
Mozart: Modularized and Efficient MoE Training on
3.5D Wafer-Scale Chiplet Architectures

Shuqing Luo†1, Han Ye†2, Pingzhi Li†1, Jiayin Qin†2
1University of North Carolina at Chapel Hill 2University of Minnesota - Twin Cities

†Equal Contribution

Abstract

Mixture-of-Experts (MoE) architecture offers enhanced efficiency for Large Lan-
guage Models (LLMs) with modularized computation, yet its inherent sparsity
poses significant hardware deployment challenges, including memory locality
issues, communication overhead, and inefficient computing resource utilization.
Inspired by the modular organization of the human brain, we propose Mozart, a
novel algorithm-hardware co-design framework tailored for efficient training of
MoE-based LLMs on 3.5D wafer-scale chiplet architectures. On the algorithm side,
Mozart exploits the inherent modularity of chiplets and introduces: (1) an expert al-
location strategy that enables efficient on-package all-to-all communication, and (2)
a fine-grained scheduling mechanism that improves communication-computation
overlap through streaming tokens and experts. On the architecture side, Mozart
adaptively co-locates heterogeneous modules on specialized chiplets with a 2.5D
NoP-Tree topology and hierarchical memory structure. Evaluation across three pop-
ular MoE models demonstrates significant efficiency gains, enabling more effective
parallelization and resource utilization for large-scale modularized MoE-LLMs.

1 Introduction

The human brain, known for its cognitive efficiency and modular organization, has long inspired
the design of large-scale computational systems [10, 15, 27]. It comprises specialized modules
that handle distinct tasks, ranging from memory-intensive to computation-heavy operations, while
maintaining low-latency coordination with adjacent regions [2, 4, 14]. This modularity enables
efficient, scalable, and flexible processing [3, 18], which is a principle increasingly adopted in deep
learning systems such as Large Language Models (LLMs) [22, 35].

Meanwhile, recent advances in LLMs, particularly Mixture-of-Experts (MoEs), reflect similar modu-
lar principles by dynamically activating specialized sub-networks based on input. However, the scale
and heterogeneity of MoE-LLMs pose significant challenges for conventional hardware platforms [22]
(e.g., traditional GPUs or CPUs), including photoreticle-limited scalability [19] and transistor scaling
limits [36], as well as poor memory locality [13], high inter-module communication overhead [16],
and inefficient resource utilization [25] due to dynamic and uneven computational workloads.

2.5D/3.5D heterogeneous chiplet-based architectures have gained popularity due to their scalability
and modularity to meet the demands of the aforementioned LLM-related workloads, including
MoEs [32, 46, 9, 21]. Typically in 2.5D designs, multiple chiplets are interconnected via a Network-
on-Package (NoP) through an interposer [8, 34, 26, 37], reducing the area and cost overhead of
monolithic integration. To further boost inter-chiplet bandwidth, 3D integration techniques such
as Through-Silicon Vias (TSVs) are employed along the vertical direction. However, prior works
tend to neglect wafer-scale integration [9, 21, 46] and largely adopt coarse-grained, static workload
partitioning strategies [32] that assume dense and uniform computation, tiling the model workload
to different chiplets without incorporating system-level coordination and optimization [24]. None

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Table 1

Total Parameters (B) Shared Experts Routed Experts Attention Dense FFN Embedding + LM
Head

Total Shared Experts Routed Experts Attention Dense FFN

OLMoE-1B-7B-0924 6.92 0 6442450944 268500992 0 206045184 6916997120 0 0.931394192050784 0.038817565967123 0

DeepSeek-MoE 16.4 467140608 14948499456 469819392 67239936 419430400 16372129792 0.02853267192080660.913045501465812 0.02869629046244 0.00410697550375247

Qwen3-30B-A3B 30.5 0 28991029248 906166272 0 622329856 30519525376 0 0.949917434522033 0.0296913618687069 0

Qwen3-235B-A22B 235 0 227096395776 6703267840 0 1244659712 235044323328 0 0.966185409460373 0.0285191650029587 0

Qwen1.5-MoE 14.3 830472192 12457082880 402702336 0 622329856 14312587264 0.05802390418180090.870358562727014 0.0281362362074748 0

Mixtral-8x7B 46.7 0 45097156608 1342308352 0 262144000 46701608960 0 0.965644602236848 0.0287422292698671 0

Mixtral-8x22B 141 0 135291469824 4932845568 0 262144000 140486459392 0 0.963021421491559 0.035112605082002 0

DeepSeek-V2 236 2783969280 222717542400 8953651200 188743680 1048576000 235692482560 0.011811871340832 0.944949707266557 0.03798870079668610.000800804836666573

OLMoE-1B-7B-0924

DeepSeek-MoE

Qwen3-30B-A3B

Qwen3-235B-A22B

0% 25% 50% 75% 100%

96.6%

95.0%

91.3%

93.1%

Shared Experts Routed Experts Attention Dense FFN Embedding + LM Head

6.9B

16.4B

30.5B

235B

% of Parameters

1

Figure 1: Parameter distribution in modern MoE-LLMs across various scales. The routed experts
module constitutes over 90% of the total parameters in these architectures.
of these works consider or explicitly address the system-level design challenges posed by MoE-
LLMs with fine-grained modularity, which often results in excessive inter-chiplet communication
and inefficient resource utilization.

Given the growing need for system-level coordination in modular LLM deployment, we propose
Mozart, an algorithm–hardware co-design framework for efficiently mapping MoE-LLMs onto 3.5D
wafer-scale chiplet platforms. Our contributions are summarized as follows:

• To efficiently train MoE-based LLMs, we propose Mozart, a comprehensive framework
with optimization techniques including: (1) a specialized expert layout strategy placing
frequently co-activated experts on the same or adjacent chiplets, targeted at balanced
workload across multiple chiplets, (2) a communication-efficient all-to-all strategy utilizing
expert collaboration, and (3) a fine-grained scheduling strategy for improved communication-
computation overlap using streaming tokens and experts.

• To better accommodate the modularized structure of MoE, we design a wafer-scale 3.5D
chiplet architecture, featuring tightly integrated 3D logic-on-memory stacks, a 2D NoP-tree
interconnect, and two-level memory hierarchy. It supports our proposed optimizations with
low-latency on-chip activation reuse, communication-aware expert clustering, and inter-
leaved execution of communication and computation tailored for sparse MoE computing.

• Mozart achieves over 1.9× acceleration compared to baseline methods when evaluated
across three popular open-source MoE-LLMs with varying scales, demonstrating its potential
to enhance parallelization efficiency and optimize resource utilization for the post-training
deployment of large-scale modularized MoE-LLMs.

