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ABSTRACT

Given a graph, accurately and efficiently detecting the communities present is
one of the main challenges in network analysis. In this era, where datasets rou-
tinely exceed terabytes in size, many classical algorithms for solving this prob-
lem become computationally prohibitive. We address this challenge in the con-
text of the Stochastic Block Model (SBM), which allows for a rigorous analysis.
Our approach is a sublinear, updateable, and single-pass approximation to a clas-
sic power iteration algorithm (Mukherjee & Zhang| 2024). We introduce two
sketching-based variants: (1) a streaming algorithm for single-pass processing of
edge streams, and (2) an r-pass algorithm that achieves a smaller space embedding
at the cost of additional passes equal to the power r of the matrix to be approxi-
mated. We show that both methods produce vertex embeddings that guarantee the
recovery of the largest cluster when performing single-linkage clustering with an
appropriate separation scale cut threshold.

Our key contribution is a new theoretical analysis of Approximate Multi-Matrix
Multiplication (AMMM), which guarantees that the error from repeated compres-
sion remains manageable. This framework extends the stable-rank-based approxi-
mate matrix multiplication (AMM) guarantees of (Cohen et al.,|2016) to arbitrarily
many conforming matrices. We prove that both algorithms preserve the geometric
structure needed to identify the largest community using sublinear space in prac-
tice. The streaming algorithm (1) scales with the stable rank of the graph matrix
for the streaming algorithm, which we show is sublinear in practice. The r-pass
algorithm achieves the optimal O(¢~2logn). Experiments on synthetic graphs
confirm that our methods can recover the largest community as effectively as the
exact, expensive algorithm, across both balanced and unbalanced communities,
but with dramatically lower memory and runtime.

1 INTRODUCTION

Community detection in graphs is a fundamental problem with applications across network anal-
ysis, machine learning, and data mining. In this work we focus on spectral methods that learn
low-dimensional vertex representations via algebraic measurements of graph matrices. Although
these methods remain popular in practice, they face significant scalability challenges in modern
datasets, which can be large, evolving, or both. Conventional spectral embedding methods utilize
iterative graph decompositions or power iteration stages, requiring access to the whole graph matrix.
Furthermore, these embeddings are often difficult to update if the graph evolves, even slightly.

In this work we seek to overcome these challenges by designing a turnstile streaming embedding.
A turnstile (sometimes called dynamic) streaming algorithm is robust to the addition or deletion of
edges, which is essential for evolving or temporal data. Moreover, we seek an embedding that is
strongly sublinear in the size of the graph matrix, which is critical when the graph is very large.
Our investigation yields a trade-off between pass complexity and embedding size, so in addition to
a single-pass streaming algorithm we also analyze an r-pass variant with smaller space.

Our Contribution. We introduce and analyze two efficient variants of power iteration clustering
for the stochastic block model (SBM), both building on the foundation laid by Mukherjee & Zhang
(2024). Their work established that power iteration of a centered adjacency matrix B = A —
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q11 T produces row embeddings where the largest community becomes separable by a separation
scale threshold. Rather than computing B”, our algorithms approximate this power iteration using
Johnson-Lindenstrauss transform sketches. Our contributions are:

» Streaming Algorithm: We design a single-pass algorithm for dynamic edge streams
that interleaves randomized sketches between matrix multiplications, computing B(") =
BST 8BSy ...S,_2BS, | using appropriately sampled Johnson-Lindenstrauss trans-
form matrices Sp,S2,...,S5-_1. This enables processing graphs too large for memory
while using sublinear embedding dimensions. Moreover, the sketch factors BS, and
S; B S;:_l are updatable with both edge insertions and deletions.

* r-pass Algorithm: We also analyze an r-pass variant B".S that achieves smaller space at
the cost of additional passes a loss of robustness to changes in B.

* Theoretical Framework: We develop Approximate Multi-Matrix Multiplication
(AMMM), extending the stable-rank optimal sketching of |[Cohen et al.| (2016) to matrix
chains. For any accuracy parameter ¢ € (0, 1) controlling the relative error in matrix
product approximations, AMMM provides non-trivial guarantees that error accumulates
controllably across additional matrices.

* Recovery Guarantees: We prove both algorithms preserve the separation scale needed
for largest-community recovery, with explicit embedding dimensions: O(sr(B)e~2) for
streaming and O(e~2logn) for the stored-matrix setting. It is useful to note that sr(B)
denote the stable rank of B while € € (0, 1) is the distortion level introduced by the sketch
matrices used.

Our AMMM analysis reveals a crucial multi-step stability property: the perturbation from sketching
grows linearly rather than exponentially with iterations. This enables our single-pass streaming ap-
proach, where each sketch can be accumulated independently and combined with a single reduction
thereby making the algorithm practical for distributed and streaming environments.

Empirically, we validate that both variants recover the largest community in SBMs while preserv-
ing the theoretical separation scale. We show that this preservation occurs both in the balanced
regime where community sizes are roughly uniform and the unbalanced regimes, where commu-
nity sizes are skewed and there are many small communities. The streaming method achieves this
with slightly larger embedding dimensions but requires only one pass, representing a fundamental
trade-off between memory and communication efficiency.

2 NOTATIONS, MODEL, AND GOAL

In this section, we formalize our compute model and objectives. A graph G = (V, E') is drawn from
an SBM if it comes from the distribution

G ~ SBM(n, K, {s¢}/~1,p. q), 0<g<p<l,
where n is the number of vertices, K is the number of communities (clusters), and sy is the size of
community £ with Zle s¢ = n (we allow unbalanced communities), with p and ¢ defined below.

