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Abstract
Electronic health records (EHRs) are multimodal by nature, consist-
ing of structured tabular features like lab tests and unstructured
clinical notes. In real-life clinical practice, doctors use complemen-
tary multimodal EHR data sources to get a clearer picture of pa-
tients’ health and support clinical decision-making. However, most
EHR predictive models do not reflect these procedures, as they
either focus on a single modality or overlook the inter-modality
interactions/redundancy. In this work, we propose MEDFuse, a
Multimodal EHRData Fusion framework that incorporates masked
lab-test modeling and large language models (LLMs) to effectively
integrate structured and unstructured medical data. MEDFuse lever-
ages multimodal embeddings extracted from two sources: LLMs
fine-tuned on free clinical text and masked tabular transformers
trained on structured lab test results. We design a disentangled
transformer module, optimized by a mutual information loss to 1)
decouple modality-specific and modality-shared information and
2) extract useful joint representation from the noise and redun-
dancy present in clinical notes. Through comprehensive validation
on the public MIMIC-III dataset and the in-house FEMH dataset,
MEDFuse demonstrates great potential in advancing clinical pre-
dictions, achieving over 90% F1 score in the 10-disease multi-label
classification task.
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1 Introduction
Electronic Health Records (EHRs) widely document heterogeneous
patient data, including tabular records and unstructured clinical
notes. Tabular records encompass medical concepts like diagnoses,
medications, and lab tests, providing a structured overview of a
patient’s health. In contrast, clinical notes are free-text documents
by healthcare providers, offering detailed and nuanced accounts
of patient history, clinical findings, and progress. The vast volume
and diversity of multimodal data in EHRs present a unique op-
portunity for deep learning to enhance disease prediction [11, 27].
Nevertheless, the heterogeneity and redundancy in multimodal
EHR inputs present significant challenges for effectively distill and
fuse clinically meaningful information for disease prediction.

The primary question at hand is: can we effectively obtain and
integrate useful representations for different EHR modalities to im-
prove clinical predictions? Current research in deep EHR modeling
[24, 25] often focuses on single data modalities, neglecting signifi-
cant insights from unstructured medical notes and lab tests, which
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limits the model’s ability to learn a comprehensive view of patient
health conditions. Lab tests consist of high-dimensional, usually
discrete tabular data; however, the conventional approach models
structured EHR data as numerical vectors, overlooking complex
interactions between individual variables and does not consider
their interactions [9, 20, 24, 25, 33]. Recent work has shifted to-
wards deep learning architectures like BERT and LLMs. Fine-tuned
LLM on clinical data shows promise in understanding clinical notes,
answering medical questions, and making few-shot predictions
[30]. However, LLMs struggle with numerical lab test nuances and
underperform on tabular prediction tasks. [3, 13, 15].

Another significant challenge in fusing information from differ-
ent types of EHR data is How do we distill the overlapping clinically
important features from both modalities? The information contained
within different modalities can be categorized as either modality-
specific or modality-shared [21]. For example, a patient’s dietary
habits would be considered information specific to the clinical notes
modality; hypertension record and lab test value would be regarded
as modality-shared information. Cai et al. [5] focused on integrat-
ing the modality-shared information by emphasizing the inherent
consistency through alignment techniques. However, this approach
often leads to the common information dominating the alignment
and integration process, resulting in the distinctive perspectives
offered by each modality being disregarded. Lab tests and clinical
notes have significantly different noise-to-information ratios, mak-
ing it hard to distill useful joint representation from the noises and
redundancy present in EHR. Therefore, there is an urgent need for
methods to extract the diverse yet collaborative perspectives both
modalities offer for informing therapeutic decision-making.

In this work, we propose MEDFuse, a novel Multimodal EHR
Data Fusion diagnostic model consisting of modality-specific em-
bedding extractors followed by a disentangled transformer formulti-
modal fusion. Ourmodel integrates embeddings between fine-tuned
LLMs on unstructured clinical text and masked lab-test modeling
models pre-trained on structured lab results. We further utilize a
disentangled transformer optimized by mutual information loss to
decouple modality-specific and modality-common information and
learn meaningful joint representations for downstream prediction
tasks. The key contributions of our work are as follows:

• We proposed a novel diagnostic model integrating structured
lab test data and unstructured clinical notes, utilizing embed-
dings from fine-tuned LLMs and Masked Lab-Test Modeling,
enhancing understanding of diverse clinical information.

