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ABSTRACT

Test-time adaptation (TTA) aims to preserve model robustness under distribution
shifts without access to source data. However, existing memory designs, often
based on single clusters or naive sample storage, struggle to capture the diversity
of target distributions and adapt efficiently over time. We introduce Multi-Cluster
Memory (MCM), a novel memory management framework that organizes sam-
ples into multiple clusters using lightweight statistical descriptors such as sam-
ple means and variances. The inter-cluster distance naturally expands the cov-
erage of the sample distribution, supports on-demand cluster creation for novel
patterns, and maintains bounded capacity through an Adjacent Cluster Consoli-
dation (ACC) mechanism that merges neighbor clusters in descriptor space. To
further strengthen adaptation, we propose Relevance-guided Sample Retrieval
(RSR), which selects the most target domain-relevant clusters for learning and
integrates them into a Mean-Teacher self-supervised paradigm. Extensive exper-
iments across CIFAR-10/100-C, ImageNet-C, and DomainNet demonstrate that
MCM consistently outperforms prior methods under Practical TTA (PTTA) and
achieves sustained robustness in recurring TTA. By delivering a memory structure
that is more representative, scalable, and adaptive, MCM establishes multi-cluster
memory as a practical and effective foundation for real-world test-time adaptation.

1 INTRODUCTION

Recent advances in machine learning, driven by vast training corpora and significant computational
resources, have pushed model performance close to optimal within predefined application scenarios.
However, in real-world deployments, models must contend with continuously evolving conditions
that deviate from their training distributions. For example, a mature autonomous driving system
must remain robust across diverse weather conditions and heterogeneous urban layouts (Yang et al.,
2024; Yasarla et al., 2025). Similarly, in robotic manipulation, effective adaptation is crucial for
enabling robotic arms to reliably identify and interact with objects of varying shapes and materi-
als (Ren et al., 2023; Lu et al., 2024). Retraining for every unseen scenario is prohibitively costly in
annotation and compute. This motivates test time adaptation (TTA) (Wang et al., 2021; Yuan et al.,
2023; Hoang et al., 2024), which adapts models during deployment using only unlabeled test data,
without revisiting the source training set. By enabling efficient in-situ updates under distribution
shift, TTA offers a practical path to sustained robustness in ever-changing environments.

Early TTA methods updated models from the in-batch samples available at test time (Liang et al.,
2020; Wang et al., 2021; Boudiaf et al., 2022). However, even at large batch sizes, these samples
cover only a narrow and potentially biased slice of the target distribution. To address this limitation,
subsequent methods introduced memory to accumulate high-confidence samples and approximate
the target distribution more faithfully (Gong et al., 2022; Yuan et al., 2023; Kang et al., 2024).
Nevertheless, most systems still manage memory with simple rules such as confidence or recency
and treat it as an unstructured pool. We call this a single-cluster memories: samples are stored
without organization that reflects multi-modal target structure. This leaves two central questions
open: (1) do the retained samples provide a representative view of the target distribution, and (2)
under continual shift, can the memory be updated quickly enough to preserve robustness?

To address the above questions, we first examine the essential properties of memory techniques for
TTA, i.e., representativeness and adaptability, by visualizing target distributions using Kernel Den-
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Figure 1: Visualization of two core properties of memory in TTA systems: representativeness (left)
and adaptability (right). Diamond markers represent samples stored in the single-cluster mem-
ory (Yuan et al., 2023), which are concentrated in high-density regions. In contrast, colored cross
markers represent samples stored in different clusters within our proposed Multi-Cluster Memory
(MCM), demonstrating enhanced diversity and more effective adaptation to distribution shifts.

sity Estimation (KDE) (Parzen, 1962). KDE produces a smooth estimate of the data density from
finite samples, where its level sets reveal high- and low-density regions and expose multiple modes
that we colloquially refer to as clusters. In Figure 1, the left panel illustrates the representativeness
issue: purple diamonds denote samples retained by previous work (Yuan et al., 2023) using single-
cluster memory, which are concentrated in the central high-density region, failing to capture the
broader distribution. The right panel highlights the restriction of adaptability under domain shifts,
where the distribution evolves from left to right. Samples in a single-cluster memory remain con-
fined to the high-density region of the previous domain, limiting their ability to adapt to the new
distribution. While enlarging memory capacity can improve representativeness, single-cluster de-
signs suffer from linearly growing management costs. Furthermore, under distribution shifts, these
designs update samples sequentially, which restricts their ability to support rapid adaptation.

To address these limitations, we propose Multi-Cluster Memory (MCM), a novel memory manage-
ment framework for test-time adaptation. The central idea of MCM is to structure memory into
multiple clusters, where inter-cluster distances naturally expand the coverage of the sample distri-
bution, yielding a more representative view of the target domain. Building on prior work (Huang &
Belongie, 2017; Benz et al., 2021), we employ lightweight statistical descriptors—such as sample
means and variances—as the organizing principle for clustering, enabling a memory representation
that is both efficient and effective. When a test-time sample arrives, it is assigned to the cluster
whose descriptor is closest; if it lies far from all existing clusters, a new cluster is created to preserve
diversity. To prevent unbounded growth, we design Adjacent Cluster Consolidation (ACC), which
merges the nearest clusters in descriptor space, ensuring bounded memory usage while maintaining
distributional fidelity. Together, these components establish a memory architecture that is not only
more representative, scalable, and robust than existing approaches, but also far more efficient in
expanding memory capacity compared to the linearly growing cost within single-cluster designs.

On top of this architecture, we introduce Relevance-guided Sample Retrieval (RSR) to select reli-
able samples for adaptation. Specifically, the descriptors of the current mini-batch are compared
against those of all clusters to identify the most domain-relevant clusters, which are then used for
model updating. Following the Mean Teacher paradigm (Tarvainen & Valpola, 2017), adaptation
proceeds in a self-supervised manner. By unifying principled memory management with relevance-
guided retrieval, MCM selectively discards outdated clusters, rapidly adapts to new domains, and
consistently retrieves high-quality samples for learning—ultimately achieving substantially better
adaptability than conventional single-cluster memory designs.

We conduct extensive experiments across diverse image classification benchmarks under TTA set-
tings, including CIFAR-10-C, CIFAR-100-C, ImageNet-C (Hendrycks & Dietterich, 2019), and Do-
mainNet (Peng et al., 2019). Building on contemporary single-cluster memory–based TTA meth-
ods (Yuan et al., 2023; Hoang et al., 2024; Zhou et al., 2025), we replace their memory modules
with our proposed MCM and consistently observe substantial performance gains. These results
establish MCM as a scalable, plug-and-play component that can be seamlessly integrated into di-
verse TTA frameworks. We further evaluate the long-term robustness of MCM under the recurring
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TTA setting (Hoang et al., 2024), where MCM continues to deliver stable improvements. Our key
contributions are summarized as follows:

• We propose Multi-Cluster Memory, a scalable, plug-and-play memory management mech-
anism that strengthens both the representativeness and adaptability of TTA systems.

