for stable-decay. Only the difference
occurs in the step of (99), but the final bound is the same. We provide the corresponding analysis to
the procedure of (99) at the end of this subsection. So the bound of loss for warmup-stable-decay is
the same as the stable-decay. Finally, the bound
. 2(4a—1)(2a+28-1)
Rf(M*, f/M*, (M*)—e ) 5 f_ 162 +8af+2a—28—1 (112)

introduced in (T3) also holds for warmup-stable-decay.
For the warmup-stable-decay schedule, we set the learning rate to v, = -y f (k) with

k/U)t, k S W,
flk)=4(1, wy < k < pN, (113)

c

(1+T(k_pN)>_a k>pNa

where p,c € (0,1) and 7 > 0. wy is the threshold for the warmup stage, and we assume that w, is
smaller than pN /2.

Following is the corresponding analysis to the procedure of (99).

qN
B [T Qe )2 (02
0

o pN f )2 o qN f 2)2
< /(20 1/ ) e (2) dx A2 )Ml/(4a> e ( )
0 f _fw) du)2—1/(20) f _fw) w)2—1/(20)
\/L(u) v L(u)
W
1/(20) 1/ (40) 1
<% MR /0 ( pN/2 f f(u)du)?~ 1/(2a) dz
\/L(0) \/L(pN pN
+ 1/(2(¥)M1/(40¢) N 1 dz
Yo " (prz + 1 fN f(u)du)?—1/(20)
" NVLO) L(pN) /PN
1/(2a)M1/(4a)/ N f(2)? ds
2-1/(2a)
TPN qu fw)du)
< 1/(2Q)M1/(4a) o 1 d 1/(20¢)M1/(4O¢) PN 1
Yo 0 (pN/2 L N )2_1/(2(1) Z+ 7 " (pN—z 4 NI )2 1/(2a)
V/L(0) L(pN) " WL V/L(eN)
1/(2) 7 r1/(4ar) N f(z )
+’Yo M Nl—c 2 1/(2 )d
W Jiem)

< @0 g1/ Ga0) g (PNI2 212
L(0)

o Nl—c Nl—c B
+73/(2 ) p L/ (de) L(0)(( )1/(2a) 1 — (pN —wy + )1/(2a) 1)

V'L L(pN)
)1/(204)72
VL(pN)

64

2

+ ,Yé/(Qa)Ml/Ma)Nmax(l 2c, O)(



Under review as a conference paper at ICLR 2026

1
S %

< /200 1/ (d0) (1) 11/ (20)

/(20) g1/ (4e) pr=(1-1/(20)) 73/(204)Ml/(4a)N—(l—(:)(l—l/(Qa))L(pN)(1/2—1/(4@))

G.5 SCHEDULING ON SGD

In this subsection, we explain that the scheduling does not lift the compute-optimal exponent of
SGD in the Phase I and Phase II. Assume a bounded scheduling function f, and define F'(k) =

k
fo f(z)dz.
Ferbach et al.| (2025)) proved

Ry(M, N, ) 2 M™200mmx0120) (o o((V))~(2020-1)/(20) | p=1 (5, () ~1/(2)

for the risk Ry(M, N, o) with general bounded scheduling function f.
Since f is bounded, we have F'(N) < N. Therefore,

Ry(M,N, o) 2 M—2etmex(QI=20) 4 (o ()~ Ge28-0/C0) 4 M= (g (V) 711/ )
> M72a+max(0,172ﬁ) + (VON)7(2a+2B71)/(2a) + Mfl(’YON),lJrl/(Qa)
Z Rl(Ma Na70)7

where Ry (M, N,~p) is the loss under a constant schedule f = 1.

Thus, scheduling does not improve the compute-optimal exponent of SGD in Phase I and Phase II.

H ANALYSIS FOR LINEAR DECAYING SCHEDULING AND COSINE
SCHEDULING

H.1 ANALYSIS FOR LINEAR DECAYING SCHEDULING

In this section, we analyze the following linear decaying scheduling.

f(t):l—(l—jN)]if (114)

1 .
It decays from 1 to TN linearly.

We will focus on Phase Aa, and follow a similar procedure to stable-decay scheduling.

Note that we have to handle the following equation, where Q,(z) := 22 [~ G

v/ L(u)

_204+2B71
L(N) ;M—(2a+2ﬁ—1) + (MO'5QL(N)) 2a

5 M N Nt ,
2B [ s ) e

20+28—1

In early iterations the drift term (M%5Q.(N)) 2 dominates. Solving L(N) =
204261
(M°PQL(N)) 2o yields
_ 2(2a+28-1) N
L(N) = (M%°yF(N)) 2a+1-25 F(N) ::/ f(u) du.
0

For linear decaying scheduling F(N) ~ N holds, so the drift term becomes
2(2a+28-1)
(MO'5’YON)_m~
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Now we move to the noise term. We split the noise term L“"ise(N ) as

M N—-+VN
2 2
fYO V eXp 4/\ ’70

%
(O 0 / \/ L
= 1
2’Yo Z / 4 / 2
V exp l’yo f(Z) dZ = T< N—\/N +T N—\/N .
g \/7 <( ) >( )

Lnoise(N) _ f(2)2 dz

Bounding 7' /). Note that f(N) = f(2) holds for (N — VN) < z< N.So

N N N N

/ exp( 4)\170 f(u) d )f(2)2 dz = f(N)Q/ eXp(_4)\;’Yo / f(u) du) dz.
(N—VN) VL (N—VN) z

There exist constants ¢, ¢; > 0 such that for (N —v/N) < 2z < N

LSV, I (O RPN L T L1}

> G

L(N) L(u) L(N)
Therefore,
zit v (e, (V=2
Tsgn < f(N ; /N W)e p( €0 ) ) 2
_ 293 o~ VI
= gy = VI

=1
~ 0 f(N) /L(N) Tr(diag(K)"/?) = 0 f(N) /L(N) M°®.

To summarize, we have
Tonovw S 0 F(N)VLN) M*® = 4o MYV2NTY2/L(N).
. N f(u
Bounding 7_ /). LetQ(z,N) 470 Ik \}%

By the same procedure as the stable-decaying case, we can get.

