

000 SCALING LAWS OF SIGNSGD IN LINEAR 001 REGRESSION: WHEN DOES IT OUTPERFORM SGD? 002

003 **Anonymous authors**
004
005 Paper under double-blind review
006
007
008

009 ABSTRACT 010

011 We study scaling laws of signSGD under a power-law random features (PLRF)
012 model that accounts for both feature and target decay. We analyze the popula-
013 tion risk of a linear model trained with one-pass signSGD on Gaussian-sketched
014 features. We express the risk as a function of model size, training steps, learning
015 rate, and the feature and target decay parameters. Comparing against the SGD risk
016 analyzed by Paquette et al. (2024), we identify a *drift-normalization effect* and a
017 *noise-reshaping effect* unique to signSGD. We then obtain compute-optimal scal-
018 ing laws under the optimal choice of learning rate. Our analysis shows that the
019 noise-reshaping effect can make the compute-optimal slope of signSGD steeper
020 than that of SGD in regimes where noise is dominant. Finally, we observe that
021 a *stable-decay schedule*—a simplified variant of the widely used warmup-stable-
022 decay (WSD) schedule—further reduces the noise term and sharpens the compute-
023 optimal slope, when feature decay is fast but target decay is slow.
024

025 1 INTRODUCTION 026

027 In large-scale language model training, neural scaling laws are a well-documented empirical regu-
028 larity: performance tends to improve predictably as data, parameters, and compute increase. Kaplan
029 et al. (2020) observed that the language model cross-entropy loss scales as a power-law of model
030 size M and number of steps N in terms of the risk formula $R(M, N) \asymp M^{-\tau_1} + N^{-\tau_2}$.¹ Also,
031 they observe that loss scales as the power of training compute, under optimal allocation of compute
032 between model size and number of steps.

033 A growing body of theory has sought to explain this phenomenon, most prominently by analyz-
034 ing the stochastic gradient descent (SGD) optimizer under the power-law random features (PLRF)
035 model (Paquette et al., 2024; Lin et al., 2024; 2025). Yet, in practice, SGD is not the optimizer
036 that powers today’s state-of-the-art LLMs. Instead, training is dominated by Adam (Kingma & Ba,
037 2014) and its variants. While Adam is considerably more difficult to analyze theoretically, it is often
038 approximated in theory by the simpler signSGD (Bernstein et al., 2018a), which captures its
039 coordinate-wise adaptivity. This gap between practice and theory motivates a natural question: *how*
040 *do scaling laws change when we replace SGD with signSGD?* Addressing this question can help
041 align theory with optimizer choices used in practice, and clarify how adaptive updates could reshape
042 compute-optimal scaling regimes in the PLRF setting.

043 1.1 OUR CONTRIBUTION 044

045 We study the scaling law of signSGD in the power-law random features (PLRF) model, and our
046 contributions are as follows.

047 1. We derive a scaling law of signSGD with constant learning rates involving three variables (model
048 size M , training steps N , learning rate γ_0) and two PLRF model parameters (feature decay α ,
049 target decay β); see (12). By comparing with the SGD scaling laws of Paquette et al. (2024) and
050 Lin et al. (2024), we observe two effects of signSGD: a *drift-normalization effect* and a *noise-
051 reshaping effect*, inside the scaling law (see Section 4.1).

052
053 ¹Here \asymp denotes equality up to a multiplicative constant, i.e., $f(x) \asymp g(x)$ means $c_1 g(x) \leq f(x) \leq c_2 g(x)$
for some constants $c_1, c_2 > 0$.

Figure 1: **Left: SGD vs. signSGD; Right: signSGD with constant vs. stable-decay schedules.** Colored lines represent the training trajectories of each algorithm, and black lines denote the compute-optimal curves. The upper right legend shows the theoretical value of the compute-optimal slope. SignSGD achieves a steeper compute-optimal slope than SGD (left panel), and stable-decay scheduling sharpens the compute-optimal slope relative to a constant schedule (right panel), for some parameter configurations. See Appendix C for parameters used in the experiment.

2. Under the fixed compute budget, we balance model size M and training steps N , and optimize over learning rate γ_0 . This allows us to characterize the compute-optimal loss decay rate and optimal model size with respect to the compute budget (see Table 1). Comparing against the compute-optimal scaling laws of SGD from Paquette et al. (2024) across regimes of the (α, β) -parameter plane, we find that signSGD can achieve better exponents in the SGD noise bottleneck regimes, due to the noise-reshaping effect (see Figure 1).
3. We show that learning rate scheduling can further reduce the stochastic noise of signSGD. We analyze a *stable-decay schedule*, a simplified version of the warmup-stable-decay (WSD) schedule (Wen et al., 2024) widely used in large language model training. By maintaining drift velocity by the stable interval and reducing stochastic noise by the polynomially decaying interval, this schedule increases the compute-optimal slope in the PLRF setting for large α and small β (see Section 4.3 and Figure 1).
4. We empirically validate our theory; see Figure 1 and Appendix C for details.

1.2 RELATED WORK

Here we discuss directly relevant results; additional related work is deferred to Appendix B.

Empirical Scaling Laws. Modern empirical work shows that performance improves with scale across data, parameters, and compute, following power laws across many domains (Hestness et al., 2017). In language modeling, Kaplan et al. (2020) document power-law loss trends over multiple orders of magnitude and simple budgeting rules linking model size, data, and compute. Henighan et al. (2020) extend these curves to images, video, and multimodal settings. Building on this, Hoffmann et al. (2022) argue that many LMs were under-trained on tokens and proposed data-optimal scaling that substantially improves accuracy at fixed compute. Tissue et al. (2024) investigate the empirical scaling law with learning rate annealing.

Scaling Law Theory. Our work starts from the SGD scaling law in the PLRF model in Paquette et al. (2024) and Lin et al. (2024). In particular, Paquette et al. (2024) derive a scaling-law formula for one-pass SGD, where M , N , and γ_0 denote the model size, number of training steps, and learning rate, respectively, and α and β are the feature- and target-decay parameters.

$$R(M, N, \gamma_0) \approx \underbrace{M^{-2\alpha + \max(0, 1-2\beta)}}_{=: \mathcal{A}(M)} + \underbrace{(N\gamma_0)^{-\frac{2\alpha+2\beta-1}{2\alpha}}}_{=: \mathcal{D}_{\text{al}}^{\text{SGD}}(N, \gamma_0)} + \underbrace{M^{-1}(N\gamma_0)^{-\frac{2\alpha-1}{2\alpha}}}_{=: \mathcal{D}_{\text{dis}}^{\text{SGD}}(M, N, \gamma_0)} + \underbrace{\gamma_0(N\gamma_0)^{-\frac{4\alpha-1}{2\alpha}}}_{=: \mathcal{N}^{\text{SGD}}(N, \gamma_0)}. \quad (1)$$

108 The $\mathcal{A}(M)$ corresponds to the *approximation error*, i.e., the loss as $N \rightarrow \infty$. Paquette et al.
 109 (2024) explained that $\mathcal{D}_{\text{al}}^{\text{SGD}}(N, \gamma_0)$ represents the *aligned feature loss*, as it coincides with the loss
 110 for a diagonal sketch matrix \mathbf{S} (see Section 2.2 for formal description). They also explained that
 111 $\mathcal{D}_{\text{dis}}^{\text{SGD}}(M, N, \gamma_0)$ corresponds to the *distorted feature loss*, arising from projection with a random
 112 matrix \mathbf{S} , and it decays more slowly than the aligned feature loss. Finally, $\mathcal{N}^{\text{SGD}}(N, \gamma_0)$ captures
 113 the *SGD noise*, stemming from the quadratic term in the Taylor expansion of the SGD update.

114 Several subsequent papers extend this baseline along two axes: (i) optimizer changes and (ii)
 115 model/training-protocol changes. On the optimizer side, Ferbach et al. (2025) investigate dimension-
 116 adapted Nesterov acceleration in the PLRF model and argued that it gives a better scaling law for
 117 $2\alpha > 1$ regime. Kunstner & Bach (2025) compare the gradient descent and sign descent scaling law
 118 in the linear bigram model. Comparison with their work is in Appendix B.1. Lin et al. (2025) cover
 119 the multi-pass SGD scaling law identifies the effect of data reuse for the scaling law. Discussion on
 120 the model side is deferred to Appendix B.

121 **Scaling Behavior of Linear Models in the Context of Kernel Methods.** The power-law settings
 122 for data and targets adopted in our work are deeply rooted in the literature on kernel methods and
 123 their finite-width approximations. In this context, the power-law decays of the covariate spectrum
 124 and target coefficients are analogous to the classical capacity and source conditions, respectively.
 125 These spectral assumptions have been extensively investigated in kernel ridge regression (Capon-
 126 netto & De Vito, 2007; Cui et al., 2021) and random-features ridge regression (Rudi & Rosasco,
 127 2017; Bach, 2017; Defilippis et al., 2024). Furthermore, similar conditions are fundamental to prior
 128 theoretical works on SGD that are closely related to our setting, including studies on one-pass SGD
 129 (Yao et al., 2007; Ying & Pontil, 2008; Carratino et al., 2018; Berthier et al., 2020) and multi-pass
 130 SGD (Pillaud-Vivien et al., 2018). Detailed comparison with these works is in Appendix B.3.

131 **SignSGD Dynamics.** Bernstein et al. (2018a) give the non-convex convergence rate of signSGD.
 132 Xiao et al. (2024) derive the SDE and ODE of signSGD risk. The ODE we derive matches theirs
 133 in final form; however, we obtain it in an alternative route that does not require a spectral lower
 134 bound on the covariance matrix that they imposed. Detailed comparison with Xiao et al. (2024) is in
 135 Appendix B.2. Compagnoni et al. (2024) derive SDEs for adaptive methods, including signSGD.

138 2 PROBLEM SETUP

140 2.1 NOTATION

141 We use bold lowercase letters (e.g., \mathbf{u}) to denote vectors and bold uppercase letters (e.g., \mathbf{A}) to
 142 denote matrices. For vectors \mathbf{u} and \mathbf{v} , we denote the outer product by $\mathbf{u} \otimes \mathbf{v} := \mathbf{u}\mathbf{v}^\top$. And $\lambda_i(\mathbf{A})$
 143 denotes the i -th eigenvalue of the matrix \mathbf{A} . For positive-valued functions $f(x)$ and $g(x)$, we use
 144 $f(x) \lesssim g(x)$ if there exists $C > 0$ such that $f(x) \leq Cg(x)$ for sufficiently large x , and we use
 145 $f(x) \tilde{\sim} g(x)$ if there exist $c, C > 0$ such that $cg(x) \leq f(x) \leq Cg(x)$ for sufficiently large x .

147 2.2 MODEL

148 We consider the power-law random features (PLRF) model, parameterized by $\boldsymbol{\theta} \in \mathbb{R}^M$. Given a
 149 feature-label pair $(\mathbf{x}, y) \in \mathbb{R}^d \times \mathbb{R}$, the parameter $\boldsymbol{\theta}$ plays the role of a linear regression coefficient
 150 vector on the sketched features $\mathbf{S}\mathbf{x}$ (for some $\mathbf{S} \in \mathbb{R}^{M \times d}$), and the population risk function is

$$152 \quad L(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{x}} [(\langle \mathbf{S}\mathbf{x}, \boldsymbol{\theta} \rangle - y)^2].$$

153 The data are generated as follows: the feature vector $\mathbf{x} \in \mathbb{R}^d$ is drawn from $\mathcal{N}(0, \mathbf{H})$ with $\mathbf{H} =$
 154 $\text{diag}(1^{-2\alpha}, 2^{-2\alpha}, \dots, d^{-2\alpha})^2$, and the label is $y = \langle \mathbf{x}, \mathbf{w}^* \rangle$ with $\mathbf{w}^* = [1^{-\beta}, 2^{-\beta}, \dots, d^{-\beta}]^\top$; we
 155 call α and β feature-decay and target-decay parameters, respectively. The sketch matrix $\mathbf{S} \in \mathbb{R}^{M \times d}$
 156 is a random matrix that has i.i.d. entries $\mathcal{N}(0, 1/M)$, is drawn once and then held fixed throughout
 157 training; we refer to M (with $M \leq d$) as the model size. Under these model assumptions,

$$158 \quad L(\boldsymbol{\theta}) = \|\mathbf{H}^{1/2}(\mathbf{S}^\top \boldsymbol{\theta} - \mathbf{w}^*)\|^2.$$

159
 160 ²Since the distribution of Gaussian sketch matrix \mathbf{S} is identical to the distribution of $\mathbf{S}\mathbf{U}$ for any or-
 161 thogonal matrix \mathbf{U} , our analysis on diagonal \mathbf{H} covers the case with general matrix \mathbf{H} with eigenvalues
 $1^{-2\alpha}, 2^{-2\alpha}, \dots, d^{-2\alpha}$. We elaborate more on this in Appendix D.

We assume $d \geq rM$ for some $r > 1$, and let $d/M \rightarrow (1, \infty]$ as $d, M \rightarrow \infty$ when $2\alpha > 1$, and $d/M \rightarrow (1, \infty)$ when $2\alpha < 1$. The projected optimal parameter is

$$\theta^* = (\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1}\mathbf{S}\mathbf{H}\mathbf{w}^*. \quad (2)$$

Define $\mathbf{w}_\perp = \mathbf{w}^* - \mathbf{S}^\top\theta^*$ so that $\mathbf{w}^* = \mathbf{S}^\top\theta^* + \mathbf{w}_\perp$ and $\mathbf{S}\mathbf{H}\mathbf{w}_\perp = 0$. The **loss** decomposes as

$$L(\theta) = \|\mathbf{H}^{1/2}\mathbf{S}^\top(\theta - \theta^*)\|^2 + \|\mathbf{H}^{1/2}\mathbf{w}_\perp\|^2,$$

where the second term represents the approximation error.

SignSGD. We estimate the minimizer of the population risk via empirical risk minimization using signSGD. At step k , we draw a fresh sample (\mathbf{x}_k, y_k) from the model in Section 2.2 and form the stochastic gradient

$$\mathbf{g}_k = (\langle \mathbf{S}\mathbf{x}_k, \theta_k \rangle - y_k) \mathbf{S}\mathbf{x}_k. \quad (3)$$

The signSGD update rule is

$$\theta_{k+1} = \theta_k - \gamma_k \text{sign}(\mathbf{g}_k) = \theta_k - \gamma_k \text{sign}(\langle \mathbf{S}\mathbf{x}_k, \theta_k \rangle - y_k) \text{sign}(\mathbf{S}\mathbf{x}_k).$$

2.3 REPRESENTATION OF THE RESULT

Let $R(M, N, \gamma_0)$ denote the $L(\theta_N)$ under learning rate γ_0 and fixed model size M . We define the computational budget in terms of FLOPs as $\mathfrak{f} = MN$, and consider the optimal model size M^* under fixed \mathfrak{f} , and optimal scaling of learning rate in the form $\gamma_0^* = M^{-e^*}$. For SGD, Paquette et al. (2024) derive compute-optimal scaling laws of the following form:

$$M^* \approx \mathfrak{f}^\xi, \quad R\left(M^*, \frac{\mathfrak{f}}{M^*}, \gamma_0^*\right) \approx \mathfrak{f}^{-\eta}.$$

Our objective is to derive analogous formulas for signSGD, namely $R(M, N, \gamma_0)$ and $R(M^*, \frac{\mathfrak{f}}{M^*}, \gamma_0^*)$, and to compare them with the corresponding results for SGD.

3 ANALYZING THE SIGNSGD

In this section, we formulate the implicit integral equation for signSGD. We define

$$\mathbf{K} = \mathbf{S}\mathbf{H}\mathbf{S}^\top, \quad \bar{\mathbf{K}} = \text{diag}(\mathbf{K})^{-1/2}\mathbf{K}, \quad \mathbf{K}_\sigma = \text{arcsin}(\text{diag}(\mathbf{K})^{-1/2}\mathbf{K} \text{diag}(\mathbf{K})^{-1/2}), \quad (4)$$

where arcsin is applied entry-wise; we use these matrices and notation throughout the paper. We decompose the **loss** via

$$r_i(N) := (\theta_N - \theta^*)^\top (\mathbf{K}\mathbf{u}_i \otimes \mathbf{w}_i)(\theta_N - \theta^*),$$

where $\mathbf{u}_i, \mathbf{w}_i$ are the right/left eigenvectors of $\bar{\mathbf{K}}$ corresponding to the i th eigenvalue $\lambda_i(\bar{\mathbf{K}})$. This modal decomposition matches that of Xiao et al. (2024). For brevity we write $L(N) \equiv L(\theta_N)$.

$$L(N) = \sum_{i=1}^M r_i(N) + \|\mathbf{H}^{1/2}\mathbf{w}_\perp\|^2. \quad (5)$$

In Appendix E.1, we derive the one-step update formula for signSGD on a quadratic objective, using a second-order Taylor expansion and sign-Gaussian identities. Applying this to r_i yields

$$\mathbb{E}[r_i(k+1) - r_i(k) | \mathcal{F}_k] = -\underbrace{\frac{4\gamma_k}{\pi\sqrt{L(k)}} \lambda_i(\bar{\mathbf{K}}) r_i(k)}_{\text{drift}} + \underbrace{\frac{2\gamma_k^2}{\pi} \mathbf{w}_i^\top \mathbf{K}_\sigma \mathbf{K} \mathbf{u}_i}_{\text{quadratic noise}}. \quad (6)$$

- Drift.** The first term in (6) yields a systematic decrease of mode i : it is proportional to the curvature $\lambda_i(\bar{\mathbf{K}})$ and the learning rate γ_k , while the factor $1/\sqrt{L(k)}$ self-normalizes the step. Note that the directions corresponding to larger eigenvalues contract faster.
- Quadratic noise.** The second term in (6) is an $O(\gamma_k^2)$ variance injection shaped by curvature and the sign-noise covariance. It is independent of $r_i(k)$ and may set a mode-dependent noise floor, unless γ_k decays.

Overall, one-step progress reflects a balance between drift and quadratic noise: when $r_i(k)$ is large, the drift decreases $r_i(k)$; near the optimum, quadratic noise can dominate and cause $r_i(k)$ to plateau.

Converting the one-step update formula to the continuous-time ODE, we obtain ³

$$\frac{dr_i}{dt} = - \underbrace{\frac{4\gamma_{t/\gamma_0}}{\pi\gamma_0\sqrt{L(t)}} \lambda_i(\bar{\mathbf{K}}) r_i(t)}_{=: \Phi_i^{\text{drift}}(t)} + \underbrace{\frac{2\gamma_{t/\gamma_0}^2}{\pi\gamma_0} \mathbf{w}_i^\top \mathbf{K}_\sigma \mathbf{K} \mathbf{u}_i}_{=: \Phi_i^{\text{noise}}(t)}. \quad (7)$$

Compared to SGD, the drift is self-normalized by $1/\sqrt{L(t)}$ and the quadratic noise term does *not* carry the extra $L(t)$ factor present in SGD. So, for the constant learning rate, the quadratic noise does not decrease over time. The variation-of-constants formula gives the implicit integral representation

$$r_i(N) = r_i(0) \exp \left\{ - \int_0^N \Phi_i^{\text{drift}}(u) du \right\} + \int_0^N \exp \left\{ - \int_z^N \Phi_i^{\text{drift}}(u) du \right\} \times \Phi_i^{\text{noise}}(z) dz. \quad (8)$$

Summing over modes, we define

$$L^{\text{drift}}(N) = \sum_{i=1}^M r_i(0) \exp \left\{ - \int_0^N \Phi_i^{\text{drift}}(u) du \right\}, \quad (9)$$

$$L^{\text{noise}}(N) = \sum_{i=1}^M \int_0^N \exp \left\{ - \int_z^N \Phi_i^{\text{drift}}(u) du \right\} \times \Phi_i^{\text{noise}}(z) dz. \quad (10)$$

Exact formulation of $L^{\text{drift}}(N)$ and $L^{\text{noise}}(N)$ can be find in (27) of Appendix E.2. Then by (5) our risk is decomposed as

$$L(N) = L^{\text{drift}}(N) + L^{\text{noise}}(N) + \underbrace{\|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2}_{\text{approx}}. \quad (11)$$

4 MAIN RESULTS

4.1 LOSS FORMULA FOR CONSTANT LEARNING RATE

We now analyze (11) to get $R(M, N, \gamma_0)$, which is $L(N)$ under learning rate γ_0 and model size M .

- For $L^{\text{drift}}(N)$, we use a deterministic approximation (Appendix E.2.2) similar to Paquette et al. (2024), and obtain the asymptotic self-consistent equation: with $\Gamma_M = M^{\min(\alpha, 0.5)} \gamma_0$,

$$L^{\text{drift}}(N) \approx \left(\Gamma_M \int_0^N L^{\text{drift}}(u)^{-1/2} du \right)^{-\frac{2\alpha+2\beta-1}{2\alpha}} + M^{-1} \left(\Gamma_M \int_0^N L^{\text{drift}}(u)^{-1/2} du \right)^{-\frac{2\alpha-1}{2\alpha}}.$$

Solving this yields signSGD counterparts of the aligned- and distorted- feature loss terms in (1), denoted by $\mathcal{D}_{\text{al}}^{\text{sign}}(M, N, \gamma_0)$ and $\mathcal{D}_{\text{dis}}^{\text{sign}}(M, N, \gamma_0)$; see (12) below for their precise forms.

- For $L^{\text{noise}}(N)$ and approximation term, we calculate the limit loss L_∞ and get

$$L_\infty \approx \max \left\{ \gamma_0^2 M^{2-\min(1, 2\alpha)}, \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 \right\}$$

Lastly we use approximation error result from Paquette et al. (2024); Lin et al. (2024),

$$\|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 \approx M^{-2\alpha+\max(0, 1-2\beta)}.$$

³We treat L and r_i as their continuous extensions, allowing arbitrary positive real inputs.

Combining two parts yields a proxy, and we prove that it satisfies the implicit integral equation (11) in Appendix E.3.4 and E.4.4. Finally, we get the following four-term scaling law formula for one-pass signSGD on area $-\alpha + 0.5 < \beta < \alpha + 0.5$:⁴

$$\begin{aligned}
 R(M, N, \gamma_0) &\approx \underbrace{M^{-2\alpha+\max(0, 1-2\beta)}}_{=: \mathcal{A}(M)} + \underbrace{(M^{\min(\alpha, 0.5)} N \gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha-2\beta+1}}}_{=: \mathcal{D}_{\text{al}}^{\text{sign}}(M, N, \gamma_0)} \\
 &\quad + \underbrace{M^{-\frac{6\alpha-1}{2\alpha+1}} (N \gamma_0)^{-\frac{2(2\alpha-1)}{2\alpha+1}}}_{=: \mathcal{D}_{\text{dis}}^{\text{sign}}(M, N, \gamma_0)} + \underbrace{\gamma_0^2 M^{2-\min(1, 2\alpha)}}_{=: \mathcal{N}^{\text{sign}}(M, \gamma_0)}.
 \end{aligned} \tag{12}$$

Interpretation. The term $\mathcal{A}(M)$ is the approximation error (irreducible as $N \rightarrow \infty$). The terms $\mathcal{D}_{\text{al}}^{\text{sign}}(M, N, \gamma_0)$ and $\mathcal{D}_{\text{dis}}^{\text{sign}}(M, N, \gamma_0)$ arise from the drift's exponential damping $r_i(0) \exp\left\{-\int_0^N \Phi_i^{\text{drift}}(u) du\right\}$ and correspond to the aligned and distorted feature losses of SGD scaling law in Paquette et al. (2024). The term $\mathcal{N}^{\text{sign}}(M, \gamma_0)$ captures the quadratic noise from the one-step Taylor expansion, specific to one-pass signSGD.

Comparison. We compare our signSGD scaling law formula with the SGD formula (1) of Paquette et al. (2024). Since the approximation error is optimizer-independent, the term $\mathcal{A}(M)$ remains unchanged. For the N -exponent in \mathcal{D}_{al} and \mathcal{D}_{dis} , when the absolute value of the exponent is x for SGD, then it changes to $\frac{2}{2-x}x$ in signSGD, which is strictly larger than x . Therefore, $\mathcal{D}_{\text{al}}^{\text{sign}}(M, N, \gamma_0)$ and $\mathcal{D}_{\text{dis}}^{\text{sign}}(M, N, \gamma_0)$ decrease faster in the number of steps N under signSGD. By contrast, the signSGD noise term $\mathcal{N}^{\text{sign}}(M, \gamma_0)$ does not decay with N , whereas the SGD noise $\mathcal{N}^{\text{SGD}}(N, \gamma_0)$ does.⁵

We discuss the underlying mechanism that modifies the drift terms \mathcal{D}_{al} , \mathcal{D}_{dis} , and the noise term \mathcal{N} .

- **Drift terms (Drift-normalization effect):** In signSGD, the drift in (6) is $\frac{4\gamma_k}{\pi\sqrt{L(k)}} \lambda_i(\bar{\mathbf{K}})$, whereas for SGD it is $2\gamma_k \lambda_i(\mathbf{K})$; see (4) for the definition of \mathbf{K} and $\bar{\mathbf{K}}$. The diagonal preconditioning embedded in $\bar{\mathbf{K}}$ contributes an extra factor $M^{\min(\alpha, 1/2)}$, since the scale of the matrix $\text{diag}(\mathbf{K})^{-1/2}$, which is multiplied in $\bar{\mathbf{K}}$, is $M^{\min(\alpha, 1/2)}$. The normalization by $\sqrt{L(k)}$ replaces the effective flow time $N\gamma_0$ with $\gamma_0 \int_0^N L(u)^{-1/2} du$, which accelerates progress in training whenever $L(u) \lesssim 1$. Thus, in the aligned/distorted drift terms, $(N\gamma_0)$ is replaced by $M^{\min(\alpha, 1/2)} \gamma_0 \int_0^N L(u)^{-1/2} du$. It leads to the self-consistent equation, which did not occur in SGD, and the solution of the self-consistent equation is a sum of powers of $M^{\min(\alpha, 1/2)} N \gamma_0$. The absolute value of the exponent increases compared to SGD due to the acceleration in the regime $L(u) \lesssim 1$.
- **Noise term (Noise-reshaping effect):** The signSGD noise in (6) is $\frac{2\gamma_k^2}{\pi} \mathbf{w}_i^\top \mathbf{K}_\sigma \mathbf{K} \mathbf{w}_i$, while for SGD it is $\gamma_k^2 (\mathbf{v}_i^\top \mathbf{K} \mathbf{v}_i) L(k)$ with \mathbf{v}_i an eigenvector of \mathbf{K} . The normalization removes the multiplicative $L(k)$ in signSGD, eliminating the Volterra structure present in Paquette et al. (2024). This difference is crucial: the lack of $L(k)$ in the quadratic term ultimately yields a noise term that does not decay in N . In the final formula, it deletes $(N\gamma_0)^{-\frac{4\alpha-1}{2\alpha}}$ term, which existed in the SGD noise term, and therefore the noise term of signSGD increases as the learning rate γ_0 grows for all (α, β) . In contrast, when the learning rate γ_0 grows, the noise term of SGD decreases for $\alpha > 0.5$ and increases for $\alpha < 0.5$. Meanwhile, an additional M -dependence arises from working in the \mathbf{K} - (rather than \mathbf{K} -) eigenbasis due to diagonal preconditioning.

4.2 COMPUTE-OPTIMAL RESULT UNDER OPTIMAL CONSTANT LEARNING RATE

In the constant learning-rate schedule, we allow γ_0 to scale with the model size via $\gamma_0 = M^{-e}$. The hyperparameter e directly influences the compute-optimal scaling law.⁶

⁴For the case $\beta > \alpha + 0.5$, $\mathcal{D}_{\text{al}}^{\text{sign}}(M, N, \gamma_0)$ takes form of $(1 - \kappa M^{\min(\alpha, 0.5)} N \gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha-2\beta+1}}$. See Appendix E.5 for more details.

⁵As we set γ_0 as M^{-e} later, decay with respect to M depends on the choice of γ_0 .

⁶One may wonder why we do not parameterize by N . Setting $\gamma_0 = M^{-e}$ is without loss of generality, since in the compute-optimal case both M and N are expressed as powers of the total compute f .

Figure 2: **Left: Phase plane for signSGD; Right: Phase plane for SGD.** The white region indicates parameter values with no power-law scaling. The dark blue area represents the region where stable-decay scheduling (Section 4.3) yields a better compute-optimal exponent.

Following Paquette et al. (2024), we distinguish the *maximal* and *optimal* learning rates for SGD. The maximal rate is the largest step that yields a stable (non-exploding) recursion; for signSGD, it leads to a zero compute-optimal slope (see Appendix F.1). We therefore focus on the optimal learning rate γ_0^* , which maximizes the decay exponent η in

$$R(M^*, \mathfrak{f}/M^*, \gamma_0^*) \asymp \mathfrak{f}^{-\eta},$$

where M^* denotes the model size minimizing $R(\cdot)$ at fixed compute budget \mathfrak{f} .

To characterize the compute-optimal scaling, set $\gamma_0 = M^{-e}$, $M = \mathfrak{f}^x$, and $N = \mathfrak{f}^{1-x}$ (with $x \in [0, 1]$), and solve

$$(e^*, x^*) \in \arg \min_{e, x} R(M, N, \gamma_0) = \arg \min_{e, x} R(\mathfrak{f}^x, \mathfrak{f}^{1-x}, \mathfrak{f}^{-ex}). \quad (13)$$

Then $M^* = \mathfrak{f}^{x^*}$, $N^* = \mathfrak{f}^{1-x^*}$, and $\gamma_0^* = (M^*)^{-e^*}$, and at the optimum

$$R(M^*, \mathfrak{f}/M^*, \gamma_0^*) \asymp \mathfrak{f}^{-\eta(\alpha, \beta)},$$

for some $\eta(\alpha, \beta) > 0$, which we refer to as the compute-optimal slope.

In problem (13), each of the four terms in (12) scales as $\mathfrak{f}^{-\ell_i(e, x)}$, so minimizing R is equivalent to maximizing $\min\{\ell_1, \ell_2, \ell_3, \ell_4\}$. The optimal value (e^*, x^*) is obtained by balancing three active exponents. The resulting formulas and dominant and balancing terms are summarized in Table 1; see Appendix F.2 for details.

We follow Paquette et al. (2024) in defining phases by dominant terms; to avoid confusion with their SGD phases, we label our signSGD phases by uppercase letters. Accordingly, any reference to Phase I–IV hereafter refers exclusively to the SGD phases of Paquette et al. (2024). For signSGD, the phase plane is simpler: when $\alpha > 0.5$ and $\beta > 0.5$ (Phase B) all four terms are dominant; otherwise (Phase A) the dominant terms are $\mathcal{A}(M)$, $\mathcal{D}_{\text{al}}^{\text{sign}}(M, N, \gamma_0)$, and $\mathcal{N}^{\text{sign}}(M, \gamma_0)$. We declare *subphases* whenever the formula of at least one of $\gamma_0 = M^{-e^*}$, M^* , or $R(M^*, \mathfrak{f}/M^*, \gamma_0^*)$ changes. These changes occur across the boundaries $\alpha = 0.5$, $\beta = 0.5$, and $\beta = \alpha + 0.5$, yielding six sub-phases in total (Phase A split into four, Phase B into two). **We provide a formula of approximation, drift, and noise term for each subphase in Table 2.** For context, Paquette et al. (2024) also partition the (α, β) -plane into four phases with six subphases for optimal learning rate.

Remark 1 (Dominant vs. balancing terms). Dominant terms are those that can lead the risk for some (γ_0, M, N) . *Balancing terms* are the ones that tie (hence “balancing”) at the compute-optimal choice (γ_0^*, M^*, N^*) and therefore determine the slope; they form a subset of the dominant terms.

Comparison of Compute-optimal Results. For the intersection of Phase Aa, Ab, Ac, Ba and Phase I, II, the compute-optimal slope $\eta(\alpha, \beta)$ and optimal model size M^* are the same for signSGD

378
379 Table 1: Dominant and balancing terms, optimal learning rate, compute-optimal model size, and
380 risk across different (α, β) phases. Refer to (12) for the definitions of the terms $\mathcal{A}, \mathcal{D}_{\text{al}}, \mathcal{D}_{\text{dis}}, \mathcal{N}$. See
381 Figures 9 to 13 in the Appendix for empirical validation of the theoretical exponents.

382 383 384 Phase	385 386 387 388 389 390 391 392 393 394 Term structure		395 396 397 398 399 400 Compute-optimal		
	395 396 397 398 399 400 Dominant terms	395 396 397 398 399 400 Balancing terms	395 396 397 398 399 400 γ_0^*	395 396 397 398 399 400 M^*	395 396 397 398 399 400 $R(M^*, \frac{f}{M^*}, \gamma_0^*)$
395 396 397 398 399 400 Phase A $\mathcal{A}, \mathcal{D}_{\text{al}}, \mathcal{N}$	395 396 397 398 399 400 $\mathcal{A}, \mathcal{D}_{\text{al}}, \mathcal{N}$	395 396 397 398 399 400 Aa	395 396 397 398 399 400 $M^{-(\alpha+\beta)}$	395 396 397 398 399 400 $f^{\frac{1}{2\alpha+1}}$	395 396 397 398 399 400 $f^{-\frac{2\alpha+2\beta-1}{2\alpha+1}}$
395 396 397 398 399 400 Phase B $\mathcal{A}, \mathcal{D}_{\text{al}}, \mathcal{D}_{\text{dis}}, \mathcal{N}$	395 396 397 398 399 400 $\mathcal{D}_{\text{al}}, \mathcal{D}_{\text{dis}}, \mathcal{N}$	395 396 397 398 399 400 Ab	395 396 397 398 399 400 $M^{-\frac{2\beta+1}{2}}$	395 396 397 398 399 400 $f^{\frac{1}{2}}$	395 396 397 398 399 400 $f^{-\frac{2\alpha+2\beta-1}{2}}$

395 and SGD. In contrast, for the area of Phase III, IV excluding the case $0.25 < \alpha < 1/3, \beta >$
396 $(1 - \alpha)(1 - 2\alpha)/(2(1 - 3\alpha))$ (See Figure 5 in the Appendix for the visualization of this area), the
397 compute-optimal slope $\eta(\alpha, \beta)$ for signSGD is *steeper* than that for SGD, and the optimal model
398 size is bigger in signSGD. We refer to this region as the Area III-IV_{sub}. Finally, for the optimal
399 learning rate $\gamma_0 = M^{-e^*}$, the exponent e^* is always bigger in signSGD, which means signSGD
400 always has a smaller optimal learning rate.

401 4.3 EFFECT OF STABLE-DECAY SCHEDULING

402 For a stable-decay schedule, we set the learning
403 rate to $\gamma_k = \gamma_0 f(k)$ with

$$404 \quad f(k) = \begin{cases} 1, & k \leq pN, \\ 405 (1 + \tau(k - pN))^{-c}, & k > pN, \end{cases} \quad (14)$$

406 where $p, c \in (0, 1)$ and $\tau > 0$. In other words,
407 the learning rate remains constant for the first pN
408 steps, and then decays polynomially with exponent
409 c for the remaining $(1 - p)N$ steps.

410 In Phase Aa, the f -scheduled noise bound can im-
411 prove over constant LR:

$$412 \quad L^{\text{noise}}(N) \lesssim \gamma_0^2 M N^{-2c} + \gamma_0^{\frac{1}{2\alpha}} M^{\frac{1}{4\alpha}} N^{-(1-c)(1-\frac{1}{2\alpha})}.$$

413 Combining this with the drift and approximation terms, and then optimizing over e of $\gamma_0 = M^{-e}$,
414 the decay parameter c , and the model size M , yields the f -scheduled risk bound

$$415 \quad R_f(M^*, f/M^*, (M^*)^{-e^*}) \lesssim f^{-\frac{2(4\alpha-1)(2\alpha+2\beta-1)}{16\alpha^2+8\alpha\beta+2\alpha-2\beta-1}}. \quad (15)$$

416 The absolute value of the exponent in (15) exceeds the compute-optimal slope under constant learn-
417 ing rate when $\alpha > 0.5$ and $0.5 - \alpha < \beta < \frac{2\alpha-1}{2(4\alpha-1)}$. Thus, stable-decay scheduling yields a strictly
418 larger compute-optimal slope in the upper left region of Phase Aa (marked with dark blue in Fig-
419 ure 2). We will refer to this region as Area Aa^{*} throughout the paper.

420 Scheduling does not improve the SGD compute-optimal exponent in Phases I-II (see Appendix G.5).
421 Thus, with scheduling, signSGD achieves a larger compute-optimal exponent compared to SGD in
422 Area Aa^{*}.⁷

423 Figure 3: **Visualization of Stable-decay**
424 **Scheduling.**

425 ⁷Whether scheduling benefits other regions of signSGD or other phases of SGD remains open, since for
426 both methods the scheduled noise upper and lower bounds do not match tightly, even up to constant factors.

432 5 DISCUSSION: WHERE AND WHY SIGNSGD PROVIDES BENEFITS?