• By integrating statistical descriptors into the management process, we enable explicit and
controllable organization of sample distributions within a multi-cluster memory.

• We demonstrate substantial and consistent performance improvements on diverse datasets
under PTTA setting, achieving an average error reduction of 2.96% across 12 experimental
configurations (ranging from 0.60% to 12.13%), and establish long-term robustness under
recurring TTA setting with 2.5% improvement on CIFAR100-C.

2 RELATED WORK

Evolution of Test-Time Adaptation Settings. Test-time adaptation (TTA) emerged as a paradigm
for adapting pre-trained models to target domains during inference without access to source data.
Early methods (Mummadi et al., 2021; Wang et al., 2021) operated under a fully TTA setting, where
the entire test set originates from a single fixed target domain. In this setup, all corruptions are
treated uniformly, and adaptation proceeds directly from the source-trained model without account-
ing for temporal variation or domain evolution. Subsequently, CoTTA (Wang et al., 2022) extended
this formulation to continual TTA (CTTA), where models must adapt to a sequence of evolving do-
mains. To mitigate catastrophic forgetting, CoTTA introduces a stochastic restoration mechanism
that intermittently resets the model to its source-pretrained state. Follow-up works (Zhu et al., 2024;
Liu et al., 2024; Han et al., 2025) have further advanced this line of research.

To better approximate real-world conditions, samples from consecutive time steps exhibit inherent
correlations, resulting in a non-i.i.d. sampling process. LAME (Boudiaf et al., 2022) was among the
first to explicitly address this non-i.i.d. setting, while RoTTA (Yuan et al., 2023) further integrated it
with CTTA, giving rise to the Practical TTA (PTTA) paradigm that more faithfully mirrors deploy-
ment scenarios. Building on this, recent advances such as PeTTA (Hoang et al., 2024) introduced
the concept of recurring TTA, revealing that repeated adaptation cycles can eventually drive models
toward collapse. In this work, we focus primarily on the PTTA setting, as it presents the most de-
manding challenge and offers the closest alignment with real-world deployment. Additionally, we
evaluate under the recurring TTA setting to further assess long-term robustness.

Memory-Based TTA Systems. Memory has long been employed to preserve valuable information
in artificial intelligence systems. Based on the nature of what is stored, memory can be broadly cat-
egorized into explicit memory (Rolnick et al., 2019; Song et al., 2023), implicit memory (Wu et al.,
2022; Omidi et al., 2025; Tseng et al., 2025), and external information (Lewis et al., 2020; Wang
et al., 2024). Explicit memory mechanisms have become indispensable for ensuring adaptation sta-
bility and mitigating catastrophic forgetting in practical TTA scenarios. Most existing TTA methods
rely on single-cluster memory banks, which treat all stored samples as a homogeneous pool. For
example, RoTTA (Yuan et al., 2023) employs heuristic scoring based on sample age and predic-
tion uncertainty, while PeTTA (Hoang et al., 2024) extends this concept with persistent adaptation
strategies. ECoTTA (Song et al., 2023) proposes self-distilled regularization to prevent model drift,
and MemBN (Kang et al., 2024) emphasizes maintaining batch normalization statistics in memory.
Additionally, ResiTTA (Zhou et al., 2025) introduces residual connections to enhance robustness in
continual learning for TTA scenarios. Despite their contributions, these single-cluster approaches
struggle to capture the complexity of manifold distributions, offering only an insensitive approxi-
mation of the target domains. This limitation underscores the need for more sophisticated memory
mechanisms that can better represent and adapt to diverse and evolving target distributions.

3 METHODOLOGY

3.1 REVISITING MEMORY-BASED TEST-TIME ADAPTATION

Current memory-based TTA approaches (Yuan et al., 2023; Hoang et al., 2024) typically employ
a single-cluster memory M = xi

N
i=1 that stores high-confidence samples. At each time step t,
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Figure 2: TTA system with Multi-Cluster Memory (MCM). Streaming samples are first predicted by
the teacher model and assigned to clusters according to their descriptors. Relevance-guided Sample
Retrieval (RSR) then supplies samples for adaptation. Through Adjacent Cluster Consolidation
(ACC), MCM dynamically adjusts the clusters to prevent exceeding the predefined capacity.

the model first processes a mini-batch Bt to update the memory bank and subsequently adapts its
parameters by minimizing

Ladapt = Ex∼M [Lcons(fs(x), ft(x))] , (1)

where fs and ft denote the student and teacher networks, respectively. Crucially, adaptation relies
exclusively on samples drawn from the memory bank M rather than the current batch Bt. Following
the Mean Teacher paradigm (Tarvainen & Valpola, 2017), the teacher produces pseudo-labels and
is updated via an exponential moving average (EMA), which enhances training stability. While
this single-cluster memory design alleviates the distributional narrowness inherent to pure in-batch
adaptation, we emphasize that two fundamental limitations remain unresolved:

Scalability Limits of Memory Capacity. Although incorporating a memory mechanism broad-
ens the coverage of the sample distribution in TTA systems, the extent of this coverage remains
inherently limited. Moreover, contemporary single-cluster memory designs suffer from linearly in-
creasing management costs, which in turn restrict their scalability.

Sluggish Adaptation under Domain Shifts. In continually evolving environments, the target dis-
tribution shifts from P

(t)
T to P

(t+1)
T across time steps. Owing to its homogeneous structure, a single-

cluster memory struggles to preserve temporal diversity, as it cannot differentiate whether samples
originate from past domains P

(t−k)
T or the current domain P

(t)
T . This limitation induces a funda-

mental trade-off: aggressive replacement (small age weight) leads to catastrophic forgetting of prior
knowledge, whereas conservative retention (large age weight) causes the memory to be dominated
by outdated samples, diminishing its ability to represent the current distribution.

3.2 TEST-TIME ADAPTATION SYSTEM WITH MULTI-CLUSTER MEMORY

To improve the representativeness and adaptability of memory, we propose Multi-Cluster Mem-
ory (MCM) for TTA. As shown in Fig. 2, the memory bank is partitioned into up to Kmax clusters,
C1, C2, . . . , CK with K ≤ Kmax, where each cluster Ck is formed by descriptor Dk to capture distinct
regions of the feature space. This design addresses two key limitations: (i) preserving diverse distri-
butional patterns across clusters to avoid dominance by a single pattern, and (ii) enabling more ef-
ficient capacity expansion without the linearly growing management cost of single-cluster memory.
With descriptor-based management, Adjacent Cluster Consolidation (ACC), and Relevance-guided
Sample Retrieval (RSR), MCM supports efficient and effective test-time adaptation.
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3.3 DESCRIPTOR-BASED MANAGEMENT

Our memory bank M is dynamically partitioned into K clusters {C1, C2, ..., CK} where K ∈
{1, 2, ...,Kmax}, starting from an empty state (K = 0). Each cluster Ck maintains up to N sam-
ples, ensuring a maximum total capacity of Kmax × N . To efficiently manage cluster assignment
and consolidation, we characterize each sample x by its channel-wise statistics descriptor:

dx = [µ(1)
x , σ(1)

x , ..., µ(c)
x , σ(c)

x ], (2)

where µ(c)
x and σ

(c)
x denote the mean and variance of the c-th channel computed across spatial dimen-

sions H ×W of the feature map. Following previous work in test-time normalization (Tomar et al.,
2024), these channel-wise statistics effectively capture domain shift characteristics while maintain-
ing computational efficiency. Each cluster Ck is summarized by its centroid descriptor Dk, computed
as the average of all member descriptors:

Dk =
1

|Ck|
∑
x∈Ck

dx. (3)

This lightweight descriptor enables efficient cluster operations in online adaptation scenarios.