Ty~ 20 [ (rvqee, w2
<(N-VN) Y~ T o % z)az

(N=VN)
< g/ [ Qe N e p 2
0

And we have

(N—=V'N)
B [T QU )y o)
0

— /@) 3 r1/(40) (N=VN) f(2)?
~ 7 "N f(u) 2-1/(2
0 (). LA du)2-1/(2)

Z  \/L(u)

3 (115)
< 71/(201)‘7\41/(4@ (N=VN) f(2)?
0 0 (sz fgz) du)?~ 1/(2a)
/200 1/ () /(N_\/N) f(2)?
0 0 f f du 2—1/(2a)

Let the integral term be Z. First, we use the change of variables z = N — u, which transforms
the integration interval [0, N — +/N] into [v/N, N]. In the regime of large N, the linear schedule
f(N — u) can be approximated as

f(N—u):l—(l—jN)N];u%1N(1+\/UN>. (116)
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Using this approximation, we evaluate the inner integral in the denominator:

N u
1 v U U
f(s)ds%/ (1+)dv=(1—|—). (117)
N—u o VN VN VN 2V N
Substituting these terms back into Z, we obtain
[ ()]
D)
T~ / VN VN du. (118)

o (1 r)f_i

To decouple the dependency on N, we apply the scaling u = /Ny, which implies du = v/ Ndy.
The integration limits change from [v/N, N] to [1, v/N]. The integral is then reformulated as

Iz/\/ﬁ v +y)° VN dy
1 ((

L
2

2 «@
1+y/2)) (119)

/ (1+y)

f ~3a (1+y/2)%

The asymptotic behavior is determined by the convergence of the remaining integral. As y — oo,
the integrand behaves as

92 2-2(2—5)

2L Q,LCX
y* e (y/2)7 2

Integrating this term from 1 to /N leads to the following cases depending on the exponent é -2

= ya2, (120)

) (VN)a=!=N=—7 iff-2>-1= a<l,
INTX In(vN) ~InN ifl-2=-1= a=1, (121)
N const ifé—2<—1:>a>1.

Simplifying the final exponents, we get the asymptotic order:

10 Ni—l) if05<a<l,

7~10 N*%InN) ifa=1, (122)
16) N*%> ifa>1.
For 0.5 < o < 1, we have
T S 20/ M1/ N =1/ e,

For 0.5 < a < 1, combining the bounds for the drift term and noise term, we have

2(20+28-1) 1
L(N) < M~ (Rat28-1) 4 (M0-570N) 20128 4 4o MOS N2 /7 _’_,720( M4aN (1-55)

In intersection of Area Aa* and 0.5 < a < 1, with choice of e* in vy = M —¢" and ¢* we used for
stable-decaying scheduling, we have

2(2a+2p-1) .
L(N) 5 M7(2a+2671) + (MO‘S'YON) 2a+1-28 +,)/0]\4'0 SN—< /T, +,Yga M4Ol N—(l—c ) (1—

So in intersection of Area Aa* and 0.5 < o < 1, we have

) __2(4a—1)(2a+26-1)
Ry (M, F/M*, (M7)7)  f oo™ oi2=25-1, (123)

Therefore, linear decaying scheduling has an advantage compared to constant learning rate in the
intersection of Area Aa* and 0.5 < o < 1.
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H.2 ANALYSIS FOR COSINE SCHEDULING

In this section, we analyze the following cosine scheduling.

1+1/N 1-1/N
+2/ T 2/ cos(lt) (124)

£ = x

It decays from 1 to <.

We will focus on Phase Aa, and follow a similar procedure to stable-decay scheduling.
f (u

Note that we have to handle the following equation, where Q,(z) := 47” fo du.
_204+2B71
L(N) EM_(ZOH_QB_D + (MO'5QL(N)) 2a
+ MiV/NeXp 4)”’“/ du f(z)de
T = 0 VL
_ 2a+428-1
In early iterations the drift term (M%SQL(N)) 2a dominates. Solving L(N) =
204231
(MO5QL(N)) 200 yields
_2(2a+28-1) N
L(N) = (M%°yF(N)) 2a+1-25 F(N) ;:/ f(u)du
0
2(2a+28—1)

For cosine scheduling F'(N') =~ N holds, so the drift term becomes (M%5yoN) ~ 20+1-25

Now we move to the noise term. We split the noise term L“"ise(N ) as

-VN

M
noise _“io g N 4)\1% 2
ose(v) = 28 S, exp(~ u) (=) d
T 0 VL
298 < N ax
+— V}/ exp ’7"/ f( V2dz=:T _
T ; NN / <v—vm) T Tsv-vR)

Bounding 7' _ /). Note that f(N) =~ f(2) holds for (N — V/N) < z< N.So

/(;V B [ oo ) SN <§m> expf -0 [ T ).

There exist constants cg, ¢; > 0 such that for (N —v/N) < 2z < N

WD) VI (N0

L(N) L(u) L(N)
Therefore,
27§ o . (N =2)f(N)

M

_ 27 TVIN) - Y
NTOJC(N)QZZZWWNVOJC(N) L(N)Z)T
~ 70 f(N) V/L(N) Tr(diag(K)'/?) = 7o f(N) v/L(N) M*®.

To summarize, we have

T>(N V) S 'YOf /I, MO5_ Y M1/2N /T,
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Bounding T<(N—\/N)' Let Q(z,N) 4“/0 fN f(u)

By the same procedure as the stable-decaying case, we can get.

N-VN
Toon = 200 [0 (e, Ny 21/ 2
S(N7 N) ~ T 0 ’
(N=VR)

< A2 M) / (Q(z, V)2V £(2)2 g
0

And we have

(N—=V'N)
B [T QU )y o)
0

_ 7é/(zoz)]wu(m) /(N_\/N) f(2)?
0 () Tl du)2=1/ )
(N—V) f(z)2 (125)
< 71/(2Q)M1/(4‘X) dz
B o (fN ) g )2-1/(20)
= oot
/200 1/ () /(N_\/N) [(2)?
0 0 f f du 2—1/(2a)

Let the integral term be Z. First, we use the change of variables z = N — u, which transforms the
integration interval [0, N — v/N] into [v/N, N]. The integral can be written as:

I/N SN —z)? —_da. (126)
(fo N —v dv) 2o

We evaluate the asymptotic magnitude of Z by analyzing the dominant contributions from the lower
limit (z ~ v/N) and the upper limit (z ~ N).