434 With a constant learning rate $\gamma_0 = M^{-e}$, signSGD yields improvements over SGD in Area III-IV_{sub}.
 435 Under stable-decay scheduling, we find signSGD also provides benefits in Area Aa^{*}.
 436

437 **Mechanisms.** These gains can be explained by *noise-reshaping*, together with *drift-normalization*.
 438 In Paquette et al. (2024), Phases III–IV are the SGD noise-bottleneck regimes. By contrast,
 439 noise-reshaping in signSGD can alleviate this bottleneck with a suitable learning-rate choice, yield-
 440 ing improved compute-optimal slopes.
 441

442 **Role of Learning-rate Scaling.** The signSGD noise term with constant LR is $\mathcal{N}^{\text{sign}}(M, \gamma_0) =$
 443 $\gamma_0^2 M^{2-\min(1,2\alpha)}$, whereas for SGD it is $\mathcal{N}^{\text{SGD}}(N, \gamma_0) = \gamma_0(N\gamma_0)^{-(4\alpha-1)/(2\alpha)}$. If $\gamma_0 \approx 1$,
 444 $\mathcal{N}^{\text{sign}}(M, \gamma_0)$ is much larger than $\mathcal{N}^{\text{SGD}}(N, \gamma_0)$, making the compute-optimal slope asymptotically
 445 zero. Hence, we set $\gamma_0 = M^{-e}$ and optimize e to balance terms and obtain a steep compute-optimal
 446 curve: decreasing γ_0 lowers $\mathcal{N}^{\text{sign}}(M, \gamma_0)$ while increasing the drift terms $\mathcal{D}_{\text{al}}^{\text{sign}}(M, N, \gamma_0)$ and
 447 $\mathcal{D}_{\text{dis}}^{\text{sign}}(M, N, \gamma_0)$, and the optimal e strikes the balance.
 448

449 **Why Gains Arise in Area III-IV_{sub}.** For SGD, the shape of $\mathcal{N}^{\text{SGD}}(N, \gamma_0)$ makes it dominate
 450 $\mathcal{D}_{\text{al}}^{\text{SGD}}(N, \gamma_0)$ at the compute-optimal point in Phases III–IV. It is because the absolute value of ex-
 451 ponent in $\mathcal{N}^{\text{SGD}}(N, \gamma_0) = \gamma_0(N\gamma_0)^{-\frac{4\alpha-1}{2\alpha}}$ is smaller than that of $\mathcal{D}_{\text{al}}^{\text{SGD}}(N, \gamma_0) = (N\gamma_0)^{-\frac{2\alpha+2\beta-1}{2\alpha}}$
 452 in Area III-IV_{sub}. For signSGD, noise-reshaping alters $\mathcal{N}^{\text{sign}}(M, \gamma_0)$ so it can *balance* against
 453 $\mathcal{D}_{\text{al}}^{\text{sign}}(M, N, \gamma_0)$. Note that the noise term takes a completely different form: $\mathcal{N}^{\text{sign}}(M, \gamma_0) =$
 454 $\gamma_0^2 M^{2-\min(1,2\alpha)}$, therefore dominance against the aligned drift term disappears. On the other hand,
 455 drift-normalization steepens the decay of $\mathcal{D}_{\text{al}}^{\text{sign}}(M, N, \gamma_0)$ by increasing the absolute value of the
 456 exponent with respect to N . This creates room for a balance in which both terms are smaller than the
 457 SGD noise $\mathcal{N}^{\text{SGD}}(N, \gamma_0)$ at optimum, explaining the improvements in Area III-IV_{sub}. For example,
 458 in the intersection between Phase Ba and Phase III, balancing $\mathcal{N}^{\text{sign}}(M, \gamma_0)$ and $\mathcal{D}_{\text{al}}^{\text{sign}}(M, N, \gamma_0)$
 459 leads to $f^{-\frac{2\alpha+2\beta-1}{2\alpha+2\beta}}$, whereas $\mathcal{N}^{\text{SGD}}(N, \gamma_0)$ takes bigger value $f^{-\frac{4\alpha-1}{4\alpha}}$.
 460

461 **Why Stable-decay Scheduling Helps.** For a learning-rate schedule $\gamma_k = \gamma_0 f(k)$ with general f ,
 462 the drift-only self-consistent solution in Phase Aa takes the form
 463

$$464 (M^{1/2} \gamma_0 F(N))^{-\frac{2(2\alpha+2\beta-1)}{2\alpha-2\beta+1}}, \quad \text{where} \quad F(N) := \int_0^N f(u) du.$$

466 This can be viewed as $\mathcal{D}_{\text{al}}^{\text{sign}}(M, N, \gamma_0)$ with N replaced by $F(N)$. This aligns with empirical obser-
 467 vations that a loss term can decay polynomially with the area under the learning-rate curve (Tissue
 468 et al., 2024).
 469

470 In contrast, the noise term depends most heavily on the learning rate *near the end* of training, since
 471 earlier noise can be damped by later drift; see (8). Stable-decay preserves the total area $F(N)$ asymp-
 472totically while shrinking the late-stage learning rate, thereby reducing noise without sacrificing drift.
 473 As a result, stable-decay scheduling yields a larger compute-optimal slope in Area Aa^{*} (upper-left
 474 Phase Aa; see Section 5.1 for intuition). More broadly, we conjecture that appropriate scheduling
 475 can further reduce the signSGD noise term, enabling improvements beyond Area III-IV_{sub}.
 476

477 5.1 HYPOTHESIS FOR THE POSITION OF THE BENEFICIAL AREA

478 Here, we hypothesize why the areas with improved scaling law lie near the left edge (small β) and
 479 the right side ($\beta > \alpha$) of the phase plane.
 480

481 **Heuristic Criterion.** Let “target decay” denote the decay of the projected optimum θ^* in (2), and
 482 “stochastic-gradient decay” the decay of the stochastic gradient in (3). SignSGD is advantageous
 483 when the *target decays more slowly* than the stochastic gradient. Under SGD, coordinates with
 484 smaller gradients take smaller updates; if the target does not decay much, those coordinates still
 485 require learning targets of comparable magnitude, so more iterations are needed—an inefficiency
 that signSGD mitigates by normalizing per-coordinate updates via the sign operation.
 486

486 **When Does This Occur? Observations and Conjecture** Writing $\mathbf{S}\mathbf{H}\mathbf{S}^\top = \mathbf{U}\Lambda\mathbf{U}^\top$, the
 487 expected stochastic-gradient along the \mathbf{U} basis decays as $i^{-2\alpha}$. See Appendix I for details of analysis.
 488

489 Next, we examine how the target decays in the basis of the columns of \mathbf{U} . For that, we have to
 490 consider $\mathbf{U}^\top \theta^*$. Since $\mathbb{E}[\mathbf{S}^\top \mathbf{S}] = \mathbf{I}$, we decompose

$$491 \quad \mathbf{S}^\top \mathbf{S} = \mathbf{I} + \mathbf{E}, \quad \mathbf{E} := \mathbf{S}^\top \mathbf{S} - \mathbf{I},$$

493 so that \mathbf{E} represents the zero-mean fluctuation around the identity. Then we have

$$495 \quad \begin{aligned} \mathbf{U}^\top \theta^* &= \mathbf{U}^\top (\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1} \mathbf{S}\mathbf{H}\mathbf{w}^* \\ 496 &= \mathbf{U}^\top (\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1} \mathbf{S}\mathbf{H}(\mathbf{S}^\top \mathbf{S} - \mathbf{E})\mathbf{w}^* \\ 497 &= \mathbf{U}^\top \mathbf{S}\mathbf{w}^* - \mathbf{U}^\top (\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1} \mathbf{S}\mathbf{H}\mathbf{E}\mathbf{w}^*. \end{aligned}$$

500 Since $\mathbf{S}\mathbf{H}\mathbf{S}^\top = \mathbf{U}\Lambda\mathbf{U}^\top$ and the columns of \mathbf{U} and \mathbf{S} are well aligned, we expect that $\mathbf{U}^\top \mathbf{S}\mathbf{w}^*$
 501 would exhibit a decay pattern similar to \mathbf{w}^* . The second term $\mathbf{U}^\top (\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1} \mathbf{S}\mathbf{H}\mathbf{E}\mathbf{w}^*$ could be
 502 thought of as a stochastic error which hinders the decay. For small β , as the decay of \mathbf{w}^* is slow,
 503 the decay of $\mathbf{U}^\top \mathbf{S}\mathbf{w}^*$ is expected to be slow, and therefore the overall decay of $\mathbf{U}^\top \theta^*$ will be slow
 504 as well. If we increase the β , the decay of $\mathbf{U}^\top \mathbf{S}\mathbf{w}^*$ will become faster, which also drives a faster
 505 decay of $\mathbf{U}^\top \theta^*$. However, when β becomes too big, as the first term $\mathbf{U}^\top \mathbf{S}\mathbf{w}^*$ decays rapidly, the
 506 second term $\mathbf{U}^\top (\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1} \mathbf{S}\mathbf{H}\mathbf{E}\mathbf{w}^*$ dominates quickly, and therefore $\mathbf{U}^\top \theta^*$ will plateau quickly
 507 after some steep decay.

508 Figure 4 empirically validates our intuition for the
 509 decay of $\mathbf{U}^\top \theta^*$. For $(\alpha, \beta) = (0.7, 1.1)$, $\mathbf{U}^\top \theta^*$
 510 plateaus quickly; for $(0.7, 0.6)$ it decays longer;
 511 and for $(0.7, 0.1)$, since \mathbf{w}^* hardly decays, the tar-
 512 get also shows little decay.

513 These observations suggest that in the left region
 514 (small β) and the right region ($\beta > \alpha$), the tar-
 515 gets decay more slowly than the stochastic gra-
 516 dient, whereas in the middle band ($0.5 < \beta < \alpha$)
 517 they do not. This could potentially explain why the
 518 signSGD-beneficial area appears near the left edge
 519 and the right side of the phase plane.

521 5.2 CONJECTURE FOR ADAM

523 We conjecture that Adam with β_2 parameter suffi-
 524 ciently close to 1 follows the same scaling law with
 525 signSGD, based on the heuristic analysis in Ap-
 526 pendix J. In detail, we expect Adam to follow the
 527 same asymptotic loss formula (12) with signSGD,
 528 and therefore to follow the same compute-optimal
 529 scaling law with respect to flops f in the Table 1.
 530 We also did an experiment on Adam and checked that the exponents in the Table 1 and measured
 531 the compute-optimal loss exponent and optimal model size exponent for Adam match well. (See
 532 Figure 24)

533 6 CONCLUSION

535 We derived the scaling law of signSGD under the PLRF model and identified two distinctive
 536 effects—drift-normalization and noise-reshaping—relative to SGD. Analyzing compute-optimal
 537 tradeoffs, we showed that signSGD achieves steeper slopes than SGD in the noise-bottleneck
 538 regimes, and that a stable-decay schedule further improves performance in the Area Aa^{*}. Deriving
 539 Adam’s scaling law without heuristic assumptions is a compelling direction. We defer limitations
 and additional future works to Appendix A.

537 **Figure 4: Decay of θ^* in the basis of**
 538 **columns of \mathbf{U} compared to \mathbf{w}^* .** The legend
 539 on the top shows $(\alpha, \beta, \text{fitted slope of } \mathbf{U}^\top \theta^*)$.

540 REFERENCES
541

542 Francis Bach. On the equivalence between kernel quadrature rules and random feature expansions.
543 *Journal of machine learning research*, 18(21):1–38, 2017.

544 Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
545 scaling laws. *Proceedings of the National Academy of Sciences*, 121(27):e2311878121, 2024.

546 Lukas Balles, Fabian Pedregosa, and Nicolas Le Roux. The geometry of sign gradient descent. *arXiv*
547 *preprint arXiv:2002.08056*, 2020.

548 Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
549 signsdg: Compressed optimisation for non-convex problems. In *International conference on ma-*
550 *chine learning*, pp. 560–569. PMLR, 2018a.

551 Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandkumar. signsdg with
552 majority vote is communication efficient and fault tolerant. *arXiv preprint arXiv:1810.05291*,
553 2018b.

554 Raphaël Berthier, Francis Bach, and Pierre Gaillard. Tight nonparametric convergence rates for
555 stochastic gradient descent under the noiseless linear model. *Advances in Neural Information*
556 *Processing Systems*, 33:2576–2586, 2020.

557 Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural scaling
558 laws. In *International Conference on Machine Learning*, pp. 4345–4382. PMLR, 2024.

559 Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. How feature learning can improve
560 neural scaling laws. *Journal of Statistical Mechanics: Theory and Experiment*, 2025(8):084002,
561 2025.

562 Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm.
563 *Foundations of Computational Mathematics*, 7(3):331–368, 2007.

564 Luigi Carratino, Alessandro Rudi, and Lorenzo Rosasco. Learning with sgd and random features.
565 *Advances in neural information processing systems*, 31, 2018.

566 Enea Monzio Compagnoni, Tianlin Liu, Rustem Islamov, Frank Norbert Proske, Antonio Orvieto,
567 and Aurelien Lucchi. Adaptive methods through the lens of sdes: Theoretical insights on the role
568 of noise. *arXiv preprint arXiv:2411.15958*, 2024.

569 Hugo Cui, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová. Generalization error rates
570 in kernel regression: The crossover from the noiseless to noisy regime. *Advances in Neural*
571 *Information Processing Systems*, 34:10131–10143, 2021.

572 Leonardo Defilippis, Bruno Loureiro, and Theodor Misiakiewicz. Dimension-free deterministic
573 equivalents and scaling laws for random feature regression. *Advances in Neural Information*
574 *Processing Systems*, 37:104630–104693, 2024.

575 Shihong Ding, Haihan Zhang, Hanzhen Zhao, and Cong Fang. Scaling law for stochastic gradient
576 descent in quadratically parameterized linear regression. *arXiv preprint arXiv:2502.09106*, 2025.

577 EleutherAI. Openwebtext2: An enhanced webtext-style corpus of reddit outbound links. <https://openwebtext2.readthedocs.io/en/latest/>, 2024. Accessed: 2025-11-17.

578 Damien Ferbach, Katie Everett, Gauthier Gidel, Elliot Paquette, and Courtney Paquette. Dimension-
579 adapted momentum outscaler sgd. *arXiv preprint arXiv:2505.16098*, 2025.

580 Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
581 Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
582 modeling. *arXiv preprint arXiv:2010.14701*, 2020.

583 Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
584 Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
585 empirically. *arXiv preprint arXiv:1712.00409*, 2017.

594 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 595 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training
 596 compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

597

598 Marcus Hutter. Learning curve theory. *arXiv preprint arXiv:2102.04074*, 2021.

599 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 600 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 601 models. *arXiv preprint arXiv:2001.08361*, 2020.

602

603 Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
 604 fixes signsgd and other gradient compression schemes. In *International conference on machine
 605 learning*, pp. 3252–3261. PMLR, 2019.

606 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 607 arXiv:1412.6980*, 2014.

608

609 Tanishq Kumar, Zachary Ankner, Benjamin F Spector, Blake Bordelon, Niklas Muennighoff, Man-
 610 sheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for precision.
 611 *arXiv preprint arXiv:2411.04330*, 2024.

612 Frederik Kunstner and Francis Bach. Scaling laws for gradient descent and sign descent for linear
 613 bigram models under zipf’s law. *arXiv preprint arXiv:2505.19227*, 2025.

614 Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
 615 main factor behind the gap between sgd and adam on transformers, but sign descent might be.
 616 *arXiv preprint arXiv:2304.13960*, 2023.

617

618 Licong Lin, Jingfeng Wu, Sham M Kakade, Peter Bartlett, and Jason D Lee. Scaling laws in linear
 619 regression: Compute, parameters, and data. In *The Thirty-eighth Annual Conference on Neural
 620 Information Processing Systems*, 2024.

621 Licong Lin, Jingfeng Wu, and Peter L Bartlett. Improved scaling laws in linear regression via data
 622 reuse. *arXiv preprint arXiv:2506.08415*, 2025.

623 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 624 arXiv:1711.05101*, 2017.

625

626 Bochen Lyu, Di Wang, and Zhanxing Zhu. A solvable attention for neural scaling laws. In *The
 627 Thirteenth International Conference on Learning Representations*, 2025.

628

629 Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+ 3 phases of compute-
 630 optimal neural scaling laws. In *The Thirty-eighth Annual Conference on Neural Information
 631 Processing Systems*, 2024.

632

633 Lucas Pillaud-Vivien, Alessandro Rudi, and Francis Bach. Statistical optimality of stochastic gra-
 634 dient descent on hard learning problems through multiple passes. *Advances in Neural Information
 635 Processing Systems*, 31, 2018.

636

637 Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving
 638 discrepancies in compute-optimal scaling of language models. *Advances in Neural Information
 639 Processing Systems*, 37:100535–100570, 2024.

640

641 Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random features.
 642 *Advances in neural information processing systems*, 30, 2017.

643

644 Utkarsh Sharma and Jared Kaplan. A neural scaling law from the dimension of the data manifold.
 645 *arXiv preprint arXiv:2004.10802*, 2020.

646

647 Shehper. scaling_laws: An open-source implementation of scaling laws for neural language models
 648 using nanopt. https://github.com/shehper/scaling_laws, 2025. GitHub reposi-
 649 tory, accessed 2025-11-17.

650

651 Howe Tissue, Venus Wang, and Lu Wang. Scaling law with learning rate annealing. *arXiv preprint
 652 arXiv:2408.11029*, 2024.

648 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
649 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information*
650 *processing systems*, 30, 2017.

651

652 Kaiyue Wen, Zhiyuan Li, Jason Wang, David Hall, Percy Liang, and Tengyu Ma. Understanding
653 warmup-stable-decay learning rates: A river valley loss landscape perspective. *arXiv preprint*
654 *arXiv:2410.05192*, 2024.

655

656 Ke Liang Xiao, Noah Marshall, Atish Agarwala, and Elliot Paquette. Exact risk curves of signsgd
657 in high-dimensions: Quantifying preconditioning and noise-compression effects. *arXiv preprint*
658 *arXiv:2411.12135*, 2024.

659

660 Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learning.
661 *Constructive approximation*, 26(2):289–315, 2007.

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

SUPPLEMENTARY MATERIALS FOR
“SCALING LAWS OF SIGNSGD IN LINEAR REGRESSION:
WHEN DOES IT OUTPERFORM SGD?”

USAGE OF LLM

We primarily used LLMs to polish the English writing throughout the paper. They were also employed to help us identify additional related work beyond those we were already familiar with. When preparing well-formatted tables, we relied on LLMs for assistance. We also used LLMs to refine LaTeX code so that complicated formulas appeared clean and readable in the manuscript. Finally, we sought LLM support for debugging code used in our experiments.

OVERVIEW OF APPENDIX

- (1) In Appendix A we discuss limitations and future works.
- (2) In Appendix B we discuss more related works beyond those discussed in Section 1.2, and provide a detailed comparison with closely related works.
- (3) In Appendix C we present experimental results which support our theory.
- (4) In Appendix D, we explain that our analysis also covers the general covariate H due to the equivalence to the diagonal covariate case.
- (5) In Appendix E we derive the scaling law formula (12) of $R(M, N, \gamma_0)$ under constant learning rate. We first derive a one-step update formula and convert it to an ODE to get an integral equation. We use a deterministic approximation for the integral equation with experimental results. Then we set a proxy of the loss function and verify that it satisfies the integral equation.
- (6) In Appendix F we discuss the maximal learning rate deferred from the main text, and derive the optimal learning rate, compute-optimal loss, and optimal model size in Table 1.
- (7) In Appendix G we derive the result for stable-decay learning rate in Section 4.3.
- (8) In Appendix H, we provide an analysis for the linear decaying scheduling and the cosine scheduling.
- (9) In Appendix I we provide analysis for stochastic gradient decay deferred from Section 5.1.
- (10) In Appendix J we derive scaling law of Adam under heuristic proposed by Xiao et al. (2024), and verify our results with experiment.
- (11) In Appendix K we provide omitted analysis from Appendix E.
- (12) In Appendix L, we provide an analysis for the case with noisy labels.

A LIMITATION AND FUTURE WORK

Limitation. Our analysis assumes batch size 1 and focuses on the PLRF setting with diagonal covariance \mathbf{H} ; extensions to mini-batch and more general covariances are not covered here. For scheduling, we analyze a stable-decay template; exact asymptotics for broader schedules remain open. We also use a deterministic approximation whose accuracy we verify empirically; tightening constants and extending the formal guarantees are left for future work.

Future Work. Combining signSGD with dimension-adapted acceleration (Ferbach et al., 2025) and extending the framework to more complex architectures (e.g., two-layer linear networks or self-attention) are promising avenues.

756 B ADDITIONAL RELATED WORK
757758 **More Related Works on Empirical Scaling Laws.** Porian et al. (2024) resolve discrepancy be-
759 tween Kaplan et al. (2020) and Hoffmann et al. (2022). Kumar et al. (2024) investigate precision-
760 aware scaling law.
761762 **More Related Works on Scaling Law Theory.** There are lines of work analyzing more complex
763 models compared to the power-law random features (PLRF) model. Bordelon et al. (2025) investi-
764 giate the scaling law of a two-layer linear neural network with projected gradient descent, and argued
765 the benefit compared to the PLRF model, which is one-layer. Ding et al. (2025) cover the scaling
766 law of quadratically parameterized linear regression with SGD. Lyu et al. (2025) cover the scaling
767 law of linear self-attention under gradient flow.
768769 Sharma & Kaplan (2020) show that test loss scales as a power-law of model size in regression prob-
770 lems. Hutter (2021) investigates binary classification using a tabulation learning algorithm, deriving
771 a power-law scaling with respect to dataset size. Bahri et al. (2024) analyze a linear random features
772 model with SGD, showing a power-law decay in test loss with respect to sample size (or model size,
773 when the other is infinite). Bordelon et al. (2024) derive a power law over model size, dataset size,
774 and time for the linear random features model under gradient flow dynamics.
775776 **More Related Works about signSGD and sign descent.** Balles et al. (2020) investigate the ge-
777 ometry of sign gradient descent. Kunstner et al. (2023) discover that sign descent could be the key
778 factor making the gap between SGD and Adam on Transformers. Bernstein et al. (2018b) propose
779 signSGD with majority vote, which is communication efficient and fault-tolerant. Karimireddy et al.
780 (2019) prove that error-feedback can make the rate of convergence of signSGD better.
781782 B.1 COMPARISON WITH KUNSTNER & BACH (2025)
783784 First, their work compares the scaling laws of sign descent and gradient descent, whereas our work
785 compares the scaling laws of signSGD and SGD. Second, they analyze for a Linear Bigram Model,
786 while we analyze for the power-law random features (PLRF) model. The advantage of the PLRF
787 model is that it models two parameters each for feature vector decay and target decay, while the
788 Linear Bigram Model has one parameter for data frequency decay. Lastly, they derived a scaling law
789 where the model size goes to infinity; in contrast, our scaling law covers both finite model size and
790 infinite limit by representing the loss as a function of model size, number of steps, and learning rate.
791 This made us possible to analyze the compute-optimal scaling law.
792793 B.2 COMPARISON WITH XIAO ET AL. (2024)
794795 ODE for signSGD in Xiao et al. (2024) is equivalent to the ODE that occurred during our analysis.
796 The reason that we were not able to directly use their ODE is that they derived it under the spectrum
797 lower bound assumption for the covariance matrix. In our case spectrum of the covariance matrix
798 $\mathbf{S}\mathbf{H}\mathbf{S}^\top$ is asymptotically the same as $i^{-2\alpha}$, so their assumption does not hold for our setup. So
799 we re-derived the ODE without the spectrum lower bound assumption. Due to the spectrum lower
800 bound assumption, they led to an exponential decay to limit risk, which is completely different
801 from the polynomial neural scaling law derived from our paper. They discussed the noise-reshaping
802 effect on the level of SDE. In contrast, we observed noise reshaping on the level of scaling law and
803 investigated its effect on compute-optimal scaling.
804805 B.3 COMPARISON WITH THE WORKS IN THE CONTEXT OF KERNEL METHODS
806807 Yao et al. (2007) study deterministic Gradient Descent and SGD under the reproducing kernel
808 Hilbert space (RKHS) model. Their setup captures the infinite-dimensional case, while our paper
809 handles model size M as a tunable parameter to achieve optimal risk. They analyze the Early Stop-
810 ping and that concept is closely related to the number of optimal steps $N = \mathfrak{f}/M^*$ under fixed
811 compute in our paper. Both imply that stopping the algorithm before the convergence can be help-
812 ful. The strength of our paper compared to theirs is that we provide an asymptotic loss function with
813 model size and number of steps (which is the same as sample count in one-pass setting), while they
814

810 provide an upper bound of loss by a polynomial of the sample count. They use the source parameter
 811 r and relation $r = (2\alpha + 2\beta - 1)/(4\alpha)$ was indicated in Paquette et al. (2024). The authors derive
 812 $m^{-(\alpha+\beta-0.5)/(6\alpha+2\beta-1)}$ rate under condition $\alpha + \beta > 0.5$, where m is sample count. Our signSGD
 813 rate with respect to N for noisy labels in Section L is better than their rate. Their strength compared
 814 to our paper is that they also cover the classification setting, not only the regression setting. We left
 815 the classification setting as future work.

816 Ying & Pontil (2008) study online gradient descent without regularization under the reproducing
 817 kernel Hilbert space (RKHS) model. They represent the expected loss as a function of the number of
 818 online steps T . They derive loss formula $T^{-(2\alpha+2\beta-1)/(4\alpha+2\beta-1)} \ln T$. Similar to Yao et al. (2007),
 819 our signSGD rate with respect to N for noisy labels in Section L is better than their rate. Their
 820 source parameter β is related to the target decay parameter β in our paper. Note that they use the
 821 same Greek letter but have different meanings. They focus on the number of online steps T , while we
 822 handle two variables: model size M and number of steps N . Their paper investigates the universal
 823 polynomially decaying step size and constant step size depending on the number of online steps T .
 824 The first one is similar to the polynomially decay part of our stable-decay scheduling. One major
 825 difference is that we tune the learning rate based on model size M .

826 Carratino et al. (2018) study both multiple and single pass SGD under a random feature model with
 827 a connection to the RKHS setting. In their random feature model, non-linearity is included by the
 828 continuous map ψ , we left the analysis of signSGD under the nonlinear model for future work. They
 829 provide a bound of risk with high probability, while we focus on the average asymptotic behavior
 830 of signSGD. They handle both model size M and number of iterations t , and it is the same as our
 831 setting. Their strength compared to our paper is that they cover minibatching, while we focus on
 832 batch size 1. For the signSGD batch size bigger than 1 makes the problem significantly complicated
 833 to solve compared to the case of SGD, so we left minibatching for future work. Their rate with
 834 sample count n is $n^{-(2\alpha+2\beta-1)/(2(\alpha+\beta))}$. Our signSGD rate with respect to N for noisy labels in
 835 Section L is better than their rate for the case $\beta > 0$, and theirs is better for the case $\beta < 0$.

836 Berthier et al. (2020) has a closer setting to our paper. They study linear regression with SGD and
 837 assume a noiseless label. Their upper bound of loss is $n^{-\min((2\alpha+2\beta-1)/(2\alpha), 1-1/(2\alpha))}$ where n is
 838 number of samples. Later work Paquette et al. (2024) has the same exponents for drift terms, as
 839 they also use SGD and assume a noiseless label. The difference between exponents in Berthier et al.
 840 (2020) and the exponents of the drift term in our work stems from the drift-normalization effect of
 841 signSGD. Also note that our work is different in several other aspects: (i) we consider a model size
 842 parameter M ; (ii) we cover the regime $2\alpha < 1$; (iii) we derive the asymptotic loss formula rather
 843 than an upper bound; (iv) we consider the compute-optimal aspect.

844 Pillaud-Vivien et al. (2018) investigate multi-pass SGD in least-squares regression with bounded
 845 label noise. They got a rate $n^{-(2\alpha+2\beta-1)/(2\alpha+2\beta)}$ where n is the number of samples, and it is better
 846 than single-pass SGD in the regime $\beta < 0$. Compared to the signSGD rate with respect to N for
 847 noisy labels in Section L, our signSGD rate is better when $\beta > 0$ and worse for regime $\beta < 0$
 848 than the single-pass SGD. Investigating multi-pass signSGD for $\beta < 0$ will be an interesting future
 849 direction.

850 Much earlier work Caponnetto & De Vito (2007) study kernel ridge regression in the RKHS model.
 851 Their rate is $l^{-\frac{2\alpha+2\beta-1}{2\alpha+2\beta}}$ where l is number of samples. Their rate is better than our signSGD rate
 852 with respect to N for noisy labels in Section L for the case $\beta < 0$, and worse for the case $\beta > 0$.

853 Later work Cui et al. (2021) also investigate kernel ridge regression in the RKHS model. Different
 854 from Caponnetto & De Vito (2007), they also consider a noiseless target and get a rate of
 855 $n^{-(2\alpha+2\beta-1)}$ for that case, where n is the number of samples. Our noiseless drift exponent
 856 $-\frac{2(2\alpha+2\beta-1)}{2\alpha-2\beta+1}$ is better when $\alpha > \beta + 0.5$, and worse otherwise.

858 Rudi & Rosasco (2017) consider random-features ridge regression under the RKHS model. They
 859 give a rate of $n^{-(2\alpha+2\beta)/(2\alpha+2\beta+1)}$ where n is the number of samples. Compared to our signSGD
 860 rate with respect to N for noisy labels in Section L, ours is better when $\beta > 0$, $\alpha > 1/(4\beta) - \beta$
 861 holds, and worse otherwise.

862 Bach (2017) also considers random-features ridge regression under the RKHS model, and gives a
 863 different upper bound rate $n^{-\alpha}$ where n is the number of samples. Compared to our signSGD rate

864 with respect to N for noisy labels in Section L, ours is better when $\beta > \alpha^2 - \alpha + 0.5$, and worse
 865 otherwise.

866 Defilippis et al. (2024) derive a deterministic equivalent for random-features ridge regression under
 867 the RKHS model. Their rate is $n^{-(2\beta-1)/(2\beta)}$ for $\beta \leq 0.5 + 2\alpha$ and $n^{-(4\alpha)/(4\alpha+1)}$ for $\beta \geq 0.5 + 2\alpha$.
 868 Compared to our signSGD rate with respect to N for noisy labels in Section L, ours is better when
 869 $\alpha > -2\beta^2 + \beta$, $\beta \leq 0.5 + 2\alpha$ or $\beta > (2\alpha + 1)/(8\alpha + 2)$, $\beta \geq 0.5 + 2\alpha$ holds, and worse otherwise.
 870

871 **B.4 TABLE OF ASYMPTOTIC FORMS OF APPROXIMATION, DRIFT, AND NOISE TERM FOR**
 872 **SIGNSGD AND SGD**

873 We added Table 2 and Table 3, which show asymptotic forms of approximation, drift, and noise term
 874 for signSGD and SGD, for comparison.

875 Table 2: **Asymptotic forms of approximation, drift, and noise term for signSGD in different (α, β)**
 876 **phases.** In this table, we provide a formula of approximation, drift, and noise term for 6 subphases.

Phase	Approx	Drift	Noise
Phase Aa	$M^{-(2\alpha+2\beta-1)}$	$(M^{1/2}N\gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha-2\beta+1}}$	$\gamma_0^2 M$
Phase Ab	$M^{-(2\alpha+2\beta-1)}$	$(M^\alpha N\gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha-2\beta+1}}$	$\gamma_0^2 M^{2-2\alpha}$
Phase Ac	$M^{-2\alpha}$	$(M^\alpha N\gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha-2\beta+1}}$	$\gamma_0^2 M^{2-2\alpha}$
Phase Ad	$M^{-2\alpha}$	$(\max(1 - M^\alpha N\gamma_0, 0))^{\frac{2(2\alpha+2\beta-1)}{2\alpha+2\beta-1}}$	$\gamma_0^2 M^{2-2\alpha}$
Phase Ba	$M^{-2\alpha}$	$(M^{1/2}N\gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha-2\beta+1}} + M^{-\frac{6\alpha-1}{2\alpha+1}}(N\gamma_0)^{-\frac{2(2\alpha-1)}{2\alpha+1}}$	$\gamma_0^2 M$
Phase Bb	$M^{-2\alpha}$	$(\max(1 - M^{1/2}N\gamma_0, 0))^{\frac{2(2\alpha+2\beta-1)}{2\alpha+2\beta-1}} + M^{-\frac{6\alpha-1}{2\alpha+1}}(N\gamma_0)^{-\frac{2(2\alpha-1)}{2\alpha+1}}$	$\gamma_0^2 M$

893 Table 3: **Asymptotic forms of approximation, drift, and noise term for SGD in different (α, β)**
 894 **phases.** In this table, we provide a formula of approximation, drift, and noise term for 6 subphases.

Phase	Approx	Drift	Noise
Phase Ia	$M^{-(2\alpha+2\beta-1)}$	$(N\gamma_0)^{-\frac{2\alpha+2\beta-1}{2\alpha}}$	$\gamma_0(N\gamma_0)^{-\frac{4\alpha-1}{2\alpha}}$
Phase Ib	$M^{-(2\alpha+2\beta-1)}$	$(N\gamma_0)^{-\frac{2\alpha+2\beta-1}{2\alpha}}$	$\gamma_0(N\gamma_0)^{-\frac{4\alpha-1}{2\alpha}}$
Phase Ic	$M^{-2\alpha}$	$(N\gamma_0)^{-\frac{2\alpha+2\beta-1}{2\alpha}}$	$\gamma_0(N\gamma_0)^{-\frac{4\alpha-1}{2\alpha}}$
Phase II	$M^{-2\alpha}$	$(N\gamma_0)^{-\frac{2\alpha+2\beta-1}{2\alpha}} + M^{-1}(N\gamma_0)^{-\frac{2\alpha-1}{2\alpha}}$	$\gamma_0(N\gamma_0)^{-\frac{4\alpha-1}{2\alpha}}$
Phase III	$M^{-2\alpha}$	$(N\gamma_0)^{-\frac{2\alpha+2\beta-1}{2\alpha}} + M^{-1}(N\gamma_0)^{-\frac{2\alpha-1}{2\alpha}}$	$\gamma_0(N\gamma_0)^{-\frac{4\alpha-1}{2\alpha}}$
Phase IV	$M^{-2\alpha}$	$(N\gamma_0)^{-\frac{2\alpha+2\beta-1}{2\alpha}}$	$\gamma_0(N\gamma_0)^{-\frac{4\alpha-1}{2\alpha}}$

911 **B.5 ADDITIONAL PHASE PLANE PLOTS TO COMPARE WITH PRIOR WORK**

912 Figure 5 indicates the area where signSGD has a steeper compute-optimal slope compared to SGD,
 913 by coloring it with Mint green. It lies in Phase Ac, Ad, Ba, Bb, and covers all areas of Phase Bb. In
 914 terms of the SGD Phase, it covers all areas of Phase III and most of the areas of Phase IV.

915 Figure 6 indicates the area where signSGD has a steeper compute-optimal slope compared to DANA-
 916 decaying in Ferbach et al. (2025), by coloring it with Lime green. It lies in Phase Ac, Ad, Ba, Bb.

Figure 5: **Phase planes to compare signSGD and SGD.** Mint green area covering all of Phase Bb and III, and some part of Phase Ac, Ad, Ba, IV is the area where signSGD has a steeper compute-optimal slope compared to SGD. The left side is the signSGD phase plane, and the right side is the SGD phase plane. We placed the Mint green area for both of them for clarity. We will call this Mint green area as Area III-IV_{sub}.

Figure 6: **Phase plane to compare signSGD and DANA-decaying in Ferbach et al. (2025).** Lime green area covering some part of Phase Ac, Ad, Ba, Bb is the area where signSGD has a steeper compute-optimal slope compared to DANA-decaying in Ferbach et al. (2025).

It is smaller than the Mint green area, and this is natural, since DANA-decaying in Ferbach et al. (2025) has a steeper slope compared to SGD.

C EXPERIMENTS

C.1 EXPLANATION FOR FIGURE 1.

Parameters. Left parameters: $(\alpha, \beta) = (0.4, 0.8)$, $\gamma_0 = 0.006$, $e^* = 1.0$ for signSGD, $e^* = 0.4571$ for SGD, 20 runs. Right parameters: $(\alpha, \beta) = (1.0, 0)$, $\gamma_0 = 0.002$, $e^* = 1.0$ for constant, $e^* = 0.833$ for stable-decay, $c = 0.091$, $p = 0.1$, $\tau = 1$ for stable-decay, 10 runs.

Takeaways. In Figure 1, the left panel demonstrates the steeper compute-optimal slope of signSGD for $(\alpha, \beta) = (0.4, 0.8)$ in the area of Phase Ac. The right panel shows the increase in compute-optimal slope achieved by stable-decay scheduling for $(\alpha, \beta) = (1.0, 0)$. The theoretical and experimental compute-optimal slopes agree within errors of 0.04 (left) and 0.01 (right), which are well within the error margins reported in prior works.

Additionally Figure 7, demonstrates the steeper compute-optimal slope of signSGD for $(\alpha, \beta) = (0.4, 1.0)$ in the Phase Ad and $(\alpha, \beta) = (0.7, 1.1)$ in Phase Ba.

Figure 7: **comparison of SGD and signSGD on Compute-Optimal Scaling.** Colored lines represent the training trajectories of each algorithm, while black lines denote the compute-optimal curves. In both panels, the theoretical compute-optimal predictions closely follow the observed scaling. Both plot shows that signSGD has a steeper compute-optimal slope than SGD. Left parameters: $(\alpha, \beta) = (0.4, 1.0)$, $\gamma_0 = 0.01$, $e^* = 1.0$ for signSGD, $e^* = 0.533$ for SGD, 5 runs. Right parameters: $(\alpha, \beta) = (0.7, 1.1)$, $\gamma_0 = 0.01$, $e^* = 1.09$ for signSGD, $e^* = 0$ for SGD, 20 runs.

Figure 8: $\mathcal{D}_{\text{al}}^{\text{sign}}(M, N, \gamma_0)$ **term exponent.** Blue curves: true signSGD trajectories. Black dotted curves: linear fits over the early-iteration interval in log-log scale. Left: parameters $(\alpha, \beta) = (0.75, 0)$, $\gamma_0 = 0.0012$, $f(z) = 1$, $M = 200$, $d = 400$. The theoretical exponent is $-2(2\alpha + 2\beta - 1)/(2\alpha - 2\beta + 1) = -0.4$, which matches the experiment. Right: parameters $(\alpha, \beta) = (1.0, 0.2)$, $\gamma_0 = 0.0006$, $f(z) = 1$, $M = 400$, $d = 1600$. The theoretical exponent is $-2(2\alpha + 2\beta - 1)/(2\alpha - 2\beta + 1) = -1.077$, again consistent with the experiment.

C.2 EXPERIMENT FOR ALIGNED DRIFT

In Figure 8, we examine the exponent of the $\mathcal{D}_{\text{al}}^{\text{sign}}(M, N, \gamma_0)$ term,

$$(M^{\min(\alpha, 0.5)} \gamma_0 N)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha-2\beta+1}},$$

of signSGD. For the Phase Aa, the $\mathcal{D}_{\text{al}}^{\text{sign}}(M, N, \gamma_0)$ term dominates in the early iterations over a sufficient interval, allowing us to evaluate the exponent by line fitting on a log-log plot. The experimental results align well with the theoretical formula $-\frac{2(2\alpha+2\beta-1)}{2\alpha-2\beta+1}$.

C.3 VALIDATION OF THE TABLE 1

In Figure 9 to 13 validates the exponent in Table 1 for various (α, β) . On the left plots, we draw multiple curves with different model size M while setting the learning rate as $\gamma_0 = M^{-e^*}$. Then the lower envelope becomes the compute-optimal curve, and by measuring the slope in a log-log plot, we can validate the compute-optimal loss exponent in the Table 1. On the right plots, we draw

1026 the optimal model size at each flops. Here, the optimal model size is the model size of the curve
1027 that meets the lower envelope at that flop. By measuring the slope in a log-log plot, we can validate
1028 the optimal model size exponent in the Table 1. Note that we use a similar experimental setting to
1029 Paquette et al. (2024). In most cases, the error between the measured exponent and the theoretical
1030 exponent was less than 0.04, and the error was less than 0.06 even for the worst case. This error lies
1031 within the error margins reported in prior works (Paquette et al., 2024; Ferbach et al., 2025).

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1132 **Figure 9: Measure of compute-optimal loss slope and optimal model size slope.** We validate the
 1133 exponent of $R(M^*, \frac{f}{M^*}, \gamma_0^*)$ and M^* with respect to f in the Table 1. The left plot shows the
 1134 compute-optimal loss with respect to flops $6MN$. The right plot shows the optimal model size with
 1135 respect to flops $6MN$. Each plot includes the measured slope and the theoretical slope from the
 1136 Table 1.

Figure 10: **Measure of compute-optimal loss slope and optimal model size slope.** We validate the exponent of $R\left(M^*, \frac{f}{M^*}, \gamma_0^*\right)$ and M^* with respect to f in the Table 1. The left plot shows the compute-optimal loss with respect to flops $6MN$. The right plot shows the optimal model size with respect to flops $6MN$.

Figure 11: **Measure of compute-optimal loss slope and optimal model size slope.** We validate the exponent of $R\left(M^*, \frac{f}{M^*}, \gamma_0^*\right)$ and M^* with respect to f in the Table 1. The left plot shows the compute-optimal loss with respect to flops $6MN$. The right plot shows the optimal model size with respect to flops $6MN$.

1296

1297

1298

1299

1300

Figure 13: **Measure of compute-optimal loss slope and optimal model size slope.** We validate the exponent of $R(M^*, \frac{f}{M^*}, \gamma_0^*)$ and M^* with respect to f in the Table 1. The left plot shows the compute-optimal loss with respect to flops $6MN$. The right plot shows the optimal model size with respect to flops $6MN$. Each plot includes the measured slope and the theoretical slope from the Table 1.

1350
1351

C.4 EXPERIMENT FOR MINIBATCHING

1352
1353
1354
1355
1356
1357
1358
1359
1360

In this subsection, we provide an experiment with batch sizes 10 and 128. Figures 14 and 15 show the measured compute-optimal loss slope and optimal model size slope for batch sizes 10 and 128, respectively. The theory slope in the figure is the theory value for batch size 1. We can see that the difference between the measured value for batch sizes 10 and 128 and the theoretical value for batch size 1 is less than or equal to 0.042. Therefore, we conjecture that mini-batching with a constant-order batch size has the same compute-optimal exponents as the batch size 1 case; this is plausible because constant factors in the loss formula are ignored in the exponent analysis. Mathematically analyzing mini-batch signSGD is an important direction for research, which we leave for future work.

1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 14: **Measure of compute-optimal loss slope and optimal model size slope for batch size 10.** We calculate the exponent of $R(M^*, \frac{f}{M^*}, \gamma_0^*)$ and M^* with respect to f . The left plot shows the compute-optimal loss with respect to flops $6MN$. The right plot shows the optimal model size with respect to flops $6MN$. Each plot includes the measured slope and the theoretical slope for the batch size 1 case.

Figure 15: **Measure of compute-optimal loss slope and optimal model size slope for batch size 128.** We calculate the exponent of $R(M^*, \frac{f}{M^*}, \gamma_0^*)$ and M^* with respect to f . The left plot shows the compute-optimal loss with respect to flops $6MN$. The right plot shows the optimal model size with respect to flops $6MN$. Each plot includes the measured slope and the theoretical slope for the batch size 1 case.

1512 C.5 EXPERIMENT OF ADAMW AND SGD WITH TRANSFORMER
15131514 C.5.1 COMPUTE-OPTIMAL EXPONENT
1515

1516 We calculated the loss decaying exponent with respect to the compute for AdamW (Loshchilov
1517 & Hutter, 2017) and SGD optimizer on the Transformer architecture (Vaswani et al., 2017). In our
1518 experiment, we evaluated five different model sizes: (number of layers, embedding dimension) =
1519 $(4, 64), (8, 64), (8, 96), (8, 128), (8, 160)$. We used a constant learning rate and gradient clipping
1520 with 1.0 for both AdamW and SGD. We set $\beta_1 = 0.9, \beta_2 = 0.95$ for AdamW. We trained for 10^5
1521 steps for each run. We set both batch size and gradient accumulation steps as 1. We set dropout as
1522 0.1, and set weight decay as 0.1. We used 1024 tokens per iteration. Amount of compute is calculated
1523 by $6 \times (\text{number of model parameters}) \times (\text{iterations}) \times (\text{tokens per iteration})$. The validation loss is
1524 a cross-entropy loss with 200 sets of 1024 tokens. We used the OpenWebText dataset (EleutherAI,
1525 2024) for training.

1526 Figure 16 shows that the exponent of AdamW is -0.021 and the exponent of SGD is -0.005. It means
1527 AdamW has better compute-optimal scaling compared to SGD in this experiment. Our experiment
1528 implies that a practical optimizer, AdamW, on a practical deep network, Transformer, can have a bet-
1529 ter compute-optimal exponent compared to SGD. Although our analysis is about signSGD—studied
1530 as an approximate surrogate of Adam and its variants—and a simple linear model, our experiment
1531 implies that an advantage in the compute-optimal scaling aspect may also occur in a practical opti-
1532 mizer, AdamW, with a deep neural network Transformer.