2 Related Works
Modularized LLMs. Modularized LLMs, also known as Mixture-of-Experts (MoE) [35], demon-
strate exceptional efficiency on scaling model capacity, allowing significant parameter growth without
proportional computational costs. This efficiency derives from replacing traditional dense feed-
forward layers with sparse modularized components, where sophisticated routing mechanisms se-
lectively direct input tokens to appropriate expert subnetworks. Models like Mixtral-8x7B [17]
demonstrate how activating just two experts per token per layer can leverage a substantially larger
parameter space, matching the performance of dense counterparts while dramatically reducing active
parameter requirements. The architecture was further refined in DeepSeek-MoE [5, 11], which
introduced finegrained experts and shared experts to improve specialization and parameter efficiency.
The expert specialization phenomenon—where routing networks learn to direct specific input patterns
to dedicated experts—enhances processing proficiency [5, 23, 42]. Complementing this, expert
collaboration, the strategic co-activation of multiple experts for processing complex inputs, has
recently minimized communication overhead through optimized expert placement and routing al-
gorithms [1, 47]. In our work, we leverage these expert specialization and collaboration principles
to enhance training efficiency specifically for 2.5D/3.5D wafer-scale chiplet architectures, where
physical hardware modularity naturally complements the logical modularity of MoE systems.
2.5D/3.5D Chiplet for ML Workloads. Chiplet-based architectures have emerged as a promising
solution to support the growing computational demands of large-scale neural networks and LLMs.
Prior works such as Maestro [21], Cambricon-LLM [46], and ScalePoM [9] primarily focus on
sub-wafer-scale chiplet designs. Maestro adopts a 3D memory-on-logic structure to coordinate
multiple small-scale systolic arrays for inference acceleration. Cambricon-LLM integrates Neural
Processing Units (NPUs) with flash-based chiplets for energy-efficient on-device inference, while

2

ScalePoM explores hierarchical power delivery for the chiplets. However, these works mainly focus
on LLM inference and do not consider wafer-scale integration, limiting their scalability.

In contrast, FRED [32] explores wafer-scale integration by leveraging high-bandwidth interconnects
and in-network collective communication to accelerate LLM training. Nonetheless, it largely relies
on coarse-grained, static workload partitioning strategies that assume dense and uniform computation.
When applied to sparse and modular models such as MoEs, such strategies result in inefficient
resource utilization and increased inter-chiplet communication. To overcome these limitations, we
propose a 3.5D heterogeneous chiplet architecture that combines vertical stacking with 2.5D NoP-
Tree interconnects, providing high-bandwidth, energy-efficient communication while maintaining
architectural modularity. Built upon this hardware foundation, we introduce a fine-grained modular
partitioning and communication-aware scheduling framework tailored for the post-training process
of sparse workloads like MoE. By aligning expert activation patterns with the chiplet topology,
our design reduces redundant data movement and significantly improves system throughput under
modular model execution.

3 Preliminary
3.1 Mixture-of-Experts
Formulation. Given an input token embedding x, the output of an MoE layer can be formulated as
the weighted sum of outputs from the Ne experts {E0, E1, . . . , ENe−1}:

MoE(x) =
Ne−1∑
i=0

R(x)i · Ei(x), (1)

where R(x)i is the output of a small gating network R(·) for the i-th expert. For each token, the
MoE layer aggregates the output of k experts, determined by the indices of the top-k highest routing
scores, derived from the Softmax value of a gating function g(·), which is usually a single linear layer:

R(x) = top-k(Softmax(g(x)), k) (2)

Expert Parallelism Pipeline. Expert parallelism [12, 22] has been demonstrated to be the most
efficient distributed training technique for MoE models, where different experts are scattered on
different parallel units and the workloads are dispatched to each unit during both forward and
backward pass. Specifically, a typical MoE pipeline with expert parallelism in the forward pass can
be formulated as Dispatch -> All-to-All -> Expert Computing -> All-to-All -> Combine [16].

3.2 Analyzing Expert Activation Prior
Mozart focuses on efficient post-training of MoE-LLMs on chiplet systems. Before deployment,
we first analyze the empirical prior of the routing policy and then develop scheduling algorithms to
enhance post-training efficiency. Given an instruction tuning dataset, we first run the prefilling stage
of inference on it to get the routing choice of a large token batch B, and next we compute 2 metrics:
Analyzing Workload Distribution across Individual Experts. We construct a vector V with Ne
elements to quantify the workload distribution across individual experts, where

Vi =
∑
x∈B

1{R(x)i ̸= 0}, Vi = Vi/

Ne∑
j=0

Vj . (3)

Analyzing Collaboration Pattern across Paired Experts. To uncover co-activation patterns among
experts in a single MoE layer, we construct a graph G with Ne nodes. This graph is represented by an
adjacency matrix C ∈ RNe×Ne , where Ci,j denotes the edge value between nodes i and j. We further
normalize it with the maximum edge value to confine all entries in the matrix to the interval [0, 1]:

Ci,j =
∑
x∈B

1{R(x)i ̸= 0 ∧R(x)j ̸= 0}, Pi,j = Ci,j/ max
0≤i,j≤Ne−1

Ci,j . (4)

3.3 Efficient All-to-All Communication

All-to-All communication is a key bottleneck in expert parallelism, as it necessitates synchronization
across all parallel units—a process often constrained by communication bandwidth. Reducing the
data volume in such communication can effectively reduce end-to-end latency. In this paper, we
quantify the communication complexity using the average number of replications per token in the

3

Figure 2: Algorithm-Hardware Co-Design Diagram of Mozart. Mozart provides an algorithm-
hardware co-design approach, and we present both the algorithm-level expert clustering & allocation
schemes in the left part, and the architecture-level 3.5D chiplet system in the right part. The MoE-
LLM parameters are modularized in each decoder layer and mapped to the individual chiplets.

Dispatch stage, denoted as CT . We prove in the Appendix that CT is the least upper bound for the
ratio between the actual data volume during all-to-all communication and the number of tokens in a
training step. In standard expert parallelism frameworks [13], CT = k under top-k routing. However,
if two co-activated experts for a token are assigned to the same parallel unit (e.g., a GPU in modern
data centers or a chiplet in Mozart), only one replica would be required, therefore reducing CT . By
optimizing expert layout to increase the likelihood of such co-location, CT can be further minimized,
thereby lowering the overhead of all-to-all communication.

4 Methodology
4.1 Overview of Mozart
We detail the design principles and methodology of Mozart with an overview in Figure 2, which
addresses key bottlenecks of the post-training process of MoE-LLMs on chiplet systems through
algorithm–hardware co-design.

On the algorithm side, we first profile the instruction tuning dataset using the pre-trained model,
then apply strategic optimizations to improve post-training efficiency: ❶ Expert Clustering and
Allocation: We cluster individual experts using the collaboration pattern prior, and map these clusters
to chiplets using the workload distribution prior, aiming at balancing workload across MoE chiplet
groups. More details are provided in Sec. 4.2. ❷ Fine-grained Scheduling: To overlap the DRAM
communication overhead with on-chip computing, we propose streaming both the expert loading
process and expert computing process of tokens using fine-grained scheduling, following the expert
layout derived from the clustering and allocation algorithms. More details are provided in Sec. 4.3.

