Mozart: Modularized and Efficient MoE Training on
3.5D Wafer-Scale Chiplet Architectures

Shuqing Luo!”, Ye Han*", Pingzhi Li'*, Jiayin Qin*",
Jie Peng', Yang Katie Zhao?, Yu Cao?, Tianlong Chen'
! University of North Carolina at Chapel Hill, > University of Minnesota Twin Cities
* Equal Contribution

Abstract

Mixture-of-Experts (MoE) architecture offers enhanced efficiency for Large Lan-
guage Models (LLMs) with modularized computation, yet its inherent sparsity
poses significant hardware deployment challenges, including memory locality
issues, communication overhead, and inefficient computing resource utilization.
Inspired by the modular organization of the human brain, we propose Mozart, a
novel algorithm-hardware co-design framework tailored for efficient training of
MoE-based LLMs on 3.5D wafer-scale chiplet architectures. On the algorithm side,
Mozart exploits the inherent modularity of chiplets and introduces: (1) an expert al-
location strategy that enables efficient on-package all-to-all communication, and (2)
a fine-grained scheduling mechanism that improves communication-computation
overlap through streaming tokens and experts. On the architecture side, Mozart
adaptively co-locates heterogeneous modules on specialized chiplets with a 2.5D
NoP-Tree topology and hierarchical memory structure. Evaluation across three pop-
ular MoE models demonstrates significant efficiency gains, enabling more effective
parallelization and resource utilization for large-scale modularized MoE-LLMs.

1 Introduction

The human brain, known for its cognitive efficiency and modular organization, has long inspired
the design of large-scale computational systems [10, 15, 27]. It comprises specialized modules
that handle distinct tasks, ranging from memory-intensive to computation-heavy operations, while
maintaining low-latency coordination with adjacent regions [2, 4, 14]. This modularity enables
efficient, scalable, and flexible processing [3, 18], which is a principle increasingly adopted in deep
learning systems such as Large Language Models (LLMs) [22, 35].

Meanwhile, recent advances in LLMs, particularly Mixture-of-Experts (MoEs), reflect similar modu-
lar principles by dynamically activating specialized sub-networks based on input. However, the scale
and heterogeneity of MoE-LLM:s pose significant challenges for conventional hardware platforms [22]
(e.g., traditional GPUs or CPUs), including photoreticle-limited scalability [19] and transistor scaling
limits [36], as well as poor memory locality [13], high inter-module communication overhead [16],
and inefficient resource utilization [25] due to dynamic and uneven computational workloads.

2.5D/3.5D heterogeneous chiplet-based architectures have gained popularity due to their scalability
and modularity to meet the demands of the aforementioned LLM-related workloads, including
MoE:s [32, 46, 9, 21]. Typically in 2.5D designs, multiple chiplets are interconnected via a Network-
on-Package (NoP) through an interposer [8, 34, 26, 37], reducing the area and cost overhead of
monolithic integration. To further boost inter-chiplet bandwidth, 3D integration techniques such
as Through-Silicon Vias (TSVs) are employed along the vertical direction. However, prior works
tend to neglect wafer-scale integration [9, 21, 46] and largely adopt coarse-grained, static workload
partitioning strategies [32] that assume dense and uniform computation, tiling the model workload

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Shared Experts Il Routed Experts ll Attention Bl Dense FFN B Embedding + LM Head

93.1%

DeepSeek-MoE 91.3% .. 16.4B

OLMoE-1B-7B-0924 . 6.9B

Qwen3-30B-A3B 1 30.5B
Qwen3-235B-A22B 2358
% of Parameters 0% 25% 50% 75% 100%

Figure 1: Parameter distribution in modern MoE-LLMs across various scales. The routed experts
module constitutes over 90% of the total parameters in these architectures.

to different chiplets without incorporating system-level coordination and optimization [24]. None
of these works consider or explicitly address the system-level design challenges posed by MoE-
LLMs with fine-grained modularity, which often results in excessive inter-chiplet communication
and inefficient resource utilization.

Given the growing need for system-level coordination in modular LLM deployment, we propose
Mozart, an algorithm-hardware co-design framework for efficiently mapping MoE-LLMs onto 3.5D
wafer-scale chiplet platforms. Our contributions are summarized as follows:

* To efficiently train MoE-based LL.Ms, we propose Mozart, a comprehensive framework
with optimization techniques including: (1) a specialized expert layout strategy placing
frequently co-activated experts on the same or adjacent chiplets, targeted at balanced
workload across multiple chiplets, (2) a communication-efficient all-to-all strategy utilizing
expert collaboration, and (3) a fine-grained scheduling strategy for improved communication-
computation overlap using streaming tokens and experts.

* To better accommodate the modularized structure of MoE, we design a wafer-scale 3.5D
chiplet architecture, featuring tightly integrated 3D logic-on-memory stacks, a 2D NoP-tree
interconnect, and two-level memory hierarchy. It supports our proposed optimizations with
low-latency on-chip activation reuse, communication-aware expert clustering, and inter-
leaved execution of communication and computation tailored for sparse MoE computing.

* Mozart achieves over 1.9x acceleration compared to baseline methods when evaluated
across three popular open-source MoE-LLMs with varying scales, demonstrating its potential
to enhance parallelization efficiency and optimize resource utilization for the post-training
deployment of large-scale modularized MoE-LLMs.

2 Related Works

Modularized LLMs. Modularized LLMs, also known as Mixture-of-Experts (MoE) [35], demon-
strate exceptional efficiency on scaling model capacity, allowing significant parameter growth without
proportional computational costs. This efficiency derives from replacing traditional dense feed-
forward layers with sparse modularized components, where sophisticated routing mechanisms se-
lectively direct input tokens to appropriate expert subnetworks. Models like Mixtral-8x7B [17]
demonstrate how activating just two experts per token per layer can leverage a substantially larger
parameter space, matching the performance of dense counterparts while dramatically reducing active
parameter requirements. The architecture was further refined in DeepSeek-MoE [5, 11], which
introduced finegrained experts and shared experts to improve specialization and parameter efficiency.
The expert specialization phenomenon—where routing networks learn to direct specific input patterns
to dedicated experts—enhances processing proficiency [5, 23, 42]. Complementing this, expert
collaboration, the strategic co-activation of multiple experts for processing complex inputs, has
recently minimized communication overhead through optimized expert placement and routing al-
gorithms [1, 47]. In our work, we leverage these expert specialization and collaboration principles
to enhance training efficiency specifically for 2.5D/3.5D wafer-scale chiplet architectures, where
physical hardware modularity naturally complements the logical modularity of MoE systems.

2.5D/3.5D Chiplet for ML Workloads. Chiplet-based architectures have emerged as a promising
solution to support the growing computational demands of large-scale neural networks and LLMs.
Prior works such as Maestro [21], Cambricon-LLM [46], and ScalePoM [9] primarily focus on
sub-wafer-scale chiplet designs. Maestro adopts a 3D memory-on-logic structure to coordinate
multiple small-scale systolic arrays for inference acceleration. Cambricon-LLM integrates Neural

Processing Units (NPUs) with flash-based chiplets for energy-efficient on-device inference, while
ScalePoM explores hierarchical power delivery for the chiplets. However, these works mainly focus
on LLM inference and do not consider wafer-scale integration, limiting their scalability.

