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ABSTRACT

We study scaling laws of signSGD under a power-law random features (PLRF)
model that accounts for both feature and target decay. We analyze the expected
population risk of a linear model trained with one-pass signSGD on Gaussian-
sketched features. We express the risk as a function of model size, training steps,
learning rate, and the feature and target decay parameters. Comparing against the
SGD risk analyzed by Paquette et al. (2024), we identify a drift-normalization
effect and a noise-reshaping effect unique to signSGD. We then obtain compute-
optimal scaling laws under the optimal choice of learning rate. Our analysis shows
that the noise-reshaping effect can make the compute-optimal slope of signSGD
steeper than that of SGD in regimes where noise is dominant. Finally, we observe
that a stable-decay schedule—a simplified variant of the widely used warmup-
stable-decay (WSD) schedule—further reduces the noise term and sharpens the
compute-optimal slope, when feature decay is fast but target decay is slow.

1 INTRODUCTION

In large-scale language model training, neural scaling laws are a well-documented empirical regu-
larity: performance tends to improve predictably as data, parameters, and compute increase. Kaplan
et al. (2020) observed that the language model cross-entropy loss scales as a power-law of model
size M and number of steps N in terms of the risk formula R(M,N) ≂ M−τ1 + N−τ2 .1 Also,
they observe that loss scales as the power of training compute, under optimal allocation of compute
between model size and number of steps.

A growing body of theory has sought to explain this phenomenon, most prominently by analyz-
ing the stochastic gradient descent (SGD) optimizer under the power-law random features (PLRF)
model (Paquette et al., 2024; Lin et al., 2024; 2025). Yet, in practice, SGD is not the optimizer
that powers today’s state-of-the-art LLMs. Instead, training is dominated by Adam (Kingma & Ba,
2014) and its variants. While Adam is considerably more difficult to analyze theoretically, it is of-
ten approximated in theory by the simpler signSGD (Bernstein et al., 2018a), which captures its
coordinate-wise adaptivity. This gap between practice and theory motivates a natural question: how
do scaling laws change when we replace SGD with signSGD? Addressing this question can help
align theory with optimizer choices used in practice, and clarify how adaptive updates could reshape
compute-optimal scaling regimes in the PLRF setting.

1.1 OUR CONTRIBUTION

We study the scaling law of signSGD in the power-law random features (PLRF) model, and our
contributions are as follows.

1. We derive a scaling law of signSGD with constant learning rates involving three variables (model
size M , training steps N , learning rate γ0) and two PLRF model parameters (feature decay α,
target decay β); see (12). By comparing with the SGD scaling laws of Paquette et al. (2024) and
Lin et al. (2024), we observe two effects of signSGD: a drift-normalization effect and a noise-
reshaping effect, inside the scaling law (see Section 4.1).
1Here ≂ denotes equality up to a multiplicative constant, i.e., f(x) ≂ g(x) means c1g(x) ≤ f(x) ≤ c2g(x)

for some constants c1, c2 > 0.
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Figure 1: Left: SGD vs. signSGD; Right: signSGD with constant vs. stable-decay schedules.
Colored lines represent the training trajectories of each algorithm, and black lines denote the
compute-optimal curves. The upper right legend shows the theoretical value of the compute-optimal
slope. SignSGD achieves a steeper compute-optimal slope than SGD (left panel), and stable-decay
scheduling sharpens the compute-optimal slope relative to a constant schedule (right panel), for
some parameter configurations. See Appendix C for parameters used in the experiment.

2. Under the fixed compute budget, we balance model size M and training steps N , and optimize
over learning rate γ0. This allows us to characterize the compute-optimal loss decay rate and
optimal model size with respect to the compute budget (see Table 1). Comparing against the
compute-optimal scaling laws of SGD from Paquette et al. (2024) across regimes of the (α, β)-
parameter plane, we find that signSGD can achieve better exponents in the SGD noise bottleneck
regimes, due to the noise-reshaping effect (see Figure 1).

3. We show that learning rate scheduling can further reduce the stochastic noise of signSGD. We
analyze a stable-decay schedule, a simplified version of the warmup-stable-decay (WSD) sched-
ule (Wen et al., 2024) widely used in large language model training. By maintaining drift velocity
by the stable interval and reducing stochastic noise by the polynomially decaying interval, this
schedule increases the compute-optimal slope in the PLRF setting for large α and small β (see
Section 4.3 and Figure 1).

4. We empirically validate our theory; see Figure 1 and Appendix C for details.

1.2 RELATED WORK

Here we discuss directly relevant results; additional related work is deferred to Appendix B.

Empirical Scaling Laws. Modern empirical work shows that performance improves with scale
across data, parameters, and compute, following power laws across many domains (Hestness et al.,
2017). In language modeling, Kaplan et al. (2020) document power-law loss trends over multiple
orders of magnitude and simple budgeting rules linking model size, data, and compute. Henighan
et al. (2020) extend these curves to images, video, and multimodal settings. Building on this, Hoff-
mann et al. (2022) argue that many LMs were under-trained on tokens and proposed data-optimal
scaling that substantially improves accuracy at fixed compute. Tissue et al. (2024) investigate the
empirical scaling law with learning rate annealing.

Scaling Law Theory. Our work starts from the SGD scaling law in the PLRF model in Paquette
et al. (2024) and Lin et al. (2024). In particular, Paquette et al. (2024) derive a scaling-law formula
for one-pass SGD, where M , N , and γ0 denote the model size, number of training steps, and learning
rate, respectively, and α and β are the feature- and target-decay parameters.

R(M,N, γ0) ≂ M−2α+max(0, 1−2β)︸ ︷︷ ︸
=:A(M)

+(Nγ0)
− 2α+2β−1

2α︸ ︷︷ ︸
=:DSGD

al (N,γ0)

+M−1(Nγ0)
− 2α−1

2α︸ ︷︷ ︸
=:DSGD

dis (M,N,γ0)

+ γ0(Nγ0)
− 4α−1

2α︸ ︷︷ ︸
=:NSGD(N,γ0)

.

(1)
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The A(M) corresponds to the approximation error, i.e., the loss as N → ∞. Paquette et al.
(2024) explained that DSGD

al (N, γ0) represents the aligned feature loss, as it coincides with the loss
for a diagonal sketch matrix S (see Section 2.2 for formal description). They also explained that
DSGD

dis (M,N, γ0) corresponds to the distorted feature loss, arising from projection with a random
matrix S, and it decays more slowly than the aligned feature loss. Finally, N SGD(N, γ0) captures
the SGD noise, stemming from the quadratic term in the Taylor expansion of the SGD update.

Several subsequent papers extend this baseline along two axes: (i) optimizer changes and (ii)
model/training-protocol changes. On the optimizer side, Ferbach et al. (2025) investigate dimension-
adapted Nesterov acceleration in the PLRF model and argued that it gives a better scaling law for
2α > 1 regime. Kunstner & Bach (2025) compare the gradient descent and sign descent scaling law
in the linear bigram model. Comparison with their work is in Appendix B.1. Lin et al. (2025) cover
the multi-pass SGD scaling law identifies the effect of data reuse for the scaling law. Discussion on
the model side is deferred to Appendix B.

SignSGD Dynamics. Bernstein et al. (2018a) give the non-convex convergence rate of signSGD.
Xiao et al. (2024) derive the SDE and ODE of signSGD risk. The ODE we derive matches theirs
in final form; however, we obtain it in an alternative route that does not require a spectral lower
bound on the covariance matrix that they imposed. Detailed comparison with Xiao et al. (2024) is in
Appendix B.2. Compagnoni et al. (2024) derive SDEs for adaptive methods, including signSGD.

2 PROBLEM SETUP

2.1 NOTATION

We use bold lowercase letters (e.g., u) to denote vectors and bold uppercase letters (e.g., A) to
denote matrices. For vectors u and v, we denote the outer product by u ⊗ v := uvT. And λi(A)
denotes the i-th eigenvalue of the matrix A. For positive-valued functions f(x) and g(x), we use
f(x) ≲ g(x) if there exists C > 0 such that f(x) ≤ Cg(x) for sufficiently large x, and we use
f(x) ≂ g(x) if there exist c, C > 0 such that cg(x) ≤ f(x) ≤ Cg(x) for sufficiently large x.

2.2 MODEL

We consider the power-law random features (PLRF) model, parameterized by θ ∈ RM . Given a
feature-label pair (x, y) ∈ Rd × R, the parameter θ plays the role of a linear regression coefficient
vector on the sketched features Sx (for some S ∈ RM×d), and the population risk function is

L(θ) = Ex

[
(⟨Sx,θ⟩ − y)2

]
.

The data are generated as follows: the feature vector x ∈ Rd is drawn from N (0,H) with H =
diag(1−2α, 2−2α, . . . , d−2α), and the label is y = ⟨x,w∗⟩ with w∗ = [1−β , 2−β , . . . , d−β ]⊤; we
call α and β feature-decay and target-decay parameters, respectively. The sketch matrix S ∈ RM×d

is a random matrix that has i.i.d. entries N (0, 1/M), is drawn once and then held fixed throughout
training; we refer to M (with M ≤ d) as the model size. Under these model assumptions,

L(θ) = ∥H1/2(STθ −w∗)∥2.

We assume d ≥ rM for some r > 1, and let d/M → (1,∞] as d,M → ∞ when 2α > 1, and
d/M → (1,∞) when 2α < 1. The projected optimal parameter is

θ∗ = (SHST)−1SHw∗. (2)

Define w⊥ = w∗ − STθ∗ so that w∗ = STθ∗ +w⊥ and SHw⊥ = 0. The risk decomposes as

L(θ) = ∥H1/2ST(θ − θ∗)∥2 + ∥H1/2w⊥∥2,

where the second term represents the approximation error.

3
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SignSGD. We estimate the minimizer of the population risk via empirical risk minimization using
signSGD. At step k, we draw a fresh sample (xk, yk) from the model in Section 2.2 and form the
stochastic gradient

gk =
(
⟨Sxk,θk⟩ − yk

)
Sxk. (3)

The signSGD update rule is

θk+1 = θk − γk sign(gk) = θk − γk sign
(
⟨Sxk,θk⟩ − yk

)
sign(Sxk).

2.3 REPRESENTATION OF THE RESULT

Let R(M,N, γ0) denote the L(θN ) under learning rate γ0 and fixed model size M . We define the
computational budget in terms of FLOPs as f = MN , and consider the optimal model size M⋆

under fixed f, and optimal scaling of learning rate in the form γ⋆
0 = M−e∗ . For SGD, Paquette et al.

(2024) derive compute-optimal scaling laws of the following form:

M⋆ ≂ fξ, R
(
M⋆, f

M⋆ , γ
⋆
0

)
≂ f−η.

Our objective is to derive analogous formulas for signSGD, namely R(M,N, γ0) and
R
(
M⋆, f

M⋆ , γ
⋆
0

)
, and to compare them with the corresponding results for SGD.

3 ANALYZING THE SIGNSGD

In this section, we formulate the implicit integral equation for signSGD. We define

K = SHST, K = diag(K)−1/2K, Kσ = arcsin
(
diag(K)−1/2K diag(K)−1/2

)
, (4)

where arcsin is applied entry-wise; we use these matrices and notation throughout the paper. We
decompose the risk via

ri(N) := (θN − θ∗)T(Kui ⊗wi)(θN − θ∗),

where ui,wi are the right/left eigenvectors of K corresponding to the ith eigenvalue λi(K). This
modal decomposition matches that of Xiao et al. (2024). For brevity we write L(N) ≡ L(θN ).

L(N) =

M∑
i=1

ri(N) + ∥H1/2w⊥∥2. (5)

In Appendix D.1, we derive the one-step update formula for signSGD on a quadratic objective, using
a second-order Taylor expansion and sign–Gaussian identities. Applying this to ri yields

E[ri(k + 1)− ri(k) | Fk] = − 4γk

π
√
L(k)

λi(K)︸ ︷︷ ︸
drift

ri(k) +
2γ2

k

π
wT

i KσKui︸ ︷︷ ︸
quadratic noise

. (6)

1. Drift. The first term in (6) yields a systematic decrease of mode i: it is proportional to the
curvature λi(K) and the learning rate γk, while the factor 1/

√
L(k) self–normalizes the

step. Note that the directions corresponding to larger eigenvalues contract faster.
2. Quadratic noise. The second term in (6) is an O(γ2

k) variance injection shaped by
curvature and the sign–noise covariance. It is independent of ri(k) and may set a
mode–dependent noise floor, unless γk decays.

Overall, one-step progress reflects a balance between drift and quadratic noise: when ri(k) is large,
the drift decreases ri(k); near the optimum, quadratic noise can dominate and cause ri(k) to plateau.

Converting the one-step update formula to the continuous-time ODE, we obtain 2

dri
dt

= −
4γt/γ0

πγ0
√

L(t)
λi(K)︸ ︷︷ ︸

=:Φdrift
i (t)

ri(t) +
2γ2

t/γ0

πγ0
wT

i KσKui︸ ︷︷ ︸
=:Φnoise

i (t)

. (7)

2We treat L and ri as their continuous extensions, allowing arbitrary positive real inputs.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Compared to SGD, the drift is self-normalized by 1/
√

L(t) and the quadratic noise term does not
carry the extra L(t) factor present in SGD. So, for the constant learning rate, the quadratic noise does
not decrease over time. The variation-of-constants formula gives the implicit integral representation

ri(N) = ri(0) exp

{
−
∫ N

0

Φdrift
i (u) du

}
+

∫ N

0

exp

{
−
∫ N

z

Φdrift
i (u) du

}
×Φnoise

i (z) dz. (8)

Summing over modes, we define

Ldrift(N) =

M∑
i=1

ri(0) exp

{
−
∫ N

0

Φdrift
i (u) du

}
, (9)

Lnoise(N) =

M∑
i=1

∫ N

0

exp

{
−
∫ N

z

Φdrift
i (u) du

}
× Φnoise

i (z) dz. (10)

Exact formulation of Ldrift(N) and Lnoise(N) can be find in (18) of Appendix D.2. Then by (5) our
risk is decomposed as

L(N) = Ldrift(N) + Lnoise(N) + ∥H1/2w⊥∥2︸ ︷︷ ︸
approx

. (11)

4 MAIN RESULTS

4.1 LOSS FORMULA FOR CONSTANT LEARNING RATE

We now analyze (11) to get R(M,N, γ0), which is L(N) under learning rate γ0 and model size M .

• For Ldrift(N), we use a deterministic approximation (Appendix D.2.2) similar to Paquette et al.
(2024), and obtain the asymptotic self-consistent equation: with ΓM = Mmin(α,0.5)γ0,

Ldrift(N) ≂

(
ΓM

∫ N

0

Ldrift(u)−1/2 du

)− 2α+2β−1
2α

+M−1

(
ΓM

∫ N

0

Ldrift(u)−1/2 du

)− 2α−1
2α

.

Solving this yields signSGD counterparts of the aligned- and distorted- feature loss terms in (1),
denoted by Dsign

al (M,N, γ0) and Dsign
dis (M,N, γ0); see (12) below for their precise forms.

• For Lnoise(N) and approximation term, we calculate the limit loss L∞ and get

L∞ ≂ max
{
γ2
0 M

2−min(1,2α), ∥H1/2w⊥∥2
}

Lastly we use approximation error result from Paquette et al. (2024); Lin et al. (2024),

∥H1/2w⊥∥2 ≂ M−2α+max(0,1−2β).

Combining two parts yields a proxy, and we prove that it satisfies the implicit integral equation (11)
in Appendix D.3.4 and D.4.4. Finally, we get the following four-term scaling law formula for one-
pass signSGD on area −α+ 0.5 < β < α+ 0.5: 3

R(M,N, γ0) ≂ M−2α+max(0, 1−2β)︸ ︷︷ ︸
=:A(M)

+
(
Mmin(α,0.5)Nγ0

)− 2(2α+2β−1)
2α−2β+1︸ ︷︷ ︸

=:Dsign
al (M,N,γ0)

+M
− 6α−1

2α+1 (Nγ0)
−

2(2α−1)
2α+1︸ ︷︷ ︸

=:Dsign
dis (M,N,γ0)

+ γ2
0 M

2−min(1,2α)︸ ︷︷ ︸
=:N sign(M,γ0)

.

(12)

3For the case β > α + 0.5, Dsign
al (M,N, γ0) takes form of

(
1 − κMmin(α,0.5)Nγ0

)− 2(2α+2β−1)
2α−2β+1 . See

Appendix D.5 for more details.
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Interpretation. The term A(M) is the approximation error (irreducible as N → ∞).
The terms Dsign

al (M,N, γ0) and Dsign
dis (M,N, γ0) arise from the drift’s exponential damping

ri(0) exp
{
−
∫ N

0
Φdrift

i (u) du
}

and correspond to the aligned and distorted feature losses of SGD

scaling law in Paquette et al. (2024). The term N sign(M,γ0) captures the quadratic noise from the
one-step Taylor expansion, specific to one-pass signSGD.

Comparison. We compare our signSGD scaling law formula with the SGD formula (1) of Paque-
tte et al. (2024). Since the approximation error is optimizer-independent, the term A(M) remains un-
changed. For the N -exponent in Dal and Ddis, when the absolute value of the exponent is x for SGD,
then it changes to 2

2−xx in signSGD, which is strictly larger than x. Therefore, Dsign
al (M,N, γ0) and

Dsign
dis (M,N, γ0) decrease faster in the number of steps N under signSGD. By contrast, the signSGD

noise term N sign(M,γ0) does not decay with N , whereas the SGD noise N SGD(N, γ0) does.4

We discuss underlying mechanism that modifies the drift terms Dal, Ddis, and the noise term N .

• Drift terms (Drift-normalization effect): In signSGD, the drift in (6) is 4γk

π
√

L(k)
λi(K), whereas

for SGD it is 2γk λi(K); see (4) for K,K. The diagonal preconditioning embedded in K con-
tributes an extra factor Mmin(α,1/2). The normalization by

√
L(k) replaces the effective flow time

Nγ0 with γ0
∫ N

0
L(u)−1/2 du, which accelerates progress in training whenever L(u) ≲ 1. Thus,

in the aligned/distorted drift terms, (Nγ0) is replaced by Mmin(α,1/2)γ0
∫ N

0
L(u)−1/2 du.

• Noise term (Noise-reshaping effect): The signSGD noise in (6) is 2γ2
k

π w⊤
i KσKui, while for

SGD it is γ2
k (v

⊤
i Kvi)L(k) with vi an eigenvector of K. The normalization removes the mul-

tiplicative L(k) in signSGD, eliminating the Volterra structure present in Paquette et al. (2024).
This difference is crucial: the lack of L(k) in the quadratic term ultimately yields a noise term that
does not decay in N . Meanwhile, an additional M -dependence arises from working in the K-
(rather than K-) eigenbasis due to diagonal preconditioning.

4.2 COMPUTE-OPTIMAL RESULT UNDER OPTIMAL CONSTANT LEARNING RATE

In the constant learning-rate schedule, we allow γ0 to scale with the model size via γ0 = M−e.
The hyperparameter e directly influences the compute-optimal scaling law.5 Following Paquette
et al. (2024), we distinguish the maximal and optimal learning rates for SGD. The maximal rate
is the largest step that yields a stable (non-exploding) recursion; for signSGD, it leads to a zero
compute-optimal slope (see Appendix E.1). We therefore focus on the optimal learning rate γ⋆

0 ,
which maximizes the decay exponent η in

R(M⋆, f/M⋆, γ⋆
0) ≂ f−η,

where M⋆ denotes the model size minimizing R(·) at fixed compute budget f.

To characterize the compute-optimal scaling, set γ0 = M−e, M = fx, and N = f 1−x (with
x ∈ [0, 1]), and solve

(e∗, x∗) ∈ argmin
e,x

R
(
M,N, γ0

)
= argmin

e,x
R
(
fx, f 1−x, f−ex

)
. (13)

Then M⋆ = fx
∗
, N⋆ = f 1−x∗

, and γ⋆
0 = (M⋆)−e∗ , and at the optimum

R
(
M⋆, f/M⋆, γ⋆

0

)
≂ f−η(α,β),

for some η(α, β) > 0, which we refer to as the compute-optimal slope.

In problem (13), each of the four terms in (12) scales as f−ℓi(e,x), so minimizing R is equivalent
to maximizing min{ℓ1, ℓ2, ℓ3, ℓ4}. The optimal value (e∗, x∗) is obtained by balancing three active
exponents. The resulting formulas and dominant and balancing terms are summarized in Table 1;
see Appendix E.2 for details.

