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Abstract
We investigate online Linear Quadratic Regulator
(LQR) with bandit feedback and semi-adversarial
disturbances. Previous works assume costs with
homogeneous curvatures (i.e., with a uniform
strong convexity lower bound), which can be hard
to satisfy in many real scenarios and prohibits
adapting to true curvatures for better performance.
In this paper, we initiate the study of bandit LQR
control with heterogeneous cost curvatures, aim-
ing to strengthen the algorithm’s adaptivity. To
achieve this, we reduce the problem to bandit
convex optimization with memory via a “with-
history” reduction to avoid hard-to-control trun-
cation errors. Then we provide a novel analysis
for an important stability term that appeared in
both regret and memory, using Newton decrement
developed in interior-point methods. The analy-
sis enables us to guarantee memory-related terms
introduced in the reduction and also provide a sim-
plified analysis for handling heterogeneous curva-
tures in bandit convex optimization. Finally, we
achieve interpolated guarantees that can not only
recover existing bounds for convex and quadratic
costs but also attain new implications for cases of
corrupted and decaying quadraticity.

1. Introduction
There have been extensive studies on Linear Quadratic Reg-
ulator (LQR) and the more general Linear Quadratic Gaus-
sian (LQG) (Bellman, 1954; Kalman, 1960; Abbasi-Yadkori
and Szepesvári, 2011; Lewis et al., 2012; Cohen et al., 2018;
Dean et al., 2018; Mania et al., 2019). Specifically, LQR
considers controlling the following linear dynamical system:

xt+1 = Axt +But + ξt,
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where xt,ut denote the state and action,A,B are the system
transition matrices, and ξt is the disturbance. The system
evolves for T rounds, and at the t-th round, the learner
selects an action ut and observes the next state xt+1. The
goal of LQR is to minimize the following cumulative cost:

min
π∈Π

T∑
t=1

ct(x
π
t ,u

π
t ) ≜

T∑
t=1

xπt
⊤Qtx

π
t +

T∑
t=1

uπt
⊤Rtu

π
t ,

where ct(·, ·) represents the quadratic cost, parameterized
by the time-varying, positive semi-definite matrices Qt, Rt.
Here, xπt ,u

π
t denote the state and action generated by a

specific policy π, chosen from a policy class Π. In the online
version of LQR, the learner aims to minimize the game-
theoretic policy regret (Dekel et al., 2012), which depicts the
excess cumulative cost against the best policy in hindsight:

REGC
T ≜

T∑
t=1

ct(xt,ut)−min
π∈Π

T∑
t=1

ct(x
π
t ,u

π
t ), (1.1)

where xt,ut are produced by the online algorithm.

In this work, we investigate online LQR in the case
where the system transition matrices A,B are known,
the learner only obtains a scalar cost in each round
(also known as bandit feedback in online learning), and
the disturbances are semi-adversarial — a mixture of
stochastic and adversarial parts. In this setup, Sun et al.
(2023) obtained an optimal Õ(

√
T ) regret bound, up to

logarithmic factors. Moreover, when the cost functions are
generally convex, this problem intersects with recent studies
in online non-stochastic control (Hazan and Singh, 2022).
Notably, the pioneering work (Agarwal et al., 2019) attained
an Õ(

√
T ) regret bound through a novel reduction to on-

line convex optimization with memory (Anava et al., 2015).
The most related studies to ours, particularly in the bandit
setup, are those by (Gradu et al., 2020; Cassel and Koren,
2020). The authors obtained an Õ(T 3/4) regret bound for
Lipschitz and convex cost functions with adversarial distur-
bances, with Cassel and Koren (2020) further achieving an
improved Õ(T 2/3) result for smooth cost functions.

The latest work for bandit LQR control (Sun et al., 2023)
has achieved an Õ(α−1

min

√
T ) regret, where αmin is the min-

imum cost curvatures, i.e., Qt, Rt ⪰ αtI and αmin =
mint αt. While optimal in T , it presents unfavorable curva-
ture considerations for two reasons: (i) the learner must have
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Table 1: A summary of our results for bandit LQR control with heterogeneous curvatures. Below, αt is the curvature of the t-th quadratic
cost (i.e., Qt, Rt ⪰ αtI). Our general results are given in Theorem 3 and we provide four special cases: pure convexity, pure quadraticity,
corruptions in quadraticity, and decaying quadraticity, to demonstrate the adaptivity and robustness of our results. We use 1[·] to denote
the indicator function and T ⊆ [T ] for the rounds with no quadraticity. Notably, for either Lipschitz or smooth cost functions, the results
in four special cases can be achieved by one single algorithm. We distinguish the previous results by using a gray background color.

Convexity
(αt = 0)

Quadraticity
(αt = α > 0)

Corrupted Quadraticity
(αt = α · 1t/∈T )

Decaying Quadraticity
(αt = t−γ)

Lipschitz
Functions

Õ(T 3/4) (Gradu et al., 2020) N/A N/A N/A

Õ(T 3/4) [Corollary 1] Õ(T 2/3) [Corollary 1]

(when |T | = T 8/9)

Õ(T 2/3)

{
Õ(T

2/3+γ/3), γ ∈ [0, 1/4]

Õ(T
3/4), γ ∈ (1/4, 1]

[Corollary 3] [Corollary 5]

Smooth
Functions

Õ(T 2/3) (Cassel and Koren, 2020) Õ(
√
T ) (Sun et al., 2023) N/A N/A

Õ(T 2/3) [Corollary 2] Õ(
√
T ) [Corollary 2]

(when |T | = T 3/4)

Õ(
√
T )

{
Õ(T

1/2+γ/2), γ ∈ [0, 1/3]

Õ(T
2/3), γ ∈ (1/3, 1]

[Corollary 4] [Corollary 6]

access to the curvature lower bound αmin, which can be hard
to obtain before an algorithm initializes. This requirement
restricts the algorithm’s adaptivity to true curvatures (i.e.,
αt ≥ αmin) for better performance; and (ii) when there are
corruptions in the cost functions, e.g., there exist generally
convex costs in the function sequence, algorithms designed
for quadratic costs become unfeasible since αmin = 0. And
algorithms for convex costs will significantly degrade the
performance — e.g., the regret will become from Õ(

√
T )

to Õ(T 2/3) for smooth costs. Therefore, a natural question
arises: Is it possible design an algorithm that is adaptive to
heterogeneous curvatures for better performance and robust
to (possibly) corrupted cost functions?

Motivated by the question above, we focus on heteroge-
neous curvatures in bandit LQR control. As far as we know,
the study of heterogeneous curvatures in control has been
largely unexplored, with the exception of the work of Muthi-
rayan et al. (2022). Specifically, they study the full informa-
tion feedback, where the learner attains complete knowledge
of costs. By contrast, we focus on the more challenging
bandit feedback, which is common in many real-world ap-
plications where getting adequate feedback is hard.

Results. In this work, we achieve interpolated results that
are adaptive to the true curvatures of costs. Our results can
recover existing bounds and imply new ones in certain cases.
Specifically, for Lipschitz costs, we obtain interpolated
bounds between Õ(T 3/4) for convex functions (Gradu et al.,
2020; Cassel and Koren, 2020) and Õ(T 2/3) for quadratic
functions, a novel result in bandit LQR control. For smooth
costs, we achieve interpolated results between Õ(T 2/3) (Cas-
sel and Koren, 2020) and Õ(

√
T ) (Sun et al., 2023). More-

over, our results also imply meaningful guarantees in the
intermediate cases where corrupted or decaying quadraticity
exists. For instance, our results can maintain the desired

Õ(
√
T ) bound for smooth costs even when O(T 3/4) in T

functions are not quadratic. And for Lipschitz costs, the de-
sired Õ(T 2/3) bound is attainable even when O(T 8/9) of the
cost functions are not quadratic, thereby greatly enhancing
our method’s robustness. Table 1 summarizes our results.

Techniques. Many online decision-making tasks can be re-
duced to online learning with memory, an online model cap-
turing the impact of past decisions in the present. Prior stud-
ies used a truncation-based reduction with easy-to-control
truncation errors. However, heterogeneous curvatures with
bandit feedback requires the usage of self-concordant bar-
riers (Nesterov and Nemirovskii, 1994) as the regularizer
in online update, which are inherently unbounded near the
domain boundary and will thus make truncation errors hard-
to-control. To avoid it, we adopt a “with-history” reduction
scheme proposed by recent studies (Sun et al., 2023), which
admits a lossless reduction. Consequently, we address the
reduced problem within a non-oblivious adversary setup.

In both the regret and memory analysis, a key stability term,
which captures the switching of the decisions based on
certain local measures, is important. Luo et al. (2022) con-
ducted initial studies on this term in Bandit Convex Opti-
mization (BCO) with heterogeneous curvatures, using the
proof argument by contradiction and some local stability
analysis of self-concordant barriers. In this work, we further
identify the importance of this term in the memory analysis
and provide a simple analysis for it using Newton decrement
developed in interior-point methods (Nesterov and Ne-
mirovskii, 1994). This enables us to also provide a simpli-
fied regret analysis for BCO with heterogeneous curvatures.
Our main technical finding is given in Theorem 1.

Organization. The rest of the paper is structured as fol-
lows. Section 2 provides preliminaries of the problem setup
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and previous works on handling heterogeneous curvatures.
Section 3 presents our method and key analysis for bandit
LQR control with heterogeneous curvatures. Finally, Sec-
tion 4 concludes the work. Due to page limits, most proofs
are deferred to appendices.

2. Preliminaries
In this section, we introduce some preliminary knowledge,
including our problem setup and assumptions in Section 2.1,
and the latest progress on handling heterogeneous curvatures
in online convex optimization in Section 2.2.

2.1. Problem Setup

In this work, we investigate online Linear Quadratic Regula-
tor (LQR) control with bandit feedback, partial observations
(sometimes referred to as LQG control in literature), and
semi-adversarial disturbances. Concretely, we consider con-
trolling the following linear dynamical system:

xt+1 = Axt +But + ξt, yt = Cxt + et, (2.1)

where A ∈ Rdx×dx , B ∈ Rdx×du , C ∈ Rdy×dx are known
system transition matrices. Here, xt ∈ Rdx and ut ∈ Rdu
represent the state and action respectively, while yt ∈ Rdy
is a partial observation of the state. The learner can only
observe a bandit feedback, i.e., a scalar value of ct(yt,ut),
without access to the full function. Notably, same as Cassel
and Koren (2020); Gradu et al. (2020); Sun et al. (2023), we
consider the problem within an oblivious setup — the cost
functions and disturbances are chosen by the environments
in advance before the algorithm starts.

In the following, we list the assumptions used in this work.

Assumption 1 (Stablility). The system is stable, i.e., the
spectral radius ρ(A) < 1.

Assumption 2 (Disturbance). The disturbances {ξt, et}Tt=1

are semi-adversarial: ξt = ξadvt +ξstot and et = eadvt +estot ,
where E[ξstot ] = E[estot ] = 0, E[ξstot ξstot

⊤
] ⪰ Varξ · I ,

E[estot estot
⊤
] ⪰ Vare · I . Besides, ∥ξt∥2 , ∥et∥2 ≤W .