Sample Assignment. Upon arrival of a new sample xt at time t, we perform cluster assignment
followed by selective insertion or replacement to maintain high intra-cluster density. We compute
the Euclidean distance between the sample descriptor dxt

and all existing cluster centroids:

k∗ = argmin
k∈{1,...,K}

∥dxt −Dk∥2. (4)

If the minimum distance exceeds the threshold τ , indicating that xt lies far from all existing clusters,
a new cluster is spawned as CK+1 = {xt}. Otherwise, xt is assigned to the nearest cluster Ck∗ .

Sample Replacement. When the target cluster Ck∗ reaches capacity (|Ck∗ | = N ), we employ a
heuristic scoring function to identify the least valuable sample for replacement. Building upon the
scoring function from Yuan et al. (2023), we incorporate descriptor distance as an additional term:

H(x) = λt ·
1

1 + exp(−Ax/N)
+ λu · Ux

logNC
+ λd · ∥dx −Dk∗∥2, (5)

where Ax denotes the age of sample x (i.e., the number of steps since insertion), Ux represents its
prediction entropy, NC is the number of classes, and the third term quantifies the distance to the
cluster centroid. The sample with the highest score is then replaced by xt. By extending RoTTA’s
timeliness and uncertainty criteria with a spatial distance term, this strategy ensures that clusters
preserve not only temporal relevance and prediction confidence but also spatial compactness.

3.4 ADJACENT CLUSTER CONSOLIDATION

When the number of clusters reaches Kmax, a consolidation step is triggered to merge the most
similar clusters. To balance efficiency with the sequential growth of clusters, we adopt the consol-
idation strategy of Song et al. (2024), restricting candidates to adjacent cluster pairs in the creation
sequence, as these are more likely to correspond to related distributions. For each adjacent pair
(Ci, Ci+ 1), we compute their centroid distance ∆i,i+1 = ∥Di −Di+1∥2 and merge the pair with
the minimum distance. The consolidation process unifies all samples from both clusters into a single
pool and retains the N samples with the lowest prediction uncertainty. Formally, the merged cluster
is defined as

Cmerged =

{
Ci ∪ Cj if |Ci ∪ Cj | ≤ N

top-K({x ∈ Ci ∪ Cj : Ux ascending}, N) otherwise
. (6)

After cluster merging, we reconstruct the class-wise structure following Yuan et al. (2023) to main-
tain balanced representation across categories. The merged cluster descriptor is then updated. This
strategy enhances memory efficiency while preserving high-confidence samples and class diversity.
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Table 1: Overall Practical Test-time Adaptation (PTTA) error rates (%) on CIFAR10-C, CIFAR100-
C, ImageNet-C (Hendrycks & Dietterich, 2019), and DomainNet (Peng et al., 2019) (severity 5).
Lower is better. Numbers in parentheses indicate improvement margins over their respective base-
line. † denotes results from our implementation as the original paper did not report on this dataset.

Method Venue CIFAR10-C CIFAR100-C ImageNet-C DomainNet

Source – 43.50 46.40 82.00 –
BN CoRR’20 75.20 52.90 – –
PL ICML’13 82.90 88.90 – –
TENT ICLR’21 86.00 92.80 – –
LAME CVPR’22 39.50 40.50 80.90 –
CoTTA CVPR’22 83.20 52.20 98.60 –
NOTE NeurIPS’22 31.10 73.80 – –
RDumb NeurIPS’23 31.10 36.70 72.20 44.30
ROID WACV’24 72.70 76.40 62.70 –
TRIBE AAAI’24 15.30 33.80 63.60 –

RoTTA CVPR’23 25.20 35.00 68.30 44.30
+ MCM – 22.59 (-2.61) 33.75 (-1.25) 67.46 (-0.84) 42.53 (-1.77)

PeTTA NeurIPS’24 24.30 35.80 65.30 43.80
+ MCM – 21.55 (-2.75) 33.04 (-2.76) 60.30 (-5.00) 42.80 (-1.00)

ResiTTA ICASSP’25 22.80 32.50 69.40 54.76†
+ MCM – 20.69 (-2.11) 31.90 (-0.60) 66.65 (-2.75) 42.63 (-12.13)

3.5 RELEVANCE-GUIDED SAMPLE RETRIEVAL

During adaptation, we selectively retrieve samples from clusters most relevant to the current batch
Bt. Each cluster’s relevance score is computed as the average descriptor distance to all in-batch
samples. The NS clusters with the lowest scores (i.e., highest similarity) form the retrieval set
Mretrieve, from which samples are drawn for model updates. Following established TTA prac-
tices (Yuan et al., 2023; Hoang et al., 2024), we employ the Mean Teacher framework (Tarvainen &
Valpola, 2017) with consistency regularization as defined in equation 1. The novelty of our approach
lies not in the adaptation mechanism itself, but in the construction of Mretrieve through our MCM,
which yields memory samples that are both more representative of the target distribution and more
adaptable to continual domain shifts than single-cluster designs.

Discussion. With respect to adaptability in evolving domains, single-cluster memory suffers from
sequential sample updates, resulting in an inefficient transfer process. In contrast, our proposed
MCM, empowered by ACC and RSR management strategies, enables rapid cluster deletion and cre-
ation, followed by targeted sample retrieval from the most relevant clusters. Collectively, these ca-
pabilities enhance the representativeness and adaptability of memory under continual domain shifts.

4 EXPERIMENTS

4.1 SETUP AND PROTOCOLS

Datasets and Metrics. We evaluate our method on four benchmark datasets under the Practical
Test-Time Adaptation (PTTA) setting (Yuan et al., 2023). For CIFAR10-C, CIFAR100-C, and
ImageNet-C (Hendrycks & Dietterich, 2019), we adopt severity level 5. We further evaluate on
DomainNet (Peng et al., 2019), using 126 categories across four domains for the transfer task real
→ clipart, painting, sketch. The performance is measured by the mean classification error.