• We improved joint patient representation by incorporating a
disentangled transformer module to effectively separate and
integrate modality-specific and shared information, leading
to better prediction outcomes across multiple diseases.

• We conducted empirical evaluations to illustrate our model’s
effectiveness through EHR datasets on various metrics.

2 Related work
2.1 EHR For Multi-Label Disease Prediction
Most recentworks inmedicalMulti-Label Text Classification (MLTC)
entirely rely on medical texts. For instance, Kim et al. [7] introduced
a convolutional attention network designed to extract meaningful

document representations across varying text lengths. Recent de-
velopments in LLMs, such as those discussed by Luo et al. (2022)
and Elliot et al. [4], utilize extensive data from medical literature
for domain-specific tasks such as natural language inferencing.
Additionally, some studies have employed graph neural networks
(GNNs) to organize sequences from Electronic Medical Records
(EMR) into hierarchical graphs [32], or to integrate entity relation-
ships from text using attention mechanisms in neural networks
[6, 12]. Nevertheless, many of these studies overlook the potential
advantages of integrating medical expert knowledge from official
guidelines and critical blood tests. A combined approach that har-
nesses both unstructured and structured data could offer extra help
to offset issues like label and data scarcity in the medical domain.

2.2 Extraction of Clinical Relevant Information
from Multimodal EHR

Recent work has leveraged self-supervised learning methods, like
contrastive pretraining of clinical notes [5] and prompt-based large
language modeling [11, 15], to facilitate multimodal learning of
EHR data. The former encourages the alignment between paired
patient data via contrastive loss, and the latter usually directly con-
verts the structured data into text by prompt templates and feeds it
into LLMs. However, if the data fusion process focuses solely on
aligning the common information, such as diabetes history (text)
and blood glucose levels (lab), the rich, modality-specific insights
like exercise habits may be overlooked. This limits understanding
of the patient’s health and impact predictive models. Therefore, de-
veloping multimodal EHR data fusion techniques to integrate both
modality-specific and modality-shared information is essential.

3 Method
3.1 Overview

Figure 1: The proposed model architecture.

In Figure 1, MEDFuse integrates clinical notes and lab tests to ob-
tain patient representation for accurate multi-disease prediction. In
the Multimodal Embedding Extraction stage, textual data from clin-
ical notes, are filtered and structured. Simultaneously, abnormal lab
tests like triglyceride levels, HDL cholesterol, are extracted and for-
matted into textual data by prompt templates. The filtered clinical
text is then processed by fine-tuned LLMs to generate embeddings
capturing its semantic meaning. Meanwhile, raw structured tabular
data are processed with a domain-specific masked lab-test model to
create embeddings for the quantitative lab data. These embeddings
are then merged through the disentangled transformer module for
multimodal fusion and final disease prediction.
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3.2 Multimodal Embedding Extraction
3.2.1 Fine-tuning LLMs on Unstructured Text. Clinical notes,
comprising diverse fields derived from physicians’ diagnoses, form
the textual component of the dataset. We filtered the text by Chief
Complaint, Present Illness, Medical History, and Medication on
Admission. These specific fields are crucial for accurately predict-
ing a patient’s disease. To integrate this tabular data with the tex-
tual clinical notes, we converted the tabular data into a textual
format, a process referred to as tabular feature extraction. This
method involves extracting abnormal lab test results and formatting
them into a text template — “These are abnormal results recorded:
ITEMID <ITEMID>: <VALUE> <VALUEUOM>; ITEMID <ITEMID>:
<VALUE> <VALUEUOM>; ...;”. Here, <ITEMID> refers to the spe-
cific lab test names, <VALUE> indicates the test values, and <VAL-
UEUOM> denotes the units of measure for the test values.

Inspired by fine-tuning the language models [10, 23] for classifi-
cation purposes, we fine-tuned various LLMs for disease prediction.
Our best-performing backbone is the publicly accessible Medical-
Llama3-8B model [28], which is fine-tuned from Meta-Llama-3-8B
[2]. It is trained on a comprehensive medical chatbot dataset and op-
timized for addressing health-related inquiries. We extracted latent
vector representations from the final layer of the Llama decoder,
which was originally engineered for autoregressive prediction of
subsequent tokens. These extracted vectors were subsequently pro-
cessed through feed-forward neural layers, effectively transforming
them into a label space. The output from these transformations, in
the form of logits, was then utilized to perform discriminative clas-
sification based on labels. This method aims to harness the latent
embedding of LLMs to achieve targeted, efficient task adaptation.