In contrast, FRED [32] explores wafer-scale integration by leveraging high-bandwidth interconnects
and in-network collective communication to accelerate LLM training. Nonetheless, it largely relies
on coarse-grained, static workload partitioning strategies that assume dense and uniform computation.
When applied to sparse and modular models such as MoEs, such strategies result in inefficient
resource utilization and increased inter-chiplet communication. To overcome these limitations, we
propose a 3.5D heterogeneous chiplet architecture that combines vertical stacking with 2.5D NoP-
Tree interconnects, providing high-bandwidth, energy-efficient communication while maintaining
architectural modularity. Built upon this hardware foundation, we introduce a fine-grained modular
partitioning and communication-aware scheduling framework tailored for the post-training process
of sparse workloads like MoE. By aligning expert activation patterns with the chiplet topology,
our design reduces redundant data movement and significantly improves system throughput under
modular model execution.

3 Preliminary

3.1 Mixture-of-Experts
Formulation. Given an input token embedding x, the output of an MoE layer can be formulated as

the weighted sum of outputs from the N, experts {Eg,E1,...,En.—1}:
No—1
MoE(z) =) R(z); - Ei(w), (1)
i=0

where R(x); is the output of a small gating network R(-) for the i-th expert. For each token, the
MOoE layer aggregates the output of k£ experts, determined by the indices of the top-k highest routing
scores, derived from the Softmax value of a gating function g(+), which is usually a single linear layer:

R(x) = top-k(Softmax(g(x)). k) @)

Expert Parallelism Pipeline. Expert parallelism [12, 22] has been demonstrated to be the most
efficient distributed training technique for MoE models, where different experts are scattered on
different parallel units and the workloads are dispatched to each unit during both forward and
backward pass. Specifically, a typical MoE pipeline with expert parallelism in the forward pass can
be formulated as Dispatch -> All-to-All -> Expert Computing -> All-to-All -> Combine [16].

3.2 Analyzing Expert Activation Prior

Mozart focuses on efficient post-training of MoE-LLMs on chiplet systems. Before deployment,
we first analyze the empirical prior of the routing policy and then develop scheduling algorithms to
enhance post-training efficiency. Given an instruction tuning dataset, we first run the prefilling stage
of inference on it to get the routing choice of a large token batch B, and next we compute 2 metrics:
Analyzing Workload Distribution across Individual Experts. We construct a vector } with N,
elements to quantify the workload distribution across individual experts, where

Ne
Vi = Z HR(z); #0}, Vi=Vi/ ZV]‘~)
=0

xzeB

Analyzing Collaboration Pattern across Paired Experts. To uncover co-activation patterns among
experts in a single MoE layer, we construct a graph G with N, nodes. This graph is represented by an
adjacency matrix C € RNe*Ne where C;,; denotes the edge value between nodes 7 and j. We further
normalize it with the maximum edge value to confine all entries in the matrix to the interval [0, 1]:

Ci’j = Z]l{R(:E)Z #0A R(:B)j #* 0}7 Pij = Ci’j/ max Ci’j. @

0<i,j<Ne—1
zeB =)= e

3.3 Efficient All-to-All Communication

All-to-All communication is a key bottleneck in expert parallelism, as it necessitates synchronization
across all parallel units—a process often constrained by communication bandwidth. Reducing the
data volume in such communication can effectively reduce end-to-end latency. In this paper, we

(a) Expert Clustering & Allocation Algorithms | (b) 3.5D Chiplet System Architecture

" Shared Routed Expert Expert Central (Attention) Peripheral (MoE) "
. Anemlon. Expert Expert % Clustering % Allocation g?} Chiplet {g} Chiplet 4 Svitch DRAM
A Single Transformer c Py B C]B Py B
Decoder Layer
/ ; B H / ; P
‘m P!
: mlam -
Py 2
%“ﬂ‘ﬂm[‘im[‘i

==V

Figure 2: Algorithm-Hardware Co-Design Diagram of Mozart. Mozart provides an algorithm-
hardware co-design approach, and we present both the algorithm-level expert clustering & allocation
schemes in the left part, and the architecture-level 3.5D chiplet system in the right part. The MoE-
LLM parameters are modularized in each decoder layer and mapped to the individual chiplets.

quantify the communication complexity using the average number of replications per token in the
Dispatch stage, denoted as C7. We prove in the Appendix that Cy is the least upper bound for the
ratio between the actual data volume during all-to-all communication and the number of tokens in a
training step. In standard expert parallelism frameworks [13], C+ = k under top-k routing. However,
if two co-activated experts for a token are assigned to the same parallel unit (e.g., a GPU in modern
data centers or a chiplet in Mozart), only one replica would be required, therefore reducing C. By
optimizing expert layout to increase the likelihood of such co-location, C can be further minimized,
thereby lowering the overhead of all-to-all communication.

4 Methodology
4.1 Overview of Mozart

We detail the design principles and methodology of Mozart with an overview in Figure 2, which
addresses key bottlenecks of the post-training process of MoE-LLMs on chiplet systems through
algorithm-hardware co-design.

On the algorithm side, we first profile the instruction tuning dataset using the pre-trained model,
then apply strategic optimizations to improve post-training efficiency: @ Expert Clustering and
Allocation: We cluster individual experts using the collaboration pattern prior, and map these clusters
to chiplets using the workload distribution prior, aiming at balancing workload across MoE chiplet
groups. More details are provided in Sec. 4.2. @ Fine-grained Scheduling: To overlap the DRAM
communication overhead with on-chip computing, we propose streaming both the expert loading
process and expert computing process of tokens using fine-grained scheduling, following the expert
layout derived from the clustering and allocation algorithms. More details are provided in Sec. 4.3.

From the hardware side, we propose a 3.5D wafer-scale chiplet architecture featuring: @ 2.5D
NoP-Tree Topology: We propose the 2.5D NoP-tree interconnect in Mozart that organizes attention
chiplets as central dispatchers and expert chiplets as leaves. Switches enable in-network MoE aggre-
gation, reducing communication latency and bandwidth cost. @ Hierarchical Memory Structure:
Mozart introduces a two-level memory structure with model weights stored in distributed DRAM and
activations cached in local SRAM. To further reduce data access latency, we adopt a logic-on-memory
3D integration, where each compute chiplet vertically stacks a compute die with an SRAM die via
hybrid bonding. This tightly coupled design enables fast local access to intermediate results, such as
activations, and aligns well with their temporal reuse patterns. More details are provided in Sec. 4.4.

4.2 Expert Collaboration for Efficient On-Package All-to-All Communication

Although every expert may be activated, the Expert Actvaton Froquency at CorActvation Ptter at Fina
activation and co-activation patterns are not ° -

exactly balanced in practice. We take the pro- T, m
filing results on Alpaca [40] using DeepSeek- 2 SR K 015
MoE [5] as an example. At the final layer, .E;‘ l% 7

43
L

some experts are sensibly activated more fre- «
quently (long horizontal bar in Figure 3), and Ll
some expert pairs are also activated more fre- 4, I : ,
quently (dark-colored blocks in Figure 3), mo- 0% Freauency o T R

tivating us to specialize the expert layout on Figure 3: Left: Activation frequency for pre-
chiplets for balanced workload distribution trained DeepSeek-MOoE, indicating expert special-
during post-training. This clustered layout jzation. Right: Co-activation pattern for pre-trained

DeepSeek-MOoE, indicating expert collaboration.
4

o
g
Co-Activation Frequency

-0.00

can also reduce the all-to-all communication

volume, which is synchronous and cannot be

overlapped with computation. To determine the expert placement on chiplets, we implement a 2-stage
approach as follows.