Implementation Details. Following Hoang et al. (2024), we use WideResNet-28 (Zagoruyko &
Komodakis, 2016) for CIFAR10-C, ResNeXt-29 (Xie et al., 2017) for CIFAR100-C, and ResNet-
50 (Croce et al., 2021) for ImageNet-C and DomainNet. All experiments are conducted on a sin-
gle NVIDIA RTX 4090 GPU. Following Yuan et al. (2023), we adopt the PTTA protocol and use
Dirichlet distribution to simulate correlative sampling with parameter δ = 0.1 for CIFAR10-C and
CIFAR100-C to simulate temporal correlation. In MCM, we set Kmax = 1 for CIFAR10-C and
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Figure 3: These figures demonstrate the effectiveness of the hyper-parameters, i.e., Cap., Kmax, and
τ . We conduct the analysis on CIFAR100-C under PTTA setting and integrate ResiTTA with MCM.

Kmax = 5 for more complex datasets (CIFAR100-C, ImageNet-C, and DomainNet). A detailed
analysis of Kmax is provided in the Section 4.3 content and further expanded in the Appendix C.

Baselines. We compare with: Source (no adaptation), BN (Nado et al., 2020), PL (Lee et al., 2013),
TENT (Wang et al., 2021), LAME (Boudiaf et al., 2022), CoTTA (Wang et al., 2022), NOTE (Gong
et al., 2022), RDumb (Press et al., 2023), ROID (Marsden et al., 2024), and TRIBE (Su et al., 2024).
For baselines with publicly available implementations, we adopt their original parameter settings.
Hyperparameter choices are kept as close as possible to the original selections.

4.2 MAIN RESULTS

Table 1 reports the performance comparison under the PTTA setting across CIFAR10-C, CIFAR100-
C, ImageNet-C, and DomainNet. To demonstrate both effectiveness and generalizability, we inte-
grate MCM with contemporary memory-based TTA methods—RoTTA, PeTTA, and ResiTTA.

Consistent Gains Across Baselines. Our approach yields consistent gains across all baselines meth-
ods across datasets. When combined with PeTTA, it achieves the best performance on ImageNet-C
(60.30%), marking a substantial improvement of 5.00%. Likewise, with ResiTTA, it delivers the top
results on CIFAR100-C (31.90%) and DomainNet (42.63%). The results demonstrate that MCM
effectively overcomes the fundamental limitations of single-cluster memory approaches.

Advantage on Complex Distributions. The performance gains are most pronounced on challeng-
ing benchmarks. On ImageNet-C and DomainNet, which feature larger label spaces and greater
distributional diversity, our method achieves average improvements of 2.86% and 4.97% respec-
tively across the three baselines. These results highlight that the proposed MCM is particularly
advantageous in complex domains, where a single-cluster design fails to capture the full view of the
target distribution. Nevertheless, while our approach consistently improves over baselines, MCM
can only yield competitive performance on relatively less complex datasets such as CIFAR10-C.

4.3 ANALYSIS OF HYPERPARAMETER SENSITIVITY

As shown in Figure 3, we conduct an ablation study on the key hyperparameters of our proposed
MCM, namely the capacity of a single cluster (Cap.), the maximum number of clusters (Kmax),
and the distance threshold (τ ) for cluster creation. The analysis is performed on CIFAR100-C using
ResiTTA equipped with MCM. Extended results are provided in the Appendix C.

Effectiveness of Cluster Capacity. In this analysis, we fix Kmax = 5 and τ = 0.3. As shown in the
left panel of Figure 3, the error rate first rises as the cluster capacity increases, but after exceeding
64, it reverses and declines with further expansion. This indicates that scaling capacity alone is
ineffective; only when combined with proper inter-cluster management strategies can the overall
effectiveness of TTA be substantially improved.

Impact of the Number of the Clusters. In this analysis, we fix Cap. = 64 and τ = 0.3. As shown
in the middle panel of Figure 3, the optimal choice for the maximum number of clusters is Kmax = 5.
Consistent with the earlier findings, the trending of error rate indicates that Cap. and Kmax must be
jointly considered, as their interplay is crucial for achieving effective adaptation.
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Figure 4: Runtime–error comparisons for RoTTA, PeTTA, and ResiTTA with and without MCM.
The x-axis denotes the total number of samples stored in memory. In MCM, the per-cluster size is
fixed at 64, and different totals are obtained by varying the number of clusters. Bars show the error
rate (left y-axis), and lines show the runtime (right y-axis, seconds) for whole CIFAR100-C dataset.
As shown in middle panel, PeTTA with 256 and 320 samples encountered out-of-memory errors.

Effect of Distance Threshold. In this analysis, we fix Cap. = 64 and Kmax = 5. As shown
in the right panel of Figure 3, the best error rate is achieved with threshold of τ = 0.3. Notably,
empirical evidence from single-cluster memory-based TTA methods (Yuan et al., 2023; Hoang et al.,
2024) suggests that thresholds above 0.5 generally yield stronger performance. We interpret this
discrepancy as evidence that the multi-cluster design decomposes the complex target distribution
into finer-grained regions, each managed by a dedicated cluster. Under this design, applying a
stricter threshold τ enhances cluster-level representativeness and ensures more reliable adaptation.

4.4 SCALING MEMORY CAPACITY WITH EFFICIENCY

To ensure that the gains of MCM are not attributed merely to enlarging memory capacity, we
conducted a controlled experiment by integrating MCM with RoTTA, PeTTA, and ResiTTA on
CIFAR100-C. In this setting, conventional single-cluster memories were scaled by directly increas-
ing the number of stored samples, whereas MCM increased its maximum number of clusters. Both
strategies were compared under the same total number of stored samples.

As shown in Figure 4, simply enlarging memory in existing methods yields marginal accuracy im-
provements but incurs substantial computational overhead. For instance, when RoTTA’s memory
bank is scaled from 64 to 320 samples, the error rate remains almost unchanged (35.0% to 35.4%),
while runtime escalates dramatically from 280s to 1556s due to the linear growth of management
costs. This trend is consistent across all baselines, suggesting that naively storing more samples
does not capture the distributional diversity necessary for stronger adaptation.

In contrast, our proposed MCM organization achieves a more favorable trade-off between accuracy
and efficiency. By structuring 320 samples into 5 clusters of 64, RoTTA+MCM reduces the error
rate to 33.8% while requiring only 501s. The structured design enables memory to be utilized more
effectively, amplifying representativeness without incurring linear cost growth.

Direct comparisons under equal capacities further highlight MCM’s advantage: with 320 samples,
RoTTA+MCM achieves 33.8% error in 501s, whereas standard RoTTA yields 35.4% error in 1556s.
These results demonstrate that MCM’s improvements derive from its principled memory structure
rather than raw capacity, underscoring its practical value for real-world deployment where both
accuracy and efficiency are critical.