4As we set γ0 as M−e later, decay with respect to M depends on the choice of γ0.
5One may wonder why we do not parameterize by N . Setting γ0 = M−e is without loss of generality, since

in the compute-optimal case both M and N are expressed as powers of the total compute f.
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Figure 2: Left: Phase plane for sign SGD; Right: Phase plane for SGD. The white region indicates
parameter values with no power-law scaling. The dark blue area represents the region where stable-
decay scheduling (Section 4.3) yields a better compute-optimal exponent.

Table 1: Dominant and balancing terms, optimal learning rate, compute-optimal model size, and
risk across different (α, β) phases. Refer to (12) for the definitions of the terms A, Dal,Ddis, N . See
Figures 8 to 12 in the Appendix for empirical validation of the theoretical exponents.

Term structure Compute–optimal

Phase Dominant terms Balancing terms γ⋆
0 M⋆ R

(
M⋆, f

M⋆ , γ
⋆
0

)

Phase A A, Dal, N A, Dal, N

Aa M−(α+β) f
1

2α+1 f−
2α+2β−1

2α+1

Ab M− 2β+1
2 f

1
2 f−

2α+2β−1
2

Ac M−1 f
2α+2β−1

2(2β−α(2β−3)−1) f
− α(2α+2β−1)

2β−α(2β−3)−1

Ad M−1 f
1

2−α f−
2α

2−α

Phase B A, Dal,Ddis, N Dal,Ddis, N
Ba M

− 2α+4β−1
4β f

β
α+β f

− 2α+2β−1
2α+2β

Bb M− 6α+1
4α+2 f

2α+1
4α+1 f−

4α
4α+1

We follow Paquette et al. (2024) in defining phases by dominant terms; to avoid confusion with
their SGD phases, we label our signSGD phases by uppercase letters. Accordingly, any reference to
Phase I–IV hereafter refers exclusively to the SGD phases of Paquette et al. (2024). For signSGD,
the phase plane is simpler: when α > 0.5 and β > 0.5 (Phase B) all four terms are dominant;
otherwise (Phase A) the dominant terms are A(M), Dsign

al (M,N, γ0), and N sign(M,γ0). We declare
subphases whenever the formula of at least one of γ0 = M−e∗ , M⋆, or R(M⋆, f/M⋆, γ⋆

0 ) changes.
These changes occur across the boundaries α = 0.5, β = 0.5, and β = α + 0.5, yielding six
subphases in total (Phase A split into four, Phase B into two). For context, Paquette et al. (2024)
partition the (α, β)-plane into four phases with seven subphases.

Remark 1 (Dominant vs. balancing terms). Dominant terms are those that can lead the risk for some
(γ0,M,N). Balancing terms are the ones that tie (hence “balancing”) at the compute-optimal choice
(γ⋆

0 ,M
⋆, N⋆) and therefore determine the slope; they form a subset of the dominant terms.

Comparison of Compute-optimal Results. For the intersection of Phase Aa, Ab, Ac, Ba and
Phase I, II, the compute-optimal slope η(α, β) and optimal model size M⋆ are the same for signSGD
and SGD. In contrast, for the area of Phase III, IV excluding the case 0.25 < α < 1/3, β >
(1− α)(1− 2α)/(2(1− 3α)) (See Figure 4 in the Appendix for the visualization of this area), the
compute-optimal slope η(α, β) for signSGD is steeper than that for SGD, and the optimal model
size is bigger in signSGD. We refer to this region as the Area III-IVsub. Finally, for the optimal
learning rate γ0 = M−e∗ , the exponent e∗ is always bigger in signSGD, which means signSGD
always has a smaller optimal learning rate.
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4.3 EFFECT OF STABLE-DECAY SCHEDULING

For a stable-decay schedule, we set the learning rate to γk = γ0f(k) with

f(k) =

{
1, k ≤ pN,(
1 + τ(k − pN)

)−c
, k > pN,

(14)

where p, c ∈ (0, 1) and τ > 0. In other words, the learning rate remains constant for the first pN
steps, and then decays polynomially with exponent c for the remaining (1− p)N steps.

In Phase Aa, the f -scheduled noise bound can improve over constant LR:

Lnoise(N) ≲ γ2
0MN−2c + γ

1
2α
0 M

1
4αN−(1−c)(1− 1

2α ).

Combining this with the drift and approximation terms, and then optimizing over e of γ0 = M−e,
the decay parameter c, and the model size M , yields the f -scheduled risk bound

Rf (M
⋆, f/M⋆, (M⋆)−e∗) ≲ f

−
2(4α−1)(2α+2β−1)

16α2+8αβ+2α−2β−1 . (15)

The absolute value of the exponent in (15) exceeds the compute-optimal slope under constant learn-
ing rate when α > 0.5 and 0.5− α < β < 2α−1

2(4α−1) . Thus, stable-decay scheduling yields a strictly
larger compute-optimal slope in the upper left region of Phase Aa (marked with dark blue in Fig-
ure 2). We will refer to this region as Area Aa⋆ throughout the paper.

Scheduling does not improve the SGD compute-optimal exponent in Phases I–II (see Appendix F.4).
Thus, with scheduling, signSGD achieves a larger compute-optimal exponent compared to SGD in
Area Aa⋆. 6

5 DISCUSSION: WHERE AND WHY SIGNSGD PROVIDES BENEFITS?

With a constant learning rate γ0 = M−e, signSGD yields improvements over SGD in Area III-IVsub.
Under stable-decay scheduling, we find signSGD also provides benefits in Area Aa⋆.

Mechanisms. These gains can be explained by noise-reshaping, together with drift-normalization.
In Paquette et al. (2024), Phases III–IV are the SGD noise-bottleneck regimes. By contrast,
noise-reshaping in signSGD can alleviate this bottleneck with a suitable learning-rate choice, yield-
ing improved compute-optimal slopes.

Role of Learning-rate Scaling. The signSGD noise term with constant LR is N sign(M,γ0) =
γ2
0 M

2−min(1,2α), whereas for SGD it is N SGD(N, γ0) = γ0(Nγ0)
−(4α−1)/(2α). If γ0 ≂ 1,

N sign(M,γ0) is much larger than N SGD(N, γ0), making the compute-optimal slope asymptotically
zero. Hence, we set γ0 = M−e and optimize e to balance terms and obtain a steep compute-optimal
curve: decreasing γ0 lowers N sign(M,γ0) while increasing the drift terms Dsign

al (M,N, γ0) and
Dsign

dis (M,N, γ0), and the optimal e strikes the balance.

Why Gains Arise in Area III-IVsub. For SGD, the shape of N SGD(N, γ0) makes it dominate
DSGD

al (N, γ0) at the compute-optimal point in Phases III–IV. For signSGD, noise-reshaping alters
N sign(M,γ0) so it can balance against Dsign

al (M,N, γ0), while drift-normalization steepens the
decay of Dsign

al (M,N, γ0). This creates room for a balance in which both terms are smaller than the
SGD noise N SGD(N, γ0) at optimum, explaining the improvements in Area III-IVsub.

Why Stable-decay Scheduling Helps. For a learning-rate schedule γk = γ0f(k) with general f ,
the drift-only self-consistent solution in Phase Aa takes the form(

M1/2 γ0 F (N)
)− 2(2α+2β−1)

2α−2β+1 , where F (N) :=

∫ N

0

f(u) du.

6Whether scheduling benefits other regions of signSGD or other phases of SGD remains open, since for
both methods the scheduled noise upper and lower bounds do not match tightly, even up to constant factors.
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This can be viewed as Dsign
al (M,N, γ0) with N replaced by F (N). This aligns with empirical obser-

vations that a loss term can decay polynomially with the area under the learning-rate curve (Tissue
et al., 2024).

In contrast, the noise term depends most heavily on the learning rate near the end of training, since
earlier noise can be damped by later drift; see (8). Stable-decay preserves the total area F (N) asymp-
totically while shrinking the late-stage learning rate, thereby reducing noise without sacrificing drift.
As a result, stable-decay scheduling yields a larger compute-optimal slope in Area Aa⋆ (upper-left
Phase Aa; see Section 5.1 for intuition). More broadly, we conjecture that appropriate scheduling
can further reduce the signSGD noise term, enabling improvements beyond Area III-IVsub.

5.1 HYPOTHESIS FOR THE POSITION OF THE BENEFICIAL AREA

Figure 3: Decay of θ∗ in the basis of
columns of U compared to w∗. The legend
on the top shows (α, β,fitted slope of UTθ∗).

Here, we hypothesize why the areas with improved
scaling law lie near the left edge (small β) and the
right side (β > α) of the phase plane.

Heuristic Criterion. Let “target decay” denote
the decay of the projected optimum θ∗ in (2),
and “stochastic-gradient decay” the decay of the
stochastic gradient in (3). SignSGD is advanta-
geous when the target decays more slowly than the
stochastic gradient. Under SGD, coordinates with
smaller gradients take smaller updates; if the tar-
get does not decay much, those coordinates still
require learning targets of comparable magnitude,
so more iterations are needed—an inefficiency that
signSGD mitigates by normalizing per-coordinate
updates via the sign operation.

When Does This Occur? Observations and
Conjecture Writing SHS⊤ = UΛU⊤, the
expected stochastic-gradient along the U basis
decays as i−2α. For the projected target θ∗ =
(SHS⊤)−1SHw∗, the components U⊤θ∗ behave similarly to w∗ = [j−β ]dj=1 on the leading
indices. The critical part is the relative decay rate of U⊤θ∗ versus i−2α. See Appendix G for details
of analysis.

Figure 3 illustrates our empirical observations about these patterns. For (α, β) = (0.7, 1.1), U⊤θ∗

plateaus quickly; for (0.7, 0.6) it decays longer; and for (0.7, 0.1), since w∗ hardly decays, the target
also shows little decay.

These observations suggest that in the left region (small β) and the right region (β > α), the targets
decay more slowly than the stochastic gradient, whereas in the middle band (0.5 < β < α) they do
not. This could potentially explain why the signSGD-beneficial area appears near the left edge and
the right side of the phase plane.

6 CONCLUSION

We derived the scaling law of signSGD under the PLRF model and identified two distinctive
effects—drift-normalization and noise-reshaping—relative to SGD. Analyzing compute-optimal
tradeoffs, we showed that signSGD achieves steeper slopes than SGD in the noise-bottleneck
regimes, and that a stable-decay schedule further improves performance in the Area Aa⋆. Addi-
tionally, in Appendix H, we analyze Adam using the heuristics of Xiao et al. (2024) and observe
the same scaling law as signSGD, consistent with our experiments; deriving Adam’s scaling law
without heuristic assumptions is a compelling direction. We defer limitations and additional future
works to Appendix A.
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SUPPLEMENTARY MATERIALS FOR
“SCALING LAWS OF SIGNSGD IN LINEAR REGRESSION:

WHEN DOES IT OUTPERFORM SGD?”

USAGE OF LLM

We primarily used LLMs to polish the English writing throughout the paper. They were also em-
ployed to help us identify additional related work beyond those we were already familiar with. When
preparing well-formatted tables, we relied on LLMs for assistance. We also used LLMs to refine La-
TeX code so that complicated formulas appeared clean and readable in the manuscript. Finally, we
sought LLM support for debugging code used in our experiments.

OVERVIEW OF APPENDIX

(1) In Appendix A we discuss limitations and future works.

(2) In Appendix B we discuss more related works beyond those discussed in Section 1.2, and pro-
vide a detailed comparison with closely related works.

(3) In Appendix C we present experimental results which support our theory.

(4) In Appendix D we derive the scaling law formula (12) of R(M,N, γ0) under constant learning
rate. We first derive a one-step update formula and convert it to an ODE to get an integral
equation. We use a deterministic approximation for the integral equation with experimental
results. Then we set a proxy of the loss function and verify that it satisfies the integral equation.

(5) In Appendix E we discuss the maximal learning rate deferred from the main text, and derive the
optimal learning rate, compute-optimal loss, and optimal model size in Table 1.

(6) In Appendix F we derive the result for stable-decay learning rate in Section 4.3.

(7) In Appendix G we provide analysis for stochastic gradient decay and target decay deferred from
Section 5.1.

(8) In Appendix H we derive scaling law of Adam under heuristic proposed by Xiao et al. (2024),
and verify our results with experiment.

(9) In Appendix I we provide omitted analysis from Appendix D.

A LIMITATION AND FUTURE WORK

Limitation. Our analysis assumes batch size 1 and focuses on the PLRF setting with diagonal
covariance H; extensions to mini-batch and more general covariances are not covered here. For
scheduling, we analyze a stable-decay template; exact asymptotics for broader schedules remain
open. We also use a deterministic approximation whose accuracy we verify empirically; tightening
constants and extending the formal guarantees are left for future work.

Future Work. Combining signSGD with dimension-adapted acceleration (Ferbach et al., 2025)
and extending the framework to more complex architectures (e.g., two-layer linear networks or
self-attention) are promising avenues.

B ADDITIONAL RELATED WORK

More Related Works on Empirical Scaling Laws. Porian et al. (2024) resolve discrepancy be-
tween Kaplan et al. (2020) and Hoffmann et al. (2022). Kumar et al. (2024) investigate precision-
aware scaling law.
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More Related Works on Scaling Law Theory. There are lines of work analyzing more complex
models compared to the power-law random features (PLRF) model. Bordelon et al. (2025) investi-
gate the scaling law of a two-layer linear neural network with projected gradient descent, and argued
the benefit compared to the PLRF model, which is one-layer. Ding et al. (2025) cover the scaling
law of quadratically parameterized linear regression with SGD. Lyu et al. (2025) cover the scaling
law of linear self-attention under gradient flow.

Sharma & Kaplan (2020) show that test loss scales as a power-law of model size in regression prob-
lems. Hutter (2021) investigates binary classification using a tabulation learning algorithm, deriving
a power-law scaling with respect to dataset size. Bahri et al. (2024) analyze a linear random features
model with SGD, showing a power-law decay in test loss with respect to sample size (or model size,
when the other is infinite). Bordelon et al. (2024) derive a power law over model size, dataset size,
and time for the linear random features model under gradient flow dynamics.

More Related Works about signSGD and sign descent. Balles et al. (2020) investigate the ge-
ometry of sign gradient descent. Kunstner et al. (2023) discover that sign descent could be the key
factor making the gap between SGD and Adam on Transformers. Bernstein et al. (2018b) propose
signSGD with majority vote, which is communication efficient and fault-tolerant. Karimireddy et al.
(2019) prove that error-feedback can make the rate of convergence of signSGD better.

B.1 COMPARISON WITH KUNSTNER & BACH (2025)

First, their work compares the scaling laws of sign descent and gradient descent, whereas our work
compares the scaling laws of signSGD and SGD. Second, they analyze for a Linear Bigram Model,
while we analyze for the power-law random features (PLRF) model. The advantage of the PLRF
model is that it models two parameters each for feature vector decay and target decay, while the
Linear Bigram Model has one parameter for data frequency decay. Lastly, they derived a scaling law
where the model size goes to infinity; in contrast, our scaling law covers both finite model size and
infinite limit by representing the loss as a function of model size, number of steps, and learning rate.
This made us possible to analyze the compute-optimal scaling law.

B.2 COMPARISON WITH XIAO ET AL. (2024)

ODE for signSGD in Xiao et al. (2024) is equivalent to the ODE that occurred during our analysis.
The reason that we were not able to directly use their ODE is that they derived it under the spectrum
lower bound assumption for the covariance matrix. In our case spectrum of the covariance matrix
SHST is asymptotically the same as i−2α, so their assumption does not hold for our setup. So
we re-derived the ODE without the spectrum lower bound assumption. Due to the spectrum lower
bound assumption, they led to an exponential decay to limit risk, which is completely different
from the polynomial neural scaling law derived from our paper. They discussed the noise-reshaping
effect on the level of SDE. In contrast, we observed noise reshaping on the level of scaling law and
investigated its effect on compute-optimal scaling.

B.3 ADDITIONAL PHASE PLANE PLOTS TO COMPARE WITH PRIOR WORK

Figure 4 indicates the area where signSGD has a steeper compute-optimal slope compared to SGD,
by coloring it with Mint green. It lies in Phase Ac, Ad, Ba, Bb, and covers all areas of Phase Bb. In
terms of the SGD Phase, it covers all areas of Phase III and most of the areas of Phase IV.

Figure 5 indicates the area where signSGD has a steeper compute-optimal slope compared to DANA-
decaying in Ferbach et al. (2025), by coloring it with Lime green. It lies in Phase Ac, Ad, Ba, Bb.
It is smaller than the Mint green area, and this is natural, since DANA-decaying in Ferbach et al.
(2025) has a steeper slope compared to SGD.
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Figure 4: Phase planes to compare signSGD and SGD. Mint green area covering all of Phase Bb
and III, and some part of Phase Ac, Ad, Ba, IV is the area where signSGD has a steeper compute-
optimal slope compared to SGD. The left side is the signSGD phase plane, and the right side is the
SGD phase plane. We placed the Mint green area for both of them for clarity. We will call this Mint
green area as Area III-IVsub.

Figure 5: Phase plane to compare signSGD and DANA-decaying in Ferbach et al. (2025). Lime
green area covering some part of Phase Ac, Ad, Ba, Bb is the area where signSGD has a steeper
compute-optimal slope compared to DANA-decaying in Ferbach et al. (2025).

C EXPERIMENTS

C.1 EXPLAINATION FOR FIGURE 1.

Parameters. Left parameters: (α, β) = (0.4, 0.8), γ0 = 0.006, e∗ = 1.0 for signSGD, e∗ = 0.4571
for SGD, 20 runs. Right parameters: (α, β) = (1.0, 0), γ0 = 0.002, e∗ = 1.0 for constant, e∗ =
0.833 for stable-decay, c = 0.091, p = 0.1, τ = 1 for stable-decay, 10 runs.

Takeaways. In Figure 1, the left panel demonstrates the steeper compute-optimal slope of signSGD
for (α, β) = (0.4, 0.8) in the area of Phase Ac. The right panel shows the increase in compute-
optimal slope achieved by stable-decay scheduling for (α, β) = (1.0, 0). The theoretical and exper-
imental compute-optimal slopes agree within errors of 0.04 (left) and 0.01 (right), which are well
within the error margins reported in prior works.

Additionally Figure 6, demonstrates the steeper compute-optimal slope of signSGD for (α, β) =
(0.4, 1.0) in the Phase Ad and (α, β) = (0.7, 1.1) in Phase Ba.
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Figure 6: comparison of SGD and signSGD on Compute-Optimal Scaling. Colored lines rep-
resent the training trajectories of each algorithm, while black lines denote the compute-optimal
curves. In both panels, the theoretical compute-optimal predictions closely follow the observed scal-
ing. Both plot shows that signSGD has a steeper compute-optimal slope than SGD. Left parameters:
(α, β) = (0.4, 1.0), γ0 = 0.01, e∗ = 1.0 for signSGD, e∗ = 0.533 for SGD, 5 runs. Right parame-
ters: (α, β) = (0.7, 1.1), γ0 = 0.01, e∗ = 1.09 for signSGD, e∗ = 0 for SGD, 20 runs.

Figure 7: Dsign
al (M,N, γ0) term exponent. Blue curves: true signSGD trajectories. Black dot-

ted curves: linear fits over the early-iteration interval in log-log scale. Left: parameters (α, β) =
(0.75, 0), γ0 = 0.0012, f(z) = 1, M = 200, d = 400. The theoretical exponent is
−2(2α + 2β − 1)/(2α − 2β + 1) = −0.4, which matches the experiment. Right: parameters
(α, β) = (1.0, 0.2), γ0 = 0.0006, f(z) = 1, M = 400, d = 1600. The theoretical exponent is
−2(2α+ 2β − 1)/(2α− 2β + 1) = −1.077, again consistent with the experiment.

C.2 EXPERIMENT FOR ALIGNED DRIFT

In Figure 7, we examine the exponent of the Dsign
al (M,N, γ0) term,(

Mmin(α,0.5) γ0 N
)− 2(2α+2β−1)

2α−2β+1 ,

of signSGD. For the Phase Aa, the Dsign
al (M,N, γ0) term dominates in the early iterations over a

sufficient interval, allowing us to evaluate the exponent by line fitting on a log-log plot. The experi-
mental results align well with the theoretical formula − 2(2α+2β−1)

2α−2β+1 .