Assumption 3 (Cost). The cost ct(·, ·) is quadratic:

ct(y,u) = y⊤Qty + u⊤Rtu,

non-negative, αt-strongly convex and βc-smooth:

Qt, Rt ⪰ αtI, ∇2ct(·, ·) ⪯ βcI,

and Lipschitz: for all (y,u), (y′,u′) ∈ Rdy+du

|ct(y,u)− ct(y
′,u′)| ≤ LcRc∥(y − y′,u− u′)∥2,

where Rc ≜ max{∥(y,u)∥2, 1}.

The assumptions are common in the literature. Specifically,
Assumption 1 can be extended to strongly stabilizable sys-
tems, which are unstable but can be stabilized by a linear
controller, due to the reduction proposed in Appendix A of
Cassel et al. (2022). And Assumption 2 is typically consid-
ered when dealing with strongly convex cost functions (Sim-
chowitz et al., 2020; Sun et al., 2023). In Assumption 3,
while we provide a detailed list of various functional proper-
ties, not all of them are invoked for each result. The related
assumptions will be specified as needed.

Notations. For clarity, we use bold symbols (e.g., x)
within the control context and italic symbols (e.g., w or w)
within the online learning context. For simplicity, we define
xa:b ≜

∑b
i=a xi and x[a:b] ≜ (xa, . . . , xb) for variable x.

A function is described as α-quadratic when it is quadratic
with Qt, Rt ⪰ αI . We denote by ∥w∥A ≜

√
w⊤Aw a local

norm for any w and positive semi-definite matrix A.

2.2. Handling Heterogeneous Curvature

In online convex optimization (Hazan, 2016), the learner
submits a decision wt inside a convex compact set W ⊆ Rd,
aiming to minimize the regret (Cesa-Bianchi and Lugosi,
2006) defined on convex loss functions ht : W 7→ R, i.e.,

REGT ≜
T∑
t=1

ht(wt)− min
w∈W

T∑
t=1

ht(w). (2.2)

The problem of handling heterogeneous curvatures can be
traced back to the seminal work of Adaptive Online Gradient
Descent (AOGD) (Bartlett et al., 2007), which studies σt-
strongly convex loss function ht(·) and achieves adaptive
results to heterogeneous curvatures of loss functions.

The key idea of AOGD is implementing online gradi-
ent descent (Zinkevich, 2003) on regularized functions
{h̃t(·)}Tt=1, where h̃t(w) ≜ ht(w) + λt

2 ∥w∥22 for any
w ∈ W , with λt as the regularization coefficient. Intuitively,
AOGD chooses a larger λt to add more curvatures to the
functions for faster rates. As a price, this method requires a
delicate balance between the regularization term, dominated
by O(1/(σ1:t + λ1:t)), and a bias term of O(λt). As a con-
sequence, AOGD interpolates between the O(

√
T ) regret

for convex functions (Zinkevich, 2003) and the O(log T )
guarantee for strongly convex functions (Hazan et al., 2007).

Addressing heterogeneous curvatures with bandit feedback
is more challenging and was recently solved by Luo et al.
(2022). Similar to AOGD, their method also optimizes
the regularized loss functions. Differently, to handle the
bandit feedback, they use Follow-the-Regularized-Leader
(FTRL) (Abernethy et al., 2008) with self-concordant bar-
riers and a gradient estimator with shrinking sampling, fol-
lowing Hazan and Levy (2014). The algorithmic details
will be illuminated again in Section 3.2.1. In their work,
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the key challenge comes from a hard-to-analyze local-norm
term of ∥∇ψ(w)∥∇−2ψ(w), where ψ(·) is the FTRL reg-
ularizer. To handle this, they operate in a lifted domain
W ≜ {w = (w, 1) | w ∈ W} and construct a correspond-
ing normal barrier in W . This method enables bounding
the above term through the advantageous properties of the
normal barrier, inspired by Lee et al. (2020).

Self-concordant barriers, which becomes infinity near the
domain boundary, are commonly used in interior-point meth-
ods for convex optimization (Nesterov and Nemirovskii,
1994). For any closed convex set, there always exists a
corresponding self-concordant barrier. And a normal bar-
rier in the lifted domain can always be constructed from a
self-concordant barrier of the original domain. Interested
readers can refer to Appendix A for formal definitions and
properties about self-concordant and normal barriers.

To conclude, Luo et al. (2022) achieved interpolated results
between Õ(T 2/3) (Saha and Tewari, 2011) for convex func-
tions and Õ(

√
T ) (Hazan and Levy, 2014) for strongly con-

vex ones when functions are smooth, as well as interpolation
between Õ(T 3/4) (Flaxman et al., 2005) and Õ(T 2/3) for
Lipschitz functions. Furthermore, they investigated cases
where the cost functions are mixtures of convex and strongly
convex functions or have a decaying curvature coefficient,
and achieved meaningful guarantees therein.

Our work falls under the topic of universal online learning,
where the learner aims to design a single method capa-
ble of handling online functions with potentially different
properties. Existing studies consider two kinds of universal-
ity: the curvatures are known but heterogeneous (Bartlett
et al., 2007; Luo et al., 2022), or homogeneous but un-
known (van Erven and Koolen, 2016; Zhang et al., 2022;
Yan et al., 2023). While there are extensive studies on both
threads with full information feedback, existing research
with bandit feedback has only made progress on known but
heterogeneous curvatures due to limited information. Our
problem also falls in this category. Exploring homogeneous
but unknown curvatures with bandit feedback remains an
important future direction for investigation.

3. Our Method
This section proposes our method for handling heteroge-
neous curvatures in bandit LQR control. Section 3.1 reduces
the problem to BCO with memory (switching cost). Sec-
tion 3.2 handles heterogeneous curvatures in the reduced
online learning problem. Finally, Section 3.3 applies the
results back to the control setup.

3.1. “With-History” Reduction to BCO with Memory

In this part, we reduce bandit LQR control to BCO with
memory via a with-history reduction scheme, where the

memory can be further transformed into the stability analy-
sis between consecutive decisions. The reduction builds on
existing progress in handling partial observations and bandit
feedback in the control problem (Cassel and Koren, 2020;
Simchowitz et al., 2020; Sun et al., 2023).

Initially, we introduce the notion of “Nature’s y” following
Simchowitz et al. (2020), which is intuitively an external
observation of the cumulative impact of disturbances.

Definition 1. Nature’s y (denoted by ynat) is the observa-
tion without any action on the system. In system (2.1), in
the t-th round, given disturbances ξ1:t, e1:t, Nature’s y is
defined as ynat

t ≜ et +
∑t−1
i=1 CA

i−1ξt−i.

With Nature’s y, we introduce the Disturbance-Response
Policy (DRP) (Simchowitz et al., 2020), which is effective
for handling partial observations.

Definition 2. Given Nature’s ynat
t−m+1:t, a disturbance-

response policy, parameterized by an m-length tuple of
matrices M = (M [0], . . . ,M [m−1]), chooses the action
as ut(M) =

∑m−1
i=0 M [i]ynat

t−i. The DRP policy class is
defined as M ≜ {M |

∑m−1
i=0 ∥M [i]∥op ≤ R}.

Next we reduce the problem to BCO with memory. Impor-
tantly, due to the property of Nature’s y, it holds that yt =
ynat
t +

∑t−1
i=1 G

[i]ut−i(Mt−i), where G[i] ≜ CAi−1B is
the Markov operator of the system (2.1). Consequently, the
cost ct(yt,ut) can be reinterpreted as a function Ft of the
policies, i.e., Ft(M[1:t]). This reformulation leads to a prob-
lem with unbounded memory, which has a lower bound of
Ω(T ) (Cesa-Bianchi et al., 2013) and thus hard to handle.

To address this, previous works (Agarwal et al., 2019; Sim-
chowitz et al., 2020) proposed a truncation-based reduction,
which artificially erases the effect of actions of more than
H rounds before. The reduction imports a truncation error,
which can be easily handled in previous setups. For illustra-
tion, we decompose observation yt as follows:

yt = ynat
t +

H∑
i=1

G[i]ut−i(Mt−i)︸ ︷︷ ︸
HIST-I

+
t−1∑

i=H+1

G[i]ut−i(Mt−i)︸ ︷︷ ︸
HIST-II

,

where HIST-I includes the most recent H actions, i.e.,
M[t−H:t−1], and HIST-II comprises actions that are more
thanH steps away, i.e., M[1:t−H−1]. Given the system’s sta-
bility, previous works focus only on HIST-I, truncate HIST-
II, define a truncated observation ỹt ≜ ynat

t + (HIST-I),
and finally obtain a loss function with bounded history, i.e.,
ft(M[t−H:t]) ≜ ct(ỹt,ut), with an ignorable truncation er-
ror overhead. By doing this, they can reduce the problem to
BCO with bounded memory.

However, this truncated-based reduction will fail in our
problem. This is mainly because the truncation error, i.e.,
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ft(M[t−H:t]) ̸= ct(yt,ut), can be greatly enlarged when in-
corporating self-concordant barriers (necessary for handling
heterogeneous curvatures with bandit feedback), a concept
in interior-point methods (Nesterov and Nemirovskii, 1994).
Barrier functions are inherently unbounded near the domain
boundary and will make the bias hard to control, thus mak-
ing the truncation-based reduction fail for our purposes.

In this work, to avoid the hard-to-control truncation errors,
we leverage a “with-history” reduction scheme (Sun et al.,
2023), which allows a lossless reduction to BCO with mem-
ory. Intuitively, instead of truncating HIST-II, the method
integrates it into the cost function to define a with-history
function. A formal definition is provided below.

Definition 3. Given the Markov operator G of system (2.1)
and a cost function ct(·, ·), the with-history loss function
ft : MH+1 7→ R is defined as ft(N0, . . . , NH) ≜

ct

(
ynat
t +

H∑
i=1

G[i]ut−i(NH−i) + (HIST-II),ut(NH)

)
.

Accordingly, we define f̃t(N) ≜ ft(N, . . . , N).

The with-history function enjoys a notable lossless property:
ft(M[t−H:t]) = ct(yt,ut), effectively avoiding the hard-to-
control truncation errors mentioned earlier. However, the
lossless property comes with a price: the with-history func-
tion ft(·) can depend on past decisionsM[1:t−H−1], making
the reduced online learning problem a non-oblivious setup.
Handling a non-oblivious adversary is typically challenging
in BCO (Flaxman et al., 2005). The key difficulty is that the
comparator w⋆ ∈ argminw∈W

∑
t∈[T ] ht(w) becomes a

random variable as ht(·) may depend on the algorithm’s past
decisions, requiring analysis specially designed for the non-
oblivious setup. Fortunately, in bandit control, the compared
policy M⋆ ∈ argminM∈M

∑T
t=1 ct(yt(M),ut(M)) is

determined by the cost functions, hence deterministic since
the costs are obliviously chosen. This characteristic avoids
the undesired randomness and enables us to handle the re-
duced non-oblivious online learning problem.

Consequently, we reduce the problem to BCO with memory,
up to constant errors. The regret over the with-history losses
is defined and further decomposed as

REGM
T ≜

T∑
t=H′

ft(M[t−H:t])−
T∑

t=H′

f̃t(M
⋆)

≤
T∑
t=1

(
f̃t(Mt)− f̃t(M

⋆)
)

︸ ︷︷ ︸
UNARY-REG

+
T∑
t=1

(
ft(M[t−H:t])− f̃t(Mt)

)
︸ ︷︷ ︸

MEMORY

,

where H ′ ≜ H + m is the effective memory length. In
the last line, the first term (the unary regret) is the standard
regret defined on the unary function {f̃t(·)}Tt=1. And the

second term (the memory term) is essential in control prob-
lems and other online decision-making tasks, e.g., in online
Markov decision process (Even-Dar et al., 2009; Zhao et al.,
2022). Next we analyze these two terms respectively.