Contribution near the lower limit (zx ~ +/N): In the region where x is small, the learning rate
approaches its minimum, f(N —z) ~ % Consequently, the cumulative sum scales linearly with the

inverse of IV, i.e., fom J(N —v)dv =~ . Substituting these approximations, the integrand becomes:

Y N2 N%Ee g es = Noagp 2t (127)
(z/N)?>2a

Integrating this term with respect to x near the lower limit v/N:

N-3= [x—Hi} ~ N-25(VN) 1H2s = N~ N-+is, (128)

z=vN
Simplifying the exponents yields the scaling N ~3da,
Contribution near the upper limit (x ~ N): In the region where x is large, f(N — z) ~ O(1) and

the cumulative sum scales as O(z). The integrand is dominated by 2= (2-2%), Integrating this term
near the upper limit N:

=N
[x**ﬁ} ~ NI (129)

The asymptotic behavior of 7 is determined by the maximum of these two contributions. The con-

tribution from the lower limit dominates when —% — 7= > —1+ 5, which corresponds to a > 1.5.

Otherwise, the contribution from the upper limit dominates. Thus,

(130)

7o N-2"7« ifa> 1.5,
TNt if0.5<a< 1.5.
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For 0.5 < a < 1.5, we have

T<(N \ﬁ) 1/(2<Y)M1/(4a)N (1-1/(20))
For 0.5 < a < 1.5, combining the bounds for the drift term and noise term, we have

. 2(2a428-1) 1
L(N) S ]\/j—(2a+25—1) + (AJOO’YON) 2a+1—-23 +,70]\/[0 5N / _"_720 ]L[4Oé Nf(lfﬁ).

In intersection of Area Aa* and 0.5 < o < 1.5, with choice of e* inyg = M —¢" and ¢* we used for
stable-decaying scheduling, we have

2(2a+28-1)
L(N) 5 M7(2a+2ﬁ71) + (MO‘S’YON) 2a+1—-28 +'YO]V[U S5y—¢ / +’YO20[ ]Vf‘loéN (1—c )(1—27)()

So in intersection of Area Aa* and 0.5 < o < 1.5, we have

) __2(4a—=1)(2a428-1)
Ry(M*,§/M*,(M*)~¢") < § 160> F8af+20—25-1 (131)

Therefore, linear decaying scheduling has an advantage compared to constant learning rate in the
intersection of Area Aa* and 0.5 < o < 1.5.

I ANALYSIS ABOUT HYPOTHESIS FOR THE POSITION OF THE BENEFICIAL
AREA

In this section, we cover the analysis of stochastic gradient decay, which was deferred from Sec-

tion[5.11

We examine the decaying structure of the stochastic gradient. Assume a feature vector x is drawn
from the distribution A (0, H), and its label is y = (&, w*). Then the stochastic gradient for that
feature vector is

g= ((Smt, 0:_1) — y) Sx;
=Sxx"ST(O-0") — Sxx"w, .
Taking the expectation of the stochastic gradient and using SHw_ = 0, we obtain
Elg) = SHS'(0 — 6*) — SHw,
=SHS'(0-6").

Lin et al. (2024) proved that the eigenvalues \; of SH ST satisfy \; ~ i~2“. Let the eigenvalue
decomposition of SHST be SHS™ = U dlag()\i)UT. Then

U 'E[g] = diag(\) U (8 — 67),

which Vides the intuition that E[g], expressed in the basis of the columns of U, decays as P2,
23

Figure 23| shows that the expected gradient decays similarly to i ~2%. Also, note that a larger « leads
to a steeper gradient decay.

J SCALING LAW OF ADAM WITH HEURISTIC

First, we recall the Adam (Kingma & Bal [2014)) update and notation. For the stochastic gradient
gr = (<S£L‘k76k> — yk) S:Bk

Adam maintains first and second moment estimates

my = Brmy_1+ (1 — B1) gk,
v, = Bovp_1 + (1 — B2) g2,
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10°

magnitude

—— a=0.4 empirical-avg (slope -0.91)
1074 a=0.6 empirical-avg (slope -1.22)
—— a=0.8 empirical-avg (slope -1.47)

10° 10! 10?
index i

Figure 23: Decay of gradient under the basis of U. Colored solid lines show the average of gradi-
ents under the basis of U for the parameter (a, 8) = (0.4,0.5), (0.6,0.5), (0.8,0.5). On the legend,
we only noted the . The dotted line is fitted for the average of gradients, and we noted its slope in
the legend. Slope is similar to 2« within error 0.13.

with bias corrections 12, = my, /(1 — B¥), v, = v /(1 — 55). The update is

N ~ —1/2
Ort1 = O — Y1y, © (€1 + Op) /

)

where @ denotes elementwise multiplication and the (—1/2) power is taken elementwise; ¢ > 0 is
the usual damping (we will set € = 0 in the asymptotic analysis).

Xiao et al.| (2024)) proposed a heuristic for Adam: take (35 sufficiently close to 1 so that the second
moment can be treated as an expectation, and assume (in high dimensions) approximate indepen-

dence between the coordinatewise square (Sxy)®? and the squared residual ((S g, Op_1) — yk) 2,

We present results under a same heuristic. In addition, [Ferbach et al.| (2025) prove that SGD with
momentum obeys the same scaling law as SGD; motivated by this, we set 53 = 0 and omit the
first-moment term for simplicity.

Second-moment proxy and normalized update. Under the heuristic of |Xiao et al.| (2024),
. 2
V) ~ IE]{(S:I:k)@2 ((ka, 0;) — yk) ‘]:k}
2
~ E[(Sz1)??] E[(<Smk70k> — Uk) ‘fk}
= diag(SHS") - L(0y).
Hence, the (elementwise) normalized update is

(S, Or) — yr) Sy,

0 -0, =~ .
MR T Jdiag(SHST) - L(6y)

One-step update formula. Recalling the Taylor expansion used for signSGD,

E[q(0k+1) — q(Bk) | ]:k] = E{<Vq(0k)7 9k+1 — 0k> ‘ ]:k} + %ERVQ(], (0k+1 — Hk)®2> ‘]:k}

Gradient term:

SHST 0, — SHw*
E[<V(1(0k), 041 — O) ‘]:k] ~ <V(J(0k) . e > :

" /diag(SHST) - L(6},)
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Quadratic term:

E[(V2q, (8111 — 61)°2) | Fi]

=FE

<V2q, diag(SHST)™Y/2 Sxya] ST diag(SHST)_1/2> (
L(6y)

(Sxy, 0;) — yk)2 ‘}_k]

= ﬁ ((diag(SHsT)—1/2v2q diag(SHS")~'/2, SHS™) L(6y,)
k

+ 2(SHST diag(SHS")"/2V?q diag(SHST)"'/> SHS™, (6, — 0*)®2>).

Combining the two contributions and inserting a stepsize 7,

Elo(Bkss) ~ 80)| 7] =~ (T0(61), K6~ 0%) + 5 (V0. &)

2
+ ng j (sHST diag(SHS")™"/*V?q diag(SHST)""/* SHST, (6), — 6%)%?),
k

where K, := diag(SHST)" /2 SHST diag(SHST)~ /2.

