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Abstract

The main advantage of wearable devices lies in enabling them to be tracked without ex-
ternal infrastructure. However, unlike vision (cameras), there is a dearth of large-scale
training data to develop robust ML models for wearable devices. SIHeDA-Net (Sensor-
Image Heterogeneous Domain Adaptation) uses training data from public images of Amer-
ican Sign Language (ASL) that can be used for inferences on sensors even with errors by
bridging the domain gaps through latent space transfer. Our codes are open-sourced at:
github.com/spider-tronix/SIHeDA-Net.
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1. Introduction
Motivated by the various applications of robotics and facilitated by recent advances in deep
learning, there has been a surge of recent research in the field of gesture recognition. Gesture
recognition can be purely visual or non-visual based, or a combination of the two. Never-
theless, one difficulty in gesture identification is making data-efficient predictions. Previous
works on domain adaptation (Prabono et al., 2021), requires some commonality between
domain-specific features which may not always be available. To this end, we present a novel
label-efficient method of classification using heterogeneous domain transfer between sensor
and image. Our concrete technical contributions can be summarized as follows:

• Improvement of performance on noisy/scarce data using heterogeneous domain trans-
fer that captures similarities between data of different domains.

• A network, known as SIHeDA-Net, that learns to classify ASL alphabets, with noisy
sensor data. This network is trained along with an image dataset (Sign-MNIST) for
learning from the image domain to aid prediction on sensor data.

• Experiment to examine the effect of up-scaling the sensor data latent vectors rather
than down-scaling image latent vectors by using a simple ANN auto encoder, called
Sensor-AE.

2. Proposed Method

Sensor and Image Encoding: Figure 1 shows two encoder-decoder networks, Sensor-
AE and the CNN-VAE. We use a CNN-VAE network that maps each sign language image
E1 : I64x64 → Z256x1

i . Here, we perform generic down-scaling of the image for computation
purposes. To simulate errors encountered in real-time, we impart fault to sensor values at
random samples in the sensor dataset and call that “corrupt” dataset. The second part of
our model, Sensor-AE, up-scales the corrupt sensor data from E2 : S16x1c → Z256x1

cs . The
quality of the latent vectors generated by the Image Variational Autoencoder E1 is ensured
by checking the mean accuracy on the labels by passing the reconstructed samples through
a ResNet-50 classifier trained on the Sign-MNIST dataset.
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Figure 1: SIHeDA-Net architecture.

Latent Space Translation: As in Wan et al. (2020), a translation network is used to
map vector Zcs to Zi and close the domain gap between the sensor and image latent vector
to improve predictions on the sensor data itself. In Figure 1, the mapping is done between
z(cs) and z(i) by training a Dense Regressor, Dr : Z256x1

cs → Z256x1
i . For a sensor latent

vector zcs, Dr outputs a corresponding vector in the image latent space corresponding to the
input sensor latent vector of the same label, z

′
cs ∈ Z′ 256x1

cs . The key motive is to minimize
the loss between z

′
cs and zi.

Classification: The mapped sensor latent vector z
′
s is passed through the decoder network

of the Image VAE which is sent to a ResNet-50 (trained on Sign-MNIST) to predict the
ASL alphabet. The entire pipeline when used in real-time, can be summarized as:

corrupt sensor data→ zcs → z
′
cs → Label (1)

3. Experiments and Discussions

Dataset: The image dataset is called “Sign-MNIST” 1. Each training and test sample is
an image that belongs to an alphabetical label (0-24). It is to be noted that samples for
9 = J or 25 = Z are omitted due to the presence of motion gestures in their corresponding
representations. The training data consists of 27, 455 images, and the test data consists of
7172 images of 28× 28 pixels belonging to the grayscale colour grade. The sensor dataset,
on the other hand, is created with the intention of simulating a mini-potentiometer whose
values are constructed by varying the mean of each sensor under the range ∈ (−24, 23)
with a standard deviation of 0.5. The dataset has 500 samples per class (24 alphabets).The
corrupt/faulty dataset is formed by setting values to low (0) or high (1) at random in
randomly chosen samples, to represent stuck at 0/1 faults. This to simulate the real-life
mis-alignments that a sensor brings when trying to model a system. This will allow us to
generalize our SIHeDA-Net to be diverse and accurate.

1. https://www.kaggle.com/datasets/datamunge/sign-language-mnist

2

https://www.kaggle.com/datasets/datamunge/sign-language-mnist


SIHeDA-Net

Table 1: Accuracy metrics to validate the sub-networks

Evaluation Networks Dataset MSE Loss Mean Accuracy

Sensor Encoder - AE Corrupted Sensor (Zcs) 10−5 −
Image Encoder - VAE Sign-MNIST (I) 11.21 −

Sensor Latent Classifier - DNN Uncorrupted Sensors − 0.9852
Image Classifier - ResNet-50 Sign-MNIST (I) − 0.9944
Image Classifier - ResNet-50 Recon. Sign-MNIST (I) − 0.8423

Table 2: Performance Comparison on the Corrupted Sensor Dataset (zcs → Label)

Models Mean Accuracy

Artificial Neural Network - ANN 0.3813
SIHeDA-Net 0.7083

Preliminary Results: In Table 1, the accuracy of the ResNet-50 (trained on Sign-
MNIST) tested on the reconstructed Sign-MNIST samples is 99.94%. The Sensor-AE
(corrupted dataset) and Image-VAE show a mean-squared error loss of 11.21 and 10−5

respectively. Table 2 shows that our SIHeDA-Net has an accuracy of 70.83% on predicting
labels from corrupted sensor dataset while a simple ANN baseline (without transfer of do-
main knowledge) scores only 38.13% (showing a 85.75% increase over naive classification).

4. Conclusions

Through SIHeDA-Net, we see a significant improvement of predictions, given insufficient and
corrupted training data. Latent space transfer between heterogeneous domains is an emerg-
ing field and has a great scope for performing classification when data is both deficit and par-
tially corrupt. In our work, we explore the scope of exploiting correlations between starkly
different domains and implicitly interpolating within their corresponding latent spaces to
achieve heterogeneous adaptation in the absence of data feature commonality. Through
our results, it is evident that SIHeDA-Net outperforms our baselines by about 85%. Our
future works include employing graph neural networks for better representational modelling
of hand-gestures, and also transitioning into ultra label/data-efficient fine-tuning regimes.
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