Optimizing the unary regret necessitates ∇f̃t(Mt), which
can be estimated using the value of f̃t(Mt) (Flaxman et al.,
2005). However, the learner only obtains a scalar value of
ft(M[t−H:t]), i.e., ct(yt,ut), which leads to a mismatch
between (Mt−H , . . . ,Mt) and (Mt, . . . ,Mt). To this end,
we adopt a lazy-update method (Cassel and Koren, 2020).
Specifically, at the t-th round, the learner draws a random
bit bt ∼ Bern(1/H), where Bern(1/H) is a Bernoulli distri-
bution with parameter 1/H. Once bt

∏H−1
i=1 (1− bt−i) = 1,

indicating thatMt−H = · · · =Mt, the learner estimates the
gradient using ft(M[t−H:t]). While the updates occur over
a smaller time horizon rather than the entire one, the unary
regret will be only 3H times larger. The typical choice of
H = Θ(log T ) will not affect the final bound.

It can be verified that the Lipschitzness and smoothness
of cost functions can be inherited to the with-history func-
tions, which is formally stated in Lemma 8 in Appendix B.
When the cost function ct(·, ·) is Lc-Lipschitz, ft(·) will be
coordinate-wise Lf -Lipschitz, and the memory term can be
bounded in the following way:

MEMORY ≤ 1

2
LfH

2
∑
t∈S

(ϑt + 2δt), (3.1)

where M̄t = E[Mt] denotes the policy without randomness,
ϑt ≜ ∥M̄t+1 − M̄t∥F measures the switching costs, and
δt ≜ ∥Mt − M̄t∥F represents the variance. When f̃t(·) is
Lf -Lipschitz and βf -smooth, the upper bound becomes

MEMORY ≤ 1

2
H2
∑
t∈S

(Lfϑt + βfϑ
2
t + 6βfδ

2
t ). (3.2)

To conclude, we reduce the problem to BCO with Switching
Cost (BCO-SC), by upper-bounding the memory with the
switching of policies (Cassel and Koren, 2020, Theorem 9).

3.2. Heterogeneous Curvature with Switching Cost

In this part, we address the BCO-SC (switching cost) prob-
lem with heterogeneous curvatures. For clarity, we frame
the problem within the online convex optimization setup,
as introduced in Section 2.2. Denoting by E[REGT ] the
expectation of (2.2), we investigate the following regret of

E[REGT ] +

T∑
t=2

∥wt − w̄t∥2 +
T∑
t=2

∥w̄t − w̄t−1∥2 (3.3)
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Algorithm 1 Subroutine of Luo et al. (2022)

Input: bandit value ht(wt), curvature σt, last-round deci-
sion w̄t, step size ηt+1, regularization coefficient λt

1: Estimate gradient gt ≜ d(ht(wt) +
λt

2 ∥wt∥22)H
1/2
t st

2: Update as w̄t+1 = argminw∈W Ft+1(w)

3: Compute Ht+1 ≜ ∇2Ψ(w̄t+1) + ηt+1(σ1:t + λ0:t)I

4: Draw st+1 randomly from Sd+1 ∩ (H
−1/2
t+1 ed+1)

⊥

5: Perturb wt+1 = (wt+1, 1) = w̄t+1 +H
−1/2
t+1 st+1

for Lipschitz functions, and for smooth functions, we study

E[REGT ] +

T∑
t=2

∥wt − w̄t∥22

+

T∑
t=2

∥w̄t − w̄t−1∥2 +
T∑
t=2

∥w̄t − w̄t−1∥22, (3.4)

according to the reduction in (3.1) and (3.2). For clarity,
we use italic symbols (e.g., w) in the original domain and
bold italic symbols (e.g., w) in the lifted domain.1 Next we
review the method of Luo et al. (2022) in Section 3.2.1 and
provide our key and simple analysis in Section 3.2.2.

3.2.1. REVIEW OF LUO ET AL. (2022)

This work studies heterogeneous curvatures in the BCO
setup. The algorithm runs in a lifted domain W ≜ {w =
(w, 1) | w ∈ W ⊆ Rd}. We describe the subroutine of the
t-th round in Algorithm 1. Specifically, after submitting
decision wt and receiving bandit feedback ht(wt) as well
as the curvature σt, the learner constructs an unbiased gra-
dient estimator in Line 1, where (ht(wt) +

λt

2 ∥wt∥22) is an
observation of the regularized function, st is a uniformly
unit vector for exploration, and Ht is a perturbation ma-
trix. In Line 2, an FTRL algorithm updates the decision as
w̄t+1 = argminw∈W Ft+1(w), where

Ft+1(w) ≜
t∑

s=1

(
g⊤
s w +

σs
2
∥w − w̄s∥22

)
(APPROX)

+

t∑
s=1

λs
2
∥w − w̄s∥22 +

λ0
2
∥w∥22 (REGLR-I)

+
1

ηt+1
Ψ(w). (REGLR-II)

Here, APPROX is the approximation of the original function
ht(·) using the gradient estimator gt, REGLR-I is a regular-
ization term following the same spirit of AOGD (Bartlett
et al., 2007), and REGLR-II is the FTRL regularizer, where
ηt+1 is a non-increasing step size and Ψ is a normal barrier

1wt and w̄t (in online learning context) correspond to Mt and
M̄t (in control context) respectively.

in the lifted domain. In Line 3, the learner constructs the
perturbation matrix Ht+1, which intuitively uses the curva-
ture of the domain and the function for effective exploration.
In Line 4, w⊥ represents space orthogonal to w. Finally, in
Line 5, the learner perturbs the updated decision.

Finally, we illuminate the parameter configurations of Algo-
rithm 1 (step sizes {ηt}Tt=1 and regularization coefficients
{λt}Tt=1). Specifically, for Lipschitz functions, we follow
Algorithm 2 of Luo et al. (2022) and set them as follows:

ηt = d−
4/3(Lf + 1)

2/3

(
1

σ1:t−1 + λ0:t−1
+

1

T

)1/3

,

λt =
d2/3(Lf + 1)2/3

(σ1:t + λ0:t)
1/3
, (3.5)

whereLf denotes the coordinate-wise Lipschitzness of ft(·).
And for smooth functions, we follow Algorithm 1 of Luo
et al. (2022) and set ηt and λt as follows:

ηt =
1
2d

√
βf+1

σ1:t−1+λ0:t−1
+ 1

T , λt =
d
√
βf+1

√
σ1:t+λ0:t

, (3.6)

where βf represents the smoothness of ft(·).

3.2.2. OUR ANALYSIS

In this part, we consider BCO-SC with heterogeneous cur-
vatures for our purpose. To this end, we provide a simple
half-page proof for an essential stability term in both regret
and memory analysis, using Newton decrement developed
in interior-point methods (Nesterov and Nemirovskii, 1994).
Notably, Luo et al. (2022) has conducted some initial analy-
sis on this term in the regret part using the proof argument
by contradiction and some local stability analysis of self-
concordant barriers. Our analysis can significantly simplify
their two-page proof (please refer to Lemma 17 therein).

To better illuminate our key technique, we first give some
basic knowledge of Newton decrement.
Definition 4. For a self-concordant function f defined on
W ,2 for any w ∈ int(W), the Newton decrement is defined
as λ(w, f) ≜ ∥∇f(w)∥∇−2f(w).

Newton decrement vanishes exactly at the minimizer w⋆

of f in the interior of W , denoted by int(W), and can be
considered as an observable measure of the proximity of
any w to w⋆. Specifically, it exhibits the following property.
Proposition 1. For a self-concordant barrier f , if the
Newton decrement λ(w, f) ≤ 1/2, then it follows that
∥w−w⋆∥∇2f(w) ≤ 2λ(w, f), wherew⋆ = argminw f(w).

In the following, we highlight a key stability term of
∥w̄t − w̄t+1∥Ht , which is essential in both the regret and

2The self-concordant function is a more general notion
than self-concordant barriers — self-concordant barrier are self-
concordant functions, but not vice versa.
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memory analysis: (i) in the standard FTRL regret analysis,
e.g., in Chapter 7 of Orabona (2019), an important term
is ⟨gt, w̄t − w̄t+1⟩. Given the local boundedness of the
gradient estimator, i.e., ∥gt∥H−1

t
≤ O(d), it is crucial to

analyze ∥w̄t − w̄t+1∥Ht
; (ii) the switching cost terms —

∥w̄t − w̄t+1∥2 and ∥w̄t − w̄t+1∥22 in (3.3) and (3.4) are
closely related to ∥w̄t − w̄t+1∥Ht , with the only difference
being the kinds of norms, showing that the stability term is
also essential in the memory analysis.

Below, we present our main technical contribution, a novel
stability analysis for ∥w̄t − w̄t+1∥Ht

, with a simple half-
page proof using Newton decrement.
Theorem 1 (Key Technical Result). Using {ηt}Tt=1 as step
sizes, as long as λ(w̄t,Ft+1) ≤ 1/2 is satisfied, Algorithm 1
guarantees the stability term as

∥w̄t − w̄t+1∥Ht ≤ 4dηt + 2η1

(
1

ηt+1
− 1

ηt

)√
ν̄,

where ν̄ denotes the normal barrier coefficient.

Proof. To begin with, we observe that

∇2Ft+1(w) ⪰ 1

ηt+1
∇2Ψt(w) ⪰ 1

η1
∇2Ψt(w) (3.7)

for any w ∈ W , where Ψt(w) ≜ Ψ(w) + ηtλ0

2 ∥w∥22 +

ηt
∑t−1
s=1

σs+λs

2 ∥w− w̄s∥22 such that Ft+1 can be rewritten
as Ft+1(w) =

∑t
s=1 g

⊤
s w + 1

ηt+1
Ψt+1(w) for any w ∈

W . The first step is due to the definitions of Ft+1 and
Ψt and the second step is because the step sizes are non-
increasing (i.e., η1 ≥ . . . ≥ ηt). With (3.7), it holds that

∥w̄t − w̄t+1∥Ht
= ∥w̄t − w̄t+1∥∇2Ψt(w̄t)

≤ √
ηt∥w̄t − w̄t+1∥∇2Ft+1(w̄t)

≤ 2
√
ηtλ(w̄t,Ft+1), (3.8)

where the first step is due to Ht ≜ ∇2Ψ(w̄t)+ ηt(σ1:t−1 +
λ0:t−1)I = ∇2Ψt(w̄t), the second step is by (3.7), and
the last step is because of the aforementioned property of
Newton decrement, as long as λ(w̄t,Ft+1) ≤ 1/2. This
condition will be verified in Lemma 1.

Next, Newton decrement λ(w̄t,Ft+1) can be bounded by

λ(w̄t,Ft+1) ≜ ∥∇Ft+1(w̄t)∥∇−2Ft+1(w̄t)

≤∥gt∥∇−2Ft+1(w̄t)︸ ︷︷ ︸
TERM (A)

+

(
1

ηt+1
− 1

ηt

)
∥∇Ψ(w̄t)∥∇−2Ft+1(w̄t)︸ ︷︷ ︸

TERM (B)

,

which is due to ∇Ft+1(w̄t) = ∇Ft(w̄t) + gt + (1/ηt+1 −
1/ηt)∇Ψ(w̄t) and ∇Ft(w̄t) = 0 since w̄t minimizes Ft.
Then TERM (A) can be bounded as

TERM (A) ≜ ∥gt∥∇−2Ft+1(w̄t)

(3.7)
≤ √

ηt∥gt∥∇−2Ψt(w̄t)

=
√
ηt∥gt∥H−1

t
≤ 2d

√
ηt,

where the second step is due to ∇2Ft+1(w) ⪰ 1
ηt
∇2Ψt(w),

the third step is because of the definition of Ht, and the last
step holds due to the property of the gradient estimator.

