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Abstract

A fundamental challenge in formal theorem prov-
ing by LLMs is the lack of high-quality training
data. Although reinforcement learning or expert it-
eration partially mitigates this issue by alternating
between LLM generating proofs and finetuning
them on correctly generated ones, performance
quickly plateaus due to the scarcity of correct
proofs (sparse rewards). To keep improving the
models with limited data, we draw inspiration
from mathematicians, who continuously develop
new results, partly by proposing novel conjectures
or exercises (which are often variants of known
results) and attempting to solve them. We de-
sign the Self-play Theorem Prover (STP) that si-
multaneously takes on two roles, conjecturer and
prover, each providing training signals to the other.
The conjecturer is trained iteratively on previously
generated conjectures that are barely provable by
the current prover, which incentivizes it to gener-
ate increasingly challenging conjectures over time.
The prover attempts to prove the conjectures with
standard expert iteration. We evaluate STP with
both Lean and Isabelle formal versifiers. With
51.3 billion tokens generated during the training
in Lean, STP proves 28.5% of the statements in
the LeanWorkbook dataset, doubling the previous
best result of 13.1% achieved through expert itera-
tion. The final model achieves state-of-the-art per-
formance among whole-proof generation methods
on miniF2F-test (65.0%), ProofNet-test (23.9%)
and PutnamBench (8/644) with pass@3200.

1. Introduction

The reasoning capability of large language models (LLMs)
is critical for various applications, including coding assis-
tants, question-answering, and agents (Plaat et al., 2024;
Shinn et al., 2023; Yao et al., 2022; Shao et al., 2024; Li
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et al., 2023; Nijkamp et al., 2022). It is also a key criterion
for achieving artificial general intelligence (AGI). Auto-
mated theorem proving with formal languages by LLMs
stands at the forefront of reasoning research (Yang et al.,
2024a), partly because it allows objective and reliable eval-
uation through classical verifiers such as Lean (Moura &
Ullrich, 2021) and Isabelle (Nipkow et al., 2002). Moreover,
it arguably encapsulates the essence of advanced reasoning
tasks while abstracting away the ambiguity of natural lan-
guage, enabling meaningful studies on a relatively smaller
scale.

However, a fundamental challenge in improving reasoning
performance—whether in natural or formal languages—Ilies
in the lack of high-quality training data. Collecting reason-
ing data requires domain experts, making it expensive to
scale. There are only a limited number of advanced math pa-
pers and theorems in existence, orders of magnitude smaller
than other data sources.

Reinforcement learning (RL) on datasets without solutions
(e.g., datasets with theorem statements or reasoning ques-
tions and answers) is a prominent approach for improving
the reasoning capability, as seen in the recent development
of OpenAl ol (Jaech et al., 2024), DeepSeek-Prover (Xin
et al., 2024a) and DeepSeek R1 (Guo et al., 2025). Often
referred to as expert iteration (Anthony et al., 2017), it par-
tially mitigates the data scarcity issue by alternating between
LLMs generating proofs and finetuning them on correctly
generated ones (Kaliszyk et al., 2018; Wu et al., 2021; Al-
phaProof, 2024; Xin et al., 2024b; Ying et al., 2024).

However, as Wu et al. (2024) pointed out, RL or expert itera-
tion often saturates at a low pass rate because the number of
samples required to generate a correct proof for an unproven
theorem grows exponentially. As a result, a massive amount
of computation is wasted on generating incorrect proofs that
provide no training signal to the model. For instance, in the
proof sampling process of Wu et al. (2024), 98.5% of the
compute yields no successful proofs, despite the pass rate
being only 13.1% on the training dataset, LeanWorkbook
(Ying et al., 2024). In other words, after a few rounds of
expert iteration, re-training the model becomes less effective
due to the limited number of new successful proofs.

In addition, RL’s capability is fundamentally bounded by
the difficulty level of the theorems in the training dataset—it
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Figure 1: Self-play Theorem Prover (STP). Our model simultaneously takes on two roles — the conjecturer that generates
new, related conjecture given a seed theorem with proof (Step 1), and the prover that attempts to prove the statements in an
existing dataset and the generated conjectures (Step 2). Step 4 selects the correct, approachable, elegant, yet challenging
conjectures to train the conjecturer, and the verifier selects correct proofs in Step 3 to train the prover. The main difference
between STP and expert iteration is the conjecturer role highlighted with a yellow background.

is unlikely, in principle, for a model to learn college-level
proof techniques solely by working on high school-level
problems or to solve open math problems using RL on
graduate-level problems. Moreover, there are likely not
enough open problem statements available for RL train-
ing to generalize to other open problems, particularly more
advanced ones. In other words, RL or expert iteration al-
gorithms cannot train indefinitely without continuously col-
lecting more theorem statements or math problems.

We need an algorithm that can run and self-improve indefi-
nitely without more data. To this end, we draw inspiration
from how mathematicians learn and develop advanced math-
ematics; they refine their understanding and sharpen their
proof skills by working on synthesized exercises—variants,
extensions, or combinations of existing theorems. Addi-
tionally, they frequently propose and publish conjectures,
a process widely regarded as just as important, if not more
so, than solving them. In other words, unlike the current
training of LLMs, mathematicians engage with far more
exercises and conjectures (referred to collectively as con-
jectures in this paper) than the polished, published results
found in academic papers and books. Moreover, the con-
tinuous generation of new conjectures keeps mathematical
fields dynamic and moving forward.

In this paper, we design Self-play Theorem Prover (STP),
which mimics how mathematicians learn and develop math-
ematics. It simultaneously assumes two roles—conjecturer
and prover—providing training signals to each other.

As illustrated in Fig. 1, the conjecturer, given a seed theo-
rem with proof, proposes a new, related conjecture (Step

1), while the prover attempts to prove conjectures and state-
ments from an existing dataset (Step 2). Then, the verifier
selects correct proofs (Step 3) to train the prover using stan-
dard RL and identifies correct, approachable, elegant, yet
challenging conjectures to supervise the training of the con-
jecturer (Step 4). More concretely, in each iteration, the
conjecturer is trained on previously generated conjectures
that: (a) are barely provable by the current prover (i.e., the
prover’s success probability with respect to its random seed
is positive but low), and (b) pass certain elegancy filters.
This iterative process gradually increases the difficulty of
conjectures and proofs without requiring additional data.
Our method can be viewed either as a self-play algorithm
between conjectures and provers or as automated curricu-
lum learning (Portelas et al., 2020) with a self-generated
adaptive curriculum (via conjecturers).

We empirically evaluate our method with both Lean (Moura
& Ullrich, 2021) and Isabelle (Nipkow et al., 2002). For
the Lean experiments, we aim for the best performance and
therefore choose DeepSeek-Prover-V1.5-SFT (Xin et al.,
2024b) as the base model for STP. As shown in Fig. 2, after
a self-play training of roughly 241M generated proofs and
3.6M generated conjectures, we successfully prove 28.5% of
the statements in the training dataset LeanWorkbook (Ying
et al., 2024), doubling the previous best result of 13.1%
(Wu et al., 2024) achieved by expert iteration.! In Fig. 3,
we compare the inference-time performance of existing

'Based on our reproduction, Deepseek-Prover-V 1.5 has a better
performance on LeanWorkbook, proving 13.2% statements with
32 samples per statement, although the original paper does not
report this number.
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Figure 2: The cumulative pass rates of STP, expert iteration,
and parallel sampling on LeanWorkbook shows that STP
achieves a much better scaling in terms of the performance
vs number of generated proofs. The compute for generating
conjectures and training the conjecturer in STP is negligible
because the number of generated proofs during training is
64 times the number of conjectures.

models and the final model trained with STP by taking
multiple independent samples on a common benchmark,
miniF2F-test (Zheng et al., 2021). Our model significantly
outperforms the DeepSeek-Prover-V1.5 models across var-
ious sampling budgets. We also achieve state-of-the-art
performance among whole-proof generation methods on
miniF2F-test (65.0%, pass @3200), ProofNet-test (23.9%,
pass@3200) (Azerbayev et al., 2023a) and PutnamBench
(8/644, pass@3200) (Tsoukalas et al., 2024), where pass @k
represents the percentage of statements proved with k inde-
pendently sampled proofs per statement.