For a positive integer x, define [z] = {1,2,...,x}. We refer to the vertices by integer indices,
so V = [n]. Let Cy C [n] and |Cy| = s, denoted the index set and cardinality of community ¢
respectively. The communities are disjoint, so V' = Uﬁil Cypand C, N Cyp = () forall £ # £'.
We write s, = maxye () S¢ and Spin = minge(r) s¢. We correspondingly denote the largest and
smallest communities with C', and C\;p,, respectively. For vertices ¢ and j, we use the notation 7 ~ j
when 7,5 € Cy for some £ and i £ j ifi € Cpand j € Cypr, where £ # £'. So, p and q represent the
probability of an edge connecting 7 and j when i ~ j and i ¢ j, respectively. The adjacency matrix
A € {0,1}"*™ is symmetric and, for ¢, j € [n],

A Bernoulli(p), ifi~ j
Y Bernoulli(g), if7 4 j.

Throughout, we write || - ||op for the operator norm, which coincides with the spectral norm in
our setting, and || - ||r for the Frobenius norm of matrices; the (matrix) stable rank is sr(X) =
I X2/11X ||(2)p. We use || - || to refer generically to any submultiplicative matrix norm. We write

|| - ||2 for the usual ¢5-norm of vectors.
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Centered model. Following the power—iteration analysis in|Mukherjee & Zhang|(2024), we work
with the g—centered matrix as defined in their paper:

B = A—q11" = L+R, L=FE[B], R=B-L. (1)

Informally, L is the signal part: a deterministic rank—K block structure that encodes the community
means relative to the baseline level g. Mukherjee & Zhang|(2024) show that g can be estimated with
%, where d, is the smallest degree in G (alternately, the smallest support of a row in A). The
term R is the noise (mean—zero fluctuation) around that signal: it is symmetric and has independent
upper—triangular entries. The centered matrix B is created specifically so the elements of R have
zero mean and variances < p(1 — ¢). Lemma 2.1 of Mukherjee & Zhang|(2024) shows there exists

an absolute constant Cy > 0 such that || R||op < Co+/p(1 — q) /n with probability at least 1 —n 3.

Goal: largest—cluster recovery. Our target is to recover the index set C., of the largest community.
In the exact algorithm considered in Mukherjee & Zhang|(2024)), one forms power features by taking
rows of B" (for a modest power r, e.g. r = O(logn) or a small fixed r) and clusters these row
vectors via single linkage clustering with a separation scale threshold A,.. The correctness analysis
in [Mukherjee & Zhang| (2024) is phrased in terms of a A,.: there exist thresholds 7y, Tout With
margin y = Tout — Tin > 0, such that the within—C,, pairwise row distances of B” are at most 7y,
and the across—C vs. [n]\C\ distances are at least Toyt.

We focus on the setting where A is too large to store and may arrive as a dynamic (turnstile) stream
of edge insertions and deletions. We therefore interleave the powers of B with oblivious sketches
Si,..., 8. € R™" in the form B") = BS] S, BS}Sy---BS]_|S, 1 BSI. Note that the
linearity of the random projections implies that the individual factors BS; and S; B SZ-T+1 can be
individually updated with edge insertions and deletions and only multiplied together at clustering
time. Linearity also allows us to apply the g11" component of B to the sketches at multiplication
time. Appendix |B|provides more detail.

Our AMMM analysis in §4|and §5|shows that, whenever the power features B” satisfy the separation
scale A, a similar threshold works for B”, provided the embedding dimension m = O(sr(B) 5’2)
where € € (0, 1) is the distortion introduced by the sketches. We also show a simple analysis in
of a simpler r-pass algorithm. We compute B"S" = B(B(...(BS")...)) using a single
sketch S € R™*"™ in r passes by multiplying the intermediate product by B on the left in each
pass. This is similar to the algorithms considered by |Zhang et al.| (2018)) and Macgregor| (2023)).
Note that we can apply the rank-one term, ¢117, during each of these multiplications, avoiding
the need to store or multiply using the dense B matrix. A standard Johnson-Lindenstrauss argument
shows multiplicative preservation of all row distances for m = O (=2 logn), so the separation scale
scheme succeeds.

3 EXACT POWER ITERATION, ROW DISTANCES, AND THE SEPARATION SCALE

We begin by recalling the structure of L and the separation scale, borrowing from the analysis
in|Mukherjee & Zhang|(2024). The following is a self-contained derivation.

Lemma 3.1 (Norms of L and row separation). We have ||L|op = (p — q)s« and |L||z = (p —
q)? le s2. Moreover, rows of L" are constant within each cluster and, if i € Cy and j € Cyp with
!

£ 1,
IL5 — L5 lls = (p—q) y/sZ " + s )
Proof. Deferred to Appendix [C] O

We define the separation scale as

Api=(p—q)s. 2. 3)
Theorem 1.1 of Mukherjee & Zhang| (2024) asserts that, if the largest community size s, and the
separation scale A, are large enough relative to p and g, then the gap between the rows of B" are
large enough for single linkage clustering to separate the largest cluster.
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Theorem 3.1 (Recovering largest cluster (Theorem 1.1 of Mukherjee & Zhang| (2024))). There
are constants C,Cy > 0 such that the following holds. Let p,q < 0.75 be parameters
such that max{p(l — p),q(1 — q)} > Cy(logn)/n. Let G be a random graph sampled from
SBM(n, K, {s¢} |, p,q), and let s, be the size of the largest clusterﬂlf s. > C - (logn)” -

Vp(1—=q) - /n/(p — q), then with probability 1 — O(1/n) one of the clusters produced by Al-
gorithmis the largest cluster of G for A, = $\/s*(p — q)"(s*)" "' and r = [logn].