C.3 VALIDATION OF THE TABLE 1

In Figure 8 to 12 validates the exponent in Table 1 for various (α, β). On the left plots, we draw
multiple curves with different model size M while setting the learning rate as γ0 = M−e∗ . Then
the lower envelope becomes the compute-optimal curve, and by measuring the slope in a log-log
plot, we can validate the compute-optimal loss exponent in the Table 1. On the right plots, we draw

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

the optimal model size at each flops. Here, the optimal model size is the model size of the curve
that meets the lower envelope at that flop. By measuring the slope in a log-log plot, we can validate
the optimal model size exponent in the Table 1. Note that we use a similar experimental setting to
Paquette et al. (2024). In most cases, the error between the measured exponent and the theoretical
exponent was less than 0.04, and the error was less than 0.06 even for the worst case. This error lies
within the error margins reported in prior works (Paquette et al., 2024; Ferbach et al., 2025).
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Figure 8: Measure of compute-optimal loss slope and optimal model size slope. We validate the
exponent of R

(
M⋆, f

M⋆ , γ
⋆
0

)
and M⋆ with respect to f in the Table 1. The left plot shows the

compute-optimal loss with respect to flops 6MN . The right plot shows the optimal model size with
respect to flops 6MN . Each plot includes the measured slope and the theoretical slope from the
Table 1. 17
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Figure 9: Measure of compute-optimal loss slope and optimal model size slope. We validate the
exponent of R

(
M⋆, f

M⋆ , γ
⋆
0

)
and M⋆ with respect to f in the Table 1. The left plot shows the

compute-optimal loss with respect to flops 6MN . The right plot shows the optimal model size with
respect to flops 6MN . 18
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Figure 10: Measure of compute-optimal loss slope and optimal model size slope. We validate
the exponent of R

(
M⋆, f

M⋆ , γ
⋆
0

)
and M⋆ with respect to f in the Table 1. The left plot shows the

compute-optimal loss with respect to flops 6MN . The right plot shows the optimal model size with
respect to flops 6MN . 19
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Figure 11: Measure of compute-optimal loss slope and optimal model size slope. We validate
the exponent of R

(
M⋆, f

M⋆ , γ
⋆
0

)
and M⋆ with respect to f in the Table 1. The left plot shows the

compute-optimal loss with respect to flops 6MN . The right plot shows the optimal model size with
respect to flops 6MN . Each plot includes the measured slope and the theoretical slope from the
Table 1.
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Figure 12: Measure of compute-optimal loss slope and optimal model size slope. We validate
the exponent of R

(
M⋆, f

M⋆ , γ
⋆
0

)
and M⋆ with respect to f in the Table 1. The left plot shows the

compute-optimal loss with respect to flops 6MN . The right plot shows the optimal model size with
respect to flops 6MN . Each plot includes the measured slope and the theoretical slope from the
Table 1.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D DERIVATION OF THE SCALING LAW FORMULA R(M,N, γ0)

In this section, our goal is to derive the scaling law formula (12) of R(M,N, γ0).

On the area α < 0.5 or β < 0.5 with −α + 0.5 < β < α + 0.5, Dsign
dis (M,N, γ0) term is smaller

than at least one of the other three terms. So it is enough to show

R(M,N, γ0) ≂ M−2α+max(0, 1−2β)︸ ︷︷ ︸
=:A(M)

+
(
Mmin(α,0.5)Nγ0

)− 2(2α+2β−1)
2α−2β+1︸ ︷︷ ︸

=:Dsign
al (M,N,γ0)

+ γ2
0 M

2−min(1,2α)︸ ︷︷ ︸
=:N sign(M,γ0)

.

for that area.

For the area α > 0.5 and β > 0.5 with −α + 0.5 < β < α + 0.5, as all four terms are dominant,
we will prove

R(M,N, γ0) ≂ M−2α+max(0, 1−2β)︸ ︷︷ ︸
=:A(M)

+
(
Mmin(α,0.5)Nγ0

)− 2(2α+2β−1)
2α−2β+1︸ ︷︷ ︸

=:Dsign
al (M,N,γ0)

+M
− 6α−1

2α+1 (Nγ0)
−

2(2α−1)
2α+1︸ ︷︷ ︸

=:Dsign
dis (M,N,γ0)

+ γ2
0 M

2−min(1,2α)︸ ︷︷ ︸
=:N sign(M,γ0)

.

D.1 ONE-STEP UPDATE FORMULA OF SIGNSGD

Xiao et al. (2024) approximate the signSGD trajectory using SDE and ODE techniques. Their proof
relies on a spectral lower bound assumption of the covariance matrix, so their results are not directly
applicable to our setting.

For a quadratic function q, by Taylor’s theorem, we have
E[q(θk+1)− q(θk) | Fk] = E[⟨∇q(θk),θk+1 − θk⟩ | Fk] +

1
2 E
[
⟨∇2q, (θk+1 − θk)

⊗2⟩
∣∣Fk

]
,

where Fk = σ(S,θ0, . . . ,θk). Since
θk+1 − θk = −γk sign(⟨Sxk,θk⟩ − yk) sign(Sxk),

We can expand the two terms using sign-Gaussian identities.

Gradient term.
E[⟨∇q(θk) , θk+1 − θk⟩ | Fk]

= −γk
〈
∇q(θk) , E

[
sign(Sxk) sign

(〈
xk, S

Tθk −w∗〉) ∣∣Fk

]〉
= −γk

〈
∇q(θk) ,

2

π
arcsin

diag
(
SHST

)−1/2
SH

(
STθk −w∗)√

(STθk −w∗)
T
H (STθk −w∗)

〉

= −γk

〈
∇q(θk) ,

2

π
arcsin

(
diag(K)

−1/2
K (θk − θ∗)∥∥H1/2(STθk −w∗)

∥∥
)〉

,

where K = SHST.

Quadratic term.

E
[〈

∇2q, (θk+1 − θk)
⊗2
〉 ∣∣∣Fk

]
= γ2

k

〈
∇2q, E

[(
sign(Sxk) sign

(〈
xk, S

Tθk −w∗〉))⊗2
∣∣∣Fk

]〉
= γ2

k

〈
∇2q, E

[
(sign(Sxk))

⊗2
∣∣∣Fk

]〉
= γ2

k

〈
∇2q,

2

π
arcsin

(
diag

(
SHST

)−1/2
SHST diag

(
SHST

)−1/2
)〉

= γ2
k

〈
∇2q,

2

π
arcsin

(
diag(K)

−1/2
K diag(K)

−1/2
)〉

.
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One-step update formula. Substituting the gradient and quadratic terms yields the desired one-
step update formula for signSGD.

E[q(θk+1)− q(θk) | Fk] = −2γk
π

〈
∇q(θk) , arcsin

(
K (θk − θ∗)√

L(k)

)〉
+

γ2
k

π

〈
∇2q, Kσ

〉
.

Let λi(K), ui, and wi denote the eigenvalue, right eigenvector, and left eigenvector of K, respec-
tively. Then K =

∑M
i=1 λi(K)ui ⊗wi and I =

∑M
i=1 ui ⊗wi.

Define
ri(k) = (θk − θ∗)T(Kui ⊗wi)(θk − θ∗).

The risk decomposes as

L(k) =
∥∥∥H1/2ST(θk − θ∗)

∥∥∥2+∥∥∥H1/2w⊥

∥∥∥2 = (θk−θ∗)TK(θk−θ∗)+∥H1/2w⊥∥2 =

d∑
i=1

ri(k)+∥H1/2w⊥∥2.

We now apply the one-step update formula to ri(k). Note that

∇ri(k) = Kui ⟨wi,θk − θ∗⟩+wi ⟨Kui,θk − θ∗⟩, ∇2ri = Kuiw
T
i +wiu

T
i K

T.

Approximating arcsin(x) ≈ x and using KT = K together with KTK = K
T
KT, we obtain

E[ri(k + 1)− ri(k) | Fk] ≈ −2γk
π

(
⟨wi, θk − θ∗⟩

〈
Kui,

K (θk − θ∗)√
L(k)

〉
+ ⟨Kui, θk − θ∗⟩

〈
wi,

K (θk − θ∗)√
L(k)

〉)

+
2γ2

k

π
wT

i KσKui

= − 4γk

π
√
L(k)

λi

(
K
)
ri(k) +

2γ2
k

π
wT

i KσKui.

It is possible to replace the linear approximation arcsin(x) ≈ x by an inequality, and the main
results of our paper remain unchanged. We explain it in Appendix I.2. Hence,

E[ri(k + 1)− ri(k) | Fk] ≈ − 4γk

π
√

L(k)
λi(K) ri(k) +

2γ2
k

π
wT

i KσKui.

D.2 ODE APPROXIMATION AND IMPLICIT INTEGRAL EQUATION OF SIGNSGD

Let the learning rate be γk = γ0f(k). Define Vi = wT
i KσKui, then our one-step update formula

becomes

E[ri(k + 1)− ri(k) | Fk] = − 4γk

π
√
L(k)

λi(K) ri(k) +
2γ2

k

π
Vi.

Dividing by γ0 gives

E
[
ri(k + 1)− ri(k)

γ0

∣∣∣∣Fk

]
= − 4

π
√
L(k)

λi(K) f(k) ri(k) +
2f(k)2γ0

π
Vi.

Interpreting γ0 as the time step, the discrete index k corresponds to continuous time t = kγ0. Let
P (t) = L(t/γ0) and pi(t) = ri(t/γ0). We then obtain the ODE

dpi
dt

= − 4

π
√

P (t)
λi(K) f(t/γ0) pi(t) +

2f(t/γ0)
2γ0

π
Vi. (16)

From this point onward in the analysis, we treat P , pi, L, and ri as their continuous extensions,
allowing arbitrary positive real inputs.
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Integral formulation. Solving the ODE yields

pi(t) = pi(0) e
− 4λi

π

∫ t
0

f(u/γ0)√
P (u)

du

+
2γ0
π

Vi

∫ t

0

e
− 4λi

π

∫ t
s

f(u/γ0)√
P (u)

du

f(s/γ0)
2 ds.

Since P (t) =
∑M

i=1 pi(t) + ∥H1/2w⊥∥2, we obtain

P (t) = ∥H1/2w⊥∥2+
M∑
i=1

pi(0) e
− 4λi

π

∫ t
0

f(u/γ0)√
P (u)

du

+
2γ0
π

M∑
i=1

Vi

∫ t

0

e
− 4λi

π

∫ t
s

f(u/γ0)√
P (u)

du

f(s/γ0)
2 ds.

Integral equation in discrete form. Note that L(N) = P (Nγ0). With a change of variables, we
obtain

L(N) = ∥H1/2w⊥∥2+
M∑
i=1

ri(0) e
− 4λiγ0

π

∫ N
0

f(u)√
L(u)

du

+
2γ2

0

π

M∑
i=1

Vi

∫ N

0

e
− 4λiγ0

π

∫ N
z

f(u)√
L(u)

du

f(z)2 dz.

(17)

Drift and noise decomposition. Define

Ldrift(N) =

M∑
i=1

ri(0) e
− 4λiγ0

π

∫ N
0

f(u)√
L(u)

du

, Lnoise(N) =
2γ2

0

π

M∑
i=1

Vi

∫ N

0

e
− 4λiγ0

π

∫ N
z

f(u)√
L(u)

du

f(z)2 dz.

(18)

Then
L(N) = ∥H1/2w⊥∥2 + Ldrift(N) + Lnoise(N), (19)

and we will analyze ∥H1/2w⊥∥2 + Ldrift(N) and Lnoise(N) separately.

Figure 13 show dynamics of three terms ∥H1/2w⊥∥2, Ldrift(N), Lnoise(N) referring each as Ap-
prox, Drift, Noise. The right plot in Figure 13 validates the equality in (19).

Figure 13: Dynamics of Drift and Noise. Left: the purple curve is the 80% confidence interval of the
true signSGD trajectory, while the blue curve is the numerical ODE solution. The yellow, orange,
and green curves correspond to the approximation, drift, and noise terms in (19). Right: the red
curve shows the sum of these three terms, matching both the true trajectory and the ODE solution.
Parameters: α = 1.0, β = 0, γ0 = 0.003, f(z) = 1, M = 200, d = 800.

D.2.1 TRANSFORMATION OF THE DRIFT TERM AND APPROXIMATION ERROR

Let

Q(z) =
4γ0
π

∫ z

0

f(u)√
L(u)

du, K1 = H1/2ST diag(SHST)−1/2SH1/2.

Then
KK

p
= SH1/2K

p

1H
1/2ST
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holds.

Define

A = H1/2e−K1Q(N)H1/2, u = STθ0 − STθ∗ −w⊥ = STθ0 −w∗.

From SHw⊥ = 0 we get
K1(H

1/2w⊥) = 0,

and this implies
e−K1Q(N)(H1/2w⊥) = e0(H1/2w⊥) = H1/2w⊥.

Thus,
Aw⊥ = Hw⊥, wT

⊥Aw⊥ = wT
⊥Hw⊥,

and
uTAw⊥ = uTHw⊥ = (θ0 − θ∗)TSHw⊥ −wT

⊥Hw⊥ = −wT
⊥Hw⊥.

Using these identities, we can convert the drift term as follows:

Ldrift(N) =

M∑
i=1

ri(0) · e−λi(K)Q(N)

=

M∑
i=1

(θ0 − θ∗)T(Kui ⊗wi)(θ0 − θ∗) · e−λi(K)Q(N)

=

M∑
i=1

(θ0 − θ∗)T
(
(Kui ⊗wi) · e−λi(K)Q(N)

)
(θ0 − θ∗)

= (θ0 − θ∗)TKe−KQ(N)(θ0 − θ∗)

= (θ0 − θ∗)TSH1/2
(
H1/2Se−KQ(N)

)
(θ0 − θ∗)

= (θ0 − θ∗)TSH1/2
(
e−K1Q(N)H1/2S

)
(θ0 − θ∗)

= (u+w⊥)
TA(u+w⊥)

= uTAu+ uTAw⊥ +wT
⊥Au+wT

⊥Aw⊥

= uTH1/2e−K1Q(N)H1/2u−wT
⊥Hw⊥ −wT

⊥Hw⊥ +wT
⊥Hw⊥

= uTH1/2e−K1Q(N)H1/2u− ∥H1/2w⊥∥2.

Drift term plus approximation error. Adding the approximation error gives

Ldrift(N) + ∥H1/2w⊥∥2 = uTH1/2e−K1Q(N)H1/2u

=
〈
e−K1Q(N),

(
H1/2(STθ0 −w∗)

)⊗2
〉
.

Also we assume θ0 = 0, then〈
e−K1Q(N), (H1/2(STθ0 −w∗))⊗2

〉
=
〈
e−K1Q(N), (H1/2w∗)⊗2

〉
.

In the next subsection, we will describe how to apply a deterministic approximation, similar to
Paquette et al. (2024), to the following term:

H :=
〈
e−K1Q(N), v⊗2

〉
,

where v := H1/2w∗ ∈ Rd.
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D.2.2 DETERMINISTIC APPROXIMATION

Note that we assume d ≥ rM for some r > 1, and let d/M → (1,∞] as d,M → ∞ when 2α > 1,
and d/M → (1,∞) when 2α < 1. In our setup, S ∈ RM×d have i.i.d. N (0, 1/M) entries, and we
will write the kth column of ST as 1√

M
sk ∈ Rd; columns are independent.

Define

yk := H1/2sk ∈ Rd, ak :=
1√

1
M yT

kyk

=

√
M√

sTkHsk

> 0.

The unnormalized baseline and the column–normalized matrices are

K̂ := H1/2STSH1/2 =
1

M

M∑
k=1

yky
T
k , K1 := H1/2ST diag(SHST)−1/2SH1/2 =

1

M

M∑
k=1

ak yky
T
k .

For z ∈ C+ := {z : ℑz > 0}, define the resolvents

L(z) := (K1 − zI)−1, R(k)(z) :=

 1

M

∑
ℓ ̸=k

aℓyℓy
T
ℓ − zI

−1

.

Note that
ykByk ≈ Tr(HB)

for matrix B. In particular,

yT
kyk ≈ TrH, ak ≈

√
M√

TrH
.

Also note that

ak y
T
kRR(k) yk ≈

√
M√

TrH
· Tr(HRR(k)),

and

aky
T
kR

(k)yk ≈
√
M√

TrH
Tr(HR(k)).

By the Sherman–Morrison expansion,

R = R(k) − M−1ak R
(k)yky

T
kR

(k)

1 +M−1ak yT
kR

(k)yk
.

Multiplying on the left by R and sandwiching with yT
k (·)yk, we get

aky
T
kRRyk = aky

T
kRR(k)yk − M−1aky

T
kRR(k)yk · akyT

kR
(k)yk

1 +M−1ak yT
kR

(k)yk
.

Now we will replace terms on the right side by

aky
T
kRR(k)yk ≈

√
M√

TrH
Tr(HRR(k)),

and

aky
T
kR

(k)yk ≈
√
M√

TrH
Tr(HR(k)).

Thus

aky
T
kRRyk ≈

√
M√

TrH
Tr(HRR(k))

1 +M−1
√
M√

TrH
Tr(HR(k))

.
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Replacing R(k) by R and averaging over k, we obtain

1

M

M∑
k=1

aky
T
kRRyk ≈ pd Tr(HRR)

1 +M−1pd Tr(HR)
, pd :=

√
M√

TrH
.

It implies

Tr(R(R−1 + zI)R) ≈ pd Tr(RHR)

1 +M−1pd Tr(HR)
.

This implies
L(z)−1 + zI ≈ pd

1 +M−1pd Tr(HL(z))
H.

Let
m(z/pd) =

1

1 +M−1pd Tr(HL(z))
.

Then
L(z) ≈ (−zI + pdm(z/pd)H)−1.

Thus
(K1 − zI)−1 ≈ (−zI + pdm(z/pd)H)−1.

And
m(z) =

1

1 +M−1pd Tr(HR(pdz))
≈ 1

1 +M−1 Tr(H(−zI +m(z)H)−1)

holds. This fixed–point equation is identical to the one in Paquette et al. (2024).

Contour representation. Let v := H1/2w∗ ∈ Rd and consider

H :=
〈
e−K1Q(N), v⊗2

〉
.

For any analytic g on a contour Γ2 enclosing Spec(K1),

g(K1) = − 1

2πi

∮
Γ2

g(z)(K1 − zI)−1 dz.

We prove
c1 M

min(0.5,α) I ⪯ diag(SHST)−1/2 ⪯ c2 M
min(0.5,α) I

in Section I.4. It leads to

c1 M
min(0.5,α)K̂ ⪯ K ⪯ c2 M

min(0.5,α)K̂.

K1 has eigenvalues scaled by Mmin(0.5,α) compared to K̂ excluding constant. Note that pd ≂
Mmin(0.5,α). So, there exists a contour Γ2 enclosing the spectrum of K1, and its 1/pd–scaled version
Γ encloses the spectrum of K̂.

Taking g(z) = e−Q(N)z ,

H = − 1

2πi

∮
Γ2

e−Q(N)z
〈
(K1 − zI)−1, v⊗2

〉
dz

≈ − 1

2πi

∮
Γ2

e−Q(N)z
〈
(−zI + pdm(z/pd)H)−1, v⊗2

〉
dz

= − 1

2πi

∮
Γ

e−pdQ(N)z
〈
(−zI +m(z)H)−1, v⊗2

〉
dz.

Let R(z) = (−zI +m(z)H)−1, then our objective converts to

H ≈ − 1

2πi

∮
Γ

e−pdQ(N)z
〈
R(z), v⊗2

〉
dz.
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D.2.3 FINAL TRANSFORMATION RESULT

Paquette et al. (2024) evaluate the contour integrals with R(z). When α < 0.5 or β < 0.5, they
show

− 1

2πi

∮
Γ

(
1− 2γBz + γ2B(B + 1)z2

)r 〈L(z), v⊗2
〉
dz ≂ M−2α+max(0, 1−2β)

+ (2γBr)−
2α+2β−1

2α . (20)

When α > 0.5 and β > 0.5, they obtained

− 1

2πi

∮
Γ

(
1− 2γBz + γ2B(B + 1)z2

)r 〈L(z), v⊗2
〉
dz ≂ M−2α+max(0, 1−2β)

+ (2γBr)−
2α+2β−1

2α

+ M−1 (2γBr)−2+
1
2α . (21)

For the case α < 0.5 or β < 0.5, applying a similar method to our objective yields

− 1

2πi

∮
Γ

e−pd Q(N)z
〈
L(z), v⊗2

〉
dz ≂ M−2α+max(0, 1−2β)

+
(
Mmin(α, 0.5) Q(N)

)− 2α+2β−1
2α

, (22)

with details provided in Appendix I.1. Hence,〈
e−K1Q(N), (H1/2w∗)⊗2

〉
≂ M−2α+max(0, 1−2β)

+
(
Mmin(α, 0.5) Q(N)

)− 2α+2β−1
2α

. (23)

For the case α > 0.5 and β > 0.5, a similar argument gives

− 1

2πi

∮
Γ

e−pd Q(N)z
〈
L(z), v⊗2

〉
dz ≂ M−2α+max(0, 1−2β)

+
(
Mmin(α, 0.5) Q(N)

)− 2α+2β−1
2α

+ M−1
(
Mmin(α, 0.5) Q(N)

)−1+
1
2α

, (24)

with details in Appendix I.1. Consequently,〈
e−K1Q(N), (H1/2w∗)⊗2

〉
≂ M−2α+max(0, 1−2β)

+
(
Mmin(α, 0.5) Q(N)

)− 2α+2β−1
2α

+ M−1
(
Mmin(α, 0.5) Q(N)

)−1+
1
2α

. (25)

In summary, we obtain

Ldrift(N) + ∥H1/2w⊥∥2 ≂ M−2α+max(0, 1−2β) +
(
Mmin(α, 0.5) Q(N)

)− 2α+2β−1
2α

, (26)

for α < 0.5 or β < 0.5, and

Ldrift(N) + ∥H1/2w⊥∥2 ≂ M−2α+max(0, 1−2β)

+
(
Mmin(α, 0.5) Q(N)

)− 2α+2β−1
2α

+ M−1
(
Mmin(α, 0.5) Q(N)

)−1+
1
2α

, (27)
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for α > 0.5 and β > 0.5.