Stage-1: Expert Clustering. We cluster individual experts as candidates for expert-chiplet assign-
ment, aiming at enhancing intra-cluster collaboration while minimizing inter-cluster collaboration.
Intra-cluster collaboration is defined as the average co-activation frequency among all expert pairs in
a single cluster, whereas inter-cluster collaboration represents the average co-activation frequency
between all expert pairs across 2 distinct clusters. Inspired by the farthest point sampling algorithm
in point cloud learning [31], we implement the clustering as shown in Algorithm 1.

Stage-2: Expert Cluster Allocation. Since our 3.5D chiplet architecture (Figure 2) allocates a
DRAM chip for a group of MoE chiplets interconnected with a switch, balanced workload distribution
across these groups becomes critical. To achieve this, we formalize the cluster-chiplet assignment as
a binary integer programming problem. Let /N, denotes the number of groups (asserting IV can be
divided by NV,) and a binary matrix M € {0, 1}VsxNe represents the cluster-group assignment, our
optimization objective is formulated as:

NQ
min| MY = Vaua|, sLY M =1,¥0<j < Nand ZM”]JL YO<i<N, (5
1=0 7=0

where Vg, is an auxiliary vector with IV, elements, each one equals to 1/N,,.

Algorithm 1 Expert Clustering.

Require: Adjacent matrix C € R™e*™e for graph G, number of chiplets N, (also the number of clusters).
Initialize expert clustering result £ with N. empty lists.
for c < 0, N — 1do
if c == 0 then
Find the 2 most highly co-activated experts, and push them into L[
else
Find an unselected expert with the lowest co-activation frequency with the experts in L.
Push it into L.
end if
while len(L) < N./N. do > Assert N, can be divided by N..
Find an unselected expert with the highest average co-activation frequency with the experts in L
Push it into E[c] .
end while
end for
return L.

4.3 Fine-grained Scheduling with Streaming Tokens and Experts

oiase, [IAENATAM | .
- = % ' : 7 - Chlplei . H
onwsens THI2IBIAVINZNE) UA) [™ i weom
On-package! H % : Highly- I:l Load Param
Oﬁ-packagel | ' ' 2 4 - ; Chiplet ! I:l Load Act. :
- | | '
: ; ; — ! - Compute. '
On-package | ' ' m ' Less- '
: Using the same - : l ' aciivated.- Save Act. |
T EOSRCAS SRR | B orle [oo |
C I\ X X I] H '

T N M Sync
Attention Computing Dispatch & Expert Computing Combine & Attention Computing . K
for Layer i All-to-All for Layer i All-to-All forLayeri¢t TTTTTTTTTTeoet

Figure 4: Fine-Grained scheduling pipeline in the forward pass. The streaming tokens, marked
with the execution order, can effectively overlap the computation (purple blocks) and DRAM com-
munication (pink blocks, saving activations). We present 3 types of chiplets in the training pipeline,
including attention chiplet, highly-activated chiplet, and less-activated chiplet. Since the 2 MoE
chiplets share the same DRAM /O, the highly activated experts should be first loaded to the chiplet
for better communication-computation overlap.

The sheer size of parameters in MoE-LLMs necessitates storing them in DRAM and dynamically
loading layers to chiplets for computation. However, this approach incurs significant communica-
tion overhead compared to on-chip processing. To mitigate this bottleneck and enhance training
parallelism, we propose a fine-grained scheduling scheme through streaming experts and tokens:

5

Streaming Experts Since multiple MoE chiplets within a group share the same DRAM, their
concurrent memory accesses require serialization. To optimize parallelism, we strategically schedule
communication order by ranking expert clusters: using profiled workload distribution V', we quantify
the importance of an expert cluster using the aggregated per-expert workloads, and prioritize the
loading order of expert clusters with heavier computational workload first.

Streaming Tokens Partitioning the global token batch into streaming tokens (micro-batches)
enables overlapping DRAM communication (for saving activations during backward passes) with
on-chip computation. To be specific: (1) For the attention module, all tokens are partitioned into
streaming attention tokens; (2) For the MoE module, the workload of each expert is partitioned into
streaming expert tokens, and different experts on the same chiplet are computed sequentially.

Fine-Grained Scheduling The huge routed experts (Figure 1) results in significant communication
overhead between DRAM and MoE chiplets, so we overlap it with on-chip computations using fine-
grained scheduling in Figure 4, which mainly occurs in 2 aspects: (1) Loading highly-activated cluster
& Attention computing; (2) Loading less-activated cluster & Highly-activated cluster computing.

4.4 Wafer-Scale Chiplet Architecture

DRAM
AW | ogic Tile
A SRAM Tile
AW Switch
Hybrid Bonding
—— 2.5D Direct Signaling

— TSV

Figure 5: The overall 3.5D chiplet architecture in Mozart. The hardware architecture implements
a three-layer hierarchical tree topology, comprising a central attention node, switch nodes, and
peripheral MoE nodes. The two-tier dies are connected face-to-face.

Motivation of Mozart Architecture Each MoE-LLM decoder block generally involves 2 stages:
(1) the attention module and router network, and (2) expert computation with structural sparsity. This
heterogeneous and dynamic execution flow poses significant challenges to system-level scheduling
and communication. To tackle them, we propose a wafer-scale 3.5D chiplet architecture that integrates
heterogeneous compute and memory resources: (1) To improve memory locality, we design a
hierarchical memory system aligned with the temporal reuse patterns of MoE-LLMs, enabling
frequently reused data such as activations to be cached closer to the computing unit using the
3D logic-on-memory stack, thereby reducing costly accesses to off-chip DRAM; (2) To reduce
communication overhead across chiplets, we co-locate frequently co-activated experts onto the
same chiplet based on profiling of activation patterns, significantly reducing costly inter-chiplet
transfers during both forward and backward passes; (3) To enhance compute resource utilization,
we disaggregate memory-bound and compute-bound components onto specialized chiplets with
matching bandwidth and compute capabilities, and apply fine-grained, pipeline-aware scheduling to
balance load and overlap communication with computation.

Physical Layout To efficiently support the computation flow, we introduce a wafer-scale chiplet
architecture that combines 3.5D integration with a 2.5D NoP-tree interconnect, as shown in Figure 5.
@ 3D Chiplet Stack: Each computing chiplet integrates a logic die and an SRAM die in a vertical
stack using hybrid bonding, supporting either attention or MoE-based FFN operations. The SRAM
layer serves as a fast buffer for intermediate data with frequent reads and writes. Leveraging the short
vertical interconnects enabled by 3D integration, this tightly coupled logic-on-memory chiplet offers
significantly higher bandwidth and lower latency compared to conventional 2D designs, as illustrated
in Figure 5. @ 2.5D NoP-Tree Topology: The inter-chiplet network adopts a 2.5D NoP-Tree
topology [20] that disaggregates attention and MoE operations across the network. Memory-bound
attention chiplets are placed near the center of the tree as dispatching nodes with higher DRAM
bandwidth, while compute-bound expert-cluster chiplets are organized as leaf nodes to execute MoE
feed-forward computations with more computing resources. The system comprises 16 MoE chiplets,
partitioned into 4 switch-connected groups, each containing 4 expert-cluster chiplets with pre-defined

placement. Moreover, the switch modules are equipped with in-network compute capabilities to
aggregate MoE outputs locally, significantly reducing inter-chiplet communication and improving
pipeline throughput. ® Memory Hierarchy: We design a two-level memory hierarchy for Mozart.
Model weights are stored in DRAM distributed around the core on the wafer. Every four expert
clusters share a dedicated DRAM I/O interface. The DRAM connects to SRAM on the attention
chiplet and switches for the MoE groups, enabling weight transformation from off-chip to the
computing unit. Given that weights are relatively static during one iteration of training and exhibit
low temporal access locality, they are suited for off-chip DRAM storage. In contrast, activations are
highly transient and frequently accessed during the computation pipeline. Therefore, they are cached
in the local SRAM die under each computing die to minimize access latency and support rapid data
exchange during the process.