1533 C.5.2 DRIFT-NORMALIZATION EFFECT AND NOISE-RESHAPING EFFECT
1534

1535 To observe the drift-normalization effect, we experimented with a batch size of 16 and gradient ac-
1536 cumulation steps of 32 to decrease the noise term. As the loss curve is the sum of the drift term, noise
1537 term, and approximation term, decreasing the noise term allows us to observe the drift-normalization
1538 effect more clearly. We experimented for (number of layers, embedding dimension) = $(8, 96)$ for
1539 each AdamW and SGD. Other experimental settings are the same as the section C.5.1. In Figure 17,
1540 we measure the slope of the loss curve in a log-log plot for the linear decaying interval, where the
1541 drift term is dominant. We can observe that the slope for AdamW is larger than SGD, and this is
1542 consistent with the drift-normalization effect in PLRF, which increased the exponent of the drift
1543 term in signSGD compared to SGD.

1544 To observe the noise-reshaping effect, we focus on the plateau regime of the batch size 1 experiment.
1545 To see how the loss value of the plateau regime is influenced by the size of the learning rate, we
1546 experiment with two learning rate values: 0.00266 and 0.00133 for both AdamW and SGD. We
1547 experimented for (number of layers, embedding dimension) = $(8, 96)$ for each AdamW and SGD.
1548 Other experimental settings are the same as the section C.5.1, including batch size 1 and gradient
1549 accumulation steps 1. In Figure 18, we can see that the loss value at the plateau regime, which is
1550 dominated by the noise term, increases for AdamW when we take a bigger learning rate, but does
1551 not increase for SGD. This is consistent with the noise-reshaping effect in PLRF, which made the
1552 size of the noise term in signSGD increase as we take a larger learning rate, in contrast to SGD.

1553 C.6 OTHER SYNTHETIC TASK EXPERIMENT
1554

1555 We experimented with feature learning based on the setting of Bordelon et al. (2025). In the feature
1556 learning, the sketch matrix S becomes learnable, in contrast to the fixed Gaussian sketch setting of
1557 the PLRF model. We let $S = B(t)S_0$, where $B(t)$ is $N \times N$ square matrix and $B(0) = I$. And
1558 during the training, we update the square matrix $B(t)$ at each time step with the optimizer. Other
1559 settings, except for this learnable sketch matrix, are the same as the settings for PLRF.

1560 Figure 19 shows our evaluation of the compute-optimal slope for Adam, signGD, and GD in the
1561 feature learning setting. We experimented with a full batch due to the training instability of small
1562 batch cases. We experimented for the parameter $(\alpha, \beta) = (1.0, 1.25)$ which is included in the
1563 Area III-IV_{sub}. In this feature learning experiment, Adam and signGD had similar slopes, and those
1564 two had a steeper slope compared to GD. The result is consistent with the phenomena in PLRF
1565 that signSGD has a steeper compute-optimal slope compared to SGD in the Area III-IV_{sub}, and also
consistent with the conjecture in PLRF that Adam has the same compute-optimal slope as signSGD.

Figure 16: **Measure of compute-optimal loss slope for AdamW and SGD on Transformer architecture. Left: AdamW, Right: SGD** The x-axis shows the amount of compute calculated by $6 \times (\text{number of model parameters}) \times (\text{iterations}) \times (\text{tokens per iteration})$. The y-axis shows the validation loss, which is a cross-entropy loss with 200 sets of 1024 tokens.

Figure 17: **Measure of drift term slope for AdamW and SGD on Transformer architecture. Left: AdamW, Right: SGD** The x-axis shows the iterations. The y-axis shows the validation loss, which is a cross-entropy loss with 200 sets of 1024 tokens.

Figure 18: **Plateau loss value for two different learning rate. Left: AdamW, Right: SGD** The blue curve is the trajectory with a learning rate of 0.00133, and the yellow curve is the trajectory with a learning rate of 0.00266. The x-axis shows the iterations. The y-axis shows the validation loss, which is a cross-entropy loss with 200 sets of 1024 tokens.

1658 Figure 19: **Compute-optimal exponent for feature learning.** **Left upper: Adam, Right upper:**
 1659 **signGD, Left lower: GD.** The x-axis shows the flops. The y-axis shows the loss value. We
 1660 experimented for $(\alpha, \beta) = (1.0, 1.25)$. We set e of $\gamma_0 = M^{-e}$ as the optimal value derived in PLRF.
 1661 We use a constant learning rate. Dimension before projection is 2000, and each loss curve is experi-
 1662 mented with projected dimensions 32, 64, 128, 256, 512, 1024.

1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674 D EQUIVALENCE TO GENERAL COVARIATE H

1676 In this section, we will prove that general covariate H with eigenvalues $1^{-2\alpha}, 2^{-2\alpha}, \dots, d^{-2\alpha}$ can
 1677 be reduced to diagonal covariate $\text{diag}(1^{-2\alpha}, 2^{-2\alpha}, \dots, d^{-2\alpha})$.

1678 Note that for the general covariate case, we assume $\langle \mathbf{v}_i, \mathbf{w}^* \rangle = i^{-\beta}$ where \mathbf{v}_i is a eigenvector of H
 1679 corresponding to eigenvalue $i^{-\alpha}$ for $i = 1, \dots, d$.

1680 Let $D = \text{diag}(1^{-2\alpha}, 2^{-2\alpha}, \dots, d^{-2\alpha})$. Then $H = UDU^\top$ holds for some orthogonal matrix U by
 1681 the eigenvalue decomposition. And i -th column of U can be thought \mathbf{v}_i . Then the following holds
 1682 for $\mathbf{w}_0^* = [1^{-\beta}, 2^{-\beta}, \dots, d^{-\beta}]^\top$.

$$1684 \mathbf{w}^* = \sum_{i=1}^d i^{-\beta} \cdot \mathbf{v}_i = U\mathbf{w}_0^*.$$

1688 The signSGD update rule is

$$1689 \theta_{k+1} = \theta_k - \gamma_k \text{ sign}(\langle \mathbf{S}\mathbf{x}_k, \theta_k \rangle - y_k) \text{ sign}(\mathbf{S}\mathbf{x}_k).$$

1692 With label assumption $y_k = \langle \mathbf{x}_k, \mathbf{w}^* \rangle$, the signSGD update rule converts to

$$1693 \theta_{k+1} = \theta_k - \gamma_k \text{ sign}(\langle \mathbf{S}\mathbf{x}_k, \theta_k \rangle - \langle \mathbf{x}_k, \mathbf{w}^* \rangle) \text{ sign}(\mathbf{S}\mathbf{x}_k).$$

1695 We let $\mathbf{x}'_k = U^\top \mathbf{x}_k$. And by substituting $\mathbf{x}_k = U\mathbf{x}'_k$ and $\mathbf{w}^* = U\mathbf{w}_0^*$, we get

$$1697 \theta_{k+1} = \theta_k - \gamma_k \text{ sign}(\langle \mathbf{S}\mathbf{U}\mathbf{x}'_k, \theta_k \rangle - \langle \mathbf{U}\mathbf{x}'_k, \mathbf{U}\mathbf{w}_0^* \rangle) \text{ sign}(\mathbf{S}\mathbf{U}\mathbf{x}'_k).$$

1699 As U is orthogonal, it leads to

$$1701 \theta_{k+1} = \theta_k - \gamma_k \text{ sign}(\langle \mathbf{S}\mathbf{U}\mathbf{x}'_k, \theta_k \rangle - \langle \mathbf{x}'_k, \mathbf{w}_0^* \rangle) \text{ sign}(\mathbf{S}\mathbf{U}\mathbf{x}'_k). \quad (16)$$

1703 Also, the loss formula

$$1704 L(\theta) = \|H^{1/2}(\mathbf{S}^\top \theta - \mathbf{w}^*)\|^2 = (\mathbf{S}^\top \theta - \mathbf{w}^*)^\top H(\mathbf{S}^\top \theta - \mathbf{w}^*)$$

1706 converts to

$$1708 L(\theta) = (\mathbf{S}^\top \theta - U\mathbf{w}_0^*)^\top UDU^\top (\mathbf{S}^\top \theta - U\mathbf{w}_0^*) = ((\mathbf{S}\mathbf{U})^\top \theta - \mathbf{w}_0^*)^\top D((\mathbf{S}\mathbf{U})^\top \theta - \mathbf{w}_0^*).$$

1710 Now a covariate of \mathbf{x}'_k is $D = \text{diag}(1^{-2\alpha}, 2^{-2\alpha}, \dots, d^{-2\alpha})$ and target $\mathbf{w}_0^* = [1^{-\beta}, 2^{-\beta}, \dots, d^{-\beta}]^\top$
 1711 is same with the diagonal covariate case. Lastly, the distribution of $\mathbf{S}\mathbf{U}$ is identical to the distribution
 1712 of \mathbf{S} . This is because each row \mathbf{s}_i of \mathbf{S} follows the distribution $\mathcal{N}(0, \mathbf{I}_d/M)$, and $\mathbf{s}_i \mathbf{U}$, which is
 1713 each row of $\mathbf{S}\mathbf{U}$, follows the distribution $\mathcal{N}(0, \mathbf{U}^\top \mathbf{I}_d \mathbf{U}/M) = \mathcal{N}(0, \mathbf{I}_d/M)$. Also note that \mathbf{s}_i s are
 1714 independent and $\mathbf{s}_i \mathbf{U}$ s are independent.

1715 So the converted update rule (16) is equivalent to the case with diagonal covariate
 1716 $\text{diag}(1^{-2\alpha}, 2^{-2\alpha}, \dots, d^{-2\alpha})$.

1718 E DERIVATION OF THE SCALING LAW FORMULA $R(M, N, \gamma_0)$

1720 **Goal.** In this section, our goal is to derive the scaling law formula (12) of $R(M, N, \gamma_0)$. On the
 1721 area $\alpha < 0.5$ or $\beta < 0.5$ with $-\alpha + 0.5 < \beta < \alpha + 0.5$, $\mathcal{D}_{\text{dis}}^{\text{sign}}(M, N, \gamma_0)$ term is smaller than at
 1722 least one of the other three terms. So it is enough to show

$$1724 R(M, N, \gamma_0) \approx \underbrace{M^{-2\alpha + \max(0, 1-2\beta)}}_{=: \mathcal{A}(M)} + \underbrace{(M^{\min(\alpha, 0.5)} N \gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha-2\beta+1}}}_{=: \mathcal{D}_{\text{al}}^{\text{sign}}(M, N, \gamma_0)} + \underbrace{\gamma_0^2 M^{2-\min(1, 2\alpha)}}_{=: \mathcal{N}^{\text{sign}}(M, \gamma_0)}.$$

1726 for that area.

For the area $\alpha > 0.5$ and $\beta > 0.5$ with $-\alpha + 0.5 < \beta < \alpha + 0.5$, as all four terms are dominant, we will prove

$$R(M, N, \gamma_0) \approx \underbrace{M^{-2\alpha+\max(0, 1-2\beta)}}_{=: \mathcal{A}(M)} + \underbrace{(M^{\min(\alpha, 0.5)} N \gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha-2\beta+1}}}_{=: \mathcal{D}_{\text{al}}^{\text{sign}}(M, N, \gamma_0)} \\ + \underbrace{M^{-\frac{6\alpha-1}{2\alpha+1}} (N \gamma_0)^{-\frac{2(2\alpha-1)}{2\alpha+1}}}_{=: \mathcal{D}_{\text{dis}}^{\text{sign}}(M, N, \gamma_0)} + \underbrace{\gamma_0^2 M^{2-\min(1, 2\alpha)}}_{=: \mathcal{N}^{\text{sign}}(M, \gamma_0)}.$$

Proof Overview. As a first step, we obtain the ODE

$$\frac{dp_i}{dt} = -\frac{4}{\pi \sqrt{P(t)}} \lambda_i(\bar{\mathbf{K}}) f(t/\gamma_0) p_i(t) + \frac{2f(t/\gamma_0)^2 \gamma_0}{\pi} V_i. \quad (17)$$

where $P(t) = L(t/\gamma_0)$ and $p_i(t) = r_i(t/\gamma_0)$.

Then we derive the following integral equation from the ODE.

$$L(N) = \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 + \sum_{i=1}^M r_i(0) e^{-\frac{4\lambda_i \gamma_0}{\pi} \int_0^N \frac{f(u)}{\sqrt{L(u)}} du} + \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N e^{-\frac{4\lambda_i \gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du} f(z)^2 dz. \quad (18)$$

Going through the arguments, including the contour integral, our integral equation converts to the following equation, where $Q(z) = \frac{4\gamma_0}{\pi} \int_0^z \frac{f(u)}{\sqrt{L(u)}} du$.

$$L(N) \approx \underbrace{M^{-2\alpha+\max(0, 1-2\beta)}}_{\text{approx}} + \underbrace{(M^{\min(\alpha, 0.5)} Q(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}}_{\text{drift}} \quad (19)$$

$$+ \underbrace{\frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{\mathbf{K}}) \int_z^N \frac{du}{\sqrt{L(u)}}\right) dz}_{\text{noise}}. \quad (20)$$

for $\alpha < 0.5$ or $\beta < 0.5$, and

$$L(N) \approx \underbrace{M^{-2\alpha}}_{\text{approx}} + \underbrace{(M^{1/2} Q(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}}_{\text{drift}_1} + \underbrace{M^{-1} (M^{1/2} Q(N))^{-1+\frac{1}{2\alpha}}}_{\text{drift}_2} \quad (21)$$

$$+ \underbrace{\frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{\mathbf{K}}) \int_z^N \frac{du}{\sqrt{L(u)}}\right) dz}_{\text{noise}}, \quad (22)$$

for $\alpha > 0.5$ and $\beta > 0.5$.

Solving the early stage and the limit stage separately, we get the following proxy for $\alpha < 0.5$ or $\beta < 0.5$.

$$L_{\text{px}}(N) := (\gamma_0 M^{\min(\alpha, 0.5)} N)^{-p} + \underbrace{\gamma_0^2 M^{2-2\min(\alpha, 0.5)} + M^{-2\alpha+\max(0, 1-2\beta)}}_{=: C}, \quad p = \frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}. \quad (23)$$

For $\alpha > 0.5$ and $\beta > 0.5$, we get the proxy

$$L_{\text{px}}(N) = (\gamma_0 M^{0.5} N)^{-p_1} + (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2} + C, \quad (24)$$

where

$$p_1 = \frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}, \quad p_2 = \frac{4\alpha-2}{2\alpha+1}.$$

As a last step, we verify the proxies by proving that they satisfy the converted integral equations.

1782 E.1 ONE-STEP UPDATE FORMULA OF SIGNSGD
1783

1784 Xiao et al. (2024) approximate the signSGD trajectory using SDE and ODE techniques. Their proof
1785 relies on a spectral lower bound assumption of the covariance matrix, so their results are not directly
1786 applicable to our setting.

1787 For a quadratic function q , by Taylor's theorem, we have
1788

$$1789 \mathbb{E}[q(\boldsymbol{\theta}_{k+1}) - q(\boldsymbol{\theta}_k) | \mathcal{F}_k] = \mathbb{E}[\langle \nabla q(\boldsymbol{\theta}_k), \boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k \rangle | \mathcal{F}_k] + \frac{1}{2} \mathbb{E}[\langle \nabla^2 q, (\boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k)^{\otimes 2} \rangle | \mathcal{F}_k],$$

1790 where $\mathcal{F}_k = \sigma(\mathbf{S}, \boldsymbol{\theta}_0, \dots, \boldsymbol{\theta}_k)$. Since
1791

$$1792 \boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k = -\gamma_k \operatorname{sign}(\langle \mathbf{S}\mathbf{x}_k, \boldsymbol{\theta}_k \rangle - y_k) \operatorname{sign}(\mathbf{S}\mathbf{x}_k),$$

1793 We can expand the two terms using sign-Gaussian identities.
1794

Gradient term.

$$\begin{aligned} 1796 \mathbb{E}[\langle \nabla q(\boldsymbol{\theta}_k), \boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k \rangle | \mathcal{F}_k] \\ 1797 &= -\gamma_k \langle \nabla q(\boldsymbol{\theta}_k), \mathbb{E}[\operatorname{sign}(\mathbf{S}\mathbf{x}_k) \operatorname{sign}(\langle \mathbf{x}_k, \mathbf{S}^\top \boldsymbol{\theta}_k - \mathbf{w}^* \rangle) | \mathcal{F}_k] \rangle \\ 1798 &= -\gamma_k \left\langle \nabla q(\boldsymbol{\theta}_k), \frac{2}{\pi} \arcsin \left(\frac{\operatorname{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1/2} \mathbf{S}\mathbf{H}(\mathbf{S}^\top \boldsymbol{\theta}_k - \mathbf{w}^*)}{\sqrt{(\mathbf{S}^\top \boldsymbol{\theta}_k - \mathbf{w}^*)^\top \mathbf{H}(\mathbf{S}^\top \boldsymbol{\theta}_k - \mathbf{w}^*)}} \right) \right\rangle \\ 1799 &= -\gamma_k \left\langle \nabla q(\boldsymbol{\theta}_k), \frac{2}{\pi} \arcsin \left(\frac{\operatorname{diag}(\mathbf{K})^{-1/2} \mathbf{K}(\boldsymbol{\theta}_k - \boldsymbol{\theta}^*)}{\|\mathbf{H}^{1/2}(\mathbf{S}^\top \boldsymbol{\theta}_k - \mathbf{w}^*)\|} \right) \right\rangle, \\ 1800 \\ 1801 \\ 1802 \\ 1803 \\ 1804 \end{aligned}$$

1805 where $\mathbf{K} = \mathbf{S}\mathbf{H}\mathbf{S}^\top$.
1806

Quadratic term.

$$\begin{aligned} 1807 \mathbb{E}[\langle \nabla^2 q, (\boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k)^{\otimes 2} \rangle | \mathcal{F}_k] \\ 1808 &= \gamma_k^2 \langle \nabla^2 q, \mathbb{E}[(\operatorname{sign}(\mathbf{S}\mathbf{x}_k) \operatorname{sign}(\langle \mathbf{x}_k, \mathbf{S}^\top \boldsymbol{\theta}_k - \mathbf{w}^* \rangle))^{\otimes 2} | \mathcal{F}_k] \rangle \\ 1809 &= \gamma_k^2 \langle \nabla^2 q, \mathbb{E}[(\operatorname{sign}(\mathbf{S}\mathbf{x}_k))^{\otimes 2} | \mathcal{F}_k] \rangle \\ 1810 &= \gamma_k^2 \left\langle \nabla^2 q, \frac{2}{\pi} \arcsin \left(\operatorname{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1/2} \mathbf{S}\mathbf{H}\mathbf{S}^\top \operatorname{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1/2} \right) \right\rangle \\ 1811 &= \gamma_k^2 \left\langle \nabla^2 q, \frac{2}{\pi} \arcsin \left(\operatorname{diag}(\mathbf{K})^{-1/2} \mathbf{K} \operatorname{diag}(\mathbf{K})^{-1/2} \right) \right\rangle. \\ 1812 \\ 1813 \\ 1814 \\ 1815 \\ 1816 \\ 1817 \\ 1818 \end{aligned}$$

1819 **One-step update formula.** Substituting the gradient and quadratic terms yields the desired one-
1820 step update formula for signSGD.
1821

$$1822 \mathbb{E}[q(\boldsymbol{\theta}_{k+1}) - q(\boldsymbol{\theta}_k) | \mathcal{F}_k] = -\frac{2\gamma_k}{\pi} \left\langle \nabla q(\boldsymbol{\theta}_k), \arcsin \left(\frac{\overline{\mathbf{K}}(\boldsymbol{\theta}_k - \boldsymbol{\theta}^*)}{\sqrt{L(k)}} \right) \right\rangle + \frac{\gamma_k^2}{\pi} \langle \nabla^2 q, \mathbf{K}_\sigma \rangle.$$

1824 Let $\lambda_i(\overline{\mathbf{K}})$, \mathbf{u}_i , and \mathbf{w}_i denote the eigenvalue, right eigenvector, and left eigenvector of $\overline{\mathbf{K}}$, respectively. Then $\overline{\mathbf{K}} = \sum_{i=1}^M \lambda_i(\overline{\mathbf{K}}) \mathbf{u}_i \otimes \mathbf{w}_i$ and $I = \sum_{i=1}^M \mathbf{u}_i \otimes \mathbf{w}_i$.
1825

1826 Define
1827

$$1828 r_i(k) = (\boldsymbol{\theta}_k - \boldsymbol{\theta}^*)^\top (\mathbf{K}\mathbf{u}_i \otimes \mathbf{w}_i)(\boldsymbol{\theta}_k - \boldsymbol{\theta}^*).$$

1829 The **loss** decomposes as
1830

$$1831 L(k) = \left\| \mathbf{H}^{1/2} \mathbf{S}^\top (\boldsymbol{\theta}_k - \boldsymbol{\theta}^*) \right\|^2 + \left\| \mathbf{H}^{1/2} \mathbf{w}_\perp \right\|^2 = (\boldsymbol{\theta}_k - \boldsymbol{\theta}^*)^\top \mathbf{K}(\boldsymbol{\theta}_k - \boldsymbol{\theta}^*) + \left\| \mathbf{H}^{1/2} \mathbf{w}_\perp \right\|^2 = \sum_{i=1}^d r_i(k) + \left\| \mathbf{H}^{1/2} \mathbf{w}_\perp \right\|^2.$$

1834 We now apply the one-step update formula to $r_i(k)$. Note that
1835

$$\nabla r_i(k) = \mathbf{K}\mathbf{u}_i \langle \mathbf{w}_i, \boldsymbol{\theta}_k - \boldsymbol{\theta}^* \rangle + \mathbf{w}_i \langle \mathbf{K}\mathbf{u}_i, \boldsymbol{\theta}_k - \boldsymbol{\theta}^* \rangle, \quad \nabla^2 r_i = \mathbf{K}\mathbf{u}_i \mathbf{w}_i^\top + \mathbf{w}_i \mathbf{u}_i^\top \mathbf{K}^\top.$$

1836 Approximating $\arcsin(x) \approx x$ and using $\mathbf{K}^\top = \mathbf{K}$ together with $\mathbf{K}^\top \mathbf{K} = \mathbf{K}^\top \mathbf{K}^\top$, we obtain
 1837

$$\begin{aligned} 1838 \mathbb{E}[r_i(k+1) - r_i(k) | \mathcal{F}_k] &\approx -\frac{2\gamma_k}{\pi} \left(\langle \mathbf{w}_i, \boldsymbol{\theta}_k - \boldsymbol{\theta}^* \rangle \left\langle \mathbf{K} \mathbf{u}_i, \frac{\overline{\mathbf{K}}(\boldsymbol{\theta}_k - \boldsymbol{\theta}^*)}{\sqrt{L(k)}} \right\rangle + \langle \mathbf{K} \mathbf{u}_i, \boldsymbol{\theta}_k - \boldsymbol{\theta}^* \rangle \left\langle \mathbf{w}_i, \frac{\overline{\mathbf{K}}(\boldsymbol{\theta}_k - \boldsymbol{\theta}^*)}{\sqrt{L(k)}} \right\rangle \right) \\ 1839 &\quad + \frac{2\gamma_k^2}{\pi} \mathbf{w}_i^\top \mathbf{K}_\sigma \mathbf{K} \mathbf{u}_i \\ 1840 &= -\frac{4\gamma_k}{\pi\sqrt{L(k)}} \lambda_i(\overline{\mathbf{K}}) r_i(k) + \frac{2\gamma_k^2}{\pi} \mathbf{w}_i^\top \mathbf{K}_\sigma \mathbf{K} \mathbf{u}_i. \\ 1841 \\ 1842 \\ 1843 \\ 1844 \\ 1845 \end{aligned}$$

1846 It is possible to replace the linear approximation $\arcsin(x) \approx x$ by an inequality, and the main
 1847 results of our paper remain unchanged. We explain it in Appendix K.2. Hence,
 1848

$$\begin{aligned} 1849 \mathbb{E}[r_i(k+1) - r_i(k) | \mathcal{F}_k] &\approx -\frac{4\gamma_k}{\pi\sqrt{L(k)}} \lambda_i(\overline{\mathbf{K}}) r_i(k) + \frac{2\gamma_k^2}{\pi} \mathbf{w}_i^\top \mathbf{K}_\sigma \mathbf{K} \mathbf{u}_i. \\ 1850 \\ 1851 \end{aligned}$$

1852 E.2 ODE APPROXIMATION AND IMPLICIT INTEGRAL EQUATION OF SIGNSGD

1854 Let the learning rate be $\gamma_k = \gamma_0 f(k)$. Define $V_i = \mathbf{w}_i^\top \mathbf{K}_\sigma \mathbf{K} \mathbf{u}_i$, then our one-step update formula
 1855 becomes

$$\mathbb{E}[r_i(k+1) - r_i(k) | \mathcal{F}_k] = -\frac{4\gamma_k}{\pi\sqrt{L(k)}} \lambda_i(\overline{\mathbf{K}}) r_i(k) + \frac{2\gamma_k^2}{\pi} V_i.$$

1859 Dividing by γ_0 gives
 1860

$$\mathbb{E}\left[\frac{r_i(k+1) - r_i(k)}{\gamma_0} \middle| \mathcal{F}_k\right] = -\frac{4}{\pi\sqrt{L(k)}} \lambda_i(\overline{\mathbf{K}}) f(k) r_i(k) + \frac{2f(k)^2 \gamma_0}{\pi} V_i.$$

1864 Interpreting γ_0 as the time step, the discrete index k corresponds to continuous time $t = k\gamma_0$. Let
 1865 $P(t) = L(t/\gamma_0)$ and $p_i(t) = r_i(t/\gamma_0)$. We then obtain the ODE
 1866

$$\frac{dp_i}{dt} = -\frac{4}{\pi\sqrt{P(t)}} \lambda_i(\overline{\mathbf{K}}) f(t/\gamma_0) p_i(t) + \frac{2f(t/\gamma_0)^2 \gamma_0}{\pi} V_i. \quad (25)$$

1870 From this point onward in the analysis, we treat P , p_i , L , and r_i as their continuous extensions,
 1871 allowing arbitrary positive real inputs.
 1872

1873 **Integral formulation.** Solving the ODE yields
 1874

$$p_i(t) = p_i(0) e^{-\frac{4\lambda_i}{\pi} \int_0^t \frac{f(u/\gamma_0)}{\sqrt{P(u)}} du} + \frac{2\gamma_0}{\pi} V_i \int_0^t e^{-\frac{4\lambda_i}{\pi} \int_s^t \frac{f(u/\gamma_0)}{\sqrt{P(u)}} du} f(s/\gamma_0)^2 ds.$$

1879 Since $P(t) = \sum_{i=1}^M p_i(t) + \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2$, we obtain
 1880

$$P(t) = \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 + \sum_{i=1}^M p_i(0) e^{-\frac{4\lambda_i}{\pi} \int_0^t \frac{f(u/\gamma_0)}{\sqrt{P(u)}} du} + \frac{2\gamma_0}{\pi} \sum_{i=1}^M V_i \int_0^t e^{-\frac{4\lambda_i}{\pi} \int_s^t \frac{f(u/\gamma_0)}{\sqrt{P(u)}} du} f(s/\gamma_0)^2 ds.$$

1884 **Integral equation in discrete form.** Note that $L(N) = P(N\gamma_0)$. With a change of variables, we
 1885 obtain
 1886

$$L(N) = \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 + \sum_{i=1}^M r_i(0) e^{-\frac{4\lambda_i \gamma_0}{\pi} \int_0^N \frac{f(u)}{\sqrt{L(u)}} du} + \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N e^{-\frac{4\lambda_i \gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du} f(z)^2 dz. \quad (26)$$

1890

1891 **Drift and noise decomposition.** Define

1892

$$1893 L^{\text{drift}}(N) = \sum_{i=1}^M r_i(0) e^{-\frac{4\lambda_i \gamma_0}{\pi} \int_0^N \frac{f(u)}{\sqrt{L(u)}} du}, \quad L^{\text{noise}}(N) = \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N e^{-\frac{4\lambda_i \gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du} f(z)^2 dz. \quad (27)$$

1894

1895

1896 Then

1897

$$1898 L(N) = \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 + L^{\text{drift}}(N) + L^{\text{noise}}(N), \quad (28)$$

1899

1900 and we will analyze $\|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 + L^{\text{drift}}(N)$ and $L^{\text{noise}}(N)$ separately.

1901

1902 Figure 20 show dynamics of three terms $\|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2$, $L^{\text{drift}}(N)$, $L^{\text{noise}}(N)$ referring each as Ap-

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

Figure 20: **Dynamics of Drift and Noise.** Left: the purple curve is the 80% confidence interval of the

true signSGD trajectory, while the blue curve is the numerical ODE solution. The yellow, orange,

and green curves correspond to the approximation, drift, and noise terms in (28). Right: the red

curve shows the sum of these three terms, matching both the true trajectory and the ODE solution.

Parameters: $\alpha = 1.0$, $\beta = 0$, $\gamma_0 = 0.003$, $f(z) = 1$, $M = 200$, $d = 800$.

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

E.2.1 TRANSFORMATION OF THE DRIFT TERM AND APPROXIMATION ERROR

Let

$$Q(z) = \frac{4\gamma_0}{\pi} \int_0^z \frac{f(u)}{\sqrt{L(u)}} du, \quad \bar{\mathbf{K}}_1 = \mathbf{H}^{1/2} \mathbf{S}^\top \text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^\top)^{-1/2} \mathbf{S} \mathbf{H}^{1/2}.$$

Then

$$\mathbf{K} \bar{\mathbf{K}}^p = \mathbf{S} \mathbf{H}^{1/2} \bar{\mathbf{K}}_1^p \mathbf{H}^{1/2} \mathbf{S}^\top$$

holds.

Define

$$\mathbf{A} = \mathbf{H}^{1/2} e^{-\bar{\mathbf{K}}_1 Q(N)} \mathbf{H}^{1/2}, \quad \mathbf{u} = \mathbf{S}^\top \boldsymbol{\theta}_0 - \mathbf{S}^\top \boldsymbol{\theta}^* - \mathbf{w}_\perp = \mathbf{S}^\top \boldsymbol{\theta}_0 - \mathbf{w}^*.$$

From $\mathbf{S} \mathbf{H} \mathbf{w}_\perp = 0$ we get

$$\bar{\mathbf{K}}_1(\mathbf{H}^{1/2} \mathbf{w}_\perp) = 0,$$

and this implies

$$e^{-\bar{\mathbf{K}}_1 Q(N)}(\mathbf{H}^{1/2} \mathbf{w}_\perp) = e^0(\mathbf{H}^{1/2} \mathbf{w}_\perp) = \mathbf{H}^{1/2} \mathbf{w}_\perp.$$

Thus,

$$\mathbf{A} \mathbf{w}_\perp = \mathbf{H} \mathbf{w}_\perp, \quad \mathbf{w}_\perp^\top \mathbf{A} \mathbf{w}_\perp = \mathbf{w}_\perp^\top \mathbf{H} \mathbf{w}_\perp,$$

and

$$\mathbf{u}^\top \mathbf{A} \mathbf{w}_\perp = \mathbf{u}^\top \mathbf{H} \mathbf{w}_\perp = (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)^\top \mathbf{S} \mathbf{H} \mathbf{w}_\perp - \mathbf{w}_\perp^\top \mathbf{H} \mathbf{w}_\perp = -\mathbf{w}_\perp^\top \mathbf{H} \mathbf{w}_\perp.$$

36

1944 Using these identities, we can convert the drift term as follows:
 1945

$$\begin{aligned}
 1946 \quad L^{\text{drift}}(N) &= \sum_{i=1}^M r_i(0) \cdot e^{-\lambda_i(\bar{\mathbf{K}})Q(N)} \\
 1947 \\
 1948 \\
 1949 \quad &= \sum_{i=1}^M (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)^\top (\mathbf{K} \mathbf{u}_i \otimes \mathbf{w}_i) (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*) \cdot e^{-\lambda_i(\bar{\mathbf{K}})Q(N)} \\
 1950 \\
 1951 \quad &= \sum_{i=1}^M (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)^\top \left((\mathbf{K} \mathbf{u}_i \otimes \mathbf{w}_i) \cdot e^{-\lambda_i(\bar{\mathbf{K}})Q(N)} \right) (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*) \\
 1952 \\
 1953 \quad &= (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)^\top \mathbf{K} e^{-\bar{\mathbf{K}}Q(N)} (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*) \\
 1954 \\
 1955 \quad &= (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)^\top \mathbf{S} \mathbf{H}^{1/2} (\mathbf{H}^{1/2} \mathbf{S} e^{-\bar{\mathbf{K}}Q(N)}) (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*) \\
 1956 \\
 1957 \quad &= (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)^\top \mathbf{S} \mathbf{H}^{1/2} (e^{-\bar{\mathbf{K}}_1 Q(N)} \mathbf{H}^{1/2} \mathbf{S}) (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*) \\
 1958 \\
 1959 \quad &= (\boldsymbol{\theta}_0 - \boldsymbol{\theta}^*)^\top \mathbf{A} (\mathbf{u} + \mathbf{w}_\perp) \\
 1960 \\
 1961 \quad &= \mathbf{u}^\top \mathbf{A} \mathbf{u} + \mathbf{u}^\top \mathbf{A} \mathbf{w}_\perp + \mathbf{w}_\perp^\top \mathbf{A} \mathbf{u} + \mathbf{w}_\perp^\top \mathbf{A} \mathbf{w}_\perp \\
 1962 \\
 1963 \quad &= \mathbf{u}^\top \mathbf{H}^{1/2} e^{-\bar{\mathbf{K}}_1 Q(N)} \mathbf{H}^{1/2} \mathbf{u} - \mathbf{w}_\perp^\top \mathbf{H} \mathbf{w}_\perp - \mathbf{w}_\perp^\top \mathbf{H} \mathbf{w}_\perp + \mathbf{w}_\perp^\top \mathbf{H} \mathbf{w}_\perp \\
 1964 \\
 1965 \quad &= \mathbf{u}^\top \mathbf{H}^{1/2} e^{-\bar{\mathbf{K}}_1 Q(N)} \mathbf{H}^{1/2} \mathbf{u} - \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2. \\
 1966 \\
 1967 \\
 1968
 \end{aligned}$$

1969 **Drift term plus approximation error.** Adding the approximation error gives
 1970

$$\begin{aligned}
 1971 \quad L^{\text{drift}}(N) + \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 &= \mathbf{u}^\top \mathbf{H}^{1/2} e^{-\bar{\mathbf{K}}_1 Q(N)} \mathbf{H}^{1/2} \mathbf{u} \\
 1972 \\
 1973 \quad &= \left\langle e^{-\bar{\mathbf{K}}_1 Q(N)}, (\mathbf{H}^{1/2} (\mathbf{S}^\top \boldsymbol{\theta}_0 - \mathbf{w}^*))^{\otimes 2} \right\rangle. \\
 1974
 \end{aligned}$$

1975 Also we assume $\boldsymbol{\theta}_0 = 0$, then
 1976

$$\left\langle e^{-\bar{\mathbf{K}}_1 Q(N)}, (\mathbf{H}^{1/2} (\mathbf{S}^\top \boldsymbol{\theta}_0 - \mathbf{w}^*))^{\otimes 2} \right\rangle = \left\langle e^{-\bar{\mathbf{K}}_1 Q(N)}, (\mathbf{H}^{1/2} \mathbf{w}^*)^{\otimes 2} \right\rangle.$$

1977 In the next subsection, we will describe how to apply a deterministic approximation, similar to
 1978 Paquette et al. (2024), to the following term:
 1979

$$\mathcal{H} := \left\langle e^{-\bar{\mathbf{K}}_1 Q(N)}, \mathbf{v}^{\otimes 2} \right\rangle,$$

1980 where $\mathbf{v} := \mathbf{H}^{1/2} \mathbf{w}^* \in \mathbb{R}^d$.
 1981

1982 E.2.2 DETERMINISTIC APPROXIMATION

1983 Note that we assume $d \geq rM$ for some $r > 1$, and let $d/M \rightarrow (1, \infty]$ as $d, M \rightarrow \infty$ when $2\alpha > 1$,
 1984 and $d/M \rightarrow (1, \infty)$ when $2\alpha < 1$. In our setup, $\mathbf{S} \in \mathbb{R}^{M \times d}$ have i.i.d. $\mathcal{N}(0, 1/M)$ entries, and we
 1985 will write the k th column of \mathbf{S}^\top as $\frac{1}{\sqrt{M}} \mathbf{s}_k \in \mathbb{R}^d$; columns are independent.
 1986

1987 Define
 1988

$$\mathbf{y}_k := \mathbf{H}^{1/2} \mathbf{s}_k \in \mathbb{R}^d, \quad a_k := \frac{1}{\sqrt{\frac{1}{M} \mathbf{y}_k^\top \mathbf{y}_k}} = \frac{\sqrt{M}}{\sqrt{\mathbf{s}_k^\top \mathbf{H} \mathbf{s}_k}} > 0.$$

1989 The unnormalized baseline and the column-normalized matrices are
 1990

$$\widehat{\mathbf{K}} := \mathbf{H}^{1/2} \mathbf{S}^\top \mathbf{S} \mathbf{H}^{1/2} = \frac{1}{M} \sum_{k=1}^M \mathbf{y}_k \mathbf{y}_k^\top, \quad \bar{\mathbf{K}}_1 := \mathbf{H}^{1/2} \mathbf{S}^\top \text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^\top)^{-1/2} \mathbf{S} \mathbf{H}^{1/2} = \frac{1}{M} \sum_{k=1}^M a_k \mathbf{y}_k \mathbf{y}_k^\top.$$

1998 For $z \in \mathbb{C}^+ := \{z : \Im z > 0\}$, define the resolvents
 1999

2000
$$\mathbf{L}(z) := (\overline{\mathbf{K}}_1 - z\mathbf{I})^{-1}, \quad \mathbf{R}^{(k)}(z) := \left(\frac{1}{M} \sum_{\ell \neq k} a_\ell \mathbf{y}_\ell \mathbf{y}_\ell^\top - z\mathbf{I} \right)^{-1}.$$

 2001
 2002
 2003

2004 Note that
 2005

2006
$$\mathbf{y}_k^\top \mathbf{B} \mathbf{y}_k \approx \text{Tr}(\mathbf{H} \mathbf{B})$$

2007 for matrix \mathbf{B} . In particular,
 2008

2009
$$\mathbf{y}_k^\top \mathbf{y}_k \approx \text{Tr} \mathbf{H}, \quad a_k \approx \frac{\sqrt{M}}{\sqrt{\text{Tr} \mathbf{H}}}.$$

 2010
 2011

2012 Also note that
 2013

2014
$$a_k \mathbf{y}_k^\top \mathbf{R} \mathbf{R}^{(k)} \mathbf{y}_k \approx \frac{\sqrt{M}}{\sqrt{\text{Tr} \mathbf{H}}} \cdot \text{Tr}(\mathbf{H} \mathbf{R} \mathbf{R}^{(k)}),$$

 2015 and
 2016

2017
$$a_k \mathbf{y}_k^\top \mathbf{R}^{(k)} \mathbf{y}_k \approx \frac{\sqrt{M}}{\sqrt{\text{Tr} \mathbf{H}}} \text{Tr}(\mathbf{H} \mathbf{R}^{(k)}).$$

 2018

2019 By the Sherman–Morrison expansion,
 2020

2021
$$\mathbf{R} = \mathbf{R}^{(k)} - \frac{M^{-1} a_k \mathbf{R}^{(k)} \mathbf{y}_k \mathbf{y}_k^\top \mathbf{R}^{(k)}}{1 + M^{-1} a_k \mathbf{y}_k^\top \mathbf{R}^{(k)} \mathbf{y}_k}.$$

 2022

2023 Multiplying on the left by \mathbf{R} and sandwiching with $\mathbf{y}_k^\top(\cdot)\mathbf{y}_k$, we get
 2024

2025
$$a_k \mathbf{y}_k^\top \mathbf{R} \mathbf{R} \mathbf{y}_k = a_k \mathbf{y}_k^\top \mathbf{R} \mathbf{R}^{(k)} \mathbf{y}_k - \frac{M^{-1} a_k \mathbf{y}_k^\top \mathbf{R} \mathbf{R}^{(k)} \mathbf{y}_k \cdot a_k \mathbf{y}_k^\top \mathbf{R}^{(k)} \mathbf{y}_k}{1 + M^{-1} a_k \mathbf{y}_k^\top \mathbf{R}^{(k)} \mathbf{y}_k}.$$

 2026

2027 Now we will replace terms on the right side by
 2028

2029
$$a_k \mathbf{y}_k^\top \mathbf{R} \mathbf{R}^{(k)} \mathbf{y}_k \approx \frac{\sqrt{M}}{\sqrt{\text{Tr} \mathbf{H}}} \text{Tr}(\mathbf{H} \mathbf{R} \mathbf{R}^{(k)}),$$

 2030

2031 and
 2032

2033
$$a_k \mathbf{y}_k^\top \mathbf{R}^{(k)} \mathbf{y}_k \approx \frac{\sqrt{M}}{\sqrt{\text{Tr} \mathbf{H}}} \text{Tr}(\mathbf{H} \mathbf{R}^{(k)}).$$

 2034

2035 Thus
 2036

2037
$$a_k \mathbf{y}_k^\top \mathbf{R} \mathbf{R} \mathbf{y}_k \approx \frac{\frac{\sqrt{M}}{\sqrt{\text{Tr} \mathbf{H}}} \text{Tr}(\mathbf{H} \mathbf{R} \mathbf{R}^{(k)})}{1 + M^{-1} \frac{\sqrt{M}}{\sqrt{\text{Tr} \mathbf{H}}} \text{Tr}(\mathbf{H} \mathbf{R}^{(k)})}.$$

 2038

Replacing $\mathbf{R}^{(k)}$ by \mathbf{R} and averaging over k , we obtain
 2039

2040
$$\frac{1}{M} \sum_{k=1}^M a_k \mathbf{y}_k^\top \mathbf{R} \mathbf{R} \mathbf{y}_k \approx \frac{p_d \text{Tr}(\mathbf{H} \mathbf{R} \mathbf{R})}{1 + M^{-1} p_d \text{Tr}(\mathbf{H} \mathbf{R})}, \quad p_d := \frac{\sqrt{M}}{\sqrt{\text{Tr} \mathbf{H}}}.$$

 2041

2042 It implies
 2043

2044
$$\text{Tr}(\mathbf{R}(\mathbf{R}^{-1} + z\mathbf{I})\mathbf{R}) \approx \frac{p_d \text{Tr}(\mathbf{R} \mathbf{H} \mathbf{R})}{1 + M^{-1} p_d \text{Tr}(\mathbf{H} \mathbf{R})}.$$

 2045

2046 This implies
 2047

2048
$$\mathbf{L}(z)^{-1} + z\mathbf{I} \approx \frac{p_d}{1 + M^{-1} p_d \text{Tr}(\mathbf{H} \mathbf{L}(z))} \mathbf{H}.$$

 2049

2050 Let
 2051

2052
$$m(z/p_d) = \frac{1}{1 + M^{-1} p_d \text{Tr}(\mathbf{H} \mathbf{L}(z))}.$$

2052 Then

$$\mathbf{L}(z) \approx (-z\mathbf{I} + p_d m(z/p_d) \mathbf{H})^{-1}.$$

2053 Thus

$$(\bar{\mathbf{K}}_1 - z\mathbf{I})^{-1} \approx (-z\mathbf{I} + p_d m(z/p_d) \mathbf{H})^{-1}.$$

2054 And

$$m(z) = \frac{1}{1 + M^{-1} p_d \text{Tr}(\mathbf{H} \mathbf{R}(p_d z))} \approx \frac{1}{1 + M^{-1} \text{Tr}(\mathbf{H}(-z\mathbf{I} + m(z)\mathbf{H})^{-1})}$$

2055 holds. This fixed-point equation is identical to the one in Paquette et al. (2024).