Figure 14 shows our transformed result in (26) and (27) based on deterministic approximation
matches the true signSGD trajectory up to a constant factor. When interpreting the figure, note that
our analysis is asymptotic; hence, discrepancies may appear in the very early iterations.
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Figure 14: Verification of the deterministic approximation and drift-term transformation. Left:
the purple curve denotes the 80% confidence interval of the true signSGD trajectory, the blue curve
represents the numerical ODE solution, and the yellow curve corresponds to the deterministic ap-
proximation after drift-term transformation in (26) and (27). Deterministic approximation matches
the true trajectory up to a constant factor. It should be noted that our analysis is asymptotic, and
thus, discrepancies may occur in the very early iterations. Right: the ratio between the approxi-
mation and the true trajectory remains bounded by a constant factor, confirming the validity of
our approach. Parameters: (α, β) = (0.7, 0.3), (1.0, 0), (0.4, 0.4), (0.7, 1.1) from top to bottom,
γ0 = 0.003, f(z) = 1, M = 200, d = 800, 100 runs.
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D.3 CONSTANT LEARNING RATE: PROXY AND VERIFICATION FOR THE CASE α < 0.5 OR
β < 0.5 (PHASE A)

Throughout this section, we set f(z) ≡ 1; hence

Q(N) =
4γ0
π

∫ N

0

du√
L(u)

.

Applying the drift/approximation-term transformation to the ODE solution yields the implicit rela-
tion

L(N) ≂ M−2α+max(0,1−2β)︸ ︷︷ ︸
approx

+
(
Mmin(α, 0.5) Q(N)

)− 2α+2β−1
2α︸ ︷︷ ︸

drift

(28)

+
2γ2

0

π

M∑
i=1

Vi

∫ N

0

exp
(
−4γ0

π
λi(K)

∫ N

z

du√
L(u)

)
dz︸ ︷︷ ︸

noise

. (29)

D.3.1 EARLY STAGE (DOMINANCE OF THE DRIFT TERM)

At N = 0, the noise integral is 0, the approximation term is independent of N , and the drift term is
large and decreases with N . Thus, in the early phase,

L(N) ≂
(
Mmin(α, 0.5) Q(N)

)− 2α+2β−1
2α . (30)

Since Q(N) = 4γ0

π

∫ N

0
L(u)−1/2 du, (30) is equivalent (up to absolute constants) to

L(N)
− 2α

2α+2β−1 ≂ Mmin(α, 0.5) γ0

∫ N

0

du√
L(u)

. (31)

To obtain a proxy profile, we replace ≂ by equality in (31) and differentiate both sides:

− 2α

2α+ 2β − 1
L(t)

− 2α
2α+2β−1 −1

L′(t) = Mmin(α, 0.5) γ0
1√
L(t)

. (32)

Solving (32) for L′(t) and separating variables gives the separable ODE

dL

dt
= −κLζ , ζ =

2α

2α+ 2β − 1
+

1

2
, κ =

2α+ 2β − 1

2α
Mmin(α, 0.5) γ0.

Assuming ζ > 1 (i.e. 2α+ 2β < 4α+ 1), we integrate to obtain

−L(t)−(ζ−1)

ζ − 1
= −κt+ constant =⇒ L(t) =

[
(ζ − 1)κ t

]−1/(ζ−1)

. (33)

Substituting ζ = 2α
2α+2β−1 + 1

2 and κ = 2α+2β−1
2α Mmin(α, 0.5) γ0 yields the early-phase proxy

L(N) ≂
(
γ0 M

min(α, 0.5) N
)−p

, p :=
2(2α+ 2β − 1)

2α+ 1− 2β
. (34)

By construction, (34) satisfies (31) (hence (30)) up to absolute constants.

D.3.2 LIMIT STAGE (STATIONARY ANALYSIS AND FLOOR)

With f ≡ 1, the mode-wise ODE is

dpi
dt

= − 4

π
√
P (t)

λi(K) pi(t) +
2γ0
π

Vi.

At stationarity, pi(t) → si and P (t) → L∞, we must have

− 4

π
√
L∞

λi(K) si +
2γ0
π

Vi = 0 =⇒ si =
γ0
√
L∞

2λi(K)
Vi =

γ0
√
L∞

2λi(K)
(wT

i KσKui).
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Using the risk decomposition P (t) =
∑M

i=1 pi(t) + ∥H1/2w⊥∥2, we obtain

L∞ =

M∑
i=1

si + ∥H1/2w⊥∥2 =
γ0
2

( M∑
i=1

wT
i KσKui

λi(K)

)√
L∞ + ∥H1/2w⊥∥2

=
γ0
2

Tr
(
diag(K)1/2Kσ

)√
L∞ + ∥H1/2w⊥∥2 =

γ0π

4
Tr
(
diag(K)1/2

)√
L∞ + ∥H1/2w⊥∥2.

Solving the quadratic in
√
L∞ gives

L∞ =

 γ0π
4 Tr

(
diag(K)1/2

)
+

√(
γ0π
4 Tr

(
diag(K)1/2

))2
+ 4∥H1/2w⊥∥2

2

2

(35)

≂ max
{(

γ0 Tr(diag(K)1/2)
)2
, ∥H1/2w⊥∥2

}
. (36)

Under our setup,

Tr(diag(K)1/2) =

M∑
i=1

√
(SHST)ii ≂ M ·

√
1

M
Mmax(1−2α,0) ≂ M1−min(α, 0.5).

By the results from Paquette et al. (2024); Lin et al. (2024), and note in Appendix I.3,

∥H1/2w⊥∥2 ≂ M−2α+max(0, 1−2β).

Hence
L∞ ≂ max

{
γ2
0 M

2−2min(α, 0.5), M−2α+max(0, 1−2β)
}
. (37)

D.3.3 PROXY

Combining the early-phase decay (34) with the floor (37), we adopt

Lpx(N) :=
(
γ0 M

min(α, 0.5) N
)−p

+ γ2
0 M

2−2min(α, 0.5) +M−2α+max(0, 1−2β)︸ ︷︷ ︸
=:C

, p =
2(2α+ 2β − 1)

2α+ 1− 2β
.

(38)

D.3.4 VERIFICATION OF THE PROXY

We show that Lpx satisfies (28) up to absolute constants. Equivalently, writing QLpx
(N) :=

4γ0

π

∫ N

0
du√
Lpx(u)

, we establish

(
Mmin(α, 0.5) QLpx(N)

)− 2α+2β−1
2α︸ ︷︷ ︸

drift

+ M−2α+max(0, 1−2β)︸ ︷︷ ︸
approx

+
2γ2

0

π

M∑
i=1

Vi

∫ N

0

exp
(
−4γ0

π
λi(K)

∫ N

z

du√
Lpx(u)

)
dz︸ ︷︷ ︸

noise
(39)

≂
(
γ0 M

min(α, 0.5) N
)−p

+ C︸ ︷︷ ︸
Lpx(N)

.

(40)

Lower Bound We prove

drift + approx + noise ≳
(
γ0 M

min(α, 0.5) N
)−p

+ C. (41)

Since Lpx(u) ≥ (γ0 M
min(α, 0.5) u)−p,

drift =
(
Mmin(α, 0.5) QLpx(N)

)− 2α+2β−1
2α ≳

(
Mmin(α, 0.5) · γ0

∫ N

0

(
γ0 M

min(α, 0.5) u
)p/2

du
)− 2α+2β−1

2α

≂
(
γ0 M

min(α, 0.5) N
)−p

.
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Since Lpx(u) ≥ C for all u, ∫ N

z

du√
Lpx(u)

≤ N − z√
C

.

Hence

noise ≥ 2γ2
0

π

M∑
i=1

Vi

∫ N

0

exp
(
−4γ0

π
λi(K)

N − z√
C

)
dz (42)

=
2γ2

0

π

M∑
i=1

Vi

√
C

4γ0

π λi(K)

(
1− e

− 4γ0
π λi(K) N√

C

)
(43)

≳ γ0
√
C

M∑
i=1

Vi

λi(K)
=

γ0
2

Tr
(
diag(K)1/2

)√
C ≂ γ0 M

1−min(α, 0.5)
√
C ≳ γ2

0 M
2−2min(α, 0.5).

(44)

Adding the approximation term M−2α+max(0, 1−2β) gives noise + approx ≳ C. Combining with
the drift contribution yields (41).

Upper Bound We establish

drift + approx + noise ≲
(
γ0 M

min(α, 0.5) N
)−p

+ C. (45)

Let

A(N) := max
{
(γ0 M

min(α, 0.5) N)−p, C
}
, p =

2(2α+ 2β − 1)

2α+ 1− 2β
.

Then Lpx(N) ≂ A(N). Define N0 by (γ0 M
min(α, 0.5) N0)

−p = C, i.e.

A(N) =

{
(γ0 M

min(α, 0.5) N)−p, N ≤ N0,

C, N > N0.

There exists a constant B ≥ 1 such that

Lpx(N) ≤ BA(N) (∀N ≥ 0). (46)

Upper bound for the drift term. Since L ≤ BA by (64) and Q is decreasing in its denominator,

drift =
(
Mmin(α, 0.5) QL(N)

)− 2α+2β−1
2α ≲

(
Mmin(α, 0.5) QBA(N)

)− 2α+2β−1
2α .

We evaluate the right-hand side by cases.

Case N ≤ N0. Then A(u) = (γ0 M
min(α, 0.5) u)−p for u ≤ N , so

QBA(N) =
4γ0
π

∫ N

0

du√
BA(u)

=
c√
B

γ0

∫ N

0

(
γ0 M

min(α, 0.5) u
)p/2

du

for an absolute constant c > 0, which implies

drift ≲
(
γ0 M

min(α, 0.5) N
)− 2α+2β−1

2α (1+p/2)
=
(
γ0 M

min(α, 0.5) N
)−p

.

Case N > N0. Split the integral at N0:

Mmin(α, 0.5)QBA(N) =
c√
B

γ0M
min(α, 0.5)

[∫ N0

0

(
γ0 M

min(α, 0.5) u
)p/2

du+

∫ N

N0

du√
BC

]

=
c√
B

[(
γ0 M

min(α, 0.5) N0

)1+p/2
+ γ0M

min(α, 0.5) N −N0√
BC

]
.
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Raising to the power − 2α+2β−1
2α and using (γ0 M

min(α, 0.5) N0)
−p = C,

drift ≲
[
C− 1+p/2

p + γ0
N −N0√

BC

]− 2α+2β−1
2α

≤
(
C− 1

(2α+2β−1)/(2α)

)− 2α+2β−1
2α

= C.

Combining the two cases,

drift ≲
(
γ0 M

min(α, 0.5) N
)−p

+ C. (47)

Upper bound for the noise integral. By the monotonicity of r 7→ r−1/2,∫ N

z

du√
L(u)

≥ 1√
B

∫ N

z

du√
A(u)

.

Therefore,

noise ≤ 2γ2
0

π

M∑
i=1

Vi

∫ N

0

exp
(
− 4γ0

π
√
B

λi(K)

∫ N

z

du√
A(u)

)
dz. (48)

We again split into two cases.

Case N ≤ N0. Then A(u) = (γ0 M
min(α, 0.5) u)−p on [0, N ], hence∫ N

z

du√
A(u)

=
(
γ0 M

min(α, 0.5)
)p/2 ∫ N

z

up/2 du =
(
γ0 M

min(α, 0.5)
)p/2 N1+p/2 − z1+p/2

1 + p/2
.

Plugging this into (48) and factoring,

noise =
2γ2

0

π

M∑
i=1

Vi

∫ N

0

exp
(
− 4γ0

π
√
B

λi(K)
(
γ0 M

min(α, 0.5)
)p/2 N1+p/2 − z1+p/2

1 + p/2

)
dz

=
2γ2

0

π

M∑
i=1

Vi exp
(
− 4γ0

π
√
B

λi(K)
(
γ0 M

min(α, 0.5)
)p/2 N1+p/2

1 + p/2

)
×
∫ N

0

exp
( 4γ0

π
√
B

λi(K)
(
γ0 M

min(α, 0.5)
)p/2 z1+p/2

1 + p/2

)
dz.

Make the change of variables y = z1+p/2 so that dz = 1
1+p/2 y

1
1+p/2

−1 dy and the upper limit

becomes N1+p/2:

noise =
2γ2

0

π

M∑
i=1

Vi e
−αiN

1+p/2

∫ N1+p/2

0

eαiy
1

1 + p/2
y

1
1+p/2

−1 dy,

αi :=
4γ0

π
√
B

λi(K)

(
γ0 M

min(α, 0.5)
)p/2

1 + p/2
.

Let X := N1+p/2 and

g(y) :=
1

1 + p/2
y

1
1+p/2

−1 =
1

1 + p/2
y−

p
2+p .

Since eαiy is increasing and g(y) is decreasing on (0, X], Chebyshev’s integral inequality (oppo-
sitely monotone) yields

1

X

∫ X

0

eαiyg(y) dy ≤
( 1

X

∫ X

0

eαiy dy
)( 1

X

∫ X

0

g(y) dy
)
.
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Hence

e−αiX

∫ X

0

eαiyg(y) dy ≤ e−αiX
eαiX − 1

αi

1

X

∫ X

0

g(y) dy

=
1− e−αiX

αi

1

1 + p/2
· 1

1− p
2+p

X− p
2+p

=
1− e−αiX

αi
X− p

2+p

(
since (1− p

2+p )(1 +
p
2 ) = 1

)
≤ 1

αi
X− p

2+p =
1

αi
N−p/2.

Therefore

noise ≤ 2γ2
0

π

M∑
i=1

Vi
1

αi
N−p/2,

and with αi =
4γ0

π
√
B
λi(K)

(
γ0 Mmin(α, 0.5)

)p/2
1+p/2 this becomes

noise ≤ γ0
√
B

2
(1 + p/2)

M∑
i=1

Vi

λi(K)

(
γ0 M

min(α, 0.5) N
)−p/2

.

Using
∑

i
Vi

λi(K)
= Tr(diag(K)1/2) ≂ M1−min(α, 0.5), we get

noise ≲ γ0 M
1−min(α, 0.5) (γ0 M

min(α, 0.5) N)−p/2

= γ0 M
1−min(α, 0.5) (γ0 M

min(α, 0.5) N)p/2 (γ0 M
min(α, 0.5) N)−p

≤ γ0 M
1−min(α, 0.5) 1√

C
(γ0 M

min(α, 0.5) N)−p ≲ (γ0 M
min(α, 0.5) N)−p,

where we used (γ0 M
min(α, 0.5) N)p/2 ≤ (γ0 M

min(α, 0.5) N0)
p/2 = C−1/2.

Case N > N0. Split the z–integral at N0:

noise ≤ 2γ2
0

π

M∑
i=1

Vi

[∫ N0

0

exp
(
− 4γ0

π
√
B

λi(K)

∫ N0

z

du√
A(u)

)
dz +

∫ N

N0

exp
(
− 4γ0

π
√
B

λi(K)

∫ N

z

du√
A(u)

)
dz

]
.

The first integral is the N = N0 case just handled, hence∫ N0

0

· · · dz ≲ (γ0 M
min(α, 0.5) N0)

−p = C.

For the second integral, we use that A ≡ C on [N0, N ]:∫ N

N0

exp
(
− 4γ0

π
√
B

λi(K)

∫ N

z

du√
A(u)

)
dz =

∫ N

N0

exp
(
− 4γ0

π
√
B

λi(K)
N − z√

C

)
dz

=

√
C

4γ0

π
√
B
λi(K)

(
1− e

− 4γ0
π
√

B
λi(K)

N−N0√
C

)
≤ π

√
B

4γ0

√
C

λi(K)
.

Therefore,

noise ≲ (γ0 M
min(α, 0.5) N0)

−p +
2γ2

0

π

M∑
i=1

Vi ·
π
√
B

4γ0

√
C

λi(K)

= C +
γ0
√
B

2

√
C

M∑
i=1

Vi

λi(K)
= C +

γ0
√
B

2

√
C Tr(diag(K)1/2)

≲ C + γ0 M
min(α, 0.5)

√
C ≲ C +

√
C ·

√
C ≲ C.
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Combining both cases,
noise ≲

(
γ0 M

min(α, 0.5) N
)−p

+ C. (49)

Conclusion of the upper bound. From (47), (49), and approx = M−2α+max(0, 1−2β) ≤ C, we
obtain (45).

Finally, combining the lower bound (41) and the upper bound (45) proves (40). Therefore, the proxy
(58) satisfies the implicit relation (28) up to absolute constants, with the three contributions labeled
as approx, drift, and noise.

D.4 CONSTANT LEARNING RATE: PROXY AND VERIFICATION FOR THE CASE α > 0.5 AND
β > 0.5 (PHASE B)

We now handle the case α > 0.5 and β > 0.5. Since α > 0.5, we have min(α, 0.5) = 0.5, and
because β > 0.5, we have min(2α, 2α + 2β − 1) = 2α. Applying the drift/approximation-term
transformation to the ODE solution yields

L(N) ≂ M−2α︸ ︷︷ ︸
approx

+
(
M1/2Q(N)

)− 2α+2β−1
2α︸ ︷︷ ︸

drift1

+ M−1
(
M1/2Q(N)

)−1+
1
2α︸ ︷︷ ︸

drift2

(50)

+
2γ2

0

π

M∑
i=1

Vi

∫ N

0

exp
(
−4γ0

π
λi(K)

∫ N

z

du√
L(u)

)
dz︸ ︷︷ ︸

noise

, (51)

where

Q(N) =
4γ0
π

∫ N

0

du√
L(u)

.

D.4.1 EARLY STAGE PROXIES (DRIFT1 AND DRIFT2)

We extract proxies from the two drift terms in (50) by the same differentiate-and-separate trick as
before.

drift1:
(
M1/2Q(N)

)−(2α+2β−1)/(2α). Assuming this term dominates and replacing ≂ by equal-
ity,

L(N)
− 2α

2α+2β−1 = M1/2γ0

∫ N

0

du√
L(u)

.

Differentiation gives the separable ODE L′(t) = −κ1 L(t)
β1 with

β1 =
2α

2α+ 2β − 1
+

1

2
, κ1 =

2α+ 2β − 1

2α
M1/2γ0.

For β1 > 1 (equivalently 2α+ 2β < 4α+ 1) we obtain

L1(N) ≂ (γ0M
1/2N)−p1 , p1 =

2(2α+ 2β − 1)

2α+ 1− 2β
. (52)

drift2: M−1
(
M1/2Q(N)

)−1+
1
2α . Assume α > 1

2 and, in the early phase, the second drift term
dominates:

L(N) ≂ M−1
(
M1/2Q(N)

)− 2α−1
2α , Q(N) ≂ γ0

∫ N

0

du√
L(u)

.

Expanding the M–exponent,(
M1/2Q

)− 2α−1
2α = M

− (2α−1)
4α Q− 2α−1

2α ,
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hence

L(N) ≂ M− 6α−1
4α

(
γ0I(N)

)− 2α−1
2α , I(N) :=

∫ N

0

du√
L(u)

. (53)

Raise both sides of (53) to the power − 2α
2α−1 so that the integral becomes linear:

L(N)
− 2α

2α−1 = M
6α−1
4α−2 γ0 I(N) ≂ M

6α−1
4α−2 γ0

∫ N

0

du√
L(u)

. (54)

Differentiating (54) with respect to t yields

− 2α

2α− 1
L(t)

− 2α
2α−1 −1

L′(t) = M
6α−1
4α−2 γ0

1√
L(t)

.