4.5 LONG-TERM ROBUSTNESS

In addition to the PTTA evaluation, we further assess our approach under the more challenging
recurring TTA protocol introduced by Hoang et al. (2024). In this setting, the model repeatedly en-
counters the same sequence of corruptions across multiple adaptation rounds, providing a stringent
test of long-term stability and resilience against catastrophic forgetting. We integrate our proposed
MCM into PeTTA and conduct experiments on CIFAR100-C within this recurring TTA regime.
As shown in Table 2, MCM achieves consistent and substantial performance gains, with improve-
ments that accumulate as the number of adaptation rounds increases. These findings demonstrate
that, when built upon PeTTA, MCM not only preserves baseline robustness but also yields steady
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Table 2: CIFAR100 → CIFAR100-C, Recurring TTA (severity 5). Columns 1–20 list the classi-
fication error rate for each successive revisit to the corruption stream; Avg is the mean over all 20
visits. Results are obtained with a ResNeXt-29 backbone and the official ROBUSTBENCH prepro-
cessing. Bold denotes the best method and underlined the second best in every column.

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 46.5

LAME 40.5

CoTTA 53.4 58.4 63.4 67.6 71.4 74.9 78.2 81.1 84.0 86.7 88.8 90.7 92.3 93.5 94.7 95.6 96.3 97.0 97.3 97.6 83.1
EATA 88.5 95.0 96.8 97.3 97.4 97.2 97.2 97.3 97.4 97.5 97.5 97.5 97.6 97.7 97.7 97.7 97.8 97.8 97.7 97.7 96.9
RMT 50.5 48.6 47.9 47.4 47.3 47.1 46.9 46.9 46.6 46.8 46.7 46.5 46.5 46.6 46.5 46.5 46.5 46.5 46.5 46.5 47.1
MECTA 44.8 44.3 44.6 43.1 44.8 44.2 44.4 43.8 43.8 43.9 44.6 43.8 44.4 44.6 43.9 44.2 43.8 44.4 44.9 44.2 44.2
RoTTA 35.5 35.2 38.5 41.9 45.3 49.2 52.0 55.2 58.1 61.5 64.6 67.5 70.7 73.2 75.4 77.1 79.2 81.5 82.8 84.5 61.4
RDumb 36.7 36.7 36.6 36.6 36.7 36.8 36.7 36.5 36.6 36.5 36.7 36.6 36.5 36.7 36.5 36.6 36.6 36.7 36.6 36.5 36.6
ROID 76.4 76.4 76.2 76.2 76.3 76.1 75.9 76.1 76.3 76.3 76.6 76.3 76.8 76.7 76.6 76.3 76.2 76.0 75.9 76.0 76.3
TRIBE 33.8 33.3 35.3 34.9 35.3 35.1 37.1 37.2 37.2 39.1 39.2 41.1 41.0 43.1 45.1 45.1 45.0 44.9 44.9 44.9 39.6
PeTTA 35.8 34.4 34.7 35.0 35.1 35.1 35.2 35.3 35.3 35.3 35.2 35.3 35.2 35.2 35.1 35.2 35.2 35.2 35.2 35.2 35.1

PeTTA + MCM 33.8 33.8 33.0 33.0 33.1 33.9 33.9 33.9 32.7 32.7 32.7 32.8 32.7 32.7 32.7 32.6 32.6 32.6 32.6 32.5 32.6

long-term benefits through successive adaptations. We attribute these gains to the enhanced rep-
resentativeness of MCM’s memory, which supplies higher-quality learning samples throughout the
adaptation process. Additional results under the recurring TTA setting are provided in Appendix B.

5 DISCUSSION

The MCM architecture reveals fundamental insights into how sample organization affects test-time
adaptation. Our analysis across multiple benchmarks demonstrates that the performance gains arise
not from increased storage capacity, but from principled structural changes to memory management.

Limitations. While effective, MCM has several limitations: (i) it introduces additional computa-
tional overhead from descriptor computation and cluster management; (ii) it exhibits sensitivity to
a small set of hyperparameters (e.g., τ and the consolidation rule), which may require light tuning
across datasets; and (iii) the usage of the descriptors (i.e., statistic of samples) embodies an inductive
bias toward shifts that primarily manifest in first- or second-order feature statistics. Moreover, our
evaluations are confined to image classification; extending MCM to other modalities and to more
severe distribution shifts remains an important direction for future work.

Future Work. We regard memory as an indispensable component of the test-time adaptation pro-
cess and foresee several promising directions for its advancement: (i) Existing memory mechanisms,
including MCM, typically store raw samples as the primary content, which imposes substantial stor-
age costs. This challenge becomes even more pronounced when extending TTA to large language
models or multi-modal architectures. A natural next step is to employ compact feature representa-
tions as the storage unit, thereby improving both efficiency and scalability; (ii) In its current form,
MCM limits consolidation to adjacent clusters due to sequential updates, implicitly treating clusters
as a linear list. However, clusters are inherently unordered and related only through descriptor-
based distances. A graph-based management strategy thus represents a compelling future direction,
offering both greater efficiency and a closer alignment with the underlying structure.

6 CONCLUSION

We introduced Multi-Cluster Memory (MCM), a structured memory framework for test-time adap-
tation that leverages descriptor-guided clustering, Adjacent Cluster Consolidation, and Relevance-
guided Sample Retrieval to enhance representativeness and adaptability. Extensive experiments
across CIFAR-10-C, CIFAR-100-C, ImageNet-C, and DomainNet under the PTTA protocol con-
firm consistent improvements over state-of-the-art baselines, while recurring TTA evaluations fur-
ther demonstrate long-term stability. Our analysis reveals that performance gains arise not from
enlarging memory capacity, but from principled organization and retrieval, highlighting memory as
a core architectural element of adaptation. Although MCM introduces modest overhead and lim-
ited consolidation scope, these trade-offs are outweighed by robustness and scalability. Looking
forward, adopting compact feature-level storage and graph-based cluster management promises to
further improve efficiency and alignment with the underlying data structure.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics.1 Our study focuses on developing a novel memory
mechanism for test-time adaptation (TTA), termed Multi-Cluster Memory (MCM). The research
does not involve human subjects, personally identifiable information, or sensitive data, and all
datasets used (CIFAR10-C, CIFAR100-C, ImageNet-C, DomainNet) are publicly available bench-
marks with established community usage. We acknowledge that improvements in TTA methods
may indirectly affect safety-critical applications such as autonomous driving and decision-making
systems. To mitigate risks, we ensure reproducibility and transparency by providing clear method-
ological descriptions and adhering to community practices. No part of this work is intended to
enable harmful or malicious applications, and we emphasize that responsible deployment in real-
world scenarios requires careful evaluation of safety, fairness, and robustness.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility. All implementation details of the
proposed Multi-Cluster Memory (MCM) framework, including the memory partitioning algorithm,
cluster management strategies (ACC and RSR), and training protocols, are fully described in Sec-
tion 3. The experimental setup, including datasets (CIFAR10-C, CIFAR100-C, ImageNet-C, and
DomainNet), evaluation metrics, and PTTA protocol, is detailed in Section 4. Ablation studies on
key hyper-parameters (cluster capacity, maximum number of clusters Kmax, and distance threshold
τ ) are provided in Section 4.3 and Appendix C to validate robustness. Moreover, we will release
anonymized source code and configuration files as supplementary material to enable independent
verification of our results. These resources collectively ensure that our reported results can be faith-
fully reproduced and extended by the community.