Our proofs use the following assumption that naturally follows given the conditions of Theorem [3.1]

Assumption 3.2 (Unsketched separation scale). There exist 0 < a < b, n > 0 very small and power
r such that with probability at least 1 — 1 over the graph,

i~j=|B. —Bj |2 <al,, itj=|B;. —Bj ll2>bA,.

We are now able present our algorithmic framework. Algorithm [I| represents our chassis for
all algorithms considered, as they vary only in the implementation of the embedding subroutine
PI_SUBROUTINE. Algorithm 1.1 in Mukherjee & Zhang|(2024) corresponds to the clustering Al-
gorithm|[TJusing Subroutine[A]as P I_SUBROUT INE. We will abuse notation and refer to this compo-
sition as Algorithm [A]for brevity, and similarly to the streaming and r-pass variants as Algorithm [BJ
and Algorithm [C] respectively. Appendix [B]explains the streaming update behavior of SubroutingB|
in more explicit terms. The correctness of Algorithm[A]is guaranteed by Theorem 3.1 (Theorem 1.1
of Mukherjee & Zhang| (2024)), while we will show the correctness of Algorithms [B|and[C]

Algorithm 1 DETECTING COMMUNITIES BY POWER ITERATION FRAMEWORK

1: Input: A graph GG and parameters p, g > 0.
2: Let A be the adjacent matrix of G
33 B+ A—q11'
# (Here 1"™*™ is the all 1 matrix.)

4: Let A, > 0 and r > 1 be parameters # (We will explain how to choose them later)
5. R(") < PI_SUBROUTINE(B,)
6: for v;,v; € G do
7. i |RY” — Ry < A, then
8: Put v; and v; in a same cluster # (R,Er) represents the i-th row of R("))
9: endif

10: end for

11: Output the sets thus formed.

Subroutine A Exact PI Subroutine B Streaming PI Subroutine C r-pass PI
1: Input: B,r > 1 1: Input: B,r > 1 1: Input: B,r > 1
2: Output B" 2: Sample Sy, ...,S5,_1 € Rm*n 2: Sample S € Rm*"

3: Output BS] [[/—] SiBS],, 3: Output B"S"

Armed thus with the prior work of Mukherjee & Zhang| (2024), we are ready to proceed to prove
largest cluster guarantees for Algorithm

4 APPROXIMATE MULTI-MATRIX MULTIPLICATION (AMMM)

This section extends approximate matrix multiplication (AMM) from a pair of products to com-
positions of linear operators with sketches inserted between consecutive factors. This framework
arises naturally in iterative methods like power iteration, where we aim to replace exact matrix pow-
ers with sketched approximations while preserving downstream geometric guarantees. Our results
hold for any submultiplicative matrix norm || - || (e.g., spectral or Frobenius) with AMM guarantees.
Proof details appear in the appendix; here we provide a self-contained summary sufficient for later
applications.

' Our parameterization of SBM differs from Mukherjee & Zhang|(2024), who ignore the cluster sizes.
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4.1 SETUP AND ONE-STEP AMM

Let Aq,..., Ax € R™*" be matrices and Sy, ..., Sp_1 € R™*™ be independent sketching matrices.
We compare the exact product My, := A As - - - Ay with its sketched counterpart:

M, = A1S] S1 A58 Sy A1) Sp_1 Ap. (4)

Definition 4.1 (One-Step (g,) AMM). A matrix S € R™*"™ satisfies one-step AMM at accuracy
(e,0) for anorm || - || if for all conformable X,Y :

Pr[||XSTSY—XY|| <c|X|| ||Y||} >1-04. )

Oblivious sketches satisfying equation [5] are well-studied. In particular, the stable-rank-optimal
results of |(Cohen et al.| (2016)) achieve equation E] when factors have bounded stable rank. We delib-
erately keep the sketch dimension m implicit until applying AMMM to clustering.

4.2 MAIN BOUND AND PROOF SKETCH

Theorem 4.2 (AMMM from One-Step AMM). Assume equation 5| holds for independent

S1, ..., Sk—1. Then with probability at least 1 — cko for an absolute constant c:
k—1
1M = M| <D e+ 2) T Ar - A [[Ape - A (©)
t=1

In particular, by submultiplicativity:

k
M — M| < (A+e)F 1 =1) T4l (7
i=1

Proof. Define M, := Ay --- A; and ]\Z = A18]8; - At_lStT_lSt_lAt. The proof proceeds by:

[y

. Adding and subtracting M;S] S; A;, 1 at each step

[\

. Applying the one-step guarantee equationtwice (once for My, once for the error ]\Ajt —My)

M)

. Obtaining the recurrence:

[My1 — My || < e(IMe]l + ([ My — M) | Avsa -

4. Recursively expanding this recurrence yields equation [6]

W

. Applying submultiplicativity || M| < H§:1 IIA; || gives equation
The probability bound follows from applying the one-step result O (k) times with a union bound. [
Theorem [4.2] establishes an upper bound for AMMM, but at this time a corresponding lower bound

for general k is an open problem. Notably for & = 2, Theorem#.2]s upper bound corresponds to the
tight lower bound |Cohen et al.|(2016).