From the hardware side, we propose a 3.5D wafer-scale chiplet architecture featuring: ❶ 2.5D
NoP-Tree Topology: We propose the 2.5D NoP-tree interconnect in Mozart that organizes attention
chiplets as central dispatchers and expert chiplets as leaves. Switches enable in-network MoE aggre-
gation, reducing communication latency and bandwidth cost. ❷ Hierarchical Memory Structure:
Mozart introduces a two-level memory structure with model weights stored in distributed DRAM and
activations cached in local SRAM. To further reduce data access latency, we adopt a logic-on-memory
3D integration, where each compute chiplet vertically stacks a compute die with an SRAM die via
hybrid bonding. This tightly coupled design enables fast local access to intermediate results, such as
activations, and aligns well with their temporal reuse patterns. More details are provided in Sec. 4.4.

4.2 Expert Collaboration for Efficient On-Package All-to-All Communication

Figure 3: Left: Activation frequency for pre-
trained DeepSeek-MoE, indicating expert special-
ization. Right: Co-activation pattern for pre-trained
DeepSeek-MoE, indicating expert collaboration.

Although every expert may be activated, the
activation and co-activation patterns are not
exactly balanced in practice. We take the pro-
filing results on Alpaca [40] using DeepSeek-
MoE [5] as an example. At the final layer,
some experts are sensibly activated more fre-
quently (long horizontal bar in Figure 3), and
some expert pairs are also activated more fre-
quently (dark-colored blocks in Figure 3), mo-
tivating us to specialize the expert layout on
chiplets for balanced workload distribution
during post-training. This clustered layout
can also reduce the all-to-all communication

4

volume, which is synchronous and cannot be
overlapped with computation. To determine the expert placement on chiplets, we implement a 2-stage
approach as follows.
Stage-1: Expert Clustering. We cluster individual experts as candidates for expert-chiplet assign-
ment, aiming at enhancing intra-cluster collaboration while minimizing inter-cluster collaboration.
Intra-cluster collaboration is defined as the average co-activation frequency among all expert pairs in
a single cluster, whereas inter-cluster collaboration represents the average co-activation frequency
between all expert pairs across 2 distinct clusters. Inspired by the farthest point sampling algorithm
in point cloud learning [31], we implement the clustering as shown in Algorithm 1.
Stage-2: Expert Cluster Allocation. Since our 3.5D chiplet architecture (Figure 2) allocates a
DRAM chip for a group of MoE chiplets interconnected with a switch, balanced workload distribution
across these groups becomes critical. To achieve this, we formalize the cluster-chiplet assignment as
a binary integer programming problem. Let Ng denotes the number of groups (asserting Nc can be
divided by Ng) and a binary matrix M ∈ {0, 1}Ng×Nc represents the cluster-group assignment, our
optimization objective is formulated as:

min
M

|MV − Vaux|, s.t.
Ng∑
i=0

M[i,j] = 1, ∀ 0 ≤ j ≤ Nc and
Nc∑
j=0

M[i,j] = 1, ∀ 0 ≤ i ≤ Ng, (5)

where Vaux is an auxiliary vector with Ng elements, each one equals to 1/Ng .

Algorithm 1 Expert Clustering.
Require: Adjacent matrix C ∈ RNe×Ne for graph G, number of chiplets Nc (also the number of clusters).

Initialize expert clustering result L with Nc empty lists.
for c← 0, Nc − 1 do

if c == 0 then
Find the 2 most highly co-activated experts, and push them into L[c].

else
Find an unselected expert with the lowest co-activation frequency with the experts in L.
Push it into L[c].

end if
while len(L[c]) ≤ Ne/Nc do ▷ Assert Ne can be divided by Nc.

Find an unselected expert with the highest average co-activation frequency with the experts in L[c].
Push it into L[c].

end while
end for
return L.

4.3 Fine-grained Scheduling with Streaming Tokens and Experts

Figure 4: Fine-Grained scheduling pipeline in the forward pass. The streaming tokens, marked
with the execution order, can effectively overlap the computation (purple blocks) and DRAM com-
munication (pink blocks, saving activations). We present 3 types of chiplets in the training pipeline,
including attention chiplet, highly-activated chiplet, and less-activated chiplet. Since the 2 MoE
chiplets share the same DRAM I/O, the highly activated experts should be first loaded to the chiplet
for better communication-computation overlap.
The sheer size of parameters in MoE-LLMs necessitates storing them in DRAM and dynamically
loading layers to chiplets for computation. However, this approach incurs significant communica-
tion overhead compared to on-chip processing. To mitigate this bottleneck and enhance training
parallelism, we propose a fine-grained scheduling scheme through streaming experts and tokens:
Streaming Experts Since multiple MoE chiplets within a group share the same DRAM, their
concurrent memory accesses require serialization. To optimize parallelism, we strategically schedule

5

communication order by ranking expert clusters: using profiled workload distribution V , we quantify
the importance of an expert cluster using the aggregated per-expert workloads, and prioritize the
loading order of expert clusters with heavier computational workload first.
Streaming Tokens Partitioning the global token batch into streaming tokens (micro-batches)
enables overlapping DRAM communication (for saving activations during backward passes) with
on-chip computation. To be specific: (1) For the attention module, all tokens are partitioned into
streaming attention tokens; (2) For the MoE module, the workload of each expert is partitioned into
streaming expert tokens, and different experts on the same chiplet are computed sequentially.
Fine-Grained Scheduling The huge routed experts (Figure 1) results in significant communication
overhead between DRAM and MoE chiplets, so we overlap it with on-chip computations using fine-
grained scheduling in Figure 4, which mainly occurs in 2 aspects: (1) Loading highly-activated cluster
& Attention computing; (2) Loading less-activated cluster & Highly-activated cluster computing.

4.4 Wafer-Scale Chiplet Architecture

DRAM
Logic Tile
SRAM Tile
Switch
Hybrid Bonding
2.5D Direct Signaling

Package Substrate TSV

Silicon Interposer

Figure 5: The overall 3.5D chiplet architecture in Mozart. The hardware architecture implements
a three-layer hierarchical tree topology, comprising a central attention node, switch nodes, and
peripheral MoE nodes. The two-tier dies are connected face-to-face.
Motivation of Mozart Architecture Each MoE-LLM decoder block generally involves 2 stages:
(1) the attention module and router network, and (2) expert computation with structural sparsity. This
heterogeneous and dynamic execution flow poses significant challenges to system-level scheduling
and communication. To tackle them, we propose a wafer-scale 3.5D chiplet architecture that integrates
heterogeneous compute and memory resources: (1) To improve memory locality, we design a
hierarchical memory system aligned with the temporal reuse patterns of MoE-LLMs, enabling
frequently reused data such as activations to be cached closer to the computing unit using the
3D logic-on-memory stack, thereby reducing costly accesses to off-chip DRAM; (2) To reduce
communication overhead across chiplets, we co-locate frequently co-activated experts onto the
same chiplet based on profiling of activation patterns, significantly reducing costly inter-chiplet
transfers during both forward and backward passes; (3) To enhance compute resource utilization,
we disaggregate memory-bound and compute-bound components onto specialized chiplets with
matching bandwidth and compute capabilities, and apply fine-grained, pipeline-aware scheduling to
balance load and overlap communication with computation.