1https://iclr.cc/public/CodeOfEthics

10

https://iclr.cc/public/CodeOfEthics


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So Kweon. Revisiting batch normalization
for improving corruption robustness. In Proceedings of the IEEE/CVF winter conference on
applications of computer vision, pp. 494–503, 2021.

Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca Bertinetto. Parameter-free online test-
time adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8344–8353, 2022.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized ad-
versarial robustness benchmark. In 35th Conference on Neural Information Processing Systems
(NeurIPS 2021) — Track on Datasets and Benchmarks, 2021. Also appears as a preprint at
arXiv:2010.09670.

Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee. NOTE:
Robust continual test-time adaptation against temporal correlation. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2022.

Jisu Han, Jaemin Na, and Wonjun Hwang. Ranked entropy minimization for continual test-time
adaptation. In Forty-second International Conference on Machine Learning, 2025.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. Proceedings of the International Conference on Learning Represen-
tations, 2019.

Trung-Hieu Hoang, Duc Minh Vo, and Minh N. Do. Persistent test-time adaptation in recurring test-
ing scenarios. In Thirty-eighth Conference on Neural Information Processing Systems (NeurIPS),
2024.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
ization. In ICCV, 2017.

Juwon Kang, Nayeong Kim, Jungseul Ok, and Suha Kwak. Membn: Robust test-time adaptation via
batch norm with statistics memory. In European Conference on Computer Vision, pp. 467–483.
Springer, 2024.

Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In Workshop on challenges in representation learning, ICML, pp. 896.
Atlanta, 2013.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
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From Single Bank to Multi-Clusters:
Memory Architectures for Test-Time Adaptation

Technical Appendices

A LLM USAGE STATEMENT

In preparing this work, we employed a large language model (LLM) solely as an auxiliary tool for
improving writing clarity and logical organization. The LLM was used to refine the presentation of
ideas, polish the language, and ensure consistency in terminology across the paper. Importantly, the
LLM was not involved in research ideation, experimental design, algorithm development, or data
analysis. All scientific contributions, technical innovations, and experimental results are entirely the
work of the authors. The authors take full responsibility for the content of this paper.

B RECURRING TEST-TIME ADAPTATION

In addition to the standard PTTA evaluation, we assess our method’s robustness under the more
challenging recurring TTA setting introduced by PeTTA (Hoang et al., 2024). In this protocol, the
model repeatedly encounters the same sequence of corruptions across multiple rounds, providing
insights into long-term adaptation stability and resistance to catastrophic forgetting.

Table 3 presents results on CIFAR10-C over 20 consecutive rounds. While most baseline methods
exhibit severe performance degradation—with CoTTA, EATA, and MECTA reaching error rates
above 85% by round 20—our multi-cluster memory architecture maintains stable performance.
When integrated with PeTTA, our approach achieves an average error of 19.5% across all rounds,
representing a 3.3% improvement over PeTTA alone. Notably, our method demonstrates remarkable
consistency, with error rates fluctuating within a narrow 1.6% range (18.7%–20.4%) throughout the
20 rounds, compared to PeTTA’s baseline variance of 0.7% (22.3%–23.0%). This stability suggests
that the multi-cluster organization effectively balances the retention of historical knowledge with
adaptation to recurring patterns.

The performance gap between our method and baselines widens progressively across rounds. While
we observe only a 1.9% improvement in round 1, this advantage grows to 3.0% by round 20, in-
dicating that our approach becomes increasingly beneficial under prolonged adaptation scenarios.
This trend validates our hypothesis that organizing memory into multiple clusters prevents the ho-
mogenization that plagues single-cluster approaches during extended adaptation periods.

Table 3: CIFAR-10 → CIFAR-10-C, Recurring TTA (severity 5). Columns 1–20 report the clas-
sification error rates (%, lower is better) at each revisit to the corruption stream, with Avg denoting
the mean over all 20 visits. All methods use a WideResNet-28 backbone obtained from ROBUST-
BENCH, along with its official preprocessing pipeline.

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 43.5

LAME 31.1

CoTTA 82.2 85.6 87.2 87.8 88.2 88.5 88.7 88.7 88.9 88.9 88.9 89.2 89.2 89.2 89.1 89.2 89.2 89.1 89.3 89.3 88.3
EATA 81.6 87.0 88.7 88.7 88.9 88.7 88.6 89.0 89.3 89.6 89.5 89.6 89.7 89.7 89.3 89.6 89.6 89.8 89.9 89.4 88.8
RMT 77.5 76.9 76.5 75.8 75.5 75.5 75.4 75.4 75.5 75.3 75.5 75.6 75.5 75.5 75.7 75.6 75.7 75.6 75.7 75.8 75.8
MECTA 72.2 82.0 85.2 86.3 87.0 87.3 87.3 87.5 88.1 88.8 88.9 88.9 88.6 89.1 88.7 88.8 88.5 88.6 88.3 88.8 86.9
RoTTA 24.6 25.5 29.6 33.6 38.2 42.8 46.2 50.6 52.2 54.1 56.5 57.5 59.4 60.2 61.7 63.0 64.8 66.1 68.2 70.3 51.3
RDumb 31.1 32.1 32.3 31.6 31.9 31.8 31.8 31.9 31.9 32.1 31.7 32.0 32.5 32.0 31.9 31.6 31.9 31.4 32.3 32.4 31.9
ROID 72.7 72.6 73.1 72.4 72.7 72.8 72.7 72.7 72.9 72.8 72.9 72.9 72.8 72.5 73.0 72.8 72.5 72.5 72.7 72.7 72.7
TRIBE 15.3 16.6 16.6 16.3 16.7 17.0 17.3 17.4 17.4 18.0 17.9 18.0 17.9 18.6 18.2 18.8 18.0 18.2 18.4 18.0 17.5
PeTTA 24.3 23.0 22.6 22.4 22.4 22.5 22.3 22.5 22.8 22.8 22.6 22.7 22.7 22.9 22.6 22.7 22.6 22.8 22.9 23.0 22.8

PeTTA+MCM 21.7 21.0 20.4 19.8 20.7 20.1 20.9 20.2 20.1 20.4 20.5 20.3 20.1 20.0 19.8 20.1 20.0 20.3 20.5 20.7 20.4

C IMPACT OF MEMORY ARCHITECTURE PARAMETERS

To further understand the design choices in our multi-cluster memory architecture, we conduct de-
tailed ablation studies using our best-performing configuration (PeTTA+Ours) on CIFAR100-C. Ta-
ble 4 presents comprehensive experiments examining two critical hyperparameters: the maximum
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Table 4: Ablation study for design in multi-cluster memory bank on CIFAR100 → CIFAR100-
C (severity 5). We investigate the impact of the per-cluster capacity N and the value of the base
threshold τ used during sample assignment on the performance of test-time adaptation.