Corollary 4.3 (Power Chains). If Ay = --- = Ay = B, then with the same probability as Theo-
remHd. 2}

|BS{S1BS} Sz -+ BS;_1Sk—1B — B*|| < (1 +¢)k~! —1) | B||*. (8)
Proof. Direct application of Theorem [#.2] with all A; = B. O

The inequality equation [6] shows that local one-step AMM errors accumulate controllably rather
than exploding across the chain. This enables replacing iterative multiplications (with dimension n)
with streaming sketch accumulation followed by the multiplication of several small sketch matrices
(where most products have dimension m < n). Moreover, the sketch components of AMMM can
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be accumulated from a turnstile stream. Corollary[4.3]ensures accuracy preservation for downstream
tasks like clustering.

To use AMMM in practice, instantiate the one-step hypothesis equation[5] For example,|Cohen et al.
(2016) show that for sketches with dimension determined by the stable rank of factors, equation E]
holds. Plugging such an AMM into Theorem[4.2]yields AMMM for the interleaved form equationf4]
We explore sketch dimension choices for clustering in §5 where the pass-memory tradeoff becomes
meaningful.

5 FROM STABLE RANK AMM TO STREAMING CLUSTERING

We combine the stable rank dependent approximate matrix multiplication result of |(Cohen et al.
(2016) with the AMMM bounds from §[Z_f] to obtain explicit, sublinear embedding dimensions that
preserve the row distance threshold in Assumption Throughout, set X* := B".

5.1 STABLE RANK AMM

We use a subgaussian sketch bound that depends only on the operator norm and the stable rank. We
begin by recalling the Oblivious Subspace Embedding (OSE) moment property.

Definition 5.1 (OSE moment property). A distribution D over R™*™ has the (g, 0, s,{) OSE moment
property if for every matrix U € R™*? with orthogonal columns,

Enp||(TIV)" (TIV) — 1] < £*%.

‘We now state the main lemma from|Cohen et al.|(2016)), which will be used to obtain our embedding
dimensions.

Theorem 5.2 (Theorem 1 of |Cohen et al.|(2016)). Let k > 1 and £,6 € (0,1/2). Suppose 11 €
R™>™ s drawn from a distribution that satisfies the (g,0,2k,{) OSE moment property for some
£ > 2. Then for any A, B,

Pr{ (1LY (T1B) ~ AT B, < </ (1413, + 14E) (B3, + 15E) ) > 1 -5 )

Moreover, for a Rademacher or subgaussian sketch,

m>C wgé(l/é) = Il satisfies the (¢, 0,2k, ©(k + log(1/d))) OSE moment property,
€
(10)
which implies equation[d] If k > max{sr(A),sr(B)}, the bound simplifies to
|(ILA)T (ILB) — A" Bllop < 22 || Allop || Bllop- (1)

We next derive a high probability bound on the stable rank of the shifted adjacency matrix B.

Lemma 5.1 (High probability upper bound on sr(B)). Let G ~ SBM(n, K, {s¢}, p, q) with adja-
cency matrix A. Let B, L, and R be defined as in equation[l) Write s, = maxy s; and define

o? = max{p(1 — p),q(1 — q)}.

There exist constants Cy, Co > 0 such that, with probability at least 1 — 3n~3,

w(p) = 1Bl _ =0 >y 87 +n%0” + Ciny/logn.
IBl12, ((p — q)s« —C’ga\/ﬁ)2

In particular, under the signal-dominated regime (p — q)s, > o+/n:

12)

* Balanced case (s; = n/K):
K?0? )
st(B) =0 | K+ — .
") ( (p—q)?
If additionally (p — q)* 2 Ko?, then st(B) = O(K). More generally, under the weaker

detectability condition (p — q)? 2 K202 /n (which follows from (p — q)s. > o+/n with
s« = n/K), we have st(B) = o(n), confirming sublinearity.
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* Highly imbalanced case (", s? < s2):
n202
() =0 (14 -0 ).
) (p—q)*s?
If (p — q)s« > on, then st(B) = O(1).

Proof. Deferred to Appendix O

The next lemma converts an operator norm bound on a product approximation into a bound on all
pairwise row distances. This lets us transfer a global AMMM error bound into a guarantee for the
separation scale.

Lemma 5.2 (Product implies row distances). For M, M € R"*4 with E = |M — M| op, for all
i F J -
\HMZ,. — M |l2 — IMi. — M;.||2| < V2 E. (13)

Proof. Letu = e; — e;. Then

[[u” Mo = [[u” M]s| < 0" (M = M)|ls < ||u]ls E = V2E.

5.2 MAIN STREAMING THEOREM (EXPLICIT SUBLINEAR m)

We now state the main streaming result with an explicit embedding dimension.

Theorem 5.3 (Separation scale preservation for streaming Algorithm B} explicit m). Assume As-
sumption holds for X* = B" with parameters (a,b,A,) and failure probability 1. Fix
€ €(0,1/4) and § € (0,1). Suppose Si,...,S._1 € R™*™ are independent Rademacher ma-
trices with

m>C st(B) + log2((r - 1)/5). (14)
Then, with probability at least 1 — n — 20, for all i ; 7
IBE) = B2 = 18] = B} 2| < V2((1+20) " = 1) Bl (s)
If, in addition, there exist 0 < a < b such that
V2((1+2e)t = 1)||B[;, < bjT“AT, (16)

then the threshold A, still separates within-cluster and across-cluster pairs for B™, and single
linkage at cut A\, recovers the largest cluster.

Proof. Deferred to Appendix [C] O

Note that Theorem [.2]states the bound on embedding dimension m in terms of dense Rademacher
{#£1} matrices. A similar argument yields a slightly larger bound for sparse Johnson-Lindenstrauss
transforms, such as those implemented with CountSketch (Cohen et al.|(2016). While such trans-
forms will yield better runtime performance in practice, we have omitted it for space.