Rearranging gives a separable ODE of the usual power form

L′(t) = −κ2 L(t)
β2 , β2 =

2α

2α− 1
+

1

2
=

6α− 1

4α− 2
> 1, (55)

with
κ2 =

2α− 1

2α
γ0 M

6α−1
4α−2 > 0. (56)

Since β2 > 1, solving (55) gives

L(t)−(β2−1) = (β2 − 1)κ2 t+ const.

Absorbing harmless absolute constants into ≂ and setting t = N ,

L2(N) ≂
(
γ0 M

6α−1
4α−2 N

)−p2

, p2 =
1

β2 − 1
=

2(2α− 1)

2α+ 1
. (57)

Crossover scale. Equating (52) and (57) gives

N1 ≂ γ−1
0 Mη, η =

2α+ 1− 4β

4β
,

so R1 dominates for N ≲ N1 and L2 for N ≳ N1 (when α > 0.5 and 0.5 < β < α+ 0.5).

D.4.2 LIMIT STAGE (APPROX AND NOISE FLOORS)

As in the case α < 0.5 or β < 0.5, the stationary analysis with f ≡ 1 yields

L∞ ≂ max
{
γ2
0 Tr(diag(K)1/2)2, ∥H1/2w⊥∥2

}
.

Under our standing model Tr(diag(K)1/2) ≂ M0.5 and by the results from Paquette et al. (2024);
Lin et al. (2024), and note in Appendix I.3, ∥H1/2w⊥∥2 ≂ M−2α, hence the floor

C := γ2
0 M + M−2α.

D.4.3 COMBINED PROXY

Lpx(N) := L1(N) + L2(N) + C

= (γ0 M
0.5N)−p1 +

(
γ0 M

6α−1
4α−2N

)−p2
+ C,

(58)

where

p1 =
2(2α+ 2β − 1)

2α+ 1− 2β
, p2 =

4α− 2

2α+ 1
.

D.4.4 VERIFICATION OF THE PROXY

We show that Lpx satisfies (50) up to absolute constants.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Lower bound. We claim(
M0.5QLpx(N)

)− 2α+2β−1
2α︸ ︷︷ ︸

drift1

+ M−1
(
M0.5QLpx(N)

)−1+ 1
2α︸ ︷︷ ︸

drift2

+ M−2α︸ ︷︷ ︸
approx

(59)

+
2γ2

0

π

M∑
i=1

Vi

∫ N

0

exp
(
− 4γ0

π λi(K)

∫ N

z

du√
Lpx(u)

)
dz︸ ︷︷ ︸

noise

≳ Lpx(N). (60)

Drift part. Using Lpx ≥ R1 inside Q,(
M0.5QLpx(N)

)− 2α+2β−1
2α ≳

(
M0.5γ0

∫ N

0

du√
L1(u)

)− 2α+2β−1
2α ≂ (γ0M

0.5N)−p1 ≂ L1(N).

Similarly, using Lpx ≥ L2 inside Q,

M−1
(
M0.5QLpx(N)

)−1+ 1
2α ≳ M−1

(
M0.5γ0

∫ N

0

du√
L2(u)

)−1+ 1
2α ≂

(
γ0 M

6α−1
4α−2N

)−p2 ≂ L2(N).

Therefore,
drift1 + drift2 ≳ L1(N) + L2(N). (61)

Noise + approx. Since Lpx ≥ C, ∫ N

z

du√
Lpx(u)

≤ N − z√
C

.

As in the Equation 44,

noise ≳ γ0
√
C

M∑
i=1

Vi

λi(K)
=

γ0
2

Tr
(
diag(K)1/2

)√
C ≂ γ0 M

0.5
√
C ≳ γ2

0 M.

Thus noise + approx ≳ C. Together with (61), this proves (60).

Upper bound. We will prove(
M0.5QLpx

(N)
)− 2α+2β−1

2α︸ ︷︷ ︸
drift1

+ M−1
(
M0.5QLpx

(N)
)−1+ 1

2α︸ ︷︷ ︸
drift2

+ M−2α︸ ︷︷ ︸
approx

(62)

+
2γ2

0

π

M∑
i=1

Vi

∫ N

0

exp
(
− 4γ0

π λi(K)

∫ N

z

du√
Lpx(u)

)
dz︸ ︷︷ ︸

noise

≲ Lpx(N). (63)

Let

A(N) =


(γ0 M

0.5N)−p1 , N ≤ N1,(
γ0 M

6α−1
4α−2N

)−p2
, N1 ≤ N ≤ N2,

C, N > N2,

where N1 and N2 are the crossover points between the three terms. There exists a constant B ≥ 1
such that

Lpx(N) ≤ BA(N) (∀N ≥ 0). (64)

It suffices to show(
M0.5QB·A(N)

)− 2α+2β−1
2α︸ ︷︷ ︸

drift1

+ M−1
(
M0.5QB·A(N)

)−1+ 1
2α︸ ︷︷ ︸

drift2

+ M−2α︸ ︷︷ ︸
approx

(65)

+
2γ2

0

π

M∑
i=1

Vi

∫ N

0

exp
(
− 4γ0

π λi(K)

∫ N

z

du√
B·A(u)

)
dz︸ ︷︷ ︸

noise

≲ Lpx(N). (66)
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Case N ≤ N1. It is enough to prove(
M0.5QB·A(N)

)− 2α+2β−1
2α︸ ︷︷ ︸

drift1

+ M−1
(
M0.5QB·A(N)

)−1+ 1
2α︸ ︷︷ ︸

drift2

+ M−2α︸ ︷︷ ︸
approx

(67)

+
2γ2

0

π

M∑
i=1

Vi

∫ N

0

exp
(
− 4γ0

π λi(K)

∫ N

z

du√
B·A(u)

)
dz︸ ︷︷ ︸

noise

≲ (γ0 M
0.5N)−p1 . (68)

We have M−2α ≲ (γ0 M
0.5N)−p1 directly. Also, the following holds with straightforward integra-

tion. (
M0.5QB·A(N)

)− 2α+2β−1
2α ≂ (γ0 M

0.5N)−p1 .

Since N ≤ N1 ≂ γ−1
0 Mη with η = 2α+1−4β

4β , following holds by integration and calculation.

M−1
(
M0.5QB·A(N)

)−1+ 1
2α ≲ (γ0 M

0.5N)−p1 .

Finally, arguing as in the N ≤ N0 case of Section D.3.4,

2γ2
0

π

M∑
i=1

Vi

∫ N

0

exp
(
− 4γ0

π λi(K)

∫ N

z

du√
B·A(u)

)
dz ≲ (γ0 M

0.5N)−p1 .

Hence, the claim holds for N ≤ N1.

Case N1 ≤ N ≤ N2. We will show(
M0.5QB·A(N)

)− 2α+2β−1
2α︸ ︷︷ ︸

drift1

+ M−1
(
M0.5QB·A(N)

)−1+ 1
2α︸ ︷︷ ︸

drift2

+ M−2α︸ ︷︷ ︸
approx

(69)

+
2γ2

0

π

M∑
i=1

Vi

∫ N

0

exp
(
− 4γ0

π λi(K)

∫ N

z

du√
B·A(u)

)
dz︸ ︷︷ ︸

noise

≲
(
γ0 M

6α−1
4α−2 N

)−p2
, (70)

where

p1 =
2(2α+ 2β − 1)

2α+ 1− 2β
, p2 =

2(2α− 1)

2α+ 1
, A(u) =

{
(γ0 M

0.5u)−p1 , u ≤ N1,(
γ0 M

6α−1
4α−2u

)−p2
, N1 < u ≤ N,

and QB·A(N) = 4γ0

π

∫ N

0
du√
B·A(u)

.

Approx term. Since N ≤ N2,

M−2α ≲
(
γ0 M

6α−1
4α−2 N

)−p2
.

Drift term. If N1 ≤ N ≤ 2N1, using the case N ≤ N1, we get an inequality for two drift terms.(
M0.5QB·A(N)

)− 2α+2β−1
2α︸ ︷︷ ︸

drift1

+ M−1
(
M0.5QB·A(N)

)−1+ 1
2α︸ ︷︷ ︸

drift2

(71)

≤
(
M0.5QB·A(N1)

)− 2α+2β−1
2α︸ ︷︷ ︸

drift1

+ M−1
(
M0.5QB·A(N1)

)−1+ 1
2α︸ ︷︷ ︸

drift2

(72)

≲ (γ0 M
0.5N1)

−p1 ≲ (γ0 M
6α−1
4α−2 N

)−p2
. (73)

So while covering the drift term, we will temporarily assume 2N1 ≤ N .

Lower bound on QB·A(N). Split the integral at N1:

QB·A(N) ≂ γ0

∫ N1

0

du√
A(u)

+ γ0

∫ N

N1

du√
A(u)

=: γ0 (I1 + I2). (74)
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For the first part, using A(u) = (γ0M
0.5u)−p1 on [0, N1],

I1 = (γ0M
0.5)p1/2

∫ N1

0

up1/2 du =
(γ0M

0.5)p1/2

1 + p1/2
N

1+p1/2
1 . (75)

For the second part, using A(u) = (γ0M
6α−1
4α−2u)−p2 on [N1, N ],

I2 = (γ0M
6α−1
4α−2 )p2/2

∫ N

N1

up2/2 du =
(γ0M

6α−1
4α−2 )p2/2

1 + p2/2

(
N1+p2/2 −N

1+p2/2
1

)
. (76)

Since we temporarily assumed N ≥ 2N1, we have

I2 ≳ (γ0M
6α−1
4α−2 )p2/2N1+p2/2.

Hence, from (74),

QB·A(N) ≳ γ0 (γ0M
6α−1
4α−2 )p2/2 N1+p2/2. (77)

drift1 vs. drift2. From N ≥ N1 and (77), we have QB·A(N) ≥ QB·A(N1). It follows that

drift1 =
(
M0.5QB·A(N)

)− 2α+2β−1
2α ≤ M−1

(
M0.5QB·A(N)

)−1+ 1
2α = drift2,

so it suffices to control drift2.

drift2 bound. Using (77),

drift2 = M−1
(
M0.5 QB·A(N)

)−1+ 1
2α

≲ M−1
(
M0.5 · γ 1+p2/2

0 M
6α−1
4α−2 ·

p2
2 N1+p2/2

)−1+ 1
2α

. (78)

Now compute the exponents of N , γ0, and M separately.

(i) N–exponent:(
1+ p2

2

)(
−1+ 1

2α

)
=
(
1+

2α− 1

2α+ 1

)( 1

2α
−1
)
=

4α

2α+ 1
·
(
−2α− 1

2α

)
= − 2(2α− 1)

2α+ 1
= − p2.

(ii) γ0–exponent: the same calculation as in (i) gives −p2.

(iii) M–exponent: the total exponent equals

−1 +
(
−1 + 1

2α

)(
0.5 +

6α− 1

4α− 2
· p2
2

)
.

A direct simplification shows this equals − 6α−1
4α−2 p2. Therefore, from (78),

drift2 ≲
(
γ0 M

6α−1
4α−2 N

)−p2
. (79)

Since drift1 ≤ drift2, we also have drift1 ≲ (γ0M
6α−1
4α−2N)−p2 .

Noise bound. It suffices to show

2γ2
0

π

M∑
i=1

Vi

∫ N1

0

exp
(
− 4γ0

π λi(K)

∫ N

z

du√
B·A(u)

)
dz (80)

+
2γ2

0

π

M∑
i=1

Vi

∫ N

N1

exp
(
− 4γ0

π λi(K)

∫ N

z

du√
B·A(u)

)
dz ≲

(
γ0 M

6α−1
4α−2 N

)−p2
. (81)

Integral over [N1, N ]. As in the case N ≤ N0 of Section D.3.4, with A(u) = (γ0M
6α−1
4α−2u)−p2 on

[N1, N ],

2γ2
0

π

M∑
i=1

Vi

∫ N

N1

exp
(
− 4γ0

π λi(K)

∫ N

z

du√
B·A(u)

)
dz ≲

(
γ0 M

6α−1
4α−2 N

)−p2
.
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Integral over [0, N1]. First,

2γ2
0

π

M∑
i=1

Vi

∫ N1

0

exp
(
− 4γ0

π λi(K)

∫ N

z

du√
B·A(u)

)
dz ≤ 2γ2

0

π

M∑
i=1

Vi

∫ N1

0

exp
(
− 4γ0

π λi(K)

∫ N1

z

du√
B·A(u)

)
dz.

As in the case N ≤ N0 of Section D.3.4,

2γ2
0

π

M∑
i=1

Vi

∫ N1

0

exp
(
− 4γ0

π λi(K)

∫ N1

z

du√
B·A(u)

)
dz ≲

√
C
(
γ0M

0.5N
)−p1/2 ≲

(
γ0 M

6α−1
4α−2 N1

)−p2
.

If N ≤ 2N1, this already implies

2γ2
0

π

M∑
i=1

Vi

∫ N1

0

exp
(
− 4γ0

π λi(K)

∫ N

z

du√
B·A(u)

)
dz ≲

(
γ0 M

6α−1
4α−2 N

)−p2
.

If N > 2N1, then∫ N1

0

exp
(
− 4γ0

π λi(K)

∫ N

z

du√
B·A(u)

)
dz ≤ N1 exp

(
− 4γ0

π λi(K)

∫ N

N1

du√
B·A(u)

)
,

and, using e−x ≤ 1/x together with the lower bound
∫ N

N1

du√
B·A(u)

≳ N 1+p2/2 (γ0M
6α−1
4α−2 )p2/2,

we get

2γ2
0

π

M∑
i=1

Vi

∫ N1

0

· · · dz ≲
2γ2

0

π

M∑
i=1

Vi
N1

4γ0

π λi(K)
∫ N

N1

du√
B·A(u)

≲ γ0

M∑
i=1

Vi

λi(K)

(
γ0M

6α−1
4α−2N

)−p2/2

≂ γ0 M
0.5
(
γ0M

6α−1
4α−2N

)−p2/2 ≲
(
γ0 M

6α−1
4α−2 N

)−p2
,

where the last step uses γ0M0.5 ≤ (γ0M
6α−1
4α−2N)−p2/2 which holds from N ≤ N2.

Combining the [N1, N ] and [0, N1] bounds yields

noise ≲
(
γ0 M

6α−1
4α−2 N

)−p2
,

as required for the case N1 ≤ N ≤ N2.

Case N ≥ N2. We have M−2α ≲ C directly. As in the above case,(
M0.5QB·A(N)

)− 2α+2β−1
2α ≤ M−1

(
M0.5QB·A(N)

)−1+ 1
2α .

Using the estimate from the previous case,

M−1
(
M0.5QB·A(N)

)−1+ 1
2α ≲ M−1

(
M0.5QB·A(N2)

)−1+ 1
2α ≲

(
γ0 M

6α−1
4α−2N2

)−p2 ≲ C.

Finally, as in the N > N0 case of Section D.3.4,

2γ2
0

π

M∑
i=1

Vi

∫ N

0

exp
(
− 4γ0

π λi(K)

∫ N

z

du√
B·A(u)

)
dz ≲ C.

Therefore, the bound holds for N ≥ N2 as well.

D.5 NOTE ON THE REGIME β > α+ 0.5

When β > α+0.5, the assumption ζ > 1 used in step 33 no longer holds. In this case, the first drift
term takes a different form:

Ldrift1(N) ≂
(
1− κ γ0 M

min(α,0.5) N
) 2(2α+2β−1)

2β−2α−1

,

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

for a finite horizon and some constant κ. Inserting the max function, we can represent it as a global
function.

Ldrift1(N) ≂
(
max

(
1− κ γ0 M

min(α,0.5) N, 0
)) 2(2α+2β−1)

2β−2α−1

.

Now we explain the behavior of the term. When N is asymptotically smaller than
(γ0 M

min(α,0.5))−1, the term is asymptotically constant. On N ≂ (γ0 M
min(α,0.5))−1, the term

suddenly drops form constant scale to 0.

For the case α < 0.5 or β < 0.5 the valid proxy is

Lpx(N) :=
(
max

(
1− κ γ0 M

min(α,0.5) N, 0
)) 2(2α+2β−1)

2β−2α−1

+γ2
0 M

2−2min(α, 0.5)+M−2α+max(0, 1−2β),

and for the case α > 0.5 and β > 0.5 the valid proxy is

Lpx(N) :=
(
max

(
1− κ γ0 M

0.5 N, 0
)) 2(2α+2β−1)

2β−2α−1

+M
− 6α−1

2α+1 (Nγ0)
−

2(2α−1)
2α+1 +γ2

0 M +M−2α.

These satisfy the implicit integral equation, same as Sections D.3.4 and D.4.4.

Therefore, for the case α < 0.5, β > α+ 0.5,

R(M,N, γ0) =
(
max (1− κ γ0 M

α N, 0)
) 2(2α+2β−1)

2β−2α−1

+ γ2
0 M

2−2α +M−2α, (82)

and for the case α > 0.5 and β > 0.5,

R(M,N, γ0) =
(
max

(
1− κ γ0 M

0.5 N, 0
)) 2(2α+2β−1)

2β−2α−1

+M
− 6α−1

2α+1 (Nγ0)
−

2(2α−1)
2α+1 +γ2

0 M+M−2α.

(83)

E DERIVATION OF THE COMPUTE-OPTIMAL RESULT

E.1 COMPUTE-OPTIMAL RESULT FOR MAXIMAL LEARNING RATE

We now discuss the maximal learning rate case deferred from the main text. Note that Paquette et al.
(2024) showed that the maximal learning rate for SGD is γ0 ≂ 1 when α > 1

2 , and γ0 ≂ M−(1−2α)

when α < 1
2 .

Now, we discuss the maximal learning rate for signSGD. Because the noise term is
γ2
0 M

2−min(1, 2α), stability requires

γ2
0 M

2−min(1, 2α) ≲ 1.

Otherwise, the signSGD noise term explodes as M grows. This condition is satisfied by choosing

γ0 = M−1+min(α, 0.5),

which ensures γ2
0 M

2−min(1, 2α) ≂ 1 while the other terms still decay appropriately.

For α < 0.5, the term(
Mmin(α, 0.5) N γ0

)− 2(2α+2β−1)
2α−2β+1 =

(
M−(1−2α) N

)− 2(2α+2β−1)
2α−2β+1

decreases with N but increases with M . However, under a fixed compute budget f = MN , one can
allocate resources so that this term does not cause an exploding loss; hence we do not classify it as
unstable.

Thus, the maximal learning rate for signSGD is

γ0 = M−1+min(α, 0.5).

In this case, however, we obtain R(M,N, γ0) ≂ 1, so the slope of the compute-optimal curve is
always zero.
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E.2 DERIVATION OF COMPUTE-OPTIMAL RESULT FOR OPTIMAL LEARNING RATE

We assume α+ β > 0.5 throughout, even for the case where it is not specified.

E.2.1 α > 0.5, β < 0.5 (PHASE Aa)

We start from

R(M,N, γ0) ≂
(
M1/2Nγ0

)− 2(2α+2β−1)
2α+1−2β +M−(2α+2β−1) + γ2

0 M.

Substitute

γ0 = M−e, N =
f

M
, M = fx,

so that, up to constant factors,

R ≂ fmax{ℓ1(x), ℓ2(x), ℓ3(x)},

where
ℓ1(x) = − (2α+ 2β − 1)x,

ℓ2(x) =
2(2α+ 2β − 1)

2α+ 1− 2β

(
e+ 1

2

)
x − 2(2α+ 2β − 1)

2α+ 1− 2β
,

ℓ3(x) = (1− 2e)x.

We minimize the convex, piecewise–linear function f(x, e) = maxi ℓi(x, e) over x ∈ (0, 1) and
e ∈ R. By convexity, any interior minimizer must occur at a kink where at least two lines are active.
In our regime α + β > 0.5 and β < α + 0.5, the only admissible triple intersection is {ℓ1, ℓ2, ℓ3}.
Solving ℓ1 = ℓ3 and ℓ2 = ℓ3 yields

e∗ = α+ β, x∗ =
1

2α+ 1
, h∗ = ℓ1(x

∗) = ℓ2(x
∗) = ℓ3(x

∗) = −2α+ 2β − 1

2α+ 1
.