Mode-wise recursion. For r;(k) := (6 — 0*)T (Ku; ® w;) (8;, — 6*) (cf. Appendix ,

Elri(k +1) —ri(k) | Fi] = — 27 N (K)7i(E) + 92 (w] K. Ku;) + Zaft i (K) 7(k)
L(Ok) 3 T I3 L(9k> 03 (3
- % - L2(Z,Z A i) 77 (] B K.

We now assume f = 1, and 7, = - for simplicity. Passing to the ODE limit as in Section [E.2] we
get following ODE for P(t) = L(t/vo) and p;(t) = r;(t/0).

dpi _ —2( ! J0 > Xi(K) pi(t) + 70 Vi (132)

dt JPWO) P

Interpreting the solution of the ODE as an implicit integral equation and summing over 7, similar to
Section[E.2] and writing

Qs(N) =2 / N( ! L )d
2 =270 — 70 u,
0 L(u) L(u)

we obtain the implicit integral equation

M
LN) = [[H 2w, |+ 37 ri(0) exp -AQa ()

+ 73 i Vi/ /ON exp(—?)\ﬂo lN( ;(u) % L(lu)) du) dz,

where V! := w] K, Ku,.

Drift transformation and limit phase. By the same drift/approximation transformation as in
equation [33]

) _20428-1
L(N) _ M—2a+max(0,1—2B) + (Mmm(a,O.S) QQ(N)) 2a
1 M N N _f(uw) £(w)?
— min(a,0.5 1455 —2X; z ( - w ) du
+ Lias0s, go0.5) M7 (MmRE@ODQy(N)) 20 42 3y / R R T Y
i=1 0
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We will first handle the limit phase, similar to Section At stationarity, let p;(t) — s; and
P(t) — Lo, we must have

1 — VI 1 VI 1
—2 ( — %) )\Z(K) i+ Vi=0 — s;= o — V;/ o = Yo — (’LU;I—I(TI(’U,l)7,Y0
V6ie L 2N(K) 1A= 20(K) 1—

Using the loss decomposition P(t) = Y™ pi(t) + || H'/2w, ||2, we obtain

M M
L *ZS'JrHHl/Zw ”27E<Z w;rKrKUi) /7L 1 +||H1/2w H2
oo — i 1 - 9 L )\7(?) 001_ Yo 1

=1 1= g o

1
——— + [ H 2w, |?

==

. 1
- 720 Tr(diag(K)"/?) /Too ——— + | H"?w_ |*.
e

— 720 Ti(diag(K)"/2K,) /L

And
Lo =~ max{’yg Tr(diag(K)l/Q)Q, HHI/2U’L||2} - max{ng%zmi“(“’O'S), M72a+max(0,1725)}'

asymptotically satisfies the equation. So we have the same floor as for signSGD.
Since f is bounded and L(N) > ~2 M 2~ 2min(,0.5)
f(w)
VL) \/L(U) > M 1—min(o¢,0.5)7

u 2
Yo fL((J) ’YOf(u)

so the subtraction inside Q2 is asymptotically negligible and Q2(N) =~ Q(N). Hence, the drift
contribution coincides with that of signSGD.

Scaling law (constant learning rate). For f = 1, Adam (under this heuristic) follows the same
scaling law as signSGD:

2(2a+26-1)
R(M, N, 70) = M72a+max(0,172,@) + (Mmin(a,0.5) N’Yo)im

o= SRl amin(a05)
+(M 4a—2 N’YO) 20+1 7 M min(a,0.5)

Since the loss formula R(M, N, 7o) is the same as signSGD, the compute-optimal scaling law will
also be the same as signSGD. So we expect that Adam has the compute-optimal scaling law in
Table [T] Figure [24] shows that exponents in the Table [T] and measured compute-optimal loss slope
and optimal model size slope (in log-log plot) for Adam match well.
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Figure 24: Measure of compute-optimal loss slope and optimal model size slope for Adam. We
validate the exponent of R (M o %, Y ) and M™ with respect to f in the Table The left plot

shows the compute-optimal loss with respect to flops 6 M V. The right plot shows the optimal model
size with respect to flops 6/ N. Each plot includes the measured slope and the theoretical slope
from the Table Parameters : 81 = 0.9, B2 = 0.999, e = 1078, v, = 0.002.
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K OMITTED ANALYSIS FROM SECTION

K.1 OMITTED PROOF OF (3I)) AND (33)

In this section, we cover omitted proof of and (33). Note that the proof is almost similar to
Paquette et al.|(2024), but we cover it briefly for completeness. Refer to Appendix F, G, H of|Paquette
et al.| (2024) for more details.

It is enough to prove

7i % e Pd Q(N)z <£(Z), v®2> dz = M72a+max(07172ﬁ)
27 Jr

204281
+ (Mlnin(a,O.5) Q(N)) 2«

1
— min(a _1+%
+ Las05,8505 M " (M (e 0.5) Q(N)) .

From now on, we will use similar notation to [Paquette et al.| (2024), except in the inevitable case,
to facilitate easy comparison for the reader. Note that we use M and d for model size and initial
dimension before projection, while |Paquette et al.[(2024)) uses d and v.

We use I' for the contour containing the spectrum of K, while [Paquette et al.| (2024) used I" U Ty
for that, where Iy is a small circle containing the origin.
Let

1

FIN) = —5 F(R(z),(Hl/zw*)®2>e_de(N)zdz. (133)

The exponential kernel e P4@(M)* replaces all polynomial weights in the analysis of Paquette et al.
(2024). The resulting leading orders remain the same while constants and exponents are altered in a
transparent way; precise statements follow.

We can split the (V) by splitting the keyhole contour I". We let
F(N) = Fo(N) + Feaps(N) + Fo(N) + (lower-order), (134)

where F collects the small circle around the origin, F,ps collects the right/left caps adjacent to the
positive real axis, and F¢ collects the central arc close to [0, 1]. Refer to Appendix F of [Paquette
et al.| (2024) for more details about the picture of contour and decomposition of contour.