In the Isabelle experiments, we study the scalability of STP
by starting from a generic math-focused model Llemma-
7b (Azerbayev et al., 2023b) and run STP for more iterations
(300M generated proofs in total). We compare the scaling of
STP with expert iteration and parallel sampling, by taking
several model checkpoints during the STP training run and
then switching to the baseline methods. The results clearly
demonstrate that STP achieves a better scaling behavior
starting from various checkpoints with different capability
(see Fig. 4 in Section 4.3). Ablation study also demonstrates
that the main performance gain stems from the dense train-
ing signals given by the conjectures. Expert iteration wasted
its compute on generating unsuccessful proofs to challeng-
ing theorems in the training dataset—at a checkpoint where
the pass rate is around 11.4% on LeanWorkbook, only 131
out of 2.5M generated proofs of the unproved statements
are correct, resulting in very limited training signals. In
contrast, at least 47% of the generated conjectures in STP
training are successfully proved because the conjecturer is
trained to generate more approachable statements thanks to
the design of its reward (see Fig. 6).
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Figure 3: Comparison of pass rates on miniF2F-test (y-axis)
with different numbers of inference-time samples (x-axis).
The model trained with STP consistently outperforms the
Deepseek-Prover-V1.5 series.

2. Additional Related Works

We refer the readers to Bibel (2013); Loveland (2016) and
the reference therein for classical automated theorem prov-
ing. Below, we discuss recent works on modern LLM-based
theorem provers in addition to what has been discussed in
the intro.

Autoformalization. A relatively efficient way to create
formal proof data is autoformalization, that is, translating
natural language math statements and/or proofs to formal
language (Jiang et al., 2023; Lu et al., 2024). A line of
research focuses on generating proofs or reasoning steps
in natural language and then formalizing the proofs (Jiang
et al., 2022b; Zheng et al., 2023; Wang et al., 2023). Most
recently, AlphaProof (2024); Xin et al. (2024a;b) autofor-
malize statements and then train with expert iteration / RL to
write proofs, achieving significant improvement over prior
works thanks to the large-scale natural language datasets.

Formal conjecturing. Prior works also study how to gener-
ate new formal statements/conjectures by neural networks
(Urban & Jakubtiv, 2020; Einarsdottir et al., 2024; Johans-
son & Smallbone, 2023) or human-written generators (Polu
et al., 2022; Trinh & Luong, 2024), and find that the syn-
thetic statements are generally useful for training the provers
(Wang & Deng, 2020; Wu et al., 2020). Synthetic state-
ments and proofs can also be extracted from an incorrect
proof trajectory during RL with hindsight experience replay
(HER) (Andrychowicz et al., 2017) to speed up the training
process (Aygiin et al., 2022; Dong et al., 2024). However,
even though the training efficiency is improved, we argue
that the final performance is still bounded by difficulty level
of the existing dataset because synthetic statements are most
likely easier than the given ones in the dataset.

Self-play and automatic goal generation. The closest re-
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lated work to this paper is Poesia et al. (2024) which also
designs a self-play training that iterates between conjectur-
ing and theorem proving. The key difference between this
paper and Poesia et al. (2024) is that we start with a pre-
trained model and work on practical formal languages like
Lean and Isabelle with an infinite space of possible proof
steps (which are actions in the RL algorithm), whereas Poe-
sia et al. (2024) operates in a simplified and constrained
setting with a finite action space and trains from scratch. As
a result, Poesia et al. (2024) rely on constrained decoding to
force the validity of generated conjectures, while we solely
rely on the LLM itself to generate valid conjectures. Techni-
cally, since our training process is much longer (more than
50 iterations) than Poesia et al. (2024) (5 iterations), we
must carefully design the conjecturing reward to maintain
the diversity and relevance of the generated conjectures (see
Section 3.2).

The idea of generating new tasks by the model is also ex-
plored in other domains such as alignment (Ye et al., 2024),
programming puzzles (Haluptzok et al., 2022; Teodorescu
et al., 2023; Pourcel et al., 2024b), video games (Zhang
et al., 2023; Pourcel et al., 2024a), and classic RL environ-
ments (Parker-Holder et al., 2022; Colas et al., 2022). More
generally, self-play training has demonstrated its potential
to achieve super-human performance on two-player games
in a fixed environment like Go (Silver et al., 2016).

3. Method

On the high level, Self-play Theorem Prover (STP) involves
three training stages: (1) model initialization by supervised
finetuning, (2) self-play training (visualized in Fig. 1), and
(3) final re-training. Unless otherwise stated, we use the
term ‘statement’ to refer to the statements in given datasets,
and ‘conjecture’ the generated conjectures.

3.1. Model initialization by supervised finetuning

In this stage, we initialize the model with two roles, con-
jecturer and prover, by finetuning a generic LLM (such as
the Llama (Touvron et al., 2023)) on a SFT dataset con-
structed from existing proof libraries such as Mathlib (math-
lib Community, 2020). The proof libraries are organized
into files containing human-written formal proofs of known
mathematical theorems, and each file formalizes a relatively
self-contained result, such as a chapter of a textbook. Our
SFT data consists of the following two parts, for finetuning
the prover and conjecturer, respectively. Also see concrete
examples in Appendix A.1.

Prover SFT dataset. We construct a SFT dataset to teach
the model to write formal proofs in the given format, where
each example is the concatenation of a system prompt (to in-
struct the model to generate in formal language), a statement,

and its corresponding proof. We only compute the next to-
ken prediction loss on the proof (which is the expected
output of the model), while the rest is treated as input. To
build this dataset, we simply extract all the statement-proof
pairs from the proof library files and add a system prompt.

Conjecturer SFT dataset. Generally, the conjecturer is to
generate a new, related conjecture, given a seed statement
with proof that provide the initial ideas. Technically, to fur-
ther guide the generation of conjecturer, we also provide it
a lemma used in the proof of the seed statement, which can
be extracted from the verifier,” so that the generated conjec-
tures are more likely to be related to the theorem through
the lemma. Therefore, the input is a concatenation of the
system prompt, a lemma, and a seed statement and its proof,
separated by special formatting tokens, and the expected
output is a conjecture on which we compute training loss.
We also allow the model to generate conjectures with a fixed
trivial lemma. To construct this dataset, we extract (lemma,
theorem X, theorem Y) tuples from every proof library file
such that (a) the lemma and two theorems appears in the
file in this particular order, and (b) the lemma is used in the
proof of both theorems. The lemma and theorem X will be
part of the inputs, and theorem Y will be the output.

3.2. Self-play training

Our self-play training stage of STP is shown in Fig. 1. The
main difference compared to expert iteration is the conjec-
turer in Steps 1 and 4, highlighted in a yellow background.

Generating conjectures and proofs (Steps 1 & 2). The
self-play training starts with collecting a list of the conjec-
turer’s inputs in the same format as in the conjecture SFT
dataset (system prompt, lemma, and theorem), but from
theorem-proof pairs where the theorems are from the given
dataset without proofs and proofs are previously generated.
We extract a seed lemma from the proof, using the verifier.?
To prevent the model from only focusing on a few particu-
lar proof techniques, we de-duplicate the list based on the
seed statement and lemma, and randomly drop some inputs
whose lemma appears excessively. Then, the LLM gener-
ates conjectures from the inputs, and we randomly select a
subset of the generated conjectures with size no larger than
the number of remaining unproved statements in the given
dataset, so that the prover’s compute budget is split equally
between the conjectures and statements. (See the pseudo-
code and details in Appendix A.2.) For the prover’s inputs,
we combine the generated conjectures and the unproved
statements in the existing dataset. Then, we independently
sample K proofs per statement/conjecture in Step 2.

There is no fundamental difference between lemmas and theo-
rems in formal proofs — the naming is purely for better exposition.
3In our implementation, lemmas are extracted together with
proof verification in Step 3 by configuring the verifiers accordingly.



Self-play LLM Theorem Provers with Iterative Conjecturing and Proving

Reward assignments (Step 4). The major technical chal-
lenge of STP is to design the reward function for the con-
jecturer (in other words, construct the conjecturer dataset
in Step 4). The ultimate goal is to incentivize conjecturer
to generate diverse, relevant, approachable yet challenging
conjectures to provide enough training signals to the prover.

In Step 4, we first organize all generated conjectures and
proofs into a list of examples D = {(t;,p!, l;, ¢;, p§) }
where ¢; and p! represents a seed statement and its proof, /;
is a lemma used in the proof p!, and ¢;, p¢ are the generated
conjectures and the generated proof. We will filter D as
described below and then use (¢;, pt, [;) as the input to the
conjecturer and c¢; as the output, and p§ as the output of the
prover w.r.t. the input ¢;.