As for TERM (B), it holds that

∥∇Ψ(w̄t)∥∇−2Ft+1(w̄t) ≤
√
η1∥∇Ψ(w̄t)∥∇−2Ψ(w̄t) ≤

√
η1ν̄,

where the first step is due to ∇2Ft+1(w) ⪰ 1
η1
∇2Ψ(w) for

any w ∈ W , and the last step is due to the property of the
normal barrier, whose coefficient is denoted by ν̄. Putting
everything together finishes the proof.

The intuition of the proof is relating the local norm Ht

to ∇2Ft+1(·), where Ft+1 denotes the function that w̄t+1

minimizes. By doing so, we upper-bound it by the Newton
decrement λ(w̄t,Ft+1) using Proposition 1, which exhibits
some nice properties making the analysis much easier.

By aggregating Theorem 1 over T rounds, we get
∑
t ∥w̄t−

w̄t+1∥Ht
≤ O(η−1

T+1 +
∑
t ηt), a standard result in FTRL

regret analysis, e.g., in Chapter 7.3 of Orabona (2019). This
can be easily handled, and thus leads to a simplified regret
analysis for BCO with heterogeneous curvatures. Due to
space constraints, we defer the regret guarantees and proofs
to Lemma 9 and Lemma 10 in Appendix C.1.

Notably, Theorem 1 hinges on the condition λ(w̄t,Ft+1) ≤
1/2. In Lemma 1 below, we show that this condition can be
satisfied by a proper initialization of the regularization coef-
ficient λ0 and requiring the time horizon T to be larger than
a certain constant. The proof is deferred to Appendix C.2.

Lemma 1. Denoting by ν̄ the normal barrier coefficient,
λ(w̄t,Ft+1) ≤ 1/2 holds under the following conditions:

(i) ht(·) is Lf -Lipschitz, the time horizon T ≥ T0 =
213d4(Lf + 1)2(1 +

√
ν̄)6, and λ0 = T0;

(ii) ht(·) is βf -smooth, the time horizon T ≥ T0 =
128d2(1 +

√
ν̄)4, and λ0 = (βf + 1)T0.

Consequently, we obtain ∥w̄t − w̄t+1∥Ht ≤
√
η1 = O(1).

Upon bounding ∥w̄t− w̄t+1∥Ht
, we analyze the switching-

cost terms (i.e., ∥w̄t − w̄t+1∥2 and ∥w̄t − w̄t+1∥22) by
relating Ht to the identity matrix I . Consequently, we find
that the switching costs can be perfectly absorbed into the
regret analysis, validating the stability of Algorithm 1. By
doing this, we achieve adaptive guarantees to heterogeneous
curvatures in BCO-SC. Theorem 2 concludes the results,
and the corresponding proof is deferred to Appendix C.3.

Theorem 2. Suppose the function ht(·) is σt-strongly con-
vex, and denote by {λ⋆t }Tt=1 the optimal regularization coef-
ficients. When ht(·) is Lf -Lipschitz continuous, Algorithm 1
can upper-bound the BCO-SC regret (3.3) by

Õ

(
inf

λ⋆
1 ,...,λ

⋆
T

{
T

1/3 + λ⋆1:T−1 +

T−1∑
t=1

(σ1:t + λ⋆0:t)
−1/3

})
.
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When ht(·) is βf -smooth, Algorithm 1 can upper-bound the
BCO-SC regret (3.4) by

Õ

(
inf

λ⋆
1 ,...,λ

⋆
T

{
√
T + λ⋆1:T−1 +

T−1∑
t=1

(σ1:t + λ⋆0:t)
−1/2

})
.

Notably, the optimal regularization coefficients {λ⋆t }Tt=1

only exist in analysis. Therefore, we can plug in any feasi-
ble {λ†t}Tt=1 to achieve different guarantees in various cases.
Specifically, by doing this, our results can recover existing
regret guarantees, be robust to corrupted quadratic prop-
erties, and consider decaying quadraticity in bandit LQR
control. The details of these implications will be shown
in Section 3.3. At the end of this part, we provide several
remarks on the results and techniques in this work.

Remark 1. We have proved that Algorithm 1, designed for
BCO with heterogeneous curvatures, can also handle switch-
ing cost terms, as shown in Theorem 2. Our contribution lies
mainly in the technical aspect — achieving a simple analy-
sis for the stability term of ∥w̄t − w̄t+1∥Ht

, which enables
us to control the switching costs and provide a simplified
analysis for BCO with heterogeneous curvatures. ◁

Remark 2. We clarify that the techniques in this work
(with-history reduction and stability analysis) are general
beyond the specific problem studied here. Specifically, the
with-history reduction (Sun et al., 2023) can be used in
other bandit non-stochastic control problems to avoid the
undesired truncation error emerging in previous reduction
methods. Our stability analysis is also not restricted to this
specific context, as it can be used in other problems requir-
ing FTRL with time-varying step sizes and self-concordant
barriers (or normal barriers by domain lifting). ◁

Remark 3. In the control-reduced BCO-SC problem, we
need to handle a non-oblivious setup due to the with-history
losses. We emphasize again that the obliviousness inher-
ited from the control part makes our inner online learning
algorithm still feasible, as explained in Section 3.1. ◁

3.3. Back to Bandit LQR Control

In this part, we apply the results to the bandit LQR control
problem, and obtain interpolated theoretical guarantees that
are adaptive to the true curvatures of cost functions. Our re-
sults can thus recover existing results and imply new bounds
in certain cases, as summarized in Table 1.

We adapt the method and analysis in Section 3.2 and ob-
tain our method, which is summarized in Algorithm 2. In
summary, we adopt DRP policy (Definition 2) and define
with-history functions (Definition 3). We utilize the lazy-
update method of Cassel and Koren (2020) to realize effec-
tive gradient estimation on a smaller time horizon. When
the algorithm is scheduled to update, we follow the same

Algorithm 2 Heterogeneous Bandit LQR Control
Input: Initial regularization coefficient λ0, lifted domain
M, normal barrier Ψ(·) on M
Initialize: M̄1 = argminM∈M Ψ(M), dc = mdydu,
S = ∅ (record the time steps when the algorithm updates)
for t = H ′, . . . , T do

Receive an observation yt
Compute Nature’s ynat

t = yt −
∑t−1
i=1 G

[i]ut−i

Submit ut(Mt) =
∑m−1
i=0 M

[i]
t ynat

t−i via DRP policy
Receive ct(yt,ut) and its curvature αt
Compute curvature σt of the with-history loss
Draw a random bit bt ∼ Bern(1/H)
if bt

∏H−1
i=1 (1− bt−i) = 1 then

Update S = S ∪ {t}
Compute λt and ηt+1 using (3.5) for Lips-
chitz functions or (3.6) for smooth functions
▷ σ1:t and λ0:t are computed only on S
Send (ct(yt,ut), σt,M̄t, ηt+1, λt) to Algorithm 1
and obtain Mt+1

else
Maintain the current policy Mt+1 = Mt

end
end

method in the online learning context, that is, using Algo-
rithm 1 as a subroutine. The algorithms for Lipschitz and
smooth functions vary only in the setups of regularization
coefficients {λt}Tt=1 and step sizes {ηt}Tt=1. We defer these
configurations to (3.5) and (3.6) due to page constraints.

We provide our regret bounds for bandit LQR control in
Theorem 3, which is analogous to the online learning context
(Theorem 2). The proof can be found in Appendix D.1.

Theorem 3. Denoting by {λ⋆t }Tt=1 the optimal regulariza-
tion coefficients, for Lipschitz and αt-quadratic costs, under
Assumptions 1-2, by setting the regularization coefficients
{λt}Tt=0 and step sizes {ηt}Tt=1 as (3.5), Algorithm 2 can
bound the expected policy regret (i.e., E[REGC

T ]) as

Õ

(
inf

λ⋆
1 ,...,λ

⋆
T

{
T

1/3 + λ⋆1:T−1 +

T−1∑
t=1

(α1:t + λ⋆0:t)
−1/3

})
.

If the cost functions are additionally smooth, by choosing the
regularization coefficients {λt}Tt=0 and step sizes {ηt}Tt=1

as (3.6), Algorithm 2 bounds the expected policy regret as

Õ

(
inf

λ⋆
1 ,...,λ

⋆
T

{
√
T + λ⋆1:T−1 +

T−1∑
t=1

(α1:t + λ⋆0:t)
−1/2

})
.

As noted in Section 3.2.2, the optimal regularization coef-
ficients {λ⋆t }Tt=1 only exist in analysis. Therefore, we can
plug in any feasible {λ†t}Tt=1 to achieve different guarantees
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in various cases. Specifically, below we provide direct corol-
laries considering the cases of pure convexity / quadraticity,
corrupted quadraticity, and decaying quadraticity. The
corresponding proofs are deferred to Appendix D.2.

1 Pure Convexity/Quadraticity. Corollary 1 recovers
the Õ(T 3/4) regret for convex costs (Gradu et al., 2020;
Cassel and Koren, 2020). For quadratic costs, we obtain a
new Õ(α−1/3T 2/3) bound. For smooth costs, Corollary 2
recovers the Õ(T 2/3) regret for convex costs (Cassel and
Koren, 2020). Our Õ(α−1/2

√
T ) for quadratic functions

matches Õ(α−1
√
T ) of Sun et al. (2023) in the dependence

of T , with a tighter dependence on the curvature α.

Corollary 1. For Lipschitz costs, under Assumptions 1, 2,
when {ct(·, ·)}Tt=1 are convex, Algorithm 2 with configura-
tion (3.5) achieves an Õ(T 3/4) regret. When {ct(·, ·)}Tt=1

are α-quadratic, Algorithm 2 achieves Õ(α−1/3T 2/3).

Corollary 2. For Lipschitz and smooth costs, under As-
sumptions 1, 2, when {ct(·, ·)}Tt=1 are convex, Algorithm 2
with (3.6) achieves an Õ(T 2/3) regret. When {ct(·, ·)}Tt=1

are α-quadratic, Algorithm 2 achieves Õ(α−1/2
√
T ).

We note that an Õ(
√
T ) bound is also obtained in Theo-

rem 8 of Cassel and Koren (2020) for strongly convex and
smooth functions. However, a caveat is that they allow an
improper learning, i.e., allowing policies in a larger domain
outside M with the compared policy still in M. This elimi-
nates the use of self-concordant barriers, hence avoiding the
associated hard-to-control truncation errors.

Our Õ(
√
T ) bound is near-optimal compared to the Ω(

√
T )

lower bound (Shamir, 2013), as also stated by Sun et al.
(2023). Although the other results are sub-optimal in this
sense, they have matched the state-of-the-art bounds attain-
able by efficient algorithms (Flaxman et al., 2005; Saha and
Tewari, 2011). While some recent breakthroughs (Bubeck
et al., 2017; Lattimore, 2020) achieve the optimal Õ(

√
T ),

they are computationally expensive and not efficiently im-
plementable in practice. Achieving the optimal regret with
efficient methods in BCO is extremely challenging and is
still open in the community.