In the following proposition the function (z)4 := max(z, 0) is used.
Proposition K.1. Fo(N) is independent of N and obeys

-—2a—203

d
J —2a+(28-1)4—1
Fo(0) — < CM +-1,
‘ 0(0) Zl+j—2aM2an(d/M) =

j=1

Sketch. Putting z = 0 to the exponential leads to 1, so we can reduce to the analysis of |Paquette
et al.[(2024). So the error bound is identical. O

After this Fy(N) =~  M—20+tmax(0,1-28) holds by identical procedure calculating

d j72a72ﬁ
>i—1 T+j 20 M2 r(d/M)"
Proposition K.2. There exist functions f, g > 0 with

f(N) < Cexp(—paQ(N) M), g(N) < Cexp(—paQ(N)),

so that
|Feaps(N)| < C f(N) M2eF0720+ 4 C g(N).

Sketch. Use |m(z) — 1| < M~ ™in{20:1} (a5 in [Paquette et al.[(2024)) on a cap pushed O(1)-close
to [0, 1] to replace (R(z), (H'/?w*)®?) by a simple partial fraction, and control the remainder by
the real part of z. U

75



Under review as a conference paper at ICLR 2026

The main contribution arises from the arc parameterized by z(u) = u + in(u) with u € [M~2 1]
and |n(u)| < u. Along this arc we have the uniform approximation

‘m(z(u)) - (1—2—( (w) + i) u~ Y/ @9 g~ 1)‘ < ey V1 (135)

for some bounded real c(u). Inserting (135) in R(2) = (—2I + m(z)H)~! and extracting the
imaginary part produces two canonical integrals,

1 1
Fyp(N) = L/ W(B=D/ 20 =puQN)u gy F (N = iﬁ/ W 1/(20) N1 g—paQ@N)u gy,
2 0 2c M2
(136)
with cg = 2121;7‘72& if 28 > 1 and ¢g = 0 otherwise.

Proposition K.3. There exists C' > 0 such that for all N > 0, | Fo (N )| < C(Fpp(N) + Fae(N)).
Moreover, there are A > 0 and a bounded function C'(N) > 0 with C'(N) < 1 + & whenever
PaQ(N) € [A, M?*/A], and

1

m(fpp(N)+fa6(N)) < ]:C(N) < C(N)(fpp(N>+]:ac(N))~

Sketch. Parameterlze I‘c by u and use (I33)) to separate real/imaginary parts. The imaginary terms
integrate exactly to (136), while the real part is smaller by a factor O(¢) since |n(u)| < u. O

Proposition K.4 (Asympt0t1cs of Fpp). Assume 2a+23 > 1 and set X := pyQ(N). For any € > 0
there exists A > 0 such that for X > A,
|}-;0p(N) - gpp(N)| < egpp(N),
where
Gup(N) 1= (20)7I XTI/ CO (L),

Moreover, if X < A then ¢ < fpp( ) < C for constants ¢,C' > 0, and if X > A M2 then
Fpp(N) < C Fo(N) for some C > 0 independent of M.

Sketch. With the change of variables w = Xu, we get

X
Fpp(N) = (2‘3‘)_1X_(1+ﬁ/a)+1/(2a)/ w A=/ 2a) g =w gy,
0
Comparing to the complete gamma integral yields the relative error bound in terms of the upper
incomplete gamma tail, which can be made < ¢ by choosing A large. The remaining bounds follow
by monotonicity and elementary estimates. O

Proposition K.5 (Asymptotics of Fg.). Let X := pg@Q(N). There exists C'(«, §) > 0 such that
CFy(N), 28>1,2a<1,
0, 26 < 1.

If in addition 2a¢ > 1 and 283 > 1, then for any £ > 0 there is A > 0 such that whenever X €
[A, M?*/A],

Fac(N) < {

| Fae(N) = gac(N)| < £gac(N),  gac(N) := (iﬂﬁ) (20) 7 T(1- 5 ) X HH/@ pn

Furthermore, for any A > 0 there exist constants C, ¢ > 0 (independent of M) such that

CM~™', X<A
Fac(N) < ! -
(V) {c]—'o(N), X > AM2e,

Sketch. Compare the truncated integral in with its extension to [0, 00) and control the two
tails [0, M ~2] and [1,00) separately. The first is at most ¢ M ~2%; the second is bounded by
M~'X~le=X. Normalizing by g,.(N) shows both are relatively small for X € [A, M2 /A]
with A large. The endpoint bounds follow from dropping the exponential and from a crude

[ e Xudu < X~1e=XM™*" estimate when X > M2, O
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Finally we get
1

_ﬁj{e*pd@(mz (L(2), v®*) dz = Fo(N) + Feaps(N) + Fc(N)
T Jr

204281
= M 2atmax(0,1-28) <pd Q(N)> -

1
— e a+max -
+ 1{a>05,8505 M 1(PdQ(N)> Dy 2octmax(0,1-20)
_20426-1
= M—2(x+max(0,1—26) + (Mrnin(a,O.5) Q(N)) 2c
1
— min(a _1+%
+ Las05,8505 M ! (M (e 0.5) Q(N)) .

K.2 NOTE ON THE arcsin  ~ £ APPROXIMATION

We explain that it is possible to replace the linear approximation arcsin x ~ x by an inequality, and
the main results of our paper remain unchanged.

Replacing the arcsin-linearization by a uniform sandwich. Fix 0 < p < 1 and define
arcsint

c1(p) = inf =1, ca(p) = sup =

arcsint  arcsin p s
[tI<p T lt<p p -2

For x € R? with ||z||« < p, the entrywise odd and monotone map ¢ + arcsint satisfies the
componentwise bounds
c1(p)x < arcsin(z) < ex(p) .

In our update, put vy := 0 — 6* and

Kv .
Tp = e so that arcsin(xy) = Dy xy,

VL(6k)
for some diagonal Dy, = diag(kg,1,...,kka) With c1(p) < ki; < ca(p). Using KT = K and
KK =K KT, the one—step drift can be written as

2

2 — 2
Yk U,I(KuiwiT + wiuzTK) D, Kuv, + % ('wiTKaKui).

7w/ L(6%)

Since Dy, is diagonal with ¢; (p)I < Dy = ca(p)1, the quadratic form is sandwiched between the
same expression with Dy, replaced by ¢1(p)I and co(p)I. Recalling the identity used earlier,

op (Kuw, + wiw] K) K vp = 20(K) ri(k),

Elri(k+1) —ri(k) | Fx] = —

we obtain the two—sided one—step bound
2

_icz(LP()ezk) i (K)ri(k) + 27% (w] Ko Ku;) < E[ry(k+1) —ri(k) | Fi]

4 - 237
< 2alwy wy i + Dk (Wl K, Ku).
T

m/L(0s)

Consequences for the ODE limit and the implicit integral equation. Let v, = 7o f (k), t = ko,
pi(t) = r;i(k), and P(t) := L(6}), as in Appendix[E.2] Then we obtain the differential inequalities

_ A0 3 R Ft o) pi )+ 20 Ft0)2Vi < pilt) < ——L2L 5\ (R) £t o) put)+ 20

Z0) 5 /P w0V,

with V; := w] K, Ku;. Solving these linear comparison inequalities yields the bounds

pP W) < pilt) < pMW, P < P1) < PO,
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where p(c)(-) and P(°)(.) denote the solutions of the ODE/integral equations from Appendix

i

with the factor % replaced by %. Equivalently, defining

4co /N f(u) du

T Jo /Pl

the drift/noise expressions remain valid with Q (V) replaced by Q.(IN), and all proofs carry through
verbatim.