To decide whether a conjecture c is challenging, we use
the (empirical) pass rate of the prover estimated by the K
independently generated proofs:

P(c) 2 (#{i: ¢; = ¢,p5 is correct}) /(#{i : ¢; = ¢}).

Then, we select the examples in D where (a) lemma [; is
used in the proof of conjecture p§, and (b) the pass rate of
the conjecture, P(c;), is between (0, 1/4):

5<— {(tZapivluCL) | (ti7p§7l7ﬁciapf) S D7

P(c;) € (0,1/4],p5 is correct, I; is used in pS}.

Here we discard the proofs (of the conjecture) p§ since they
are not needed to train the conjecturer, and we remove the
duplicated conjectures (that have multiple proofs).

Then, we apply a heuristic elegancy filter to discourage the
model from generating artificially hard conjectures with
complicated goals — we remove conjectures whose mini-
mum proof length divided by the length of the conjecture is
in the lowest 20% of remaining examples.

Finally, we re-weight the selected conjectures to preserve
the diversity of the conjecturer — the reward for conjecturer
cannot only depend on the generated conjectures individ-
ually because otherwise the conjecturer’s optimal policy
may degenerate to a singular distribution, whereas in reality,
the given dataset typically has multiple modes because the
statements focus on different topics like algebra, number
theory, and calculus. Therefore, our idea is to push the dis-
tribution of the selected conjectures toward the unproved
statements in the existing dataset to maintain the balance
between multiple modes. To this end, we compute a distribu-
tion P supported on the selected conjectures that minimizes
the Wasserstein distance to the uniform distribution over
unproved theorems, denoted by (). The matching cost or
similarity metric between a conjecture and a statement, used
for computing the Wasserstein distance between P and @,
is defined as the negative cosine similarity between their
embeddings (given by the current model). Finally, we use

the distribution P as the training set for the conjecturer.
Pseudo-code of this step is in Appendix A.3, and an effi-
cient implementation is in Appendix A.5.

For the prover dataset, we only select correct generated
proofs where the empirical pass rate of the corresponding
statement/conjecture is below 1/2. (We consider other cor-
rect proofs trivial). We de-duplicate the prover dataset by
exact match. Then, the prover is trained on a replay buffer
containing the selected proofs from the last three iterations.

LLM training (Step 5). We use weighted cross entropy
loss computed on the conjectures or proofs (but not the
inputs of the model). For the proof dataset, we weight
the examples reciprocally to the number of verified proofs
to the corresponding statement/conjecture. We also use a
length penalization of the form v” to reward simpler proofs,
where v < 1 is the discount factor and L is the length of
the proof. For the experiments with Lean, we additionally
reward proofs that has faster verification time by a penaliza-
tion of the form 57, where T is the execution time of the
Lean verifier.*

3.3. Final re-training

To avoid training instability caused by the changing data
distribution during self-play, we re-train the final model
checkpoint from the base model (before the SFT stage) on
a combination of the SFT dataset and all the correct proofs
generated during the self-play training whose corresponding
statement/conjecture has an empirical pass rate no larger
than 1/4. For every statement/conjecture, we randomly keep
at most 16 distinct proofs to speedup the training.

4. Experiments

This section presents our implementation details of STP, the
results of Isabelle and Lean experiments, and the ablation
studies, followed by examples of generated conjectures.

4.1. Implementation details

Training datasets. Our primary source of statements with-
out proofs is the de-duplicated LeanWorkbook (Ying et al.,
2024), which contains around 89K Lean4 statements (see
Appendix A.4 for details). For the Isabelle experiments,
we translate the Leand statements to Isabelle using the
DeepSeek V2.5 with few-shot prompting. For the Lean
experiments, we combine LeanWorkbook, miniF2F-valid,
and ProofNet-valid as the training dataset for STP.

The SFT dataset for the Isabelle experiments is extracted

“In our preliminary experiments, we found that without the
penalization on verification time, the Lean verifier takes 2x more
wall-clock time on CPU than sampling proofs on TPU for our
cluster setup, which becomes a bottleneck for STP training.
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from AFP> and Isabelle built-in files such as HOL. For the
Lean experiments, we first sample 32 proofs per statement
in LeanWorkbook since our base model, DeepSeek-Prover-
V1.5-SFT, is already trained on it, and combine the correct
proofs with examples extracted from the proof library Math-
lib4 (mathlib Community, 2020) as the SFT dataset.

Periodic refreshing. With a limited replay buffer, the model
may forget some proof skills learned in the SFT stage af-
ter many iterations. Therefore, during our STP training,
we periodically re-train the model from the base model on
all previously generated correct proofs, following a pro-
cedure similar to the final re-training in Section 3.3. After
refreshing, we reset the replay buffer and restart the self-play
training using the re-trained model checkpoint.

Verifiers’ setup. To study the scalability of STP with lim-
ited compute, in the Isabelle experiments, we disable the
advanced proof tactics sledgehammer, mason, smt,

metis, sos, which require huge CPU compute, to allow
more training iterations, sacrificing verification strength and
overall performance. We use PISA (Jiang et al., 2021) to
interact with Isabelle, and enforce a 10s timeout for any
proof step and 360s timeout for entire proofs. For Lean, we
follow Xin et al. (2024b), which allows all proof tactics, and
set a 200s timeout and a 15GB memory limit for each proof.

Hyperparameters. For inference, we cap the number of
generated tokens to 1024, and set the sampling temperature
to 0.7 for Llemma-7b and 1.0 for DeepSeek-Prover, fol-
lowing Dong et al. (2024); Xin et al. (2024b), respectively.
For training, we use batch size 2048 and Adam (Kingma &
Ba, 2014) with a constant learning rate of 5e-5 in STP, and
le-4 in SFT and final re-training. The discount factors are
~v = exp(—0.001) and 8 = exp(—0.01)

In each iteration of STP, we sample K = 32 proofs per
conjecture/statement. For the expert iteration and parallel
sampling, we use K = 64. Since we maintain the number of
generated conjectures per iteration to be at most the number
of unproved statements in the given dataset, STP has the
same sample budget as the baseline methods per iteration.

4.2. Results with Lean

For the Lean experiments, we choose DeepSeek-Prover-
V1.5-SFT as our base model, which is trained on proofs
collected by expert iteration on a combination of public,
such as LeanWorkbook, miniF2F-valid (Zheng et al., 2021),
and ProofNet-valid (Azerbayev et al., 2023a), and propri-
etary datasets. We run 48 iterations of STP and generated
3.6M conjectures, 24 1M proofs, and 51.3B tokens in total.
We use the cumulative pass rate, defined by the fraction of
statements proved during the entire training, as the main

‘https://www.isa-afp.org/

metric for training progress. Fig. 2 plots the cumulative
pass rate of STP and two major baselines, expert iteration,
and parallel sampling, on the training dataset LeanWork-
book (Ying et al., 2024). Expert iteration alternates between
generating proofs to the statements in the given dataset and
finetuning the model on correct proofs. (See discussions
and comparison about variants of expert iteration in Ap-
pendix A.6.) Parallel sampling simply generates proofs
with the given model. Fig. 2 shows that STP achieves signif-
icantly better scaling than expert iteration, which simulates
the performance of DeepSeek’s model as if it were trained
for more iterations.

Since the formal statements in our training dataset, Lean-
Workbook, are translated from natural language statements,
they are not always provable. In Appendix B.3, we ran-
domly select 20 unproved statements from LeanWorkbook
and manually assess whether (a) the formal statement is an
accurate translation of the natural language statement, and
(b) the formal statement itself is correct and provable. We
find that 16 out of the 20 statements are translated correctly,
but only 7 statements are provable and the remaining 13
statements are unprovable (e.g., due to missing assumptions
in the corresponding natural language statement), suggest-
ing that the best possible pass rate on LeanWorkbook is far
below 100%.

In Table 1, we compare the final re-trained model of STP
with prior works on two common benchmarks, miniF2F-test
and ProofNet-test, which contain formal statements of high-
school level and college level math questions, respectively.®
Among the whole-proof generation methods, STP signif-
icantly outperforms DeepSeek-Prover-V1.5-RL (which is
continuously trained with RL on top of their SFT model)
and achieves SoTA performance across various inference-
time sample budgets. We also report the performance of
the model trained only on LeanWorkbook for 24 iterations,
excluding miniF2F-valid and proofnet-valid, demonstrating
that the model trained with STP also generalizes to out-of-
domain theorems.”