2 Corrupted Quadraticity. A naı̈ve solution is to dis-
card the non-quadratic (i.e., convex) ones, where the optimal
Õ(T 2/3) can be maintained when M = O(T 2/3) for Lips-
chitz costs. Corollary 3 shows that in the worst case (the first
bound), when M = O(T 8/9) functions are convex, the algo-
rithm can still maintain the same regret bound. In the best
case (the second bound), the desired bound is attainable even
when M = Θ(T ). Similarly, for smooth costs, a naı̈ve so-
lution can maintain the Õ(

√
T ) bound when M = O(

√
T ).

Corollary 4 shows that the same bound is attainable when
M = O(T 3/4) in the worst case (the first bound), and even

when M = Θ(T ) in the best case (the second bound).
Corollary 3. For Lipschitz costs, under Assumptions 1,
2, when M functions in {ct(·, ·)}Tt=1 are convex and the
rest are α-quadratic, Algorithm 2 with configuration (3.5)
guarantees Õ(M 3/4 + α−1/3(T −M)2/3). If the quadratic
functions appear in the first (T −M) rounds, the bound can
be further improved to Õ(α−1/3T (T −M)−1/3).
Corollary 4. For Lipschitz and smooth costs, under Assump-
tions 1, 2, when M functions in {ct(·, ·)}Tt=1 are convex and
the rest are α-quadratic, Algorithm 2 with configuration
(3.6) guarantees Õ(

√
T +M 2/3+α−1/2(T −M)1/2). If the

quadratic functions appear in the first (T −M) rounds, it
can be further improved to Õ(

√
T + α−1/2T (T −M)−1/2).

3 Decaying Quadraticity. Corollaries 5-6 study cost
functions with decaying quadraticity. The results show that
when αt = t−γ with γ > 0, the bounds will degenerate.
And when γ exceeds a specific threshold, the results become
the same as optimizing on purely convex costs, even if the
costs still exhibit quadratic properties.
Corollary 5. For Lipschitz costs, under Assumptions 1,
2, when ct(·, ·) is αt-quadratic with αt = t−γ for some
γ ∈ [0, 1], Algorithm 2 with configuration (3.5) achieves an
Õ(T 2/3+γ/3) regret if γ ∈ [0, 1/4], and Õ(T 3/4) otherwise.
Corollary 6. For Lipschitz and smooth costs, under As-
sumptions 1, 2, when ct(·, ·) is αt-quadratic with αt = t−γ

for some γ ∈ [0, 1], Algorithm 2 with (3.6) achieves an
Õ(T 1/2+γ/2) regret if γ ∈ [0, 1/3], and Õ(T 2/3) otherwise.
Remark 4. As opposed to the online setting, the Lipschitz-
ness assumption is still required for smooth costs in bandit
control. This is mainly caused by the reduction from bandit
control to BCO-M (and BCO-SC). The results for BCO-SC
do not require Lipschitzness for smooth loss functions. ◁

4. Conclusion and Future Directions
In this paper, we study bandit LQR control with heteroge-
neous curvatures. We obtain interpolated guarantees that
are adaptive to the true curvatures of costs. This is done via
a lossless with-history reduction scheme and a simple anal-
ysis of a local-norm stability term essential in both regret
and switching cost analysis, using Newton decrement.

As discusses at the end of Section 2, studies in universal
online learning with bandit feedback remains largely un-
explored. This work, along with that of Luo et al. (2022),
has made a first step in addressing this problem by consid-
ering known but heterogeneous curvatures. An important
future direction would be to investigate homogeneous but
unknown curvatures, a more challenging setup in universal
online learning, with bandit feedback. This problem is dif-
ficult even within bandit convex optimization, considering
only convex or strongly convex online functions.
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A. Self-concordant Barrier and Normal Barrier
In this section, we provide some background knowledge about self-concordant barriers and normal barriers.
Definition 5. A function ψ : int(W) → R is a self-concordant function if: (i) ψ is three times continuously differentiable
and convex, and becomes infinity along any sequence of points approaching the boundary of the domain; and (ii) For every
x ∈ Rd and w ∈ int(W), it holds that |∇3ψ(w)[x, x, x]| ≤ 2|∇2ψ(w)[x, x]|3/2.
Definition 6. If |∇ψ(w)[x]| ≤ ν1/2(|∇2ψ(w)[x, x]|)1/2, a self-concordant function ψ is a ν-self-concordant barrier.
Lemma 2 (Theorem 2.5.1 of Nesterov and Nemirovskii (1994)). For each closed convex body W ⊆ Rd, there always exists
an O(d)-self-concordant barrier on W .
Lemma 3 (Proposition 2.3.4 of Nesterov and Nemirovskii (1994)). If Ψ is a ν-normal barrier on W ⊆ Rd, then for
any w1, w2 ∈ int(W), it holds that: (i) ∥w∥2∇2Ψ(w) = w⊤∇2Ψ(w)w = ν; (ii) ∇2Ψ(w)w = −∇Ψ(w); (iii) Ψ(w1) ≥
Ψ(w2)− ν ln −⟨∇Ψ(w2),w1⟩

ν ; and (iv) ∥∇Ψ(w)∥2∇−2Ψ(w) = ν.

Lemma 4 (Proposition 5.1.4 of Nesterov and Nemirovskii (1994)). If ψ is a ν-self-concordant barrier on W ⊆ Rd,
then the function ψ(w, b) ≜ 400(ψ(w/b) − 2ν ln b) is a ν̄-normal barrier on con(W) with ν̄ = 800ν, where con(W) =
{0} ∪ {(w, b) | w/b ∈ W, w ∈ Rd, b > 0} is the conic hull of W lifted to Rd+1.
Lemma 5 (Proposition 2.3.2 of Nesterov and Nemirovskii (1994)). Let ψ : int(W) 7→ R be a ν-self-concordant barrier
over the closed convex set W , then for any w,w′ ∈ int(W), we have ψ(w′)− ψ(w) ≤ ν log 1

1−πw(w′) , where πw(w′) ≜

arg inft≥0{w + t−1(w′ − w) ∈ W} is the Minkowski function of W whose pole is on w, which is always in [0, 1].

B. Omitted Details of Section 3.1 (Reduction to Online Learning)
In this section, we give some omitted details of Section 3.1, including the truncation lemma (Lemma 6), the relationship of
regret bounds between the whole time horizon and the lazy-update horizon (Lemma 7), and the preservation of function
properties between the control cost and the truncated function (Lemma 8).
Lemma 6 (Appendix D.3 of Sun et al. (2023)). For Lipschitz costs, choosing memory length H = Θ(log T ) and
m = Θ(log T ) in the definition of DRP (Definition 2), for any fixed DRP policy M ∈ M, the cumulative gap between the
with-history loss function f̃t(M) (Definition 3) and the costs ct(yt(M),ut(M)) can be bounded by

T∑
t=1

f̃t(M)−
T∑
t=1

ct(yt(M),ut(M)) ≤ O(1).

Interested readers can refer to Appendix D.3 of Sun et al. (2023) for the proof.
Lemma 7 (Lemma 11 of Cassel and Koren (2020)). Suppose the lazy-update method chooses random bits b1:T from
Bern(1/H) independently, then for any decision sequence MH′:T and fixed comparator M , it holds that

E

[
T∑

t=H′

f̃t(Mt)−
T∑

t=H′

f̃t(M)

]
≤ 3H · E

[∑
t∈S

f̃t(Mt)−
∑
t∈S

f̃t(M)

]
,

where H ′ denote the effective memory length.

The Lipschitzness, strong convexity, and smoothness of the cost function can be preserved to the with-history loss functions,
as summarized in the following lemma.
Lemma 8 (Function Properties Connection (Sun et al., 2023, Lemma D.6)). The functional relationship between the cost
function ct and the with-history loss function ft (in Definition 3) or its unary version f̃t is as follows:

(i) For Lc-Lipschitz costs, ft is Lf -Lipschitz with Lf ≜ 2Lc
√
(1 +RRG)2 +R2RGR

2
nat

√
H , where R appears in the

definition of DRP policy class M (Definition 2).

(ii) For αt-quadratic costs, Et−H−1[f̃t] is σt-strongly convex with σt ≜ αt

(
Vare + Varξ

σmin(C)

1+∥A∥2
2

)
, where the expectation

Et−H−1[·] is taken on the randomness up to the (t−H − 1)-th round, due to Definition 3.

(iii) For βc-smooth costs, f̃t is βf -smooth with βf ≜ 4βcR
2
natR

2
GH .

In above results, Rnat denotes the upper bound for ∥ynat
t ∥2 and RG is the upper bound for ∥G∥ℓ1,op =

∑∞
i=1 ∥G[i]∥op.
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C. Omitted Proofs of Section 3.2 (BCO with Switching Cost)
In this section, we provide the proofs for Section 3.2, including simplified regret analyses for BCO with heterogeneous
curvatures, Lemma 1 and Theorem 2.

C.1. Simplified Regret Analysis for BCO with Heterogeneous Curvatures

In this part, we provide the regret analysis for BCO with heterogeneous curvatures (Luo et al., 2022) in Lemma 9 and
Lemma 10, with simplified proofs using our Theorem 1 for the crucial term of ∥w̄t − w̄t−1∥Ht

.

Lemma 9 (Theorem 21 of Luo et al. (2022)). If the loss functions {ht}Tt=1 is Lf -Lipschitz continuous and σt-strongly
convex, Algorithm 2 of Luo et al. (2022) ensures with any regularization coefficients {λt}Tt=1 ∈ (0, 1):

E

[
T∑
t=1

ht(wt)− min
w∈W

T∑
t=1

ht(w)

]
≤ Õ

(
T

1/3 + λ1:T +

T∑
t=1

(σ1:t−1 + λ0:t−1)
−1/3

)
.

Lemma 10 (Lemma 19 of Luo et al. (2022)). If the loss functions {ht}Tt=1 is βf -smooth and σt-strongly convex, Algorithm
1 of Luo et al. (2022) ensures with any regularization coefficients {λt}Tt=1 ∈ (0, 1):

E

[
T∑
t=1

ht(wt)− min
w∈W

T∑
t=1

ht(w)

]
≤ Õ

(
√
T + λ1:T +

T∑
t=1

(σ1:t−1 + λ0:t−1)
−1/2

)
.