2056

2057 **Contour representation.** Let $\mathbf{v} := \mathbf{H}^{1/2} \mathbf{w}^* \in \mathbb{R}^d$ and consider

$$\mathcal{H} := \langle e^{-\bar{\mathbf{K}}_1 Q(N)}, \mathbf{v}^{\otimes 2} \rangle.$$

2058 For any analytic g on a contour Γ_2 enclosing $\text{Spec}(\bar{\mathbf{K}}_1)$,

$$g(\bar{\mathbf{K}}_1) = -\frac{1}{2\pi i} \oint_{\Gamma_2} g(z) (\bar{\mathbf{K}}_1 - z\mathbf{I})^{-1} dz.$$

2059 We prove

$$c_1 M^{\min(0.5, \alpha)} I \preceq \text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^T)^{-1/2} \preceq c_2 M^{\min(0.5, \alpha)} I$$

2060 in Section K.4. It leads to

$$c_1 M^{\min(0.5, \alpha)} \widehat{\mathbf{K}} \preceq \bar{\mathbf{K}} \preceq c_2 M^{\min(0.5, \alpha)} \widehat{\mathbf{K}}.$$

2061 $\bar{\mathbf{K}}_1$ has eigenvalues scaled by $M^{\min(0.5, \alpha)}$ compared to $\widehat{\mathbf{K}}$ excluding constant. Note that $p_d \asymp M^{\min(0.5, \alpha)}$. So, there exists a contour Γ_2 enclosing the spectrum of $\bar{\mathbf{K}}_1$, and its $1/p_d$ -scaled version Γ encloses the spectrum of $\widehat{\mathbf{K}}$.2062 Taking $g(z) = e^{-Q(N)z}$,

$$\begin{aligned} \mathcal{H} &= -\frac{1}{2\pi i} \oint_{\Gamma_2} e^{-Q(N)z} \langle (\bar{\mathbf{K}}_1 - z\mathbf{I})^{-1}, \mathbf{v}^{\otimes 2} \rangle dz \\ &\approx -\frac{1}{2\pi i} \oint_{\Gamma_2} e^{-Q(N)z} \langle (-z\mathbf{I} + p_d m(z/p_d) \mathbf{H})^{-1}, \mathbf{v}^{\otimes 2} \rangle dz \\ &= -\frac{1}{2\pi i} \oint_{\Gamma} e^{-p_d Q(N)z} \langle (-z\mathbf{I} + m(z) \mathbf{H})^{-1}, \mathbf{v}^{\otimes 2} \rangle dz. \end{aligned}$$

2063 Let $\mathcal{R}(z) = (-z\mathbf{I} + m(z) \mathbf{H})^{-1}$, then our objective converts to

$$\mathcal{H} \approx -\frac{1}{2\pi i} \oint_{\Gamma} e^{-p_d Q(N)z} \langle \mathcal{R}(z), \mathbf{v}^{\otimes 2} \rangle dz.$$

2064 E.2.3 FINAL TRANSFORMATION RESULT

2065 Paquette et al. (2024) evaluate the contour integrals with $\mathcal{R}(z)$. When $\alpha < 0.5$ or $\beta < 0.5$, they show

$$\begin{aligned} -\frac{1}{2\pi i} \oint_{\Gamma} (1 - 2\gamma Bz + \gamma^2 B(B+1)z^2)^r \langle \mathcal{L}(z), \mathbf{v}^{\otimes 2} \rangle dz &\approx M^{-2\alpha + \max(0, 1-2\beta)} \\ &\quad + (2\gamma Br)^{-\frac{2\alpha+2\beta-1}{2\alpha}}. \end{aligned} \quad (29)$$

2066 When $\alpha > 0.5$ and $\beta > 0.5$, they obtained

$$\begin{aligned} -\frac{1}{2\pi i} \oint_{\Gamma} (1 - 2\gamma Bz + \gamma^2 B(B+1)z^2)^r \langle \mathcal{L}(z), \mathbf{v}^{\otimes 2} \rangle dz &\approx M^{-2\alpha + \max(0, 1-2\beta)} \\ &\quad + (2\gamma Br)^{-\frac{2\alpha+2\beta-1}{2\alpha}} \\ &\quad + M^{-1} (2\gamma Br)^{-2 + \frac{1}{2\alpha}}. \end{aligned} \quad (30)$$

2106 For the case $\alpha < 0.5$ or $\beta < 0.5$, applying a similar method to our objective yields
 2107

$$\begin{aligned} 2108 \quad & -\frac{1}{2\pi i} \oint_{\Gamma} e^{-p_d Q(N)z} \langle \mathcal{L}(z), v^{\otimes 2} \rangle dz \approx M^{-2\alpha+\max(0, 1-2\beta)} \\ 2109 \quad & + \left(M^{\min(\alpha, 0.5)} Q(N) \right)^{-\frac{2\alpha+2\beta-1}{2\alpha}}, \end{aligned} \quad (31)$$

2112 with details provided in Appendix K.1. Hence,
 2113

$$\begin{aligned} 2114 \quad & \left\langle e^{-\bar{K}_1 Q(N)}, (\mathbf{H}^{1/2} \mathbf{w}^*)^{\otimes 2} \right\rangle \approx M^{-2\alpha+\max(0, 1-2\beta)} \\ 2115 \quad & + \left(M^{\min(\alpha, 0.5)} Q(N) \right)^{-\frac{2\alpha+2\beta-1}{2\alpha}}. \end{aligned} \quad (32)$$

2119 For the case $\alpha > 0.5$ and $\beta > 0.5$, a similar argument gives
 2120

$$\begin{aligned} 2121 \quad & -\frac{1}{2\pi i} \oint_{\Gamma} e^{-p_d Q(N)z} \langle \mathcal{L}(z), v^{\otimes 2} \rangle dz \approx M^{-2\alpha+\max(0, 1-2\beta)} \\ 2122 \quad & + \left(M^{\min(\alpha, 0.5)} Q(N) \right)^{-\frac{2\alpha+2\beta-1}{2\alpha}} \\ 2123 \quad & + M^{-1} \left(M^{\min(\alpha, 0.5)} Q(N) \right)^{-1+\frac{1}{2\alpha}}, \end{aligned} \quad (33)$$

2128 with details in Appendix K.1. Consequently,
 2129

$$\begin{aligned} 2130 \quad & \left\langle e^{-\bar{K}_1 Q(N)}, (\mathbf{H}^{1/2} \mathbf{w}^*)^{\otimes 2} \right\rangle \approx M^{-2\alpha+\max(0, 1-2\beta)} \\ 2131 \quad & + \left(M^{\min(\alpha, 0.5)} Q(N) \right)^{-\frac{2\alpha+2\beta-1}{2\alpha}} \\ 2132 \quad & + M^{-1} \left(M^{\min(\alpha, 0.5)} Q(N) \right)^{-1+\frac{1}{2\alpha}}. \end{aligned} \quad (34)$$

2136 In summary, we obtain
 2137

$$2138 \quad L^{\text{drift}}(N) + \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 \approx M^{-2\alpha+\max(0, 1-2\beta)} + \left(M^{\min(\alpha, 0.5)} Q(N) \right)^{-\frac{2\alpha+2\beta-1}{2\alpha}}, \quad (35)$$

2141 for $\alpha < 0.5$ or $\beta < 0.5$, and
 2142

$$\begin{aligned} 2143 \quad & L^{\text{drift}}(N) + \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 \approx M^{-2\alpha+\max(0, 1-2\beta)} \\ 2144 \quad & + \left(M^{\min(\alpha, 0.5)} Q(N) \right)^{-\frac{2\alpha+2\beta-1}{2\alpha}} \\ 2145 \quad & + M^{-1} \left(M^{\min(\alpha, 0.5)} Q(N) \right)^{-1+\frac{1}{2\alpha}}, \end{aligned} \quad (36)$$

2148 for $\alpha > 0.5$ and $\beta > 0.5$.
 2149

2150 Figure 21 shows our transformed result in (35) and (36) based on deterministic approximation
 2151 matches the true signSGD trajectory up to a constant factor. When interpreting the figure, note that
 2152 our analysis is asymptotic; hence, discrepancies may appear in the very early iterations.
 2153

2154
 2155
 2156
 2157
 2158
 2159

Figure 21: **Verification of the deterministic approximation and drift-term transformation.** Left: the purple curve denotes the 80% confidence interval of the true signSGD trajectory, the blue curve represents the numerical ODE solution, and the yellow curve corresponds to the deterministic approximation after drift-term transformation in (35) and (36). Deterministic approximation matches the true trajectory up to a constant factor. It should be noted that our analysis is asymptotic, and thus, discrepancies may occur in the very early iterations. Right: the ratio between the approximation and the true trajectory remains bounded by a constant factor, confirming the validity of our approach. Parameters: $(\alpha, \beta) = (0.7, 0.3), (1.0, 0), (0.4, 0.4), (0.7, 1.1)$ from top to bottom, $\gamma_0 = 0.003$, $f(z) = 1$, $M = 200$, $d = 800$, 100 runs.

2214 E.3 CONSTANT LEARNING RATE: PROXY AND VERIFICATION FOR THE CASE $\alpha < 0.5$ OR
 2215 $\beta < 0.5$ (PHASE A)

2217 Throughout this section, we set $f(z) \equiv 1$; hence

2218
$$Q(N) = \frac{4\gamma_0}{\pi} \int_0^N \frac{du}{\sqrt{L(u)}}.$$

2221 Applying the drift/approximation-term transformation to the ODE solution yields the implicit relation
 2222

2223
$$L(N) \underset{\text{approx}}{\sim} \underbrace{M^{-2\alpha+\max(0,1-2\beta)}} + \underbrace{(M^{\min(\alpha,0.5)} Q(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}}_{\text{drift}} \quad (37)$$

2226
$$+ \underbrace{\frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{L(u)}}\right) dz}_{\text{noise}}. \quad (38)$$

2231 E.3.1 EARLY STAGE (DOMINANCE OF THE DRIFT TERM)

2232 At $N = 0$, the noise integral is 0, the approximation term is independent of N , and the drift term is
 2233 large and decreases with N . Thus, in the early phase,

2235
$$L(N) \underset{\text{approx}}{\sim} (M^{\min(\alpha,0.5)} Q(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}. \quad (39)$$

2237 Since $Q(N) = \frac{4\gamma_0}{\pi} \int_0^N L(u)^{-1/2} du$, (39) is equivalent (up to absolute constants) to

2239
$$L(N)^{-\frac{2\alpha}{2\alpha+2\beta-1}} \underset{\text{approx}}{\sim} M^{\min(\alpha,0.5)} \gamma_0 \int_0^N \frac{du}{\sqrt{L(u)}}. \quad (40)$$

2241 To obtain a proxy profile, we replace \sim by equality in (40) and differentiate both sides:

2243
$$-\frac{2\alpha}{2\alpha+2\beta-1} L(t)^{-\frac{2\alpha}{2\alpha+2\beta-1}-1} L'(t) = M^{\min(\alpha,0.5)} \gamma_0 \frac{1}{\sqrt{L(t)}}. \quad (41)$$

2245 Solving (41) for $L'(t)$ and separating variables gives the separable ODE

2247
$$\frac{dL}{dt} = -\kappa L^\zeta, \quad \zeta = \frac{2\alpha}{2\alpha+2\beta-1} + \frac{1}{2}, \quad \kappa = \frac{2\alpha+2\beta-1}{2\alpha} M^{\min(\alpha,0.5)} \gamma_0.$$

2250 Assuming $\zeta > 1$ (i.e. $2\alpha+2\beta < 4\alpha+1$), we integrate to obtain

2251
$$-\frac{L(t)^{-(\zeta-1)}}{\zeta-1} = -\kappa t + \text{constant} \implies L(t) = \left[(\zeta-1) \kappa t \right]^{-1/(\zeta-1)}. \quad (42)$$

2253 Substituting $\zeta = \frac{2\alpha}{2\alpha+2\beta-1} + \frac{1}{2}$ and $\kappa = \frac{2\alpha+2\beta-1}{2\alpha} M^{\min(\alpha,0.5)} \gamma_0$ yields the early-phase proxy

2255
$$L(N) \underset{\text{approx}}{\sim} (\gamma_0 M^{\min(\alpha,0.5)} N)^{-p}, \quad p := \frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}. \quad (43)$$

2258 By construction, (43) satisfies (40) (hence (39)) up to absolute constants.

2259 E.3.2 LIMIT STAGE (STATIONARY ANALYSIS AND FLOOR)

2261 With $f \equiv 1$, the mode-wise ODE is

2263
$$\frac{dp_i}{dt} = -\frac{4}{\pi \sqrt{P(t)}} \lambda_i(\bar{K}) p_i(t) + \frac{2\gamma_0}{\pi} V_i.$$

2265 At stationarity, $p_i(t) \rightarrow s_i$ and $P(t) \rightarrow L_\infty$, we must have

2267
$$-\frac{4}{\pi \sqrt{L_\infty}} \lambda_i(\bar{K}) s_i + \frac{2\gamma_0}{\pi} V_i = 0 \implies s_i = \frac{\gamma_0 \sqrt{L_\infty}}{2 \lambda_i(\bar{K})} V_i = \frac{\gamma_0 \sqrt{L_\infty}}{2 \lambda_i(\bar{K})} (\mathbf{w}_i^\top \mathbf{K}_\sigma \mathbf{K} \mathbf{u}_i).$$

Using the **loss** decomposition $P(t) = \sum_{i=1}^M p_i(t) + \|\mathbf{H}^{1/2}\mathbf{w}_\perp\|^2$, we obtain

$$\begin{aligned} L_\infty &= \sum_{i=1}^M s_i + \|\mathbf{H}^{1/2}\mathbf{w}_\perp\|^2 = \frac{\gamma_0}{2} \left(\sum_{i=1}^M \frac{\mathbf{w}_i^\top \mathbf{K}_\sigma \mathbf{K} \mathbf{u}_i}{\lambda_i(\bar{K})} \right) \sqrt{L_\infty} + \|\mathbf{H}^{1/2}\mathbf{w}_\perp\|^2 \\ &= \frac{\gamma_0}{2} \text{Tr}(\text{diag}(\mathbf{K})^{1/2} \mathbf{K}_\sigma) \sqrt{L_\infty} + \|\mathbf{H}^{1/2}\mathbf{w}_\perp\|^2 = \frac{\gamma_0 \pi}{4} \text{Tr}(\text{diag}(\mathbf{K})^{1/2}) \sqrt{L_\infty} + \|\mathbf{H}^{1/2}\mathbf{w}_\perp\|^2. \end{aligned}$$

Solving the quadratic in $\sqrt{L_\infty}$ gives

$$L_\infty = \left(\frac{\frac{\gamma_0 \pi}{4} \text{Tr}(\text{diag}(\mathbf{K})^{1/2}) + \sqrt{\left(\frac{\gamma_0 \pi}{4} \text{Tr}(\text{diag}(\mathbf{K})^{1/2}) \right)^2 + 4\|\mathbf{H}^{1/2}\mathbf{w}_\perp\|^2}}{2} \right)^2 \quad (44)$$

$$\approx \max \left\{ \left(\gamma_0 \text{Tr}(\text{diag}(\mathbf{K})^{1/2}) \right)^2, \|\mathbf{H}^{1/2}\mathbf{w}_\perp\|^2 \right\}. \quad (45)$$

Under our setup,

$$\text{Tr}(\text{diag}(\mathbf{K})^{1/2}) = \sum_{i=1}^M \sqrt{(\mathbf{S} \mathbf{H} \mathbf{S}^\top)_{ii}} \approx M \cdot \sqrt{\frac{1}{M} M^{\max(1-2\alpha, 0)}} \approx M^{1-\min(\alpha, 0.5)}.$$

By the results from Paquette et al. (2024); Lin et al. (2024), and note in Appendix K.3,

$$\|\mathbf{H}^{1/2}\mathbf{w}_\perp\|^2 \approx M^{-2\alpha+\max(0, 1-2\beta)}.$$

Hence

$$L_\infty \approx \max \left\{ \gamma_0^2 M^{2-2\min(\alpha, 0.5)}, M^{-2\alpha+\max(0, 1-2\beta)} \right\}. \quad (46)$$

E.3.3 PROXY

Combining the early-phase decay (43) with the floor (46), we adopt

$$L_{\text{px}}(N) := (\gamma_0 M^{\min(\alpha, 0.5)} N)^{-p} + \underbrace{\gamma_0^2 M^{2-2\min(\alpha, 0.5)} + M^{-2\alpha+\max(0, 1-2\beta)}}_{=:C}, \quad p = \frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}. \quad (47)$$

E.3.4 VERIFICATION OF THE PROXY

We show that L_{px} satisfies (37) up to absolute constants. Equivalently, writing $Q_{L_{\text{px}}}(N) := \frac{4\gamma_0}{\pi} \int_0^N \frac{du}{\sqrt{L_{\text{px}}(u)}}$, we establish

$$\underbrace{\left(M^{\min(\alpha, 0.5)} Q_{L_{\text{px}}}(N) \right)^{-\frac{2\alpha+2\beta-1}{2\alpha}}}_{\text{drift}} + \underbrace{M^{-2\alpha+\max(0, 1-2\beta)}}_{\text{approx}} + \underbrace{\frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp \left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{L_{\text{px}}(u)}} \right) dz}_{\text{noise}} \quad (48)$$

$$\approx \underbrace{\left(\gamma_0 M^{\min(\alpha, 0.5)} N \right)^{-p} + C}_{L_{\text{px}}(N)}. \quad (49)$$

Lower Bound We prove

$$\text{drift} + \text{approx} + \text{noise} \gtrsim (\gamma_0 M^{\min(\alpha, 0.5)} N)^{-p} + C. \quad (50)$$

Since $L_{\text{px}}(u) \geq (\gamma_0 M^{\min(\alpha, 0.5)} u)^{-p}$,

$$\begin{aligned} \text{drift} &= \left(M^{\min(\alpha, 0.5)} Q_{L_{\text{px}}}(N) \right)^{-\frac{2\alpha+2\beta-1}{2\alpha}} \gtrsim \left(M^{\min(\alpha, 0.5)} \cdot \gamma_0 \int_0^N (\gamma_0 M^{\min(\alpha, 0.5)} u)^{p/2} du \right)^{-\frac{2\alpha+2\beta-1}{2\alpha}} \\ &\approx (\gamma_0 M^{\min(\alpha, 0.5)} N)^{-p}. \end{aligned}$$

2322 Since $L_{\text{px}}(u) \geq C$ for all u ,

$$2323 \quad \int_z^N \frac{du}{\sqrt{L_{\text{px}}(u)}} \leq \frac{N-z}{\sqrt{C}}.$$

2326 Hence

$$2327 \quad \text{noise} \geq \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \frac{N-z}{\sqrt{C}}\right) dz \quad (51)$$

$$2330 \quad = \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \frac{\sqrt{C}}{\frac{4\gamma_0}{\pi} \lambda_i(\bar{K})} \left(1 - e^{-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \frac{N}{\sqrt{C}}}\right) \quad (52)$$

$$2333 \quad \gtrsim \gamma_0 \sqrt{C} \sum_{i=1}^M \frac{V_i}{\lambda_i(\bar{K})} = \frac{\gamma_0}{2} \text{Tr}(\text{diag}(K)^{1/2}) \sqrt{C} \approx \gamma_0 M^{1-\min(\alpha, 0.5)} \sqrt{C} \gtrsim \gamma_0^2 M^{2-2\min(\alpha, 0.5)}. \quad (53)$$

2337 Adding the approximation term $M^{-2\alpha+\max(0, 1-2\beta)}$ gives **noise** + **approx** $\gtrsim C$. Combining with
2338 the drift contribution yields (50).

2340 **Upper Bound** We establish

$$2342 \quad \text{drift} + \text{approx} + \text{noise} \lesssim (\gamma_0 M^{\min(\alpha, 0.5)} N)^{-p} + C. \quad (54)$$

2344 Let

$$2345 \quad A(N) := \max\left\{(\gamma_0 M^{\min(\alpha, 0.5)} N)^{-p}, C\right\}, \quad p = \frac{2(2\alpha + 2\beta - 1)}{2\alpha + 1 - 2\beta}.$$

2347 Then $L_{\text{px}}(N) \approx A(N)$. Define N_0 by $(\gamma_0 M^{\min(\alpha, 0.5)} N_0)^{-p} = C$, i.e.

$$2349 \quad A(N) = \begin{cases} (\gamma_0 M^{\min(\alpha, 0.5)} N)^{-p}, & N \leq N_0, \\ C, & N > N_0. \end{cases}$$

2352 There exists a constant $B \geq 1$ such that

$$2354 \quad L_{\text{px}}(N) \leq B A(N) \quad (\forall N \geq 0). \quad (55)$$

2355 **Upper bound for the drift term.** Since $L \leq BA$ by (73) and Q is decreasing in its denominator,

$$2357 \quad \text{drift} = (M^{\min(\alpha, 0.5)} Q_L(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}} \lesssim (M^{\min(\alpha, 0.5)} Q_{BA}(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}.$$

2359 We evaluate the right-hand side by cases.

2361 *Case $N \leq N_0$.* Then $A(u) = (\gamma_0 M^{\min(\alpha, 0.5)} u)^{-p}$ for $u \leq N$, so

$$2363 \quad Q_{BA}(N) = \frac{4\gamma_0}{\pi} \int_0^N \frac{du}{\sqrt{BA(u)}} = \frac{c}{\sqrt{B}} \gamma_0 \int_0^N (\gamma_0 M^{\min(\alpha, 0.5)} u)^{p/2} du$$

2365 for an absolute constant $c > 0$, which implies

$$2367 \quad \text{drift} \lesssim (\gamma_0 M^{\min(\alpha, 0.5)} N)^{-\frac{2\alpha+2\beta-1}{2\alpha}(1+p/2)} = (\gamma_0 M^{\min(\alpha, 0.5)} N)^{-p}.$$

2370 *Case $N > N_0$.* Split the integral at N_0 :

$$2372 \quad M^{\min(\alpha, 0.5)} Q_{BA}(N) = \frac{c}{\sqrt{B}} \gamma_0 M^{\min(\alpha, 0.5)} \left[\int_0^{N_0} (\gamma_0 M^{\min(\alpha, 0.5)} u)^{p/2} du + \int_{N_0}^N \frac{du}{\sqrt{BC}} \right]$$

$$2374 \quad = \frac{c}{\sqrt{B}} \left[(\gamma_0 M^{\min(\alpha, 0.5)} N_0)^{1+p/2} + \gamma_0 M^{\min(\alpha, 0.5)} \frac{N - N_0}{\sqrt{BC}} \right].$$

Raising to the power $-\frac{2\alpha+2\beta-1}{2\alpha}$ and using $(\gamma_0 M^{\min(\alpha, 0.5)} N_0)^{-p} = C$,

$$\mathbf{drift} \lesssim \left[C^{-\frac{1+p/2}{p}} + \gamma_0 \frac{N - N_0}{\sqrt{BC}} \right]^{-\frac{2\alpha+2\beta-1}{2\alpha}} \leq \left(C^{-\frac{1}{(2\alpha+2\beta-1)/(2\alpha)}} \right)^{-\frac{2\alpha+2\beta-1}{2\alpha}} = C.$$

Combining the two cases,

$$\mathbf{drift} \lesssim (\gamma_0 M^{\min(\alpha, 0.5)} N)^{-p} + C. \quad (56)$$

Upper bound for the noise integral. By the monotonicity of $r \mapsto r^{-1/2}$,

$$\int_z^N \frac{du}{\sqrt{L(u)}} \geq \frac{1}{\sqrt{B}} \int_z^N \frac{du}{\sqrt{A(u)}}.$$

Therefore,

$$\mathbf{noise} \leq \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\gamma_0}{\pi\sqrt{B}} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{A(u)}}\right) dz. \quad (57)$$

We again split into two cases.

Case $N \leq N_0$. Then $A(u) = (\gamma_0 M^{\min(\alpha, 0.5)} u)^{-p}$ on $[0, N]$, hence

$$\int_z^N \frac{du}{\sqrt{A(u)}} = (\gamma_0 M^{\min(\alpha, 0.5)})^{p/2} \int_z^N u^{p/2} du = (\gamma_0 M^{\min(\alpha, 0.5)})^{p/2} \frac{N^{1+p/2} - z^{1+p/2}}{1+p/2}.$$

Plugging this into (57) and factoring,

$$\begin{aligned} \mathbf{noise} &= \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\gamma_0}{\pi\sqrt{B}} \lambda_i(\bar{K}) (\gamma_0 M^{\min(\alpha, 0.5)})^{p/2} \frac{N^{1+p/2} - z^{1+p/2}}{1+p/2}\right) dz \\ &= \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \exp\left(-\frac{4\gamma_0}{\pi\sqrt{B}} \lambda_i(\bar{K}) (\gamma_0 M^{\min(\alpha, 0.5)})^{p/2} \frac{N^{1+p/2}}{1+p/2}\right) \\ &\quad \times \int_0^N \exp\left(\frac{4\gamma_0}{\pi\sqrt{B}} \lambda_i(\bar{K}) (\gamma_0 M^{\min(\alpha, 0.5)})^{p/2} \frac{z^{1+p/2}}{1+p/2}\right) dz. \end{aligned}$$

Make the change of variables $y = z^{1+p/2}$ so that $dz = \frac{1}{1+p/2} y^{\frac{1}{1+p/2}-1} dy$ and the upper limit becomes $N^{1+p/2}$:

$$\begin{aligned} \mathbf{noise} &= \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i e^{-\alpha_i N^{1+p/2}} \int_0^{N^{1+p/2}} e^{\alpha_i y} \frac{1}{1+p/2} y^{\frac{1}{1+p/2}-1} dy, \\ \alpha_i &:= \frac{4\gamma_0}{\pi\sqrt{B}} \lambda_i(\bar{K}) \frac{(\gamma_0 M^{\min(\alpha, 0.5)})^{p/2}}{1+p/2}. \end{aligned}$$

Let $X := N^{1+p/2}$ and

$$g(y) := \frac{1}{1+p/2} y^{\frac{1}{1+p/2}-1} = \frac{1}{1+p/2} y^{-\frac{p}{2+p}}.$$

Since $e^{\alpha_i y}$ is increasing and $g(y)$ is decreasing on $(0, X]$, Chebyshev's integral inequality (oppositely monotone) yields

$$\frac{1}{X} \int_0^X e^{\alpha_i y} g(y) dy \leq \left(\frac{1}{X} \int_0^X e^{\alpha_i y} dy \right) \left(\frac{1}{X} \int_0^X g(y) dy \right).$$

2430

Hence

2431

$$\begin{aligned}
 2432 \quad e^{-\alpha_i X} \int_0^X e^{\alpha_i y} g(y) dy &\leq e^{-\alpha_i X} \frac{e^{\alpha_i X} - 1}{\alpha_i} \frac{1}{X} \int_0^X g(y) dy \\
 2433 \\
 2434 &= \frac{1 - e^{-\alpha_i X}}{\alpha_i} \frac{1}{1 + p/2} \cdot \frac{1}{1 - \frac{p}{2+p}} X^{-\frac{p}{2+p}} \\
 2435 \\
 2436 &= \frac{1 - e^{-\alpha_i X}}{\alpha_i} X^{-\frac{p}{2+p}} \quad \left(\text{since } (1 - \frac{p}{2+p})(1 + \frac{p}{2}) = 1 \right) \\
 2437 \\
 2438 &\leq \frac{1}{\alpha_i} X^{-\frac{p}{2+p}} = \frac{1}{\alpha_i} N^{-p/2}.
 2439 \\
 2440
 \end{aligned}$$

2441

Therefore

2442

$$\text{noise} \leq \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \frac{1}{\alpha_i} N^{-p/2},$$

2443

2444 and with $\alpha_i = \frac{4\gamma_0}{\pi\sqrt{B}} \lambda_i(\bar{K}) \frac{(\gamma_0 M^{\min(\alpha, 0.5)})^{p/2}}{1+p/2}$ this becomes

2445

$$\text{noise} \leq \frac{\gamma_0 \sqrt{B}}{2} (1 + p/2) \sum_{i=1}^M \frac{V_i}{\lambda_i(\bar{K})} (\gamma_0 M^{\min(\alpha, 0.5)} N)^{-p/2}.$$

2446

2447

2448

2449

2450

2451

Using $\sum_i \frac{V_i}{\lambda_i(\bar{K})} = \text{Tr}(\text{diag}(\mathbf{K})^{1/2}) \sim M^{1-\min(\alpha, 0.5)}$, we get

2452

$$\begin{aligned}
 2453 \quad \text{noise} &\lesssim \gamma_0 M^{1-\min(\alpha, 0.5)} (\gamma_0 M^{\min(\alpha, 0.5)} N)^{-p/2} \\
 2454 &= \gamma_0 M^{1-\min(\alpha, 0.5)} (\gamma_0 M^{\min(\alpha, 0.5)} N)^{p/2} (\gamma_0 M^{\min(\alpha, 0.5)} N)^{-p} \\
 2455 &\leq \gamma_0 M^{1-\min(\alpha, 0.5)} \frac{1}{\sqrt{C}} (\gamma_0 M^{\min(\alpha, 0.5)} N)^{-p} \lesssim (\gamma_0 M^{\min(\alpha, 0.5)} N)^{-p},
 2456
 \end{aligned}$$

2457

2458

where we used $(\gamma_0 M^{\min(\alpha, 0.5)} N)^{p/2} \leq (\gamma_0 M^{\min(\alpha, 0.5)} N_0)^{p/2} = C^{-1/2}$.

2459

Case $N > N_0$. Split the z -integral at N_0 :

2460

2461

2462

$$\text{noise} \leq \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \left[\int_0^{N_0} \exp\left(-\frac{4\gamma_0}{\pi\sqrt{B}} \lambda_i(\bar{K}) \int_z^{N_0} \frac{du}{\sqrt{A(u)}}\right) dz + \int_{N_0}^N \exp\left(-\frac{4\gamma_0}{\pi\sqrt{B}} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{A(u)}}\right) dz \right].$$

2463

The first integral is the $N = N_0$ case just handled, hence

2464

2465

2466

$$\int_0^{N_0} \cdots dz \lesssim (\gamma_0 M^{\min(\alpha, 0.5)} N_0)^{-p} = C.$$

2467

For the second integral, we use that $A \equiv C$ on $[N_0, N]$:

2468

2469

2470

$$\begin{aligned}
 2471 \quad \int_{N_0}^N \exp\left(-\frac{4\gamma_0}{\pi\sqrt{B}} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{A(u)}}\right) dz &= \int_{N_0}^N \exp\left(-\frac{4\gamma_0}{\pi\sqrt{B}} \lambda_i(\bar{K}) \frac{N-z}{\sqrt{C}}\right) dz \\
 2472 &= \frac{\sqrt{C}}{\frac{4\gamma_0}{\pi\sqrt{B}} \lambda_i(\bar{K})} \left(1 - e^{-\frac{4\gamma_0}{\pi\sqrt{B}} \lambda_i(\bar{K}) \frac{N-N_0}{\sqrt{C}}}\right) \\
 2473 \\
 2474 &\leq \frac{\pi\sqrt{B}}{4\gamma_0} \frac{\sqrt{C}}{\lambda_i(\bar{K})}.
 2475
 \end{aligned}$$

2476

Therefore,

2477

2478

2479

2480

2481

2482

2483

$$\begin{aligned}
 2484 \quad \text{noise} &\lesssim (\gamma_0 M^{\min(\alpha, 0.5)} N_0)^{-p} + \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \cdot \frac{\pi\sqrt{B}}{4\gamma_0} \frac{\sqrt{C}}{\lambda_i(\bar{K})} \\
 2485 &= C + \frac{\gamma_0 \sqrt{B}}{2} \sqrt{C} \sum_{i=1}^M \frac{V_i}{\lambda_i(\bar{K})} = C + \frac{\gamma_0 \sqrt{B}}{2} \sqrt{C} \text{Tr}(\text{diag}(\mathbf{K})^{1/2}) \\
 2486 &\lesssim C + \gamma_0 M^{\min(\alpha, 0.5)} \sqrt{C} \lesssim C + \sqrt{C} \cdot \sqrt{C} \lesssim C.
 2487
 \end{aligned}$$

2484 Combining both cases,

$$2485 \quad \text{noise} \lesssim (\gamma_0 M^{\min(\alpha, 0.5)} N)^{-p} + C. \quad (58)$$

2487 **Conclusion of the upper bound.** From (56), (58), and $\text{approx} = M^{-2\alpha+\max(0, 1-2\beta)} \leq C$, we
2488 obtain (54).

2490 Finally, combining the lower bound (50) and the upper bound (54) proves (49). Therefore, the proxy
2491 (67) satisfies the implicit relation (37) up to absolute constants, with the three contributions labeled
2492 as **approx**, **drift**, and **noise**.

2493 **E.4 CONSTANT LEARNING RATE: PROXY AND VERIFICATION FOR THE CASE $\alpha > 0.5$ AND
2494 $\beta > 0.5$ (PHASE B)**

2496 We now handle the case $\alpha > 0.5$ and $\beta > 0.5$. Since $\alpha > 0.5$, we have $\min(\alpha, 0.5) = 0.5$, and
2497 because $\beta > 0.5$, we have $\min(2\alpha, 2\alpha + 2\beta - 1) = 2\alpha$. Applying the drift/approximation-term
2498 transformation to the ODE solution yields

$$2500 \quad L(N) \approx \underbrace{M^{-2\alpha}}_{\text{approx}} + \underbrace{(M^{1/2}Q(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}}_{\text{drift}_1} + \underbrace{M^{-1}(M^{1/2}Q(N))^{-1+\frac{1}{2\alpha}}}_{\text{drift}_2} \quad (59)$$

$$2503 \quad + \underbrace{\frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{L(u)}}\right) dz}_{\text{noise}}, \quad (60)$$

2507 where

$$2509 \quad Q(N) = \frac{4\gamma_0}{\pi} \int_0^N \frac{du}{\sqrt{L(u)}}.$$

2512 **E.4.1 EARLY STAGE PROXIES (DRIFT₁ AND DRIFT₂)**

2513 We extract proxies from the two drift terms in (59) by the same differentiate-and-separate trick as
2514 before.

2516 **drift₁:** $(M^{1/2}Q(N))^{-(2\alpha+2\beta-1)/(2\alpha)}$. Assuming this term dominates and replacing \approx by equality,

$$2519 \quad L(N)^{-\frac{2\alpha}{2\alpha+2\beta-1}} = M^{1/2} \gamma_0 \int_0^N \frac{du}{\sqrt{L(u)}}.$$

2521 Differentiation gives the separable ODE $L'(t) = -\kappa_1 L(t)^{\beta_1}$ with

$$2523 \quad \beta_1 = \frac{2\alpha}{2\alpha + 2\beta - 1} + \frac{1}{2}, \quad \kappa_1 = \frac{2\alpha + 2\beta - 1}{2\alpha} M^{1/2} \gamma_0.$$

2525 For $\beta_1 > 1$ (equivalently $2\alpha + 2\beta < 4\alpha + 1$) we obtain

$$2527 \quad L_1(N) \approx (\gamma_0 M^{1/2} N)^{-p_1}, \quad p_1 = \frac{2(2\alpha + 2\beta - 1)}{2\alpha + 1 - 2\beta}. \quad (61)$$

2530 **drift₂:** $M^{-1}(M^{1/2}Q(N))^{-1+\frac{1}{2\alpha}}$. Assume $\alpha > \frac{1}{2}$ and, in the early phase, the second drift term
2531 dominates:

$$2533 \quad L(N) \approx M^{-1}(M^{1/2}Q(N))^{-\frac{2\alpha-1}{2\alpha}}, \quad Q(N) \approx \gamma_0 \int_0^N \frac{du}{\sqrt{L(u)}}.$$

2535 Expanding the M -exponent,

$$2537 \quad (M^{1/2}Q)^{-\frac{2\alpha-1}{2\alpha}} = M^{-\frac{(2\alpha-1)}{4\alpha}} Q^{-\frac{2\alpha-1}{2\alpha}},$$

2538 hence

2539

$$2540 L(N) \approx M^{-\frac{6\alpha-1}{4\alpha}} (\gamma_0 I(N))^{-\frac{2\alpha-1}{2\alpha}}, \quad I(N) := \int_0^N \frac{du}{\sqrt{L(u)}}. \quad (62)$$

2541

2542 Raise both sides of (62) to the power $-\frac{2\alpha}{2\alpha-1}$ so that the integral becomes linear:

2543

2544

$$2545 L(N)^{-\frac{2\alpha}{2\alpha-1}} = M^{\frac{6\alpha-1}{4\alpha-2}} \gamma_0 I(N) \approx M^{\frac{6\alpha-1}{4\alpha-2}} \gamma_0 \int_0^N \frac{du}{\sqrt{L(u)}}. \quad (63)$$

2546

2547 Differentiating (63) with respect to t yields

2548

2549

$$2550 -\frac{2\alpha}{2\alpha-1} L(t)^{-\frac{2\alpha}{2\alpha-1}-1} L'(t) = M^{\frac{6\alpha-1}{4\alpha-2}} \gamma_0 \frac{1}{\sqrt{L(t)}}.$$

2551

2552 Rearranging gives a separable ODE of the usual power form

2553

$$2554 L'(t) = -\kappa_2 L(t)^{\beta_2}, \quad \beta_2 = \frac{2\alpha}{2\alpha-1} + \frac{1}{2} = \frac{6\alpha-1}{4\alpha-2} > 1, \quad (64)$$

2555 with

$$2556 \kappa_2 = \frac{2\alpha-1}{2\alpha} \gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} > 0. \quad (65)$$

2557

2558 Since $\beta_2 > 1$, solving (64) gives

2559

$$2560 L(t)^{-(\beta_2-1)} = (\beta_2 - 1) \kappa_2 t + \text{const.}$$

2561

2562 Absorbing harmless absolute constants into \approx and setting $t = N$,

2563

$$2564 L_2(N) \approx \left(\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N \right)^{-p_2}, \quad p_2 = \frac{1}{\beta_2 - 1} = \boxed{\frac{2(2\alpha-1)}{2\alpha+1}}. \quad (66)$$

2565

2566 **Crossover scale.** Equating (61) and (66) gives

2567

$$2568 N_1 \approx \gamma_0^{-1} M^\eta, \quad \eta = \frac{2\alpha+1-4\beta}{4\beta},$$

2569

2570 so R_1 dominates for $N \lesssim N_1$ and L_2 for $N \gtrsim N_1$ (when $\alpha > 0.5$ and $0.5 < \beta < \alpha + 0.5$).

2571

2572 E.4.2 LIMIT STAGE (APPROX AND NOISE FLOORS)

2573

2574 As in the case $\alpha < 0.5$ or $\beta < 0.5$, the stationary analysis with $f \equiv 1$ yields

2575

$$2576 L_\infty \approx \max\{\gamma_0^2 \text{Tr}(\text{diag}(\mathbf{K})^{1/2})^2, \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2\}.$$

2577

2578 Under our standing model $\text{Tr}(\text{diag}(\mathbf{K})^{1/2}) \approx M^{0.5}$ and by the results from Paquette et al. (2024);
Lin et al. (2024), and note in Appendix K.3, $\|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 \approx M^{-2\alpha}$, hence the floor

2579

$$2580 C := \gamma_0^2 M + M^{-2\alpha}.$$

2581

2582 E.4.3 COMBINED PROXY

2583

$$2584 L_{\text{px}}(N) := L_1(N) + L_2(N) + C \\ 2585 = (\gamma_0 M^{0.5} N)^{-p_1} + (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2} + C, \quad (67)$$

2586

2587 where

2588

$$2589 p_1 = \frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}, \quad p_2 = \frac{4\alpha-2}{2\alpha+1}.$$

2590

2591 E.4.4 VERIFICATION OF THE PROXY

We show that L_{px} satisfies (59) up to absolute constants.