Algorithm-to-Hardware Mapping To efficiently execute the MoE-LLM models on the proposed
chiplet-based architecture, we map its major computational components, including attention and
MoE-expert layers, onto specialized chiplets with coordinated dataflows and scheduling strategies.
@ Dataflow of the Training Process: During each training step, the system processes 32 samples
(sequences), divided into 4 serially executed micro-batches of size 8. A weight-streaming strategy is
adopted, where only one transformer block’s weights are loaded at a time, in response to area and
interconnect constraints of the wafer-scale architecture. QKV projection and multi-head attention
score computation are mapped to multiple systolic arrays (SAs). SAs are grouped into tiles, each
integrating a local adder tree to aggregate partial sums and reduce intermediate communication. These
partial results are transmitted from the compute die and stored in the underlying SRAM die via hybrid
bonding. After attention completes, activations are routed through the NoP-Tree network to a switch
module with for token-wise routing and reduction. Tokens are dispatched to selected experts for FFN.
Local aggregation is performed within each expert-cluster chiplets, followed by global aggregation
via the switch. The aggregated expert outputs are routed back to the attention module to continue
processing the subsequent transformer blocks. During backpropagation, gradients follow the reverse
path, with parameter updates performed locally on attention and expert chiplets before being written
back to DRAM. @ Scheduling for Computing-Communication Pipeline: To improve compute
throughput and resource utilization, the system adopts fine-grained pipeline scheduling. Leveraging
the temporal locality in expert selection across adjacent training steps, frequently activated weights
are prefetched onto expert chiplets ahead of token routing, reducing memory stalls. At runtime, each
switch group coordinates micro-batch-level pipelined execution. Based on the received activation
load per token, chiplets within a group sequentially fetch weights from DRAM via the shared switch.
While one micro-batch undergoes FFN computation, the next micro-batch’s weights are concurrently
loaded, enabling overlapped execution of compute and memory access. A similar strategy is applied
during backpropagation to hide communication latency and sustain high training throughput.

5 Experiments

5.1 Algorithmic Setup
Table 1: Configurations of three pre-trained MoE-LLMs used in our experiments.

Total # Activated # Routed # Shared Hidden

Model ‘ # Layers Routing

Parameters Parameters Experts Experts Size
Qwen3-30B-A3B [41] 30.5B 3.3B 128 0 2048 48 top-8
OLMoE-1B-7B-0924 [28] 6.92B 1.3B 64 0 2048 16 top-8
deepseek-moe-16b-base [5] 16.4B 2.7B 64 2 2048 28 top-6

Our experiments include three MoE models with various architectures: Qwen3-30B-A3B [44, 45],
OLMoE-1B-7B-0924 [28], and deepseek-moe-16b-base [5]. Details of them are summarized in
Table 1. We use Alpaca [40], an instruction tuning dataset of 52K samples, for all our experiments.
Our evaluation includes latency and energy as metrics to indicate the real-world impact of our designs.
We use NVIDIA A100 80G GPU servers and PyTorch for our profiling and simulation experiments.

5.2 Hardware Setup

The overall Mozart architecture comprises 16 expert-cluster chiplets for MoE computation, organized
into 4 switch-connected clusters, as well as one dedicated attention chiplet. Each MoE/attention
chiplet has 36100 tiles, with 16 Systolic Arrays (SAs) in one tile and 256-576 Processing Elements
(PEs) in one SA. Off-chip memory is provided by 6 HBM2-based DRAM [29], with 4 shared across
expert-cluster groups (one per group) and 2 exclusively connected to the attention chiplet to provide
high-bandwidth. We implement the logic dies, SRAM dies, inter-chiplet interconnects and switches

Table 2: Hardware metrics of the three MoE-LLMs used in our experiments. The number of
inter-chiplet links is computed based on the chiplet area for 2.5D signaling. The link counts are
calculated as the product of horizontal and vertical link numbers for the 3D stack. The total area
encompasses not only chiplets but also off-chip components such as DRAM.

2.5D

Memory
Direct Signaling /Link Hybrid Bonding /Link

‘ Total

Model (DRAM/Stack & SRAM/Tile)
| Area(mm?) Power (kW) | Cap. (MB) BW (GB/s) | BW (GB/s) Pitch (um) | BW (GB/s) Pitch (um)
Quen3-30B-A3B 14175 334 8192&2.265 256&32 0.125 50 0.125 50
OLMoE-1B-7B-0924 10200 355 8192&2.265 256&32 0.125 50 0.125 50
deepseek-moe-16b-base 11230 3.19 8192&2.265 256&32 0.125 50 0.125 50

in Verilog, and synthesize the gate-level netlist using Synopsys Design Compiler [38] targeting 28nm
technology. The typical power consumption is as reported by Synopsys PrimePower [39] based on
the generated gate-level netlist. To evaluate the performance of Mozart, we further develop a cycle-
accurate simulator, whose runtime and power outputs are validated against the Verilog simulation
results to ensure accuracy. For real-world implementation, we adjust hardware configurations for all
three algorithmic baselines with FP16 precision to meet key 3.5D chiplet process constraints. We
simulate all the design under 1GHz clock frequency. Detailed configurations for the three models are
summarized in Table 2.

5.3 Experimental Results

Effectiveness of the Optimization Techniques Table 3 summarizes four configurations of Mozart
used to evaluate the effectiveness of our proposed algorithm-side methodologies, including one
baseline without any optimizations and three variants that incrementally incorporate the optimization
methods described in Sections 4.2 and 4.3. The simulation results demonstrate that our proposed 3 op-
timization techniques can jointly reduce the end-to-end post-training latency, with a 1.92 x speedup for
Qwen3-30B-A3B-Base, 2.37x for OLMoE-1B-7B-0924 and 2.17X for DeepSeek-MoE-16B-Base.
We further provide Table 4 to demonstrate the correlation between all-to-all communication data
volume and the end-to-end training latency, where Mozart-A, B, and C present different data volumes
during all-to-all communication, which is positively correlated to latency.

Study on the Impact of Sequence Length and DRAM bandwidth As shown in Figure 6(b), the
training latency increases as the sequence length per batch grows from 128 to 512. Although the
number of batches decreases accordingly, each micro-batch carries longer sequences and heavier
computation loads, which, when executed sequentially, become more constrained by communication
bandwidth. This trend is particularly pronounced in the baseline design without any optimizations,
where latency rises from 3.88s at length 128 to 7.64s at 512. In contrast, Mozart-C consistently
achieves the lowest latency across all sequence lengths and exhibits reduced sensitivity to longer
sequences, achieving a speedup of 2.34 x at sequence length 512 and 1.47 X at length 128 compared
to the baseline. This improvement stems from its architecture that enables efficient communication-
computation overlap and alleviates communication congestion through expert-aware layout and
routing, which together mitigate the latency increase caused by longer and heavier micro-batches.

Table 3: Configurations for different settings used in our experiments.