To verify that this kink is the global minimizer, note first that x∗ ∈ (0, 1) when α > 0.5, hence
it is interior. Next, the subgradient optimality condition for convex max-of-lines problems requires
(0, 0) ∈ ∂f(x∗, e∗). At (x∗, e∗) the active lines have slopes that straddle zero in both coordinates:

∂xℓ1 = −(2α+2β−1) < 0, ∂xℓ2 =
2(2α+ 2β − 1)

2α+ 1− 2β

(
e∗+ 1

2

)
> 0, ∂xℓ3 = 1−2e∗ = 1−2(α+β) < 0,

and

∂eℓ1 = 0, ∂eℓ2 =
2(2α+ 2β − 1)

2α+ 1− 2β
x∗ > 0, ∂eℓ3 = −2x∗ < 0.

Since 0 lies in the convex hull of the active slopes in both x and e, we have (0, 0) ∈ ∂f(x∗, e∗), so
the interior triple intersection is the global minimizer; no boundary check is needed.

γ0 = M−(α+β), M⋆ ≂ f1/(2α+1), R
(
M⋆, f

M⋆

)
≂ f

− 2α+2β−1
2α+1 .

E.2.2 α < 0.5, β < 0.5 (PHASE Ab)

We start from

R(M,N, γ0) =
(
MαNγ0

)− 2(2α+2β−1)
2α+1−2β +M−(2α+2β−1) + γ2

0 M
2−2α.

Substitute

γ0 = M−e, N =
f

M
, M = fx,

so that, up to constant factors,

R ≂ fmax{ℓ1(x), ℓ2(x), ℓ3(x)},
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where
ℓ1(x) = − (2α+ 2β − 1)x,

ℓ2(x) = −2(2α+ 2β − 1)

2α+ 1− 2β

(
α− e− 1

)
x − 2(2α+ 2β − 1)

2α+ 1− 2β
,

ℓ3(x) =
(
2− 2α− 2e

)
x.

We minimize the convex, piecewise–linear function f(x, e) = maxi ℓi(x, e) over x ∈ (0, 1) and
e ∈ R. Under our standing assumptions α + β > 0.5 and β < α + 0.5, the only admissible triple
intersection is {ℓ1, ℓ2, ℓ3}. Solving ℓ1 = ℓ3 and ℓ2 = ℓ3 gives

e∗ = β + 1
2 , x∗ = 1

2 , h∗ = ℓ1(x
∗) = ℓ2(x

∗) = ℓ3(x
∗) = −2α+ 2β − 1

2
.

To certify optimality, note that x∗ ∈ (0, 1) (since x∗ = 1
2 ) and check the subgradient condition

(0, 0) ∈ ∂f(x∗, e∗). At (x∗, e∗) the active lines have slopes straddling zero in both coordinates:

∂xℓ1 = −(2α+2β−1) < 0, ∂xℓ2 =
2(2α+ 2β − 1)

2α+ 1− 2β

(
e∗+1−α

)
> 0, ∂xℓ3 = 2−2α−2e∗ = 1−2(α+β) < 0,

and

∂eℓ1 = 0, ∂eℓ2 =
2(2α+ 2β − 1)

2α+ 1− 2β
x∗ > 0, ∂eℓ3 = −2x∗ < 0.

Hence 0 lies in the convex hull of the active slopes in both variables, so the interior kink (x∗, e∗) is
the global minimizer; no boundary check is required.

γ0 = M−(β+0.5), M⋆ ≂ f1/2, R
(
M⋆, f

M⋆

)
≂ f−

2α+2β−1
2 .

E.2.3 α < 0.5, 0.5 < β < α+ 0.5 (PHASE Ac)

We start from

R(M,N, γ0) =
(
MαNγ0

)− 2(2α+2β−1)
2α+1−2β +M−2α + γ2

0 M
2−2α.

Substitute
γ0 = M−e, N =

f

M
, M = fx,

so that, up to constant factors,

R ≂ fmax{ℓ1(x), ℓ2(x), ℓ3(x)},

where
ℓ1(x) = − 2αx,

ℓ2(x) = −2(2α+ 2β − 1)

2α+ 1− 2β

(
α− e− 1

)
x − 2(2α+ 2β − 1)

2α+ 1− 2β
,

ℓ3(x) =
(
2− 2α− 2e

)
x.

We minimize the convex, piecewise–linear objective f(x, e) = maxi ℓi(x, e) over x ∈ (0, 1) and
e ∈ R. In the regime α + β > 0.5 and β < α + 0.5 (with α < 0.5 < β), the only admissible triple
intersection is {ℓ1, ℓ2, ℓ3}. Solving ℓ1 = ℓ3 and ℓ2 = ℓ3 yields

e∗ = 1, x∗ =
2α+ 2β − 1

−4αβ + 6α+ 4β − 2
, h∗ = ℓ1(x

∗) = ℓ2(x
∗) = ℓ3(x

∗) = − 2α (2α+ 2β − 1)

−4αβ + 6α+ 4β − 2
.

One checks that the denominator is positive in this regime and exceeds the positive numerator 2α+
2β − 1, hence x∗ ∈ (0, 1).

Interior optimality. At (x∗, e∗) the active lines’ slopes straddle zero in both coordinates:

∂xℓ1 = −2α < 0, ∂xℓ2 =
2(2α+ 2β − 1)

2α+ 1− 2β
(e∗+1−α) > 0, ∂xℓ3 = 2−2α−2e∗ = −2α < 0,
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and

∂eℓ1 = 0, ∂eℓ2 =
2(2α+ 2β − 1)

2α+ 1− 2β
x∗ > 0, ∂eℓ3 = −2x∗ < 0.

Thus (0, 0) ∈ ∂f(x∗, e∗) and, with x∗ ∈ (0, 1), the interior kink is the global minimizer; no bound-
ary check is required.

γ0 = M−1, M⋆ ≂ f
2α+2β−1

−4αβ+6α+4β−2 , R
(
M⋆, f

M⋆

)
≂ f−

2α (2α+2β−1)
−4αβ+6α+4β−2 .

E.2.4 α > 0.5, 0.5 < β < α+ 0.5 (PHASE Ba)

We start from

R(M,N, γ0) =
(
M1/2Nγ0

)− 2(2α+2β−1)
2α+1−2β +

(
M

6α−1
4α−2 Nγ0

)− 2(2α−1)
2α+1 +M−2α + γ2

0 M.

Substitute γ0 = M−e, N = f/M, M = fx. Then, up to f-independent factors,

R ≂ fmaxi=1,...,4 ℓi(x,e),

where
ℓ1(x) = − 2αx,

ℓ2(x) =
2(2α+ 2β − 1)

2α+ 1− 2β

(
e+ 1

2

)
x − 2(2α+ 2β − 1)

2α+ 1− 2β
,

ℓ3(x) =
(2(2α− 1)

2α+ 1
e− 1

)
x − 2(2α− 1)

2α+ 1
,

ℓ4(x) = (1− 2e)x.

We minimize the convex, piecewise–linear function f(x, e) = maxi ℓi(x, e) over x ∈ (0, 1), e ∈
R. In the regime α > 0.5, β > 0.5, the only admissible interior kink with three active lines is
{ℓ2, ℓ3, ℓ4}. Solving ℓ2 = ℓ4 and ℓ3 = ℓ4 yields

e∗ =
2α+ 4β − 1

4β
, x∗ =

β

α+ β
, h∗ = ℓ2(x

∗, e∗) = ℓ3(x
∗, e∗) = ℓ4(x

∗, e∗) = − 2α+ 2β − 1

2α+ 2β
.

Interior optimality. First, x∗ ∈ (0, 1) since α, β > 0.5. Second, the subgradient condition (0, 0) ∈
∂f(x∗, e∗) holds because the active slopes straddle zero in both variables:

∂xℓ2 = 2(2α+2β−1)
2α+1−2β

(
e∗+ 1

2

)
> 0, ∂xℓ3 = 2(2α−1)

2α+1 e∗−1 < 0, ∂xℓ4 = 1−2e∗ = 1−2α−2β
2β < 0,

and
∂eℓ2 = 2(2α+2β−1)

2α+1−2β x∗ > 0, ∂eℓ3 = 2(2α−1)
2α+1 x∗ > 0, ∂eℓ4 = −2x∗ < 0.

Hence (x∗, e∗) is the global minimizer among interior points. It remains to exclude ℓ1 at (x∗, e∗):

ℓ1(x
∗) = −2α

β

α+ β
≤ −2α+ 2β − 1

2(α+ β)
= h∗,

since 4αβ − 2α− 2β + 1 = 4(α− 1
2 )(β − 1

2 ) ≥ 0 for α, β > 0.5. Therefore the triple intersection
{ℓ2, ℓ3, ℓ4} is the global optimum.

γ0 = M
− 2α+4β−1

4β , M⋆ ≂ f
β

α+β , R
(
M⋆, f

M⋆

)
≂ f

− 2α+2β−1
2α+2β .

E.2.5 α < 0.5, β > α+ 0.5 (PHASE Ad)

Recall the loss formula (82)

R(M,N, γ0) =
(
max (1− κ γ0 M

α N, 0)
) 2(2α+2β−1)

2β−2α−1

+ γ2
0 M

2−2α +M−2α.
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Note that the drift term vanishes at N ≂ (γ0 M
α)−1.

Let γ0 = M−e. Note that because of the approximation error M−2α, there is no gain from setting e
bigger than 1. So we will only consider the case e ≤ 1. In that case, loss is a constant scale before
N ≂ Me−α, and it drops to the scale of M−2e−2α+2.

Since a constant scale loss cannot be compute-optimal, the loss M−2e−2α+2 at N ≂ Me−α will be
a candidate for the compute-optimal point. In that case f = MN = M1+e−α holds and it leads to
M = f

1
1+e−α . So the loss M−2e−2α+2 has the size f

−2e−2α+2
1+e−α .

Since e = 1 minimizes −2e−2α+2
1+e−α , γ0 = M−1 is the optimal learning rate. This leads to the follow-

ing result.

γ0 = M−1, M⋆ ≂ f
1

2−α , R
(
M⋆, f

M⋆

)
≂ f

− 2α
2−α .

E.2.6 α > 0.5, β > α+ 0.5 (PHASE Bb)

Recall the loss formula (83)

R(M,N, γ0) =
(
max

(
1− κ γ0 M

0.5 N, 0
)) 2(2α+2β−1)

2β−2α−1

+M
− 6α−1

2α+1 (Nγ0)
−

2(2α−1)
2α+1 +γ2

0 M+M−2α.

Note that the first term vanishes at N ≂ (γ0 M
α)−1. At that point second term becomes

M
− 6α−1

2α+1 (Nγ0)
−

2(2α−1)
2α+1 ≂ M− 4α

2α+1 .

As we optimize over three parameters N , M , γ0, and one constraint f = MN , we have two degrees
of freedom. So this means three terms may balance together at the compute-optimal point.

The first possible case is the balance of the first three terms, and in this case, γ2
0M = M− 4α

2α+1 and
N ≂ (γ0 M

α)−1 must hold. Here, the loss is M− 4α
2α+1 and f = MN = M

2α+1
4α+1 holds, so the loss is

f−
4α

4α+1 .

The second possible case is the balance of the last three terms, and after solving the equations, the
loss is f−

2α
2α+1 .

The first case has a steeper decay, so it is the compute-optimal. This leads to the following result.

γ0 = M
− 6α+1

4α+2 , M⋆ ≂ f
2α+1
4α+1 , R

(
M⋆, f

M⋆

)
≂ f

− 4α
4α+1 .

F DERIVATION FOR THE STABLE-DECAY SCHEDULING

We set the learning rate as γk = γ0 f(k). Previously, we considered the constant–learning–rate case
(f ≡ 1). In this section, we start with a general decaying learning rate by taking f to be a decreasing
function, and then substitute the stable-decay scheduling. Throughout, for simplicity, we assume
α > 0.5 and β < 0.5 (Phase Aa).

Recall the implicit integral equation (17):

L(N) = ∥H1/2w⊥∥2 +
M∑
i=1

ri(0) exp
(
− 4λiγ0

π

∫ N

0

f(u)√
L(u)

du
)

(84)

+
2γ2

0

π

M∑
i=1

Vi

∫ N

0

exp
(
− 4λiγ0

π

∫ N

z

f(u)√
L(u)

du
)
f(z)2 dz. (85)

Also recall Equation 18 and 19.

Ldrift(N) =

M∑
i=1

ri(0) e
− 4λiγ0

π

∫ N
0

f(u)√
L(u)

du

, Lnoise(N) =
2γ2

0

π

M∑
i=1

Vi

∫ N

0

e
− 4λiγ0

π

∫ N
z

f(u)√
L(u)

du

f(z)2 dz.

(86)
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L(N) = ∥H1/2w⊥∥2 + Ldrift(N) + Lnoise(N). (87)

Recall also the drift/approximation transformation (26):

Ldrift(N) + ∥H1/2w⊥∥2 ≂ M−(2α+2β−1) +
(
M0.5QL(N)

)− 2α+2β−1
2α ,

QL(z) :=
4γ0
π

∫ z

0

f(u)√
L(u)

du.

Hence,

L(N) ≂ M−(2α+2β−1) +
(
M0.5QL(N)

)− 2α+2β−1
2α (88)

+
2γ2

0

π

M∑
i=1

Vi

∫ N

0

exp
(
− 4λiγ0

π

∫ N

z

f(u)√
L(u)

du
)
f(z)2 dz. (89)

Remark 2 (Early-iteration proxy). In early iterations the drift term
(
M0.5QL(N)

)− 2α+2β−1
2α dom-

inates. Solving L(N) ≂
(
M0.5QL(N)

)− 2α+2β−1
2α yields

L(N) ≂
(
M0.5γ0F (N)

)− 2(2α+2β−1)
2α+1−2β , F (N) :=

∫ N

0

f(u) du.

Now we move on to stable-decay scheduling.

Stable-decay schedule. We henceforth consider the following stable-decay learning-rate sched-
ule:

f(k) =

{
1, k ≤ pN,(
1 + τ(k − pN)

)−c
, k > pN,

p, c ∈ (0, 1), τ > 0.

That is, the learning rate is constant for the first pN steps and then decays polynomially with expo-
nent c over the remaining (1− p)N steps.
Remark 3. Note that f depends on the total training steps N . To be precise, we have to represent it
as fN , but for simplicity, we write it as f throughout the analysis.

First, we will make an upper bound on the noise term under stable-decay scheduling.

F.1 UPPER BOUND OF THE NOISE TERM

Fix p < q < 1 close to 1 and split Lnoise(N) as

Lnoise(N) =
2γ2

0

π

M∑
i=1

Vi

∫ qN

0

exp
(
− 4λiγ0

π

∫ N

z

f(u)√
L(u)

du
)
f(z)2 dz

+
2γ2

0

π

M∑
i=1

Vi

∫ N

qN

exp
(
− 4λiγ0

π

∫ N

z

f(u)√
L(u)

du
)
f(z)2 dz =: T≤qN + T>qN .

Bounding T>qN . Note that f(N) ≂ f(z) holds for qN < z < N . So∫ N

qN

exp
(
− 4λiγ0

π

∫ N

z

f(u)√
L(u)

du
)
f(z)2 dz ≂ f(N)2

∫ N

qN

exp
(
− 4λiγ0

π

∫ N

z

f(u)√
L(u)

du
)
dz.

For q sufficiently close to 1, there exist constants c0, c1 > 0 such that for qN < z < N

c0
(N − z)f(N)√

L(N)
≤
∫ N

z

f(u)√
L(u)

du ≤ c1
(N − z)f(N)√

L(N)
.
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Therefore,

T>qN ≤ 2γ2
0

π
f(N)2

M∑
i=1

Vi

∫ N

qN

exp
(
− 4λiγ0

π c0
(N − z)f(N)√

L(N)

)
dz

≂
2γ2

0

π
f(N)2

M∑
i=1

Vi
π
√

L(N)

4λiγ0 c0 f(N)
≂ γ0 f(N)

√
L(N)

M∑
i=1

Vi

λi

≂ γ0 f(N)
√
L(N) Tr

(
diag(K)1/2

)
≂ γ0 f(N)

√
L(N)M0.5.

To summarize, we have
T>qN ≲ γ0 f(N)

√
L(N)M0.5 ≂ γ0 M

1/2N−c
√

L(N).

Bounding T≤qN . Let Q(z,N) = 4γ0

π

∫ N

z
f(u)√
L(u)

du. Then

T≤qN =
2γ2

0

π

M∑
i=1

(wT
i KσKui)

∫ qN

0

e
− 4γ0

π λi(K)
∫ N
z

f(u)√
L(u)

du
f(z)2dz

=
2γ2

0

π

M∑
i=1

Tr(KσKuiw
T
i )

∫ qN

0

e−λi(K)Q(z,N) f(z)2dz

=
2γ2

0

π

∫ qN

0

M∑
i=1

Tr(KσKuiw
T
i )e

−λi(K)Q(z,N) f(z)2dz

=
2γ2

0

π

∫ qN

0

Tr(KσK

M∑
i=1

e−λi(K)Q(z,N)uiw
T
i ) f(z)

2dz

=
2γ2

0

π

∫ qN

0

Tr(KσKe−KQ(z,N)) f(z)2dz.

Using arcsinx ≈ x approximation on Kσ = arcsin(diag(K)−1/2 ·K · diag(K)−1/2), we get

Tr(KσKe−KQ(z,N)) = Tr(KσSH
1/2e−K1Q(z,N)H1/2ST)

= Tr(H1/2STKσSH
1/2e−K1Q(z,N)) ≈ Tr(K

2

1e
−K1Q(z,N)).

Using same contour representation method and deterministic approximation with Section D.2.2 we
get

T≤qN ≂
2γ2

0

π

∫ qN

0

Tr(K
2

1e
−K1Q(z,N)) f(z)2dz

=
2γ2

0

π

∫ qN

0

Tr

(
−1

2πi

∮
Γ2

z21e
−Q(z,N)z1(K1 − z1I)

−1 dz1

)
f(z)2dz

≈ 2γ2
0

π

∫ qN

0

Tr

(
−1

2πi

∮
Γ

p2dz
2
1e

−pdQ(z,N)z1R(z1) dz1

)
f(z)2dz

≂
2γ2

0

π
M

∫ qN

0

Tr

(
−1

2πi

∮
Γ

z21e
−pdQ(z,N)z1R(z1) dz1

)
f(z)2dz

Adopting the method in Paquette et al. (2024) same as Section I.1, we get

Tr

(
−1

2πi

∮
Γ

z21e
−pdQ(z,N)z1R(z1) dz1

)
≂ (pdQ(z,N))−2+1/(2α) ≂ (M1/2Q(z,N))−2+1/(2α).

It leads to

T≤qN ≂
2γ2

0

π
M

∫ qN

0

(M1/2Q(z,N))−2+1/(2α) f(z)2dz

≂ γ2
0M

1/(4α)

∫ qN

0

(Q(z,N))−2+1/(2α)f(z)2 dz
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Finally,

γ2
0M

1/(4α)

∫ qN

0

(Q(z,N))−2+1/(2α)f(z)2 dz

≂ γ
1/(2α)
0 M1/(4α)

∫ pN

0

f(z)2

(
∫ N

z
f(u)√
L(u)

du)2−1/(2α)
dz + γ

1/(2α)
0 M1/(4α)

∫ qN

pN

f(z)2

(
∫ N

z
f(u)√
L(u)

du)2−1/(2α)
dz

≲ γ
1/(2α)
0 M1/(4α)

∫ pN

0

1

( pN−z√
L(0)

+ 1√
L(pN)

∫ N

pN
f(u)du)2−1/(2α)

dz

+ γ
1/(2α)
0 M1/(4α)

∫ qN

pN

f(z)2

( 1√
L(pN)

∫ N

qN
f(u)du)2−1/(2α)

dz

≲ γ
1/(2α)
0 M1/(4α)

∫ pN

0

1

( pN−z√
L(0)

+ N1−c√
L(pN)

)2−1/(2α)
dz + γ

1/(2α)
0 M1/(4α)

∫ qN

pN

f(z)2

( N1−c√
L(pN)

)2−1/(2α)
dz

≂ γ
1/(2α)
0 M1/(4α)

√
L(0)((

N1−c√
L(pN)

)1/(2α)−1 − (pN +
N1−c√
L(pN)

)1/(2α)−1)

+ γ
1/(2α)
0 M1/(4α)Nmax(1−2c,0)(

N1−c√
L(pN)

)1/(2α)−2

≲ γ
1/(2α)
0 M1/(4α)N−(1−c)(1−1/(2α))L(pN)(1/2−1/(4α)) ≲ γ

1/(2α)
0 M1/(4α)N−(1−c)(1−1/(2α))

So we have
T≤qN ≲ γ

1/(2α)
0 M1/(4α)N−(1−c)(1−1/(2α)).