Physical Layout To efficiently support the computation flow, we introduce a wafer-scale chiplet
architecture that combines 3.5D integration with a 2.5D NoP-tree interconnect, as shown in Figure 5.
❶ 3D Chiplet Stack: Each computing chiplet integrates a logic die and an SRAM die in a vertical
stack using hybrid bonding, supporting either attention or MoE-based FFN operations. The SRAM
layer serves as a fast buffer for intermediate data with frequent reads and writes. Leveraging the short
vertical interconnects enabled by 3D integration, this tightly coupled logic-on-memory chiplet offers
significantly higher bandwidth and lower latency compared to conventional 2D designs, as illustrated
in Figure 5. ❷ 2.5D NoP-Tree Topology: The inter-chiplet network adopts a 2.5D NoP-Tree
topology [20] that disaggregates attention and MoE operations across the network. Memory-bound
attention chiplets are placed near the center of the tree as dispatching nodes with higher DRAM
bandwidth, while compute-bound expert-cluster chiplets are organized as leaf nodes to execute MoE
feed-forward computations with more computing resources. The system comprises 16 MoE chiplets,
partitioned into 4 switch-connected groups, each containing 4 expert-cluster chiplets with pre-defined
placement. Moreover, the switch modules are equipped with in-network compute capabilities to
aggregate MoE outputs locally, significantly reducing inter-chiplet communication and improving

6

pipeline throughput. ❸ Memory Hierarchy: We design a two-level memory hierarchy for Mozart.
Model weights are stored in DRAM distributed around the core on the wafer. Every four expert
clusters share a dedicated DRAM I/O interface. The DRAM connects to SRAM on the attention
chiplet and switches for the MoE groups, enabling weight transformation from off-chip to the
computing unit. Given that weights are relatively static during one iteration of training and exhibit
low temporal access locality, they are suited for off-chip DRAM storage. In contrast, activations are
highly transient and frequently accessed during the computation pipeline. Therefore, they are cached
in the local SRAM die under each computing die to minimize access latency and support rapid data
exchange during the process.

Algorithm-to-Hardware Mapping To efficiently execute the MoE-LLM models on the proposed
chiplet-based architecture, we map its major computational components, including attention and
MoE-expert layers, onto specialized chiplets with coordinated dataflows and scheduling strategies.
❶ Dataflow of the Training Process: During each training step, the system processes 32 samples
(sequences), divided into 4 serially executed micro-batches of size 8. A weight-streaming strategy is
adopted, where only one transformer block’s weights are loaded at a time, in response to area and
interconnect constraints of the wafer-scale architecture. QKV projection and multi-head attention
score computation are mapped to multiple systolic arrays (SAs). SAs are grouped into tiles, each
integrating a local adder tree to aggregate partial sums and reduce intermediate communication. These
partial results are transmitted from the compute die and stored in the underlying SRAM die via hybrid
bonding. After attention completes, activations are routed through the NoP-Tree network to a switch
module with for token-wise routing and reduction. Tokens are dispatched to selected experts for FFN.
Local aggregation is performed within each expert-cluster chiplets, followed by global aggregation
via the switch. The aggregated expert outputs are routed back to the attention module to continue
processing the subsequent transformer blocks. During backpropagation, gradients follow the reverse
path, with parameter updates performed locally on attention and expert chiplets before being written
back to DRAM. ❷ Scheduling for Computing-Communication Pipeline: To improve compute
throughput and resource utilization, the system adopts fine-grained pipeline scheduling. Leveraging
the temporal locality in expert selection across adjacent training steps, frequently activated weights
are prefetched onto expert chiplets ahead of token routing, reducing memory stalls. At runtime, each
switch group coordinates micro-batch-level pipelined execution. Based on the received activation
load per token, chiplets within a group sequentially fetch weights from DRAM via the shared switch.
While one micro-batch undergoes FFN computation, the next micro-batch’s weights are concurrently
loaded, enabling overlapped execution of compute and memory access. A similar strategy is applied
during backpropagation to hide communication latency and sustain high training throughput.

5 Experiments
5.1 Algorithmic Setup

Table 1: Configurations of three pre-trained MoE-LLMs used in our experiments.

Model # Total
Parameters

Activated
Parameters

Routed
Experts

Shared
Experts

Hidden
Size # Layers Routing

Qwen3-30B-A3B [41] 30.5B 3.3B 128 0 2048 48 top-8
OLMoE-1B-7B-0924 [28] 6.92B 1.3B 64 0 2048 16 top-8
deepseek-moe-16b-base [5] 16.4B 2.7B 64 2 2048 28 top-6

Our experiments include three MoE models with various architectures: Qwen3-30B-A3B [44, 45],
OLMoE-1B-7B-0924 [28], and deepseek-moe-16b-base [5]. Details of them are summarized in
Table 1. We use Alpaca [40], an instruction tuning dataset of 52K samples, for all our experiments.
Our evaluation includes latency and energy as metrics to indicate the real-world impact of our designs.
We use NVIDIA A100 80G GPU servers and PyTorch for our profiling and simulation experiments.

5.2 Hardware Setup
The overall Mozart architecture comprises 16 expert-cluster chiplets for MoE computation, organized
into 4 switch-connected clusters, as well as one dedicated attention chiplet. Each MoE/attention
chiplet has 36–100 tiles, with 16 Systolic Arrays (SAs) in one tile and 256–576 Processing Elements
(PEs) in one SA. Off-chip memory is provided by 6 HBM2-based DRAM [29], with 4 shared across
expert-cluster groups (one per group) and 2 exclusively connected to the attention chiplet to provide
high-bandwidth. We implement the logic dies, SRAM dies, inter-chiplet interconnects and switches
in Verilog, and synthesize the gate-level netlist using Synopsys Design Compiler [38] targeting 28nm
technology. The typical power consumption is as reported by Synopsys PrimePower [39] based on

7

Table 2: Hardware metrics of the three MoE-LLMs used in our experiments. The number of
inter-chiplet links is computed based on the chiplet area for 2.5D signaling. The link counts are
calculated as the product of horizontal and vertical link numbers for the 3D stack. The total area
encompasses not only chiplets but also off-chip components such as DRAM.