Table 1 also compares STP with tree search methods such as
InternL.M2.5-StepProver (Wu et al., 2024), which use LLMs
to generate single proof steps conditioned on the current ver-
ifier’s proof state and then find a complete proof by best first
search or MCTS. The sample budget of these methods are
not directly comparable with whole-proof generation meth-

%1In our experiments, we use the miniF2F statements in
https://github.com/yangkyll/miniF2F-1lean4/
commit/8c83bc4 and the ProofNet statements in https:
//github.com/deepseek-ai/DeepSeek—-Prover-
V1.5/blob/main/datasets/proofnet.jsonl.

"Our base model, DeepSeek-Prover-V1.5-SFT, is trained on
miniF2F-valid and ProofNet-valid, though we only run STP on
LeanWorkbook in this experiment. The penalization on verification
time is also not included in this experiment.
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Table 1: Pass rate on miniF2F (Zheng et al., 2021) and ProofNet (Azerbayev et al., 2023a) with different inference-time
sample budgets. Our method, STP, achieves state-of-the-art performance among whole-proof generation methods across
various sample budgets. For reference, we also include tree search methods, even though they are orthogonal to our main
contribution. The sample budgets of tree search methods are not fully comparable to that of the whole proof generation
because they also use the LLM to process the verifier’s internal proof state.

Method Sar;;}i)lreoz?;i)get San(lgéetel;i?get MiniF2F-test ProofNet-test
Whole-Proof Generation Methods
TheoremLlama (Wang et al., 2024) 128 - 33.6% -
DSP (Jiang et al., 2022b) 100 - 39.3% -
DeepSeek-Prover-V1.5-SFT 128 - 50.4% =+ 0.4% 15.9% =+ 0.6%
(Xin et al., 2024b) 3200 - 533% £0.5%  21.0% + 0.9%
DeepSeek-Prover-V1.5-RL 128 - 51.6% £ 0.5%  18.2% + 0.5%
(Xin et al., 2024b) 3200 - 549% £ 0.7%  22.0% + 0.5%
25,600 - 58.4% £ 0.6% 23.7%
102,400 - 60.2% -
STP 128 1.1K 57.2% =+ 0.6% 18.0% + 0.7%
(w/o miniF2F-valid, ProofNet-valid) 3200 28K 61.1% 23.1%
STP 128 1.3K 61.2% £ 0.6% 19.5% =+ 0.7%
3200 32K 65.0% £ 0.5% 23.9% + 0.6%
25,600 254K 67.6% 26.9 %
Tree Search Methods®
ReProver (Yang et al., 2024b) - - 26.5% -
PACT (Zheng et al., 2021) - 8 x 16 x 512 = 66K 29.2% -
GPT-f (Polu et al., 2022) - 64 x 8 x 512 = 262K 36.6% -
HTPS (Lample et al., 2022) - 64 x 5000 = 320K 41.0% -
Lean-STaR (Lin et al., 2024) - 64 x 1 x 50 = 3.2K 46.3% -
DeepSeek-Prover-V1.5-RL + RMaxTS’ 3200 - 55.0% £0.7%  21.5% + 0.8%
(Xin et al., 2024b) 25,600 - 59.6% =+ 0.6% 25.3%
204,800 63.5% -

InternLM2.5-StepProver -
(Wu et al., 2024) -

16 x 32 x 600 = 307K
256 x 32 x 600 = 4.9M

58.5% £ 0.9% -
62.5% £ 0.5% -
65.9% -

4 x 32 x 600 = 77K

ods because (a) the number of steps in a generated proof
varies significantly, (b) LLMs in tree search methods need
to process additional tokens related to the verifier’s proof
state, and (c) methods like InternLM2.5-StepProver (Wu
et al., 2024) require an additional LLM as the value func-
tion. Moreover, it’s conceivable that tree search methods
can also be used with STP, so essentially these are orthog-
onal methods. Nonetheless, we compute the total number
of proof steps per statement generated by STP as an proxy
for the total number of LLM output tokens for STP and tree
search methods, ignoring the additional compute required
by tree search methods to process the verifier’s proof state
and query the value function. Results in Table 1 indicate
that STP also outperforms prior tree search methods with
similar (estimated) inference-time budgets.

8The #Steps for tree search methods is typically calculated by
#Independent runs x #Tactics generated per search step x #Search
steps, or #Independent runs x #Search steps.

“DeepSeck-Prover-V1.5-RL + RMaxTS is a tree search method
that uses the LLMs to generate complete proofs during the search

As shown in Table 4, on PutnamBench (Tsoukalas et al.,
2024) which consists of undergraduate-level mathematics
competition questions, STP solves 7 out of 644 problems
with 128 samples per problem, and 8 problems with 3200
samples per problem, outperforming the best result of 6
problems in prior works achieved by Wu et al. (2024).

4.3. Results with Isabelle

For Isabelle experiments, we start with the Llemma-
7b (Azerbayev et al., 2023b), math-focused model, and
run 58 iterations of STP to study its scalability. We take
several checkpoints during STP training and then switch
to the expert iteration and parallel sampling baselines to
study the scalability of the algorithm from checkpoints with
various capability. Fig. 4 compares their cumulative pass
rates on LeanWorkbook (Isabelle translation), showing that
STP consistently achieves a better scaling across the training

instead of single proof steps. Therefore, we treat their sample
budget as the number of generated proofs instead of steps.
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Table 2: Comparison of STP with and without final re-
training on miniF2F-test and ProofNet-test.

Method Budget miniF2F ProofNet
STP 1 42.3% 7.7%
w/ re-training 3200 65.0% 23.9%
25600 67.6% 26.9%
STP 1 43.2% 8.8%
w/o re-training 3200 65.1% 22.0%
25600 66.0% 23.7%

process. The model also gradually improves on miniF2F
over the training process, as shown in Fig. 5.

4.4. Ablation study

Generated conjectures provide denser training signals.
Fig. 6 shows the histogram of empirical pass rates of the
generated conjectures and the unproved statements in Lean-
Workbook using a checkpoint in the Isabelle experiment.
Only 131 out of 2.5M generated proofs for the 79K un-
proved statements are correct. As a result, finetuning the
model on correct proofs has almost no effect, and thus ex-
pert iteration plateaus. In contrast, generated conjectures by
STP offers higher pass rates and thus more training signals,
leading to better scaling.

Re-training with generated conjectures still helps down-
stream performance. One may hypothesis that the self-
play algorithm and generated conjectures only help improve
the pass rate on LeanWorkbook. It turns out that in the
final re-training stage, it is still beneficial to re-train with
the generated conjectures in addition to the successfully
proved statements in LeanWorkbook even for performance
on miniF2F-test and ProofNet-test—it leads to about 2-3%
performance gain (for pass @ 128) than re-training only on
the latter (See Appendx B.1).

Final re-training improves the pass @k performance. In
Table 2, we compare the performance of STP with the fi-
nal model checkpoint from self-play training (i.e., without
final re-training) on miniF2F-test and ProofNet-test. Ta-
ble 2 shows that STP with final re-training achieves a better
scaling (and therefore a better pass @k for large k), while
sacrificing the pass@ 1 performance.

4.5. Analysis of generated conjectures

We observe that the generated conjectures generally require
similar proof techniques as the original statements — we
compute the 20 most frequently used lemmas in the proofs
of generated conjectures, and find that among these 20
lemmas, 17 also appear among the top 20 most frequent

Performance on LeanWorkbook (Isabelle translation)

—— STP (Ours)
—— Expert iteration
—— Parallel sampling

Cumulative pass rate
(=
_(3 o
o w

150m 200m  250m  300m
Training compute

(#generated proofs)

0 :
50m 100m

Figure 4: Cumulative pass rate on LeanWorkbook (trans-
lated into Isabelle) of STP, expert iteration, and parallel
sampling, started from two checkpoints in STP training.
STP achieves better scaling starting from both checkpoints.
For better visualization, the x-axis starts with 50m here and
we defer the full plot to Fig. 7 in the appendix.

Pass@64 on miniF2F

miniF2F valid
—$— miniF2F test
46
]
o
& 441
©
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42 1
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Figure 5: The performance of our model on miniF2F grad-
ually improves during the training process. Note that our
model is not trained on miniF2F valid and we disallow

advanced tactics such as sos. The checkpoints are taken
roughly per 68M generated proofs.

lemmas in the proofs of LeanWorkbook statements. At a
late checkpoint of our experiments, 51.1% of the correct
proofs of generated conjectures share at least one lemma
with the proof of the seed statement, which indicates that
a substantial portion of generated conjectures are mean-
ingfully related to their seed statement. In Appendix B.4,
we list 30 most frequently shared lemmas. While lem-
mas in the field of inequalities and algebra remain dom-
inant (e.g., sg_nonneg, Real.sin_sg_add_cos_sq),
we also see lemmas related to sequence of products (i.e.,
Finset.prod_range_succ), and number theory (e.g.,
Nat .pow_mod, nat_sub_dvd_pow_sub_pow).