2592 **Lower bound.** We claim

$$\underbrace{(M^{0.5}Q_{L_{\text{px}}}(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}}_{\text{drift}_1} + \underbrace{M^{-1}(M^{0.5}Q_{L_{\text{px}}}(N))^{-1+\frac{1}{2\alpha}}}_{\text{drift}_2} + \underbrace{M^{-2\alpha}}_{\text{approx}} \quad (68)$$

$$+ \underbrace{\frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{L_{\text{px}}(u)}}\right) dz}_{\text{noise}} \gtrsim L_{\text{px}}(N). \quad (69)$$

2600 *Drift part.* Using $L_{\text{px}} \geq R_1$ inside Q ,

$$(M^{0.5}Q_{L_{\text{px}}}(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}} \gtrsim \left(M^{0.5}\gamma_0 \int_0^N \frac{du}{\sqrt{L_1(u)}}\right)^{-\frac{2\alpha+2\beta-1}{2\alpha}} \approx (\gamma_0 M^{0.5}N)^{-p_1} \approx L_1(N).$$

2605 Similarly, using $L_{\text{px}} \geq L_2$ inside Q ,

$$M^{-1}(M^{0.5}Q_{L_{\text{px}}}(N))^{-1+\frac{1}{2\alpha}} \gtrsim M^{-1}\left(M^{0.5}\gamma_0 \int_0^N \frac{du}{\sqrt{L_2(u)}}\right)^{-1+\frac{1}{2\alpha}} \approx (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2} \approx L_2(N).$$

2609 Therefore,

$$\text{drift}_1 + \text{drift}_2 \gtrsim L_1(N) + L_2(N). \quad (70)$$

2611 *Noise + approx.* Since $L_{\text{px}} \geq C$,

$$\int_z^N \frac{du}{\sqrt{L_{\text{px}}(u)}} \leq \frac{N-z}{\sqrt{C}}.$$

2615 As in the Equation 53,

$$\text{noise} \gtrsim \gamma_0 \sqrt{C} \sum_{i=1}^M \frac{V_i}{\lambda_i(\bar{K})} = \frac{\gamma_0}{2} \text{Tr}(\text{diag}(K)^{1/2}) \sqrt{C} \approx \gamma_0 M^{0.5} \sqrt{C} \gtrsim \gamma_0^2 M.$$

2619 Thus noise + approx $\gtrsim C$. Together with (70), this proves (69).

2621 **Upper bound.** We will prove

$$\underbrace{(M^{0.5}Q_{L_{\text{px}}}(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}}_{\text{drift}_1} + \underbrace{M^{-1}(M^{0.5}Q_{L_{\text{px}}}(N))^{-1+\frac{1}{2\alpha}}}_{\text{drift}_2} + \underbrace{M^{-2\alpha}}_{\text{approx}} \quad (71)$$

$$+ \underbrace{\frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{L_{\text{px}}(u)}}\right) dz}_{\text{noise}} \lesssim L_{\text{px}}(N). \quad (72)$$

2630 Let

$$A(N) = \begin{cases} (\gamma_0 M^{0.5}N)^{-p_1}, & N \leq N_1, \\ (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2}, & N_1 \leq N \leq N_2, \\ C, & N > N_2, \end{cases}$$

2635 where N_1 and N_2 are the crossover points between the three terms. There exists a constant $B \geq 1$ such that

$$L_{\text{px}}(N) \leq B A(N) \quad (\forall N \geq 0). \quad (73)$$

2638 It suffices to show

$$\underbrace{(M^{0.5}Q_{B \cdot A}(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}}_{\text{drift}_1} + \underbrace{M^{-1}(M^{0.5}Q_{B \cdot A}(N))^{-1+\frac{1}{2\alpha}}}_{\text{drift}_2} + \underbrace{M^{-2\alpha}}_{\text{approx}} \quad (74)$$

$$+ \underbrace{\frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{B \cdot A(u)}}\right) dz}_{\text{noise}} \lesssim L_{\text{px}}(N). \quad (75)$$

2646 **Case $N \leq N_1$.** It is enough to prove
 2647

$$\underbrace{(M^{0.5}Q_{B \cdot A}(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}}_{\text{drift}_1} + \underbrace{M^{-1}(M^{0.5}Q_{B \cdot A}(N))^{-1+\frac{1}{2\alpha}}}_{\text{drift}_2} + \underbrace{M^{-2\alpha}}_{\text{approx}} \quad (76)$$

$$+ \underbrace{\frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{B \cdot A(u)}}\right) dz}_{\text{noise}} \lesssim (\gamma_0 M^{0.5} N)^{-p_1}. \quad (77)$$

2655 We have $M^{-2\alpha} \lesssim (\gamma_0 M^{0.5} N)^{-p_1}$ directly. Also, the following holds with straightforward integra-
 2656 tion.

$$(M^{0.5}Q_{B \cdot A}(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}} \approx (\gamma_0 M^{0.5} N)^{-p_1}.$$

2658 Since $N \leq N_1 \approx \gamma_0^{-1} M^\eta$ with $\eta = \frac{2\alpha+1-4\beta}{4\beta}$, following holds by integration and calculation.

$$M^{-1}(M^{0.5}Q_{B \cdot A}(N))^{-1+\frac{1}{2\alpha}} \lesssim (\gamma_0 M^{0.5} N)^{-p_1}.$$

2662 Finally, arguing as in the $N \leq N_0$ case of Section E.3.4,

$$\frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{B \cdot A(u)}}\right) dz \lesssim (\gamma_0 M^{0.5} N)^{-p_1}.$$

2666 Hence, the claim holds for $N \leq N_1$.

2667 **Case $N_1 \leq N \leq N_2$.** We will show

$$\underbrace{(M^{0.5}Q_{B \cdot A}(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}}_{\text{drift}_1} + \underbrace{M^{-1}(M^{0.5}Q_{B \cdot A}(N))^{-1+\frac{1}{2\alpha}}}_{\text{drift}_2} + \underbrace{M^{-2\alpha}}_{\text{approx}} \quad (78)$$

$$+ \underbrace{\frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{B \cdot A(u)}}\right) dz}_{\text{noise}} \lesssim (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2}, \quad (79)$$

2675 where

$$p_1 = \frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}, \quad p_2 = \frac{2(2\alpha-1)}{2\alpha+1}, \quad A(u) = \begin{cases} (\gamma_0 M^{0.5} u)^{-p_1}, & u \leq N_1, \\ (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} u)^{-p_2}, & N_1 < u \leq N, \end{cases}$$

2680 and $Q_{B \cdot A}(N) = \frac{4\gamma_0}{\pi} \int_0^N \frac{du}{\sqrt{B \cdot A(u)}}$.

2682 **Approx term.** Since $N \leq N_2$,

$$M^{-2\alpha} \lesssim (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2}.$$

2686 **Drift term.** If $N_1 \leq N \leq 2N_1$, using the case $N \leq N_1$, we get an inequality for two drift terms.

$$\underbrace{(M^{0.5}Q_{B \cdot A}(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}}_{\text{drift}_1} + \underbrace{M^{-1}(M^{0.5}Q_{B \cdot A}(N))^{-1+\frac{1}{2\alpha}}}_{\text{drift}_2} \quad (80)$$

$$\leq \underbrace{(M^{0.5}Q_{B \cdot A}(N_1))^{-\frac{2\alpha+2\beta-1}{2\alpha}}}_{\text{drift}_1} + \underbrace{M^{-1}(M^{0.5}Q_{B \cdot A}(N_1))^{-1+\frac{1}{2\alpha}}}_{\text{drift}_2} \quad (81)$$

$$\lesssim (\gamma_0 M^{0.5} N_1)^{-p_1} \lesssim (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2}. \quad (82)$$

2695 So while covering the drift term, we will temporarily assume $2N_1 \leq N$.

2696 **Lower bound on $Q_{B \cdot A}(N)$.** Split the integral at N_1 :

$$Q_{B \cdot A}(N) \approx \gamma_0 \int_0^{N_1} \frac{du}{\sqrt{A(u)}} + \gamma_0 \int_{N_1}^N \frac{du}{\sqrt{A(u)}} =: \gamma_0 (I_1 + I_2). \quad (83)$$

2700 For the first part, using $A(u) = (\gamma_0 M^{0.5} u)^{-p_1}$ on $[0, N_1]$,

$$2702 \quad I_1 = (\gamma_0 M^{0.5})^{p_1/2} \int_0^{N_1} u^{p_1/2} du = \frac{(\gamma_0 M^{0.5})^{p_1/2}}{1 + p_1/2} N_1^{1+p_1/2}. \quad (84)$$

2704 For the second part, using $A(u) = (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} u)^{-p_2}$ on $[N_1, N]$,

$$2706 \quad I_2 = (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}})^{p_2/2} \int_{N_1}^N u^{p_2/2} du = \frac{(\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}})^{p_2/2}}{1 + p_2/2} (N^{1+p_2/2} - N_1^{1+p_2/2}). \quad (85)$$

2709 Since we temporarily assumed $N \geq 2N_1$, we have

$$2710 \quad I_2 \gtrsim (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}})^{p_2/2} N^{1+p_2/2}.$$

2712 Hence, from (83),

$$2713 \quad Q_{BA}(N) \gtrsim \gamma_0 (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}})^{p_2/2} N^{1+p_2/2}. \quad (86)$$

2715 **drift₁ vs. drift₂.** From $N \geq N_1$ and (86), we have $Q_{BA}(N) \geq Q_{BA}(N_1)$. It follows that

$$2716 \quad \text{drift}_1 = (M^{0.5} Q_{BA}(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}} \leq M^{-1} (M^{0.5} Q_{BA}(N))^{-1+\frac{1}{2\alpha}} = \text{drift}_2,$$

2718 so it suffices to control drift₂.

2719 **drift₂ bound.** Using (86),

$$2721 \quad \text{drift}_2 = M^{-1} \left(M^{0.5} Q_{BA}(N) \right)^{-1+\frac{1}{2\alpha}} \\ 2722 \quad \lesssim M^{-1} \left(M^{0.5} \cdot \gamma_0^{1+p_2/2} M^{\frac{6\alpha-1}{4\alpha-2} \cdot \frac{p_2}{2}} N^{1+p_2/2} \right)^{-1+\frac{1}{2\alpha}}. \quad (87)$$

2725 Now compute the exponents of N , γ_0 , and M separately.

2726 (i) N -exponent:

$$2728 \quad \left(1 + \frac{p_2}{2} \right) \left(-1 + \frac{1}{2\alpha} \right) = \left(1 + \frac{2\alpha-1}{2\alpha+1} \right) \left(\frac{1}{2\alpha} - 1 \right) = \frac{4\alpha}{2\alpha+1} \cdot \left(-\frac{2\alpha-1}{2\alpha} \right) = -\frac{2(2\alpha-1)}{2\alpha+1} = -p_2.$$

2731 (ii) γ_0 -exponent: the same calculation as in (i) gives $-p_2$.

2732 (iii) M -exponent: the total exponent equals

$$2734 \quad -1 + \left(-1 + \frac{1}{2\alpha} \right) \left(0.5 + \frac{6\alpha-1}{4\alpha-2} \cdot \frac{p_2}{2} \right).$$

2736 A direct simplification shows this equals $-\frac{6\alpha-1}{4\alpha-2} p_2$. Therefore, from (87),

$$2738 \quad \text{drift}_2 \lesssim (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2}. \quad (88)$$

2740 Since $\text{drift}_1 \leq \text{drift}_2$, we also have $\text{drift}_1 \lesssim (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2}$.

2742 **Noise bound.** It suffices to show

$$2743 \quad \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^{N_1} \exp \left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{B \cdot A(u)}} \right) dz \quad (89)$$

$$2746 \quad + \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_{N_1}^N \exp \left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{B \cdot A(u)}} \right) dz \lesssim (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2}. \quad (90)$$

2749 **Integral over $[N_1, N]$.** As in the case $N \leq N_0$ of Section E.3.4, with $A(u) = (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} u)^{-p_2}$ on
2750 $[N_1, N]$,

$$2752 \quad \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_{N_1}^N \exp \left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{B \cdot A(u)}} \right) dz \lesssim (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2}.$$

2754 *Integral over $[0, N_1]$.* First,

$$\frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^{N_1} \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{B \cdot A(u)}}\right) dz \leq \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^{N_1} \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^{N_1} \frac{du}{\sqrt{B \cdot A(u)}}\right) dz.$$

2759 As in the case $N \leq N_0$ of Section E.3.4,

$$\frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^{N_1} \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^{N_1} \frac{du}{\sqrt{B \cdot A(u)}}\right) dz \lesssim \sqrt{C} (\gamma_0 M^{0.5} N)^{-p_1/2} \lesssim (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N_1)^{-p_2}.$$

2763 If $N \leq 2N_1$, this already implies

$$\frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^{N_1} \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{B \cdot A(u)}}\right) dz \lesssim (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2}.$$

2768 If $N > 2N_1$, then

$$\int_0^{N_1} \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{B \cdot A(u)}}\right) dz \leq N_1 \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_{N_1}^N \frac{du}{\sqrt{B \cdot A(u)}}\right),$$

2772 and, using $e^{-x} \leq 1/x$ together with the lower bound $\int_{N_1}^N \frac{du}{\sqrt{B \cdot A(u)}} \gtrsim N^{1+p_2/2} (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}})^{p_2/2}$,
2774 we get

$$\begin{aligned} \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^{N_1} \cdots dz &\lesssim \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \frac{N_1}{\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_{N_1}^N \frac{du}{\sqrt{B \cdot A(u)}}} \\ &\lesssim \gamma_0 \sum_{i=1}^M \frac{V_i}{\lambda_i(\bar{K})} (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2/2} \\ &\approx \gamma_0 M^{0.5} (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2/2} \lesssim (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2}, \end{aligned}$$

2783 where the last step uses $\gamma_0 M^{0.5} \leq (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2/2}$ which holds from $N \leq N_2$.

2785 Combining the $[N_1, N]$ and $[0, N_1]$ bounds yields

$$\text{noise} \lesssim (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N)^{-p_2},$$

2789 as required for the case $N_1 \leq N \leq N_2$.

2790 **Case $N \geq N_2$.** We have $M^{-2\alpha} \lesssim C$ directly. As in the above case,

$$(M^{0.5} Q_{B \cdot A}(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}} \leq M^{-1} (M^{0.5} Q_{B \cdot A}(N))^{-1+\frac{1}{2\alpha}}.$$

2793 Using the estimate from the previous case,

$$M^{-1} (M^{0.5} Q_{B \cdot A}(N))^{-1+\frac{1}{2\alpha}} \lesssim M^{-1} (M^{0.5} Q_{B \cdot A}(N_2))^{-1+\frac{1}{2\alpha}} \lesssim (\gamma_0 M^{\frac{6\alpha-1}{4\alpha-2}} N_2)^{-p_2} \lesssim C.$$

2797 Finally, as in the $N > N_0$ case of Section E.3.4,

$$\frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{K}) \int_z^N \frac{du}{\sqrt{B \cdot A(u)}}\right) dz \lesssim C.$$

2801 Therefore, the bound holds for $N \geq N_2$ as well.

E.5 NOTE ON THE REGIME $\beta > \alpha + 0.5$

2804 When $\beta > \alpha + 0.5$, the assumption $\zeta > 1$ used in step 42 no longer holds. In this case, the first drift
2805 term takes a different form:

$$L_{\text{drift}_1}(N) \approx \left(1 - \kappa \gamma_0 M^{\min(\alpha, 0.5)} N\right)^{\frac{2(2\alpha+2\beta-1)}{2\beta-2\alpha-1}},$$

2808 for a finite horizon and some constant κ . Inserting the max function, we can represent it as a global
 2809 function.

$$2810 \quad L_{\text{drift}_1}(N) \approx \left(\max \left(1 - \kappa \gamma_0 M^{\min(\alpha, 0.5)} N, 0 \right) \right)^{\frac{2(2\alpha+2\beta-1)}{2\beta-2\alpha-1}}.$$

2812 Now we explain the behavior of the term. When N is asymptotically smaller than
 2813 $(\gamma_0 M^{\min(\alpha, 0.5)})^{-1}$, the term is asymptotically constant. On $N \approx (\gamma_0 M^{\min(\alpha, 0.5)})^{-1}$, the term
 2814 suddenly drops from constant scale to 0.

2815 For the case $\alpha < 0.5$ or $\beta < 0.5$ the valid proxy is

$$2817 \quad L_{\text{px}}(N) := \left(\max \left(1 - \kappa \gamma_0 M^{\min(\alpha, 0.5)} N, 0 \right) \right)^{\frac{2(2\alpha+2\beta-1)}{2\beta-2\alpha-1}} + \gamma_0^2 M^{2-2\min(\alpha, 0.5)} + M^{-2\alpha+\max(0, 1-2\beta)},$$

2820 and for the case $\alpha > 0.5$ and $\beta > 0.5$ the valid proxy is

$$2821 \quad L_{\text{px}}(N) := \left(\max \left(1 - \kappa \gamma_0 M^{0.5} N, 0 \right) \right)^{\frac{2(2\alpha+2\beta-1)}{2\beta-2\alpha-1}} + M^{-\frac{6\alpha-1}{2\alpha+1}} (N\gamma_0)^{-\frac{2(2\alpha-1)}{2\alpha+1}} + \gamma_0^2 M + M^{-2\alpha}.$$

2823 These satisfy the implicit integral equation, same as Sections E.3.4 and E.4.4.

2825 Therefore, for the case $\alpha < 0.5$, $\beta > \alpha + 0.5$,

$$2827 \quad R(M, N, \gamma_0) = \left(\max \left(1 - \kappa \gamma_0 M^\alpha N, 0 \right) \right)^{\frac{2(2\alpha+2\beta-1)}{2\beta-2\alpha-1}} + \gamma_0^2 M^{2-2\alpha} + M^{-2\alpha}, \quad (91)$$

2829 and for the case $\alpha > 0.5$ and $\beta > 0.5$,

$$2831 \quad R(M, N, \gamma_0) = \left(\max \left(1 - \kappa \gamma_0 M^{0.5} N, 0 \right) \right)^{\frac{2(2\alpha+2\beta-1)}{2\beta-2\alpha-1}} + M^{-\frac{6\alpha-1}{2\alpha+1}} (N\gamma_0)^{-\frac{2(2\alpha-1)}{2\alpha+1}} + \gamma_0^2 M + M^{-2\alpha}. \quad (92)$$

2834 F DERIVATION OF THE COMPUTE-OPTIMAL RESULT

2836 **Goal.** The main goal of this section is to derive compute-optimal scaling laws of signSGD in the
 2837 following form:

$$2839 \quad M^* \approx \mathfrak{f}^\xi, \quad R \left(M^*, \frac{\mathfrak{f}}{M^*}, \gamma_0^* \right) \approx \mathfrak{f}^{-\eta}.$$

2840 Here $R(M, N, \gamma_0)$ denote the $L(\theta_N)$ under learning rate γ_0 and fixed model size M . And we define
 2841 the computational budget in terms of FLOPs as $\mathfrak{f} = MN$, and consider the optimal model size M^*
 2842 under fixed \mathfrak{f} , and optimal scaling of learning rate in the form $\gamma_0^* = M^{-e^*}$.

2844 **Proof Overview.** Substituting the learning rate $\gamma_0 = M^{-e}$ into our loss formula

$$2846 \quad R(M, N, \gamma_0) \approx M^{-2\alpha+\max(0, 1-2\beta)} + (M^{\min(\alpha, 0.5)} N \gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha-2\beta+1}} \\ 2847 \quad + M^{-\frac{6\alpha-1}{2\alpha+1}} (N \gamma_0)^{-\frac{2(2\alpha-1)}{2\alpha+1}} + \gamma_0^2 M^{2-\min(1, 2\alpha)},$$

2850 we can represent the risk as a function of three variables M, N, e , and two parameters α, β .

2851 Then for fixed compute $\mathfrak{f} = MN$, we substitute $M = \mathfrak{f}^x$ and $N = \mathfrak{f}^{1-x}$ to express the risk as the
 2852 function of three variables \mathfrak{f}, x, e and two parameters α, β . Four terms in the loss formula convert to
 2853 four terms with exponential of flop \mathfrak{f} with exponent functions ℓ_1 to ℓ_4 .

$$2854 \quad R(\mathfrak{f}, x, e, \alpha, \beta) \approx \mathfrak{f}^{-\ell_1(x, e, \alpha, \beta)} + \mathfrak{f}^{-\ell_2(x, e, \alpha, \beta)} + \mathfrak{f}^{-\ell_3(x, e, \alpha, \beta)} + \mathfrak{f}^{-\ell_4(x, e, \alpha, \beta)}.$$

2856 Since each term is a power of \mathfrak{f} , and assuming $\mathfrak{f} \geq 1$, the loss simplifies to

$$2858 \quad R(\mathfrak{f}, x, e) \approx \mathfrak{f}^{-h(x, e, \alpha, \beta)}, \quad \text{where } h(x, e, \alpha, \beta) = \min(\ell_1, \ell_2, \ell_3, \ell_4).$$

2860 We find the optimal learning rate exponent e^* and the optimal model size exponent by

$$2861 \quad x^*, e^* = \arg \max_{x, e} h(x, e, \alpha, \beta).$$

2862 As we optimize over two variables x and e , three terms among ℓ_1 to ℓ_4 balance on the optimal values
 2863 x^* and e^* .

2864 Then the optimal learning rate is $\gamma_0^* = M^{-e^*}$, and the optimal model size is $M^* = \mathfrak{f}^{x^*}$. Finally, the
 2865 compute-optimal scaling law is

$$2867 \quad R(M^*, \mathfrak{f}/M^*, \gamma_0^*) = \mathfrak{f}^{-h(x^*, e^*, \alpha, \beta)},$$

2868 and $h(x^*, e^*, \alpha, \beta)$ will be the compute-optimal slope excluding minus sign.

2870 **F.1 COMPUTE-OPTIMAL RESULT FOR MAXIMAL LEARNING RATE**

2872 We now discuss the maximal learning rate case deferred from the main text. Note that Paquette et al.
 2873 (2024) showed that the maximal learning rate for SGD is $\gamma_0 \approx 1$ when $\alpha > \frac{1}{2}$, and $\gamma_0 \approx M^{-(1-2\alpha)}$
 2874 when $\alpha < \frac{1}{2}$.

2876 Now, we discuss the maximal learning rate for signSGD. Because the noise term is
 2877 $\gamma_0^2 M^{2-\min(1, 2\alpha)}$, stability requires

$$2878 \quad \gamma_0^2 M^{2-\min(1, 2\alpha)} \lesssim 1.$$

2880 Otherwise, the signSGD noise term explodes as M grows. This condition is satisfied by choosing

$$2881 \quad \gamma_0 = M^{-1+\min(\alpha, 0.5)},$$

2883 which ensures $\gamma_0^2 M^{2-\min(1, 2\alpha)} \approx 1$ while the other terms still decay appropriately.

2884 For $\alpha < 0.5$, the term

$$2886 \quad (M^{\min(\alpha, 0.5)} N \gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha-2\beta+1}} = (M^{-(1-2\alpha)} N)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha-2\beta+1}}$$

2888 decreases with N but increases with M . However, under a fixed compute budget $\mathfrak{f} = MN$, one can
 2889 allocate resources so that this term does not cause an exploding loss; hence we do not classify it as
 2890 unstable.

2891 Thus, the maximal learning rate for signSGD is

$$2892 \quad \gamma_0 = M^{-1+\min(\alpha, 0.5)}.$$

2894 In this case, however, we obtain $R(M, N, \gamma_0) \approx 1$, so the slope of the compute-optimal curve is
 2895 always zero.

2897 **F.2 DERIVATION OF COMPUTE-OPTIMAL RESULT FOR OPTIMAL LEARNING RATE**

2899 We assume $\alpha + \beta > 0.5$ throughout, even for the case where it is not specified.

2901 **F.2.1 $\alpha > 0.5$, $\beta < 0.5$ (PHASE Aa)**

2902 We start from

$$2904 \quad R(M, N, \gamma_0) \approx (M^{1/2} N \gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}} + M^{-(2\alpha+2\beta-1)} + \gamma_0^2 M.$$

2906 Substitute

$$2907 \quad \gamma_0 = M^{-e}, \quad N = \frac{\mathfrak{f}}{M}, \quad M = \mathfrak{f}^x,$$

2908 so that, up to constant factors,

$$2910 \quad R \approx \mathfrak{f}^{\max\{\ell_1(x), \ell_2(x), \ell_3(x)\}},$$

2912 where

$$2913 \quad \ell_1(x) = -(2\alpha + 2\beta - 1)x,$$

$$2914 \quad \ell_2(x) = \frac{2(2\alpha + 2\beta - 1)}{2\alpha + 1 - 2\beta} \left(e + \frac{1}{2}\right)x - \frac{2(2\alpha + 2\beta - 1)}{2\alpha + 1 - 2\beta},$$

$$2915 \quad \ell_3(x) = (1 - 2e)x.$$

We minimize the convex, piecewise-linear function $f(x, e) = \max_i \ell_i(x, e)$ over $x \in (0, 1)$ and $e \in \mathbb{R}$. By convexity, any interior minimizer must occur at a kink where at least two lines are active. In our regime $\alpha + \beta > 0.5$ and $\beta < \alpha + 0.5$, the only admissible triple intersection is $\{\ell_1, \ell_2, \ell_3\}$. Solving $\ell_1 = \ell_3$ and $\ell_2 = \ell_3$ yields

$$e^* = \alpha + \beta, \quad x^* = \frac{1}{2\alpha + 1}, \quad h^* = \ell_1(x^*) = \ell_2(x^*) = \ell_3(x^*) = -\frac{2\alpha + 2\beta - 1}{2\alpha + 1}.$$

To verify that this kink is the global minimizer, note first that $x^* \in (0, 1)$ when $\alpha > 0.5$, hence it is interior. Next, the subgradient optimality condition for convex max-of-lines problems requires $(0, 0) \in \partial f(x^*, e^*)$. At (x^*, e^*) the active lines have slopes that straddle zero in both coordinates:

$$\partial_x \ell_1 = -(2\alpha + 2\beta - 1) < 0, \quad \partial_x \ell_2 = \frac{2(2\alpha + 2\beta - 1)}{2\alpha + 1 - 2\beta} \left(e^* + \frac{1}{2} \right) > 0, \quad \partial_x \ell_3 = 1 - 2e^* = 1 - 2(\alpha + \beta) < 0,$$

and

$$\partial_e \ell_1 = 0, \quad \partial_e \ell_2 = \frac{2(2\alpha + 2\beta - 1)}{2\alpha + 1 - 2\beta} x^* > 0, \quad \partial_e \ell_3 = -2x^* < 0.$$

Since 0 lies in the convex hull of the active slopes in both x and e , we have $(0, 0) \in \partial f(x^*, e^*)$, so the interior triple intersection is the global minimizer; no boundary check is needed.

$$\boxed{\gamma_0 = M^{-(\alpha+\beta)}, \quad M^* \asymp \mathfrak{f}^{1/(2\alpha+1)}, \quad R\left(M^*, \frac{\mathfrak{f}}{M^*}\right) \asymp \mathfrak{f}^{-\frac{2\alpha+2\beta-1}{2\alpha+1}}}.$$

F.2.2 $\alpha < 0.5, \beta < 0.5$ (PHASE Ab)

We start from

$$R(M, N, \gamma_0) = \left(M^\alpha N \gamma_0 \right)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}} + M^{-(2\alpha+2\beta-1)} + \gamma_0^2 M^{2-2\alpha}.$$

Substitute

$$\gamma_0 = M^{-e}, \quad N = \frac{\mathfrak{f}}{M}, \quad M = \mathfrak{f}^x,$$

so that, up to constant factors,

$$R \asymp \mathfrak{f}^{\max\{\ell_1(x), \ell_2(x), \ell_3(x)\}},$$

where

$$\begin{aligned} \ell_1(x) &= -(2\alpha + 2\beta - 1)x, \\ \ell_2(x) &= -\frac{2(2\alpha + 2\beta - 1)}{2\alpha + 1 - 2\beta} (\alpha - e - 1)x - \frac{2(2\alpha + 2\beta - 1)}{2\alpha + 1 - 2\beta}, \\ \ell_3(x) &= (2 - 2\alpha - 2e)x. \end{aligned}$$

We minimize the convex, piecewise-linear function $f(x, e) = \max_i \ell_i(x, e)$ over $x \in (0, 1)$ and $e \in \mathbb{R}$. Under our standing assumptions $\alpha + \beta > 0.5$ and $\beta < \alpha + 0.5$, the only admissible triple intersection is $\{\ell_1, \ell_2, \ell_3\}$. Solving $\ell_1 = \ell_3$ and $\ell_2 = \ell_3$ gives

$$e^* = \beta + \frac{1}{2}, \quad x^* = \frac{1}{2}, \quad h^* = \ell_1(x^*) = \ell_2(x^*) = \ell_3(x^*) = -\frac{2\alpha + 2\beta - 1}{2}.$$

To certify optimality, note that $x^* \in (0, 1)$ (since $x^* = \frac{1}{2}$) and check the subgradient condition $(0, 0) \in \partial f(x^*, e^*)$. At (x^*, e^*) the active lines have slopes straddling zero in both coordinates:

$$\partial_x \ell_1 = -(2\alpha + 2\beta - 1) < 0, \quad \partial_x \ell_2 = \frac{2(2\alpha + 2\beta - 1)}{2\alpha + 1 - 2\beta} (e^* + 1 - \alpha) > 0, \quad \partial_x \ell_3 = 2 - 2\alpha - 2e^* = 1 - 2(\alpha + \beta) < 0,$$

and

$$\partial_e \ell_1 = 0, \quad \partial_e \ell_2 = \frac{2(2\alpha + 2\beta - 1)}{2\alpha + 1 - 2\beta} x^* > 0, \quad \partial_e \ell_3 = -2x^* < 0.$$

Hence 0 lies in the convex hull of the active slopes in both variables, so the interior kink (x^*, e^*) is the global minimizer; no boundary check is required.

$$\boxed{\gamma_0 = M^{-(\beta+0.5)}, \quad M^* \asymp \mathfrak{f}^{1/2}, \quad R\left(M^*, \frac{\mathfrak{f}}{M^*}\right) \asymp \mathfrak{f}^{-\frac{2\alpha+2\beta-1}{2}}}.$$

2970 F.2.3 $\alpha < 0.5$, $0.5 < \beta < \alpha + 0.5$ (PHASE Ac)

2971 We start from

2973
$$R(M, N, \gamma_0) = (M^\alpha N \gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}} + M^{-2\alpha} + \gamma_0^2 M^{2-2\alpha}.$$

2975 Substitute

2977
$$\gamma_0 = M^{-e}, \quad N = \frac{f}{M}, \quad M = f^x,$$

2978 so that, up to constant factors,

2980
$$R \sim f^{\max\{\ell_1(x), \ell_2(x), \ell_3(x)\}},$$

2981 where

2982
$$\begin{aligned} \ell_1(x) &= -2\alpha x, \\ \ell_2(x) &= -\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta} (\alpha - e - 1) x - \frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}, \\ \ell_3(x) &= (2 - 2\alpha - 2e) x. \end{aligned}$$

2987 We minimize the convex, piecewise-linear objective $f(x, e) = \max_i \ell_i(x, e)$ over $x \in (0, 1)$ and $e \in \mathbb{R}$. In the regime $\alpha + \beta > 0.5$ and $\beta < \alpha + 0.5$ (with $\alpha < 0.5 < \beta$), the only admissible triple intersection is $\{\ell_1, \ell_2, \ell_3\}$. Solving $\ell_1 = \ell_3$ and $\ell_2 = \ell_3$ yields

2991
$$e^* = 1, \quad x^* = \frac{2\alpha+2\beta-1}{-4\alpha\beta+6\alpha+4\beta-2}, \quad h^* = \ell_1(x^*) = \ell_2(x^*) = \ell_3(x^*) = -\frac{2\alpha(2\alpha+2\beta-1)}{-4\alpha\beta+6\alpha+4\beta-2}.$$

2994 One checks that the denominator is positive in this regime and exceeds the positive numerator $2\alpha + 2\beta - 1$, hence $x^* \in (0, 1)$.

2996 *Interior optimality.* At (x^*, e^*) the active lines' slopes straddle zero in both coordinates:

2998
$$\partial_x \ell_1 = -2\alpha < 0, \quad \partial_x \ell_2 = \frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta} (e^* + 1 - \alpha) > 0, \quad \partial_x \ell_3 = 2 - 2\alpha - 2e^* = -2\alpha < 0,$$

3000 and

3001
$$\partial_e \ell_1 = 0, \quad \partial_e \ell_2 = \frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta} x^* > 0, \quad \partial_e \ell_3 = -2x^* < 0.$$

3003 Thus $(0, 0) \in \partial f(x^*, e^*)$ and, with $x^* \in (0, 1)$, the interior kink is the global minimizer; no bound-
3004 ary check is required.

3006
$$\boxed{\gamma_0 = M^{-1}, \quad M^* \sim f^{-\frac{2\alpha+2\beta-1}{-4\alpha\beta+6\alpha+4\beta-2}}, \quad R(M^*, \frac{f}{M^*}) \sim f^{-\frac{2\alpha(2\alpha+2\beta-1)}{-4\alpha\beta+6\alpha+4\beta-2}}}.$$

3009 F.2.4 $\alpha > 0.5$, $0.5 < \beta < \alpha + 0.5$ (PHASE Ba)

3010 We start from

3012
$$R(M, N, \gamma_0) = (M^{1/2} N \gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}} + (M^{\frac{6\alpha-1}{4\alpha-2}} N \gamma_0)^{-\frac{2(2\alpha-1)}{2\alpha+1}} + M^{-2\alpha} + \gamma_0^2 M.$$

3014 Substitute $\gamma_0 = M^{-e}$, $N = f/M$, $M = f^x$. Then, up to f -independent factors,

3016
$$R \sim f^{\max_{i=1,\dots,4} \ell_i(x, e)},$$

3017 where

3018
$$\begin{aligned} \ell_1(x) &= -2\alpha x, \\ \ell_2(x) &= \frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta} \left(e + \frac{1}{2}\right) x - \frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}, \\ \ell_3(x) &= \left(\frac{2(2\alpha-1)}{2\alpha+1} e - 1\right) x - \frac{2(2\alpha-1)}{2\alpha+1}, \\ \ell_4(x) &= (1 - 2e) x. \end{aligned}$$

We minimize the convex, piecewise-linear function $f(x, e) = \max_i \ell_i(x, e)$ over $x \in (0, 1)$, $e \in \mathbb{R}$. In the regime $\alpha > 0.5$, $\beta > 0.5$, the only admissible interior kink with three active lines is $\{\ell_2, \ell_3, \ell_4\}$. Solving $\ell_2 = \ell_4$ and $\ell_3 = \ell_4$ yields

$$e^* = \frac{2\alpha + 4\beta - 1}{4\beta}, \quad x^* = \frac{\beta}{\alpha + \beta}, \quad h^* = \ell_2(x^*, e^*) = \ell_3(x^*, e^*) = \ell_4(x^*, e^*) = -\frac{2\alpha + 2\beta - 1}{2\alpha + 2\beta}.$$

Interior optimality. First, $x^* \in (0, 1)$ since $\alpha, \beta > 0.5$. Second, the subgradient condition $(0, 0) \in \partial f(x^*, e^*)$ holds because the active slopes straddle zero in both variables:

$$\partial_x \ell_2 = \frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta} \left(e^* + \frac{1}{2} \right) > 0, \quad \partial_x \ell_3 = \frac{2(2\alpha-1)}{2\alpha+1} e^* - 1 < 0, \quad \partial_x \ell_4 = 1 - 2e^* = \frac{1-2\alpha-2\beta}{2\beta} < 0,$$

and

$$\partial_e \ell_2 = \frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta} x^* > 0, \quad \partial_e \ell_3 = \frac{2(2\alpha-1)}{2\alpha+1} x^* > 0, \quad \partial_e \ell_4 = -2x^* < 0.$$

Hence (x^*, e^*) is the global minimizer among interior points. It remains to exclude ℓ_1 at (x^*, e^*) :

$$\ell_1(x^*) = -2\alpha \frac{\beta}{\alpha + \beta} \leq -\frac{2\alpha + 2\beta - 1}{2(\alpha + \beta)} = h^*,$$

since $4\alpha\beta - 2\alpha - 2\beta + 1 = 4(\alpha - \frac{1}{2})(\beta - \frac{1}{2}) \geq 0$ for $\alpha, \beta > 0.5$. Therefore the triple intersection $\{\ell_2, \ell_3, \ell_4\}$ is the global optimum.

$$\boxed{\gamma_0 = M^{-\frac{2\alpha+4\beta-1}{4\beta}}, \quad M^* \asymp \mathfrak{f}^{\frac{\beta}{\alpha+\beta}}, \quad R\left(M^*, \frac{\mathfrak{f}}{M^*}\right) \asymp \mathfrak{f}^{-\frac{2\alpha+2\beta-1}{2\alpha+2\beta}}}.$$

F.2.5 $\alpha < 0.5$, $\beta > \alpha + 0.5$ (PHASE Ad)

Recall the loss formula (91)

$$R(M, N, \gamma_0) = \left(\max(1 - \kappa \gamma_0 M^\alpha N, 0) \right)^{\frac{2(2\alpha+2\beta-1)}{2\beta-2\alpha-1}} + \gamma_0^2 M^{2-2\alpha} + M^{-2\alpha}.$$

Note that the drift term vanishes at $N \asymp (\gamma_0 M^\alpha)^{-1}$.

Let $\gamma_0 = M^{-e}$. Note that because of the approximation error $M^{-2\alpha}$, there is no gain from setting e bigger than 1. So we will only consider the case $e \leq 1$. In that case, loss is a constant scale before $N \asymp M^{e-\alpha}$, and it drops to the scale of $M^{-2e-2\alpha+2}$.

Since a constant scale loss cannot be compute-optimal, the loss $M^{-2e-2\alpha+2}$ at $N \asymp M^{e-\alpha}$ will be a candidate for the compute-optimal point. In that case $\mathfrak{f} = MN = M^{1+e-\alpha}$ holds and it leads to $M = \mathfrak{f}^{\frac{1}{1+e-\alpha}}$. So the loss $M^{-2e-2\alpha+2}$ has the size $\mathfrak{f}^{\frac{-2e-2\alpha+2}{1+e-\alpha}}$.

Since $e = 1$ minimizes $\frac{-2e-2\alpha+2}{1+e-\alpha}$, $\gamma_0 = M^{-1}$ is the optimal learning rate. This leads to the following result.

$$\boxed{\gamma_0 = M^{-1}, \quad M^* \asymp \mathfrak{f}^{\frac{1}{2-\alpha}}, \quad R\left(M^*, \frac{\mathfrak{f}}{M^*}\right) \asymp \mathfrak{f}^{-\frac{2\alpha}{2-\alpha}}}.$$

F.2.6 $\alpha > 0.5$, $\beta > \alpha + 0.5$ (PHASE Bb)

Recall the loss formula (92)

$$R(M, N, \gamma_0) = \left(\max(1 - \kappa \gamma_0 M^{0.5} N, 0) \right)^{\frac{2(2\alpha+2\beta-1)}{2\beta-2\alpha-1}} + M^{-\frac{6\alpha-1}{2\alpha+1}} (N \gamma_0)^{-\frac{2(2\alpha-1)}{2\alpha+1}} + \gamma_0^2 M + M^{-2\alpha}.$$

Note that the first term vanishes at $N \asymp (\gamma_0 M^\alpha)^{-1}$. At that point second term becomes $M^{-\frac{6\alpha-1}{2\alpha+1}} (N \gamma_0)^{-\frac{2(2\alpha-1)}{2\alpha+1}} \asymp M^{-\frac{4\alpha}{2\alpha+1}}$.

As we optimize over three parameters N, M, γ_0 , and one constraint $\mathfrak{f} = MN$, we have two degrees of freedom. So this means three terms may balance together at the compute-optimal point.

The first possible case is the balance of the first three terms, and in this case, $\gamma_0^2 M = M^{-\frac{4\alpha}{2\alpha+1}}$ and $N \approx (\gamma_0 M^\alpha)^{-1}$ must hold. Here, the loss is $M^{-\frac{4\alpha}{2\alpha+1}}$ and $f = MN = M^{\frac{2\alpha+1}{4\alpha+1}}$ holds, so the loss is $f^{-\frac{4\alpha}{4\alpha+1}}$.

The second possible case is the balance of the last three terms, and after solving the equations, the loss is $f^{-\frac{2\alpha}{2\alpha+1}}$.