Model Total Memory
(DRAM/Stack & SRAM/Tile)

2.5D
Direct Signaling /Link

3D
Hybrid Bonding /Link

Area (mm2) Power (kW) Cap. (MB) BW (GB/s) BW (GB/s) Pitch (µm) BW (GB/s) Pitch (µm)

Qwen3-30B-A3B 14175 3.34 8192&2.265 256&32 0.125 50 0.125 50
OLMoE-1B-7B-0924 10200 3.55 8192&2.265 256&32 0.125 50 0.125 50
deepseek-moe-16b-base 11230 3.19 8192&2.265 256&32 0.125 50 0.125 50

the generated gate-level netlist. To evaluate the performance of Mozart, we further develop a cycle-
accurate simulator, whose runtime and power outputs are validated against the Verilog simulation
results to ensure accuracy. For real-world implementation, we adjust hardware configurations for all
three algorithmic baselines with FP16 precision to meet key 3.5D chiplet process constraints. We
simulate all the design under 1GHz clock frequency. Detailed configurations for the three models are
summarized in Table 2.

5.3 Experimental Results

Effectiveness of the Optimization Techniques Table 3 summarizes four configurations of Mozart
used to evaluate the effectiveness of our proposed algorithm-side methodologies, including one
baseline without any optimizations and three variants that incrementally incorporate the optimization
methods described in Sections 4.2 and 4.3. The simulation results demonstrate that our proposed 3 op-
timization techniques can jointly reduce the end-to-end post-training latency, with a 1.92× speedup for
Qwen3-30B-A3B-Base, 2.37× for OLMoE-1B-7B-0924 and 2.17× for DeepSeek-MoE-16B-Base.
We further provide Table 4 to demonstrate the correlation between all-to-all communication data
volume and the end-to-end training latency, where Mozart-A, B, and C present different data volumes
during all-to-all communication, which is positively correlated to latency.

Study on the Impact of Sequence Length and DRAM bandwidth As shown in Figure 6(b), the
training latency increases as the sequence length per batch grows from 128 to 512. Although the
number of batches decreases accordingly, each micro-batch carries longer sequences and heavier
computation loads, which, when executed sequentially, become more constrained by communication
bandwidth. This trend is particularly pronounced in the baseline design without any optimizations,
where latency rises from 3.88s at length 128 to 7.64s at 512. In contrast, Mozart-C consistently
achieves the lowest latency across all sequence lengths and exhibits reduced sensitivity to longer
sequences, achieving a speedup of 2.34× at sequence length 512 and 1.47× at length 128 compared
to the baseline. This improvement stems from its architecture that enables efficient communication-
computation overlap and alleviates communication congestion through expert-aware layout and
routing, which together mitigate the latency increase caused by longer and heavier micro-batches.

Table 3: Configurations for different settings used in our experiments.

Optimization Technique
Method Baseline Mozart-A Mozart-B Mozart-C

Specialized Expert Layout on Chiplets (Section 4.2) ✗ ✗ ✗ ✓

Efficient All-to-All Communication (Section 4.2) ✗ ✗ ✓ ✓

Communication-Computation Overlap (Section 4.3) ✗ ✓ ✓ ✓

When it comes to study of DRAM bandwidth depicted in Figure 6(c), all configurations achieve lower
latency with HBM2 (256GB/s) [29] compared to SSD (15.8GB/s) [43] due to its higher memory
bandwidth. Notably, the relative speedup from Mozart optimizations becomes higher with HBM2
than SSD. This can be attributed to the domination of latency caused by DRAM-based expert weight
streaming when using SSD, which remains the bottleneck even after optimization. Since MoE
computation accounts for only a small portion of the overall training time, pipelining and token-level
scheduling have limited impact when memory access is slow. Furthermore, the communication cost
reduced by all-to-all optimization is only about one-third of the streaming latency, making the total
gain under SSD more constrained. In contrast, with HBM2, faster streaming allows better utilization
of compute-communication overlap, enabling the co-design techniques in Mozart to take full effect.

8

(a) (b)
Model

512 256 128N
or

m
al

iz
ed

 L
at

en
cy

Baseline

1

0.75

0.5

0.25

0
Qwen3 OLMoE deepseek-moe

-A
-B -C

(c)

SSD
DRAM

N
or

m
al

iz
ed

 L
at

en
cy 1

0.75

0.5

0.25

0 HBM2

Baseline -A
-B -C

N
or

m
al

iz
ed

 L
at

en
cy 1

0.75

0.5

0.25

0

Sequence Length

Baseline -A
-B -C

Figure 6: Experimental results on the chiplet system of Mozart. We report the average training
latency per step for 1k iterations, with the micro batch size for streaming attention/expert tokens set
to 8. (a) Study on the proposed optimization results (Sequence Length=256, DRAM=HBM2), with a
max latency of 4.87 s. (b) Study on the impact of the sequence length on Qwen3-30B-A3B Model
(DRAM=HBM2), with a max latency of 7.65 s. (c) Study on the impact of the DRAM bandwidth on
Qwen3-30B-A3B Model (Sequence Length=256), with a max latency of 9.17 s.
Table 4: The corelation between all-to-all communication complexity CT and end-to-end latency.
CT is calculated by averaging both the training iterations and the MoE layers for each setting.

Metric
Method Qwen3-30B-A3B-Base OLMoE-1B-7B-0924 DeepSeek-MoE-16B-Base

Mozart-A Mozart-B Mozart-C Mozart-A Mozart-B Mozart-C Mozart-A Mozart-B Mozart-C

Normalized Latency 0.73 0.59 0.52 0.63 0.48 0.422 0.67 0.56 0.46

CT 8 6.58 5.77 8 6.84 5.63 6 5.56 4.32

5.4 Further Investigation

Q1: Is Mozart memory-bound or computing-bound? A: Memory-bound. This is because our
proposed 3.5D chiplet architecture in Mozart can well-parallelize the MoE computation workload.
While this design successfully eliminates the computational bottleneck associated with heavy MoE
operations, the system’s overall latency becomes constrained by the sequential MoE weight loading
process. This fundamental limitation persists because weight loading throughput cannot be sub-
stantially improved without hardware resource upgrades. Consequently, Mozart’s performance is
primarily governed by this unavoidable sequential bottleneck inherent to current hardware constraints.

Q2: Which algorithmic deigns are more critical in Mozart? A: Communication-Computation
Overlap > Efficient All-to-All Communication > Specialized Expert Layout on Chiplets. The
key insights are: ❶ The communication overhead between DRAM and chiplets is the main bottleneck,
and applying it on the baseline can offer 1.33× acceleration on Qwen3-30B-A3B-Base, 1.58× on
OLMoE-1B-7B-0924, and 1.49× on DeepSeek-MoE-16B-Base. ❷ The all-to-all communication
overhead is a secondary bottleneck for training latency, since it requires synchronization across all the
chiplets and is constrained by the on-package bandwidth. Our specialized expert layout on chiplets
can further reduce the data volume during all-to-all communication, as we illustrated in Table 4.

Q3: Is Mozart compatible with existing efficient training algorithms? A: Yes, it is compatible
with parameter-efficient fine-tuning methods such as LoRA, QLoRA, etc. Mozart’ architecture
and scheduling mechanisms are designed to work orthogonally to these methods, as they primarily
focus on different optimization goals. While PEFT methods reduce the total trainable parameters,
Mozart optimizes the physical deployment of MoE workloads on chiplet architectures.