5.3 r-PASS VARIANT WITH EXPLICIT m

We now present a similar separation guarantee for Algorithm [C| This variant is practical when A is
static and its edge stream can be warehoused and read in multiple passes, and the cost of each sparse
product of the form AS” is low. In this setting, sketching B” ST leads to a lower effective bound on
m at the cost of requiring r passes over A.



Under review as a conference paper at ICLR 2026

Theorem 5.4 (Separation scale preservation for 7-pass Algorithm [C} explicit m). Ler X* = B" €
R™ "™ with rows x}. Assume Assumption holds for X* with parameters (a,b, A,.) and success
probability 1 — n. In other words, with probability at least 1 — n,

|27 —2fll2 < a A, (within), |z —2%|l2 > bA,  (across).

Let S € R™*"™ have independent mean-zero variance-1/m subgaussian entries with subgaussian
norm at most k. Fixe € (0,1) and 6 € (0,1). If

m > @(logn +log(1/9)), (17)
then with probability at least 1 —n — 0, for all i # j,
(L =e)llzi — ajll2 < [[S(a7 — 22 < (L+&)laf — z]]l2-
If, in addition,
(1+¢e)a < (1—e)b, (18)
then there exists a threshold

Ae((T+e)al,, 1-ebA,)

that separates within-cluster and across-cluster pairs for the sketched rows {Sx}}, and Algorithm@
recovers the largest cluster.

Proof. Deferred to Appendix [C] O

Takeaway. The explicit bounds equation equation coupled with the fact that sr(B) <
rank(B) = o(n) show that the embeddings are sublinear: m = O(sr(B)/e?) for the streaming
scheme and m = O(c~2?logn) for the r-pass scheme. Both preserve the decision threshold A,
used by the unsketched method.

6 EXPERIMENTAL EVALUATION

We empirically validate that (i) the streaming and r-pass variants preserve the separation scale from
Assumption (ii) the required embedding dimension m is sublinear (scales with sr(B) or log n),
and (iii) the resulting clustering recovers the largest community efficiently.

6.1 METHODOLOGY

Synthetic data generation. We generate graphs from SBM(n, K, {s¢}, p, ¢) as in §2| considering
the following parameters. Our SBM generator does not sample self loops, although our theory
allows for them. We fix n = 10% and choose K € {5,10,20}. We vary s./smin € {1,2,4,8}.
In our SBM generator, we set an imbalance parameter imbalance € [0, 1] interpolating community
sizes: imbalance = 0 gives equal sizes, while imbalance = 1 yields a largest community of
size s* and others of size at least (¢/p) s*. Choose p = ¢ + C; where C; > 0.1 to sweep the

operator SNR % from below to above the recovery threshold. We consider the matrix
p(1—a)vn

power r € {2,3,4}. For each setting we run 5 independent trials with different random seeds and
report the average of the evaluation metrics.

Methods compared. We implemented Algorithms and with independent Rademacher

sketches. We size m for both using the theory line from Theorem [5.3| and Theorem [5.4] respec-

tively:

Si(B) +log((r —1)/6)
o2

8 n
Minter = C , Mend = ?(10g (2) + 10g(2/5)>
—2 —
where C'is some constant and st(B) = || B||Z/|| B |op With | B]|,, estimated by power iteration (10

steps sufficed in all runs). We also sweep m € {0.5,1,2} - m, for m. € {Minter, Mena}. In all
experiments we fixed € € {0.1,0.2,0.3} and § = 0.05 unless otherwise noted.
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Metrics. We collect the largest cluster output by our algorithms as C. and compare it with the true

largest community C,. We report (i) Largest—cluster recall Rec, = %,

|C.nC. |
|C.]

M = min,,;dist(7, j) — max;~ dist(, j) at the chosen A.

(ii) Largest—cluster

: (iii) Largest-cluster F1, F1, = 2-2ec=Prec- . (iyy and Row—gap margin

precision Prec, = Rec.+Prec, ’

6.2 RESULTS

Largest cluster recovery. Figure [I] plots largest-cluster recall, precision, and F1 for fixed
(n, K,p,q,7) as we sweep m for both Algorithms|[B|and [C| Figure[Ic|shows dimension normaliza-
tion across n and verifies that recall saturates near 1 once m > cst(B)/e2. End-sketch acts as a
comparator with m = O(¢~2logn).

F1 vs m (log scale) Precision vs m (log scale) Recall vs m (log scale)
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Figure 1: Parameters: n = 10*, K = 5, imbalance = 0.5,p = 0.3,¢ = 0.01

Figure [T| shows that the 7-pass pipeline always perfectly recovers the largest cluster as long as the
embedding dimension bound is satisfied. Moreover, it shows that the performance of the stream-
ing approach improves drastically as the embedding dimension increases. This confirms the noise
introduced by interleaved sketches is inversely proportional to the embedding dimension.

The effects of imbalance and power. Figure [2]shows the effects of varying the imbalance, which
is directly proportional to s, /Smin, and how it interacts with the matrix power r. We observe that as

the imbalance increases, the largest community grows, so the threshold A = 1 (p—q)"(s*) T3 rises
and points from that community become relatively closer to one another than to the rest; this makes
them easier to separate, so the F'1 score improves. At the same time the graph is dominated by
that one community, so the matrix B is effectively simpler and its stable rank drops (most variation
now comes from one direction). Consequently, higher imbalance yields both better clustering and a
smaller sketch size when we choose m o sr(B). We sweep r € {2,3,4}. Larger r increases sepa-
ration scale A, (Lemma [3.I) but also increases sensitivity to operator norm growth in the AMMM
bound. We show recall and margin M vs. r. The value of m is dictated by the formula m;per.