QC(N) =

Only multiplicative constants change; scaling exponents and phases do not. Every appearance
of Q(IV) in the final formulas enters either through an exponential e ~*@(V ) or through a polynomial
factor (M*Q(N))~™". Replacing Q by Q. = cQ only multiplies these terms by constants: e~
converts to (M*cQ)™" = ¢ ¥(M"Q)". Hence the rates, exponents, and phase boundaries of
the scaling laws are unchanged; only the prefactors are rescaled by fixed constants depending on
c1(p), ca(p) € [1,7/2]. In particular, all “~” statements (equalities up to absolute constants) remain
valid with the same exponents.

K.3 NOTE ON APPROXIMATION ERROR

Though proof of |Paquette et al.|(2024)) implicitly implies
||H1/2wl||2 — ) —20+max(0,1-28)
It was not explicitly specified. So we clarify it here.

First,
o <(f{\_ 2I)7, (Hl/QW*)®2> dz = M —2etmax(0,1-26)

211 |z|=¢

is directly implied from Proposition H.3 of [Paquette et al. (2024). So it is enough to prove the
following claim.
Claim. Let
K=HYSTSHY?, 1w =80"+w,, SHw, =0.
For a sufficiently small circle |z| = € enclosing only the eigenvalue 0 of K,

7L 7 -1 1/2,, %\®2 _ 1/2 2
o= |z|:€<(K D)7 (HY 2wt ) de = | H P |

Proof. By the Riesz projection theorem (Dunford—Riesz functional calculus), for a small circle |z| =
e enclosing only the eigenvalue 0 of K,

1 —
My == —— (K —2I)"'dz
21 |z|=¢
is the spectral Riesz projector onto the 0-eigenspace; since K is Hermitian, Il is the orthogonal
projector onto ker(K).

And we have
_ L <(f€— 2L (Hl/gw*)®2>dz - <H0, (Hl/Qw*)®2> — ||11o H'?w* |}

27

|z|=¢

Since ker(K) = {x: SH 2z =0} = (Im(Hl/QST))L, We have the orthogonal decomposi-
tion
H'?w* = H'/ST9* + H' w,
— —_—
EIm(HY/2S8T) ¢ (Im(H/28T))+

where the second membership uses S H w, = 0. Hence IIy H'/?w* = H'/?w |, and therefore

<Ho7 (Hl/zw*)®2> _ ||H1/2"ULH2~ 0
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K.4 PROOF OF MATRIX INEQUALITY FOR diag(SHST)~1/2

We will prove the inequality in the following form in this section.

c Mmin(0.5,a)I < diag(SHST)_1/2 < ¢ Mmin(O.E),a) I

Setup. Let S € RM>*4 have i.i.d. entries S;; ~ N(0,1/M), and let
H = diag(172*, 272, ..., d~*), a>0.
Then, foreachi € {1,..., M},

d d
. 1 _oq
[diag(SHST)], = ZHjjS’gj M Zj e
= =1

where X7, ..., x2 areiid. x*(1).
Remark 5 (Rough intuition for what we will prove).

d -1 1
1 M a> ;5
[diag(SHST)],, = 72].72&)(? ~ { g1 ~2a L
szl M~—td ~M7, a<gwithd= M,

So, we want to obtain diag(SHST) /2 = Mmin(0-5.e) 1
Define .,
. . 1
Sa(a) = Z] 20‘)(? = [dlag(SHST)]“, = MSd(a).
j=1

Hence, any high—probability upper/lower bounds on S;(«) translate into corresponding bounds on
diag(SHST)~1/2 via

1 ) ~1/2 M
MSd(a) < U = |[diag(SHS")] = 4/ 7
1 - M
—Sal@) = L = [diag(SHST)] V2 — 1L

We consider two regimes and then unify them through M/ ™i(0-5,2)

REGIME I: o > % (SUMMABLE WEIGHTS)

In this regime, >-°7 772 = ((200) < oo. Write X := j2%(x? — 1), so that
d d

Sa(a) =E[Sa(a)] + > X, E[Sa(a)] =) 57 <{(2a).

j=1 j=1
Moreover, Var(Sg(a)) = 2 Z?Zl T < 2¢(4a).
Upper tail (to lower-bound diag /7). For A = 1,

E[eM] = e (1-22)720) 712 < exp 357,
hence

E [e% (Sd(a)—ESd(Oé))} < exp(% jzi:lj_%‘) < exp(% C(4a)).

By Markov and a union bound over the M diagonal entries, setting the per—entry failure probability
to 50 = 5tota1/M,

Pr (Sd(a) < ¢(2a) + ¢((4a) + 21og M ) > 1 — biotal-

total
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Therefore, with probability at least 1 — o1,

diag(SHST)™'/? = VM — I
(§(2a) + ((4a) + 21log M ) /

6[01211

—1/2

Lower tail (to upper-bound diag ). A Chernoff bound on the lower tail of S;(«) (via the mgf

of et X% gives, for any § € (0, 1), the existence of a constant

a—1

eo) = (222)" 22

such that
Pr(Sd(a) > ¢)(a) (1og(1/5))*(2°‘*”) > 1-4.

