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Anonymous authors
Paper under double-blind review

[leftward] A kangaroo jumping in the Australian ...

[upward] A chihuahua in an astronaut suit ...

[outward] A corgi running on the grassland ...

[inward] A streetcar trundling district ...

[in&outward] A fox running in a forest ...[updown&rightward] A squirrel jumping ...

Figure 1: Showcase of DiTraj. We propose DiTraj, a simple but effective training-free framework
for trajectory control in text-to-video generation, specifically designed for DiT-based model. Given
an input bbox trajectory guidance, DiTraj enables generating high-quality videos that align with the
target trajectory.

ABSTRACT

Diffusion Transformers (DiT)-based video generation models with 3D full atten-
tion exhibit strong generative capabilities. Trajectory control represents a user-
friendly task in the field of controllable video generation. However, existing meth-
ods either require substantial training resources or are specifically designed for U-
Net, do not take advantage of the superior performance of DiT. To address these
issues, we propose DiTraj, a simple but effective training-free framework for tra-
jectory control in text-to-video generation, tailored for DiT. Specifically, first, to
inject the object’s trajectory, we propose foreground-background separation guid-
ance: we use the Large Language Model (LLM) to convert user-provided prompts
into foreground and background prompts, which respectively guide the genera-
tion of foreground and background regions in the video. Then, we analyze 3D full
attention and explore the tight correlation between inter-token attention scores
and position embedding. Based on this, we propose inter-frame Spatial-Temporal
Decoupled 3D-RoPE (STD-RoPE). By modifying only foreground tokens’ po-
sition embedding, STD-RoPE eliminates their cross-frame spatial discrepancies,
strengthening cross-frame attention among them and thus enhancing trajectory
control. Additionally, we achieve 2.5D-aware trajectory control by regulating
the density of position embedding. Extensive experiments demonstrate that our
method outperforms previous methods in both video quality and trajectory con-
trollability.

1 INTRODUCTION

In recent years, diffusion models have advanced rapidly (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2022). Owing to their stable generation process and impressive generation quality,
they have gradually become the mainstream for visual generation tasks. Benefiting from large-
scale image and video datasets, the architecture of video generation models has evolved from the
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temporal attention

spatial attention

3D full attention

U-Net

...

DiT

Inconsistent

Consistent

U-Net-based trajectory control method

Ours

no attention

3D full attention

Insufficient control

Sufficient control

Conv layer
Spatial Transformer

Temporal Transformer

3D full attention Transformer

Figure 2: Difference in attention mechanisms between U-Net and DiT. Methods based on U-Net
fail to achieve sufficient trajectory control and struggle to maintain the consistency of the object’s
appearance. In contrast, our proposed method enables effective control over the object’s trajectory
while ensuring the consistency of its appearance.

traditional U-Net (Ronneberger et al., 2015) to the current state-of-the-art Diffusion Transformers
(DiT) (Peebles & Xie, 2023). Sora (OpenAI, 2023) has demonstrated that the DiT architecture
exhibits excellent scalability and other advantages in video generation tasks, delivering remarkably
realistic results. Subsequently, the proposal of numerous DiT-based video generation models—for
both open-source (Kong et al., 2025; Wan et al., 2025; Yang et al., 2025b; Zheng et al., 2024) and
commercial applications (KlingAI, 2025)—has further advanced the field of video generation.

Researchers not only pursue high-quality generation results but also strive to control the generated
video content. Most models offer text-to-video control, in which users guide video generation via
prompts to ensure the generated video aligns with the provided textual descriptions. However, rely-
ing solely on text often fails to produce the desired results. Although text can control the appearance
of objects or scenes, it remains challenging to regulate the trajectory of the object. Controlling the
object’s position in each frame of a video via its bounding box, thereby governing the object’s tra-
jectory, would offer significant convenience for users. To address this task, several methods have
been proposed which can be categorized into two types: training-based and training-free approaches.
Training-based methods (Zhang et al., 2025; Yang et al., 2024) construct dedicated datasets to train
additional modules or directly fine-tune the model’s own parameters, but they incur substantial re-
source costs. In contrast, training-free (Qiu et al., 2024; Jain et al., 2024; Ma et al., 2024; Lian et al.,
2024; Chen et al., 2025) methods control object trajectories by modifying noise, constructing atten-
tion masks from input cues, assembling noise via inversion and repositioning, or optimizing during
inference-time. However, these methods either rely on time-consuming inversion or optimization
processes, or are specifically designed for U-Net, failing to leverage the superior performance of
DiT. Furthermore, we argue that the U-Net’s segregated spatial and temporal attention mechanisms
necessitate extensive implicit propagation of visual features, complicating the preservation of con-
sistency for objects undergoing large motions. In contrast, DiT’s joint spatial-temporal attention
mechanism (i.e., 3D full attention) is more suitable for object trajectory control, as illustrated in
Fig. 2. We believe that this inherent mechanism of DiT provides favorable conditions for training-
free trajectory control.