W Baseline | Mozart-A ‘ Mozart-B ‘ Mozart-C
Specialized Expert Layout on Chiplets (Section 4.2) | X | X | X | v
Efficient All-to-All Communication (Section 4.2) | X | X | v | v
Communication-Computation Overlap (Section 4.3) | X | 4 | v | v

When it comes to study of DRAM bandwidth depicted in Figure 6(c), all configurations achieve lower
latency with HBM2 (256GB/s) [29] compared to SSD (15.8GB/s) [43] due to its higher memory
bandwidth. Notably, the relative speedup from Mozart optimizations becomes higher with HBM2
than SSD. This can be attributed to the domination of latency caused by DRAM-based expert weight
streaming when using SSD, which remains the bottleneck even after optimization. Since MoE
computation accounts for only a small portion of the overall training time, pipelining and token-level
scheduling have limited impact when memory access is slow. Furthermore, the communication cost
reduced by all-to-all optimization is only about one-third of the streaming latency, making the total
gain under SSD more constrained. In contrast, with HBM2, faster streaming allows better utilization
of compute-communication overlap, enabling the co-design techniques in Mozart to take full effect.

8

[Baseline [Mozart-A [Baseline [Mozart-A [Baseline [Mozart-A

- [Mozart-B Il Mozart-C - 4 [Mozart-B I Mozart-C [Mozart-B Il Mozart-C
> 1
2 2 2
%0.75 Bors 8075
3 5 5
°
g 0.5 § 0.5 E 0.5
T0.25 To25 025
0 S 0
=z Qwen3 OLMoE deepseek-moe 2 512 256 128 z SSD HBM2
Model Sequence Length DRAM

(a) (b) (©)
Figure 6: Experimental results on the chiplet system of Mozart. We report the average training
latency per step for 1k iterations, with the micro batch size for streaming attention/expert tokens set
to 8. (a) Study on the proposed optimization results (Sequence Length=256, DRAM=HBM?2), with a
max latency of 4.87 s. (b) Study on the impact of the sequence length on Qwen3-30B-A3B Model
(DRAM=HBM?2), with a max latency of 7.65 s. (c) Study on the impact of the DRAM bandwidth on
Qwen3-30B-A3B Model (Sequence Length=256), with a max latency of 9.17 s.

Table 4: The corelation between all-to-all communication complexity C; and end-to-end latency.
Cr is calculated by averaging both the training iterations and the MoE layers for each setting.

Method | Qwen3-30B-A3B-Base | OLMoE-1B-7B-0924 | DeepSeek-MoE-16B-Base
Metric ‘ Mozart-A Mozart-B Mozart-C ‘ Mozart-A Mozart-B Mozart-C ‘ Mozart-A Mozart-B Mozart-C
Normalized Latency | 0.73 0.59 052 | 0.63 0.48 0422 | 067 0.56 0.46
Cr | 8 6.58 571 | 8 6.84 5.63 | 6 5.56 432

5.4 Further Investigation

Q1: Is Mozart memory-bound or computing-bound? A: Memory-bound. This is because our
proposed 3.5D chiplet architecture in Mozart can well-parallelize the MoE computation workload.
While this design successfully eliminates the computational bottleneck associated with heavy MoE
operations, the system’s overall latency becomes constrained by the sequential MoE weight loading
process. This fundamental limitation persists because weight loading throughput cannot be sub-
stantially improved without hardware resource upgrades. Consequently, Mozart’s performance is
primarily governed by this unavoidable sequential bottleneck inherent to current hardware constraints.

Q2: Which algorithmic deigns are more critical in Mozart? A: Communication-Computation
Overlap > Efficient All-to-All Communication > Specialized Expert Layout on Chiplets. The
key insights are: @ The communication overhead between DRAM and chiplets is the main bottleneck,
and applying it on the baseline can offer 1.33x acceleration on Qwen3-30B-A3B-Base, 1.58 X on
OLMoE-1B-7B-0924, and 1.49x on DeepSeek-MoE-16B-Base. ® The all-to-all communication
overhead is a secondary bottleneck for training latency, since it requires synchronization across all the
chiplets and is constrained by the on-package bandwidth. Our specialized expert layout on chiplets
can further reduce the data volume during all-to-all communication, as we illustrated in Table 4.

Q3: Is Mozart compatible with existing efficient training algorithms? A: Yes, it is compatible
with parameter-efficient fine-tuning methods such as LoRA, QLoRA, efc. Mozart’ architecture
and scheduling mechanisms are designed to work orthogonally to these methods, as they primarily
focus on different optimization goals. While PEFT methods reduce the total trainable parameters,
Mozart optimizes the physical deployment of MoE workloads on chiplet architectures.

6 Conclusion and Limitations

We present Mozart, an algorithm-hardware co-design framework for efficient post-training of MoE-
LLMs on chiplet systems. By jointly optimizing expert allocation, fine-grained scheduling, and hetero-
geneous chiplet mapping on a 3.5D wafer-scale architecture, Mozart significantly improves communi-
cation efficiency and hardware utilization, enabling scalable and efficient deployment of modularized
workload. While Mozart demonstrates 1.92 X performance improvement for Quen3-30B-A3B-Base,
2.37x for OLMoE-1B-7B-0924 and 2.17X for DeepSeek-MoE-16B-Base on 3.5D wafer-scale ar-
chitectures, two limitations remain. First, the attention modules are assigned to an individual chiplet,
which may lead to suboptimal latency due to limited resources. This can be further tackled with data
or tensor parallelism. Second, the switches can become performance bottlenecks under high commu-
nication demand. While Mozart currently tries to reduce end-to-end latency through fine-grained
scheduling, further improvements may potentially be achieved by allocating more chiplet area to
switch resources and increasing bandwidth to achieve low-latency communication.

Acknowledgement

This research was partially funded by the National Institutes of Health (NIH) under award
IRO1EB037101-01. The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies, either expressed or implied,
of the NIH. Tianlong Chen was also partially supported by the Amazon Research Award. We thank
Nikhil Kumar Cherukuri for the valuable discussions throughout this project.

References

[1] Anonymous. Occult: Optimizing collaborative communications across experts for accelerated
parallel moe training and inference. In Forty-second International Conference on Machine
Learning, 2025.

[2] E. Bullmore and O. Sporns. Complex brain networks: graph theoretical analysis of structural
and functional systems. Nature reviews neuroscience, 10(3):186-198, 2009.

[3] E. Bullmore and O. Sporns. The economy of brain network organization. Nature reviews
neuroscience, 13(5):336-349, 2012.

[4] G. Buzsdki. Rhythms of the Brain. Oxford university press, 2006.

[5] D. Dai, C. Deng, C. Zhao, R. Xu, H. Gao, D. Chen, J. Li, W. Zeng, X. Yu, Y. Wu, et al.
Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models.
arXiv preprint arXiv:2401.06066, 2024.

[6] T.Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, 2024.

[7] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-efficient exact

attention with io-awareness. Advances in neural information processing systems, 35:16344—
16359, 2022.

[8] D.Das Sharma, G. Pasdast, Z. Qian, and K. Aygun. Universal chiplet interconnect express (ucie):
An open industry standard for innovations with chiplets at package level. IEEE Transactions on
Components, Packaging and Manufacturing Technology, 2022.

[9] Y. Dong, X. Liu, X. Hao, Y. Liang, R. Huang, L. Ye, and T. Jia. Hierarchical power co-
optimization and management for llm chiplet designs. In Proceedings of the 43rd IEEE/ACM
International Conference on Computer-Aided Design, ICCAD ’24, 2025.

[10] W. Duch. Brain-inspired conscious computing architecture. The Journal of mind and behavior,
pages 1-21, 2005.