3.2.2 Masked Lab-Test Modeling. The Masked Lab-Test Mod-
eling (MLTM) module extends the Masked Autoencoders (MAE)
[8, 14, 29] framework to reconstruct masked components based on
observed components in EHR data. MLTM consists of a encoder
that maps observed values to their representations and a decoder
that reconstructs the masked values from the latent representations.
To account for the inherent incompleteness in the imputation task,
MLTM employs an additional masking approach in the training to
make sure a uniform 75% value is masked out. The encoder applies
a learnable linear encoding function 𝑤𝑥 + 𝑏 to each unmasked 𝑥
and passes through a transformer architecture, while the decoder
operates on the embeddings of both observed and masked values.
Positional encoding is added to the embeddings to preserve the
lab test positions. The reconstruction loss is defined as the mean
square error between the reconstructed and original values on the
re-masked and unmasked sets. MLTM is designed with an asym-
metric architecture, using a deep encoder and a shallow decoder to
extract useful lab-test representations.

3.3 Disentangled Transformer Module
Initially, features from each modality are multiplied by the Kro-
necker product to approximate a joint distribution, 𝐶 = 𝐴

⊗
𝐵 ∈

R(𝑚×(𝑎)×(𝑏 ) ) , effectively capturing the pairwise interactions. Self-
attention is applied to 𝑍𝑎 and 𝑍𝑏 to obtain 𝑆𝑎 and 𝑆𝑏 , controlling
the expressivity of each modality and preventing noisy features.
Subsequently, the common information of the joint distribution is
extracted via cross attention of𝑄𝑐 , 𝐾𝑐 +𝐾𝑎 +𝐾𝑏 , and𝑉𝑐 +𝑉𝑎 +𝑉𝑏 to

model modality-common features 𝑆𝑐 . To preserve modality-specific
information, we minimize the Mutual Information (MI) loss be-
tween concatenated 𝑆𝑎 + 𝑆𝑏 and 𝑆𝑐 . As the computation of mutual
information is intractable, we calculate a variational upper bound
called contrastive log-ratio upper bound (vCLUB) as an MI estima-
tor to achieve MI minimization. Given two variables 𝑎 and 𝑏, the
𝐿𝐶𝐿𝑈𝐵
𝑣 (𝑎, 𝑏) is calculated as follows [34]:

𝐿𝐶𝐿𝑈𝐵
𝑣 (𝑎, 𝑏) = E𝑝 (𝑎, 𝑏) [log𝑞𝜃 (𝑏 |𝑎)] − E𝑝 (𝑎)E𝑝 (𝑏) [log𝑞𝜃 (𝑏 |𝑎)]

=
1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

[
log𝑞𝜃 (𝑏𝑖 |𝑎𝑖 ) − log𝑞𝜃 (𝑏 𝑗 |𝑎𝑖 )

]
(1)

We employ an MLP 𝑞𝜃 (𝑏 |𝑎) to provide a variational approxi-
mation of 𝑞𝜃 (𝑏 |𝑎), which can be optimized by maximizing the log-
likelihood [34]:𝐿estimator (𝑎, 𝑏) = 1

𝑁

∑𝑁
𝑖=1 log𝑞𝜃 (𝑏𝑖 |𝑎𝑖 ). TheMI Loss

is then defined as: MI Loss = 𝐿𝐶𝐿𝑈𝐵
𝑣 (𝑆𝑎+𝑆𝑏 )+𝐿estimator (𝑆𝑎+𝑆𝑏 , 𝑆𝑐 ).