The first case has a steeper decay, so it is the compute-optimal. This leads to the following result.

$$\gamma_0 = M^{-\frac{6\alpha+1}{4\alpha+2}}, \quad M^* \approx f^{\frac{2\alpha+1}{4\alpha+1}}, \quad R\left(M^*, \frac{f}{M^*}\right) \approx f^{-\frac{4\alpha}{4\alpha+1}}.$$

F.3 DISCUSSION FOR THE SUBOPTIMAL LEARNING RATE

In this section, we calculate the compute-optimal exponent for a general size of learning rate in the form of $\gamma_0 = M^{-e}$. We will focus on Phase Aa. In that phase, the maximal learning rate was $\gamma_0 = M^{-1/2}$ and optimal learning rate was $\gamma_0^* = M^{-(\alpha+\beta)}$.

In this section, we will calculate the compute-optimal exponent for general $e \geq 1/2$.

Recall that we have the following loss formula for Phase Aa.

$$R(M, N, \gamma_0) \approx (M^{1/2} N \gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}} + M^{-(2\alpha+2\beta-1)} + \gamma_0^2 M.$$

For the case $1/2 \leq e \leq (\alpha + \beta)$, $(M^{1/2} N \gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}}$ and $\gamma_0^2 M$ are dominant terms. Substituting $\gamma_0 = M^{-e}$ and balancing them, we get $N = M^{(\frac{4\alpha}{2\alpha+2\beta-1})(e-1/2)}$. As $f = MN$ holds, it leads to

$$M^* \approx f^{1/((\frac{4\alpha}{2\alpha+2\beta-1})(e-1/2)+1)}, \quad R\left(M^*, \frac{f}{M^*}, \gamma_0\right) \approx f^{-\frac{(2e-1)(2\alpha+2\beta-1)}{2\alpha(2e-1)+(2\alpha+2\beta-1)}}.$$

For the case $e \geq (\alpha + \beta)$, $(M^{1/2} N \gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}}$ and $M^{-(2\alpha+2\beta-1)}$ are dominant terms. Substituting $\gamma_0 = M^{-e}$ and balancing them, we get $N = M^{\alpha-\beta+e}$. As $f = MN$ holds, it leads to

$$M^* \approx f^{1/(\alpha-\beta+e+1)}, \quad R\left(M^*, \frac{f}{M^*}, \gamma_0\right) \approx f^{-\frac{2\alpha+2\beta-1}{\alpha-\beta+e+1}}.$$

In Figure 22, we provide a graph of the compute-optimal exponent with respect to e of $\gamma_0 = M^{-e}$ for $(\alpha, \beta) = (0.6, 0.4)$. As the graph is continuous, the absolute value of the compute-optimal exponent gradually decreases as we move away from the optimal choice. Also, we can observe that the degradation is smaller for the learning rates with larger e in $\gamma_0 = M^{-e}$ than that of the optimal learning rate. So in terms of tuning the learning rate, we may aggressively set a high e in $\gamma_0 = M^{-e}$ for the initial attempt, and gradually decrease the e for later attempts.

G DERIVATION FOR THE STABLE-DECAY SCHEDULING

We set the learning rate as $\gamma_k = \gamma_0 f(k)$. Previously, we considered the constant-learning-rate case ($f \equiv 1$). In this section, we start with a general decaying learning rate by taking f to be a decreasing function, and then substitute the stable-decay scheduling. Throughout, for simplicity, we assume $\alpha > 0.5$ and $\beta < 0.5$ (Phase Aa).

Recall the implicit integral equation (26):

$$L(N) = \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 + \sum_{i=1}^M r_i(0) \exp\left(-\frac{4\lambda_i \gamma_0}{\pi} \int_0^N \frac{f(u)}{\sqrt{L(u)}} du\right) \quad (93)$$

$$+ \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\lambda_i \gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du\right) f(z)^2 dz. \quad (94)$$

Figure 22: **Compute-optimal exponent with respect to e of $\gamma_0 = M^{-e}$ for $(\alpha, \beta) = (0.6, 0.4)$.**
 Colored line shows the compute-optimal exponent x in the formula $R\left(M^*, \frac{f}{M^*}, \gamma_0\right) \approx f^{-x}$.

Also recall Equation 27 and 28.

$$L^{\text{drift}}(N) = \sum_{i=1}^M r_i(0) e^{-\frac{4\lambda_i \gamma_0}{\pi} \int_0^N \frac{f(u)}{\sqrt{L(u)}} du}, \quad L^{\text{noise}}(N) = \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N e^{-\frac{4\lambda_i \gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du} f(z)^2 dz. \quad (95)$$

$$L(N) = \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 + L^{\text{drift}}(N) + L^{\text{noise}}(N). \quad (96)$$

Recall also the drift/approximation transformation (35):

$$L^{\text{drift}}(N) + \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 \approx M^{-(2\alpha+2\beta-1)} + (M^{0.5} Q_L(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}},$$

$$Q_L(z) := \frac{4\gamma_0}{\pi} \int_0^z \frac{f(u)}{\sqrt{L(u)}} du.$$

Hence,

$$L(N) \approx M^{-(2\alpha+2\beta-1)} + (M^{0.5} Q_L(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}} \quad (97)$$

$$+ \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\lambda_i \gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du\right) f(z)^2 dz. \quad (98)$$

Remark 2 (Early-iteration proxy). In early iterations the drift term $(M^{0.5} Q_L(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}$ dominates. Solving $L(N) \approx (M^{0.5} Q_L(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}$ yields

$$L(N) \approx (M^{0.5} \gamma_0 F(N))^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}}, \quad F(N) := \int_0^N f(u) du.$$

Now we move on to stable-decay scheduling.

Stable-decay schedule. We henceforth consider the following stable-decay learning-rate schedule:

$$f(k) = \begin{cases} 1, & k \leq pN, \\ (1 + \tau(k - pN))^{-c}, & k > pN, \end{cases} \quad p, c \in (0, 1), \tau > 0.$$

That is, the learning rate is constant for the first pN steps and then decays polynomially with exponent c over the remaining $(1 - p)N$ steps.

Remark 3. Note that f depends on the total training steps N . To be precise, we have to represent it as f_N , but for simplicity, we write it as f throughout the analysis.

First, we will make an upper bound on the noise term under stable-decay scheduling.

3186 G.1 UPPER BOUND OF THE NOISE TERM
 3187

3188 Fix $p < q < 1$ close to 1 and split $L^{\text{noise}}(N)$ as
 3189

$$3190 \quad L^{\text{noise}}(N) = \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^{qN} \exp\left(-\frac{4\lambda_i\gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du\right) f(z)^2 dz \\ 3191 \quad + \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_{qN}^N \exp\left(-\frac{4\lambda_i\gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du\right) f(z)^2 dz =: T_{\leq qN} + T_{> qN}.$$

3196 **Bounding $T_{> qN}$.** Note that $f(N) \asymp f(z)$ holds for $qN < z < N$. So
 3197

$$3198 \quad \int_{qN}^N \exp\left(-\frac{4\lambda_i\gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du\right) f(z)^2 dz \asymp f(N)^2 \int_{qN}^N \exp\left(-\frac{4\lambda_i\gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du\right) dz.$$

3200 For q sufficiently close to 1, there exist constants $c_0, c_1 > 0$ such that for $qN < z < N$
 3201

$$3202 \quad c_0 \frac{(N-z)f(N)}{\sqrt{L(N)}} \leq \int_z^N \frac{f(u)}{\sqrt{L(u)}} du \leq c_1 \frac{(N-z)f(N)}{\sqrt{L(N)}}.$$

3205 Therefore,
 3206

$$3207 \quad T_{> qN} \leq \frac{2\gamma_0^2}{\pi} f(N)^2 \sum_{i=1}^M V_i \int_{qN}^N \exp\left(-\frac{4\lambda_i\gamma_0}{\pi} c_0 \frac{(N-z)f(N)}{\sqrt{L(N)}}\right) dz \\ 3208 \quad \asymp \frac{2\gamma_0^2}{\pi} f(N)^2 \sum_{i=1}^M V_i \frac{\pi \sqrt{L(N)}}{4\lambda_i \gamma_0 c_0 f(N)} \asymp \gamma_0 f(N) \sqrt{L(N)} \sum_{i=1}^M \frac{V_i}{\lambda_i} \\ 3210 \quad \asymp \gamma_0 f(N) \sqrt{L(N)} \text{Tr}(\text{diag}(K)^{1/2}) \asymp \gamma_0 f(N) \sqrt{L(N)} M^{0.5}.$$

3214 To summarize, we have
 3215

$$3216 \quad T_{> qN} \lesssim \gamma_0 f(N) \sqrt{L(N)} M^{0.5} \asymp \gamma_0 M^{1/2} N^{-c} \sqrt{L(N)}.$$

3218 **Bounding $T_{\leq qN}$.** Let $Q(z, N) = \frac{4\gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du$. Then
 3219

$$3221 \quad T_{\leq qN} = \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M (w_i^\top \mathbf{K}_\sigma K u_i) \int_0^{qN} e^{-\frac{4\gamma_0}{\pi} \lambda_i(\bar{\mathbf{K}}) \int_z^N \frac{f(u)}{\sqrt{L(u)}} du} f(z)^2 dz \\ 3222 \quad = \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M \text{Tr}(\mathbf{K}_\sigma K u_i w_i^\top) \int_0^{qN} e^{-\lambda_i(\bar{\mathbf{K}}) Q(z, N)} f(z)^2 dz \\ 3224 \quad = \frac{2\gamma_0^2}{\pi} \int_0^{qN} \sum_{i=1}^M \text{Tr}(\mathbf{K}_\sigma K u_i w_i^\top) e^{-\lambda_i(\bar{\mathbf{K}}) Q(z, N)} f(z)^2 dz \\ 3226 \quad = \frac{2\gamma_0^2}{\pi} \int_0^{qN} \text{Tr}(\mathbf{K}_\sigma K \sum_{i=1}^M e^{-\lambda_i(\bar{\mathbf{K}}) Q(z, N)} u_i w_i^\top) f(z)^2 dz \\ 3228 \quad = \frac{2\gamma_0^2}{\pi} \int_0^{qN} \text{Tr}(\mathbf{K}_\sigma K e^{-\bar{\mathbf{K}} Q(z, N)}) f(z)^2 dz.$$

3236 Using $\arcsin x \approx x$ approximation on $\mathbf{K}_\sigma = \arcsin(\text{diag}(K)^{-1/2} \cdot K \cdot \text{diag}(K)^{-1/2})$, we get
 3237

$$3238 \quad \text{Tr}(\mathbf{K}_\sigma K e^{-\bar{\mathbf{K}} Q(z, N)}) = \text{Tr}(\mathbf{K}_\sigma S H^{1/2} e^{-\bar{\mathbf{K}}_1 Q(z, N)} H^{1/2} S^\top) \\ 3239 \quad = \text{Tr}(H^{1/2} S^\top \mathbf{K}_\sigma S H^{1/2} e^{-\bar{\mathbf{K}}_1 Q(z, N)}) \approx \text{Tr}(\bar{\mathbf{K}}_1^2 e^{-\bar{\mathbf{K}}_1 Q(z, N)}).$$

Using same contour representation method and deterministic approximation with Section E.2.2 we get

$$\begin{aligned}
 T_{\leq qN} &\approx \frac{2\gamma_0^2}{\pi} \int_0^{qN} \text{Tr}(\bar{\mathbf{K}}_1^2 e^{-\bar{\mathbf{K}}_1 Q(z, N)}) f(z)^2 dz \\
 &= \frac{2\gamma_0^2}{\pi} \int_0^{qN} \text{Tr} \left(\frac{-1}{2\pi i} \oint_{\Gamma_2} z_1^2 e^{-Q(z, N)z_1} (\bar{\mathbf{K}}_1 - z_1 \mathbf{I})^{-1} dz_1 \right) f(z)^2 dz \\
 &\approx \frac{2\gamma_0^2}{\pi} \int_0^{qN} \text{Tr} \left(\frac{-1}{2\pi i} \oint_{\Gamma} p_d^2 z_1^2 e^{-p_d Q(z, N)z_1} \mathcal{R}(z_1) dz_1 \right) f(z)^2 dz \\
 &\approx \frac{2\gamma_0^2}{\pi} M \int_0^{qN} \text{Tr} \left(\frac{-1}{2\pi i} \oint_{\Gamma} z_1^2 e^{-p_d Q(z, N)z_1} \mathcal{R}(z_1) dz_1 \right) f(z)^2 dz
 \end{aligned}$$

Adopting the method in Paquette et al. (2024) same as Section K.1, we get

$$\text{Tr} \left(\frac{-1}{2\pi i} \oint_{\Gamma} z_1^2 e^{-p_d Q(z, N)z_1} \mathcal{R}(z_1) dz_1 \right) \approx (p_d Q(z, N))^{-2+1/(2\alpha)} \approx (M^{1/2} Q(z, N))^{-2+1/(2\alpha)}.$$

It leads to

$$\begin{aligned}
 T_{\leq qN} &\approx \frac{2\gamma_0^2}{\pi} M \int_0^{qN} (M^{1/2} Q(z, N))^{-2+1/(2\alpha)} f(z)^2 dz \\
 &\approx \gamma_0^2 M^{1/(4\alpha)} \int_0^{qN} (Q(z, N))^{-2+1/(2\alpha)} f(z)^2 dz
 \end{aligned}$$

Finally,

$$\begin{aligned}
 &\gamma_0^2 M^{1/(4\alpha)} \int_0^{qN} (Q(z, N))^{-2+1/(2\alpha)} f(z)^2 dz \\
 &\approx \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_0^{pN} \frac{f(z)^2}{(\int_z^N \frac{f(u)}{\sqrt{L(u)}} du)^{2-1/(2\alpha)}} dz + \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_{pN}^{qN} \frac{f(z)^2}{(\int_z^N \frac{f(u)}{\sqrt{L(u)}} du)^{2-1/(2\alpha)}} dz \\
 &\lesssim \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_0^{pN} \frac{1}{(\frac{pN-z}{\sqrt{L(0)}} + \frac{1}{\sqrt{L(pN)}} \int_{pN}^N f(u) du)^{2-1/(2\alpha)}} dz \\
 &\quad + \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_{pN}^{qN} \frac{f(z)^2}{(\frac{1}{\sqrt{L(pN)}} \int_{qN}^N f(u) du)^{2-1/(2\alpha)}} dz \\
 &\lesssim \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_0^{pN} \frac{1}{(\frac{pN-z}{\sqrt{L(0)}} + \frac{N^{1-c}}{\sqrt{L(pN)}})^{2-1/(2\alpha)}} dz + \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_{pN}^{qN} \frac{f(z)^2}{(\frac{N^{1-c}}{\sqrt{L(pN)}})^{2-1/(2\alpha)}} dz \\
 &\approx \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \sqrt{L(0)} \left(\left(\frac{N^{1-c}}{\sqrt{L(pN)}} \right)^{1/(2\alpha)-1} - \left(pN + \frac{N^{1-c}}{\sqrt{L(pN)}} \right)^{1/(2\alpha)-1} \right) \\
 &\quad + \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} N^{\max(1-2c, 0)} \left(\frac{N^{1-c}}{\sqrt{L(pN)}} \right)^{1/(2\alpha)-2} \\
 &\lesssim \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} N^{-(1-c)(1-1/(2\alpha))} L(pN)^{(1/2-1/(4\alpha))} \lesssim \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} N^{-(1-c)(1-1/(2\alpha))} \tag{99}
 \end{aligned}$$

So we have

$$T_{\leq qN} \lesssim \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} N^{-(1-c)(1-1/(2\alpha))}.$$

G.2 COMBINING TERMS

Combining the bounds,

$$L(N) \lesssim M^{-(2\alpha+2\beta-1)} + (M^{0.5} \gamma_0 N)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}} + \gamma_0 M^{0.5} N^{-c} \sqrt{L(N)} + \gamma_0^{\frac{1}{2\alpha}} M^{\frac{1}{4\alpha}} N^{-(1-c)(1-\frac{1}{2\alpha})}.$$

3294 We replaced the drift part with $(M^{0.5}\gamma_0 N)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}}$ temporarily based on Remark 2, and justify
 3295 this on our selected parameters in Remark 4. Solving the inequality asymptotically yields
 3296

$$3297 L(N) \lesssim M^{-(2\alpha+2\beta-1)} + (M^{0.5}\gamma_0 N)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}} + \gamma_0^2 M N^{-2c} + \gamma_0^{\frac{1}{2\alpha}} M^{\frac{1}{4\alpha}} N^{-(1-c)(1-\frac{1}{2\alpha})}.$$

3299 Finally, substituting $\gamma_0 = M^{-e}$ and $N = f/M$ yields
 3300

$$3301 R(M, f) \lesssim M^{-(2\alpha+2\beta-1)} + (M^{-e-0.5} f)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}} + M^{1+2c-2e} f^{-2c} \\ 3302 + M^{\frac{1}{4\alpha}-\frac{e}{2\alpha}+(1-c)(1-\frac{1}{2\alpha})} f^{-(1-c)(1-\frac{1}{2\alpha})}.$$

3305 Optimizing over M gives a bound of the form $R(M^*, f) \leq f^{-h(\alpha, \beta, c, e)}$, and we then optimize over
 3306 c, e to maximize $h(\alpha, \beta, c, e)$.
 3307

3308 G.3 OPTIMIZING OVER c, e TO MAXIMIZE $h(\alpha, \beta, c, e)$

3310 Assume throughout $\alpha > 0.5$, $\beta < 0.5$, and $2\alpha + 2\beta > 1$. Consider the upper bound
 3311

$$3312 R_U(M, f) = M^{-(2\alpha+2\beta-1)} + (M^{-e-0.5} f)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}} + M^{1+2c-2e} f^{-2c} + M^{\frac{1}{4\alpha}-\frac{e}{2\alpha}+(1-c)(1-\frac{1}{2\alpha})} f^{-(1-c)(1-\frac{1}{2\alpha})}.$$

3314 For large f , define

$$3315 R_{\min}(f) := \min_{M>0} R_U(M, f).$$

3316 We show $R_{\min}(f) \approx f^{h^*(\alpha, \beta)}$ with $h^*(\alpha, \beta) < 0$, and identify $c^*(\alpha, \beta)$, $e^*(\alpha, \beta)$, and $M =$
 3317 $f^{m^*(\alpha, \beta)}$.
 3318

3319 Logarithmic reduction to exponent balancing

3320 Let $M = f^m$ with $m \in \mathbb{R}$. Writing each term as f^{L_i} gives
 3321

$$3322 L_1(m) = -(2\alpha + 2\beta - 1)m, \tag{100}$$

$$3323 L_2(m, e) = -\frac{2(2\alpha + 2\beta - 1)}{2\alpha + 1 - 2\beta} + \frac{2(2\alpha + 2\beta - 1)}{2\alpha + 1 - 2\beta} m(e + 0.5), \tag{101}$$

$$3325 L_3(m, c, e) = m(1 + 2c - 2e) - 2c, \tag{102}$$

$$3327 L_4(m, c, e) = m\left(\frac{1}{4\alpha} - \frac{e}{2\alpha} + (1-c)\left(1 - \frac{1}{2\alpha}\right)\right) - (1-c)\left(1 - \frac{1}{2\alpha}\right). \tag{103}$$

3329 Thus minimizing R_U is equivalent to

$$3330 \min_{m, e \in \mathbb{R}, 0 < c < 1} \max\{L_1, L_2, L_3, L_4\}. \tag{104}$$

3332 Introduce $h \in \mathbb{R}$ and rewrite as

$$3333 \min_{m, c, e, h} h \text{ s.t. } L_i(m, c, e) \leq h \ (i = 1, 2, 3, 4), \ 0 < c < 1. \tag{105}$$

3335 At an interior optimum ($0 < c < 1$), constraints equalize:

$$3336 L_1 = L_2 = L_3 = L_4 = h. \tag{106}$$

3338 Solving the equality yields

$$3340 c^* = \frac{-8\alpha\beta + 2\alpha + 2\beta - 1}{16\alpha^2 + 8\alpha\beta - 6\alpha - 2\beta + 1}, \tag{107}$$

$$3342 e^* = \frac{8\alpha^2 + 16\alpha\beta - 4\alpha - 4\beta + 1}{2(4\alpha - 1)}, \tag{108}$$

$$3344 m^* = \frac{2(4\alpha - 1)}{16\alpha^2 + 8\alpha\beta + 2\alpha - 2\beta - 1}, \tag{109}$$

$$3346 h^* = -\frac{2(4\alpha - 1)(2\alpha + 2\beta - 1)}{16\alpha^2 + 8\alpha\beta + 2\alpha - 2\beta - 1}. \tag{110}$$

3348 *Feasibility.* Since $\alpha > 0.5$, denominators are positive. The condition $c^* > 0$ is equivalent to
 3349

$$3350 \quad -8\alpha\beta + 2\alpha + 2\beta - 1 > 0 \iff \beta < \frac{2\alpha - 1}{2(4\alpha - 1)} := B^*(\alpha),$$

3352 which is stricter than $\beta < 0.5$. Moreover, $c^* < 1$ holds automatically for $\beta > 0$. Hence, the interior
 3353 solution is feasible whenever

$$3354 \quad \boxed{0.5 - \alpha < \beta < B^*(\alpha)} \quad \text{with } B^*(\alpha) = \frac{2\alpha - 1}{2(4\alpha - 1)}. \quad (111)$$

3356 In this band,

$$3357 \quad \boxed{M = \mathfrak{f}^{m^*}, \quad R_{\min}(\mathfrak{f}) \asymp \mathfrak{f}^{h^*}}$$

3359 with m^*, h^* as in (109)–(110). Note $m^* > 0$ and $h^* < 0$.

3360 **Result** As $\mathfrak{f} \rightarrow \infty$, the choice $M = \mathfrak{f}^{m^*}$ with

$$\begin{aligned} 3362 \quad m^* &= \frac{2(4\alpha - 1)}{16\alpha^2 + 8\alpha\beta + 2\alpha - 2\beta - 1}, \\ 3363 \quad c^* &= \frac{-8\alpha\beta + 2\alpha + 2\beta - 1}{16\alpha^2 + 8\alpha\beta - 6\alpha - 2\beta + 1}, \\ 3364 \quad e^* &= \frac{8\alpha^2 + 16\alpha\beta - 4\alpha - 4\beta + 1}{2(4\alpha - 1)}, \\ 3365 \quad h^* &= -\frac{2(4\alpha - 1)(2\alpha + 2\beta - 1)}{16\alpha^2 + 8\alpha\beta + 2\alpha - 2\beta - 1} \end{aligned}$$

3366 is optimal for $\alpha > 0.5$, $0.5 - \alpha < \beta < B^*(\alpha)$, where

$$3372 \quad B^*(\alpha) = \frac{2\alpha - 1}{2(4\alpha - 1)}.$$

3373 This choice minimizes $\max\{L_1, L_2, L_3, L_4\}$ in (104). Consequently,

$$3376 \quad R_{\min}(\mathfrak{f}) \asymp \mathfrak{f}^{h^*(\alpha, \beta)} \quad \text{with } h^*(\alpha, \beta) < 0.$$

3377 *Remark 4* (Justification on drift term conversion). Note that $M = \mathfrak{f}^{M^*}$ and $N = \mathfrak{f}^{1-M^*}$ holds for
 3378 the selected parameters.

3379 For pN iterations the stable-decay scheduling behaves same as the constant learning rate. Let N_0
 3380 be the crossover point in constant learning rate. Note that $N \gtrsim N_0$ holds, and N is asymptotically
 3381 strictly bigger than N_0 . So $L(u) \lesssim \gamma_0^2 M + M^{-2\alpha-2\beta+1}$ holds for $u \geq N_0$.

3383 Also for selected $\gamma_0 = M^{-e^*}$, $\gamma_0^2 M \gtrsim M^{-2\alpha-2\beta+1}$ holds.

3384 So we have $L(u) \lesssim \gamma_0^2 M$ for $u \geq N_0$.

$$\begin{aligned} 3387 \quad (M^{0.5} Q_L(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}} &= \left(M^{0.5} \frac{4\gamma_0}{\pi} \int_0^N \frac{f(u)}{\sqrt{L(u)}} du \right)^{-\frac{2\alpha+2\beta-1}{2\alpha}} \\ 3388 \quad &\lesssim \left(M^{0.5} \frac{4\gamma_0}{\pi} \int_{N_0}^{pN} \frac{f(u)}{\sqrt{L(u)}} du \right)^{-\frac{2\alpha+2\beta-1}{2\alpha}} \\ 3389 \quad &\asymp \left(\gamma_0 M^{0.5} \int_{N_0}^{pN} \frac{1}{\sqrt{L(u)}} du \right)^{-\frac{2\alpha+2\beta-1}{2\alpha}} \\ 3390 \quad &\asymp \left(\gamma_0 M^{0.5} \int_{N_0}^{pN} \frac{1}{\sqrt{\gamma_0^2 M}} du \right)^{-\frac{2\alpha+2\beta-1}{2\alpha}} \\ 3391 \quad &\asymp (pN - N_0)^{-\frac{2\alpha+2\beta-1}{2\alpha}} \asymp N^{-\frac{2\alpha+2\beta-1}{2\alpha}} \end{aligned}$$

3402 And for selected parameters $M = \mathfrak{f}^{M^*}$, $N = \mathfrak{f}^{1-M^*}$, c^* , and $\gamma_0 = M^{-e^*}$ following holds.
 3403

$$3404 N^{-\frac{2\alpha+2\beta-1}{2\alpha}} \lesssim \gamma_0^2 MN^{-2c^*}.$$

3406 As $(M^{0.5}Q_L(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}} \lesssim \gamma_0^2 MN^{-2c^*}$, replacing the drift term with a proxy does not make
 3407 the problem.
 3408

3410 G.4 ANALYSIS FOR WARMUP-STABLE-DECAY

3412 Analysis for Warmup-stable-decay is almost similar to analysis for stable-decay. Only the difference
 3413 occurs in the step of (99), but the final bound is the same. We provide the corresponding analysis to
 3414 the procedure of (99) at the end of this subsection. So the bound of loss for warmup-stable-decay is
 3415 the same as the stable-decay. Finally, the bound

$$3416 R_f(M^*, \mathfrak{f}/M^*, (M^*)^{-e^*}) \lesssim \mathfrak{f}^{-\frac{2(4\alpha-1)(2\alpha+2\beta-1)}{16\alpha^2+8\alpha\beta+2\alpha-2\beta-1}}. \quad (112)$$

3418 introduced in (15) also holds for warmup-stable-decay.

3419 For the warmup-stable-decay schedule, we set the learning rate to $\gamma_k = \gamma_0 f(k)$ with
 3420

$$3421 f(k) = \begin{cases} k/w_t, & k \leq w_t, \\ 3422 1, & w_t \leq k \leq pN, \\ 3423 (1 + \tau(k - pN))^{-c}, & k > pN, \end{cases} \quad (113)$$

3425 where $p, c \in (0, 1)$ and $\tau > 0$. w_t is the threshold for the warmup stage, and we assume that w_t is
 3426 smaller than $pN/2$.

3427 Following is the corresponding analysis to the procedure of (99).

$$\begin{aligned} 3429 \gamma_0^2 M^{1/(4\alpha)} & \int_0^{qN} (Q(z, N))^{-2+1/(2\alpha)} f(z)^2 dz \\ 3430 & \approx \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_0^{pN} \frac{f(z)^2}{(\int_z^N \frac{f(u)}{\sqrt{L(u)}} du)^{2-1/(2\alpha)}} dz + \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_{pN}^{qN} \frac{f(z)^2}{(\int_z^N \frac{f(u)}{\sqrt{L(u)}} du)^{2-1/(2\alpha)}} dz \\ 3431 & \lesssim \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_0^{w_t} \frac{1}{(\frac{pN/2}{\sqrt{L(0)}} + \frac{1}{\sqrt{L(pN)}} \int_{pN}^N f(u) du)^{2-1/(2\alpha)}} dz \\ 3432 & \quad + \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_{w_t}^{pN} \frac{1}{(\frac{pN-z}{\sqrt{L(0)}} + \frac{1}{\sqrt{L(pN)}} \int_{pN}^N f(u) du)^{2-1/(2\alpha)}} dz \\ 3433 & \quad + \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_{pN}^{qN} \frac{f(z)^2}{(\frac{1}{\sqrt{L(pN)}} \int_{qN}^N f(u) du)^{2-1/(2\alpha)}} dz \\ 3434 & \lesssim \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_0^{w_t} \frac{1}{(\frac{pN/2}{\sqrt{L(0)}} + \frac{N^{1-c}}{\sqrt{L(pN)}})^{2-1/(2\alpha)}} dz + \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_{w_t}^{pN} \frac{1}{(\frac{pN-z}{\sqrt{L(0)}} + \frac{N^{1-c}}{\sqrt{L(pN)}})^{2-1/(2\alpha)}} dz \\ 3435 & \quad + \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_{pN}^{qN} \frac{f(z)^2}{(\frac{N^{1-c}}{\sqrt{L(pN)}})^{2-1/(2\alpha)}} dz \\ 3436 & \approx \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} w_t \left(\frac{pN/2}{\sqrt{L(0)}} \right)^{-2+1/(2\alpha)} \\ 3437 & \quad + \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \sqrt{L(0)} \left(\left(\frac{N^{1-c}}{\sqrt{L(pN)}} \right)^{1/(2\alpha)-1} - (pN - w_t + \frac{N^{1-c}}{\sqrt{L(pN)}})^{1/(2\alpha)-1} \right) \\ 3438 & \quad + \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} N^{\max(1-2c, 0)} \left(\frac{N^{1-c}}{\sqrt{L(pN)}} \right)^{1/(2\alpha)-2} \end{aligned}$$

$$\begin{aligned}
&\lesssim \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} N^{-(1-1/(2\alpha))} + \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} N^{-(1-c)(1-1/(2\alpha))} L(pN)^{(1/2-1/(4\alpha))} \\
&\lesssim \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} N^{-(1-c)(1-1/(2\alpha))} \\
&\lesssim \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} N^{-(1-c)(1-1/(2\alpha))} \\
&\lesssim \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} N^{-(1-c)(1-1/(2\alpha))} \\
\end{aligned}$$

G.5 SCHEDULING ON SGD

In this subsection, we explain that the scheduling does not lift the compute-optimal exponent of SGD in the Phase I and Phase II. Assume a bounded scheduling function f , and define $F(k) = \int_0^k f(z) dz$.

Ferbach et al. (2025) proved

$$R_f(M, N, \gamma_0) \gtrsim M^{-2\alpha+\max(0,1-2\beta)} + (\gamma_0 F(N))^{-(2\alpha+2\beta-1)/(2\alpha)} + M^{-1}(\gamma_0 F(N))^{-1+1/(2\alpha)}$$

for the risk $R_f(M, N, \gamma_0)$ with general bounded scheduling function f .

Since f is bounded, we have $F(N) \lesssim N$. Therefore,

$$R_f(M, N, \gamma_0) \gtrsim M^{-2\alpha+\max(0,1-2\beta)} + (\gamma_0 F(N))^{-(2\alpha+2\beta-1)/(2\alpha)} + M^{-1}(\gamma_0 F(N))^{-1+1/(2\alpha)}$$

$$\gtrsim M^{-2\alpha+\max(0,1-2\beta)} + (\gamma_0 N)^{-(2\alpha+2\beta-1)/(2\alpha)} + M^{-1}(\gamma_0 N)^{-1+1/(2\alpha)}$$

$$\gtrsim R_1(M, N, \gamma_0),$$

where $R_1(M, N, \gamma_0)$ is the loss under a constant schedule $f \equiv 1$.

Thus, scheduling does not improve the compute-optimal exponent of SGD in Phase I and Phase II.

H ANALYSIS FOR LINEAR DECAYING SCHEDULING AND COSINE SCHEDULING

H.1 ANALYSIS FOR LINEAR DECAYING SCHEDULING

In this section, we analyze the following linear decaying scheduling.

$$f(t) = 1 - \left(1 - \frac{1}{\sqrt{N}}\right) \frac{t}{N} \quad (114)$$

It decays from 1 to $\frac{1}{\sqrt{N}}$ linearly.

We will focus on Phase Aa, and follow a similar procedure to stable-decay scheduling.

Note that we have to handle the following equation, where $Q_L(z) := \frac{4\gamma_0}{\pi} \int_0^z \frac{f(u)}{\sqrt{L(u)}} du$.

$$\begin{aligned}
L(N) &\approx M^{-(2\alpha+2\beta-1)} + (M^{0.5} Q_L(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}} \\
&\quad + \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\lambda_i \gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du\right) f(z)^2 dz.
\end{aligned}$$

In early iterations the drift term $(M^{0.5} Q_L(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}$ dominates. Solving $L(N) \approx (M^{0.5} Q_L(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}$ yields

$$L(N) \approx (M^{0.5} \gamma_0 F(N))^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}}, \quad F(N) := \int_0^N f(u) du.$$

For linear decaying scheduling $F(N) \approx N$ holds, so the drift term becomes $(M^{0.5} \gamma_0 N)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}}$.

Now we move to the noise term. We split the noise term $L^{\text{noise}}(N)$ as

$$L^{\text{noise}}(N) = \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^{N-\sqrt{N}} \exp\left(-\frac{4\lambda_i \gamma_0}{\pi}\right) \int_z^N \frac{f(u)}{\sqrt{L(u)}} du \Big) f(z)^2 dz \\ + \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_{N-\sqrt{N}}^N \exp\left(-\frac{4\lambda_i \gamma_0}{\pi}\right) \int_z^N \frac{f(u)}{\sqrt{L(u)}} du \Big) f(z)^2 dz =: T_{\leq(N-\sqrt{N})} + T_{>(N-\sqrt{N})}.$$

Bounding $T_{>(N-\sqrt{N})}$. Note that $f(N) \approx f(z)$ holds for $(N-\sqrt{N}) < z < N$. So

$$\int_{(N-\sqrt{N})}^N \exp\left(-\frac{4\lambda_i \gamma_0}{\pi}\right) \int_z^N \frac{f(u)}{\sqrt{L(u)}} du \Big) f(z)^2 dz \approx f(N)^2 \int_{(N-\sqrt{N})}^N \exp\left(-\frac{4\lambda_i \gamma_0}{\pi}\right) \int_z^N \frac{f(u)}{\sqrt{L(u)}} du \Big) dz.$$

There exist constants $c_0, c_1 > 0$ such that for $(N-\sqrt{N}) < z < N$

$$c_0 \frac{(N-z)f(N)}{\sqrt{L(N)}} \leq \int_z^N \frac{f(u)}{\sqrt{L(u)}} du \leq c_1 \frac{(N-z)f(N)}{\sqrt{L(N)}}.$$

Therefore,

$$T_{>qN} \leq \frac{2\gamma_0^2}{\pi} f(N)^2 \sum_{i=1}^M V_i \int_{(N-\sqrt{N})}^N \exp\left(-\frac{4\lambda_i \gamma_0}{\pi}\right) c_0 \frac{(N-z)f(N)}{\sqrt{L(N)}} dz \\ \approx \frac{2\gamma_0^2}{\pi} f(N)^2 \sum_{i=1}^M V_i \frac{\pi \sqrt{L(N)}}{4\lambda_i \gamma_0 c_0 f(N)} \approx \gamma_0 f(N) \sqrt{L(N)} \sum_{i=1}^M \frac{V_i}{\lambda_i} \\ \approx \gamma_0 f(N) \sqrt{L(N)} \text{Tr}(\text{diag}(K)^{1/2}) \approx \gamma_0 f(N) \sqrt{L(N)} M^{0.5}.$$

To summarize, we have

$$T_{>(N-\sqrt{N})} \lesssim \gamma_0 f(N) \sqrt{L(N)} M^{0.5} \approx \gamma_0 M^{1/2} N^{-1/2} \sqrt{L(N)}.$$

Bounding $T_{\leq(N-\sqrt{N})}$. Let $Q(z, N) = \frac{4\gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du$.

By the same procedure as the stable-decaying case, we can get.

$$T_{\leq(N-\sqrt{N})} \approx \frac{2\gamma_0^2}{\pi} M \int_0^{(N-\sqrt{N})} (M^{1/2} Q(z, N))^{-2+1/(2\alpha)} f(z)^2 dz \\ \approx \gamma_0^2 M^{1/(4\alpha)} \int_0^{(N-\sqrt{N})} (Q(z, N))^{-2+1/(2\alpha)} f(z)^2 dz$$

And we have

$$\gamma_0^2 M^{1/(4\alpha)} \int_0^{(N-\sqrt{N})} (Q(z, N))^{-2+1/(2\alpha)} f(z)^2 dz \\ \approx \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_0^{(N-\sqrt{N})} \frac{f(z)^2}{(\int_z^N \frac{f(u)}{\sqrt{L(u)}} du)^{2-1/(2\alpha)}} dz \\ \lesssim \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_0^{(N-\sqrt{N})} \frac{f(z)^2}{(\int_z^N \frac{f(u)}{\sqrt{L(0)}} du)^{2-1/(2\alpha)}} dz \\ \approx \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_0^{(N-\sqrt{N})} \frac{f(z)^2}{(\int_z^N f(u) du)^{2-1/(2\alpha)}} dz \tag{115}$$

Let the integral term be \mathcal{I} . First, we use the change of variables $z = N - u$, which transforms the integration interval $[0, N - \sqrt{N}]$ into $[\sqrt{N}, N]$. In the regime of large N , the linear schedule $f(N - u)$ can be approximated as

$$f(N - u) = 1 - \left(1 - \frac{1}{\sqrt{N}}\right) \frac{N - u}{N} \approx \frac{1}{\sqrt{N}} \left(1 + \frac{u}{\sqrt{N}}\right). \tag{116}$$

3564 Using this approximation, we evaluate the inner integral in the denominator:
 3565

$$3566 \int_{N-u}^N f(s) ds \approx \int_0^u \frac{1}{\sqrt{N}} \left(1 + \frac{v}{\sqrt{N}} \right) dv = \frac{u}{\sqrt{N}} \left(1 + \frac{u}{2\sqrt{N}} \right). \quad (117)$$

3568 Substituting these terms back into \mathcal{I} , we obtain
 3569

$$3570 \mathcal{I} \approx \int_{\sqrt{N}}^N \frac{\left[\frac{1}{\sqrt{N}} \left(1 + \frac{u}{\sqrt{N}} \right) \right]^2}{\left[\frac{u}{\sqrt{N}} \left(1 + \frac{u}{2\sqrt{N}} \right) \right]^{2-\frac{1}{2\alpha}}} du. \quad (118)$$

3574 To decouple the dependency on N , we apply the scaling $u = \sqrt{N}y$, which implies $du = \sqrt{N}dy$.
 3575 The integration limits change from $[\sqrt{N}, N]$ to $[1, \sqrt{N}]$. The integral is then reformulated as
 3576

$$3577 \mathcal{I} \approx \int_1^{\sqrt{N}} \frac{\frac{1}{N}(1+y)^2}{(y(1+y/2))^{2-\frac{1}{2\alpha}}} \sqrt{N} dy \quad (119)$$

$$3580 = \frac{1}{\sqrt{N}} \int_1^{\sqrt{N}} \frac{(1+y)^2}{y^{2-\frac{1}{2\alpha}}(1+y/2)^{2-\frac{1}{2\alpha}}} dy.$$

3582 The asymptotic behavior is determined by the convergence of the remaining integral. As $y \rightarrow \infty$,
 3583 the integrand behaves as
 3584

$$3585 \frac{y^2}{y^{2-\frac{1}{2\alpha}}(y/2)^{2-\frac{1}{2\alpha}}} \propto y^{2-2(2-\frac{1}{2\alpha})} = y^{\frac{1}{\alpha}-2}. \quad (120)$$

3587 Integrating this term from 1 to \sqrt{N} leads to the following cases depending on the exponent $\frac{1}{\alpha} - 2$:
 3588

$$3589 \mathcal{I} \sim \frac{1}{\sqrt{N}} \times \begin{cases} (\sqrt{N})^{\frac{1}{\alpha}-1} = N^{\frac{1}{2\alpha}-\frac{1}{2}} & \text{if } \frac{1}{\alpha}-2 > -1 \implies \alpha < 1, \\ \ln(\sqrt{N}) \sim \ln N & \text{if } \frac{1}{\alpha}-2 = -1 \implies \alpha = 1, \\ \text{const} & \text{if } \frac{1}{\alpha}-2 < -1 \implies \alpha > 1. \end{cases} \quad (121)$$

3593 Simplifying the final exponents, we get the asymptotic order:
 3594

$$3595 \mathcal{I} \sim \begin{cases} \mathcal{O}\left(N^{\frac{1}{2\alpha}-1}\right) & \text{if } 0.5 < \alpha < 1, \\ \mathcal{O}\left(N^{-\frac{1}{2}} \ln N\right) & \text{if } \alpha = 1, \\ \mathcal{O}\left(N^{-\frac{1}{2}}\right) & \text{if } \alpha > 1. \end{cases} \quad (122)$$

3600 For $0.5 < \alpha < 1$, we have

$$3601 T_{\leq(N-\sqrt{N})} \lesssim \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} N^{-(1-1/(2\alpha))}.$$

3603 For $0.5 < \alpha < 1$, combining the bounds for the drift term and noise term, we have
 3604

$$3605 L(N) \lesssim M^{-(2\alpha+2\beta-1)} + (M^{0.5} \gamma_0 N)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}} + \gamma_0 M^{0.5} N^{-1/2} \sqrt{L(N)} + \gamma_0^{\frac{1}{2\alpha}} M^{\frac{1}{4\alpha}} N^{-(1-\frac{1}{2\alpha})}.$$

3608 In intersection of Area Aa* and $0.5 < \alpha < 1$, with choice of e^* in $\gamma_0 = M^{-e^*}$ and c^* we used for
 3609 stable-decaying scheduling, we have

$$3610 L(N) \lesssim M^{-(2\alpha+2\beta-1)} + (M^{0.5} \gamma_0 N)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}} + \gamma_0 M^{0.5} N^{-c^*} \sqrt{L(N)} + \gamma_0^{\frac{1}{2\alpha}} M^{\frac{1}{4\alpha}} N^{-(1-c^*)(1-\frac{1}{2\alpha})}.$$

3613 So in intersection of Area Aa* and $0.5 < \alpha < 1$, we have

$$3614 R_f(M^*, f/M^*, (M^*)^{-e^*}) \lesssim f^{-\frac{2(4\alpha-1)(2\alpha+2\beta-1)}{16\alpha^2+8\alpha\beta+2\alpha-2\beta-1}}. \quad (123)$$

3616 Therefore, linear decaying scheduling has an advantage compared to constant learning rate in the
 3617 intersection of Area Aa* and $0.5 < \alpha < 1$.