In this paper, we propose DiTraj, a training-free framework for trajectory control in text-to-video
generation. First, we convert user-provided prompts into foreground and background prompts via
rational reasoning using a Large Language Model (LLM); these prompts are then used to guide the
generation of foreground and background regions in the video, respectively, by constructing a cross-
attention mask between video tokens and prompts. Although the separation guidance enables the
control over small movements, it performs poorly for large movements. Through in-depth analysis
of the 3D full-attention mechanism, we observe that the attention map exhibits a diagonal highlight-
ing property: tokens with similar position embedding yield higher attention scores. This implies
that video tokens tend to pay more attention to tokens with adjacent position embedding either in
the spatial or temporal dimension; this phenomenon is also mentioned in previous works (Luo et al.,
2025; Wen et al., 2025). This property causes the object in the generated videos to remain relatively
static and often confines the object to the overlapping regions of bounding-boxes in the trajectory.
To resolve this issue, we propose inter-frame Spatial-Temporal Decoupled 3D-RoPE (STD-RoPE),
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a simple but effective method for enhancing attention between foreground tokens across different
frames by modifying 3D-RoPE (Su et al., 2023). Specifically, in the layout generation phase of
the diffusion process, i.e., the first few steps of the denoising process, we modify the position em-
bedding to align the spatial dimension within the bounding-box of each frame, and preserve the
original temporal dimension. The aligned spatial dimension enhance attention between inter-frame
foreground tokens, thereby improving control precision; meanwhile, the retained temporal dimen-
sion ensures the coherence of the object’s motion. However, when we introduce STD-RoPE, some
tokens with repeated position embedding emerge, which may lead to the occurrence of artifacts.
To address this issue, we introduce a self-attention mask, which eliminates artifacts and further
enhances control performance. Additionally, we achieve 2.5D-aware object trajectory control by
regulating the density of position embedding in the bounding-box, which is implemented through
nearest-neighbor upsampling on the spatial dimension of the position embedding of tokens in the
minimum bounding-box. This strategy controls the object’s trajectory while simultaneously control-
ling the distance between the object and the camera. In summary, our contributions are as follows:

• We propose DiTraj, the first training-free framework tailored for DiT for trajectory control-
lable video generation, which requires no inversion and inference-time optimization. It can
be easily adapted to most DiT-based video generation models.

• We introduce foreground-background separation guidance, which injects object trajectory
into the video generation process via conditional guidance.

• We propose STD-RoPE: a simple but effective method that improves trajectory control
capability by enhancing the attention between foreground tokens across different frames in
the layout generation phase of the diffusion process. Furthermore, based on this, we achieve
2.5D-aware object trajectory control by regulating the density of position embedding.

• Extensive experiments demonstrate that DiTraj outperforms existing methods in both video
quality and trajectory controllability.

2 RELATED WORK

2.1 TEXT-TO-VIDEO DIFFUSION MODEL

With the advent of diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2022),
the Text-to-Image (T2I) field has advanced rapidly in recent years, which has further spurred the de-
velopment of Text-to-Video (T2V) models. Several foundational models (Khachatryan et al., 2023;
Blattmann et al., 2023; Guo et al., 2023) have demonstrated robust video generation capabilities by
extending T2I model or training on large-scale image and video datasets. Notably, most of these
methods adopt the U-Net architecture. Subsequently, the introduction of Sora (OpenAI, 2023) has
showcased the scalability and additional advantages of the DiT architecture in video generation.
Recent works, such as CogVideoX Yang et al. (2025b), Mochi1 (Genmo, 2024), Wan (Wan et al.,
2025), and HunyuanVideo (Kong et al., 2025), have all leveraged the DiT architecture and achieved
remarkable performance.

2.2 TRAJECTORY CONTROL IN VIDEO GENERATION

As video generation models continue to advance in capability, much research has focused on con-
trolling the trajectories of objects in generated videos. For instance, VideoComposer (Wang et al.,
2023) and Control-A-Video (Chen et al., 2024) leverage depth maps, sketches, or motion vectors
extracted from reference videos as conditional inputs to control the motion of generated videos.
Tora (Zhang et al., 2025) integrates text, visual, and trajectory conditions to generate high-fidelity
motion videos. LeviTor (Wang et al., 2025) introduces 3D object trajectory control for image-to-
video synthesis, addressing the limitations of 2D drag-based control. However, these methods either
require extensive training data and computational resources or demand reference videos for fine-
tuning. Meanwhile, several training-free methods have been proposed: Peekaboo (Jain et al., 2024)
and Trailblazer (Ma et al., 2024) achieve direct object trajectory control by manipulating the atten-
tion mechanism within U-Net; FreeTraj (Qiu et al., 2024) injects trajectories via noise initialization
and resampling, alongside proposing a soft mask for enhanced control; Motion-zero (Chen et al.,
2025) fuses object trajectories with noise through an inversion process; and LVD (Lian et al., 2024)
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Figure 3: (a) Overview of DiTraj. Given the user-provided prompt and target trajectory, DiTraj
achieves training-free trajectory controllable T2V generation. (b) Foreground-background separa-
tion conditional guidance. (c) The STD-RoPE processing procedure.

complete trajectory control through inference-time optimization. Constrained by the capabilities of
U-Net, the performance of these methods is often unsatisfactory.