6 Conclusion and Limitations
We present Mozart, an algorithm-hardware co-design framework for efficient post-training of MoE-
LLMs on chiplet systems. By jointly optimizing expert allocation, fine-grained scheduling, and hetero-
geneous chiplet mapping on a 3.5D wafer-scale architecture, Mozart significantly improves communi-
cation efficiency and hardware utilization, enabling scalable and efficient deployment of modularized
workload. While Mozart demonstrates 1.92× performance improvement for Qwen3-30B-A3B-Base,
2.37× for OLMoE-1B-7B-0924 and 2.17× for DeepSeek-MoE-16B-Base on 3.5D wafer-scale ar-
chitectures, two limitations remain. First, the attention modules are assigned to an individual chiplet,
which may lead to suboptimal latency due to limited resources. This can be further tackled with data
or tensor parallelism. Second, the switches can become performance bottlenecks under high commu-
nication demand. While Mozart currently tries to reduce end-to-end latency through fine-grained
scheduling, further improvements may potentially be achieved by allocating more chiplet area to
switch resources and increasing bandwidth to achieve low-latency communication.

9

Acknowledgement

This research was partially funded by the National Institutes of Health (NIH) under award
1R01EB037101-01. The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies, either expressed or implied,
of the NIH. Tianlong Chen was also partially supported by the Amazon Research Award.

References
[1] Anonymous. Occult: Optimizing collaborative communications across experts for accelerated

parallel moe training and inference. In Forty-second International Conference on Machine
Learning, 2025.

[2] E. Bullmore and O. Sporns. Complex brain networks: graph theoretical analysis of structural
and functional systems. Nature reviews neuroscience, 10(3):186–198, 2009.

[3] E. Bullmore and O. Sporns. The economy of brain network organization. Nature reviews
neuroscience, 13(5):336–349, 2012.

[4] G. Buzsáki. Rhythms of the Brain. Oxford university press, 2006.

[5] D. Dai, C. Deng, C. Zhao, R. Xu, H. Gao, D. Chen, J. Li, W. Zeng, X. Yu, Y. Wu, et al.
Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models.
arXiv preprint arXiv:2401.06066, 2024.

[6] T. Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, 2024.

[7] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-efficient exact
attention with io-awareness. Advances in neural information processing systems, 35:16344–
16359, 2022.

[8] D. Das Sharma, G. Pasdast, Z. Qian, and K. Aygun. Universal chiplet interconnect express (ucie):
An open industry standard for innovations with chiplets at package level. IEEE Transactions on
Components, Packaging and Manufacturing Technology, 2022.

[9] Y. Dong, X. Liu, X. Hao, Y. Liang, R. Huang, L. Ye, and T. Jia. Hierarchical power co-
optimization and management for llm chiplet designs. In Proceedings of the 43rd IEEE/ACM
International Conference on Computer-Aided Design, ICCAD ’24, 2025.

[10] W. Duch. Brain-inspired conscious computing architecture. The Journal of mind and behavior,
pages 1–21, 2005.

[11] D.-A. et al. Deepseek-v3 technical report, 2025.

[12] W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39, 2022.

[13] T. Gale, D. Narayanan, C. Young, and M. Zaharia. Megablocks: Efficient sparse training with
mixture-of-experts. Proceedings of Machine Learning and Systems, 5:288–304, 2023.

[14] C. L. Gallen and M. D’Esposito. Brain modularity: a biomarker of intervention-related plasticity.
Trends in cognitive sciences, 23(4):293–304, 2019.

[15] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT press
Cambridge, 2016.

[16] C. Hwang, W. Cui, Y. Xiong, Z. Yang, Z. Liu, H. Hu, Z. Wang, R. Salas, J. Jose, P. Ram, et al.
Tutel: Adaptive mixture-of-experts at scale. Proceedings of Machine Learning and Systems,
5:269–287, 2023.

[17] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S. Chaplot, D. d. l.
Casas, E. B. Hanna, F. Bressand, et al. Mixtral of experts. arXiv preprint arXiv:2401.04088,
2024.

10

[18] N. Kashtan and U. Alon. Spontaneous evolution of modularity and network motifs. Proceedings
of the National Academy of Sciences, 102(39):13773–13778, 2005.

[19] M. Khairy, V. Nikiforov, D. Nellans, and T. G. Rogers. Locality-centric data and threadblock
management for massive gpus. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1022–1036, 2020.

[20] G. Krishnan, S. K. Mandal, C. Chakrabarti, J.-S. Seo, U. Y. Ogras, and Y. Cao. Impact of
on-chip interconnect on in-memory acceleration of deep neural networks. 18(2), 2022.

[21] H. T. Kung, B. McDanel, S. Q. Zhang, X. Dong, and C. C. Chen. Maestro: A memory-on-
logic architecture for coordinated parallel use of many systolic arrays. In 2019 IEEE 30th
International Conference on Application-specific Systems, Architectures and Processors (ASAP),
volume 2160-052X, pages 42–50, 2019.

[22] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun, N. Shazeer, and Z. Chen.
{GS}hard: Scaling giant models with conditional computation and automatic sharding. In
International Conference on Learning Representations, 2021.

[23] P. Li, Z. Zhang, P. Yadav, Y.-L. Sung, Y. Cheng, M. Bansal, and T. Chen. Merge, then compress:
Demystify efficient smoe with hints from its routing policy, 2024.

[24] S. Liu, R. M. Radway, X. Wang, J. Kwon, C. Trippel, P. Levis, S. Mitra, and H.-S. P. Wong.
Future of memory: Massive, diverse, tightly integrated with compute - from device to software.
In 2024 IEEE International Electron Devices Meeting (IEDM), pages 1–4, 2024.

[25] S. Luo, J. Peng, P. Li, H. Wang, and T. Chen. Hexa-moe: Efficient and heterogeneous-aware
training for mixture-of-experts, 2025.

[26] R. Mahajan, R. Sankman, N. Patel, D.-W. Kim, K. Aygun, Z. Qian, Y. Mekonnen, I. Salama,
S. Sharan, D. Iyengar, and D. Mallik. Embedded multi-die interconnect bridge (emib) – a high
density, high bandwidth packaging interconnect. In 2016 IEEE 66th Electronic Components
and Technology Conference (ECTC), pages 557–565, 2016.

[27] A. Mehonic and A. J. Kenyon. Brain-inspired computing needs a master plan. Nature,
604(7905):255–260, 2022.

[28] N. Muennighoff, L. Soldaini, D. Groeneveld, K. Lo, J. Morrison, S. Min, W. Shi, P. Walsh,
O. Tafjord, N. Lambert, Y. Gu, S. Arora, A. Bhagia, D. Schwenk, D. Wadden, A. Wettig, B. Hui,
T. Dettmers, D. Kiela, A. Farhadi, N. A. Smith, P. W. Koh, A. Singh, and H. Hajishirzi. Olmoe:
Open mixture-of-experts language models, 2024.