F1 vs sketch depth r (imbalance=1.0) F1 vs sketch depth r (imbalance=0.5) F1 vs sketch depth r (imbalance=0.0)

—— sr(B) 06

—e— Interleaved n

0.00| L
0.00 025 050 075 1.00 0.00 025 050 075 1.00 0530 25 30 35 40 45 50 20 25 30 35 40 45 50 20 25 30 35 40 45 50
imbalance imbalance sketch depth r sketch depth r sketch depth r

(a) balance vs F1  (b) balance vs sr(B) (c) unbalanced (d) partial balance (e) balanced

Figure 2: [2a and [2b| show the relationship between imbalance and F1 and sr(B), respectively.
@ and [2e|show how F1 improves with r for balanced vs. unbalanced graphs.

Separation scale preservation. Figure[3|demonstrates that given a reasonable embedding dimen-
sion the same threshold we used for clustering the graph still applied to both Algorithms [B]and[C]
This allows us to visualize Theorem[5.3] and [5.4] at the level of the separation scale.
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350 i Inter (largest vs rest) 350 ‘ = Inter (largest vs rest) 500 Inter (largest vs rest)
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Figure 3: Row distance histograms for different embedding dimensions and embedding approaches.

Across all experiments, the intra-cluster distances in the largest cluster concentrate well to the left
of the fixed separation scale A,., while the inter-cluster distances lie to the right when the sketch is
sufficiently large, giving clear separation. When we shrink the dimension to 64, the r-pass variant
still shows a clean gap, but the streaming algorithm develops visible overlap around A, indicating
that too small an m injects enough noise to blur the boundary. Thus, in this setting the A,. separation
scale is preserved for both methods, although the streaming case requires larger m, as suggested by
theory.

7 CONCLUSION

We have analyzed and demonstrated a novel turnstile streaming power iteration clustering algorithm
utilitizing approximate multi-matrix multiplication and oblivious subspace embeddings. Our exper-
iments directly demonstrate a practical sublinear embedding dimension for largest cluster recovery,
validating Theorems [5.3] and [5.4] Obvious future work includes an analysis of the recovery of all
clusters, as well as an examination of the removal of the awkward centering step required in Algo-
rithm (1] It would also be desirable to find a space lower bound for the approximate multi matrix
multiplication problem. Furthermore, although our experiments are relatively unoptimized and se-
quential, Algorithms [B]and [C]are easy to implement in a distributed computing model and will be
interesting to demonstrate on billion-scale data.
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A RELATED WORK

For a symmetric, square graph matrix )M, power iteration amounts to estimating the eigenvectors by
repeated multiplication by a oblivious subspace embedding matrix .S so that the columns of M"S
for some small r can stand in for M ’s top eigenvectors. Many investigators have analyzed orthonor-
malizing and/or decomposing M"S' to prove approximation guarantees to the eigenvectors (Halko!
et al., 2011; |Woodruff et al., 2014), while others focus on various guarantees in the context of k-
means clustering (Boutsidis et al.,2015; Macgregor, 2023} |Lin & Cohen, 2010). While the majority
of these analyses require dense i.i.d. Guassian transforms S, realizing and applying such a matrix
is impractical for very large graphs. Fortunately, dense Gaussian matrices are but one distribu-
tion satisfying the conditions of the famous Johnson-Lindenstrauss lemma (Johnson et al., {1984)).
Achlioptas|(2003) introduced scaled dense {41, —1} matrices of zero-mean Rademacher variables,
while several works introduced sparsity and eventually worked out tight sparsity bounds (L1 et al.,
2006; Nelson & Nguyeén, 2013} [Kane & Nelson, 2014)). In parallel, (Clarkson & Woodruff| (2017)
introduced a maximally sparse matrix distribution based upon the famous Count-Sketch data struc-
ture (Charikar et al.l [2002), which can be shown to satisfy the same sparsity bounds |Cohen et al.
(2016). Some investigators have focused on empirically demonstrating the performance of power
iteration utilizing these more practical sparse Johnson-Lindenstrauss transforms (Zhang et al.| [2018))
or polynomials thereof (Chen et al.| |2019), although these analyses are lacking analytic guarantees
for clustering or other downstream tasks.
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B STREAMING UPDATES

Here we make the streaming nature of Subroutine [B|more explicit. The approximate power iteration
subroutine’s goal is to output the product B =B ST H:;ll S;B S;:_l. First, we recall that B <+
A — ¢q117. As the ¢117 component is constant and all operations are linear, we can safely defer
its incorporation to the sketches to the end and primarily reason about A. Here Subroutine [D]shows

how Subroutine [B| handles a stream o of updates of the form (i, j,w) to A. Let A be a variable
representing the matrix formed from reading updates from o, which could be received in any order.

Upon reading all updates in o, A = A. In each such update, ﬁl ;j receives the modification w =+ 1.
As A is the adjacency matrix of an unweighted SBM, we assert without a loss of generality that
an update (4, j,w) implies (j,4,w). Furthermore, we state that positive updates (4, 7, 1) are only
received when A; ; = 0 and negative updates (i, j, —1) are only received when A; ; = 1. This is
tantamount to asserting that o represents a stream of edge additions and deletions, which can only
occur if the given edge does not/does exist, respectively. Although the method remains valid without

this last assumption, without it A could at some point represent a non-simple graph.