4.6. Examples of generated conjectures

In this section, we list three manually selected examples of
the generated conjectures at the last iteration of the Lean
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Figure 6: Histogram of empirical pass rates of generated
conjectures and unproved statements in the training dataset
at a checkpoint where the cumulative pass rate on Lean-
Workbook (Isabelle translation) is 11.4%. The generated
conjectures are significantly more likely to be proved (i.e.,
has a positive pass rate) than the unproved statements in the
dataset, and therefore provide denser training signal. Note
that the y-axis is in log scale.

experiment to demonstrate their quality.

Example 1. The generated conjecture says (1 + x)?" >
1+ 2™ when n > 1is an integer and = € [0, 1]:

theorem lean_workbook_plus_46203" (a : R)
(ha : 0 <aAa<l1l) : ¥ (1 :N)y, 1
/4"~ 1xa=a/ (1 -1/ 4

The seed statement is a special case where a = v/5/3:

theorem lean_workbook_plus_46203
'k : N, (1 / 4)*k » (Real.sqrt 5 / 4)
= (Real.sqrt 5 / 3)

theorem lean_workbook_36081’ (x : R) (hx :
0 <xAx<1) :V¥Vn=:N, n>1— (1 +
x)"(2+n) > 1 + x*n

The seed statement says 1 + 22 < (1+ )% when z € [0, 1]:

theorem lean_workbook 36081 (x : R) (hx :
0<x A x< 1) 1+ x72 < (1 + x)°2

In this case, the conjecture is harder than the original state-
ment but is proved with similar techniques — expanding
the powers of a binomial and then using the fact that z > 0.

Example 2. The generated conjecture says (z" —
1) mod (x — 1) < 1if x, n are integers:

theorem lean_workbook_ 54038’ (x : N) (n : N
) (hn : 1 < n) (x*n - 1) %
1

The seed statement says n — 1 divides n* — 1:

theorem lean_workbook_ 54038 (n : N) (k : N
) (hn : 2 <n) :n-1]n%k -1

In this case, our model generates a variant of the original
statement by realizing that b mod a equals zero if a divides
b. This conjecture may help the model connect its proof
technique in algebra and number theory. However, the con-
jecture itself is somewhat unusual and the inequality is not
tight. Therefore it is unlikely to be included in any datasets.

Example 3. The generated conjecture says ., ((1/4)" -
Q)Z%le0<a§1 -

In this case, the conjecture generalizes the given statement
by replacing Real.sqrt 5 / 4 with a variable a.

5. Conclusion

This paper designs Self-play Theorem Prover (STP) that si-
multaneously has two roles, conjecturer and prover. By pro-
viding training signals to each other, STP goes beyond the
statements in the given dataset and its performance continu-
ously improves. Our final model significantly outperforms
Deepseek-Prover-V 1.5 series and achieves state-of-the-art
performance among whole-proof generation methods on
common formal proof benchmarks. To facilitate future re-
search, we release our code, model, and dataset in this url:
https://github.com/kfdong/STP.
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This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
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A. Additional Implementation Details

In this section, we list the missing implementation details.

A.1. Examples of inputs and outputs of our model
Here we present some concrete examples to demonstrate the input and output formats of our model.

Examples of the conjecturer. In the following, we show examples of the conjecturer’s inputs and outputs. Note that
<lemma>, <easy theorem>,<hard theorem>, </hard theorem> are the formatting tokens, and the system prompt
is the first three lines in the input examples.

Input:

Complete the following Lean 4 code:

‘YYlean4d

<lemma>

lemma sg_nonneg (a : «a) : 0 < a ” 2

<easy theorem>

theorem lean_workbook_9742 (a b c : R) (ha : a > 0) (hb : b > 0) (hc : ¢ > 0) (hab : a +
b+c=1) : a2 +b*"2 +c*2<1/ 4+ a*3 + b*"3 + c"3 = Dby

nlinarith [sg_nonneg (a - 1 / 2), sg_nonneg (b - 1 / 2), sg_nonneg (c - 1 / 2),

mul_nonneg ha hb, mul_nonneg hb hc, mul_nonneg ha hc, hab]

<hard theorem>

theorem

Output:

lean_workbook_ 9229 (a b c : R) (ha : 0 <a AO<DbADOCZ<Scc) (hab : a + b +c=1) : a3
/ (a * b) + b3/ (b xc) +c*3/ (¢c a) >1- a2 - b2 - ¢c*2</hard theorem>

AN

In the following example, the lemma is replaced by a trivial statement, and the model can generate conjectures without
focusing on any particular direction (see Section 4.1).

Input:

Complete the following Lean 4 code:

‘YYlean4

<lemma>

theorem true: True

<easy theorem>

theorem lean_workbook_ 980 (a b : R) (ha : 0 < a) (hb : 0 < b) (hab : 1/a + 1/b = 1)
1/(a + 1) + 2/(2 x b+ 1) < 3/4 := by

field_simp [ha.ne’, hb.ne’, ha.ne’, hb.ne’] at hab

field_simp [ha.ne’, hb.ne’, ha.ne’, hb.ne’]

rw [div_le_div_iff (by positivity) (by positivity)]

nlinarith [sg_nonneg (a - b), sg_nonneg (a — 2 * b), sg_nonneg (2 * a - b), hab]
<hard theorem>

theorem

Output:

lean_workbook_982 (a b c : R) (ha : 0 < a) (hb : 0 <b) (hc : 0 <c) (hab : a + b + ¢c =
1) =

a/a”2+b/b"2
1/ (¢c +a+ b)) »

+ ¢/ c”r*2>3/4N1/) (a+b+c)~2+1/ (b+c+a ~2+
2 > 3 / 4</hard theorem>

AURWRY

Examples of the prover. In the following, we show an example of the prover’s inputs and outputs.

Input:

Complete the following Lean 4 code:

13




Self-play LLM Theorem Provers with Iterative Conjecturing and Proving

‘Y‘leand

theorem lean_workbook_52370 (p g : N) (hp : Nat.Prime p) (hg : Nat.Prime qg) (hpg: p >= q)
(hg : g >=5) : 24 | (p*2 - g*2) := by

Output:

have : p*2 % 24 = (p % 24)"2 % 24 := by

rw [Nat.pow_mod]

have : g*"2 % 24 = (g % 24)"2 % 24 := by

rw [Nat.pow_mod]
rw [<- Nat.mod_add_div p 24, <4 Nat.mod_add_div g 24]

ring_nf

norm_num

have : p $ 24 =1V p %$24=5Vp%$24=7Vp%s24=11V0p¢%24=13V p % 24=17V
p % 24 =19V p % 24 =23 := by

have := hp.eq_one_or_self_of_dvd 2

have := hp.eqg_one_or_self_of_dvd 3

have := hp.eq_one_or_self_of_dvd 4

have := hp.eqg_one_or_self_ of_dvd 5

omega

have : g $ 24 =1V g% 24 =5V g%$24=7Vg%24=11V g% 24=13V g% 24 =17V
g% 24 =19 V g % 24 = 23 := by

have := hg.eqg_one_or_self_of_dvd 2

have := hg.eq_one_or_self_of_dvd 3

have := hg.eq_one_or_self_of_dvd 4

have := hg.eq_one_or_self_ of_dvd 5

omega

rcases this with (h | h | h | h | h | h | h]|h) <> rcases this with (h’ | h* | h’ | h’ | h'
h' | h’ | h") <;>

simp [h, h’, pow_two, Nat.mul_mod, Nat.add_mod, Nat.mod_mod, Nat.mod_self, zero_add,

Nat.zero_mul, Nat.mod_one, Nat.one_mul, Nat.mod_add_mod]

<;> omega

AN

A.2. Pseudo-code for selecting the conjecturer’s inputs

In the following, we present the pseudo-code for selecting the conjecturing imports. Recall that the input for the conjecturer
consists of a statement, its proof, and a lemma used in the proof (c.f., Section 3.1). In Step 1, we construct the prompts
by taking the correct proofs to statements in the given dataset, and extract the lemmas used in the proof by the formal
verifiers. We also allow the model to propose conjectures without focusing on any particular lemma, which is implemented
by replacing the lemma statement with a fixed trivial statement in the prompt (see Appendix A.l for concrete examples).
Finally, we de-duplicate the inputs by the (statement, lemma) pair. After generating the conjectures, we randomly select a
subset whose size does not exceed the number of remaining unproved statements in the given dataset, so that the prover’s
sample budget is distributed equally between the conjectures and the statements.