[29] S. Naffziger, N. Beck, T. Burd, K. Lepak, G. H. Loh, M. Subramony, and S. White. Pioneering
chiplet technology and design for the amd epyc™ and ryzen™ processor families : Industrial
product. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pages 57–70, 2021.

[30] T. OLMo, P. Walsh, L. Soldaini, D. Groeneveld, K. Lo, S. Arora, A. Bhagia, Y. Gu, S. Huang,
M. Jordan, et al. 2 olmo 2 furious. arXiv preprint arXiv:2501.00656, 2024.

[31] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[32] S. Rashidi, W. Won, S. Srinivasan, P. Gupta, and T. Krishna. Fred: Flexible reduction-
distribution interconnect and communication implementation for wafer-scale distributed training
of dnn models, 2024.

[33] J. Shah, G. Bikshandi, Y. Zhang, V. Thakkar, P. Ramani, and T. Dao. Flashattention-3: Fast
and accurate attention with asynchrony and low-precision. Advances in Neural Information
Processing Systems, 37:68658–68685, 2024.

11

[34] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang, B. Keller, A. Klinefelter,
N. Pinckney, P. Raina, S. G. Tell, Y. Zhang, W. J. Dally, J. Emer, C. T. Gray, B. Khailany,
and S. W. Keckler. Simba: Scaling deep-learning inference with multi-chip-module-based
architecture. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’52, page 14–27, New York, NY, USA, 2019. Association for
Computing Machinery.

[35] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. Outra-
geously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

[36] D. Stow, Y. Xie, T. Siddiqua, and G. H. Loh. Cost-effective design of scalable high-performance
systems using active and passive interposers. In 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 728–735, 2017.

[37] D. Stow, Y. Xie, T. Siddiqua, and G. H. Loh. Cost-effective design of scalable high-performance
systems using active and passive interposers. In 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 728–735, 2017.

[38] Synopsys. Design compiler: Concurrent timing, area, power, and test optimization.
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/
dc-ultra.html. accessed 2024.

[39] Synopsys. Primepower: Rtl to signoff power analysis. https://www.synopsys.com/
implementation-and-signoff/signoff/primepower.html, 2024. Accessed: 2024-11-
22.

[40] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto.
Stanford alpaca: An instruction-following llama model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

[41] Q. Team. Qwen3: Think deeper, act faster, April 2025.

[42] T. Wei, B. Zhu, L. Zhao, C. Cheng, B. Li, W. Lü, P. Cheng, J. Zhang, X. Zhang, L. Zeng,
X. Wang, Y. Ma, R. Hu, S. Yan, H. Fang, and Y. Zhou. Skywork-moe: A deep dive into training
techniques for mixture-of-experts language models, 2024.

[43] G. Yadgar, M. Gabel, S. Jaffer, and B. Schroeder. Ssd-based workload characteristics and their
performance implications. ACM Trans. Storage, 17(1), Jan. 2021.

[44] A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou, C. Li, C. Li, D. Liu, F. Huang, G. Dong,
H. Wei, H. Lin, J. Tang, J. Wang, J. Yang, J. Tu, J. Zhang, J. Ma, J. Xu, J. Zhou, J. Bai, J. He,
J. Lin, K. Dang, K. Lu, K. Chen, K. Yang, M. Li, M. Xue, N. Ni, P. Zhang, P. Wang, R. Peng,
R. Men, R. Gao, R. Lin, S. Wang, S. Bai, S. Tan, T. Zhu, T. Li, T. Liu, W. Ge, X. Deng, X. Zhou,
X. Ren, X. Zhang, X. Wei, X. Ren, Y. Fan, Y. Yao, Y. Zhang, Y. Wan, Y. Chu, Y. Liu, Z. Cui,
Z. Zhang, and Z. Fan. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

[45] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, H. Lin,
J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang,
L. Yu, M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Xia, X. Ren, X. Ren, Y. Fan,
Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu. Qwen2.5 technical report. arXiv
preprint arXiv:2412.15115, 2024.

[46] Z. Yu, S. Liang, T. Ma, Y. Cai, Z. Nan, D. Huang, X. Song, Y. Hao, J. Zhang, T. Zhi, Y. Zhao,
Z. Du, X. Hu, Q. Guo, and T. Chen. Cambricon-llm: A chiplet-based hybrid architecture
for on-device inference of 70b llm. In 2024 57th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1474–1488, 2024.

[47] M. Zhang, P. Li, J. Peng, M. Qiu, and T. Chen. Advancing moe efficiency: A collaboration-
constrained routing (c2r) strategy for better expert parallelism design, 2025.

12

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html
https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(After eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claim 1: Mozart is an algorithm-hardware co-design approach aiming at
efficient post-training of MoE-LLM on wafer-scale chiplet systems. We show this in Sec-
tion 4.1, and demonstrate the correlation between algorithm designs and chiplet architecture
in Figure 2. Claim 2: Mozart specializes the expert layout on chiplets to simultaneously
balance the workload for MoE chiplets and minimize the data volume in all-to-all communi-
cation. We show this in Section 4.2. We provide the motivations in Figure 3 and formulate
the procedures using Algorithm 1 and Equation 5. Claim 3: Mozart tackles the heavy
communication overhead between DRAM and MoE chiplets with fine-grained scheduling.
We illustrate this in Figure 4. Please see Section 4.3. Claim 4: Mozart designs novel 3.5D
chiplet architecture and the algorithm-to-hardware mapping strategy. We show the chiplet
architecture in Figure 5. Please see Section 4.4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

13

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are mentioned briefly throughout the paper and discussed in detail
in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (And correct) proof?

Answer: [Yes]

Justification: Please see Section 3.3 and Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

14

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all code and data necessary to reproduce every experimental result
that we describe in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] ,

Justification: We provide all experimental code and data. Please see the Appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (Appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide sufficient details to make sense of the results in the core paper.
Full details are provided in the available code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA] .

Justification: We follow previous works and conduct simulation experiments and ablation
studies, without including error bars or similar information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We employ NVIDIA A100 80G servers for profiling, with results shown in
Figure 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the guidelines of the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of Mozart in the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

17

https://neurips.cc/public/EthicsGuidelines

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: Our work does not involve the release of new models or data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The LLMs, datasets, and codebase used in our work comply with open-source
licenses and can be used for scientific research.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.

18

paperswithcode.com/datasets

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: This paper does not involve data annotation or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: We do not employ LLM to play a part in the core methodology, scientific
rigorousness, or originality of the research in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

19

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Code

Please find the code base for this paper here: https://anonymous.4open.science/r/mozart-0D75

B More Experimental Results

Figure 7: Normalized Latency Comparison for 3 MoE-LLMs with Sequence length 128. The
max wall-clock latency here is 7.61 s (Qwen3 model with baseline method using SSD for DRAM).

Figure 8: Normalized Latency Comparison for 3 MoE-LLMs with Sequence length 256. The
max wall-clock latency here is 9.17 s (Qwen3 model with baseline method using SSD for DRAM).