Proof of Lemma 9. The proof mainly follows the Theorem 12 and Lemma 20 of Luo et al. (2022), and with our novel
analysis (i.e., Theorem 1) for the crucial stability term ∥w̄t − w̄t−1∥Ht

. To begin with, the regret can be decomposed into
the following parts:

E

[
T∑
t=1

ht(wt)−
T∑
t=1

ht(w
⋆)

]
= E

[
T∑
t=1

ht(wt)−
T∑
t=1

ht(w
⋆)

]

=

T∑
t=1

ht(wt)−
T∑
t=1

ht(w̄t)︸ ︷︷ ︸
1 EXPLORATION

+

T∑
t=1

ht(w̄t)−
T∑
t=1

h̃t(w̄t)︸ ︷︷ ︸
2 REGULARIZATION-I

+

T∑
t=1

h̃t(w̄t)−
T∑
t=1

ĥt(w̄t)︸ ︷︷ ︸
3 SMOOTH-I

+E

[
T∑
t=1

ĥt(w̄t)−
T∑
t=1

ĥt(w̃)

]
︸ ︷︷ ︸

5 REG-TERM

+

T∑
t=1

ĥt(w̃)−
T∑
t=1

h̃t(w̃)︸ ︷︷ ︸
3 SMOOTH-II

+

T∑
t=1

h̃t(w̃)−
T∑
t=1

ht(w̃)︸ ︷︷ ︸
2 REGULARIZATION-II

+

T∑
t=1

ht(w̃)−
T∑
t=1

ht(w
⋆)︸ ︷︷ ︸

4 COMPARATOR-BIAS

, (C.1)

where w⋆ ∈ argminw∈W
∑T
t=1 ht(w), w

⋆ = (w⋆, 1). ht is the lifted version of ht(·). h̃t(w) ≜ ht(w) + λt

2 ∥w(1:d)∥22
is a regularized version of ht(·). ĥt(w) ≜ Eb∈Bd+1 [h̃t(w +H

−1/2
t b)] is the smoothed version of h̃t(·). w̃ ≜ (1− 1/T) ·

w⋆ + 1/T · w̄1, where w̄1 is the minimizer of Ψ(·), i.e., w̄1 = argminw∈W Ψ(w).

1 EXPLORATION term, using the Lf -Lipschitzness of ht(·), can be bounded by

T∑
t=1

ht(wt)−
T∑
t=1

ht(w̄t) ≤ Lf

T∑
t=1

∥wt − w̄t∥2 = Lf

T∑
t=1

∥H−1/2
t st∥2 ≤

(
T∑
t=1

(σ1:t−1 + λ0:t−1)
−1/3

)
.

2 REGULARIZATION-I and REGULARIZATION-II can be bounded using the definition of h̃t(·). For any w ∈ W ,

T∑
t=1

h̃t(w)−
T∑
t=1

ht(w) ≤ O

(
T∑
t=1

λt

)
= O(λ1:T ). (C.2)
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3 SMOOTH-I and SMOOTH-II, using Lipschitzness of h̃t(·) and the definition of ĥt(·), can be bounded as

T∑
t=1

ĥt(w)−
T∑
t=1

h̃t(w) = Eb∈Bd+1

[
T∑
t=1

h̃t(w +H
−1/2
t b)−

T∑
t=1

h̃t(w)

]
≤ O

(
T∑
t=1

(Lf + λt)∥H−1/2
t b∥2

)

≤ O

(
T∑
t=1

1√
ηt(σ1:t−1 + λ0:t−1)

)
≤ O

(
T∑
t=1

(σ1:t−1 + λ0:t−1)
−1/3

)
,

for any w ∈ W , where the last step is due to the step size setup (3.5).

4 COMPARATOR-BIAS term, using the definition of w̃, i.e., w̃ ≜ (1− 1/T) ·w⋆ + 1/T · w̄1, can be bounded as

T∑
t=1

ht(w̃)−
T∑
t=1

ht(w
⋆) =

T∑
t=1

ht

((
1− 1

T

)
·w⋆ +

1

T
· w̄1

)
−

T∑
t=1

ht(w
⋆)

≤ 1

T

T∑
t=1

ht(w̄1)−
1

T

T∑
t=1

ht(w
⋆) ≤ O(1), (C.3)

which can be ignored. In the end, we analyze the most important 5 REG-TERM. Since ĥt(·) is (σt + λt)-strongly convex,

E

[
T∑
t=1

ĥt(w̄t)−
T∑
t=1

ĥt(w̃)

]
≤ E

[
T∑
t=1

(
∇ĥt(w̄t)

⊤(w̄t − w̃)− σt + λt
2

∥w̄t − w̃∥22
)]

= E

[
T∑
t=1

(
g⊤
t (w̄t − w̃)− σt + λt

2
∥w̄t − w̃∥22

)]
= E

[
T∑
t=1

ℓt(w̄t)−
T∑
t=1

ℓt(w̃)

]
,

where the second step is due to the unbiased gradient estimator, and the last step defines ℓt(w) ≜ g⊤
t w+ σt+λt

2 ∥w− w̄t∥22.
Consequently, the FTRL update rule w̄t+1 = argminw∈W Ft+1(w) can be rewritten as

w̄t+1 = argmin
w∈W

Ft+1(w) = argmin
w∈W

{
t∑

s=1

ℓs(w) +Rt+1(w)

}
= argmin

w∈W

{
t∑

s=1

ℓs(w) +R′
t+1(w)

}
,

where Rt+1(w) ≜ λ0

2 ∥w∥22 + 1
ηt+1

Ψ(w), and R′
t+1(w) ≜ Rt+1(w)− 1

ηt+1
Ψ(w̄1) =

λ0

2 ∥w∥22 + 1
ηt+1

(Ψ(w)−Ψ(w̄1)).
Using the regret guarantee of FTRL (Lemma 12), it holds that

T∑
t=1

ℓt(w̄t)−
T∑
t=1

ℓt(w̃) ≤ R′
T+1(w̃)−R′

1(w̄1) +

T∑
t=1

∇ℓt(w̄t)
⊤(w̄t − w̄t+1) +

T∑
t=1

(R′
t(w̄t+1)−R′

t+1(w̄t+1))

≤ R′
T+1(w̃)−R′

1(w̄1) +

T∑
t=1

g⊤
t (w̄t − w̄t+1) ≤

Ψ(w̃)−Ψ(w̄1)

ηT+1
+

T∑
t=1

g⊤
t (w̄t − w̄t+1) +O(1)

≤ ν̄ log T

ηT+1
+

T∑
t=1

g⊤
t (w̄t − w̄t+1) ≤

ν̄ log T

ηT+1
+ 2d

T∑
t=1

∥w̄t − w̄t+1∥Ht
, (C.4)

where the second step is due to ℓt(w̄t) = gt and R′
t(w) ≤ R′

t+1(w) for any w ∈ W since the step size sequence {ηt}Tt=1

is non-increasing. The third step is because of R′
1(w̄1) =

λ0

2 ∥w̄1∥22 ≥ 0 and λ0

2 ∥w̃∥22 ≤ O(1). The fourth step is due to
Lemma 5 with the fact that w̃ ≜ (1− 1/T) ·w⋆ + 1/T · w̄1, and omits the constant term O(1). The fifth step is due to the
upper bound of the gradient estimator:

∥gt∥2H−1
t

= d2
(
ht(wt) +

λt
2
∥wt∥22

)2 ∥∥∥H1/2
t st

∥∥∥2
H−1

t

≤ d2
(
1 +

λt
2

)2

≤ 4d2, (C.5)

which implies ∥gt∥H−1
t

≤ 2d. The second step requires ht(·) ≤ 1, which can be assumed without loss of generality.
Consequently, the

∑
t∈[T ] ∥w̄t − w̄t+1∥Ht term, using Theorem 1, can be bounded as

T∑
t=1

∥w̄t − w̄t+1∥Ht ≤ 4d

T∑
t=1

ηt + 2η1
√
ν̄

T∑
t=1

(
1

ηt+1
− 1

ηt

)
≤ O

(
1

ηT+1
+

T∑
t=1

ηt

)
.
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Plugging the above upper bound back into (C.4), we can upper-bound the REG-TERM as

REG-TERM ≤ O

(
log T

ηT+1
+

T∑
t=1

ηt

)
≤ Õ

(
T

1/3 +

T∑
t=1

(σ1:t−1 + λ0:t−1)
−1/3

)
.

Combining all parts finishes the proof.

Proof of Lemma 10. We decompose the regret using the same way as (C.1) in Lemma 9. To begin with, 1 EXPLORATION,
using the βf -smoothness of ht(·), can be bounded by

T∑
t=1

ht(wt)−
T∑
t=1

ht(w̄t) ≤
βf
2

T∑
t=1

∥wt − w̄t∥22 =
βf
2

T∑
t=1

∥H−1/2
t st∥22 ≤

(
T∑
t=1

(σ1:t−1 + λ0:t−1)
−1/2

)
.

2 REGULARIZATION-I and REGULARIZATION-II can bounded by O(λ1:T ) as (C.2). For 3 SMOOTH-I and SMOOTH-II,
using smoothness of h̃t(·) and the definition of ĥt(·), for any w ∈ W , it holds that

T∑
t=1

ĥt(w)−
T∑
t=1

h̃t(w) = Eb∈Bd+1

[
T∑
t=1

h̃t(w +H
−1/2
t b)−

T∑
t=1

h̃t(w)

]
≤ O

(
T∑
t=1

(βf + λt)∥H−1/2
t b∥22

)

≤ O

(
T∑
t=1

1

ηt(σ1:t−1 + λ0:t−1)

)
≤ O

(
T∑
t=1

(σ1:t−1 + λ0:t−1)
−1/2

)
,

where the last step is due to the step size setup (3.6). 4 COMPARATOR-BIAS can be bounded by O(1) as (C.3). It remains
to handle the most important 5 REG-TERM. Specifically, following the same proof as Lemma 9, we obtain

REG-TERM ≤ O

(
log T

ηT+1
+

T∑
t=1

ηt

)
≤ Õ

(
√
T +

T∑
t=1

(σ1:t−1 + λ0:t−1)
−1/2

)
.

Combining all parts finishes the proof.

C.2. Proof of Lemma 1

Proof. From the proof of Theorem 1, we can first upper-bound the concerned λ(w̄t,Ft+1) as follows:

λ(w̄t,Ft+1) ≤ 2d
√
ηt +

(
1

ηt+1
− 1

ηt

)√
η1ν̄.

In the following, we discuss the Lipschitzness and smoothness cases respectively.

Lipschitzness Case. Due to the step size configurations (3.5), it holds that

1

ηt+1
− 1

ηt
≤ d

4/3(Lf + 1)−
2/3

((
1

σ1:t + λ0:t
+

1

T

)−1/3

−
(

1

σ1:t−1 + λ0:t−1
+

1

T

)−1/3
)

≤ d
4/3(Lf + 1)−

2/3
(
(σ1:t + λ0:t)

1/3 − (σ1:t−1 + λ0:t−1)
1/3
)
≤ d

4/3(Lf + 1)−
2/3(σt + λt)

1/3

≤ d
4/3(Lf + 1)−

2/3(4Lf + 1)
1/3 ≤ 2

2/3d
4/3

where the second last step is due to σt ≤ 4Lf by Lemma 11. Thus it suffices to choose η1 such that λ(w̄t,Ft+1) ≤
2d4/3√η1(1 +

√
ν̄) ≤ 1/2, i.e., η1 ≤ 1

16d8/3(1+
√
ν̄)2

. Consequently, requiring T ≥ λ0, it suffices to require

η1 = d−
4/3(Lf + 1)

2/3

(
1

λ0
+

1

T

)1/3

≤ 2
1/3d−

4/3(Lf + 1)
2/3λ

−1/3
0 ≤ 1

16d8/3(1 +
√
ν̄)2

,

which can be satisfied by setting λ0 = 213d4(Lf + 1)2(1 +
√
ν̄)6 and assuming T ≥ λ0.
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Smoothness Case. Due to the step size configurations (3.6), it holds that

1

ηt+1
− 1

ηt
≤ 2d

 1

1
2d

√
βf+1

σ1:t+λ0:t
+ 1

T

− 1

1
2d

√
βf+1

σ1:t−1+λ0:t−1
+ 1

T


≤ 2d√

βf + 1

(√
σ1:t + λ0:t −

√
σ1:t−1 + λ0:t−1

)
≤ 2d

√
σt + λt√
βf + 1

≤ 2d,

where the last step is due to λt ∈ (0, 1) and σt ≤ βf . Thus it suffices to choose η1 such that λ(w̄t,Ft+1) ≤ 2d
√
η1(1 +√

ν̄) ≤ 1/2, i.e., η1 ≤ 1
16d2(1+

√
ν̄)2

. Consequently, requiring 1/T ≤ (βf + 1)/λ0, it suffices to require

η1 =
1

2d

√
βf + 1

λ0
+

1

T
≤ 1

2d

√
2(βf + 1)

λ0
≤ 1

16d2(1 +
√
ν̄)2

,

which can be satisfied by setting λ0 = 128d2(βf + 1)(1 +
√
ν̄)4 and assuming T ≥ 128d2(1 +

√
ν̄)4. Notably, given

λ(w̄t,Ft+1) ≤ 1/2, we directly obtain ∥w̄t − w̄t+1∥Ht ≤
√
η1 = O(1) from (3.8), which is useful for the switching cost

analysis. The proof is finished.