Kmax N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

1 128 34.5 33.8 34.0 34.0 34.1 34.1 34.1 34.0 34.0 34.1 34.0 34.0 34.0 33.9 34.0 33.9 33.9 34.0 34.0 33.8 34.0

5 16 33.4 33.3 33.6 33.6 33.6 33.3 33.4 33.4 33.3 33.4 33.5 33.3 33.3 33.2 33.2 33.3 33.3 33.2 33.1 33.1 33.4
5 32 33.3 33.1 33.3 33.3 33.4 33.2 33.2 33.2 33.0 33.0 33.0 33.1 33.0 33.0 33.0 32.9 32.9 32.9 32.9 32.8 33.1
5 64 33.0 32.9 33.0 33.2 33.3 33.1 33.1 33.0 32.9 33.0 33.0 33.0 32.9 32.8 32.8 33.0 32.8 32.8 32.8 32.7 32.9
5 128 33.1 32.9 33.0 33.2 33.2 33.0 33.3 33.0 33.0 33.1 32.9 33.0 33.0 32.9 32.9 33.0 32.9 32.9 32.8 32.9 33.0

τ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

0.1 34.8 34.4 34.5 34.6 34.7 34.6 34.8 34.7 34.7 34.5 34.6 34.4 34.3 34.4 34.2 34.3 34.4 34.3 34.1 34.1 34.5
0.3 33.3 33.1 33.3 33.3 33.4 33.2 33.2 33.2 33.0 33.0 33.0 33.1 33.0 33.0 33.0 32.9 32.9 32.9 32.9 32.8 33.1
0.5 35.1 34.4 34.4 34.5 34.4 34.4 34.4 34.4 34.1 34.2 34.1 34.2 34.0 34.1 34.2 34.3 34.3 34.1 34.0 34.2 34.3
0.7 35.5 34.6 34.9 35.0 35.0 34.9 34.9 34.8 34.9 34.9 34.8 34.9 34.8 34.7 34.9 35.0 34.8 34.8 34.8 34.7 34.9

number of clusters (Kmax) and the distance threshold (τ ) for cluster creation. All experiments in
this section build upon the PeTTA+Ours framework, isolating the impact of memory architecture
parameters while maintaining other components constant.

For cluster capacity analysis, we first compare single-cluster (Kmax = 1) versus multi-cluster
(Kmax = 5) configurations with fixed capacity N = 128 under the PeTTA+Ours framework. The
multi-cluster design achieves 33.0% error compared to 34.0% for single-cluster, demonstrating a
consistent 1.0% improvement even within our already enhanced system. This validates that the
benefits of multi-cluster organization are complementary to PeTTA’s persistent adaptation strategy.
Within the multi-cluster configuration, we observe that performance improves monotonically with
increased per-cluster capacity: from 33.4% error at N = 16 to 32.9% at N = 64. However, fur-
ther increasing to N = 128 yields marginal returns (33.0%), suggesting that moderate cluster sizes
(32-64 samples) achieve an optimal balance between diversity and computational efficiency in the
PeTTA+Ours framework.

The distance threshold τ critically influences cluster formation dynamics within our integrated
system. Our experiments with PeTTA+Ours reveal that τ = 0.3 achieves optimal performance
(33.1% error), significantly outperforming both conservative (τ = 0.1, 34.5% error) and aggressive
(τ = 0.7, 34.9% error) thresholds. A small threshold creates excessive fragmentation by spawning
clusters for minor distributional variations, while a large threshold fails to capture meaningful diver-
sity by forcing dissimilar samples into the same cluster. The optimal value of 0.3 in the PeTTA+Ours
configuration suggests that successful adaptation requires distinguishing between genuine distribu-
tional modes while avoiding over-segmentation of continuous distributions, particularly when com-
bined with PeTTA’s persistent adaptation mechanisms.

D CORRUPTION-SPECIFIC PERFORMANCE ANALYSIS

Tables 5 and 6 present detailed corruption-wise performance under the PTTA protocol, revealing
interesting patterns in how our multi-cluster memory handles different types of distribution shifts.

On CIFAR10-C, our method achieves particularly strong improvements on corruptions that induce
geometric transformations (elastic: 18.6% vs 24.6% for ResiTTA) and weather-related effects (frost:
15.7% vs 18.5%). These corruptions often create distinct visual patterns that benefit from separate
cluster representations. Conversely, the improvement is minimal for noise-based corruptions (im-
pulse, gaussian), where the corruption affects the entire image uniformly and thus benefits less from
multi-modal representation.

The pattern is more pronounced on CIFAR100-C, where the increased label complexity amplifies
the benefits of our approach. We observe substantial gains on structured corruptions that preserve
semantic content while altering appearance (fog: 38.6% vs 39.5%, frost: 29.8% vs 33.8%). The con-
sistent improvements across diverse corruption types—ranging from 0.5% to 3.9%—demonstrate
that our multi-cluster architecture provides broad robustness rather than specializing for specific
corruption patterns.

An interesting observation is that corruptions appearing later in the sequence (glass, gaussian, pix-
elate) show larger improvements compared to early corruptions. This suggests that our method’s
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ability to maintain distinct clusters becomes increasingly valuable as the adaptation history grows,
preventing the accumulated bias that affects single-cluster approaches.

Table 5: Classification error rate (%) of the task CIFAR10 → CIFAR10-C online continual test-
time adaptation evaluated on WideResNet-28 at the largest corruption severity 5. Samples in each
corruption are correlatively sampled under the setup PTTA.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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Avg.

Source 34.8 25.1 26.0 65.7 46.9 46.7 42.0 9.3 41.3 26.6 54.3 72.3 58.5 30.3 72.9 43.5
BN 73.2 73.4 72.7 77.2 73.7 72.5 72.9 71.0 74.1 77.7 80.0 76.9 75.5 78.3 79.0 75.2
PL 73.9 75.0 75.6 81.0 79.9 80.6 82.0 83.2 85.3 87.3 88.3 87.5 87.5 87.5 88.2 82.9
TENT 74.3 77.4 80.1 86.2 86.7 87.3 87.9 87.4 88.2 89.0 89.2 89.0 88.3 89.7 89.2 86.0
LAME 29.5 19.0 20.3 65.3 42.4 43.4 36.8 5.4 37.2 18.6 51.2 73.2 57.0 22.6 71.3 39.5
CoTTA 77.1 80.6 83.1 84.4 83.9 84.2 83.1 82.6 84.4 84.2 84.5 84.6 82.7 83.8 84.9 83.2
NOTE 18.0 22.1 20.6 35.6 26.9 13.6 26.5 17.3 27.2 37.0 48.3 38.8 42.6 41.9 49.7 31.1
RoTTA 18.1 21.3 18.8 33.6 23.6 16.5 15.1 11.2 21.9 30.7 39.6 26.8 33.7 27.8 39.5 25.2
ResiTTA 18.4 19.5 15.5 30.5 23.8 12.2 14.0 9.3 18.5 24.6 35.8 24.9 27.7 22.6 39.1 22.4

ResiTTA+MCM 16.2 19.7 15.3 30.2 23.8 13.4 14.0 10.3 15.7 18.6 31.2 23.6 22.6 20.4 31.8 20.7

Table 6: Classification error rate (%) of the task CIFAR100 → CIFAR100-C online continual test-
time adaptation evaluated on the ResNeXt-29 architecture at the largest corruption severity 5. Sam-
ples in each corruption are correlatively sampled under the setup PTTA.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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Avg.