We run two heuristic methods to ensure the diversity of the inputs. First, we make sure that each lemma [ appears at most
0.1n times in the inputs because we observe that some lemmas (e.g., sg_nonneg, mul_self nonneg) are much more
likely to be included. Second, we make sure that every statement-lemma pair only appear at most once in the prompt, even
if there are multiple correct proofs.

Alg. 1 shows the complete pseudo-code for selecting the conjecturer’s inputs.

A.3. Pseudo-code for preparing the conjecturer dataset.

The pseudo-code for preparing the conjecturer dataset is shown in Alg. 2. The motivations and explanations of each step in
Alg. 2 can be found in Section 3.2.

A 4. Pre-processing LeanWorkbook

LeanWorkbook is a dataset that contains statements translated from natural language math statements (a.k.a., auto-
formalization). The original dataset contains 140K (natural language statement, formal statement) pairs.
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Algorithm 1 Prepare inputs for the conjecturer.

: Input: a list of statements and proofs L = {(¢;, p;) }7 ;.
: Initialize prompt list P = [].
: for (¢,p) € L do
Parse the proof and get the set of used lemmas S.
With probability 0.5, add the trivial lemma to S.
For every lemma [ € S, add (¢, p, () to the prompt list P.
end for
for/ € Sdo
it > ineplll = 1] > 0.1n then
Randomly keep at most 0.1n prompts with lemma [ in P.
end if
: end for
: De-duplicate P randomly so that every (statement, lemma) pair (¢, 1) appears at most once.
: Return: de-duplicated list of prompts P.

—_
S AN AP AR AR R e

—_— =
AW N

Algorithm 2 Prepare the conjecturer dataset.

1: Input: a list of (seed statement, proof of the seed statement, lemma, generated conjecture, generated proof of the
conjecture) tuples D = {(;, pt, li, ¢i, p§) }i=1,... ., and unproved statements Q = {¢;};j=1.... m.
2: For each conjecture ¢, compute its empirical pass rate

P(c) 2 (#{i: ¢; = ¢,p is correct}) /(#{i : ¢; = ¢}).
3: Select conjecturing examples that (a) have low but positive pass rates, and (b) the lemma ! is used in the proof p©:

D ={(t,p",1,¢) |(t,p",1,¢,p°) € D, P(c) € (0,1/4],
p° is correct, [ is used in p°}.

4: De-duplicate D based on the conjecture c.
5. Compute the elegancy score

» min{len(pf§) : 1 <i < n,pf is correct, ¢; = c}

B(e) len(c)

Let k be the 20%-quantile of F(c) for conjectures in D.

Apply elegancy filter: D = {(t,p',l,c) € D| E(c) > K}

Find a distribution P supported on the conjectures in D that minimizes the Wasserstein distance W(P,Q) (Alg. 4).
Return: D re-weighted by the density of P.

LR D

We de-duplicate the LeanWorkbook dataset by keeping only one formal statements per natural language statement. After
de-duplication, we get 89,221 formal Lean4 statements as our existing dataset w/o proofs for Lean experiments.

For the Isabelle experiments, we translate the Lean4 statements to Isabelle using DeepSeek-V2.5 API with few-shot
examples. The prompt to the model is listed below.

Please translate the following lean statement into Isabelle. Please make sure that

1. All the variables are well-typed.

2. All the functions are correctly translated into the corresponding Isabelle functions.
3. All the symbols are correctly translated into corresponding Isabelle symbols.

4. Please directly output the translation without explanation.

Here are some hints for the translation:

1. In Isabelle, the second operand of the operator » should be integer. For real numbers,
please use powr instead.

2. Please define the types of numerals.
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3. ‘Real.logb x y' should be translated to ‘log x y°‘'.

‘Real.sqrt x' should be translated to ‘sqrt x‘.

5. Variables with subscripts should be disallowed. For any variable names of form a_b,
translate it to ab.

6. Please translate superscripts to the corresponding exponential form. For example, x~
should be translated to (x powr -1).

7. ‘a | b should be translated to ‘a dvd b'.

8. ‘x = vy [ZMOD p]"' should be translated to ‘x mod p =y

9. 'x € zmod p' should represent that x is nat and x < p.

[IsN

## Input:
‘YYlean
theorem lean_workbook_ 50 (a b ¢ : R)
(ha : a > 0 Ab>0Ac > 0)
(hab : a + b + ¢ = 3)
a3 + b3 + ¢c”3 + 216 x (a *x b+bxc+c*a)/ (24 +aDb+b*c+cxa <27
by sorry

AN

## Output:

‘Y 'Isabelle

theorem lean_workbook_50:

fixes a b ¢ :: real

assumes "a > 0

assumes "a + b

shows "a”3 + b
27"

sorry

AN

c”"3 + 216 x (ax b+ b *xc+cxa)/ (24 +a*b+bxc+c*a)<

## Input:
‘YYlean

{1

AN

## Output:

A.5. Re-weighting the conjecturing dataset

In this section, we describe the motivations and implementation details of the re-weighting method for the conjecturing
dataset.

Motivation. In our early experiments, we observe that the generated conjectures tend to have mode collapse issue after
several iterations of self-play training. For example, the generated conjectures are mostly about algebraic manipulations even
when the seed statements contain questions about, for example, number theory. This is partly because the LeanWorkbook
dataset contains a significant portion of inequality questions.

Therefore, in addition to the particular conjecturing format where we require that the proof of the conjecture must use the
lemma given in the input, we also re-weight the conjecturing examples at every iteration. Intuitively, if there is a distance
function that can separate statements of different topics, the Wasserstein projection of the conjectures will have a similar
distribution of topics, and therefore alleviates the mode collapsing issue.

Cost function. We compute the cost d(z,y) of matching conjecture x to a statement y by the negative of the cosine
similarity between their embeddings, and the embedding is computed by the last hidden layer of the current model averaged
over the sequence dimension. Since our model is trained to generate proofs of conjectures and statements, we expect that
statements with similar proof techniques tend to have similar embeddings, and therefore smaller cost for the matching.

Algorithm. On the high level, our method computes a re-weighting of the generated conjectures that minimizes its
Wasserstein distance to the unproved statements in the given dataset. Abstractly speaking, let X' be the set of generated
conjectures, and () the set of unproved statements. Let d(x, y) be the distance between a conjecture = and a statement y.
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Then, the optimization problem can be written as

argmin W(P,Q), (1)

P:P is a valid distribution, supp(P)CX

where W (P, Q) is the Wasserstein distance between P and @ (with little abuse of notation, we use @ to represent the
uniform distribution over the unproved statements). The Wasserstein distance W (P, Q) is defined by the following optimal
transportation problem where y is a matching between the distribution P and Q:

W(P,Q) = min > e, y)d(@,y) @)
g z€supp(P),yE€supp(Q)
s.t. Z w(z,y) = P(x), 3
y€supp(Q)
> plzy) = Q) 4
z€supp(P)
plz,y) >0, Va,y. ©)

Combining the equations above, the re-weighting distribution P can be computed by

argmin _min > ua ) ©)
Prsupp(P)CX # zesupp(P),yE€supp(Q)

st. Y plx,y) = P(a), @)

yEsupp(Q)
> plzy) = Q) ®)

z€supp(P)
w(z,y) >0, Vr,y, ©)
P(x) >0, Vu, (10)
> P)=1, an

reX

where the last two constraint ensures that P is a valid distribution. Equivalently, we get the following program,

argmin  min Z w(z, y)d(z,y) (12)
P:supp(P)Cx  H zesupp(P),yEsupp(Q)
s.t. > plzy) = Q) (13)
zesupp(P)
Y. ny) =1, (14)
z€X,y€supp(Q)
w(x,y) >0, Vr,y, (15)
Pl@)= Y plxy). (16)
y€supp(Q)

Since Q(y) is given, we can optimize p(x,y) for every fixed y separately, and then compute the final P(z) using Eq. (16).
As a result, the program above has a closed-form solution p*(z,y) = Q(y)I[z = argmin,,y d(z’,y)] and P(z) =
ZyESupp(Q) w*(z,y). In other words, the optimal matching u(z, y) for any given y is only supported at the 2 that minimizes
the distance d(z, y). Therefore, the (theoretical) algorithm that computes the optimal re-weighting is given in Alg. 3. Note
that the last line in Alg. 3 is to make sure that the sum of the weights equals the number of generated conjectures (i.e., the
sum of weights before re-weighting).