F.2 COMBINING TERMS

Combining the bounds,

L(N) ≲ M−(2α+2β−1) +
(
M0.5γ0N

)− 2(2α+2β−1)
2α+1−2β + γ0M

0.5N−c
√
L(N) + γ

1
2α
0 M

1
4α N−(1−c) (1− 1

2α ).

We replaced the drift part with
(
M0.5γ0N

)− 2(2α+2β−1)
2α+1−2β temporarily based on Remark 2, and justify

this on our selected parameters in Remark 4. Solving the inequality asymptotically yields

L(N) ≲ M−(2α+2β−1) +
(
M0.5γ0N

)− 2(2α+2β−1)
2α+1−2β + γ2

0 M N−2c + γ
1
2α
0 M

1
4α N−(1−c) (1− 1

2α ).

Finally, substituting γ0 = M−e and N = f/M yields

R(M, f) ≲ M−(2α+2β−1) +
(
M−e−0.5 f

)− 2(2α+2β−1)
2α+1−2β

+ M1+2c−2e f−2c

+ M
1
4α− e

2α+(1−c) (1− 1
2α ) f−(1−c) (1− 1

2α ).

Optimizing over M gives a bound of the form R(M⋆, f) ≤ f−h(α,β,c,e), and we then optimize over
c, e to maximize h(α, β, c, e).

F.3 OPTIMIZING OVER c, e TO MAXIMIZE h(α, β, c, e)

Assume throughout α > 0.5, β < 0.5, and 2α+ 2β > 1. Consider the upper bound

RU (M, f) = M−(2α+2β−1)+
(
M−e−0.5 f

)− 2(2α+2β−1)
2α+1−2β

+M1+2c−2e f−2c+M
1
4α− e

2α+(1−c)
(
1− 1

2α

)
f
−(1−c)

(
1− 1

2α

)
.

For large f, define
Rmin(f) := min

M>0
RU (M, f).
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We show Rmin(f) ≂ fh
⋆(α,β) with h⋆(α, β) < 0, and identify c⋆(α, β), e⋆(α, β), and M =

fm
⋆(α,β).

Logarithmic reduction to exponent balancing

Let M = fm with m ∈ R. Writing each term as fLi gives

L1(m) = −(2α+ 2β − 1)m, (90)

L2(m, e) = −2(2α+ 2β − 1)

2α+ 1− 2β
+

2(2α+ 2β − 1)

2α+ 1− 2β
m
(
e+ 0.5

)
, (91)

L3(m, c, e) = m(1 + 2c− 2e)− 2c, (92)

L4(m, c, e) = m

(
1

4α
− e

2α
+ (1− c)

(
1− 1

2α

))
− (1− c)

(
1− 1

2α

)
. (93)

Thus minimizing RU is equivalent to

min
m,e∈R, 0<c<1

max{L1, L2, L3, L4}. (94)

Introduce h ∈ R and rewrite as

min
m,c,e,h

h s.t. Li(m, c, e) ≤ h (i = 1, 2, 3, 4), 0 < c < 1. (95)

At an interior optimum (0 < c < 1), constraints equalize:

L1 = L2 = L3 = L4 = h. (96)

Solving the equality yields

c⋆ =
−8αβ + 2α+ 2β − 1

16α2 + 8αβ − 6α− 2β + 1
, (97)

e⋆ =
8α2 + 16αβ − 4α− 4β + 1

2(4α− 1)
, (98)

m⋆ =
2(4α− 1)

16α2 + 8αβ + 2α− 2β − 1
, (99)

h⋆ = − 2(4α− 1) (2α+ 2β − 1)

16α2 + 8αβ + 2α− 2β − 1
. (100)

Feasibility. Since α > 0.5, denominators are positive. The condition c⋆ > 0 is equivalent to

−8αβ + 2α+ 2β − 1 > 0 ⇐⇒ β <
2α− 1

2(4α− 1)
:= B⋆(α),

which is stricter than β < 0.5. Moreover, c⋆ < 1 holds automatically for β > 0. Hence, the interior
solution is feasible whenever

0.5− α < β < B⋆(α) with B⋆(α) =
2α− 1

2(4α− 1)
. (101)

In this band,

M = fm
⋆

, Rmin(f) ≂ fh
⋆

with m⋆, h⋆ as in (99)–(100). Note m⋆ > 0 and h⋆ < 0.

Result As f → ∞, the choice M = fm
⋆

with

m⋆ =
2(4α− 1)

16α2 + 8αβ + 2α− 2β − 1
,

c⋆ =
−8αβ + 2α+ 2β − 1

16α2 + 8αβ − 6α− 2β + 1
,

e⋆ =
8α2 + 16αβ − 4α− 4β + 1

2(4α− 1)
,

h⋆ = − 2(4α− 1)(2α+ 2β − 1)

16α2 + 8αβ + 2α− 2β − 1
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is optimal for α > 0.5, 0.5− α < β < B⋆(α), where

B⋆(α) =
2α− 1

2(4α− 1)
.

This choice minimizes max{L1, L2, L3, L4} in (94). Consequently,

Rmin(f) ≂ fh
⋆(α,β) with h⋆(α, β) < 0.

Remark 4 (Justification on drift term conversion). Note that M = fM
⋆

and N = f1−M⋆

holds for
the selected parameters.

For pN iterations the stable-decay scheduling behaves same as the constant learning rate. Let N0

be the crossover point in constant learning rate. Note that N ≳ N0 holds, and N is asymptotically
strictly bigger than N0. So L(u) ≲ γ2

0M +M−2α−2β+1 holds for u ≥ N0.

Also for selected γ0 = M−e∗ , γ2
0M ≳ M−2α−2β+1 holds.

So we have L(u) ≲ γ2
0M for u ≥ N0.

(
M0.5QL(N)

)− 2α+2β−1
2α =

(
M0.5 4γ0

π

∫ N

0

f(u)√
L(u)

du

)− 2α+2β−1
2α

≲

(
M0.5 4γ0

π

∫ pN

N0

f(u)√
L(u)

du

)− 2α+2β−1
2α

≂

(
γ0M

0.5

∫ pN

N0

1√
L(u)

du

)− 2α+2β−1
2α

≂

(
γ0M

0.5

∫ pN

N0

1√
γ2
0M

du

)− 2α+2β−1
2α

≂ (pN −N0)
− 2α+2β−1

2α ≂ N− 2α+2β−1
2α

And for selected parameters M = fM
⋆

, N = f1−M⋆

, c∗, and γ0 = M−e∗ following holds.

N− 2α+2β−1
2α ≲ γ2

0MN−2c∗ .

As (M0.5QL(N)
)− 2α+2β−1

2α ≲ γ2
0MN−2c∗ , replacing the drift term with proxy does not makes

problem.

F.4 SCHEDULING ON SGD

In this subsection, we explain that the scheduling does not lift the compute-optimal exponent of
SGD in the Phase I and Phase II. Assume a bounded scheduling function f , and define F (k) =∫ k

0
f(z) dz.

Ferbach et al. (2025) proved
Rf (M,N, γ0) ≳ M−2α+max(0,1−2β) + (γ0F (N))−(2α+2β−1)/(2α) +M−1(γ0F (N))−1+1/(2α)

for the risk Rf (M,N, γ0) with general bounded scheduling function f .

Since f is bounded, we have F (N) ≲ N . Therefore,

Rf (M,N, γ0) ≳ M−2α+max(0,1−2β) + (γ0F (N))−(2α+2β−1)/(2α) +M−1(γ0F (N))−1+1/(2α)

≳ M−2α+max(0,1−2β) + (γ0N)−(2α+2β−1)/(2α) +M−1(γ0N)−1+1/(2α)

≳ R1(M,N, γ0),

where R1(M,N, γ0) is the loss under a constant schedule f ≡ 1.

Thus, scheduling does not improve the compute-optimal exponent of SGD in Phase I and Phase II.
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Figure 15: Decay of gradient under the basis of U . Colored solid lines show the average of gradi-
ents under the basis of U for the parameter (α, β) = (0.4, 0.5), (0.6, 0.5), (0.8, 0.5). On the legend,
we only noted the α. The dotted line is fitted for the average of gradients, and we noted its slope in
the legend. Slope is similar to 2α within error 0.13.

G ANALYSIS ABOUT HYPOTHESIS FOR THE POSITION OF THE BENEFICIAL
AREA

In this section, we cover the analysis of stochastic gradient decay and target decay, which were
deferred from Section 5.1.

We first examine the decaying structure of the stochastic gradient. Assume a feature vector x is
drawn from the distribution N (0,H), and its label is y = ⟨x,w∗⟩. Then the stochastic gradient for
that feature vector is

g =
(
⟨Sxt,θt−1⟩ − y

)
Sxt

= SxxTST(θ − θ∗)− SxxTw⊥.

Taking the expectation of the stochastic gradient and using SHw⊥ = 0, we obtain

E[g] = SHST(θ − θ∗)− SHw⊥

= SHST(θ − θ∗).

Lin et al. (2024) proved that the eigenvalues λi of SHST satisfy λi ≂ i−2α. Let the eigenvalue
decomposition of SHST be SHST = U diag(λi)U

T. Then

UTE[g] = diag(λi)U
T(θ − θ∗),

which provides the intuition that E[g], expressed in the basis of the columns of U , decays as i−2α.
Figure 15 shows that the expected gradient decays similarly to i−2α. Also, it is important to note
that a larger α leads to a steeper gradient decay.

Next, we examine how the target decays in the basis of the columns of U . Using the heuristic
STS ≈ I ,

θ∗ = (SHST)−1SHw∗ ≈ (SHST)−1SHSTSw∗ = Sw∗.

Since SHST = U diag(λi)U
T, by the similarity between U and S in the early columns, UTθ∗ =

UTSw∗ may exhibit a decay pattern similar to w∗ on the early indices. The important part is how
long UTθ∗ decays in conjunction with w∗. We observe it in Figure 3 in the main text, and discussed
it in Section 5.1.

H SCALING LAW OF ADAM WITH HEURISTIC

First, we recall the Adam (Kingma & Ba, 2014) update and notation. For the stochastic gradient

gk =
(
⟨Sxk,θk⟩ − yk

)
Sxk.
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Adam maintains first and second moment estimates

mk = β1 mk−1 + (1− β1) gk,

vk = β2 vk−1 + (1− β2) g
⊙2
k ,

with bias corrections m̂k = mk/(1− βk
1 ), v̂k = vk/(1− βk

2 ). The update is

θk+1 = θk − γk m̂k ⊙
(
ϵ1+ v̂k

)−1/2
,

where ⊙ denotes elementwise multiplication and the (−1/2) power is taken elementwise; ϵ > 0 is
the usual damping (we will set ϵ = 0 in the asymptotic analysis).

Xiao et al. (2024) proposed a heuristic for Adam: take β2 sufficiently close to 1 so that the second
moment can be treated as an expectation, and assume (in high dimensions) approximate indepen-
dence between the coordinatewise square (Sxk)

⊙2 and the squared residual
(
⟨Sxk,θk−1⟩ − yk

)2
.

We present results under a same heuristic. In addition, Ferbach et al. (2025) prove that SGD with
momentum obeys the same scaling law as SGD; motivated by this, we set β1 = 0 and omit the
first-moment term for simplicity.

Second-moment proxy and normalized update. Under the heuristic of Xiao et al. (2024),

v̂k ≈ E
[
(Sxk)

⊙2
(
⟨Sxk,θk⟩ − yk

)2 ∣∣∣Fk

]
≈ E
[
(Sxk)

⊙2
]
E
[(
⟨Sxk,θk⟩ − yk

)2 ∣∣∣Fk

]
= diag(SHST) · L(θk).

Hence, the (elementwise) normalized update is

θk+1 − θk ≈
(
⟨Sxk,θk⟩ − yk

)
Sxk√

diag(SHST) · L(θk)
.

One-step update formula. Recalling the Taylor expansion used for signSGD,

E
[
q(θk+1)− q(θk)

∣∣Fk

]
= E
[〈
∇q(θk), θk+1 − θk

〉 ∣∣∣Fk

]
+

1

2
E
[〈
∇2q, (θk+1 − θk)

⊗2
〉 ∣∣∣Fk

]
.

Gradient term:

E
[〈
∇q(θk), θk+1 − θk

〉 ∣∣∣Fk

]
≈

〈
∇q(θk),

SHST θk − SHw∗√
diag(SHST) · L(θk)

〉
.

Quadratic term:

E
[〈
∇2q, (θk+1 − θk)

⊗2
〉 ∣∣∣Fk

]
= E

[〈
∇2q, diag(SHST)−1/2 Sxkx

T
kS

T diag(SHST)−1/2
〉(⟨Sxk,θk⟩ − yk

)2
L(θk)

∣∣∣∣∣Fk

]

=
1

L(θk)

(〈
diag(SHST)−1/2∇2q diag(SHST)−1/2, SHST

〉
L(θk)

+ 2
〈
SHST diag(SHST)−1/2∇2q diag(SHST)−1/2 SHST, (θk − θ∗)⊗2

〉)
.

Combining the two contributions and inserting a stepsize γk,

E
[
q(θk+1)− q(θk)

∣∣Fk

]
= − γk√

L(θk)

〈
∇q(θk), K(θk − θ∗)

〉
+

γ2
k

2

〈
∇2q, Kτ

〉
+

γ2
k

L(θk)

〈
SHST diag(SHST)−1/2∇2q diag(SHST)−1/2 SHST, (θk − θ∗)⊗2

〉
,

where Kτ := diag(SHST)−1/2 SHST diag(SHST)−1/2.
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Mode-wise recursion. For ri(k) := (θk − θ∗)T(Kui ⊗wi) (θk − θ∗) (cf. Appendix D.1),

E
[
ri(k + 1)− ri(k)

∣∣Fk

]
= − 2γk√

L(θk)
λi(K) ri(k) + γ2

k (w
T
i KτKui) +

2γ2
k

L(θk)
λi(K) ri(k)

= −
( 2γk√

L(θk)
− 2γ2

k

L(θk)

)
λi(K) ri(k) + γ2

k (w
T
i KτKui).

We now assume f ≡ 1, and γk = γ0 for simplicity. Passing to the ODE limit as in Section D.2 we
get following ODE for P (t) = L(t/γ0) and pi(t) = ri(t/γ0).

dpi
dt

= −2

(
1√
P (t)

− γ0
P (t)

)
λi(K) pi(t) + γ0 V

′
i . (102)

Interpreting the solution of the ODE as an implicit integral equation and summing over i, similar to
Section D.2, and writing

Q2(N) := 2γ0

∫ N

0

( 1√
L(u)

− γ0
1

L(u)

)
du,

we obtain the implicit integral equation

L(N) = ∥H1/2w⊥∥2 +
M∑
i=1

ri(0) exp
(
−λiQ2(N)

)
+ γ2

0

M∑
i=1

V ′
i

∫ N

0

exp
(
−2λiγ0

∫ N

z

( 1√
L(u)

− γ0
1

L(u)

)
du
)
dz,

where V ′
i := wT

i KτKui.

Drift transformation and limit phase. By the same drift/approximation transformation as in
equation 26,

L(N) = M−2α+max(0, 1−2β) +
(
Mmin(α,0.5) Q2(N)

)− 2α+2β−1
2α

+ 1{α>0.5, β>0.5} M−1
(
Mmin(α,0.5)Q2(N)

)−1+
1
2α + γ2

0

M∑
i=1

V ′
i

∫ N

0

e
−2λiγ0

∫ N
z

(
f(u)√
L(u)

−γ0
f(u)2

L(u)
) du

f(z)2 dz.

We will first handle the limit phase, similar to Section D.3.2. At stationarity, let pi(t) → si and
P (t) → L∞, we must have

−2

(
1√
L∞

− γ0
L∞

)
λi(K) si+γ0 Vi = 0 =⇒ si =

γ0
√
L∞

2λi(K)
V ′
i

1

1− γ0√
L∞

=
γ0
√
L∞

2λi(K)
(wT

i KτKui)
1

1− γ0√
L∞

.

Using the risk decomposition P (t) =
∑M

i=1 pi(t) + ∥H1/2w⊥∥2, we obtain

L∞ =

M∑
i=1

si + ∥H1/2w⊥∥2 =
γ0
2

( M∑
i=1

wT
i KτKui

λi(K)

)√
L∞

1

1− γ0√
L∞

+ ∥H1/2w⊥∥2

=
γ0
2

Tr
(
diag(K)1/2Kτ

)√
L∞

1

1− γ0√
L∞

+ ∥H1/2w⊥∥2

=
γ0
2

Tr
(
diag(K)1/2

)√
L∞

1

1− γ0√
L∞

+ ∥H1/2w⊥∥2.

And

L∞ ≂ max
{
γ2
0 Tr

(
diag(K)1/2

)2
, ∥H1/2w⊥∥2

}
≂ max

{
γ2
0 M

2−2min(α,0.5), M−2α+max(0, 1−2β)
}
.
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asymptotically satisfies the equation. So we have the same floor as for signSGD.

Since f is bounded and L(N) ≥ γ2
0M

2−2min(α,0.5),

f(u)√
L(u)

γ0
f(u)2

L(u)

=

√
L(u)

γ0f(u)
≳ M 1−min(α,0.5),

so the subtraction inside Q2 is asymptotically negligible and Q2(N) ≂ Q(N). Hence, the drift
contribution coincides with that of signSGD.

Scaling law (constant learning rate). For f ≡ 1, Adam (under this heuristic) follows the same
scaling law as signSGD:

R(M,N, γ0) ≂ M−2α+max(0, 1−2β) +
(
Mmin(α,0.5) N γ0

)− 2(2α+2β−1)
2α+1−2β

+
(
M

6α−1
4α−2 N γ0

)− 2(2α−1)
2α+1 + γ2

0 M
2−2min(α,0.5).

Since the loss formula R(M,N, γ0) is the same as signSGD, the compute-optimal scaling law will
also be the same as signSGD. So we expect that Adam has the compute-optimal scaling law in
Table 1. Figure 16 shows that exponents in the Table 1 and measured compute-optimal loss slope
and optimal model size slope (in log-log plot) for Adam match well.
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Figure 16: Measure of compute-optimal loss slope and optimal model size slope for Adam. We
validate the exponent of R

(
M⋆, f

M⋆ , γ
⋆
0

)
and M⋆ with respect to f in the Table 1. The left plot

shows the compute-optimal loss with respect to flops 6MN . The right plot shows the optimal model
size with respect to flops 6MN . Each plot includes the measured slope and the theoretical slope
from the Table 1. Parameters : β1 = 0.9, β2 = 0.999, ϵ = 10−8, γ0 = 0.002.

56



3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

I OMITTED ANALYSIS FROM SECTION D

I.1 OMITTED PROOF OF (22) AND (24)

In this section, we cover omitted proof of (22) and (24). Note that the proof is almost similar to
Paquette et al. (2024), but we cover it briefly for completeness. Refer to Appendix F, G, H of Paquette
et al. (2024) for more details.

It is enough to prove

− 1

2πi

∮
Γ

e−pd Q(N)z
〈
L(z), v⊗2

〉
dz ≂ M−2α+max(0, 1−2β)

+
(
Mmin(α, 0.5) Q(N)

)− 2α+2β−1
2α

+ 1{α>0.5,β>0.5}M
−1
(
Mmin(α, 0.5) Q(N)

)−1+
1
2α

.

From now on, we will use similar notation to Paquette et al. (2024), except in the inevitable case,
to facilitate easy comparison for the reader. Note that we use M and d for model size and initial
dimension before projection, while Paquette et al. (2024) uses d and v.

We use Γ for the contour containing the spectrum of K, while Paquette et al. (2024) used Γ ∪ Γ0

for that, where Γ0 is a small circle containing the origin.

Let
F(N) := − 1

2πi

∮
Γ

⟨R(z), (H1/2w∗)⊗2⟩ e−pdQ(N) z dz. (103)

The exponential kernel e−pdQ(N)z replaces all polynomial weights in the analysis of Paquette et al.
(2024). The resulting leading orders remain the same while constants and exponents are altered in a
transparent way; precise statements follow.

We can split the F(N) by splitting the keyhole contour Γ. We let

F(N) = F0(N) + Fcaps(N) + FC(N) + (lower-order), (104)

where F0 collects the small circle around the origin, Fcaps collects the right/left caps adjacent to the
positive real axis, and FC collects the central arc close to [0, 1]. Refer to Appendix F of Paquette
et al. (2024) for more details about the picture of contour and decomposition of contour.