With § = 0p = diorar/M and a union bound over the M rows, with probability at least 1 — a1
VM M 25
L1 MY

/2
(ci(a))

diag(SHST)"1/2 < 5
total

Conclusion for o > % Combining the two displays,

M M M N 25
v el 2 diag(SHST)™'/? < Lm (log@) d
(¢(2a) + ¢(4) + 2log £5) (c1(@))

5mml

REGIME II: o < % (DIVERGING WEIGHTS)

Assume d > r M for some fixed r > 1 (as in our setup). Then

d
E[Sq(a)] = Zj*m satisfies

j=1

(d+ 1)17204 -1 < d172a -1
1 -2« -

Hence E[S;(a)] =~ d'~2%. Moreover,

o
— o(d1*), a<1,

so in all cases \/Var(S4()) = o(E[S4(c)]) as d — oo. Thus, by Bernstein and a union bound
over the M rows, for all sufficiently large M we get, with probability at least 1 — Jyoqa,

1
5 ElSa(a)] = Sa(a) = 5 E[Sa(a)].
Using d > rM and the integral bounds for E[Sg(«)],

(rM)1—2 — PMOLI—20
g < S < 5 )

Dividing by M and inverting the square—root yields constants

Cularr) = ( & )/ Curlar) = (2(1))/

1—2a 1—2a

such that, with probability at least 1 — diotal,

Cr(o,r) M*T < diag(SHST)™ Y% < Cy(a,r) M1 | (a<

).

=
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UNIFIED STATEMENT

Combining Regimes I and II, there exist positive constants ¢ (c, 7, diora1) @and ca (e, 7, diora) Such
that, with probability at least 1 — o,

cl(a7r» 610&11) Mmin(O.S,a) I j diag(SHST)71/2 j CZ(Q,T, 5l0tal) Mmin(O.S,a) I

with the following explicit choices:

« Ifa>

2a—1

c1(a, +, Sroral) = (C(Za)+§(4a)+2 log %)—1/2’ ca(a, -, Sroral) = (ci(a))—l/Q (log M )

510[21]

za—l) 20¢—1/ 92a—1

where one admissible choice is ¢y (o) = (2%

e Ifa< %anderM:
C1 (a77‘7 ) = CL(O(,’I"), CQ(QaTa ) = CU(O[,?"),

with Cp,, Cy as defined above.

L ANALYSIS FOR THE CASE WITH LABEL NOISE

For the case with label noise, only Phase Ia is solved for SGD by [Lin et al|(2024). So we will focus
on the Phase Ia where o > 0.5 and 3 < 0.5 holds.

Now we set an assumption for label noise. For selected data x, we assume that label y satisfies
y=(z,w") +e¢

where e is a label noise with mean 0 and variance o2 satistying e 1l .

Note that for the case with label noise L(0) = E,[((Sz,0) — y)?]| and L(0) = |[HY/?(ST6 —
w*)||? are not equivalent.

So in this section, we will use a notation Line(8) = E¢ [((Sz, 0) — y)?].
Then Ly (0) = || HY?(8T0 — w*)||? + 0% = L(8) + o2

Here o2 is the irreducible risk. (2024) discussed compute-optimal scaling for L(0) =

Line(0) — 0. And we will also discuss compute-optimal scaling for L(0) = Ly (0) — o2.

Also in this section, we let R(M, N,~g) as the Ly (@n) under learning rate o and fixed model
size M. And we will discuss the scaling law of R(M, N, ) — o2.

L.1 DERIVING ODE AND INTEGRAL EQUATION
For a quadratic function g, by Taylor’s theorem, we have

Elq(0r+1) — a(0r) | Fr] = E{Vq(6k), 1 — Ok) | Fie] + 3 E[(V2q, (Brs1 — 01)%%) | Fi]
where Fi, = (S, 0y, ..., 0). Since

0111 — 0, = —y, sign((Sxy, 1) — yi) sign(Sxy),

We can expand the two terms using sign-Gaussian identities. We let label noise for the same (xy, i)
as €x and yp = (xg, w*) + € holds.
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Gradient term.
E[(Vq(Ok), Ors1 — O) | Fi]
= — (Vq(6y) , E[sign(Sxy) sign((zx, ST — w*) — 1) | F])
diag(SHST)"/* SH (576 — w*) >
V(870, —w) T H (ST, — w*) + o

2
=7 <Vq(0k) , — arcsin
7r

2 diag(K)" Y2 K (6, — 6*
= <Vq(0k) , — arcsin iag(K) (O - ) > ,
71' \/||H1/2(ST0kfw*)|| 4 o2

where K = SHST.

Quadratic term.
EKVQQ, (Or1 — Ok)®2> ’]—"k}
| sen( ) son (o, 8700 —w) — 1)) | 7]
E[(sign(S0))**| 7] )
e

Vg, %arcsin(diag(SHST) SHST diag(SHST)_l/2>>

2 - -
=i <V2q, — arcsin(diag(K) 12 g diag(K) 1/2)> .
T

One-step update formula. Substituting the gradient and quadratic terms yields the desired one-
step update formula for signSGD.

Elq(0rs1) — q(61) | Fi] = 2;’“ <Vq(0k) arcsin<m>> + %’3 (V?q, K,).

By the same procedure as the noiseless case, while /L(k) in the denominator is replaced by
L(k) 4+ o2, we get the following ODE, where P(t) = L(t/7o) and p;(t) = 7;(t/70)-

dp; 1 . 2 (t/70)*0
d ——WAi(K) f(t/’Y())pi(t)"'_fV;' (137)

Integral equation. Also, by the same procedure as the noiseless case, while /L (u) in the de-
nominator is replaced by /L(u) + o2, we get the following integral equation.

M 4)\170

N J(u) du 92 M N _4/\ Y0 I f(u) du
0
L(N) = [H" 2w, |*+Y ri(0)e VEter Ty TN V/ e VE@+o2 T f ()2 g,
: ™ 2 0
i=1 1=1
(138)
By using the same drift/approximation-term transformation as the noiseless case, we get
204261
L(N) = M 72072t 4 (MO9S Q(N))™ 2o (139)
approx drift

28 §- ,/ /
+ - ;Vl | exp m) z. (140)

noise

where f(z) = 1 (which means constant learning rate) and

_ 4

2
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L.2 EARLY STAGE FOR A NOISY LABEL

Similar to the noiseless case, we first solve for the early stage. Here we have to solve the following

equation
204281

L(N) = (M**Q(N)) 2o

And it can be converted to

2«

L(N) ™ 2a+26-1 (141)

~ Mo's’}/()/Ndu .
0 \/L(u)—ﬁ-oz

Replacing ~ by equality in (T4T) and differentiating with respect to NV (viewed as a continuous time
variable t) yields

2a 7270‘71 1
L) 221 () = MOy ————. (142)
2at25-1 -0 0 T + 02
Equivalently,
L(t)A71 Ll(t) = MO5 Yo 1 A= 2a . (143)
VL) + 02’ 200+ 28— 1
For any ¢ > 0 and = > 0 we have the elementary bounds
1 12 -1 1 L o—1/2 _—1
— min(x , O < —— < min(z , 0 ). (144)
5 i ) < ey < i )
Indeed, if z > o2 then z < 2 + 02 < 2z, so
1 —1/2 1 -1/2
—= < < g2
V2 T Vx40 T
whereas if 0 < 2 < ¢2 then 0% < z + 02 < 202, s0
1 - 1 < -1
— 0 —— g .
V2 T Vr+o0?2 T
Combining the two cases yields (144). Applying (144) with = L(¢) in (143), we obtain
Lt)™'2, L(t) = o%
LOATIL () = MO~ (145)
o L(t) < o2

This naturally splits the dynamics into a large-L regime L > o and a small-L regime L < o2.