Our practical implementation is shown in Alg. 4. In this implementation, we additionally requires that the weighting P for
every conjecture z cannot be too big because otherwise it might cause instability of the LLM training with weighted cross

17



Self-play LLM Theorem Provers with Iterative Conjecturing and Proving

Algorithm 3 Computing the optimal re-weighting (theory).

1: Input: generated conjectures X = {x1,--- , 2, } of size n, unproved statements () with size m, and a distance function
d(z,y).

2: Initialize the optimal re-weighting P = [0,0, - - - , 0].

3: fory € @ do

4:  Compute z* = argmin, ., d(z, y).

5:  P(z*) + P(z*) 4+ 1/m.

6: end for

7: Return: the optimal re-weighting is [P(x1) * n, P(z2) *n,- -+, P(z,) * n).

entropy loss. We also allow unproved statements in () to have different matching weights — an important statement can be
matched to more than one conjecture (see Line 5-6 of Alg. 4). In both the Isabelle and Lean experiments, the statements
from LeanWorkbook have matching weight 1. The statements from miniF2F-valid and ProofNet-valid have matching weight
1 for the first 24 iterations in the Lean experiment, and 128 afterward.

Algorithm 4 Computing the optimal re-weighting.

1: Input: generated conjectures X = {x1,--- , 2, } of size n, unproved statements () with size m, and a distance function
d(z,y).

2: Initialize the optimal re-weighting P = [0, 0, - - - ,0].

3: Initialize the masks M (z) = 1,Vz € X.

4: for y € Q) do

5:  Let k be the matching weight of y.

6: Letaz! ... x* be the k conjectures with smallest value of d(-,y) M (-).

7. fori=1,--- kdo

8: P(x") «+ P(z%) + 1/m.

9: if P(2%) * n > 3 then
10: M(z*) « 0.
11: end if
12:  end for
13: end for
14: Return: the optimal re-weighting is [P(z1) * n, P(z2) xn,--- , P(z,) * n].

A.6. Implementation details for expert iteration.
In this section, we describe two different implementations of expert iteration and compare their performance.

Vanilla expert iteration. For vanilla expert iteration, we only sample proofs to the unproved statements in the given dataset.
The LLM training dataset consists of all the correct proofs generated in this and previous iterations, and in each iteration, the
model is trained from the base model.

Optimized expert iteration. The most significant issue of vanilla expert iteration is the limited correct proofs generated in
each iteration. As a result, even though the model is re-trained at every iteration, the difference between two models in
consecutive iterations are limited.

Therefore, in our optimized implementation of expert iteration, we generate proofs to all statements in the given dataset,
regardless of whether they are previously proved or not. Then, to construct the LLM training dataset, we randomly choose at
most 16 proofs per statement (so that the model does not overfit to the easy problems with many correct proofs). Note that
this implementation requires slightly more sample budget per iteration. However, since the pass rate on the given dataset is
low (less than 30% even for our best model), this difference is not significant.

In Fig. 7 (Left), we plot the cumulative pass rate of two implementations of expert iteration, STP and parallel sampling. STP
outperforms both implementations of expert iteration, and the optimized implementation of expert iteration is better than the
vanilla implementation.
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Training performance on LeanWorkbook Performance on LeanWorkbook (Isabelle translation)
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Figure 7: Left: Comparison of pass rates between STP, two implementations of expert iteration, and parallel sampling
methods on LeanWorkbook. Right: Comparison of pass rates between STP and baseline methods on LeanWorkbook
(Isabelle translation). The red crosses shows the points where we refresh the self-play training as described in Section 4.1.

For the figures of Isabelle experiments, we always use the optimizes implementation of expert iteration. For Fig. 2, we use
the vanilla implementation.

A.7. Additional details for interacting with the Isabelle verifier

For the Isabelle experiments, we have an additional filter for the conjectures — if the generated conjecture is equivalent to
the statement in the prompt (tested by solve_direct in Isabelle), we consider it invalid.

We disallow the tactics sledgehammer, mason, smt, metis, sos by invalidating proofs that contain any of these
sub-strings. However, following the implementation of Jiang et al. (2022a), we still use the keyword ‘sledgehammer’ to
replace the following simple tactics

[by auto, by simp, by blast, by fastforce, by force, by eval, by presburger,
by arith, by linarith, by (auto simp: field_simps)].

During proof verification, we try these tactics sequentially to replace the keyword ‘sledgehammer’. If any of the tactics
succeed, we proceed to the remaining proof steps. Otherwise we flag the proof incorrect.

A.8. Additional details for interacting with the Lean4 verifier

During the self-play training, we use the same imports as the miniF2F Lean4 project'? instead importing the entire Mathlib

to optimize the memory efficiency. This is because we do not have access to an additional CPU cluster for proof verification,
and the available CPU memory in TPU-v4 VMs is limited.

A.9. Compute resources

Our experiments are primarily done on TPU-v4 VMs with 32 nodes. Each node contains 4 TPU chips (8 TPU cores), 240
CPU cores, and 400G memory. We use vLLM (Kwon et al., 2023) to generate LLM outputs, and Levanter!! to train the
LLM. In both STP and expert iteration, since the generated proofs are heavily filtered (based on the correctness, elegancy,
trivialness, etc.) when constructing the training dataset, LLM training only takes less than 25% of the wall-clock time for
TPU compute, and generating proofs takes the rest 75%.

Yhttps://github.com/yangkyll/miniF2F-leand/tree/main/MiniF2F
Uhttps://github.com/stanford-crfm/levanter
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B. Additional Experiment Results

In this section we show the additional experiment results with both Lean and Isabelle formal verifier.

B.1. Additional results with Lean

In Table 4, we compare the performance of our method with prior works on PutnamBench. Note that DSP (Jiang et al.,
2022b) uses Isabelle verifier where PutnamBench only has 640 statements. Our model STP achieves state-of-the-art
performance by solving 8 out of 644 problems.

Table 3 compares the model obtained by final re-training with and without the proofs of generated conjectures, as discussed
in the ablation study section (Section 4.4). The results show that it is still beneficial to re-train with the generated conjectures
in addition to the successfully proved statements in LeanWorkBook even for performance on miniF2F-test and ProofNet-test,
which leads to about 2-3% performance gain (for pass@128).

Table 3: Pass rate on miniF2F and ProofNet.

Method Sample budget ~ MiniF2F-test ProofNet-test
STP (w/o conjectures) 128 583% +£0.7% 17.4% + 0.4%
STP 128 61.2% £0.6% 19.5% £ 0.7%

B.2. Additional results with Isabelle

In Fig. 7 (Right), we plot the pass rates of STP and baseline methods on LeanWorkbook starting from iteration 0. The red
crosses shows the points where we refresh the training process as described in Section 4.1. Our models are tested with
PutnamBench (Tsoukalas et al., 2024), commit d49896f 12

Table 4: Results on PutnamBench.

Method Sample budget (#Proofs / #Steps)  Result

Whole-Proof Generation Methods

DSP (GPT-40) (Jiang et al., 2022b) 10 4/640

STP 128 7/644
3200 8/644

Tree Search Methods

InternL.M2.5-StepProver-BF+CG 2 x 32 x 600 6/644

B.3. Examples of unproved statements in LeanWorkbook

In this section, we list 20 randomly selected statements from LeanWorkbook that are not proved during STP training. The
following table shows the formal statement, the corresponding natural language statement in LeanWorkbook, the correctness
of formalization, and the correctness of the formal statement.