[11] D.-A. et al. Deepseek-v3 technical report, 2025.

[12] W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1-39, 2022.

[13] T. Gale, D. Narayanan, C. Young, and M. Zaharia. Megablocks: Efficient sparse training with
mixture-of-experts. Proceedings of Machine Learning and Systems, 5:288-304, 2023.

[14] C.L. Gallen and M. D’Esposito. Brain modularity: a biomarker of intervention-related plasticity.
Trends in cognitive sciences, 23(4):293-304, 2019.

[15] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT press
Cambridge, 2016.

[16] C. Hwang, W. Cui, Y. Xiong, Z. Yang, Z. Liu, H. Hu, Z. Wang, R. Salas, J. Jose, P. Ram, et al.

Tutel: Adaptive mixture-of-experts at scale. Proceedings of Machine Learning and Systems,
5:269-287, 2023.

10

[17] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S. Chaplot, D. d. L.
Casas, E. B. Hanna, F. Bressand, et al. Mixtral of experts. arXiv preprint arXiv:2401.04088,
2024.

[18] N. Kashtan and U. Alon. Spontaneous evolution of modularity and network motifs. Proceedings
of the National Academy of Sciences, 102(39):13773-13778, 2005.

[19] M. Khairy, V. Nikiforov, D. Nellans, and T. G. Rogers. Locality-centric data and threadblock
management for massive gpus. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1022-1036, 2020.

[20] G. Krishnan, S. K. Mandal, C. Chakrabarti, J.-S. Seo, U. Y. Ogras, and Y. Cao. Impact of
on-chip interconnect on in-memory acceleration of deep neural networks. 18(2), 2022.

[21] H. T. Kung, B. McDanel, S. Q. Zhang, X. Dong, and C. C. Chen. Maestro: A memory-on-
logic architecture for coordinated parallel use of many systolic arrays. In 2019 IEEE 30th

International Conference on Application-specific Systems, Architectures and Processors (ASAP),
volume 2160-052X, pages 42-50, 2019.

[22] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun, N. Shazeer, and Z. Chen.
{GS}hard: Scaling giant models with conditional computation and automatic sharding. In
International Conference on Learning Representations, 2021.

[23] P.Li, Z. Zhang, P. Yadav, Y.-L. Sung, Y. Cheng, M. Bansal, and T. Chen. Merge, then compress:
Demystify efficient smoe with hints from its routing policy, 2024.

[24] S. Liu, R. M. Radway, X. Wang, J. Kwon, C. Trippel, P. Levis, S. Mitra, and H.-S. P. Wong.
Future of memory: Massive, diverse, tightly integrated with compute - from device to software.
In 2024 IEEE International Electron Devices Meeting (IEDM), pages 1-4, 2024.

[25] S. Luo, J. Peng, P. Li, H. Wang, and T. Chen. Hexa-moe: Efficient and heterogeneous-aware
training for mixture-of-experts, 2025.

[26] R. Mahajan, R. Sankman, N. Patel, D.-W. Kim, K. Aygun, Z. Qian, Y. Mekonnen, 1. Salama,
S. Sharan, D. Iyengar, and D. Mallik. Embedded multi-die interconnect bridge (emib) — a high
density, high bandwidth packaging interconnect. In 2016 IEEE 66th Electronic Components
and Technology Conference (ECTC), pages 557-565, 2016.

[27] A. Mehonic and A. J. Kenyon. Brain-inspired computing needs a master plan. Nature,
604(7905):255-260, 2022.

[28] N. Muennighoff, L. Soldaini, D. Groeneveld, K. Lo, J. Morrison, S. Min, W. Shi, P. Walsh,
O. Tafjord, N. Lambert, Y. Gu, S. Arora, A. Bhagia, D. Schwenk, D. Wadden, A. Wettig, B. Hui,
T. Dettmers, D. Kiela, A. Farhadi, N. A. Smith, P. W. Koh, A. Singh, and H. Hajishirzi. Olmoe:
Open mixture-of-experts language models, 2024.

[29] S. Naffziger, N. Beck, T. Burd, K. Lepak, G. H. Loh, M. Subramony, and S. White. Pioneering
chiplet technology and design for the amd epyc™ and ryzen™ processor families : Industrial
product. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pages 57-70, 2021.

[30] T. OLMo, P. Walsh, L. Soldaini, D. Groeneveld, K. Lo, S. Arora, A. Bhagia, Y. Gu, S. Huang,
M. Jordan, et al. 2 olmo 2 furious. arXiv preprint arXiv:2501.00656, 2024.

[31] C.R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[32] S. Rashidi, W. Won, S. Srinivasan, P. Gupta, and T. Krishna. Fred: Flexible reduction-
distribution interconnect and communication implementation for wafer-scale distributed training
of dnn models, 2024.

[33] J. Shah, G. Bikshandi, Y. Zhang, V. Thakkar, P. Ramani, and T. Dao. Flashattention-3: Fast
and accurate attention with asynchrony and low-precision. Advances in Neural Information
Processing Systems, 37:68658—68685, 2024.

11

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang, B. Keller, A. Klinefelter,
N. Pinckney, P. Raina, S. G. Tell, Y. Zhang, W. J. Dally, J. Emer, C. T. Gray, B. Khailany,
and S. W. Keckler. Simba: Scaling deep-learning inference with multi-chip-module-based
architecture. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’52, page 14-27, New York, NY, USA, 2019. Association for
Computing Machinery.

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. Outra-
geously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

D. Stow, Y. Xie, T. Siddiqua, and G. H. Loh. Cost-effective design of scalable high-performance
systems using active and passive interposers. In 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 728-735, 2017.

D. Stow, Y. Xie, T. Siddiqua, and G. H. Loh. Cost-effective design of scalable high-performance
systems using active and passive interposers. In 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 728-735, 2017.

Synopsys. Design compiler: Concurrent timing, area, power, and test optimization.
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/
dc-ultra.html. accessed 2024.

Synopsys. Primepower: Rtl to signoff power analysis. https://www.synopsys.com/
implementation-and-signoff/signoff/primepower.html, 2024. Accessed: 2024-11-
22.

R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto.
Stanford alpaca: An instruction-following llama model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

Q. Team. Qwen3: Think deeper, act faster, April 2025.

T. Wei, B. Zhu, L. Zhao, C. Cheng, B. Li, W. Lii, P. Cheng, J. Zhang, X. Zhang, L. Zeng,
X. Wang, Y. Ma, R. Hu, S. Yan, H. Fang, and Y. Zhou. Skywork-moe: A deep dive into training
techniques for mixture-of-experts language models, 2024.

G. Yadgar, M. Gabel, S. Jaffer, and B. Schroeder. Ssd-based workload characteristics and their
performance implications. ACM Trans. Storage, 17(1), Jan. 2021.

A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou, C. Li, C. Li, D. Liu, F. Huang, G. Dong,
H. Wei, H. Lin, J. Tang, J. Wang, J. Yang, J. Tu, J. Zhang, J. Ma, J. Xu, J. Zhou, J. Bai, J. He,
J. Lin, K. Dang, K. Lu, K. Chen, K. Yang, M. Li, M. Xue, N. Ni, P. Zhang, P. Wang, R. Peng,
R. Men, R. Gao, R. Lin, S. Wang, S. Bai, S. Tan, T. Zhu, T. Li, T. Liu, W. Ge, X. Deng, X. Zhou,
X. Ren, X. Zhang, X. Wei, X. Ren, Y. Fan, Y. Yao, Y. Zhang, Y. Wan, Y. Chu, Y. Liu, Z. Cui,
Z.Zhang, and Z. Fan. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, H. Lin,
J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang,
L. Yu, M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Xia, X. Ren, X. Ren, Y. Fan,
Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu. Qwen2.5 technical report. arXiv
preprint arXiv:2412.15115, 2024.