Suppose L(t) > 2. Then from (145)) we have
L)' 7L (1) = M2y L(t)~'/2,

or equivalently

1
L'(t) = M™ y L(t)' " 2. (146)
Define ) 1 5 .
(6%
= 1-A—2 = “A4- = — =4
¢ 2 *3 20428 — 1 *3

The assumptions o > 0.5, 3 < 0.5, and & + 3 > 0.5 imply ¢ > 1. Then (T46)) takes the canonical
form

o~ MLt
Separating variables and integrating gives

/IfC dL = M0'570/dt — L(t)*(Cfl) = MO5 Yot
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where we have absorbed additive constants into the implicit comparison. Thus, in the large- L regime,

L(t) = (M5 ~ot) V7, (147)
Writing
1 22a+28-1)
(-1  2a+1-28"
we recover exactly the original early-phase exponent:

pi=

L(t) = (M*®yt)"", L) > o% (148)

In particular, the presence of v/ L + o2 in the denominator does not change the scaling exponent p
in the regime where L is larger than the noise floor o2; it only affects the constant factors hidden in

~.

Now suppose L(t) < o2 and ¢ is sufficiently large so that the small-L regime dominates. From (145)
we obtain
LA (t) = M2 40t

Observing that - L(t)4 = AL(t)A~1L'(t), we can rewrite this as

d A 0.5 -1
— L) = M™ .
dt (*) Too

Integrating in ¢ and absorbing additive constants into ~ yields
LA = M*~gott.
Since A < 0, we invert this relation to obtain
L(t) = (MPnot/o)/4 = (MO yot)o)™?,  pi=—— =220 00 (149)
Thus, in the small-L (noise-dominated) regime,
L(t) = (M*®~ot/o)™,  L(t) < o> (150)

Combining (T48) and (T30), we obtain the following formula for the early-stage.

_ —p 2Q2a+25—-1) 20+26 -1
L(t) = (M°Pyot) "+ (M*P yt/o) ™" == =
(t) = (M%) "+ (M®Potfa) ", p 2ati-25 " P o

(151)

L.3 LIMIT STAGE FOR A NOISY LABEL

By the same procedure as Appendix[E:3.2] we get an equation
™ .
Loc = LZ Ty(diag(K)"/?) v/ Loo + 02 + || H?w ||

Solving the quadratic equation, we get
. 2 .
Lo =70 Tr(dlag(K)l/z) + o7 Tr(dlag(K)l/z) + | HY ?w |2

Under our setup,

M
/ /1 .
Tr(diag(K)l/Q) = Z (SHST)ZZ = M - MMmax(1—2a,O) = Ml—mln(a,0.5).
=1

By the results from [Paquette et al.| (2024); [Lin et al (2024), and note in Appendix [K:3]

HHl/QwJ_||2 = M—2a+nlax(0,1—2ﬂ).

Hence
Lo =~ fng + U’yom + M~ (2at26-1)
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L.4 EVALUATING COMPUTE-OPTIMAL SCALING

Combining the early stage and the limit stage, we get

2(2a+28-1) 2a+28—1

R(M,N,v)—0? = (M'2Nr)~ 20+1=28 +(M'2Nvo /o)™~ 20 +aM+oyoVM+M~(2e+28-1),

Note that we use R instead of L when we are writing the loss as a three-variable function.
We let 79 = M ~°. And assume o ~ 1 (this covers values such as ¢ = 1,0.2,0.01, etc.).

Compute-optimal occurs when the three terms balance. And for the loss formula in this sec-

204261
tion, compute-optimal occurs when (M/2N~y/o)” " 2a and o7yoV/M and M~ (22+26-1)
balances. Solving oyovVM = M~-(2e+28-1 " we get 5 = M~ (22+26-05)  Solving
2a+28—1
(MY2N~y /o)™ 20 = M~(20428-1) we get N = M**+26~L and it leads to f = MN =
Mhat2s
So finally we get
M* — fl/(4a+26); R(M*7 f/M*,’Ya) _ 0,2 = f_(2a+2ﬁ_1)/(4a+2ﬂ)- (152)

Figure 23] shows that exponents in the (T52)) and measured compute-optimal loss slope and optimal
model size slope (in log-log plot) for the case with the label noise match well. In the experiments,
we used 0 = 0.1.

85



Under review as a conference paper at ICLR 2026

(o, B, e*)=(0.60, 0.40, 1.50), Measure: 0.332, Theory: 0.313

Compute-Optimal Points

--- Fit: Loss « FLOPs=0-332 (R?=0.998)

10° 108 107 108 10°
FLOPs (6 M- N)

(a, B, ) =(0.80, 0.20, 1.50), Measure: 0.298, Theory: 0.278

10°
1071
0
2
S
1072
Compute-Optimal Points
--- Fit: Loss « FLOPs~02%8 (R2=0.991)
10° 10 10° 106 107 10° 10°

FLOPs (6 M- N)

(a, B, €")=(0.60, 0.40, 1.50), Measure: 0.350, Theory: 0.312

cses
-
/’/
-
"
/”’
= R
[ -~
N -
-
3 ¢ cest e
g
— 103 <
T -
£ -
=3 ’
E o sfee e
/’,
-
L
.o :/.’. o . * Optimal model size M
e --- Fit: M « FLOPs03%0
108 10°
Flops (6- M- N)

(a, B, €")=(0.80, 0.20, 1.50), Measure: 0.338, Theory: 0.278

/”
/”
cooeasTes
-

,_‘

2

\
\

Optimal model size M

«  Optimal model size M
-—- Fit: Mo FLOP0338

108 10°
Flops (6- M- N)

Figure 25: Measure of compute-optimal loss slope and optimal model size slope for the case
with label noise. We validate the exponent of R (M * %, o7 ) and M™* with respect to f for the

case with label noise. The left plot shows the compute-optimal loss with respect to flops 6/ N. The
right plot shows the optimal model size with respect to flops 6/ N. Note that we evaluate the region
with big flops, as we aim to evaluate asymptotic behavior.
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