After optimizing the mutual information between the modality-
specific information and the modality-common information, we uti-
lize dense fusion [16] to enable denser interaction between modal-
ities. Instead of directly connecting a prediction classifier on top
of the fused representation 𝑆𝑐 , we learn deeper representations of
the clinical notes and lab test features and add skip connections to
concatenate with the fused representation, forming a final fused
embedding: ℎ𝑎 = 𝑓𝑎 (𝑆𝑎) and ℎ𝑏 = 𝑓𝑏 (𝑆𝑏 ) where 𝑓𝑎 and 𝑓𝑏 are fully-
connected layers. This final representation not only aggregates
the modality-specific features but also incorporates the modality-
common representation from the previous stage of the network:
ℎ𝑓 𝑖𝑛𝑎𝑙 = 𝑐𝑜𝑛𝑐𝑎𝑡 (ℎ𝑎, 𝑆𝑐 , ℎ𝑏 ). Finally, a dense block 𝑔 is used to gen-
erate 𝑦 = 𝑔(ℎ𝑓 𝑖𝑛𝑎𝑙 ), and the model is trained by optimizing the
prediction loss (focal loss for multilabel prediction). This allows
for dense interaction of features from each modality, aggregating
information across different stages of the network. The final loss
optimizes a combination of the prediction objective and the mu-
tual information loss, controlled by a hyperparameter 𝜆 with a
value range of [0,1]. In our experiment, we choose a 𝜆 value of 0.1.
Lossfinal = 𝐿objective (𝑔(ℎfinal)) + 𝜆 ∗MI(concat(𝑆𝑎, 𝑆𝑏 ), 𝑆𝑐 ).

4 EXPERIMENTS
4.1 Datasets and Metrics
We used two real-world EHR datasets: MIMIC-III [19] and FEMH,
which collected five years of EHRs from the Far Eastern Memorial
Hospital (FEMH) in Taiwan between 2017 and 2021. FEMH includes
1,420,596 clinical notes, 387,392 lab results, and over 1,505 lab test
items. The FEMH Research Ethics Review Committee 1 approved
the study, and all data were de-identified. We selected patients with
at least two recorded visits from each dataset.

For the multi-label classification task in MIMIC-III, we identified
the top 10 most prevalent conditions: “Hypertension, uncompli-
cated”, “Cardiac arrhythmias”, “Fluid and electrolyte disorders”,
“Congestive heart failure”, “Diabetes w/o chronic complications”,
“Chronic pulmonary disease”, “Valvular disease”, “Renal failure”,
“Hypertension, complicated”, and “Other neurological disorders”. In
the FEMH dataset, the top 10 most common diseases include “Hy-
pertension”, “Diabetes”, “Heart disease”, “Cancer”, “Cerebrovascular
1https://www.femhirb.org/
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Table 1: Training and Validation Performance Comparison of Various Models on the MIMIC-III Dataset.
Model Precision Recall F1 macro F1 weighted Accuracy
Bert 0.8333 / 0.6790 0.2000 / 0.2000 0.1818 / 0.1618 0.3686 / 0.3162 0.6515 / 0.2692
LoRA Mistral-7B-v0.1 0.8759 / 0.8616 0.8459 / 0.8289 0.8449 / 0.8274 0.9007 / 0.8886 0.9089 / 0.8974
LoRA Llama-2-7B-hf 0.8828 / 0.8585 0.8592 / 0.8364 0.8559 / 0.8301 0.9097 / 0.8924 0.9168 / 0.9004
LoRA Meta-Llama2-13B 0.9153 / 0.8732 0.8852 / 0.8430 0.8874 / 0.8414 0.9297 / 0.8990 0.9363 / 0.9071
LoRA Meta-Llama3-8B 0.8899 / 0.8667 0.8569 / 0.8306 0.8579 / 0.8305 0.9121 / 0.8935 0.9211 / 0.9040
LoRA Medical-Llama3-8B 0.9283 / 0.8807 0.9008 / 0.8474 0.9026 / 0.8466 0.9367 / 0.9003 0.9417 / 0.9068
MEDFuse 0.9375 / 0.9025 0.9217 / 0.8534 0.9216 / 0.8615 0.9462 / 0.9103 0.9535 / 0.9122

Table 2: Training and Validation Performance on the FEMH Dataset.
Model Precision Recall F1 macro F1 weighted Accuracy
LoRA Medical-Llama3-8B 0.8702 / 0.8691 0.8496 / 0.8478 0.8453 / 0.8435 0.9182 / 0.9167 0.9267 / 0.9252
MEDFuse 0.8839 / 0.8823 0.8707 / 0.8670 0.8637 / 0.8607 0.9260 / 0.9243 0.9311 / 0.9296