3618
3619

H.2 ANALYSIS FOR COSINE SCHEDULING

3620
3621

In this section, we analyze the following cosine scheduling.

3622
3623

$$f(t) = \frac{1+1/N}{2} + \frac{1-1/N}{2} \cos\left(\frac{\pi}{N}t\right) \quad (124)$$

3624

It decays from 1 to $\frac{1}{N}$.

3625

3626

We will focus on Phase Aa, and follow a similar procedure to stable-decay scheduling.

3627
3628Note that we have to handle the following equation, where $Q_L(z) := \frac{4\gamma_0}{\pi} \int_0^z \frac{f(u)}{\sqrt{L(u)}} du$.

3629

$$\begin{aligned} L(N) &\approx M^{-(2\alpha+2\beta-1)} + (M^{0.5}Q_L(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}} \\ &+ \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp\left(-\frac{4\lambda_i\gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du\right) f(z)^2 dz. \end{aligned}$$

3630

In early iterations the drift term $(M^{0.5}Q_L(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}$ dominates. Solving $L(N) \approx (M^{0.5}Q_L(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}$ yields3631
3632
3633
3634

$$L(N) \approx (M^{0.5}\gamma_0 F(N))^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}}, \quad F(N) := \int_0^N f(u) du.$$

3635

For cosine scheduling $F(N) \approx N$ holds, so the drift term becomes $(M^{0.5}\gamma_0 N)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}}$.3636
3637
3638Now we move to the noise term. We split the noise term $L^{\text{noise}}(N)$ as3639
3640
3641

$$\begin{aligned} L^{\text{noise}}(N) &= \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^{N-\sqrt{N}} \exp\left(-\frac{4\lambda_i\gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du\right) f(z)^2 dz \\ &+ \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_{N-\sqrt{N}}^N \exp\left(-\frac{4\lambda_i\gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du\right) f(z)^2 dz =: T_{\leq(N-\sqrt{N})} + T_{>(N-\sqrt{N})}. \end{aligned}$$

3642
3643
3644**Bounding $T_{>(N-\sqrt{N})}$.** Note that $f(N) \approx f(z)$ holds for $(N-\sqrt{N}) < z < N$. So3645
3646
3647

$$\int_{(N-\sqrt{N})}^N \exp\left(-\frac{4\lambda_i\gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du\right) f(z)^2 dz \approx f(N)^2 \int_{(N-\sqrt{N})}^N \exp\left(-\frac{4\lambda_i\gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du\right) dz.$$

3648
3649
3650
3651There exist constants $c_0, c_1 > 0$ such that for $(N-\sqrt{N}) < z < N$ 3652
3653
3654

$$c_0 \frac{(N-z)f(N)}{\sqrt{L(N)}} \leq \int_z^N \frac{f(u)}{\sqrt{L(u)}} du \leq c_1 \frac{(N-z)f(N)}{\sqrt{L(N)}}.$$

3655
3656
3657

Therefore,

3658
3659
3660

$$\begin{aligned} T_{>qN} &\leq \frac{2\gamma_0^2}{\pi} f(N)^2 \sum_{i=1}^M V_i \int_{(N-\sqrt{N})}^N \exp\left(-\frac{4\lambda_i\gamma_0}{\pi} c_0 \frac{(N-z)f(N)}{\sqrt{L(N)}}\right) dz \\ &\approx \frac{2\gamma_0^2}{\pi} f(N)^2 \sum_{i=1}^M V_i \frac{\pi \sqrt{L(N)}}{4\lambda_i\gamma_0 c_0 f(N)} \approx \gamma_0 f(N) \sqrt{L(N)} \sum_{i=1}^M \frac{V_i}{\lambda_i} \\ &\approx \gamma_0 f(N) \sqrt{L(N)} \text{Tr}(\text{diag}(K)^{1/2}) \approx \gamma_0 f(N) \sqrt{L(N)} M^{0.5}. \end{aligned}$$

3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

To summarize, we have

$$T_{>(N-\sqrt{N})} \lesssim \gamma_0 f(N) \sqrt{L(N)} M^{0.5} \approx \gamma_0 M^{1/2} N^{-1} \sqrt{L(N)}.$$

3672 **Bounding $T_{\leq(N-\sqrt{N})}$.** Let $Q(z, N) = \frac{4\gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)}} du$.
 3673

3674 By the same procedure as the stable-decaying case, we can get.
 3675

$$\begin{aligned} 3676 \quad T_{\leq(N-\sqrt{N})} &\approx \frac{2\gamma_0^2}{\pi} M \int_0^{(N-\sqrt{N})} (M^{1/2} Q(z, N))^{-2+1/(2\alpha)} f(z)^2 dz \\ 3677 \\ 3678 \quad &\approx \gamma_0^2 M^{1/(4\alpha)} \int_0^{(N-\sqrt{N})} (Q(z, N))^{-2+1/(2\alpha)} f(z)^2 dz \\ 3680 \\ 3681 \end{aligned}$$

3682 And we have
 3683

$$\begin{aligned} 3683 \quad &\gamma_0^2 M^{1/(4\alpha)} \int_0^{(N-\sqrt{N})} (Q(z, N))^{-2+1/(2\alpha)} f(z)^2 dz \\ 3684 \\ 3685 \quad &\approx \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_0^{(N-\sqrt{N})} \frac{f(z)^2}{(\int_z^N \frac{f(u)}{\sqrt{L(u)}} du)^{2-1/(2\alpha)}} dz \\ 3686 \\ 3687 \quad &\lesssim \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_0^{(N-\sqrt{N})} \frac{f(z)^2}{(\int_z^N \frac{f(u)}{\sqrt{L(0)}} du)^{2-1/(2\alpha)}} dz \\ 3688 \\ 3689 \quad &\approx \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} \int_0^{(N-\sqrt{N})} \frac{f(z)^2}{(\int_z^N f(u) du)^{2-1/(2\alpha)}} dz \\ 3690 \\ 3691 \\ 3692 \\ 3693 \\ 3694 \end{aligned} \tag{125}$$

3695 Let the integral term be \mathcal{I} . First, we use the change of variables $z = N - u$, which transforms the
 3696 integration interval $[0, N - \sqrt{N}]$ into $[\sqrt{N}, N]$. The integral can be written as:
 3697

$$\mathcal{I} = \int_{\sqrt{N}}^N \frac{f(N-x)^2}{(\int_0^x f(N-v) dv)^{2-\frac{1}{2\alpha}}} dx. \tag{126}$$

3700 We evaluate the asymptotic magnitude of \mathcal{I} by analyzing the dominant contributions from the lower
 3701 limit ($x \approx \sqrt{N}$) and the upper limit ($x \approx N$).
 3702

3703 Contribution near the lower limit ($x \approx \sqrt{N}$): In the region where x is small, the learning rate
 3704 approaches its minimum, $f(N-x) \approx \frac{1}{N}$. Consequently, the cumulative sum scales linearly with the
 3705 inverse of N , i.e., $\int_0^x f(N-v) dv \approx \frac{x}{N}$. Substituting these approximations, the integrand becomes:
 3706

$$\frac{(1/N)^2}{(x/N)^{2-\frac{1}{2\alpha}}} = N^{-2} \cdot N^{2-\frac{1}{2\alpha}} \cdot x^{-2+\frac{1}{2\alpha}} = N^{-\frac{1}{2\alpha}} x^{-2+\frac{1}{2\alpha}}. \tag{127}$$

3710 Integrating this term with respect to x near the lower limit \sqrt{N} :

$$N^{-\frac{1}{2\alpha}} \left[x^{-1+\frac{1}{2\alpha}} \right]_{x=\sqrt{N}} \sim N^{-\frac{1}{2\alpha}} (\sqrt{N})^{-1+\frac{1}{2\alpha}} = N^{-\frac{1}{2\alpha}} N^{-\frac{1}{2}+\frac{1}{4\alpha}}. \tag{128}$$

3714 Simplifying the exponents yields the scaling $N^{-\frac{1}{2}-\frac{1}{4\alpha}}$.
 3715

3716 Contribution near the upper limit ($x \approx N$): In the region where x is large, $f(N-x) \sim \mathcal{O}(1)$ and
 3717 the cumulative sum scales as $\mathcal{O}(x)$. The integrand is dominated by $x^{-(2-\frac{1}{2\alpha})}$. Integrating this term
 3718 near the upper limit N :

$$\left[x^{-1+\frac{1}{2\alpha}} \right]^{x=N} \sim N^{-1+\frac{1}{2\alpha}}. \tag{129}$$

3721 The asymptotic behavior of \mathcal{I} is determined by the maximum of these two contributions. The con-
 3722 tribution from the lower limit dominates when $-\frac{1}{2}-\frac{1}{4\alpha} > -1+\frac{1}{2\alpha}$, which corresponds to $\alpha > 1.5$.
 3723 Otherwise, the contribution from the upper limit dominates. Thus,

$$\mathcal{I} \approx \begin{cases} N^{-\frac{1}{2}-\frac{1}{4\alpha}} & \text{if } \alpha > 1.5, \\ N^{-1+\frac{1}{2\alpha}} & \text{if } 0.5 < \alpha < 1.5. \end{cases} \tag{130}$$

3726 For $0.5 < \alpha < 1.5$, we have
 3727

$$3728 T_{\leq(N-\sqrt{N})} \lesssim \gamma_0^{1/(2\alpha)} M^{1/(4\alpha)} N^{-(1-1/(2\alpha))}.$$

3730 For $0.5 < \alpha < 1.5$, combining the bounds for the drift term and noise term, we have
 3731

$$3732 L(N) \lesssim M^{-(2\alpha+2\beta-1)} + (M^{0.5} \gamma_0 N)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}} + \gamma_0 M^{0.5} N^{-1} \sqrt{L(N)} + \gamma_0^{\frac{1}{2\alpha}} M^{\frac{1}{4\alpha}} N^{-(1-\frac{1}{2\alpha})}.$$

3734 In intersection of Area Aa* and $0.5 < \alpha < 1.5$, with choice of e^* in $\gamma_0 = M^{-e^*}$ and c^* we used for
 3735 stable-decaying scheduling, we have
 3736

$$3737 L(N) \lesssim M^{-(2\alpha+2\beta-1)} + (M^{0.5} \gamma_0 N)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}} + \gamma_0 M^{0.5} N^{-c^*} \sqrt{L(N)} + \gamma_0^{\frac{1}{2\alpha}} M^{\frac{1}{4\alpha}} N^{-(1-c^*)(1-\frac{1}{2\alpha})}.$$

3739 So in intersection of Area Aa* and $0.5 < \alpha < 1.5$, we have
 3740

$$3741 R_f(M^*, \mathfrak{f}/M^*, (M^*)^{-e^*}) \lesssim \mathfrak{f}^{-\frac{2(4\alpha-1)(2\alpha+2\beta-1)}{16\alpha^2+8\alpha\beta+2\alpha-2\beta-1}}. \quad (131)$$

3743 Therefore, linear decaying scheduling has an advantage compared to constant learning rate in the
 3744 intersection of Area Aa* and $0.5 < \alpha < 1.5$.
 3745

3747 I ANALYSIS ABOUT HYPOTHESIS FOR THE POSITION OF THE BENEFICIAL 3748 AREA

3750 In this section, we cover the analysis of stochastic gradient decay, which was deferred from Sec-
 3751 tion 5.1.

3752 We examine the decaying structure of the stochastic gradient. Assume a feature vector \mathbf{x} is drawn
 3753 from the distribution $\mathcal{N}(0, \mathbf{H})$, and its label is $y = \langle \mathbf{x}, \mathbf{w}^* \rangle$. Then the stochastic gradient for that
 3754 feature vector is

$$3756 \mathbf{g} = (\langle \mathbf{S}\mathbf{x}_t, \boldsymbol{\theta}_{t-1} \rangle - y) \mathbf{S}\mathbf{x}_t \\ 3757 = \mathbf{S}\mathbf{x}\mathbf{x}^\top \mathbf{S}^\top (\boldsymbol{\theta} - \boldsymbol{\theta}^*) - \mathbf{S}\mathbf{x}\mathbf{x}^\top \mathbf{w}_\perp.$$

3758 Taking the expectation of the stochastic gradient and using $\mathbf{S}\mathbf{H}\mathbf{w}_\perp = 0$, we obtain
 3759

$$3760 \mathbb{E}[\mathbf{g}] = \mathbf{S}\mathbf{H}\mathbf{S}^\top (\boldsymbol{\theta} - \boldsymbol{\theta}^*) - \mathbf{S}\mathbf{H}\mathbf{w}_\perp \\ 3761 = \mathbf{S}\mathbf{H}\mathbf{S}^\top (\boldsymbol{\theta} - \boldsymbol{\theta}^*).$$

3763 Lin et al. (2024) proved that the eigenvalues λ_i of $\mathbf{S}\mathbf{H}\mathbf{S}^\top$ satisfy $\lambda_i \asymp i^{-2\alpha}$. Let the eigenvalue
 3764 decomposition of $\mathbf{S}\mathbf{H}\mathbf{S}^\top$ be $\mathbf{S}\mathbf{H}\mathbf{S}^\top = \mathbf{U} \text{diag}(\lambda_i) \mathbf{U}^\top$. Then
 3765

$$3766 \mathbf{U}^\top \mathbb{E}[\mathbf{g}] = \text{diag}(\lambda_i) \mathbf{U}^\top (\boldsymbol{\theta} - \boldsymbol{\theta}^*),$$

3767 which provides the intuition that $\mathbb{E}[\mathbf{g}]$, expressed in the basis of the columns of \mathbf{U} , decays as $i^{-2\alpha}$.
 3768 Figure 23 shows that the expected gradient decays similarly to $i^{-2\alpha}$. Also, note that a larger α leads
 3769 to a steeper gradient decay.
 3770

3771 J SCALING LAW OF ADAM WITH HEURISTIC

3773 First, we recall the Adam (Kingma & Ba, 2014) update and notation. For the stochastic gradient
 3774

$$3775 \mathbf{g}_k = (\langle \mathbf{S}\mathbf{x}_k, \boldsymbol{\theta}_k \rangle - y_k) \mathbf{S}\mathbf{x}_k.$$

3776 Adam maintains first and second moment estimates
 3777

$$3778 \mathbf{m}_k = \beta_1 \mathbf{m}_{k-1} + (1 - \beta_1) \mathbf{g}_k, \\ 3779 \mathbf{v}_k = \beta_2 \mathbf{v}_{k-1} + (1 - \beta_2) \mathbf{g}_k^{\odot 2},$$

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

Figure 23: **Decay of gradient under the basis of U .** Colored solid lines show the average of gradients under the basis of U for the parameter $(\alpha, \beta) = (0.4, 0.5), (0.6, 0.5), (0.8, 0.5)$. On the legend, we only noted the α . The dotted line is fitted for the average of gradients, and we noted its slope in the legend. Slope is similar to 2α within error 0.13.

with bias corrections $\hat{\mathbf{m}}_k = \mathbf{m}_k / (1 - \beta_1^k)$, $\hat{\mathbf{v}}_k = \mathbf{v}_k / (1 - \beta_2^k)$. The update is

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \gamma_k \hat{\mathbf{m}}_k \odot (\epsilon \mathbf{1} + \hat{\mathbf{v}}_k)^{-1/2},$$

where \odot denotes elementwise multiplication and the $(-1/2)$ power is taken elementwise; $\epsilon > 0$ is the usual damping (we will set $\epsilon = 0$ in the asymptotic analysis).

Xiao et al. (2024) proposed a heuristic for Adam: take β_2 sufficiently close to 1 so that the second moment can be treated as an expectation, and assume (in high dimensions) approximate independence between the coordinatewise square $(S\mathbf{x}_k)^{\odot 2}$ and the squared residual $(\langle S\mathbf{x}_k, \boldsymbol{\theta}_{k-1} \rangle - y_k)^2$.

We present results under a same heuristic. In addition, Ferbach et al. (2025) prove that SGD with momentum obeys the same scaling law as SGD; motivated by this, we set $\beta_1 = 0$ and omit the first-moment term for simplicity.

Second-moment proxy and normalized update. Under the heuristic of Xiao et al. (2024),

$$\begin{aligned} \hat{\mathbf{v}}_k &\approx \mathbb{E}[(S\mathbf{x}_k)^{\odot 2} (\langle S\mathbf{x}_k, \boldsymbol{\theta}_k \rangle - y_k)^2 \mid \mathcal{F}_k] \\ &\approx \mathbb{E}[(S\mathbf{x}_k)^{\odot 2}] \mathbb{E}[(\langle S\mathbf{x}_k, \boldsymbol{\theta}_k \rangle - y_k)^2 \mid \mathcal{F}_k] \\ &= \text{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^T) \cdot L(\boldsymbol{\theta}_k). \end{aligned}$$

Hence, the (elementwise) normalized update is

$$\boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k \approx \frac{(\langle S\mathbf{x}_k, \boldsymbol{\theta}_k \rangle - y_k) S\mathbf{x}_k}{\sqrt{\text{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^T) \cdot L(\boldsymbol{\theta}_k)}}.$$

One-step update formula. Recalling the Taylor expansion used for signSGD,

$$\mathbb{E}[q(\boldsymbol{\theta}_{k+1}) - q(\boldsymbol{\theta}_k) \mid \mathcal{F}_k] = \mathbb{E}[\langle \nabla q(\boldsymbol{\theta}_k), \boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k \rangle \mid \mathcal{F}_k] + \frac{1}{2} \mathbb{E}[\langle \nabla^2 q, (\boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k)^{\otimes 2} \rangle \mid \mathcal{F}_k].$$

Gradient term:

$$\mathbb{E}[\langle \nabla q(\boldsymbol{\theta}_k), \boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k \rangle \mid \mathcal{F}_k] \approx \left\langle \nabla q(\boldsymbol{\theta}_k), \frac{\mathbf{S}\mathbf{H}\mathbf{S}^T \boldsymbol{\theta}_k - \mathbf{S}\mathbf{H}\mathbf{w}^*}{\sqrt{\text{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^T) \cdot L(\boldsymbol{\theta}_k)}} \right\rangle.$$

3834 *Quadratic term:*

$$\begin{aligned}
 3835 \quad & \mathbb{E}\left[\langle \nabla^2 q, (\boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k)^{\otimes 2} \rangle \mid \mathcal{F}_k\right] \\
 3836 \quad & = \mathbb{E}\left[\left\langle \nabla^2 q, \text{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1/2} \mathbf{S}\mathbf{x}_k \mathbf{x}_k^\top \mathbf{S}^\top \text{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1/2} \right\rangle \frac{(\langle \mathbf{S}\mathbf{x}_k, \boldsymbol{\theta}_k \rangle - y_k)^2}{L(\boldsymbol{\theta}_k)} \mid \mathcal{F}_k\right] \\
 3837 \quad & = \frac{1}{L(\boldsymbol{\theta}_k)} \left(\langle \text{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1/2} \nabla^2 q \text{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1/2}, \mathbf{S}\mathbf{H}\mathbf{S}^\top \rangle L(\boldsymbol{\theta}_k) \right. \\
 3838 \quad & \quad \left. + 2 \langle \mathbf{S}\mathbf{H}\mathbf{S}^\top \text{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1/2} \nabla^2 q \text{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1/2} \mathbf{S}\mathbf{H}\mathbf{S}^\top, (\boldsymbol{\theta}_k - \boldsymbol{\theta}^*)^{\otimes 2} \rangle \right).
 \end{aligned}$$

3845 Combining the two contributions and inserting a stepsize γ_k ,

$$\begin{aligned}
 3846 \quad & \mathbb{E}[q(\boldsymbol{\theta}_{k+1}) - q(\boldsymbol{\theta}_k) \mid \mathcal{F}_k] = -\frac{\gamma_k}{\sqrt{L(\boldsymbol{\theta}_k)}} \langle \nabla q(\boldsymbol{\theta}_k), \bar{\mathbf{K}}(\boldsymbol{\theta}_k - \boldsymbol{\theta}^*) \rangle + \frac{\gamma_k^2}{2} \langle \nabla^2 q, \mathbf{K}_\tau \rangle \\
 3847 \quad & \quad + \frac{\gamma_k^2}{L(\boldsymbol{\theta}_k)} \langle \mathbf{S}\mathbf{H}\mathbf{S}^\top \text{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1/2} \nabla^2 q \text{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1/2} \mathbf{S}\mathbf{H}\mathbf{S}^\top, (\boldsymbol{\theta}_k - \boldsymbol{\theta}^*)^{\otimes 2} \rangle,
 \end{aligned}$$

3851 where $\mathbf{K}_\tau := \text{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1/2} \mathbf{S}\mathbf{H}\mathbf{S}^\top \text{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1/2}$.

3853 **Mode-wise recursion.** For $r_i(k) := (\boldsymbol{\theta}_k - \boldsymbol{\theta}^*)^\top (\mathbf{K}\mathbf{u}_i \otimes \mathbf{w}_i) (\boldsymbol{\theta}_k - \boldsymbol{\theta}^*)$ (cf. Appendix E.1),

$$\begin{aligned}
 3854 \quad & \mathbb{E}[r_i(k+1) - r_i(k) \mid \mathcal{F}_k] = -\frac{2\gamma_k}{\sqrt{L(\boldsymbol{\theta}_k)}} \lambda_i(\bar{\mathbf{K}}) r_i(k) + \gamma_k^2 (\mathbf{w}_i^\top \mathbf{K}_\tau \mathbf{K}\mathbf{u}_i) + \frac{2\gamma_k^2}{L(\boldsymbol{\theta}_k)} \lambda_i(\bar{\mathbf{K}}) r_i(k) \\
 3855 \quad & \quad = -\left(\frac{2\gamma_k}{\sqrt{L(\boldsymbol{\theta}_k)}} - \frac{2\gamma_k^2}{L(\boldsymbol{\theta}_k)} \right) \lambda_i(\bar{\mathbf{K}}) r_i(k) + \gamma_k^2 (\mathbf{w}_i^\top \mathbf{K}_\tau \mathbf{K}\mathbf{u}_i).
 \end{aligned}$$

3861 We now assume $f \equiv 1$, and $\gamma_k = \gamma_0$ for simplicity. Passing to the ODE limit as in Section E.2 we
3862 get following ODE for $P(t) = L(t/\gamma_0)$ and $p_i(t) = r_i(t/\gamma_0)$.

$$\frac{dp_i}{dt} = -2 \left(\frac{1}{\sqrt{P(t)}} - \frac{\gamma_0}{P(t)} \right) \lambda_i(\bar{\mathbf{K}}) p_i(t) + \gamma_0 V'_i. \quad (132)$$

3863 Interpreting the solution of the ODE as an implicit integral equation and summing over i , similar to
3864 Section E.2, and writing

$$Q_2(N) := 2\gamma_0 \int_0^N \left(\frac{1}{\sqrt{L(u)}} - \gamma_0 \frac{1}{L(u)} \right) du,$$

3865 we obtain the implicit integral equation

$$\begin{aligned}
 3866 \quad & L(N) = \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 + \sum_{i=1}^M r_i(0) \exp(-\lambda_i Q_2(N)) \\
 3867 \quad & \quad + \gamma_0^2 \sum_{i=1}^M V'_i \int_0^N \exp\left(-2\lambda_i \gamma_0 \int_z^N \left(\frac{1}{\sqrt{L(u)}} - \gamma_0 \frac{1}{L(u)} \right) du\right) dz,
 \end{aligned}$$

3868 where $V'_i := \mathbf{w}_i^\top \mathbf{K}_\tau \mathbf{K}\mathbf{u}_i$.

3869 **Drift transformation and limit phase.** By the same drift/approximation transformation as in
3870 equation 35,

$$\begin{aligned}
 3871 \quad & L(N) = M^{-2\alpha + \max(0, 1-2\beta)} + (M^{\min(\alpha, 0.5)} Q_2(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}} \\
 3872 \quad & \quad + \mathbf{1}_{\{\alpha>0.5, \beta>0.5\}} M^{-1} (M^{\min(\alpha, 0.5)} Q_2(N))^{-1+\frac{1}{2\alpha}} + \gamma_0^2 \sum_{i=1}^M V'_i \int_0^N e^{-2\lambda_i \gamma_0 \int_z^N \left(\frac{f(u)}{\sqrt{L(u)}} - \gamma_0 \frac{f(u)^2}{L(u)} \right) du} f(z)^2 dz.
 \end{aligned}$$

We will first handle the limit phase, similar to Section E.3.2. At stationarity, let $p_i(t) \rightarrow s_i$ and $P(t) \rightarrow L_\infty$, we must have

$$-2 \left(\frac{1}{\sqrt{L_\infty}} - \frac{\gamma_0}{L_\infty} \right) \lambda_i(\bar{\mathbf{K}}) s_i + \gamma_0 V_i = 0 \implies s_i = \frac{\gamma_0 \sqrt{L_\infty}}{2 \lambda_i(\bar{\mathbf{K}})} V_i' \frac{1}{1 - \frac{\gamma_0}{\sqrt{L_\infty}}} = \frac{\gamma_0 \sqrt{L_\infty}}{2 \lambda_i(\bar{\mathbf{K}})} (\mathbf{w}_i^\top \mathbf{K}_\tau \mathbf{K} \mathbf{u}_i) \frac{1}{1 - \frac{\gamma_0}{\sqrt{L_\infty}}}.$$

Using the **loss** decomposition $P(t) = \sum_{i=1}^M p_i(t) + \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2$, we obtain

$$\begin{aligned} L_\infty &= \sum_{i=1}^M s_i + \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 = \frac{\gamma_0}{2} \left(\sum_{i=1}^M \frac{\mathbf{w}_i^\top \mathbf{K}_\tau \mathbf{K} \mathbf{u}_i}{\lambda_i(\bar{\mathbf{K}})} \right) \sqrt{L_\infty} \frac{1}{1 - \frac{\gamma_0}{\sqrt{L_\infty}}} + \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 \\ &= \frac{\gamma_0}{2} \text{Tr}(\text{diag}(K)^{1/2} \mathbf{K}_\tau) \sqrt{L_\infty} \frac{1}{1 - \frac{\gamma_0}{\sqrt{L_\infty}}} + \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 \\ &= \frac{\gamma_0}{2} \text{Tr}(\text{diag}(K)^{1/2}) \sqrt{L_\infty} \frac{1}{1 - \frac{\gamma_0}{\sqrt{L_\infty}}} + \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2. \end{aligned}$$

And

$$L_\infty \approx \max \left\{ \gamma_0^2 \text{Tr}(\text{diag}(K)^{1/2})^2, \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 \right\} \approx \max \left\{ \gamma_0^2 M^{2-2 \min(\alpha, 0.5)}, M^{-2\alpha + \max(0, 1-2\beta)} \right\}.$$

asymptotically satisfies the equation. So we have the same floor as for signSGD.

Since f is bounded and $L(N) \geq \gamma_0^2 M^{2-2 \min(\alpha, 0.5)}$,

$$\frac{\frac{f(u)}{\sqrt{L(u)}}}{\gamma_0 \frac{f(u)^2}{L(u)}} = \frac{\sqrt{L(u)}}{\gamma_0 f(u)} \gtrsim M^{1-\min(\alpha, 0.5)},$$

so the subtraction inside Q_2 is asymptotically negligible and $Q_2(N) \approx Q(N)$. Hence, the drift contribution coincides with that of signSGD.

Scaling law (constant learning rate). For $f \equiv 1$, Adam (under this heuristic) follows the same scaling law as signSGD:

$$\begin{aligned} R(M, N, \gamma_0) &\approx M^{-2\alpha + \max(0, 1-2\beta)} + (M^{\min(\alpha, 0.5)} N \gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}} \\ &\quad + (M^{\frac{6\alpha-1}{4\alpha-2}} N \gamma_0)^{-\frac{2(2\alpha-1)}{2\alpha+1}} + \gamma_0^2 M^{2-2 \min(\alpha, 0.5)}. \end{aligned}$$

Since the loss formula $R(M, N, \gamma_0)$ is the same as signSGD, the compute-optimal scaling law will also be the same as signSGD. So we expect that Adam has the compute-optimal scaling law in Table 1. Figure 24 shows that exponents in the Table 1 and measured compute-optimal loss slope and optimal model size slope (in log-log plot) for Adam match well.

Figure 24: **Measure of compute-optimal loss slope and optimal model size slope for Adam.** We validate the exponent of $R(M^*, \frac{f}{M^*}, \gamma_0^*)$ and M^* with respect to f in the Table 1. The left plot shows the compute-optimal loss with respect to flops $6MN$. The right plot shows the optimal model size with respect to flops $6MN$. Each plot includes the measured slope and the theoretical slope from the Table 1. Parameters : $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 10^{-8}$, $\gamma_0 = 0.002$.

3996 **K OMITTED ANALYSIS FROM SECTION E**
 3997

3998 **K.1 OMITTED PROOF OF (31) AND (33)**
 3999

4000 In this section, we cover omitted proof of (31) and (33). Note that the proof is almost similar to
 4001 Paquette et al. (2024), but we cover it briefly for completeness. Refer to Appendix F, G, H of Paquette
 4002 et al. (2024) for more details.

4003 It is enough to prove

$$\begin{aligned} 4004 \quad & -\frac{1}{2\pi i} \oint_{\Gamma} e^{-p_d Q(N)z} \langle \mathcal{L}(z), v^{\otimes 2} \rangle dz \approx M^{-2\alpha+\max(0, 1-2\beta)} \\ 4005 \quad & + \left(M^{\min(\alpha, 0.5)} Q(N) \right)^{-\frac{2\alpha+2\beta-1}{2\alpha}} \\ 4006 \quad & + 1_{\{\alpha>0.5, \beta>0.5\}} M^{-1} \left(M^{\min(\alpha, 0.5)} Q(N) \right)^{-1+\frac{1}{2\alpha}}. \end{aligned}$$

4012 From now on, we will use similar notation to Paquette et al. (2024), except in the inevitable case,
 4013 to facilitate easy comparison for the reader. Note that we use M and d for model size and initial
 4014 dimension before projection, while Paquette et al. (2024) uses d and v .

4015 We use Γ for the contour containing the spectrum of \mathbf{K} , while Paquette et al. (2024) used $\Gamma \cup \Gamma_0$
 4016 for that, where Γ_0 is a small circle containing the origin.

4017 Let

$$4019 \quad \mathcal{F}(N) := -\frac{1}{2\pi i} \oint_{\Gamma} \langle \mathcal{R}(z), (H^{1/2}w^*)^{\otimes 2} \rangle e^{-p_d Q(N)z} dz. \quad (133)$$

4021 The exponential kernel $e^{-p_d Q(N)z}$ replaces all polynomial weights in the analysis of Paquette et al.
 4022 (2024). The resulting leading orders remain the same while constants and exponents are altered in a
 4023 transparent way; precise statements follow.

4024 We can split the $\mathcal{F}(N)$ by splitting the keyhole contour Γ . We let

$$4026 \quad \mathcal{F}(N) = \mathcal{F}_0(N) + \mathcal{F}_{\text{caps}}(N) + \mathcal{F}_C(N) + (\text{lower-order}), \quad (134)$$

4027 where \mathcal{F}_0 collects the small circle around the origin, $\mathcal{F}_{\text{caps}}$ collects the right/left caps adjacent to the
 4028 positive real axis, and \mathcal{F}_C collects the central arc close to $[0, 1]$. Refer to Appendix F of Paquette
 4029 et al. (2024) for more details about the picture of contour and decomposition of contour.

4030 In the following proposition the function $(x)_+ := \max(x, 0)$ is used.

4031 *Proposition K.1.* $\mathcal{F}_0(N)$ is independent of N and obeys

$$4033 \quad \left| \mathcal{F}_0(0) - \sum_{j=1}^d \frac{j^{-2\alpha-2\beta}}{1+j^{-2\alpha} M^{2\alpha} \kappa(d/M)} \right| \leq C M^{-2\alpha+(2\beta-1)_+-1}.$$

4036 *Sketch.* Putting $z = 0$ to the exponential leads to 1, so we can reduce to the analysis of Paquette
 4037 et al. (2024). So the error bound is identical. \square

4039 After this $\mathcal{F}_0(N) \approx M^{-2\alpha+\max(0, 1-2\beta)}$ holds by identical procedure calculating
 4040 $\sum_{j=1}^d \frac{j^{-2\alpha-2\beta}}{1+j^{-2\alpha} M^{2\alpha} \kappa(d/M)}$.

4042 *Proposition K.2.* There exist functions $f, g \geq 0$ with

$$4043 \quad f(N) \leq C \exp(-p_d Q(N) M^{-2\alpha}), \quad g(N) \leq C \exp(-p_d Q(N)),$$

4044 so that

$$4046 \quad |\mathcal{F}_{\text{caps}}(N)| \leq C f(N) M^{-2\alpha+(1-2\beta)_+} + C g(N).$$

4047 *Sketch.* Use $|m(z) - 1| \lesssim M^{-\min\{2\alpha, 1\}}$ (as in Paquette et al. (2024)) on a cap pushed $\mathcal{O}(1)$ -close
 4048 to $[0, 1]$ to replace $\langle \mathcal{R}(z), (H^{1/2}w^*)^{\otimes 2} \rangle$ by a simple partial fraction, and control the remainder by
 4049 the real part of z . \square

4050 The main contribution arises from the arc parameterized by $z(u) = u + i\eta(u)$ with $u \in [M^{-2\alpha}, 1]$
 4051 and $|\eta(u)| \ll u$. Along this arc we have the uniform approximation
 4052

$$4053 \quad \left| m(z(u)) - \left(1 - \frac{\pi}{2\alpha} (c(u) + i) u^{-1/(2\alpha)} M^{-1} \right) \right| \leq \varepsilon u^{-1/(2\alpha)} M^{-1} \quad (135)$$

4054 for some bounded real $c(u)$. Inserting (135) in $\mathcal{R}(z) = (-zI + m(z)H)^{-1}$ and extracting the
 4055 imaginary part produces two canonical integrals,
 4056

$$4057 \quad \mathcal{F}_{pp}(N) := \frac{1}{2\alpha} \int_0^1 u^{(2\beta-1)/(2\alpha)} e^{-p_d Q(N)u} du, \quad \mathcal{F}_{ac}(N) := \frac{c_\beta}{2\alpha} \int_{M^{-2\alpha}}^1 u^{-1/(2\alpha)} M^{-1} e^{-p_d Q(N)u} du, \quad (136)$$

4059 with $c_\beta = \sum_{j \geq 1} j^{-2\beta}$ if $2\beta > 1$ and $c_\beta = 0$ otherwise.
 4060

4061 *Proposition K.3.* There exists $C > 0$ such that for all $N \geq 0$, $|\mathcal{F}_C(N)| \leq C(\mathcal{F}_{pp}(N) + \mathcal{F}_{ac}(N))$.
 4062 Moreover, there are $A > 0$ and a bounded function $C(N) > 0$ with $C(N) \leq 1 + \varepsilon$ whenever
 4063 $p_d Q(N) \in [A, M^{2\alpha}/A]$, and

$$4064 \quad \frac{1}{C(N)} (\mathcal{F}_{pp}(N) + \mathcal{F}_{ac}(N)) \leq \mathcal{F}_C(N) \leq C(N) (\mathcal{F}_{pp}(N) + \mathcal{F}_{ac}(N)).$$

4067 *Sketch.* Parameterize Γ_C by u and use (135) to separate real/imaginary parts. The imaginary terms
 4068 integrate exactly to (136), while the real part is smaller by a factor $\mathcal{O}(\varepsilon)$ since $|\eta(u)| \ll u$. \square
 4069

4070 *Proposition K.4 (Asymptotics of \mathcal{F}_{pp}).* Assume $2\alpha + 2\beta > 1$ and set $X := p_d Q(N)$. For any $\varepsilon > 0$
 4071 there exists $A > 0$ such that for $X \geq A$,

$$4072 \quad |\mathcal{F}_{pp}(N) - g_{pp}(N)| \leq \varepsilon g_{pp}(N),$$

4073 where

$$4074 \quad g_{pp}(N) := (2\alpha)^{-1} X^{-(1+\beta/\alpha)+1/(2\alpha)} \Gamma\left(\frac{\beta}{\alpha} - \frac{1}{2\alpha} + 1\right).$$

4075 Moreover, if $X \leq \tilde{A}$ then $c \leq \mathcal{F}_{pp}(N) \leq C$ for constants $c, C > 0$, and if $X \geq \tilde{A} M^{2\alpha}$ then
 4076 $\mathcal{F}_{pp}(N) \leq \tilde{C} \mathcal{F}_0(N)$ for some $\tilde{C} > 0$ independent of M .
 4077

4078 *Sketch.* With the change of variables $w = Xu$, we get

$$4079 \quad \mathcal{F}_{pp}(N) = (2\alpha)^{-1} X^{-(1+\beta/\alpha)+1/(2\alpha)} \int_0^X w^{(2\beta-1)/(2\alpha)} e^{-w} dw.$$

4080 Comparing to the complete gamma integral yields the relative error bound in terms of the upper
 4081 incomplete gamma tail, which can be made $\leq \varepsilon$ by choosing A large. The remaining bounds follow
 4082 by monotonicity and elementary estimates. \square
 4083

4084 *Proposition K.5 (Asymptotics of \mathcal{F}_{ac}).* Let $X := p_d Q(N)$. There exists $C(\alpha, \beta) > 0$ such that

$$4085 \quad \mathcal{F}_{ac}(N) \leq \begin{cases} C \mathcal{F}_0(N), & 2\beta > 1, 2\alpha < 1, \\ 0, & 2\beta < 1. \end{cases}$$

4086 If in addition $2\alpha > 1$ and $2\beta > 1$, then for any $\varepsilon > 0$ there is $A > 0$ such that whenever $X \in$
 4087 $[A, M^{2\alpha}/A]$,

$$4088 \quad |\mathcal{F}_{ac}(N) - g_{ac}(N)| \leq \varepsilon g_{ac}(N), \quad g_{ac}(N) := \left(\sum_{j=1}^{\nu} j^{-2\beta} \right) (2\alpha)^{-1} \Gamma\left(1 - \frac{1}{2\alpha}\right) X^{-1+1/(2\alpha)} M^{-1}.$$

4089 Furthermore, for any $\tilde{A} > 0$ there exist constants $C, c > 0$ (independent of M) such that

$$4090 \quad \mathcal{F}_{ac}(N) \leq \begin{cases} C M^{-1}, & X \leq \tilde{A}, \\ c \mathcal{F}_0(N), & X \geq \tilde{A} M^{2\alpha}. \end{cases}$$

4091 *Sketch.* Compare the truncated integral in (136) with its extension to $[0, \infty)$ and control the two
 4092 tails $[0, M^{-2\alpha}]$ and $[1, \infty)$ separately. The first is at most $\tilde{c} M^{-2\alpha}$; the second is bounded by
 4093 $M^{-1} X^{-1} e^{-X}$. Normalizing by $g_{ac}(N)$ shows both are relatively small for $X \in [A, M^{2\alpha}/A]$
 4094 with A large. The endpoint bounds follow from dropping the exponential and from a crude
 4095 estimate $\int e^{-Xu} du \leq X^{-1} e^{-X M^{-2\alpha}}$ when $X \gtrsim M^{2\alpha}$. \square

4104 Finally we get
4105
4106
$$-\frac{1}{2\pi i} \oint_{\Gamma} e^{-p_d Q(N)z} \langle \mathcal{L}(z), v^{\otimes 2} \rangle dz \approx \mathcal{F}_0(N) + \mathcal{F}_{\text{caps}}(N) + \mathcal{F}_C(N)$$

4107
4108
$$\approx M^{-2\alpha+\max(0, 1-2\beta)} + (p_d Q(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}$$

4109
4110
$$+ 1_{\{\alpha>0.5, \beta>0.5\}} M^{-1} (p_d Q(N))^{-1+\frac{1}{2\alpha}} M^{-2\alpha+\max(0, 1-2\beta)}$$

4111
4112
$$\approx M^{-2\alpha+\max(0, 1-2\beta)} + (M^{\min(\alpha, 0.5)} Q(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}$$

4113
4114
$$+ 1_{\{\alpha>0.5, \beta>0.5\}} M^{-1} (M^{\min(\alpha, 0.5)} Q(N))^{-1+\frac{1}{2\alpha}}.$$

4115
4116
4117

4118 K.2 NOTE ON THE $\arcsin x \approx x$ APPROXIMATION
4119

4120 We explain that it is possible to replace the linear approximation $\arcsin x \approx x$ by an inequality, and
4121 the main results of our paper remain unchanged.