Z. Yu, S. Liang, T. Ma, Y. Cai, Z. Nan, D. Huang, X. Song, Y. Hao, J. Zhang, T. Zhi, Y. Zhao,
Z. Du, X. Hu, Q. Guo, and T. Chen. Cambricon-llm: A chiplet-based hybrid architecture
for on-device inference of 70b llm. In 2024 57th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1474-1488, 2024.

M. Zhang, P. Li, J. Peng, M. Qiu, and T. Chen. Advancing moe efficiency: A collaboration-
constrained routing (c2r) strategy for better expert parallelism design, 2025.

12

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html
https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

A Code

Please find the code base for this paper here: https://github.com/UNITES-Lab/Mozart

B More Experimental Results

Sequence Length=128

1
c [Baseline
% 0.75
- [Mozart-A
B 05
N I Mozart-B
® 0.25
5 H“ [I0NR (re. HII | - ozart-O
=z SSD HBM2 SSD HBM2 SSD HBM2

Qwen3 OLMoE deepseek-moe

Figure 7: Normalized Latency Comparison for 3 MoE-LLMs with Sequence length 128. The
max wall-clock latency here is 7.61 s (Qwen3 model with baseline method using SSD for DRAM).

Sequence Length=256

> 1
2 [Baseline
8 075
3 [Mozart-A
T 05
8 [Mozart-B
T 025
§ l l Mm Il Mozart-C
2 ° SSD HBM2 SSD HBM2 SSD HBM2

Qwen3 OLMoE deepseek-moe

Figure 8: Normalized Latency Comparison for 3 MoE-LLMs with Sequence length 256. The
max wall-clock latency here is 9.17 s (Qwen3 model with baseline method using SSD for DRAM).

Sequence Length=512

3 1
5 [Baseline
® 0.75
- [Mozart-A
B os
E [Mozart-B
g 0.25
5 Nem Nome - YozazO
= " ssp HBM2 SSD HBM?2 SSD HBM2

Qwen3 OLMoE deepseek-moe

Figure 9: Normalized Latency Comparison for 3 MoE-LLMs with Sequence length 512. The
max wall-clock latency here is 13.03 s (Qwen3 model with baseline method using SSD for DRAM).

We provide comprehensive numerical latency results for all configurations, including 3 sequence
length (128, 256, 512), 4 methods (Mozart Baseline, A, B, and C), and 2 DRAM (SSD and HBM?2).
Results comparison visualizations are provided in Figure 7, 8, and 9.

C Motivation Explanations

C.1 Why Attention is Memory-Bound and FFN is Compute-Bound

The chiplet architecture in Mozart utilized the fact that in a typical decoder layer in modern large
language models, the Attention module is memory-bound and the FFN module is computation-bound.
We demonstrate it using profiling experiments on the OLMo-2 model series [30]. The experiment
settings are:

* We examine a single decoder layer, and collect the wall-clock latency and the FLOPs for
both attention and FFN modules.

13

* The results are collected through running the forward pass, i.e., the prefilling stage of model
inference, and the results are normalized for easier comparison.

» We fix the batch size to 4 and test the sequence length of 512, 1024, and 2048.
* We select OLMo-2 models with 4 scales, including 1B, 7B, 13B, and 32B.

The profiling experiments are visualized in Figure 10 (1B), Figure 11 (7B), Figure 10 (13B), and
Figure 13 (32B). We can find that, the FFN module counts for more FLOPs but less wall-clock latency.
It is because the Attention module is memory-bound and the FFN module is computation-bound:

* The FFN module counts for more FLOPs because it contains more model parameters. But
the computation task for it is mainly composed of large matrix multiplication, which is easy
to parallelize. Therefore, the wall-clock latency of it can be lower than attention.

» The Attention module requires frequent memory access operations, which is demonstrated
by the Flash-Attention series [7, 6, 33]. Although it contains fewer model parameters, the
computation tasks here are difficult to parallelize. Therefore, the attention module counts
for more wall-clock latency.

(a) OLMo-2-0425-1B (Sequence Length = 512)

(b) OLMo-2-0425-1B (Sequence Length = 1024) (c) OLMo-2-0425-1B (Sequence Length = 2048)

Normalized Latency

40

3.0

20

10

3.2

1.0

Attention FFN

Normalized FLOPs

»
o

@
o

»
°

o

1.0

Attention FFN

Normalized Latency

&
o

®
°

N
o

o

3.2

1.0

Attention FFN

Normalized FLOPs

&
o

3
o

»
o

o

1.0

Attention FFN

Normalized Latency

&
o

®
o

N
o

o

1.0

Attention FFN

poe
o o o

Normalized FLOPs
5

1.0

Attention FFN

Figure 10: Profiling results on latency & FLOPs for Attention & FFN using OLMo-2-0425-1B.

Normalized Latency

(a) OLMo-2-1124-7B (Sequence Length = 512)

N
o

©
°

I
o

°

(b) OLMo-2-1124-7B (Sequence Length = 1024)

1.0

Attention FFN

Normalized FLOPs

»
o

d
o

»
o

o

3.59

1.0

Attention FFN

Normalized Latency

&
o

3
o

»
o

o

1.0

Attention FFN

Normalized FLOPs

»
o

3
o

»
o

o

3.22

1.0

Attention FFN

Normalized Latency

(c) OLMo-2-1124-7B (Sequence Length = 2048)

»
o

3
o

»
o

o

1.0

Attention FFN

poow
o o o

Normalized FLOPs
5

1.0

Attention FFN

Figure 11: Profiling results on latency & FLOPs for Attention & FFN using OLMo-2-1124-7B.

Normalized Latency

(a) OLMo-2-1124-13B (Sequence Length = 512)

>
o

@
°

N
o

o

(b) OLMo-2-1124-13B (Sequence Length = 1024)

1.0

Attention FFN

Normalized FLOPs

»
o

®
°

»
o

o

1.0

Attention FFN

Normalized Latency

N
o

3
o

»
o

o

Attention FFN

Normalized FLOPs

>
o

@
o

»
o

o

1.84

Attention FFN

(c) OLMo-2-1124-13B (Sequence Length = 2048)

Normalized Latency

N
o

3
o

»
o

o

1.0

Attention FFN

oo
o o o

Normalized FLOPs
5

1.0

Attention FFN

Figure 12: Profiling results on latency & FLOPs for Attention & FFN using OLMo-2-1124-13B.
C.2 Challenges for Mixture-of-Expert Computation

We present 3 challenges for MoE computation in the abstract part of this paper, including memory
locality issues, communication overhead, and insufficient computing resource utilization. Our
algorithm-hardware co-design scheme in Mozart tries to solve these challenges with joint efforts.
We demonstrate these challenges through fine-tuning an OLMoE-1B-7B model with 4-way expert
parallelism, with batch size 8 on each GPU and sequence length 512. We use MegaBlocks [13],
the standard expert parallelism framework, for the MoE modules, and use data parallelism for the
attention modules. We employ the dropless MoE implementation. The training speed is 2-3 iterations
per second, and we monitor the behavior of each GPU with an interval of 0.1 s. We take 3 fragments
for visualization, as shown in Figure 14, 15, and 16, which demonstrate that both the GPU power and
the memory consumption show high dynamism. These phenomena can explain 2 challenges:

* Memory Locality Issues: Since the workload for each expert changes dynamically, the
activation tensors should be frequently allocated and freed, leading to severe memory
management issues.