C.3. Proof of Theorem 2

Proof. In this theorem, we analyze the regret of BCO with switching cost. To begin with, we define a sequence of functions
in the lifted domain ht : W 7→ R such that ht(w) ≜ ht(w(1:d)) for any w ∈ W , where w(1:d) denotes the first d entries
of w. It is easy to verify that ht can still inherit the σt-strong convexity, Lf -Lipschitzness, and βf -smoothness from the
original function ht. We investigate the following regrets with switching costs in the Lipschitzness and smoothness cases
respectively, where some problem-dependent constants are omitted. Specifically, for Lipschitz functions,

REGSC-LIP
T ≜ E

[
T∑
t=1

ht(wt)− min
w∈W

T∑
t=1

ht(w)

]
+

T∑
t=2

∥wt − w̄t∥2 +
T∑
t=2

∥w̄t − w̄t−1∥2. (C.6)

And for smooth functions, we study

REGSC-SM
T ≜ E

[
T∑
t=1

ht(wt)− min
w∈W

T∑
t=1

ht(w)

]
+

T∑
t=2

∥wt − w̄t∥22 +
T∑
t=2

∥w̄t − w̄t−1∥2 +
T∑
t=2

∥w̄t − w̄t−1∥22. (C.7)

In the following, we discuss the Lipschitzness and smoothness cases respectively.

Lipschitzness Case. To begin with, the unary regret part can be upper-bounded using the guarantee of Luo et al. (2022)
for Lipschitz functions. We restate it in Lemma 9 with the corresponding proof in Appendix C.1 for self-containedness.

In the following, we focus on the switching cost terms. Since wt = w̄t +H
−1/2
t b, ∥wt − w̄t∥2 can be bounded as

∥wt − w̄t∥2 = ∥H−1/2
t b∥2 ≤ O

(
(σ1:t−1 + λ0:t−1)

−1/3
)
,

where the last step is because of Ht = ∇2Ψ(w̄t) + ηt(σ1:t−1 + λ0:t−1)I and the step size setup (3.5). Since Ht ⪰
ηt(σ1:t−1 + λ0:t−1)I , we obtain

∥w̄t − w̄t−1∥2 ≤ ∥w̄t − w̄t−1∥Ht

ηt(σ1:t−1 + λ0:t−1)
≤ η1
ηt(σ1:t−1 + λ0:t−1)

≤ O
(
(σ1:t−1 + λ0:t−1)

−2/3
)
,

where the second step is due to Lemma 1 and the last step is due to the step size setup (3.5) and η1 = O(1). In the following,
we show that the above term can be absorbed by O((σ1:t−1+λ0:t−1)

−1/3). Specifically, due to (3.5) and λt ∈ (0, 1), it holds
that d2/3(Lf +1)2/3/(σ1:t+λ0:t)

1/3 < 1, which implies (σ1:t+λ0:t)
1/3 > d2/3(Lf +1)2/3 > 1. As a result, σ1:t+λ0:t > 1,

and thus O((σ1:t−1 + λ0:t−1)
−2/3) ≤ O((σ1:t−1 + λ0:t−1)

−1/3). Combining all terms, the regret with switching cost (C.6)
can be bounded by

REGSC-LIP
T ≤ Õ

(
T

1/3 + λ1:T +

T∑
t=1

(σ1:t−1 + λ0:t−1)
−1/3

)
≤ Õ

(
T

1/3 + λ1:T−1 +

T−1∑
t=1

(σ1:t + λ0:t)
−1/3

)
,
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for any regularization coefficients {λt}Tt=1 ∈ (0, 1), where the last step is due to λT ∈ (0, 1) and (σ1:0+λ0)−
1/3 ≤ λ

−1/3
0 ≤ 1

(λ0 ≥ 1 because of Lemma 1).

Later, following Lemma 22 of Luo et al. (2022), by setting the regularization coefficient as λt ≈ (σ1:t+ λ0:t)
−1/3, the regret

of BCO with switching cost for Lipschitz functions can be bounded by the optimal regularization coefficients {λ⋆t }Tt=1:

REGSC-LIP
T ≤ Õ

(
inf

λ⋆
1 ,...,λ

⋆
T

{
T

1/3 + λ⋆1:T−1 +

T−1∑
t=1

(σ1:t + λ⋆0:t)
−1/3

})
,

which finishes the proof.

Smoothness Case. To begin with, the unary regret part can be upper-bounded using the guarantee of Luo et al. (2022) for
smooth functions. We restate it in Lemma 10 with the corresponding proof in Appendix C.1 for self-containedness.

In the following, we focus on the switching cost terms. Since wt = w̄t +H
−1/2
t b, ∥wt − w̄t∥22 can be bounded as

∥wt − w̄t∥22 = ∥H−1/2
t b∥22 ≤ O

(
(σ1:t−1 + λ0:t−1)

−1/2
)
,

where the last step is because of Ht ≜ ∇2Ψ(w̄t) + ηt(σ1:t−1 + λ0:t−1)I and the step size setup (3.6). Since Ht ⪰
ηt(σ1:t−1 + λ0:t−1)I , we obtain

∥w̄t − w̄t−1∥2 ≤ ∥w̄t − w̄t−1∥Ht

ηt(σ1:t−1 + λ0:t−1)
≤ η1
ηt(σ1:t−1 + λ0:t−1)

≤ O
(
(σ1:t−1 + λ0:t−1)

−1/2
)
,

where the second step is due to Lemma 1 and the last step is due to the step size setup (3.6) and η1 = O(1). Accordingly,

∥w̄t − w̄t−1∥22 ≤ O
(
(σ1:t−1 + λ0:t−1)

−1
)
.

In the following, we show that the above term can be absorbed by O((σ1:t−1 + λ0:t−1)
−1/2). Specifically, due to (3.6)

and λt ∈ (0, 1), it holds that d
√
βf + 1/

√
σ1:t + λ0:t < 1, which implies

√
σ1:t + λ0:t > d

√
βf + 1 > 1. As a result,

σ1:t + λ0:t > 1, and thus O((σ1:t−1 + λ0:t−1)
−1) ≤ O((σ1:t−1 + λ0:t−1)

−1/2). Combining all terms, the regret with
switching cost (C.7) can be bounded by

REGSC-SM
T ≤ Õ

(
√
T + λ1:T +

T∑
t=1

(σ1:t−1 + λ0:t−1)
−1/2

)
≤ Õ

(
√
T + λ1:T−1 +

T−1∑
t=1

(σ1:t + λ0:t)
−1/2

)
,

for any regularization coefficients {λt}Tt=1 ∈ (0, 1), where the last step is due to λT ∈ (0, 1) and (σ1:0+λ0)−
1/2 ≤ λ

−1/2
0 ≤ 1

(λ0 ≥ 1 because of Lemma 1).

Later, following Lemma 6 of Luo et al. (2022), by setting the regularization coefficient as λt ≈ (σ1:t + λ0:t)
−1/2, the regret

of BCO with switching cost for smooth functions can be bounded by the optimal regularization coefficients {λ⋆t }Tt=1:

REGSC-SM
T ≤ Õ

(
inf

λ⋆
1 ,...,λ

⋆
T

{
√
T + λ⋆1:T−1 +

T−1∑
t=1

(σ1:t + λ⋆0:t)
−1/2

})
,

which finishes the proof.

D. Omitted Proofs of Section 3.3 (Bandit LQR Control)
In this section, we provide the omitted proofs of Section 3.3, including Theorem 3, and corollaries considering the cost
functions with pure convexity and quadraticity (Corollary 1 and 2), corrupted quadraticity (Corollary 3 and 4), and decaying
quadraticity (Corollary 5 and 6).
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D.1. Proof of Theorem 3

Proof. To begin with, we decompose the regret in the following way.

E[REGC
T ] = E

[
T∑
t=1

ct(yt,ut)−min
π∈Π

T∑
t=1

ct(y
π
t ,u

π
t )

]
= E

[
T∑
t=1

ct(yt,ut)−
T∑
t=1

ct(yt(M
⋆),ut(M

⋆))

]

≤
H′−1∑
t=1

ct(yt,ut)︸ ︷︷ ︸
BURN-IN

+

T∑
t=H′

ct(yt,ut)−
T∑

t=H′

ft(M[t−H:t])︸ ︷︷ ︸
TERM (I)

+

T∑
t=H′

f̃t(M
⋆)−

T∑
t=H′

ct(yt(M
⋆),ut(M

⋆))︸ ︷︷ ︸
TERM (II)

+E

[
T∑

t=H′

ft(M[t−H:t])−
T∑

t=H′

f̃t(M
⋆)

]
︸ ︷︷ ︸

REGRET

,

where the first line is due to the definition of the optimal fixed policy M⋆ ∈ argminM∈M
∑T
t=1 ct(yt(M),ut(M)), which

is fixed due to the cost functions {ct(·, ·)}Tt=1 are chosen by an oblivious adversary. For Lipschitz costs, by choosing the
memory length H = Θ(log T ), the burn-in cost can be bounded by

∑m+H
t=1 E[ct(yt,ut)] ≤ Õ(1). TERM (I) is exactly zero

due to the property of with-history loss functions, i.e., ft(M[t−H:t]) = ct(yt,ut). And TERM (II) is the truncation error,
which is at most Õ(1) due to Lemma 6.

Finally, it remains to deal with the REGRET term. We first give it a further decomposition:

REGRET =

T∑
t=H′

ft(M[t−H:t])−
T∑

t=H′

f̃t(Mt)︸ ︷︷ ︸
MEMORY

+E

[
T∑

t=H′

f̃t(Mt)−
T∑

t=H′

f̃t(M
⋆)

]
︸ ︷︷ ︸

UNARY-REG

,

where ft : MH+1 7→ R denotes the loss function in lifted domain such that ft(M1, . . . ,MH+1) ≜ ft(M1, . . . ,MH+1)

for any Mi = (Mi, 1). Its unary version is correspondingly defined as f̃t(M) ≜ ft(M , . . . ,M) for any M ∈ M. It can
be verified that f̃t(·) can still inherit the σt-strong convexity, Lf -Lipschitzness, and βf -smoothness from the original ft(·).