4122 **Replacing the \arcsin –linearization by a uniform sandwich.** Fix $0 < \rho \leq 1$ and define
4123

$$c_1(\rho) := \inf_{|t| \leq \rho} \frac{\arcsin t}{t} = 1, \quad c_2(\rho) := \sup_{|t| \leq \rho} \frac{\arcsin t}{t} = \frac{\arcsin \rho}{\rho} \leq \frac{\pi}{2}.$$

4124 For $x \in \mathbb{R}^d$ with $\|x\|_\infty \leq \rho$, the entrywise odd and monotone map $t \mapsto \arcsin t$ satisfies the
4125 componentwise bounds
4126

$$c_1(\rho) x \leq \arcsin(x) \leq c_2(\rho) x.$$

4127 In our update, put $v_k := \theta_k - \theta^*$ and
4128

$$x_k := \frac{\bar{K} v_k}{\sqrt{L(\theta_k)}}, \quad \text{so that } \arcsin(x_k) = D_k x_k,$$

4129 for some diagonal $D_k = \text{diag}(\kappa_{k,1}, \dots, \kappa_{k,d})$ with $c_1(\rho) \leq \kappa_{k,j} \leq c_2(\rho)$. Using $K^\top = K$ and
4130 $K^\top \bar{K} = \bar{K}^\top K^\top$, the one-step drift can be written as
4131

$$\mathbb{E}[r_i(k+1) - r_i(k) \mid \mathcal{F}_k] = -\frac{2\gamma_k}{\pi\sqrt{L(\theta_k)}} v_k^\top (K \mathbf{u}_i \mathbf{w}_i^\top + \mathbf{w}_i \mathbf{u}_i^\top K) D_k \bar{K} v_k + \frac{2\gamma_k^2}{\pi} (\mathbf{w}_i^\top K_\sigma K \mathbf{u}_i).$$

4132 Since D_k is diagonal with $c_1(\rho)I \preceq D_k \preceq c_2(\rho)I$, the quadratic form is sandwiched between the
4133 same expression with D_k replaced by $c_1(\rho)I$ and $c_2(\rho)I$. Recalling the identity used earlier,
4134

$$v_k^\top (K \mathbf{u}_i \mathbf{w}_i^\top + \mathbf{w}_i \mathbf{u}_i^\top K) \bar{K} v_k = 2 \lambda_i(\bar{K}) r_i(k),$$

4135 we obtain the two-sided one-step bound
4136

$$\begin{aligned} -\frac{4c_2(\rho)\gamma_k}{\pi\sqrt{L(\theta_k)}} \lambda_i(\bar{K}) r_i(k) + \frac{2\gamma_k^2}{\pi} (\mathbf{w}_i^\top K_\sigma K \mathbf{u}_i) &\leq \mathbb{E}[r_i(k+1) - r_i(k) \mid \mathcal{F}_k] \\ &\leq -\frac{4c_1(\rho)\gamma_k}{\pi\sqrt{L(\theta_k)}} \lambda_i(\bar{K}) r_i(k) + \frac{2\gamma_k^2}{\pi} (\mathbf{w}_i^\top K_\sigma K \mathbf{u}_i). \end{aligned}$$

4137 **Consequences for the ODE limit and the implicit integral equation.** Let $\gamma_k = \gamma_0 f(k)$, $t = k\gamma_0$,
4138 $p_i(t) := r_i(k)$, and $P(t) := L(\theta_k)$, as in Appendix E.2. Then we obtain the differential inequalities
4139

$$-\frac{4c_2(\rho)}{\pi\sqrt{P(t)}} \lambda_i(\bar{K}) f(t/\gamma_0) p_i(t) + \frac{2\gamma_0}{\pi} f(t/\gamma_0)^2 V_i \leq \dot{p}_i(t) \leq -\frac{4c_1(\rho)}{\pi\sqrt{P(t)}} \lambda_i(\bar{K}) f(t/\gamma_0) p_i(t) + \frac{2\gamma_0}{\pi} f(t/\gamma_0)^2 V_i,$$

4140 with $V_i := \mathbf{w}_i^\top K_\sigma K \mathbf{u}_i$. Solving these linear comparison inequalities yields the bounds
4141

$$p_i^{(c_2)}(t) \leq p_i(t) \leq p_i^{(c_1)}(t), \quad P^{(c_2)}(t) \leq P(t) \leq P^{(c_1)}(t),$$

4158 where $p_i^{(c)}(\cdot)$ and $P^{(c)}(\cdot)$ denote the solutions of the ODE/integral equations from Appendix E.2
 4159 with the factor $\frac{4}{\pi}$ replaced by $\frac{4c}{\pi}$. Equivalently, defining
 4160

$$4161 \quad Q_c(N) := \frac{4c\gamma_0}{\pi} \int_0^N \frac{f(u)}{\sqrt{P(u)}} du,$$

4163 the drift/noise expressions remain valid with $Q(N)$ replaced by $Q_c(N)$, and all proofs carry through
 4164 verbatim.
 4165

4166 **Only multiplicative constants change; scaling exponents and phases do not.** Every appearance
 4167 of $Q(N)$ in the final formulas enters either through an exponential $e^{-\lambda Q(N)}$ or through a polynomial
 4168 factor $(M^\mu Q(N))^{-\nu}$. Replacing Q by $Q_c = cQ$ only multiplies these terms by constants: $e^{-\lambda c Q}$
 4169 converts to $(M^\mu c Q)^{-\nu} = c^{-\nu} (M^\mu Q)^{-\nu}$. Hence the *rates, exponents, and phase boundaries* of
 4170 the scaling laws are unchanged; only the prefactors are rescaled by fixed constants depending on
 4171 $c_1(\rho), c_2(\rho) \in [1, \pi/2]$. In particular, all “ \asymp ” statements (equalities up to absolute constants) remain
 4172 valid with the same exponents.
 4173

4174 K.3 NOTE ON APPROXIMATION ERROR

4175 Though proof of Paquette et al. (2024) implicitly implies
 4176

$$4177 \quad \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 \asymp M^{-2\alpha + \max(0, 1-2\beta)}.$$

4178 It was not explicitly specified. So we clarify it here.
 4179

4180 First,

$$4181 \quad -\frac{1}{2\pi i} \oint_{|z|=\varepsilon} \langle (\widehat{\mathbf{K}} - z\mathbf{I})^{-1}, (\mathbf{H}^{1/2} \mathbf{w}^*)^{\otimes 2} \rangle dz \asymp M^{-2\alpha + \max(0, 1-2\beta)},$$

4183 is directly implied from Proposition H.3 of Paquette et al. (2024). So it is enough to prove the
 4184 following claim.
 4185

4186 **Claim.** Let

$$4187 \quad \widehat{\mathbf{K}} = \mathbf{H}^{1/2} \mathbf{S}^\top \mathbf{S} \mathbf{H}^{1/2}, \quad \mathbf{w}^* = \mathbf{S}^\top \boldsymbol{\theta}^* + \mathbf{w}_\perp, \quad \mathbf{S} \mathbf{H} \mathbf{w}_\perp = \mathbf{0}.$$

4188 For a sufficiently small circle $|z| = \varepsilon$ enclosing only the eigenvalue 0 of $\widehat{\mathbf{K}}$,
 4189

$$4190 \quad -\frac{1}{2\pi i} \oint_{|z|=\varepsilon} \langle (\widehat{\mathbf{K}} - z\mathbf{I})^{-1}, (\mathbf{H}^{1/2} \mathbf{w}^*)^{\otimes 2} \rangle dz = \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2.$$

4193 **Proof.** By the Riesz projection theorem (Dunford–Riesz functional calculus), for a small circle $|z| =$
 4194 ε enclosing only the eigenvalue 0 of $\widehat{\mathbf{K}}$,
 4195

$$4196 \quad \Pi_0 := -\frac{1}{2\pi i} \oint_{|z|=\varepsilon} (\widehat{\mathbf{K}} - z\mathbf{I})^{-1} dz$$

4198 is the spectral Riesz projector onto the 0-eigenspace; since $\widehat{\mathbf{K}}$ is Hermitian, Π_0 is the *orthogonal*
 4199 projector onto $\ker(\widehat{\mathbf{K}})$.
 4200

4201 And we have

$$4203 \quad -\frac{1}{2\pi i} \oint_{|z|=\varepsilon} \langle (\widehat{\mathbf{K}} - z\mathbf{I})^{-1}, (\mathbf{H}^{1/2} \mathbf{w}^*)^{\otimes 2} \rangle dz = \langle \Pi_0, (\mathbf{H}^{1/2} \mathbf{w}^*)^{\otimes 2} \rangle = \|\Pi_0 \mathbf{H}^{1/2} \mathbf{w}^*\|_2^2.$$

4205 Since $\ker(\widehat{\mathbf{K}}) = \{ \mathbf{x} : \mathbf{S} \mathbf{H}^{1/2} \mathbf{x} = \mathbf{0} \} = (\text{Im}(\mathbf{H}^{1/2} \mathbf{S}^\top))^\perp$, We have the orthogonal decomposi-
 4206 tion
 4207

$$4208 \quad \mathbf{H}^{1/2} \mathbf{w}^* = \underbrace{\mathbf{H}^{1/2} \mathbf{S}^\top \boldsymbol{\theta}^*}_{\in \text{Im}(\mathbf{H}^{1/2} \mathbf{S}^\top)} + \underbrace{\mathbf{H}^{1/2} \mathbf{w}_\perp}_{\in (\text{Im}(\mathbf{H}^{1/2} \mathbf{S}^\top))^\perp},$$

4210 where the second membership uses $\mathbf{S} \mathbf{H} \mathbf{w}_\perp = \mathbf{0}$. Hence $\Pi_0 \mathbf{H}^{1/2} \mathbf{w}^* = \mathbf{H}^{1/2} \mathbf{w}_\perp$, and therefore
 4211

$$4211 \quad \langle \Pi_0, (\mathbf{H}^{1/2} \mathbf{w}^*)^{\otimes 2} \rangle = \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2. \quad \square$$

4212 K.4 PROOF OF MATRIX INEQUALITY FOR $\text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^\top)^{-1/2}$
42134214 We will prove the inequality in the following form in this section.
4215

4216
$$c_1 M^{\min(0.5, \alpha)} I \preceq \text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^\top)^{-1/2} \preceq c_2 M^{\min(0.5, \alpha)} I$$

4217

4218 **Setup.** Let $\mathbf{S} \in \mathbb{R}^{M \times d}$ have i.i.d. entries $S_{ij} \sim \mathcal{N}(0, 1/M)$, and let
4219

4220
$$\mathbf{H} = \text{diag}(1^{-2\alpha}, 2^{-2\alpha}, \dots, d^{-2\alpha}), \quad \alpha > 0.$$

4221 Then, for each $i \in \{1, \dots, M\}$,
4222

4223
$$[\text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^\top)]_{ii} = \sum_{j=1}^d H_{jj} S_{ij}^2 = \frac{1}{M} \sum_{j=1}^d j^{-2\alpha} \chi_j^2,$$

4224

4225 where $\chi_1^2, \dots, \chi_d^2$ are i.i.d. $\chi^2(1)$.
42264227 *Remark 5* (Rough intuition for what we will prove).

4228
$$[\text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^\top)]_{ii} = \frac{1}{M} \sum_{j=1}^d j^{-2\alpha} \chi_j^2 \underset{\alpha > \frac{1}{2}}{\sim} \begin{cases} M^{-1}, & \alpha > \frac{1}{2}, \\ M^{-1} d^{1-2\alpha} \underset{\alpha \leq \frac{1}{2} \text{ with } d \asymp M}{\sim} M^{-2\alpha}, & \alpha \leq \frac{1}{2} \text{ with } d \asymp M, \end{cases}$$

4229

4230 So, we want to obtain $\text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^\top)^{-1/2} \asymp M^{\min(0.5, \alpha)} I$.
42314232 Define
4233

4234
$$S_d(\alpha) := \sum_{j=1}^d j^{-2\alpha} \chi_j^2 \implies [\text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^\top)]_{ii} = \frac{1}{M} S_d(\alpha).$$

4235

4236 Hence, any high-probability upper/lower bounds on $S_d(\alpha)$ translate into corresponding bounds on
4237 $\text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^\top)^{-1/2}$ via
4238

4239
$$\frac{1}{M} S_d(\alpha) \leq U \implies [\text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^\top)]^{-1/2} \succeq \sqrt{\frac{M}{U}} I,$$

4240
4241
$$\frac{1}{M} S_d(\alpha) \geq L \implies [\text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^\top)]^{-1/2} \preceq \sqrt{\frac{M}{L}} I.$$

4242

4243 We consider two regimes and then unify them through $M^{\min(0.5, \alpha)}$.
42444245 **REGIME I: $\alpha > \frac{1}{2}$ (SUMMABLE WEIGHTS)**
42464247 In this regime, $\sum_{j=1}^{\infty} j^{-2\alpha} = \zeta(2\alpha) < \infty$. Write $X_j := j^{-2\alpha}(\chi_j^2 - 1)$, so that
4248

4249
$$S_d(\alpha) = \mathbb{E}[S_d(\alpha)] + \sum_{j=1}^d X_j, \quad \mathbb{E}[S_d(\alpha)] = \sum_{j=1}^d j^{-2\alpha} \leq \zeta(2\alpha).$$

4250

4251 Moreover, $\text{Var}(S_d(\alpha)) = 2 \sum_{j=1}^d j^{-4\alpha} \leq 2\zeta(4\alpha)$.
42524253 **Upper tail (to lower-bound $\text{diag}^{-1/2}$).** For $\lambda = \frac{1}{2}$,
4254

4255
$$\mathbb{E}[e^{\lambda X_j}] = e^{-\lambda j^{-2\alpha}} (1 - 2\lambda j^{-2\alpha})^{-1/2} \leq \exp\left(\frac{1}{2} j^{-4\alpha}\right),$$

4256

4257 hence
4258

4259
$$\mathbb{E}\left[e^{\frac{1}{2}(S_d(\alpha) - \mathbb{E}S_d(\alpha))}\right] \leq \exp\left(\frac{1}{2} \sum_{j=1}^d j^{-4\alpha}\right) \leq \exp\left(\frac{1}{2} \zeta(4\alpha)\right).$$

4260

4261 By Markov and a union bound over the M diagonal entries, setting the per-entry failure probability
4262 to $\delta_0 := \delta_{\text{total}}/M$,
4263

4264
$$\Pr\left(S_d(\alpha) \leq \zeta(2\alpha) + \zeta(4\alpha) + 2 \log \frac{M}{\delta_{\text{total}}}\right) \geq 1 - \delta_{\text{total}}.$$

4265

4266 Therefore, with probability at least $1 - \delta_{\text{total}}$,

$$4268 \quad \text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^T)^{-1/2} \succeq \frac{\sqrt{M}}{(\zeta(2\alpha) + \zeta(4\alpha) + 2 \log \frac{M}{\delta_{\text{total}}})^{1/2}} I.$$

4271 **Lower tail (to upper-bound $\text{diag}^{-1/2}$).** A Chernoff bound on the lower tail of $S_d(\alpha)$ (via the mgf
4272 of $e^{-t j^{-2\alpha} \chi^2}$) gives, for any $\delta \in (0, 1)$, the existence of a constant

$$4275 \quad c_{\downarrow}(\alpha) = \left(\frac{2\alpha-1}{2}\right)^{2\alpha-1} / 2^{2\alpha-1}$$

4277 such that

$$4278 \quad \Pr\left(S_d(\alpha) \geq c_{\downarrow}(\alpha) (\log(1/\delta))^{-(2\alpha-1)}\right) \geq 1 - \delta.$$

4280 With $\delta = \delta_0 = \delta_{\text{total}}/M$ and a union bound over the M rows, with probability at least $1 - \delta_{\text{total}}$,

$$4282 \quad \text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^T)^{-1/2} \preceq \frac{\sqrt{M}}{(c_{\downarrow}(\alpha))^{1/2}} \left(\log \frac{M}{\delta_{\text{total}}}\right)^{\frac{2\alpha-1}{2}} I.$$

4285 **Conclusion for $\alpha > \frac{1}{2}$.** Combining the two displays,

$$4288 \quad \frac{\sqrt{M}}{(\zeta(2\alpha) + \zeta(4\alpha) + 2 \log \frac{M}{\delta_{\text{total}}})^{1/2}} I \preceq \text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^T)^{-1/2} \preceq \frac{\sqrt{M}}{(c_{\downarrow}(\alpha))^{1/2}} \left(\log \frac{M}{\delta_{\text{total}}}\right)^{\frac{2\alpha-1}{2}} I \quad (\alpha > \frac{1}{2}).$$

4291 **REGIME II: $\alpha \leq \frac{1}{2}$ (DIVERGING WEIGHTS)**

4293 Assume $d \geq rM$ for some fixed $r > 1$ (as in our setup). Then

$$4295 \quad \mathbb{E}[S_d(\alpha)] = \sum_{j=1}^d j^{-2\alpha} \quad \text{satisfies} \quad \frac{(d+1)^{1-2\alpha} - 1}{1 - 2\alpha} \leq \mathbb{E}[S_d(\alpha)] \leq 1 + \frac{d^{1-2\alpha} - 1}{1 - 2\alpha}.$$

4298 Hence $\mathbb{E}[S_d(\alpha)] \asymp d^{1-2\alpha}$. Moreover,

$$4300 \quad \text{Var}(S_d(\alpha)) = 2 \sum_{j=1}^d j^{-4\alpha} \begin{cases} = O(1), & \alpha > \frac{1}{4}, \\ = \Theta(d^{1-4\alpha}), & \alpha < \frac{1}{4}, \end{cases}$$

4303 so in all cases $\sqrt{\text{Var}(S_d(\alpha))} = o(\mathbb{E}[S_d(\alpha)])$ as $d \rightarrow \infty$. Thus, by Bernstein and a union bound
4304 over the M rows, for all sufficiently large M we get, with probability at least $1 - \delta_{\text{total}}$,

$$4306 \quad \frac{1}{2} \mathbb{E}[S_d(\alpha)] \leq S_d(\alpha) \leq \frac{3}{2} \mathbb{E}[S_d(\alpha)].$$

4309 Using $d \geq rM$ and the integral bounds for $\mathbb{E}[S_d(\alpha)]$,

$$4310 \quad \frac{(rM)^{1-2\alpha} - 1}{2(1 - 2\alpha)} \leq S_d(\alpha) \leq \frac{3}{2} \left(1 + \frac{(rM)^{1-2\alpha} - 1}{1 - 2\alpha}\right).$$

4313 Dividing by M and inverting the square-root yields constants

$$4315 \quad C_L(\alpha, r) := \left(\frac{3}{1 - 2\alpha} r^{1-2\alpha}\right)^{-1/2}, \quad C_U(\alpha, r) := \left(\frac{1}{2(1 - 2\alpha)} r^{1-2\alpha}\right)^{-1/2},$$

4317 such that, with probability at least $1 - \delta_{\text{total}}$,

$$4319 \quad C_L(\alpha, r) M^{\alpha} I \preceq \text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^T)^{-1/2} \preceq C_U(\alpha, r) M^{\alpha} I \quad (\alpha \leq \frac{1}{2}).$$

4320 UNIFIED STATEMENT
43214322 Combining Regimes I and II, there exist positive constants $c_1(\alpha, r, \delta_{\text{total}})$ and $c_2(\alpha, r, \delta_{\text{total}})$ such
4323 that, with probability at least $1 - \delta_{\text{total}}$,

4324

4325
$$c_1(\alpha, r, \delta_{\text{total}}) M^{\min(0.5, \alpha)} I \preceq \text{diag}(\mathbf{S} \mathbf{H} \mathbf{S}^T)^{-1/2} \preceq c_2(\alpha, r, \delta_{\text{total}}) M^{\min(0.5, \alpha)} I$$

4326

4327 with the following explicit choices:
4328

4329

• If $\alpha > \frac{1}{2}$:

4330

4331
$$c_1(\alpha, \cdot, \delta_{\text{total}}) = \left(\zeta(2\alpha) + \zeta(4\alpha) + 2 \log \frac{M}{\delta_{\text{total}}} \right)^{-1/2}, \quad c_2(\alpha, \cdot, \delta_{\text{total}}) = (c_{\downarrow}(\alpha))^{-1/2} \left(\log \frac{M}{\delta_{\text{total}}} \right)^{\frac{2\alpha-1}{2}},$$

4332

4333

4334 where one admissible choice is $c_{\downarrow}(\alpha) = \left(\frac{2\alpha-1}{2} \right)^{2\alpha-1} / 2^{2\alpha-1}$.
4335

4336

• If $\alpha \leq \frac{1}{2}$ and $d \geq rM$:

4337

4338
$$c_1(\alpha, r, \cdot) = C_L(\alpha, r), \quad c_2(\alpha, r, \cdot) = C_U(\alpha, r),$$

4339

4340 with C_L, C_U as defined above.
4341

4342

L ANALYSIS FOR THE CASE WITH LABEL NOISE
4343

4344

4345 For the case with label noise, only Phase Ia is solved for SGD by Lin et al. (2024). So we will focus
4346 on the Phase Ia where $\alpha > 0.5$ and $\beta < 0.5$ holds.

4347

4348 Now we set an assumption for label noise. For selected data x , we assume that label y satisfies

4349

4350
$$y = \langle \mathbf{x}, \mathbf{w}^* \rangle + \epsilon$$

4351

4352 where ϵ is a label noise with mean 0 and variance σ^2 satisfying $\epsilon \perp\!\!\!\perp \mathbf{x}$.
4353

4354

4355 Note that for the case with label noise $L(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{x}}[(\langle \mathbf{S}\mathbf{x}, \boldsymbol{\theta} \rangle - y)^2]$ and $L(\boldsymbol{\theta}) = \|\mathbf{H}^{1/2}(\mathbf{S}^T \boldsymbol{\theta} - \mathbf{w}^*)\|^2$ are not equivalent.
4356

4357

4358 So in this section, we will use a notation $L_{\text{true}}(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{x}}[(\langle \mathbf{S}\mathbf{x}, \boldsymbol{\theta} \rangle - y)^2]$.
4359

4360

4361 Then $L_{\text{true}}(\boldsymbol{\theta}) = \|\mathbf{H}^{1/2}(\mathbf{S}^T \boldsymbol{\theta} - \mathbf{w}^*)\|^2 + \sigma^2 = L(\boldsymbol{\theta}) + \sigma^2$.
4362

4363

4364 Here σ^2 is the irreducible risk. Lin et al. (2024) discussed compute-optimal scaling for $L(\boldsymbol{\theta}) = L_{\text{true}}(\boldsymbol{\theta}) - \sigma^2$. And we will also discuss compute-optimal scaling for $L(\boldsymbol{\theta}) = L_{\text{true}}(\boldsymbol{\theta}) - \sigma^2$.
4365

4366

4367 Also in this section, we let $R(M, N, \gamma_0)$ as the $L_{\text{true}}(\boldsymbol{\theta}_N)$ under learning rate γ_0 and fixed model
4368 size M . And we will discuss the scaling law of $R(M, N, \gamma_0) - \sigma^2$.
4369

4370

L.1 DERIVING ODE AND INTEGRAL EQUATION
4371

4372

4373 For a quadratic function q , by Taylor's theorem, we have

4374

4375
$$\mathbb{E}[q(\boldsymbol{\theta}_{k+1}) - q(\boldsymbol{\theta}_k) \mid \mathcal{F}_k] = \mathbb{E}[\langle \nabla q(\boldsymbol{\theta}_k), \boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k \rangle \mid \mathcal{F}_k] + \frac{1}{2} \mathbb{E}[\langle \nabla^2 q, (\boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k)^{\otimes 2} \rangle \mid \mathcal{F}_k],$$

4376

4377

4378 where $\mathcal{F}_k = \sigma(\mathbf{S}, \boldsymbol{\theta}_0, \dots, \boldsymbol{\theta}_k)$. Since
4379

4380

4381
$$\boldsymbol{\theta}_{k+1} - \boldsymbol{\theta}_k = -\gamma_k \text{sign}(\langle \mathbf{S}\mathbf{x}_k, \boldsymbol{\theta}_k \rangle - y_k) \text{sign}(\mathbf{S}\mathbf{x}_k),$$

4382

4383

4384 We can expand the two terms using sign-Gaussian identities. We let label noise for the same (\mathbf{x}_k, y_k)
4385 as ϵ_k and $y_k = \langle \mathbf{x}_k, \mathbf{w}^* \rangle + \epsilon_k$ holds.
4386

4374

Gradient term.

4375

$$\begin{aligned}
& \mathbb{E}[\langle \nabla q(\theta_k), \theta_{k+1} - \theta_k \rangle \mid \mathcal{F}_k] \\
&= -\gamma_k \langle \nabla q(\theta_k), \mathbb{E}[\text{sign}(\mathbf{S}\mathbf{x}_k) \text{ sign}(\langle \mathbf{x}_k, \mathbf{S}^\top \theta_k - \mathbf{w}^* \rangle - \epsilon_k) \mid \mathcal{F}_k] \rangle \\
&= -\gamma_k \left\langle \nabla q(\theta_k), \frac{2}{\pi} \arcsin \left(\frac{\text{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1/2} \mathbf{S}\mathbf{H}(\mathbf{S}^\top \theta_k - \mathbf{w}^*)}{\sqrt{(\mathbf{S}^\top \theta_k - \mathbf{w}^*)^\top \mathbf{H}(\mathbf{S}^\top \theta_k - \mathbf{w}^*) + \sigma^2}} \right) \right\rangle \\
&= -\gamma_k \left\langle \nabla q(\theta_k), \frac{2}{\pi} \arcsin \left(\frac{\text{diag}(\mathbf{K})^{-1/2} \mathbf{K}(\theta_k - \theta^*)}{\sqrt{\|\mathbf{H}^{1/2}(\mathbf{S}^\top \theta_k - \mathbf{w}^*)\|^2 + \sigma^2}} \right) \right\rangle,
\end{aligned}$$

4385

where $\mathbf{K} = \mathbf{S}\mathbf{H}\mathbf{S}^\top$.

4386

4387

Quadratic term.

4388

4389

4390

4391

4392

4393

4394

4395

4396

4397

4398

$$\begin{aligned}
& \mathbb{E}[\langle \nabla^2 q, (\theta_{k+1} - \theta_k)^{\otimes 2} \rangle \mid \mathcal{F}_k] \\
&= \gamma_k^2 \langle \nabla^2 q, \mathbb{E}[(\text{sign}(\mathbf{S}\mathbf{x}_k) \text{ sign}(\langle \mathbf{x}_k, \mathbf{S}^\top \theta_k - \mathbf{w}^* \rangle - \epsilon_k))^{\otimes 2} \mid \mathcal{F}_k] \rangle \\
&= \gamma_k^2 \langle \nabla^2 q, \mathbb{E}[(\text{sign}(\mathbf{S}\mathbf{x}_k))^{\otimes 2} \mid \mathcal{F}_k] \rangle \\
&= \gamma_k^2 \left\langle \nabla^2 q, \frac{2}{\pi} \arcsin \left(\text{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1/2} \mathbf{S}\mathbf{H}\mathbf{S}^\top \text{diag}(\mathbf{S}\mathbf{H}\mathbf{S}^\top)^{-1/2} \right) \right\rangle \\
&= \gamma_k^2 \left\langle \nabla^2 q, \frac{2}{\pi} \arcsin \left(\text{diag}(\mathbf{K})^{-1/2} \mathbf{K} \text{diag}(\mathbf{K})^{-1/2} \right) \right\rangle.
\end{aligned}$$

4399

One-step update formula. Substituting the gradient and quadratic terms yields the desired one-step update formula for signSGD.

4400

4401

4402

4403

4404

4405

4406

$$\mathbb{E}[q(\theta_{k+1}) - q(\theta_k) \mid \mathcal{F}_k] = -\frac{2\gamma_k}{\pi} \left\langle \nabla q(\theta_k), \arcsin \left(\frac{\bar{\mathbf{K}}(\theta_k - \theta^*)}{\sqrt{L(k) + \sigma^2}} \right) \right\rangle + \frac{\gamma_k^2}{\pi} \langle \nabla^2 q, \mathbf{K}_\sigma \rangle.$$

4407

4408

4409

By the same procedure as the noiseless case, while $\sqrt{L(k)}$ in the denominator is replaced by $\sqrt{L(k) + \sigma^2}$, we get the following ODE, where $P(t) = L(t/\gamma_0)$ and $p_i(t) = r_i(t/\gamma_0)$.

$$\frac{dp_i}{dt} = -\frac{4}{\pi\sqrt{P(t) + \sigma^2}} \lambda_i(\bar{\mathbf{K}}) f(t/\gamma_0) p_i(t) + \frac{2f(t/\gamma_0)^2 \gamma_0}{\pi} V_i. \quad (137)$$

4410

4411

4412

Integral equation. Also, by the same procedure as the noiseless case, while $\sqrt{L(u)}$ in the denominator is replaced by $\sqrt{L(u) + \sigma^2}$, we get the following integral equation.

4413

4414

4415

4416

$$L(N) = \|\mathbf{H}^{1/2}\mathbf{w}_\perp\|^2 + \sum_{i=1}^M r_i(0) e^{-\frac{4\lambda_i\gamma_0}{\pi} \int_0^N \frac{f(u)}{\sqrt{L(u)+\sigma^2}} du} + \frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N e^{-\frac{4\lambda_i\gamma_0}{\pi} \int_z^N \frac{f(u)}{\sqrt{L(u)+\sigma^2}} du} f(z)^2 dz. \quad (138)$$

4417

By using the same drift/approximation-term transformation as the noiseless case, we get

4418

4419

4420

$$L(N) \approx \underbrace{M^{-2\alpha-2\beta+1}}_{\text{approx}} + \underbrace{(M^{0.5} Q(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}}_{\text{drift}} \quad (139)$$

4421

4422

4423

4424

$$\underbrace{\frac{2\gamma_0^2}{\pi} \sum_{i=1}^M V_i \int_0^N \exp \left(-\frac{4\gamma_0}{\pi} \lambda_i(\bar{\mathbf{K}}) \int_z^N \frac{du}{\sqrt{L(u)+\sigma^2}} \right) dz}_{\text{noise}}. \quad (140)$$

4425

4426

4427

where $f(z) \equiv 1$ (which means constant learning rate) and

4428

4429

4430

4431

4432

4433

$$Q(N) = \frac{4\gamma_0}{\pi} \int_0^N \frac{du}{\sqrt{L(u)+\sigma^2}}.$$

4428 L.2 EARLY STAGE FOR A NOISY LABEL
44294430 Similar to the noiseless case, we first solve for the early stage. Here we have to solve the following
4431 equation

4432
$$L(N) \approx (M^{0.5} Q(N))^{-\frac{2\alpha+2\beta-1}{2\alpha}}$$

4433

4434 And it can be converted to
4435

4436
$$L(N)^{-\frac{2\alpha}{2\alpha+2\beta-1}} \approx M^{0.5} \gamma_0 \int_0^N \frac{du}{\sqrt{L(u) + \sigma^2}}. \quad (141)$$

4437

4438 Replacing \approx by equality in (141) and differentiating with respect to N (viewed as a continuous time
4439 variable t) yields
4440

4441
$$-\frac{2\alpha}{2\alpha+2\beta-1} L(t)^{-\frac{2\alpha}{2\alpha+2\beta-1}-1} L'(t) \approx M^{0.5} \gamma_0 \frac{1}{\sqrt{L(t) + \sigma^2}}. \quad (142)$$

4442

4443 Equivalently,
4444

4445
$$L(t)^{A-1} L'(t) \approx M^{0.5} \gamma_0 \frac{1}{\sqrt{L(t) + \sigma^2}}, \quad A := -\frac{2\alpha}{2\alpha+2\beta-1}. \quad (143)$$

4446

4447 For any $\sigma > 0$ and $x \geq 0$ we have the elementary bounds
4448

4449
$$\frac{1}{\sqrt{2}} \min(x^{-1/2}, \sigma^{-1}) \leq \frac{1}{\sqrt{x + \sigma^2}} \leq \min(x^{-1/2}, \sigma^{-1}). \quad (144)$$

4450

4451 Indeed, if $x \geq \sigma^2$ then $x \leq x + \sigma^2 \leq 2x$, so
4452

4453
$$\frac{1}{\sqrt{2}} x^{-1/2} \leq \frac{1}{\sqrt{x + \sigma^2}} \leq x^{-1/2},$$

4454

4455 whereas if $0 \leq x \leq \sigma^2$ then $\sigma^2 \leq x + \sigma^2 \leq 2\sigma^2$, so
4456

4457
$$\frac{1}{\sqrt{2}} \sigma^{-1} \leq \frac{1}{\sqrt{x + \sigma^2}} \leq \sigma^{-1}.$$

4458

4459 Combining the two cases yields (144). Applying (144) with $x = L(t)$ in (143), we obtain
4460

4461
$$L(t)^{A-1} L'(t) \approx M^{0.5} \gamma_0 \begin{cases} L(t)^{-1/2}, & L(t) \geq \sigma^2, \\ \sigma^{-1}, & L(t) \leq \sigma^2. \end{cases} \quad (145)$$

4462

4463 This naturally splits the dynamics into a *large-L* regime $L \geq \sigma^2$ and a *small-L* regime $L \leq \sigma^2$.
44644465 Suppose $L(t) \geq \sigma^2$. Then from (145) we have
4466

4467
$$L(t)^{A-1} L'(t) \approx M^{0.5} \gamma_0 L(t)^{-1/2},$$

4468

4469 or equivalently
4470

4471
$$L'(t) \approx M^{0.5} \gamma_0 L(t)^{1-A-\frac{1}{2}}. \quad (146)$$

4472

4473 Define
4474

4475
$$\zeta := 1 - A - \frac{1}{2} = -A + \frac{1}{2} = \frac{2\alpha}{2\alpha+2\beta-1} + \frac{1}{2}.$$

4476

4477 The assumptions $\alpha > 0.5$, $\beta < 0.5$, and $\alpha + \beta > 0.5$ imply $\zeta > 1$. Then (146) takes the canonical
4478 form
4479

4480
$$\frac{dL}{dt} \approx M^{0.5} \gamma_0 L^\zeta.$$

4481

4482 Separating variables and integrating gives
4483

4484
$$\int L^{-\zeta} dL \approx M^{0.5} \gamma_0 \int dt \implies L(t)^{-(\zeta-1)} \approx M^{0.5} \gamma_0 t,$$

4485

4482 where we have absorbed additive constants into the implicit comparison. Thus, in the large- L regime,
 4483

$$4484 L(t) \approx (M^{0.5} \gamma_0 t)^{-1/(\zeta-1)}. \quad (147)$$

4485 Writing

$$4486 p := \frac{1}{\zeta-1} = \frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta},$$

4488 we recover exactly the original early-phase exponent:
 4489

$$4490 L(t) \approx (M^{0.5} \gamma_0 t)^{-p}, \quad L(t) \geq \sigma^2. \quad (148)$$

4492 In particular, the presence of $\sqrt{L + \sigma^2}$ in the denominator does not change the scaling exponent p
 4493 in the regime where L is larger than the noise floor σ^2 ; it only affects the constant factors hidden in
 4494 \approx .

4495 Now suppose $L(t) \leq \sigma^2$ and t is sufficiently large so that the small- L regime dominates. From (145)
 4496 we obtain

$$4497 L(t)^{A-1} L'(t) \approx M^{0.5} \gamma_0 \sigma^{-1}.$$

4498 Observing that $\frac{d}{dt} L(t)^A = A L(t)^{A-1} L'(t)$, we can rewrite this as
 4499

$$4500 \frac{d}{dt} L(t)^A \approx M^{0.5} \gamma_0 \sigma^{-1}.$$

4502 Integrating in t and absorbing additive constants into \approx yields

$$4503 L(t)^A \approx M^{0.5} \gamma_0 \sigma^{-1} t.$$

4504 Since $A < 0$, we invert this relation to obtain

$$4506 L(t) \approx (M^{0.5} \gamma_0 t / \sigma)^{1/A} = (M^{0.5} \gamma_0 t / \sigma)^{-p'}, \quad p' := -\frac{1}{A} = \frac{2\alpha+2\beta-1}{2\alpha}. \quad (149)$$

4508 Thus, in the small- L (noise-dominated) regime,

$$4510 L(t) \approx (M^{0.5} \gamma_0 t / \sigma)^{-p'}, \quad L(t) \leq \sigma^2. \quad (150)$$

4512 Combining (148) and (150), we obtain the following formula for the early-stage.

$$4513 L(t) \approx (M^{0.5} \gamma_0 t)^{-p} + (M^{0.5} \gamma_0 t / \sigma)^{-p'}, \quad p = \frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}, \quad p' = \frac{2\alpha+2\beta-1}{2\alpha}. \quad (151)$$

4517 L.3 LIMIT STAGE FOR A NOISY LABEL

4519 By the same procedure as Appendix E.3.2, we get an equation

$$4520 L_\infty = \frac{\gamma_0 \pi}{4} \text{Tr}(\text{diag}(\mathbf{K})^{1/2}) \sqrt{L_\infty + \sigma^2} + \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2.$$

4522 Solving the quadratic equation, we get

$$4524 L_\infty \approx \gamma_0^2 \text{Tr}(\text{diag}(\mathbf{K})^{1/2})^2 + \sigma \gamma_0 \text{Tr}(\text{diag}(\mathbf{K})^{1/2}) + \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2$$

4526 Under our setup,

$$4528 \text{Tr}(\text{diag}(\mathbf{K})^{1/2}) = \sum_{i=1}^M \sqrt{(\mathbf{S} \mathbf{H} \mathbf{S}^\top)_{ii}} \approx M \cdot \sqrt{\frac{1}{M} M^{\max(1-2\alpha, 0)}} \approx M^{1-\min(\alpha, 0.5)}.$$

4531 By the results from Paquette et al. (2024); Lin et al. (2024), and note in Appendix K.3,

$$4533 \|\mathbf{H}^{1/2} \mathbf{w}_\perp\|^2 \approx M^{-2\alpha+\max(0, 1-2\beta)}.$$

4534 Hence

$$4535 L_\infty \approx \gamma_0^2 M + \sigma \gamma_0 \sqrt{M} + M^{-(2\alpha+2\beta-1)}$$

4536

L.4 EVALUATING COMPUTE-OPTIMAL SCALING

4537

4538

Combining the early stage and the limit stage, we get

4539

4540

$$R(M, N, \gamma_0) - \sigma^2 \approx (M^{1/2} N \gamma_0)^{-\frac{2(2\alpha+2\beta-1)}{2\alpha+1-2\beta}} + (M^{1/2} N \gamma_0 / \sigma)^{-\frac{2\alpha+2\beta-1}{2\alpha}} + \gamma_0^2 M + \sigma \gamma_0 \sqrt{M} + M^{-(2\alpha+2\beta-1)}.$$

4541

4542

Note that we use R instead of L when we are writing the loss as a three-variable function.

4543

4544

We let $\gamma_0 = M^{-e}$. And assume $\sigma \approx 1$ (this covers values such as $\sigma = 1, 0.2, 0.01$, etc.).

4545

4546

Compute-optimal occurs when the three terms balance. And for the loss formula in this section, compute-optimal occurs when $(M^{1/2} N \gamma_0 / \sigma)^{-\frac{2\alpha+2\beta-1}{2\alpha}}$ and $\sigma \gamma_0 \sqrt{M}$ and $M^{-(2\alpha+2\beta-1)}$ balances. Solving $\sigma \gamma_0 \sqrt{M} = M^{-(2\alpha+2\beta-1)}$, we get $\gamma_0^* = M^{-(2\alpha+2\beta-0.5)}$. Solving $(M^{1/2} N \gamma_0 / \sigma)^{-\frac{2\alpha+2\beta-1}{2\alpha}} = M^{-(2\alpha+2\beta-1)}$, we get $N = M^{4\alpha+2\beta-1}$ and it leads to $f = MN = M^{4\alpha+2\beta}$.

4547

4548

So finally we get

4549

4550

4551

4552

4553

$$M^* = f^{1/(4\alpha+2\beta)}, \quad R(M^*, f/M^*, \gamma_0^*) - \sigma^2 \approx f^{-(2\alpha+2\beta-1)/(4\alpha+2\beta)}. \quad (152)$$

4554

4555

Figure 25 shows that exponents in the (152) and measured compute-optimal loss slope and optimal model size slope (in log-log plot) for the case with the label noise match well. In the experiments, we used $\sigma = 0.1$.

4556

4557

4558

4559

4560

4561

4562

4563

4564

4565

4566

4567

4568

4569

4570

4571

4572

4573

4574

4575

4576

4577

4578

4579

4580

4581

4582

4583

4584

4585

4586

4587

4588

4589

4628 Figure 25: **Measure of compute-optimal loss slope and optimal model size slope for the case**
4629 **with label noise.** We validate the exponent of $R\left(M^*, \frac{f}{M^*}, \gamma_0^*\right)$ and M^* with respect to f for the
4630 case with label noise. The left plot shows the compute-optimal loss with respect to flops $6MN$. The
4631 right plot shows the optimal model size with respect to flops $6MN$. Note that we evaluate the region
4632 with big flops, as we aim to evaluate asymptotic behavior.

4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643