Source 30.8 39.5 50.3 68.0 29.3 55.1 28.8 29.5 45.8 37.2 54.1 73.0 74.7 41.2 39.4 46.4
BN 48.5 54.0 58.9 56.2 46.4 48.0 47.0 45.4 52.9 53.4 57.1 58.2 51.7 57.1 58.8 52.9
PL 50.6 62.1 73.9 87.8 90.8 96.0 94.8 96.4 97.4 97.2 97.4 97.4 97.3 97.4 97.4 88.9
TENT 53.3 77.6 93.0 96.5 96.7 97.5 97.1 97.5 97.3 97.2 97.1 97.7 97.6 98.0 98.3 92.8
LAME 22.4 30.4 43.9 66.3 21.3 51.7 20.6 21.8 39.8 28.0 48.7 72.8 74.6 33.1 32.3 40.5
CoTTA 49.2 52.7 56.8 53.0 48.7 51.7 49.4 48.7 52.5 52.2 54.3 54.9 49.6 53.4 56.2 52.2
NOTE 45.7 53.0 58.2 65.6 54.2 52.0 59.8 63.5 74.8 91.8 98.1 98.3 96.8 97.0 98.2 73.8
RoTTA 31.8 36.7 40.9 42.1 30.0 33.6 27.9 25.4 32.3 34.0 38.8 38.7 31.3 38.0 42.9 35.0
ResiTTA 29.2 33.9 39.5 39.4 28.4 29.2 26.5 24.8 33.8 33.9 37.5 38.6 31.6 37.9 41.5 33.5

ResiTTA+MCM 27.9 32.3 38.6 37.6 26.1 27.3 24.6 23.9 29.8 32.3 36.0 37.1 29.5 36.4 39.1 31.9

E HYPERPARAMETER SENSITIVITY ANALYSIS

Table 7 examines sensitivity to maximum clusters Kmax and threshold τ , revealing distinct patterns
across dataset complexities.

For CIFAR10-C, optimal performance occurs with minimal clustering (Kmax = 1, τ = 0.1),
achieving 20.69% error. Performance degrades monotonically with increased clustering capacity:
Kmax = 3 yields 21.83% (+1.14%), while Kmax = 5 further deteriorates to 22.82% (+2.13%). This
suggests simpler datasets benefit from consolidated memory representations rather than distributed
clustering. Similarly, threshold relaxation proves detrimental—increasing τ from 0.1 to 0.3 raises
error to 21.40% (+0.71%), and τ = 0.5 reaches 22.46% (+1.77%), indicating strict similarity criteria
are essential for low-complexity scenarios.

CIFAR100-C exhibits contrasting behavior, optimizing at moderate multi-clustering (Kmax = 5,
τ = 0.3) with 31.90% error. Insufficient clusters harm performance (Kmax = 1: 32.44%, +0.54%),
while excessive clustering shows diminishing returns (Kmax = 7: 32.03%, +0.13%), suggesting
an optimal balance between memory diversity and management overhead. The threshold sensitivity
differs markedly: while τ = 0.3 performs best, both tighter (τ = 0.1: 32.88%, +0.98%) and
looser (τ = 0.5: 32.85%, +0.95%) thresholds degrade performance equally, indicating CIFAR100-
C requires balanced clustering criteria—neither too restrictive nor too permissive.
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Table 7: Ablation study on hyperparameters for ResiTTA+C2F. We report classification error (%)
and relative change ∆ compared to the best setting. Best results are highlighted in bold.

CIFAR10-C CIFAR100-C

Kmax τ Error (%) ∆ Kmax τ Error (%) ∆

1 0.1 20.69 – 1 0.3 32.44 +0.54
3 0.1 21.83 +1.14 3 0.3 32.09 +0.19
5 0.1 22.82 +2.13 5 0.3 31.90 –
– – – – 7 0.3 32.03 +0.13

1 0.1 20.69 – 5 0.1 32.88 +0.98
1 0.3 21.40 +0.71 5 0.3 31.90 –
1 0.5 22.46 +1.77 5 0.5 32.85 +0.95

F MEMORY SCALING EFFICIENCY COMPARISON

Table 8 compares error rates and runtime performance for baseline configurations (64 samples),
naive scaling approach (320 samples), and our proposed MCM configurations across different adap-
tation methods.

Naive scaling yields minimal accuracy gains with severe runtime overhead across all evaluated meth-
ods. RoTTA’s memory increase from 64 to 320 samples on CIFAR100-C barely affects error rates
(35.00%→35.39%) but dramatically inflates runtime from 320s to 1556s. PeTTA demonstrates even
more problematic scaling behavior, exhausting available memory at 320 samples on CIFAR100-C,
while its CIFAR10-C runtime balloons from 572s to 2652s. ResiTTA shows similar inefficiencies,
with 320-sample configurations yielding marginal accuracy changes but suffering substantial run-
time penalties on both datasets.

In stark contrast, MCM delivers meaningful accuracy improvements while maintaining computa-
tional efficiency. ResiTTA+MCM achieves an impressive 20.69% error rate on CIFAR10-C in only
273s—faster than the 359s baseline—and reaches 31.90% on CIFAR100-C in 655s, which is un-
der half the 1492s required for naive scaling with better accuracy results. The pattern holds across
other methods: RoTTA+MCM and PeTTA+MCM consistently outperform their naive scaling coun-
terparts in both accuracy and runtime metrics. These results demonstrate that performance gains
stem fundamentally from intelligent memory organization rather than simply increasing memory
capacity, validating MCM’s design philosophy.

Table 8: Memory efficiency comparison under 1-round PTTA. Times are wall-clock for complete
round execution. Naive 5× scaling (64→320) increases runtime dramatically without accuracy
gains, while MCM achieves lower error with comparable runtime. We use Kmax=1 (CIFAR10-C)
and Kmax=5 (CIFAR100-C).

Method CIFAR10-C CIFAR100-C
Cap. Error (%) Time (s) Cap. Error (%) Time (s)

RoTTA 64 25.20 299 64 35.00 320
RoTTA 320 24.81 1435 320 35.39 1556
RoTTA + MCM 64× 1 22.59 270 64× 5 33.75 501

PeTTA 64 24.30 572 64 35.8 688
PeTTA 320 21.70 2652 320 - -
PeTTA + MCM 64× 1 21.55 881 64× 5 33.04 1043

ResiTTA 64 22.80 359 64 32.50 340
ResiTTA 320 23.44 1577 320 32.93 1492
ResiTTA + MCM 64× 1 20.69 273 64× 5 31.90 655
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