Denoting by S the time horizon when the algorithm updates, the unary regret will only become 3H times larger (Lemma 7):

UNARY-REG ≤ 3H · E

[∑
t∈S

f̃t(Mt)−
∑
t∈S

f̃t(M
⋆)

]
.

We note that since the comparator M⋆ (and thus M⋆) is fixed, we can easily extend Lemma 7 for non-oblivious adversary.
To further deal with the unary regret, we denote by ft;H(M) ≜ Et−H−1[f̃t(M)] the expected version of f̃t(·) for any
M ∈ M. Due to Lemma 8, ft;H(·) is σt-strongly convex. It is easy to verify that ft;H(M) ≜ Et−H−1[f̃t(M)] is also
σt-strongly convex for any M = (M, 1) ∈ M. As a result, the E[f̃t(Mt) − f̃t(M

⋆)] term in the unary regret can be
further transformed to

E
[
f̃t(Mt)− f̃t(M

⋆)
]
= E

[
Et−H−1

[
f̃t(Mt)− f̃t(M

⋆)
]]

= E [ft;H(Mt)− ft;H(M⋆)]

≤ E
[
⟨∇ft;H(Mt),Mt −M⋆⟩ − σt

2
∥Mt −M⋆∥2F

]
= E

[
⟨gt,Mt −M⋆⟩ − σt

2
∥Mt −M⋆∥2F

]
︸ ︷︷ ︸

OPT-TERM

+E [⟨∇ft;H(Mt)− gt,Mt −M⋆⟩]︸ ︷︷ ︸
BIAS-TERM

,

where the first line is due to the definition of ft;H(·), the second line is because of the strong convexity of ft;H(·). The
OPT-TERM in the third line can be optimized in a deterministic way following the same analysis as that in Lemma 9 and
Lemma 10. To optimize the BIAS-TERM, we give it a further decomposition:

BIAS-TERM = E
[
⟨∇ft;H(Mt)−∇f̃t(Mt),Mt −M⋆⟩

]
+ E

[
⟨∇f̃t(Mt)− gt,Mt −M⋆⟩

]
,
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where the first term

E
[
⟨∇ft;H(Mt)−∇f̃t(Mt),Mt −M⋆⟩

]
= E

[
⟨Et
[
∇ft;H(Mt)−∇f̃t(Mt)

]
,Mt −M⋆⟩

]
= 0 (D.1)

because of the definition of ft;H(·), where Et[·] is taken on the randomness up to the t-th round. The second term

E
[
⟨∇f̃t(Mt)− gt,Mt −M⋆⟩

]
= E

[
⟨Et
[
∇f̃t(Mt)− gt

]
,Mt −M⋆⟩

]
= 0 (D.2)

because the gradient estimator gt is unbiased for the true gradient ∇f̃t(Mt) (actually gt is an unbiased estimator of the
smoothed version of f̃t at Mt). Note that in the first step of (D.1) and (D.2), given randomness up to the t-th round, the
variable Mt −M⋆ is deterministic mainly due to the fact that M⋆ is fixed as discussed before. Otherwise, when facing a
general non-oblivious adversary, this step will not hold due to the randomness on the comparator.

As for the memory part, since Mt = M̄t + H
−1/2
t st, i.e., R[Mt] = M̄t, if the costs are Lipschitz, which implies

Lf -Lipschitzness of ft, the memory part can be bounded by

MEMORY ≤ 1

2
LfH

2
∑
t∈S

(∥M̄t+1 − M̄t∥F + 2∥Mt − M̄t∥F).

If the costs are smooth, which implies βf -smoothness of f̃t, we obtain

MEMORY ≤ 1

2
H2
∑
t∈S

(Lf∥M̄t+1 − M̄t∥F + βf∥M̄t+1 − M̄t∥2F + 6βf∥Mt − M̄t∥2F).

Thus we successfully reduce the problem to bandit convex optimization with switching cost (BCO-SC). Thus we can directly
use the parameter configurations of Theorem 2 and obtain the same regret guarantees therein. Finally, noticing that the
strong convexity parameter αt of the cost function ct(·, ·) is linear in the strong convexity parameter σt of the with-history
loss function f̃t(·), using the second part of Lemma 8 finishes the proof.

D.2. Proofs of Corollaries 1-6

Proof of Corollary 1. Since Theorem 3 holds for any non-negative sequence of {λ⋆t }Tt=1, when {ct(·)}Tt=1 are convex, if we
choose λ⋆1 = T 3/4 and λ⋆t = 0 for t ≥ 2, then it holds that E[REGC

T ] ≤ Õ(T 3/4). If {ct(·)}Tt=1 are α-quadratic, if we choose
λ⋆t = 0 for t ∈ [T ], it holds that E[REGC

T ] ≤ Õ(α−1/3T 2/3). The proof is finished.

Proof of Corollary 2. Since Theorem 3 holds for any non-negative sequence of {λ⋆t }Tt=1, when {ct(·)}Tt=1 are convex, if we
choose λ⋆1 = T 2/3 and λ⋆t = 0 for t ≥ 2, then it holds that E[REGC

T ] ≤ Õ(T 2/3). If {ct(·)}Tt=1 are α-quadratic, if we choose
λ⋆t = 0 for t ∈ [T ], it holds that E[REGC

T ] ≤ Õ(
√
T/α). The proof is finished.

Proof of Corollary 3. When the firstM online functions are convex and the rest ones are α-quadratic, the regret upper-bound
in Theorem 3 is the largest. By choosing λ⋆t = 0 for t ≥ 2, it holds that

E[REGC
T ] ≤ Õ

(
T

1/3 + λ⋆1:T−1 +

T−1∑
t=1

(α1:t + λ⋆0:t)
−1/3

)
≤ Õ

(
λ⋆1 +Mλ⋆1

−1/3 + α−1/3(T −M)
2/3
)
,

where the last step omits the low-order term of Õ(T 1/3). Choosing λ⋆1 = M 3/4 finishes the proof of the first part. When
the σ-quadratic functions appear in the first (T −M) rounds, the above guarantee can be strengthened. Specifically, by
choosing λ⋆t = 0 for t ∈ [T ], we obtain

E[REGC
T ] ≤ Õ

(
T

1/3 + λ⋆1:T−1 +

T−1∑
t=1

(α1:t + λ⋆0:t)
−1/3

)
≤ Õ

(
α−1/3(T −M)

2/3 + α−1/3M(T −M)−
1/3
)
,

where the first term represent the regret bound of the first (T −M) rounds for quadratic functions and the second term is the
regret bound of the last M rounds for convex functions, finishing the proof.

19



Handling Heterogeneous Curvatures in Bandit LQR Control

Proof of Corollary 4. When the firstM online functions are convex and the rest ones are α-quadratic, the regret upper-bound
in Theorem 3 is the largest. By choosing λ⋆t = 0 for t ≥ 2, it holds that

E[REGC
T ] ≤ Õ

(
√
T + λ⋆1:T−1 +

T−1∑
t=1

(α1:t + λ⋆0:t)
−1/2

)
≤ Õ

(√
T + λ⋆1 +Mλ⋆1

−1/2 + α−1/2(T −M)
1/2
)
.

Choosing λ⋆1 =M 2/3 finishes the proof of the first part. When the α-quadratic functions appear in the first (T −M) rounds,
the above guarantee can be strengthened. Specifically, by choosing λ⋆t = 0 for t ∈ [T ], we obtain

E[REGC
T ] ≤ Õ

(
√
T + λ⋆1:T−1 +

T−1∑
t=1

(α1:t + λ⋆0:t)
−1/2

)
≤ Õ

(√
T + α−1/2(T −M)

1/2 + α−1/2M(T −M)−
1/2
)
,

where the first term represent the regret bound of the first (T −M) rounds for quadratic functions and the second term is the
regret bound of the last M rounds for convex functions, finishing the proof.

Proof of Corollary 5. To begin with, choosing λ⋆1 = T b and λ⋆t = 0 for t ≥ 2, from Theorem 3, we obtain

E[REGC
T ] ≤ Õ

(
T b +

T−1∑
t=1

(t1−γ + λ⋆1)
−1/3

)
≤ Õ

(
T b +min

{
T

2/3+γ/3, T 1−b/3
})

,

where the first step omits the low-order term of Õ(T 1/3) and uses α1:t =
∑t
s=1 s

−γ = O(t1−γ). In the following, we
discuss the above upper bound case by case. If 2/3+γ/3 ≤ 1−b/3, i.e., γ+b ≤ 1, it holds that E[REGC

T ] ≤ Õ(T b+T 2/3+γ/3).
To minimize the upper bounds, we set b = 2/3 + γ/3 and achieve Õ(T 2/3+γ/3). Combining γ + b ≤ 1 and b = 2/3 + γ/3

gives the constraint of γ ≤ 1/4. Otherwise, if 2/3 + γ/3 > 1− b/3, i.e., γ + b > 1, we obtain E[REGC
T ] ≤ Õ(T b + T 1−b/3).

Choosing b = 3/4 gives an Õ(T 3/4) regret bound. Combining γ + b > 1 and b = 3/4 gives the constraint of γ > 1/4.

Proof of Corollary 6. To begin with, choosing λ⋆1 = T b and λ⋆t = 0 for t ≥ 2, from Theorem 3, we obtain

E[REGC
T ] ≤ Õ

(
√
T + T b +

T−1∑
t=1

(t1−γ + λ⋆1)
−1/2

)
≤ Õ

(√
T + T b +min

{
T

1/2+γ/2, T 1−b/2
})

,

where the first step is due to α1:t =
∑t
s=1 s

−γ = O(t1−γ). In the following, we discuss the above upper bound case by
case. If 1/2 + γ/2 ≤ 1− b/2, i.e., γ + b ≤ 1, it holds that E[REGC

T ] ≤ Õ(T b + T 1/2+γ/2). To minimize the upper bounds,
we set b = 1/2 + γ/2 and achieve Õ(T 1/2+γ/2). Combining γ + b ≤ 1 and b = 1/2 + γ/2 gives the constraint of γ ≤ 1/3.
Otherwise, if 1/2 + γ/2 > 1− b/2, i.e., γ + b > 1, we obtain E[REGC

T ] ≤ Õ(
√
T + T b + T 1−b/2). Choosing b = 2/3 gives

an Õ(T 2/3) regret bound. Combining γ + b > 1 and b = 2/3 gives the constraint of γ > 1/3.

E. Technical Lemmas
In this section, we provide technical lemmas about the relationship between Lipschitzness and strong convexity (Lemma 11)
and a basic lemma about FTRL (Lemma 12).

Lemma 11 (Lemma 31 of Luo et al. (2022)). If a convex function f : W 7→ R is L-Lipschitz and σ-strongly convex, and
has bounded domain diameter maxw1,w2∈W ∥w1 − w2∥2 ≤ D, then it holds that σ ≤ 4L/D.

Lemma 12. Let W ⊆ Rd be a closed and convex feasible set, and denote by ψt : W 7→ R the convex regularizer and
ht : W 7→ R the convex online functions. Denoting by Ft(w) =

∑t−1
s=1 hs(w) + ψt(w), if the FTRL update rule is specified

as wt ∈ argminw∈W Ft(w), then for any w ∈ W , we have

T∑
t=1

ht(wt)−
T∑
t=1

ht(w) ≤ ψT+1(w)− ψ1(w1) +

T∑
t=1

∇ht(wt)⊤(wt − wt+1) +

T∑
t=1

(ψt(wt+1)− ψt+1(wt+1)).
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