Given these assumptions, Subroutine EI updates each of the temporary sketch variables AL =
AS; and A®) = ST | AS] as it receives updates from 0. We represent each of these updates

(4,4, w) as the rank one matrix U <« weq;ey, where e; and e; refer to the usual basis vectors.

Applying the appropriate sketch transforms to this matrix provides us with additive updates to
AW AC=D - After receiving all updates, we incorporate the constant shift ¢117 and return
the product BST [[/_} S;BS]. .

Subroutine D STREAMING UPDATES TO POWER ITERATION

1: Input: Integral 7 > 1, m = O(sr(B)e~2), stream o of updates to A
Sample Sy, ...,S,_1 € Rmxn
;{(1) « Qnxm
foric {2,...,r—1} do
A\(z) « Qmxm
end for
for update (i, j,w) € o do

U+ weie;

9: AW US|
10  foric {2,...,r—1}do
11: A T UsT
12:  end for
13: end for
14: Q + —q117
15: BST « AW 4+ QST
16: fori € {1,...,r — 2} do
17: S;BS],, + AW + 5,QS],,
18: end for
19: B « BST[[/—} S:BS},,
20: Output B(")

AN A

C DEFERRED PROOFS
Herein we present the proofs of major results excluded from the main body due to space constraints.

LemmaNorms of L and row separation. We have ||L|,, = (p — ¢)s« and ||L||2 = (p —
q)? le s2. Moreover, rows of L" are constant within each cluster and, if i € C; and j € Cy with
/

{£ 1,
1L = L5l = (p—q) y/s? " + 52, (19)

12
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Proof. We know by definition that:
if l ~ ]
Li; {(P - Q) J

0 ifi 4 j
It follows that L is a block diagonal matrix.We can represent it as follows:
(P — )15, x5, 0 0 wol 0 -0
L= 0 (P— @) lsyxs, _ | 0wl
: i . 0 : R |
0 0 (»— ) lspxsk 0 0 ugvk
where
1 (r—a)
ujp= |l U= : € R*.
1 (p—a)

The operator norm is then the largest of the singular values of the block matrices. Since each block
matrix in L is rank 1 then the operator norm bound follows by noting that

w0 [lop = llusll2llvilla = /55(p — )v/55 = (0 — )s;
Furthermore, from the structure of L we can deduce that
K

LI =Y L5 =) (p—a)s;
(4,9) =1
The second part of the result follows from a simple counting argument after explicitely writing the
entries of L;;

Corollary @d.3| Power chains. If A; = ... = A; = B, then with the same probability as Theo-
rem[4.2]

IBSIS1BS3 S BSi_1Ska B = BY|| < (L+o) " =1)IBI*.  (0)

Proof. Let My := B, My, := M,S] S, B, and M, := B'. With E, := | M, — M,|| and E; =0,
My — Myyy = (M, — My)S] S;B + M,S] S$;B — M;B..

one-step error

Condition on (]\Ajt7 M) (independent of S;) and apply equation twice. By a standard union
bound argument we have that with prob. > 1 — 24,

Eiy1 <¢|B||E; +¢||B|'H.

After recursively expanding the above relation satisfied by the E; combined with the submultiplica-
tivity of the norm we have:

Ep < ((L+e)* ' =1)|BII"
The probability bound follows in a similar fashion as in Theorem 4.2] O

Lemma [5.1] High-probability upper bound on sr(B). Let G ~ SBM(n, K, {s/},p,q) with
adjacency matrix A. Let B, L, and R be defined as in equationm Write s, = maxy sy and define

0% = max{p(1 - p),q(1 - ¢)}.
There exist constants C, Cy > 0 such that, with probability at least 1 — 3n =3,
K
1B _ (p—? Sk, 5+ 0%+ Cinylogn
B2, ~ ((p — q)s« —C’ga\/ﬁ)Q
In particular, under the signal-dominated regime (p — q)s. > o+/n:

st(B)

2y

13
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* Balanced case (s; = n/K):
K?0? >
st(B) =0 | K+ —5 | .
) ( (p—a)
If additionally (p — ¢)? > Ko?, then sr(B) = O(K). More generally, under the weaker

detectability condition (p — q)? = K202 /n (which follows from (p — q)s. > o+/n with
s« = n/K), we have sr(B) = o(n), confirming sublinearity.

« Highly imbalanced case (}_, s? < s?):
2 2
st(B) = O <1 + M) :
If (p — q)s« > on, thensr(B) = O(1).

Proof. We first lower bound || B||o,, and then upper bound || B||%.
Lower bound on || B||,,: By Weyl’s inequality,
AM(B) = M(L) — [|R][op-

For the expectation L of the centered matrix B, one has A1(L) = ||L|jop = (p — ¢)s«. Moreover,
for the noise part R,

IBllop < C2ov/n
with probability at least 1 — n~3 (Lemma 2.1 of [Mukherjee & Zhang| (2024)). Thus, with the same

probability, we have
I1Bllop = Mi(B) > (p—¢q)s« —Ca ovn.

Upper bound on || B||%: We start with the expansion that takes into account the symmetry of both
L and R:

IBIE = IILIE + IRl + 2(L, R).
From the definition of L it follows that:

K
LI = (0—a)*)_ si-
=1
For R, whose entries are independent, mean zero, bounded, with Var(R; j) < o2, we have
E|R|% = > E[R}] = ) Var(Ri;) < n’0”.
0,J ]
A Bernstein inequality for sums of independent bounded variables yields, with probability at least

—4
|R||F < n?0® + Cny/logn.

1—n"7%
Likewise, since (L, R) = ) . ; LijRij is a mean-zero sum of independent bounded variables sup-

ported on the block structure of L, Bernstein implies that, with probability at least 1 — n %,

[(L,R)| < Cn+/logn.

