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Abstract

In this extended abstract we present a new highly efficient software tool called
HAPNEST that enables machine learning practitioners to easily generate and
evaluate large synthetic datasets for human genetics applications. HAPNEST
enables the generation of diverse synthetic datasets from small, publicly accessible
reference datasets. We demonstrate the suitability of HAPNEST-generated data
for supervised tasks such as genetic risk scoring. The HAPNEST software can be
accessed at https://github.com/intervene-EU-H2020/synthetic_data.

1 Introduction

Machine learning applications related to human genetics require large datasets that fairly represent the
diversity of the human genome, yet privacy concerns and other practical constraints make it difficult
for machine learning practitioners to acquire this data. Synthetic data is a promising alternative,
but for privacy reasons, training data is limited to small, publicly available datasets. Furthermore,
existing reference-based simulation methods [1, 2, 3] do not easily scale to generating large (> 1
million individuals) synthetic datasets. Thus new scalable approaches are required to generate large,
high-fidelity synthetic datasets that generalize beyond the small number of training examples.

In this extended abstract we present a new method called HAPNEST that enables efficient, large-scale
generation of genetics and phenotypic data for multiple ancestry groups. In addition to synthetic data
generation tools, the containerized HAPNEST software application also includes tools for evaluating
synthetic data quality, from the perspectives of fidelity, generalizability and diversity. We demonstrate
that an approximate Bayesian computation (ABC) procedure formulated to give preference to models
generating high-fidelity synthetic samples that have low genetic relatedness with the reference data
results in synthetic data that preserves key statistical properties of real genetics data with better
generalization than alternative approaches.

Our intention is for HAPNEST-generated data to be used as a benchmark for supervised learning tasks
with common genetic variants and complex disease traits. We present an application demonstrating
the utility of HAPNEST-generated data for predicting an individual’s genetic risk of disease.
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Figure 1: A set of real haplotypes (a.) are imperfectly copied segment-by-segment (example of
an individual segment in b.) to construct a synthetic haplotype (c.). A phenotype is simulated as a
summation of genetic, covariate and environmental (noise) effects (d.).

2 HAPNEST

Previous approaches to generating synthetic data in genetics include coalescence-based approaches
[4], which simulate artificial genomes using predefined statistical models, and reference-based
approaches [1, 2, 3], which construct artificial genomes by resampling segments from a reference
dataset. Our approach builds upon ideas from this second class of methods, which are known to
preserve key statistical properties (e.g. linkage disequilibrium patterns) of real genetics data for
common genetic variants, which form the bulk of complex disease heritability.

HAPNEST generates synthetic data of the form (X(i), Y (i))ni=1 for n synthetic individuals, where
X(i) ∈ {0, 1, 2}m represents a genotype for m common genetic variants (i.e. single nucleotide
polymorphisms) and Y (i) ∈ Rk represents k (binary or continuous) phenotypic traits. A genotype
X(i) is composed of two haplotypes, (H(i)

1 , H
(i)
2 ), inherited from two parents, such that X(i) =

H
(i)
1 +H

(i)
2 .

A synthetic haplotype is created by imperfectly copying segments of various lengths from reference
haplotypes belonging to a certain ancestry group s (Fig. 1a) (alternatively, a weighted combination of
multiple ancestry groups can be used, but caution must be taken when interpreting admixed samples).
The segment length ℓ (in centimorgans) is sampled according to a stochastic model that simplifies
coalescent and recombination processes for two haploid individuals,

ℓ ∼ Exp(2Tρs), T ∼ Gamma(2, Nref
s /Ne,s), (1)

where T represents coalescence time, ρs is the population-specific recombination rate, Ne,s is the
population-specific mean effective population size, and Nref

s is the number of reference samples for
population s. To aid generalizability, segments are imperfectly copied by only copying a genetic
variant at position j if T ≤ µj , where µj is the variant’s age of mutation (obtained from [5]) (Fig. 1b).
Individual segments are copied in this manner until all variant positions are filled (Fig. 1c). Overall,
this results in a scalable algorithm for which we have developed a highly efficient multi-threaded and
parallelizable implementation in the Julia programming language.

The populations S = {AFR,AMR,CSA,EAS,EUR,MID} represent 6 major continental an-
cestry groups typically recognized in human genetics research, for which sufficient reference data was
available from the publicly accessible 1000 Genomes Project and HGDP datasets [6]. Since genetic
reference datasets are typically over-represented by European-ancestry individuals, to avoid biases
against underrepresented groups we model these 6 populations separately using an approximate
Bayesian computation (ABC) procedure (described in the following section).