In the following proposition the function (x)+ := max(x, 0) is used.
Proposition I.1. F0(N) is independent of N and obeys∣∣∣F0(0)−

d∑
j=1

j−2α−2β

1 + j−2αM2α κ(d/M)

∣∣∣ ≤ CM−2α+(2β−1)+−1.

Sketch. Putting z = 0 to the exponential leads to 1, so we can reduce to the analysis of Paquette
et al. (2024). So the error bound is identical.

After this F0(N) ≂ M−2α+max(0, 1−2β) holds by identical procedure calculating∑d
j=1

j−2α−2β

1+j−2αM2α κ(d/M) .
Proposition I.2. There exist functions f, g ≥ 0 with

f(N) ≤ C exp
(
−pdQ(N)M−2α

)
, g(N) ≤ C exp

(
−pdQ(N)

)
,

so that ∣∣Fcaps(N)
∣∣ ≤ C f(N)M−2α+(1−2β)+ + C g(N).

Sketch. Use |m(z) − 1| ≲ M−min{2α,1} (as in Paquette et al. (2024)) on a cap pushed O(1)-close
to [0, 1] to replace ⟨R(z), (H1/2w∗)⊗2⟩ by a simple partial fraction, and control the remainder by
the real part of z.
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The main contribution arises from the arc parameterized by z(u) = u+ iη(u) with u ∈ [M−2α, 1]
and |η(u)| ≪ u. Along this arc we have the uniform approximation∣∣∣m(z(u))− (1− π

2α (c(u) + i)u−1/(2α)M−1
) ∣∣∣ ≤ ε u−1/(2α)M−1 (105)

for some bounded real c(u). Inserting (105) in R(z) = (−zI + m(z)H)−1 and extracting the
imaginary part produces two canonical integrals,

Fpp(N) :=
1

2α

∫ 1

0

u(2β−1)/(2α)e−pdQ(N)u du, Fac(N) :=
cβ
2α

∫ 1

M−2α

u−1/(2α)M−1e−pdQ(N)u du,

(106)
with cβ =

∑
j≥1 j

−2β if 2β > 1 and cβ = 0 otherwise.

Proposition I.3. There exists C > 0 such that for all N ≥ 0, |FC(N)| ≤ C
(
Fpp(N) + Fac(N)

)
.

Moreover, there are A > 0 and a bounded function C(N) > 0 with C(N) ≤ 1 + ε whenever
pdQ(N) ∈ [A,M2α/A], and

1

C(N)

(
Fpp(N) + Fac(N)

)
≤ FC(N) ≤ C(N)

(
Fpp(N) + Fac(N)

)
.

Sketch. Parameterize ΓC by u and use (105) to separate real/imaginary parts. The imaginary terms
integrate exactly to (106), while the real part is smaller by a factor O(ε) since |η(u)| ≪ u.

Proposition I.4 (Asymptotics of Fpp). Assume 2α+ 2β > 1 and set X := pdQ(N). For any ε > 0
there exists A > 0 such that for X ≥ A,∣∣Fpp(N)− gpp(N)

∣∣ ≤ ε gpp(N),

where
gpp(N) := (2α)−1X−(1+β/α)+1/(2α) Γ

(
β
α − 1

2α + 1
)
.

Moreover, if X ≤ Ã then c ≤ Fpp(N) ≤ C for constants c, C > 0, and if X ≥ ÃM2α then
Fpp(N) ≤ C̃ F0(N) for some C̃ > 0 independent of M .

Sketch. With the change of variables w = Xu, we get

Fpp(N) = (2α)−1X−(1+β/α)+1/(2α)

∫ X

0

w(2β−1)/(2α)e−wdw.

Comparing to the complete gamma integral yields the relative error bound in terms of the upper
incomplete gamma tail, which can be made ≤ ε by choosing A large. The remaining bounds follow
by monotonicity and elementary estimates.

Proposition I.5 (Asymptotics of Fac). Let X := pdQ(N). There exists C(α, β) > 0 such that

Fac(N) ≤
{
C F0(N), 2β > 1, 2α < 1,

0, 2β < 1.

If in addition 2α > 1 and 2β > 1, then for any ε > 0 there is A > 0 such that whenever X ∈
[A,M2α/A],∣∣Fac(N)−gac(N)

∣∣ ≤ ε gac(N), gac(N) :=
( ν∑
j=1

j−2β
)
(2α)−1 Γ

(
1− 1

2α

)
X−1+1/(2α) M−1.

Furthermore, for any Ã > 0 there exist constants C, c > 0 (independent of M ) such that

Fac(N) ≤

{
CM−1, X ≤ Ã,

cF0(N), X ≥ ÃM2α.

Sketch. Compare the truncated integral in (106) with its extension to [0,∞) and control the two
tails [0,M−2α] and [1,∞) separately. The first is at most c̃M−2α; the second is bounded by
M−1X−1e−X . Normalizing by gac(N) shows both are relatively small for X ∈ [A,M2α/A]
with A large. The endpoint bounds follow from dropping the exponential and from a crude∫
e−Xudu ≤ X−1e−XM−2α

estimate when X ≳ M2α.
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Finally we get

− 1

2πi

∮
Γ

e−pd Q(N)z
〈
L(z), v⊗2

〉
dz ≂ F0(N) + Fcaps(N) + FC(N)

≂ M−2α+max(0, 1−2β) +
(
pd Q(N)

)− 2α+2β−1
2α

+ 1{α>0.5,β>0.5}M
−1
(
pd Q(N)

)−1+
1
2α

M−2α+max(0, 1−2β)

≂ M−2α+max(0, 1−2β) +
(
Mmin(α, 0.5) Q(N)

)− 2α+2β−1
2α

+ 1{α>0.5,β>0.5}M
−1
(
Mmin(α, 0.5) Q(N)

)−1+
1
2α

.

I.2 NOTE ON THE arcsinx ≈ x APPROXIMATION

We explain that it is possible to replace the linear approximation arcsinx ≈ x by an inequality, and
the main results of our paper remain unchanged.

Replacing the arcsin–linearization by a uniform sandwich. Fix 0 < ρ ≤ 1 and define

c1(ρ) := inf
|t|≤ρ

arcsin t

t
= 1, c2(ρ) := sup

|t|≤ρ

arcsin t

t
=

arcsin ρ

ρ
≤ π

2
.

For x ∈ Rd with ∥x∥∞ ≤ ρ, the entrywise odd and monotone map t 7→ arcsin t satisfies the
componentwise bounds

c1(ρ)x ≤ arcsin(x) ≤ c2(ρ)x.

In our update, put vk := θk − θ∗ and

xk :=
K vk√
L(θk)

, so that arcsin(xk) = Dk xk,

for some diagonal Dk = diag(κk,1, . . . , κk,d) with c1(ρ) ≤ κk,j ≤ c2(ρ). Using KT = K and

KTK = K
T
KT, the one–step drift can be written as

E[ri(k+1)− ri(k) | Fk] = − 2γk

π
√
L(θk)

vTk
(
Kuiw

T
i +wiu

T
i K
)
Dk K vk +

2γ2
k

π
(wT

i KσKui).

Since Dk is diagonal with c1(ρ)I ⪯ Dk ⪯ c2(ρ)I , the quadratic form is sandwiched between the
same expression with Dk replaced by c1(ρ)I and c2(ρ)I . Recalling the identity used earlier,

vTk
(
Kuiw

T
i +wiu

T
i K
)
K vk = 2λi(K) ri(k),

we obtain the two–sided one–step bound

− 4 c2(ρ) γk

π
√
L(θk)

λi(K) ri(k) +
2γ2

k

π
(wT

i KσKui) ≤ E[ri(k+1)− ri(k) | Fk]

≤ − 4 c1(ρ) γk

π
√
L(θk)

λi(K) ri(k) +
2γ2

k

π
(wT

i KσKui).

Consequences for the ODE limit and the implicit integral equation. Let γk = γ0f(k), t = kγ0,
pi(t) := ri(k), and P (t) := L(θk), as in Appendix D.2. Then we obtain the differential inequalities

− 4 c2(ρ)

π
√
P (t)

λi(K) f(t/γ0) pi(t)+
2γ0
π

f(t/γ0)
2Vi ≤ ṗi(t) ≤ − 4 c1(ρ)

π
√
P (t)

λi(K) f(t/γ0) pi(t)+
2γ0
π

f(t/γ0)
2Vi,

with Vi := wT
i KσKui. Solving these linear comparison inequalities yields the bounds

p
(c2)
i (t) ≤ pi(t) ≤ p

(c1)
i (t), P (c2)(t) ≤ P (t) ≤ P (c1)(t),
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where p
(c)
i (·) and P (c)(·) denote the solutions of the ODE/integral equations from Appendix D.2

with the factor 4
π replaced by 4c

π . Equivalently, defining

Qc(N) :=
4c γ0
π

∫ N

0

f(u)√
P (u)

du,

the drift/noise expressions remain valid with Q(N) replaced by Qc(N), and all proofs carry through
verbatim.

Only multiplicative constants change; scaling exponents and phases do not. Every appearance
of Q(N) in the final formulas enters either through an exponential e−λQ(N) or through a polynomial
factor (MµQ(N))−ν . Replacing Q by Qc = cQ only multiplies these terms by constants: e−λcQ

converts to (MµcQ)−ν = c−ν(MµQ)−ν . Hence the rates, exponents, and phase boundaries of
the scaling laws are unchanged; only the prefactors are rescaled by fixed constants depending on
c1(ρ), c2(ρ) ∈ [1, π/2]. In particular, all “≂” statements (equalities up to absolute constants) remain
valid with the same exponents.

I.3 NOTE ON APPROXIMATION ERROR

Though proof of Paquette et al. (2024) implicitly implies∥∥H1/2w⊥
∥∥2 ≂ M−2α+max(0, 1−2β).

It was not explicitly specified. So we clarify it here.

First,

− 1

2πi

∮
|z|=ε

〈
(K̂ − zI)−1, (H1/2w∗)⊗2

〉
dz ≂ M−2α+max(0, 1−2β),

is directly implied from Proposition H.3 of Paquette et al. (2024). So it is enough to prove the
following claim.

Claim. Let

K̂ = H1/2STSH1/2, w∗ = STθ∗ +w⊥, SHw⊥ = 0.

For a sufficiently small circle |z| = ε enclosing only the eigenvalue 0 of K̂,

− 1

2πi

∮
|z|=ε

〈
(K̂ − zI)−1, (H1/2w∗)⊗2

〉
dz =

∥∥H1/2w⊥
∥∥2.

Proof. By the Riesz projection theorem (Dunford–Riesz functional calculus), for a small circle |z| =
ε enclosing only the eigenvalue 0 of K̂,

Π0 := − 1

2πi

∮
|z|=ε

(K̂ − zI)−1 dz

is the spectral Riesz projector onto the 0-eigenspace; since K̂ is Hermitian, Π0 is the orthogonal
projector onto ker(K̂).

And we have

− 1

2πi

∮
|z|=ε

〈
(K̂ − zI)−1, (H1/2w∗)⊗2

〉
dz =

〈
Π0, (H

1/2w∗)⊗2
〉
=
∥∥Π0 H

1/2w∗∥∥ 2

2
.

Since ker(K̂) = {x : SH1/2x = 0 } =
(
Im(H1/2ST)

)⊥
, We have the orthogonal decomposi-

tion
H1/2w∗ = H1/2STθ∗︸ ︷︷ ︸

∈ Im(H1/2ST)

+ H1/2w⊥︸ ︷︷ ︸
∈ (Im(H1/2ST))⊥

,

where the second membership uses SHw⊥ = 0. Hence Π0 H
1/2w∗ = H1/2w⊥, and therefore〈

Π0, (H
1/2w∗)⊗2

〉
=
∥∥H1/2w⊥

∥∥2. □
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I.4 PROOF OF MATRIX INEQUALITY FOR diag(SHS⊤)−1/2

We will prove the inequality in the following form in this section.

c1 M
min(0.5,α) I ⪯ diag(SHST)−1/2 ⪯ c2 M

min(0.5,α) I

Setup. Let S ∈ RM×d have i.i.d. entries Sij ∼ N (0, 1/M), and let

H = diag
(
1−2α, 2−2α, . . . , d−2α

)
, α > 0.

Then, for each i ∈ {1, . . . ,M},

[
diag(SHST)

]
ii
=

d∑
j=1

HjjS
2
ij =

1

M

d∑
j=1

j−2αχ2
j ,

where χ2
1, . . . , χ

2
d are i.i.d. χ2(1).

Remark 5 (Rough intuition for what we will prove).

[
diag(SHST)

]
ii
=

1

M

d∑
j=1

j−2αχ2
j ≂

{
M−1, α > 1

2 ,

M−1 d 1−2α ≂ M−2α, α ≤ 1
2 with d ≂ M,

So, we want to obtain diag(SHST)−1/2 ≂ Mmin(0.5,α)I .

Define

Sd(α) :=

d∑
j=1

j−2αχ2
j =⇒

[
diag(SHST)

]
ii
=

1

M
Sd(α).

Hence, any high–probability upper/lower bounds on Sd(α) translate into corresponding bounds on
diag(SHST)−1/2 via

1

M
Sd(α) ≤ U =⇒

[
diag(SHST)

]−1/2 ⪰
√

M

U
I,

1

M
Sd(α) ≥ L =⇒

[
diag(SHST)

]−1/2 ⪯
√

M

L
I.

We consider two regimes and then unify them through Mmin(0.5,α).

REGIME I: α > 1
2 (SUMMABLE WEIGHTS)

In this regime,
∑∞

j=1 j
−2α = ζ(2α) < ∞. Write Xj := j−2α(χ2

j − 1), so that

Sd(α) = E[Sd(α)] +

d∑
j=1

Xj , E[Sd(α)] =

d∑
j=1

j−2α ≤ ζ(2α).

Moreover, Var(Sd(α)) = 2
∑d

j=1 j
−4α ≤ 2ζ(4α).

Upper tail (to lower–bound diag−1/2). For λ = 1
2 ,

E
[
eλXj

]
= e−λj−2α

(1− 2λj−2α)−1/2 ≤ exp
(

1
2j

−4α
)
,

hence

E
[
e

1
2 (Sd(α)−ESd(α))

]
≤ exp

(
1
2

d∑
j=1

j−4α
)
≤ exp

(
1
2 ζ(4α)

)
.

By Markov and a union bound over the M diagonal entries, setting the per–entry failure probability
to δ0 := δtotal/M ,

Pr

(
Sd(α) ≤ ζ(2α) + ζ(4α) + 2 log

M

δtotal

)
≥ 1− δtotal.
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Therefore, with probability at least 1− δtotal,

diag(SHST)−1/2 ⪰
√
M(

ζ(2α) + ζ(4α) + 2 log M
δtotal

)1/2 I.

Lower tail (to upper–bound diag−1/2). A Chernoff bound on the lower tail of Sd(α) (via the mgf
of e−t j−2αχ2

) gives, for any δ ∈ (0, 1), the existence of a constant

c↓(α) =
(

2α−1
2

)2α−1

/ 2 2α−1

such that
Pr
(
Sd(α) ≥ c↓(α)

(
log(1/δ)

)−(2α−1)
)

≥ 1− δ.

With δ = δ0 = δtotal/M and a union bound over the M rows, with probability at least 1− δtotal,

diag(SHST)−1/2 ⪯
√
M(

c↓(α)
)1/2 (log M

δtotal

) 2α−1
2

I.

Conclusion for α > 1
2 . Combining the two displays,

√
M(

ζ(2α) + ζ(4α) + 2 log M
δtotal

)1/2 I ⪯ diag(SHST)−1/2 ⪯
√
M(

c↓(α)
)1/2 (log M

δtotal

) 2α−1
2

I (α > 1
2 ).

REGIME II: α ≤ 1
2 (DIVERGING WEIGHTS)

Assume d ≥ rM for some fixed r > 1 (as in our setup). Then

E[Sd(α)] =

d∑
j=1

j−2α satisfies
(d+ 1)1−2α − 1

1− 2α
≤ E[Sd(α)] ≤ 1 +

d1−2α − 1

1− 2α
.

Hence E[Sd(α)] ≂ d 1−2α. Moreover,

Var
(
Sd(α)

)
= 2

d∑
j=1

j−4α

{
= O(1), α > 1

4 ,

= Θ
(
d 1−4α

)
, α < 1

4 ,

so in all cases
√
Var(Sd(α)) = o

(
E[Sd(α)]

)
as d → ∞. Thus, by Bernstein and a union bound

over the M rows, for all sufficiently large M we get, with probability at least 1− δtotal,

1

2
E[Sd(α)] ≤ Sd(α) ≤ 3

2
E[Sd(α)].

Using d ≥ rM and the integral bounds for E[Sd(α)],

(rM)1−2α − 1

2(1− 2α)
≤ Sd(α) ≤ 3

2

(
1 +

(rM)1−2α − 1

1− 2α

)
.

Dividing by M and inverting the square–root yields constants

CL(α, r) :=

(
3

1− 2α
r 1−2α

)−1/2

, CU (α, r) :=

(
1

2(1− 2α)
r 1−2α

)−1/2

,

such that, with probability at least 1− δtotal,

CL(α, r)M
α I ⪯ diag(SHST)−1/2 ⪯ CU (α, r)M

α I (α ≤ 1
2 ).
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UNIFIED STATEMENT

Combining Regimes I and II, there exist positive constants c1(α, r, δtotal) and c2(α, r, δtotal) such
that, with probability at least 1− δtotal,

c1(α, r, δtotal)M
min(0.5,α) I ⪯ diag(SHST)−1/2 ⪯ c2(α, r, δtotal)M

min(0.5,α) I

with the following explicit choices:

• If α > 1
2 :

c1(α, ·, δtotal) =
(
ζ(2α)+ζ(4α)+2 log M

δtotal

)−1/2
, c2(α, ·, δtotal) =

(
c↓(α)

)−1/2
(
log M

δtotal

) 2α−1
2

,

where one admissible choice is c↓(α) =
(
2α−1

2

) 2α−1
/ 2 2α−1.

• If α ≤ 1
2 and d ≥ rM :

c1(α, r, ·) = CL(α, r), c2(α, r, ·) = CU (α, r),

with CL, CU as defined above.

63


	Introduction
	Our Contribution
	Related Work

	Problem Setup
	Notation
	Model
	Representation of the Result

	Analyzing the SignSGD
	Main Results
	Loss Formula for Constant Learning Rate
	Compute-Optimal Result under Optimal Constant Learning Rate
	Effect of Stable-decay Scheduling

	Discussion: Where and Why SignSGD Provides Benefits?
	Hypothesis for the Position of the Beneficial Area

	Conclusion
	Limitation and Future Work
	Additional Related Work
	Comparison with kunstner2025scaling
	Comparison with xiao2024exact
	Additional Phase Plane Plots to Compare with Prior Work

	Experiments
	Explaination for Figure 1.
	Experiment for Aligned Drift
	Validation of the Table 1

	Derivation of the Scaling Law Formula R(M,N,0)
	One-Step Update Formula of signSGD
	ODE Approximation and Implicit Integral Equation of signSGD
	Transformation of the Drift Term and Approximation Error
	Deterministic Approximation
	Final Transformation Result

	Constant Learning Rate: Proxy and Verification for the Case <0.5 or <0.5 (Phase A)
	Early Stage (Dominance of the Drift Term)
	Limit Stage (Stationary Analysis and Floor)
	Proxy
	Verification of the Proxy

	Constant Learning Rate: Proxy and Verification for the Case >0.5 and >0.5 (Phase B)
	Early Stage Proxies (drift1 and drift2)
	Limit Stage (approx and noise floors)
	Combined Proxy
	Verification of the Proxy

	Note on the Regime > + 0.5

	Derivation of the Compute-Optimal Result
	Compute-Optimal Result for Maximal Learning Rate
	Derivation of Compute-Optimal Result for Optimal Learning Rate
	>0.5,<0.5 (Phase Aa)
	<0.5,<0.5 (Phase Ab)
	<0.5,0.5<<+0.5 (Phase Ac)
	>0.5,0.5<<+0.5 (Phase Ba)
	<0.5,>+0.5 (Phase Ad)
	>0.5,>+0.5 (Phase Bb)


	Derivation for the Stable-decay Scheduling
	Upper Bound of the Noise Term
	Combining Terms
	Optimizing over c,e to Maximize h(,,c,e)
	Scheduling on SGD

	Analysis about Hypothesis for the Position of the Beneficial Area
	Scaling Law of Adam with Heuristic
	Omitted Analysis from Section D
	Omitted Proof of (22) and (24)
	Note on the x x Approximation
	Note on Approximation Error
	Proof of Matrix Inequality for diag(S H ST)-1/2