14

(a) OLMo-2-0325-32B (Sequence Length =512) (b) OLM0-2-0325-32B (Sequence Length = 1024) (c) OLMo-2-0325-32B (Sequence Length = 2048)

i i
' '
' '
' '
' '
6.0 6.0 ' 6.0 6.0 5.78 ' 6.0 » &0
3 o I » T % 5.05
€ 50 5.0 1 £ 50 & 50 1S 50 50
5] [¢] 2 o 2 T
2 1 [
3 g 8 = . ©
- 40 4.0 o 2o o 40 a0 o 40
o 3 3 o 3 I
@ 3.12 8 3.11] 3.12 3] 3.12 N
N 30 = 30 . = 30 N 30 . = 30 S 30
5 : : 4 s 1 £
g 20 5 20 5 20 E 0 vS 20 2 20
F z y oz S -4
1.0 1.0 ' 1.0 z 1.0 ' 1.0 1.0
1.0 1.0 ' 1.0 1.0 ' 1.0 1.0
' '
' '
'
Attention FFN Attention FFN : Attention FFN Attention FFN : Attention FFN Attention FFN

Figure 13: Profiling results on latency & FLOPs for Attention & FFN using OLMo-2-0325-32B.

B GPU Power Consumption Over Time

%g%g “VJ ‘M:\’ ’ ‘4”‘ “\'D"‘m' "v/‘ﬂ‘\ I’ ”“ ‘\O‘\' \l "’\ | (,({V’ ’ A w‘l \!/'(V "’(‘\
[T VYR

Q238 "

3
S 188

6000 6200 6400 6600 6800 7000
Time

GPU Memory Usage Over Time

138
88

— GPUO — GPU1 — GPU2 — GPU3

36781

=378 e s AN AAAAMMN A NAARBAARANAOARBAOARN ARRNRAAREMABRANEAN
2= AARABRARARRARARRBARRRARARE RBRRRAARRRARRRAARE R ARRRRAAR
= 33781 Wl !

Zama{ | || H | f !

£ ! 1 y H H

£31781 !"‘ I 74 .' | Uy

= 30781 I d U

— GO — Gl — G2 — GRU3

6000 6200 6400 6600 6800 7000
Time

Figure 14: GPU Behavior Monitor at Time Step 6k-7k.

29781

¢ Insufficient Computing Resource Utilization: The reason for this challenge lies in 2
aspects: (1) the dynamism of workload leads to dynamism of GPU power, and (2) the
dynamism of workload restricts the training batch size to avoid out-of-memory error, which
also constrains the utilization of GPU computing resources.

The all-to-all communication issues have been explained in Tutel [16], which is a significant bottle-
neck for training MoE models at scale, consuming up to 40% of the total runtime.

D Meassuring All-to-All Communication Complexity with C,

‘We propose to measure the all-to-all communication data volume in Section 3.3 using the average
replication times of each token, denoted as Cy. We prove that Cr is the least upper bound of the
ratio between actual all-to-all communication data volume and the total number of tokens. We take a
single all-to-all communication in D—way expert parallelism as an example, and denote the original
tokens as {Si}i’; 61. For a single token ¢ € S; on device ¢, we denote the number of replications for
it transmitting from device i to device j as N7 (t), i.e., token ¢ on device i activates N (t) experts
preserved on device j. In the standard expert parallel framework, given top-k routing, we have

D—1 .
Z, 0Nf(t):k,VteSiandvogigD—l. (6)
]:

For the actual all-to-all communication data volume:

D—-1 7—1 D—-1) D—-1 7—1) ‘ D—-1)
SO N+ > N@) < OoN/ W)+ N+ > N (1)
i=0 t€S; j=0 j=i+1 i=0 teS; j=0 j=i+1
D—1 D—1

)

Il
o~
=
—
~+
N
=

The 2 inequalities in Equation 7 are reached when

15

GPU Power Consumption Over Time

A \ | A ‘ { i) NI fl \
£ AN l' ‘A ¢~A_/‘ i) Nl f‘\/‘ ‘\ Wu\!»‘ i) 4\ v (‘l[.MQ; fi .ap:) !.‘ '_\,\ ficd sk
B0 L WANVE MOAL N (")M‘v"\‘u Vall " i(",\ i 'M Wil vl VAPRPRRATESS L I Mi
o % T (ki atAR il Al
go] — U0 o1 —owz — o3 f

GPU Memory Usage Over Time

s QAAAARAAAARRAARABRAARRRERRERARRARARRARARRAARARRRERARRARAR
e \ \ \ \ \ \l i » \u v i\ |
>33783 ! | H
S 32783 | ' WY 8 | H \ 1{ I tl b t !
E;;;E; \\!!I-ii! i || / 1') |Il'||i']'.'l / 0y
e —ewe — w1 —owz —ows
8000 8200 8400 Time 8600 8800 9000
Figure 15: GPU Behavior Monitor at Time Step 8k-9k.
434 GPU Power Consumption Over Time
384
<334 b A
b “ \" f* A ‘VV.V f W\/‘ i '*\ i J ' i ‘x\ {‘ Ll W ‘M\
Ky Wilk ' ' R ek
134 — GPUO GP 1 —— GPU2 —— GPU3
5410000 10200 10400 10600 10800 11000

Time
GPU Memory Usage Over Time

38921

37921

— A A
S e e R A -0 A
|lg\l||lr|\l|'\ln|1|||!l|| lllllllllllll \ HHA DERB
= 35021 I | | |

34921 | \
533921 ' \ u \ \ Y ' I \ A gl ' ! y
gazszl) iR 1 | i IR ' i l U ' ‘ , - i U .

wal L e e

10000 10200 10400 10600 10800 11600

Time

Figure 16: GPU Behavior Monitor at Time Step 10k-11k.

* The first one is achieved when N/(t) = 0 forall0 <i < D —1landt € S;, i.e., no token
would activate the experts kept on the device where the token is originally kept.

* The second one is achieved for standard expert parallelism, i.e., making k replications for
each token in the dispatch stage under top- routing.

The first inequality cannot be utilized for communication efficiency, since it is data-dependent and

task-dependent. The second inequality can be leveraged by employing our proposed strategy in
Section 3.3.

E Impact Statement

As the paper’s primary innovation is efficiently deploying the post-training process of MoE-based
large language models on the chiplet-based system, it by itself doesn’t pose any obvious risks. The
potential for negative societal impact depends on the specific MoE-LLMs. We strongly recommend
these models be used in compliance with all ethical standards appropriate to the domain in which it is
targeted to be deployed.

16

	Introduction
	Related Works
	Preliminary
	Mixture-of-Experts
	Analyzing Expert Activation Prior
	Efficient All-to-All Communication

	Methodology
	Overview of Mozart
	Expert Collaboration for Efficient On-Package All-to-All Communication
	Fine-grained Scheduling with Streaming Tokens and Experts
	Wafer-Scale Chiplet Architecture

	Experiments
	Algorithmic Setup
	Hardware Setup
	Experimental Results
	Further Investigation

	Conclusion and Limitations
	Code
	More Experimental Results
	Motivation Explanations
	Why Attention is Memory-Bound and FFN is Compute-Bound
	Challenges for Mixture-of-Expert Computation

	Meassuring All-to-All Communication Complexity with CT
	Impact Statement