Combining the bounds on the terms involved in the expansion yields:

K
IBlI% < (P*Q)QZﬁ + n?0? 4+ Cyny/logn.
=1

Combining the above estimates using a union bound gives the final upper bound on sr(B) with
failure probability at most 3n 3.

Balanced case analysis: If s, = n/K for all £, then Y p, s? = K(n/K)? = n?/K and s, =
n/K. The numerator becomes:

(p— q)g% +n20% + O(ny/logn) = n* ((p;{q) + 02) + O(n+/logn).

14
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In the signal-dominated regime (p — ¢)s. > ov/n, i.e., (p — ¢)n/K > o+/n, the denominator is:
2

2 n
(0= )5 = Caov/n)” = (p— 0)* 15
Therefore: )
n2 ((pfq) Jrgz) 5 o
K
sr(B) < L oky —T
(r—a9)?%= (p—q)

For st(B) = O(K), we require the second term to be O(K), which holds when (p — ¢)? > Ko?.
More generally, under the weaker condition (p—q)? > K202 /n, we obtain sr(B) = O(K?%0?/(p—
9)%) = O(n). Since (p— q)s. > o+/n with s, = n/K gives (p—q)?n/K? > o%,ie., (p—q)* >
K202 /n, we have sr(B) = o(n), confirming sublinearity.

Highly imbalanced case: When ), s? < s2, the numerator is dominated by (p — ¢)?s? + n?s?,
and the denominator (in the signal-dominated regime) is (p — ¢)%s2. Thus:

22 4 2.2 2 2
w(p) < =9 s Aot o’
(p —q)?s3 (P —q)?s3

If (p — g)s« > on, then the second term is o(1), giving sr(B) = O(1). O

Theorem Separation scale preservation for Algorithm explicit m. Assume Assump-
tion 3.2] holds for X* = B" with parameters (a,b, A,) and failure probability 1. Fix ¢ € (0,1/4)
and 0 € (0,1). Suppose 51, ..., S,._1 are independent Rademacher with

> c st(B) + log((r —1)/6)

g . (22)
Then, with probability at least 1 — 77 — 24, simultaneously for all 7 # j,
1B = B lle — 187~ Byl | < vZ((1+25) 7" = 1) B, (23)
If, in addition, there exist some 0 < a < b such that
_ b—a
V(14227 = 1) 1Bl < 7 A 4

then the same threshold A,. separates within/across—cluster pairs for B and single-linkage at cut
A, recovers the largest cluster.

Proof. First observe that for any integer ¢:

1B Hopll Bll»
_ 1Bl ( "

)2
= < < sr(B).
B2 1B1%5

sr(BY)

Now choosing m according to equation[I4]in Theorem|[5.2} forces each \S; to satisfy equation[T1]with
accuracy 2¢ and failure 6 /(r — 1). Corollarythen gives ||[B") — B7|| < ((142¢)"' —1)|B||"
with prob. > 1 — 24. Apply Lemma[5.2]to obtain equation[23] Assuming there are some 0 < a < b
satisfying equation then every within—cluster distance remains < A,. and every across—cluster
distance remains > A,. Union—bound the two events. O

Theorem Let X* = B" € R™*" with rows z}. Assuming the row gap assumption holds
for X™* with parameters (a, b, A,.) and success probability 1 — 7, that is: with probability > 1 — 1,
lxr — x;‘||2 <aA, (within), |z} —a%|l2 > bA, (across),

for some 0 < a < 1 < b. Let S € R™*™ have i.i.d. mean-zero, variance-1/m subgaussian entries
with subgaussian norm at most x (a fixed constant). Fix ¢ € (0,1) and § € (0, 1). If

C(k
m > 6(2)(10gn+log%), (25)
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then with probability at least 1 — 1 — ¢ the following holds simultaneously for all i # j:

(1 =e) |7 —aflla < [[S(f —2f)lla < (1+¢) flaf — 27llo-
Consequently, if
(I4+e)a < (1—¢)b, (26)

There exists a threshold A € (1+e)aA,, (1—e)bA,) that separates within- and across-cluster
pairs for the sketched rows {Sx7}; hence, the thresholding step in Algorithm 1 recovers the largest
cluster.

Proof. Step 1: JL preservation for a fixed finite set. Let 7 be the event that S preserves all
pairwise distances among {z}}?_; within a factor 1 + ¢. For subgaussian maps with parameter
K, the Johnson-Lindenstrauss lemma (via Hanson-Wright or standard subgaussian concentration)
ensures that equation 25]implies

P(J) > 16, andonJ: (1—¢)llull <|[[Sul|l < (1 +¢e)|ull Yue {z} — 27}

Step 2: Intersect with Assumption [3.2] Let A be the Assumption3.2]event (success > 1 — 7). A
union bound yields
PANT) > 1—n—24¢.

We henceforth work on AN 7.

Step 3: Threshold separation after sketching. For any within-cluster pair, A gives ||z} — ,L‘; l|l2 <
a A, and then J implies
[S(z] —2})ll2 < (L+e)al,.

For any across-cluster pair, A gives ||z} — z; ll2 > bA,, and then J implies

1S(z; —2%)]2 > (L—e)bA,.

If the margin condition equationholds, these ranges are disjoint, so any Ae ((1 +e)al,, (1—
e)b AT) separates the two classes, and the thresholding step in Algorithm 1 succeeds. The theorem
follows by taking A = A, when (1 +¢)a <1 < (1 —¢)b. O
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