Once the genotypes have been created, HAPNEST assigns phenotypes to each individual using
the liability threshold model. Standardized phenotypic liability for each sample is simulated as a
summation of genetic, covariate and environmental effects, where the genetic effect is generated via
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an additive manner from effects of all phenotype causal variants (Fig. 1d). Users can specify the
variance contribution of each liability component. Further, for the genetic component, users can also
define the number of causal variants, or input a list of designated variants to be causal. Effect size β
of each causal genetic variant i follows a Gaussian mixture distribution:

βi ∼
k∑

j=1

πjN(0, σ2
j ),

k∑
j=1

πj = 1,

where k is the number of components and σ2
j is the distribution variance for the j−th component.

Each SNP falls into one of the mixture components j with probability πj . All parameters can be
customized by the user. HAPNEST also allows simultaneous generation of multiple genetically
correlated phenotypes, and correlated effect sizes across different ancestry groups. Once the liability
is generated, patient/healthy control statues can subsequently be assigned to an individual based on a
threshold. Individuals with a liability value above the threshold will be considered patients, whereas
the rest will be considered as healthy controls.

3 Results

3.1 Population-wise parameter tuning using ABC

We use approximate Bayesian computation (ABC) rejection sampling to estimate the posterior
distributions of the unknown model parameters, ρs and Ne,s, for each population s. Preference is
given to synthetic datasets that preserve the linkage disequilibrium (LD) structure of the reference data
(fidelity objective), while limiting the genetic relatedness between the synthetic data and the real data
(generalizability objective). This is achieved by giving high probability to parameter configurations
that minimize the discrepancy d(Q(Dreal), Q(Dsynthetic)), where d is Euclidean distance and Q is
a vector concatenating LD decay and cross-relatedness (the proportion of first degree and second
degree relatives, between the real and synthetic datasets for Dsynthetic and between two random
partitions of the real dataset for Dreal). For computationally expensive simulations of large synthetic
datasets, HAPNEST trains a Gaussian process regression model using a small number of simulations
to estimate the remaining simulation results [7].

Figure 2: Posterior distributions plotted as marginal and bivariate kernel density estimates for the
unknown model parameters, ρs and Ne,s, for each population s. The experiment setup used 500
simulations for 1000 synthetic samples based on a reference of chromosome 21 HapMap3 variants,
with uniform priors and a 20 percent rejection rate.

The posterior distribution of parameters estimated by ABC for each of the six sub populations
is given in Fig. 2. These parameter configurations preserve LD structure between the real and
synthetic datasets, which is important for downstream applications, while limiting the degree of
cross-relatedness to encourage generalization of the synthetic samples.
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3.2 Evaluation

To evaluate the quality of data generated by the synthetic data generation algorithm, we consider
three key aspects of the data for downstream tasks. For each of these aspects, we design and evaluate
multiple metrics to analyze the robustness of the synthetic data generation algorithm.

1. Fildelity: Realistic synthetic genetic data should retain the key summary statistics of the
original genetic data.

2. Diversity: Synthetic genetic data should be sufficiently different from the real-world genetic
data, to preserve privacy.

3. Validity: The synthetic phenotypes should behave similarly to the real-world phenotypes in
downstream genetics applications.

We also benchmarked the phenotypes’ heritability and genetic correlation of the synthetic dataset to
ensure the validity of phenotype generation using widely used genomic analyses tools CGTA-GREML
[8] and LDSC [9]. We observed high concordance between user-specified parameters and estimates
from the tools.

3.2.1 Fidelity of synthetic samples

We compare four properties of the synthetic dataset against real dataset to understand the reliability
of synthetic samples in retaining key statistical properties.

1. Minor Allele Frequency. The discrepancy of Minor Allele Frequency (MAF) from the origi-
nal dataset is measured using two statistical distances. Considering real data and synthetic
data as a collection of realized Bernoulli random variables with different parameters, we can
compute statistical discrepancies between these two random variables.

2. Population structure Most of the downstream Polygenic Risk Score (PRS) tasks are in-
terested in analyzing the effect of SNPs at a population level, and it is extremely critical
to maintain the genetic structure of real population in the synthetic samples. We use the
popular concept of Principal Component Analysis to ensure that the synthetic samples are
well aligned with the real samples. We compute the cosine similarity between the principal
components computed on both real data and synthetic data to understand how well the
population structure is retained in the synthetic data.

3. Linkage Disequilibrium While measuring MAF preserves the probability of occurrence on
each SNP, the co-occurrence of neighboring SNPs are not ensured due to the IID assumption.
In order to verify the local structure of co-occurrence is maintained in the synthetic dataset,
we compute the Linkage Disequilibrium correlation matrix and compare them between real
data and synthetic data.

4. Nearest Neighbour Adversarial Accuracy A sufficiently good synthetic data sample must be
indistinguishable from the real data sample. Based on this principle, we use the adversarial
accuracy AATS [10] of a classifier to quantify the closeness of the synthetic dataset to
the real dataset. When the synthetic data is very close to real data, we will not be able to
distinguish real data samples from synthetic samples and hence AATS → 0.5.

3.2.2 Diversity of synthetic samples

The main aim of creating synthetic data is to preserve the privacy of individual samples in the original
dataset yet allowing the scientific community to develop new tools from the vast amount of data
available. We study the ‘closeness’ of synthetic samples to real samples using two key metrics.