Figure 9: Normalized Latency Comparison for 3 MoE-LLMs with Sequence length 512. The
max wall-clock latency here is 13.03 s (Qwen3 model with baseline method using SSD for DRAM).

We provide comprehensive numerical latency results for all configurations, including 3 sequence
length (128, 256, 512), 4 methods (Mozart Baseline, A, B, and C), and 2 DRAM (SSD and HBM2).
Results comparison visualizations are provided in Figure 7, 8, and 9.

C Motivation Explanations

C.1 Why Attention is Memory-Bound and FFN is Compute-Bound

The chiplet architecture in Mozart utilized the fact that in a typical decoder layer in modern large
language models, the Attention module is memory-bound and the FFN module is computation-bound.
We demonstrate it using profiling experiments on the OLMo-2 model series [30]. The experiment
settings are:

• We examine a single decoder layer, and collect the wall-clock latency and the FLOPs for
both attention and FFN modules.

21

• The results are collected through running the forward pass, i.e., the prefilling stage of model
inference, and the results are normalized for easier comparison.

• We fix the batch size to 4 and test the sequence length of 512, 1024, and 2048.
• We select OLMo-2 models with 4 scales, including 1B, 7B, 13B, and 32B.

The profiling experiments are visualized in Figure 10 (1B), Figure 11 (7B), Figure 10 (13B), and
Figure 13 (32B). We can find that, the FFN module counts for more FLOPs but less wall-clock latency.
It is because the Attention module is memory-bound and the FFN module is computation-bound:

• The FFN module counts for more FLOPs because it contains more model parameters. But
the computation task for it is mainly composed of large matrix multiplication, which is easy
to parallelize. Therefore, the wall-clock latency of it can be lower than attention.

• The Attention module requires frequent memory access operations, which is demonstrated
by the Flash-Attention series [7, 6, 33]. Although it contains fewer model parameters, the
computation tasks here are difficult to parallelize. Therefore, the attention module counts
for more wall-clock latency.

Figure 10: Profiling results on latency & FLOPs for Attention & FFN using OLMo-2-0425-1B.

Figure 11: Profiling results on latency & FLOPs for Attention & FFN using OLMo-2-1124-7B.

Figure 12: Profiling results on latency & FLOPs for Attention & FFN using OLMo-2-1124-13B.

C.2 Challenges for Mixture-of-Expert Computation

We present 3 challenges for MoE computation in the abstract part of this paper, including memory
locality issues, communication overhead, and insufficient computing resource utilization. Our
algorithm-hardware co-design scheme in Mozart tries to solve these challenges with joint efforts.
We demonstrate these challenges through fine-tuning an OLMoE-1B-7B model with 4-way expert
parallelism, with batch size 8 on each GPU and sequence length 512. We use MegaBlocks [13],
the standard expert parallelism framework, for the MoE modules, and use data parallelism for the
attention modules. We employ the dropless MoE implementation. The training speed is 2-3 iterations
per second, and we monitor the behavior of each GPU with an interval of 0.1 s. We take 3 fragments
for visualization, as shown in Figure 14, 15, and 16, which demonstrate that both the GPU power and
the memory consumption show high dynamism. These phenomena can explain 2 challenges:

• Memory Locality Issues: Since the workload for each expert changes dynamically, the
activation tensors should be frequently allocated and freed, leading to severe memory
management issues.

22

Figure 13: Profiling results on latency & FLOPs for Attention & FFN using OLMo-2-0325-32B.

Figure 14: GPU Behavior Monitor at Time Step 6k-7k.

• Insufficient Computing Resource Utilization: The reason for this challenge lies in 2
aspects: (1) the dynamism of workload leads to dynamism of GPU power, and (2) the
dynamism of workload restricts the training batch size to avoid out-of-memory error, which
also constrains the utilization of GPU computing resources.

The all-to-all communication issues have been explained in Tutel [16], which is a significant bottle-
neck for training MoE models at scale, consuming up to 40% of the total runtime.

D Meassuring All-to-All Communication Complexity with CT

We propose to measure the all-to-all communication data volume in Section 3.3 using the average
replication times of each token, denoted as CT . We prove that CT is the least upper bound of the
ratio between actual all-to-all communication data volume and the total number of tokens. We take a
single all-to-all communication in D−way expert parallelism as an example, and denote the original
tokens as {Si}D−1

i=0 . For a single token t ∈ Si on device i, we denote the number of replications for
it transmitting from device i to device j as N j

i (t), i.e., token t on device i activates N j
i (t) experts

preserved on device j. In the standard expert parallel framework, given top-k routing, we have

∑D−1

j=0
N j

i (t) = k, ∀ t ∈ Si and ∀ 0 ≤ i ≤ D − 1. (6)

For the actual all-to-all communication data volume:

D−1∑
i=0

∑
t∈Si

(

i−1∑
j=0

N j
i (t) +

D−1∑
j=i+1

N j
i (t)) ≤

D−1∑
i=0

∑
t∈Si

(

i−1∑
j=0

N j
i (t) +N i

i (t) +

D−1∑
j=i+1

N j
i (t))

=

D−1∑
i=0

∑
t∈Si

(

D−1∑
j=0

N j
i (t))

≤ k ·
D−1∑
i=0

|Si|

(7)

The 2 inequalities in Equation 7 are reached when

23

Figure 15: GPU Behavior Monitor at Time Step 8k-9k.

Figure 16: GPU Behavior Monitor at Time Step 10k-11k.

• The first one is achieved when N i
i (t) = 0 for all 0 ≤ i ≤ D − 1 and t ∈ Si, i.e., no token

would activate the experts kept on the device where the token is originally kept.
• The second one is achieved for standard expert parallelism, i.e., making k replications for

each token in the dispatch stage under top-k routing.

The first inequality cannot be utilized for communication efficiency, since it is data-dependent and
task-dependent. While the second inequality can be leveraged by employing our proposed strategy in
Section 3.3.

E Impact Statement

As the paper’s primary innovation is efficiently deploying the post-training process of MoE-based
large language models on the chiplet-based system, it by itself doesn’t pose any obvious risks. The
potential for negative societal impact depends on the specific MoE-LLMs. We strongly recommend
these models be used in compliance with all ethical standards appropriate to the domain in which it is
targeted to be deployed.

24

	Introduction
	Related Works
	Preliminary
	Mixture-of-Experts
	Analyzing Expert Activation Prior
	Efficient All-to-All Communication

	Methodology
	Overview of Mozart
	Expert Collaboration for Efficient On-Package All-to-All Communication
	Fine-grained Scheduling with Streaming Tokens and Experts
	Wafer-Scale Chiplet Architecture

	Experiments
	Algorithmic Setup
	Hardware Setup
	Experimental Results
	Further Investigation

	Conclusion and Limitations
	Code
	More Experimental Results
	Motivation Explanations
	Why Attention is Memory-Bound and FFN is Compute-Bound
	Challenges for Mixture-of-Expert Computation

	Meassuring All-to-All Communication Complexity with CT
	Impact Statement