Table 3: Ablation Study on Training and Validation Performance on the MIMIC-III Dataset.
Model Precision Recall F1 macro F1 weighted Accuracy
MEDFuse w/o (MLTM & LABTEXT) 0.8882 / 0.8580 0.8663 / 0.8406 0.8620 / 0.8321 0.9100 / 0.8901 0.9148 / 0.8955
MEDFuse w/o (MLTM & TEXT) 0.6553 / 0.6224 0.6461 / 0.6203 0.6282 / 0.5980 0.7869 / 0.7627 0.8239 / 0.8008
MEDFuse w/o TEXT 0.7730 / 0.7666 0.7912 / 0.7923 0.7600 / 0.7573 0.8331 / 0.8230 0.8331 / 0.8271
MEDFuse w/o Disentangled Transformer 0.9330 / 0.8974 0.9164 / 0.8483 0.9162 / 0.8564 0.9417 / 0.9074 0.9489 / 0.9082
MEDFuse 0.9375 / 0.9025 0.9217 / 0.8534 0.9216 / 0.8615 0.9462 / 0.9103 0.9535 / 0.9122

Disease”, “Kidney Disease”, “Liver Disease”, “Asthma”, “Hyperlipi-
demia”, and “Lung Disease”. We applied several metrics to assess
model performance such as Macro-average and weighted-average
F1-Scores, precision, recall, and accuracy [17, 22, 26].

4.2 Experimental Results
Table 1 and Table 2 illustrate the training and validation perfor-
mance of various models, highlighting the effectiveness of our pro-
posed method on the MIMIC-III and FEMH datasets, respectively.
In Table 1, our approach outperforms baseline models such as Bert
[10], Mistral-7B-v0.1 [18], Llama-2-7B-hf [31], Meta-Llama2-13B
[1], Meta-Llama3-8B [2], and Medical-Llama3-8B [28] across all key
metrics. Cai et al. [5] pretrained multimodal models, consuming
significant time and resources, while our approach uses finetuning
and test-time embedding alignment, which is much more efficient.
Specifically, MEDFuse shows significant improvements over the
best-performing LoRA fine-tuned LLM, Medical-Llama3-8B. On the
test set, our model performs 1.49% better in macro F1 score, and
similar trends are observed in other metrics. Table 2 shows MED-
Fuse consistently outperforms Medical-Llama3-8B on the FEMH
dataset. For example, training and validation in precision is a 1.53%
increase, in the recall is a 2.07% increase, the training accuracy is
0.9311 (0.55% increase), and validation accuracy is 0.9296 (0.41%
increase). These results validate the robustness and generalizability
of our approach, underscoring its potential for accurate and reliable
clinical predictions across diverse datasets.

4.3 Ablation Study
We conducted an ablation study to examine the contributions of var-
ious components in our proposedmethod, which integratesMedical-
Llama3 with a transformer module, utilizing lab tests (LABTEXT)
and clinical notes (TEXT). The results show a clear performance

drop when any component is omitted. Removing both the trans-
former and LABTEXT results in a 4.81% drop in training precision
and a 4.40% decrease in validation precision. The most substan-
tial performance reduction occurs when both the transformer and
TEXT are excluded, leading to a 29.76% decrease in training preci-
sion and a 30.66% decrease in validation precision. This underscores
the indispensable role of TEXT and the transformer in our method.
Even when only TEXT is removed, performance significantly dete-
riorates, with a 17.14% decline in training precision and a 14.60%
decline in validation precision. These findings illustrate that each
component contributes significantly to the model’s overall efficacy.
Our full model, combining LLMs andMLTM, demonstrates the high-
est performance, with a training accuracy of 0.9535 and a validation
accuracy of 0.9122.

5 Conclusion
In conclusion, we have presented a novel multi-disease diagnos-
tic model that integrates multimodal data, closely mirroring real-
life clinical decision-making. By combining fine-tuned LLMs with
domain-specific transformers, we achieved enhanced synthesis of
structured and unstructured medical data. Using a disentangled
transformer further refined this integration, significantly improv-
ing disease prediction accuracy. Our experimental results across
two practical EHR datasets demonstrated the proposed model’s
robustness and effectiveness. Despite achieving high performance
on two datasets, our approach may face overfitting and generaliza-
tion challenges when applied to specific data types or healthcare
environments. Utilizing embeddings and fine-tuning LLMs proved
more efficient than pretraining a new model from scratch. However,
computational challenges may persist. In future work, we will en-
hance model transparency, expand coverage to include complex and
rare diseases, assess more diverse datasets, and combine real-time
and other data modalities [35] in dynamic clinical environments.
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