# | Lean formal statement Natural language statement Correct Correct
formalization? statement?
1 theorem lean_workbook_ 7116 If a = 2%,b = y*, c = 27 it suffices to show | Yes No. The
(xyz:R) (hx : x +y + z = | that z+y+2z=3 = z?+32+224+3< case r =
3) tx 24y r 24z 2+ [ 2A5+5+S) 0 is ill de-
32« (1 /x"~2+1 /vy Y fined.
N2 4+ 1/ z~2) :=Dby

Zhttps://github.com/trishullab/PutnamBench/tree/d49896fdc87al28a70el5a185d8dfcal3516dd894
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2 | theorem Prove thatif a = b (mod n), thena™ = 0" | Yes Yes
lean_workbook_plus_72390 (a (mod n2).
bn:N) (h : a=Db [ZMOD
n]) : a’™n = b”"n [ZMOD n"2]
by
3 | theorem lean workbook_ 35349 or: 9 < = + ;= + | Yes (but maybe | No
(abc:R) : (9/ (a +Db+ 1 atbtety/3(abtbetea) o e missing the | (a,b,c)
c + Real.sgrt (3 » (a » b + cta implicit as- | (—=0.5,1,1).)
b*xc+c*a))) < (1 / (a+ sumption
b) +1 / (b +c) + 1/ (c+ a,b,c>0)
a)) := by
4 | theorem lean_workbook_8880 Prove that avb2+c2 + bve2+a2 + | Yes No
(abc:R) : ax Real.sqgrt eva? + b2 < 3v2,
(b~ 2 +c ™ 2) + Db
Real.sqrt (c ~ 2 + a ~ 2) +
c » Real.sgrt (a ~ 2 + b ©
2) < 3 % Real.sqrt 2 := by
5 | theorem Put </ = a . The equation is equivalentto | Yes No
lean_workbook_plus_44018 a?—2a—(a®>—4)va® —7—-3a>+28 =0
(x : R) (hx : 0 < x) (a : R
)y (ha : a = x*(1/3)) : a”2
- 2%xa — (a”3 - 4)xReal.sgrt
(a3 = 7) - 3xa”"3 + 28 =0
by
6 theorem If a, b, c > 0 prove or disprove \/%Jgil’;fic—}— Yes Yes
lean_workbook_plus_35882
(abc:R) (ha : 0 < a) \/3;I4bb12cc+\/2aajbﬁjzcc 23
(hb : 0 < b) (hc : 0 < ¢)
(Real.sgrt ((a + 2 » b +
3 %c) / (4xa+b+c) +
Real.sgrt ((3 = a + b + 2
*xc) / (a+ 4 x Db+ c)) +
Real.sgrt ((2 » a + 3 » b +
c) / (a+b+4 xc))) >3
by
7 | theorem lean_workbook_12619 Letz® +z+ay+y” < 1(x,y € R). Prove | No (there is a | No
: Vxy : R, (x°2+x+xy+y”2) _l\/li 2 Xy term in Lean.
< 1 — -(1/3)*Real.sqgrt that —3 2(69+11\/§) S @42y < Si/louldbex*y)
((1/2)*(69+11xReal.sqrt 1 /1
33)) < xA242%x4y A 31/3(69+11v33)
x"2+2+xxxy < (1/3)*Real.sqrt
((1/2)*(69+11xReal.sqgrt 33))
:= by
8 | theorem Prove that f(f(xz) +1) = f(z) + 1 forall | Yes No
lean_workbook_plus_20629 real x.
(f : R - R) (x : Ry : £ (£
x + 1) = f x + 1 := by
9 | theorem lean_workbook_37208 Prove that: % < (1+ %) for every pos- | Yes Yes
(n : N) (hn : 0 <n) : (n itiveintegern.
R) / (nt : R) ~ (1 / n) <
(1 +1/ n)*n := by
10 | theorem lean_workbook_10259 Givena,b € N(a # b) sothata+b | a®+b> | Yes Yes
(a b : N) (hab : a # b) (h .Letd:gcd(a,b).Provethatab—l—élgd4
a + blar2 + b*2) a «~ b +
4 < (Nat.gcd a b)"™4 := by
11 | theorem lean_workbook_ 45322 Leta,b>O0and (a+ 3)(b+5) =2+ 5. | Yes Yes

(ab : R) (ha : 0 < a) (hb
0 < b) (hab : (a + 1 /
a) » (b+1 /b)) =2+ 3/
Real.sgrt 2) : 1 < a ~ 4 +

A4 ANat4d+Db~4a< 4
by

Prove that 1 < a* + b* < 4
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12 | theorem lean_workbook_28189 prove: \/1+;{8é > | Yes (butmaybe | No = =
(x vy z : R) Real.sqrt (1 + 18422 —32(y2 4 52) 4+ 2893 (y-+2)+ 127y » missingz > 0) | —1/24,y =
48 x x / (y + Z)) 2 (184 * X 8(x2+y2+22)+47(yz+zw+xy) z=1
N2 =32 x (y N2 4+ 2z N 2) 4+
289 x x x (y + z) + 127 % y %
z) / (8 x (x ~ 2 4+ vy "~ 2 +
z N 2) + 47 x (y x 2z + z x X
+ X *xy)) := by
13 | theorem lean_workbook_31673 SolutionwithoutGeometricForrnula%Jr%nL Yes Yes
(x : R) (ho : ¥ k : N, (7 T+ ... =z We divide everything by 2:
/ (27k)) = x) : x =14 := Dby T4+ T4+ 14 5. =2 Wesubstitute the
original equation in: x —7 = 3 § =7
Therefore, | x = 14 |.
14 | theorem lean_workbook_4086 Given g(1) = g(1)* = g(1) = 1 No (natural lan- | No
(g : N > N) (hy gl=gl guage statement
~2) gl=1:=Dhy is unclear)
15 | theorem lean_workbook_6922 Let a,b > 0 and a + b > 2. Prove that | Yes Yes
(a b : R) (ha 0 < a) (hb —a b 1
0 < b) (hab 2 < a+ b) a\/2+7b+b\/2+7a +\/1+8ab 21
a * Real.sqgrt (a / (2 + 7 =
b)) + b » Real.sqrt (b / (2
+ 7 x a)) + Real.sqrt (1 /
(1L +8 «a*Db)) >1 := by
16 | theorem Find all functions f : R — R such that | Yes No
lean_workbook_plus_65183 flz+f(y) = y+f(z+1),forallz,y € R.
(f : R—>R): (Vxvy, £ (x+
fy)=y+f (x+1) < (V
x, fx=x+1)V (Vx, £fx =
-x + 1) := by
17 | theorem lean_workbook_26304 @a+b+c§% No (natural lan- | No  (e.g.,
(abc: R a+b+c< guage statement | abc < 0
(a”2 * b2 + b2 * c*2 + c"2 is unclear) and
* a*2) / (a » b x c) := by a+b+c>
0)
18 | theorem Solve the following system of equations: | No No
lean_workbook_plus_30866 3 +y+z=1
(x v z : R) (hx X"3 + y + x+y3+z:1
z =1) (hy : x + y"3 + z = 3
1) (hz X +y + z"3 =1) : r+y+z=1
x =y ANy =2z ANz =x := Dby
19 | theorem Let A € M, (C) be so that A - A" = O,, | Yes No (not true
lean_workbook_plus_51637 Prove that A = O,, . Here, A’ is the for complex
(A : Matrix (Fin n) (Fin n) C | transpose of A. matrix)
) (h A x A.transpose = 0)
A =0 := by
20 | theorem We also have a nice inequality 1 < T ] Yes No (when
lean_workbook_plus_58359 VYz x,Y,z =
(x v z : R) (hx 0 < x) (hy L +y. L +Z. 1 <42 € — 0, this
0<y) (hz : 0 <z) :1< r+1 Vexr y+1 2y z+1 7 term  goes
x / (Real.sqgrt (y x z)) * (1 With 1 and +/2 are the best constant. to3)
/ (x + 1)) +y / (Real.sqgrt
(z » x)) =~ (L / (y +1)) + z
/ (Real.sqgrt (x * y)) = (1
/ (z + 1)) N x / (Real.sqgrt
(y = z)) = (1L / (x+ 1)) +vy
/ (Real.sqrt (z * x)) * (1
/ (y + 1)) + z / (Real.sqrt
(x »y)) = (1 / (z+ 1)) <
Real.sgrt 2 := by
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B.4. Most frequent shared lemmas in Lean

In this section, we list 30 most frequently shared lemmas in the Lean experiments.

sg_nonneg, mul_self nonneg, div_le_div_iff, Real.sqg_sqgrt, Real.sin_add,
Real.sin_sqg_add_cos_sq, Real.cos_add, pow_two, div_le_iff, Real.cos_sub,
Real.sin_sub, Real.cos_sqg, Real.sin_two_mul, Real.cos_two_mul, pow_mul, div_le_one,
Real.sqrt_pos, pow_add, Real.tan_eq sin_div_cos, abs_le, Finset.prod_range_succ’,
pow_pos, Real.cos_sqg_add_sin_sqg, Nat.sum_range_choose, Nat.pow_mod, pow_three,
abs_mul, abs_cases, Real.pi_pos, nat_sub_dvd_pow_sub_pow
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