1. Kinship analysis: For kinship analysis [11], we compute the kinship between samples within
the generated dataset as well as kinship across the reference dataset and generated dataset.
Within-dataset kinship analysis is useful in analyzing the diversity in the synthetic samples
within the cohort and kinship across datasets is useful to address the privacy concerns of
reference data leaking into synthetic data as well as quantifying the relatedness between
synthetic and real samples.
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Figure 3: a. PCA projection plot for 10,000 multi-ancestry synthetic samples generated by the
HAPNEST method, for chromosome 21 HapMap3 variants; b. Comparison of PCA projection plots
and bivariate densities for 1000 European-ancestry synthetic samples.

2. IBS analysis Identical-by-state (IBS) analysis shows samples which share an identical
sequence at a particular locus and is useful in analyzing the closeness between samples. We
analyze the distribution of IBS values to compare the real data with generated synthetic data.

Table 1: Comparison of evaluation metrics for four synthetic data generation tools. Each synthetic
dataset contains 1000 samples, based on a European ancestry reference panel for HapMap3 variants
on chromosome 21. ↓ means lower the better, ↑ means higher the better. For AATS , a value near
0.5 is better. No time is reported for G2P and Sim1000G as they failed to generate 1M samples.
HAPNEST results use the mean of the posterior distribution obtained from ABC.

Metric HAPGEN2 G2P Sim1000G HAPNEST

AATS 0.623 0.505 0.706 0.550
LD decay (Euclidean distance)↓ 0.014 0.013 0.442 0.066
MAF (Wasserstein divergence)↓ 0.019 0.012 0.013 0.014
PC alignment↑ 0.311 0.222 0.043 0.192
Related pairs (Within dataset, < 1st degree)↓ 2602 3 2492 0
Unrelated pairs (Within synthetic dataset)↑ 479613 487249 402587 494944
Related pairs (Between real and synthetic)↓ 2031 7 0 0
Unrelated pairs (Between real and synthetic)↑ 731464 734478 689120 742229
Time required (1M samples, in minutes)↓ 173 - - 45

The results of comparison are given in Fig. 3 and Table 1. We can observe that HAPNEST is able to
provide a balance between fidelity, diversity of samples and speed.

4 Application of HAPNEST

Using synthetic genotype and phenotype data generated by HAPNEST, we performed a number of
supervised tasks that are common in statistical genetics analyses, including genomewide association
study (GWAS) and polygenic risk score (PRS) computation. GWAS is widely used to detect variants
that are associated with the phenotype, and GWAS carried out on synthetic genome data can further
allow us to compare the association with pre-defined causal variants. As an example, we present
in figure 4 a GWAS Manhattan plot for a trait with rather low genetic contribution to liability
(heritability) and relatively small number of causal variants (polygenicity). Due to LD, variants
that are not causal themselves, but locate nearby the causal ones, are also found associated with the
phenotype, indicating HAPNEST well captures linkage structures in the genome.
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Figure 4: Example GWAS Manhattan plots. Typical GWAS results for phenotype with low
genetic contribution (heritability = 0.1) and low number of causal variants (polygenicity = 0.0001,
ie. approximately 0.01% of total number of variants having causal effects on phenotype liability).
Colored in green are dots representing causal variants.

Figure 5: Pearson correlation (squared) between predicted and observed values, for various PRS
methods and two European-ancestry phenotypes with varying genetic architectures. For the best
method in each case, we show the performance across multiple ancestry groups.

One of the most popular downstream applications of GWAS results is computing PRS, which is an
individual level score that characterizes the genetic risk of one being affected by a phenotype of
interest. The score is computed as a weighted sum of risky alleles in ones genome. From GWAS,
we can identify genetic variants that are associated with a phenotype and their estimated effect sizes,
and those effect sizes can then be used to derive weights for genetic scores computation in another
cohort. The score, as it in theory captures the genetic risk for an individual, can be viewed as, to
certain extent, a predictor of one’s phenotype. Its predictive power can by evaluated by regressing
the score over samples phenotype and examining the Pearson correlation r, r2 or similar statistics
for fitness. Here, we applied PRSpipe, a pipeline developed to evaluate 7 existing and widely used
PRS scoring methods, on synthetic genotype and phenotype data generated by HAPNEST. We saw
similar results as observed previously on real genetic data (Fig. 5), demonstrating the validity of
HAPNEST’s output.

5 Concluding Remarks

In this work we present a new software tool called HAPNEST that efficiently generates and evaluates
large synthetic datasets for human genetics applications. Despite the limitations of working with
genetics data, such as privacy concerns, we demonstrate that HAPNEST can generate reliable and
generalizable synthetic datasets, that are suitable for downstream applications. We hope that the
machine learning community will find HAPNEST useful as an aid for methods development for
supervised tasks such as genetic risk scoring.
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