3 METHOD

In this section, we first briefly introduce 3D full attention (Yang et al., 2025b) and 3D-RoPE (Su
et al., 2023)—two key components in video DiT. We then elaborate on DiTraj: first, we present
foreground-background separation guidance; next, we describe STD-RoPE for enhancing attention
between foreground tokens across different frames, this part begins with an analysis of the attention
map, followed by a detailed introduction to STD-RoPE; subsequently, we explain how to addressing
tokens with repeated position embedding; finally, we outline our strategy for achieving 2.5D-aware
trajectory control. Our method can be extended to most DiT-based models, we use the Wan2.1(Wan
et al., 2025) as a concrete example to elaborate on the technical details in this section.

3.1 PRELIMINARIES

3D full attention. In current video DiT, pixel-level variables V ∈ RB×F×3×H×W are first com-
pressed by a 3D-VAE to generate latent variables z ∈ RB×f×c×h×w, which are subsequently con-
verted into a sequence of video tokens x with the shape of (B,L,D) via patchifying, where B
denotes the batch size, L = f × h

p ×
w
p represents the sequence length, p denotes the patch size,

and D indicates the latent dimension. These video tokens are then fed into a transformer block.
After position embedding is applied, 3D full attention is computed over the entire token sequence
(merged from the three dimensions: height, width, frame). Unlike the spatially and temporally sepa-
rated attention mechanism in U-Net, 3D full attention enables all tokens across the three dimensions
to attend to one another.

3D-RoPE. Rotary Position Embedding (RoPE) (Su et al., 2023) is a position embedding method
that integrates dependencies on relative positional information into self-attention, it rotates feature
vectors in the complex plane, using different rotation angles to represent distinct relative positions.
To adapt to video data, 3D-RoPE extends the RoPE: each latent variable in the video tensor is
represented by a 3D coordinate (x, y, t), where (x, y) and t correspond to spatial and temporal
dimensions, respectively. Then 1D-RoPE is applied independently to each of these three dimensions,
and the results are concatenated along the channel dimension to produce the final 3D-RoPE.

3.2 FOREGROUND-BACKGROUND SEPARATION GUIDANCE

First, we input the user-provided prompt Pori with our instruction template into the LLM. Leverag-
ing the LLM’s rational reasoning and appropriate semantic expansion, we derive two task-specific
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frame 1

frame n
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Figure 4: (a) A part of attention map between the first frame and the n-th frame. (b) After modifying
the position embedding, regions with the same PE exhibit a similar distribution of attention scores.
(c) With STD-RoPE, the attention scores between foreground tokens across different frames are
increased in the first step of denoising process. We perform visualization at block 1 in Wan2.1.

prompts: a foreground prompt Pfg (exclusively describing the foreground of the scene in the origi-
nal prompt) and a background prompt Pbg (exclusively describing the background).

Pfg,Pbg = LLM(Pori) (1)

These two prompts serve to guide the generation of the video’s foreground and background regions,
respectively. Subsequently, we feed two prompts into the text encoder Etext separately, concatenate
their output embeddings to form the Union Condition Embedding:

Cu = Concatenate(Etext(Pfg), Etext(Pbg)), (2)

and input this embedding into the cross-attention layer guiding the generation process. To im-
plement foreground-background separation guidance, we construct a cross-attention mask Mcross

based on the bounding-box trajectory T, which is composed of f -frame bounding-boxes: T =
{B1,B2, . . . ,Bf}. Each bounding-box B is defined by the relative position coordinates of its top-
left and bottom-right corners. Thus, we can determine which video tokens are within the trajectory
area.

Mcross
i,j =

 0, i ∈ Sfg and Cu
j ∈ Etext(Pfg)

0, i /∈ Sfg and Cu
j ∈ Etext(Pbg)

−∞, other
(3)

where Sfg = {i | xi ∈ T}. This mask enforces that foreground tokens in the generated video are
guided by the foreground prompt, while background tokens are guided by the background prompt.
Thus, the cross-attention becomes:

CrossAttention(x,Cu,Mcross) = softmax(
(Wq · x) · (Wk · Cu)T√

D
+Mcross) · (Wv ·Cu) (4)

where Wq , Wk, and Wv are the parameter matrices, which are used to calculate the query, key, and
value in the cross-attention, respectively. In this manner, we achieve the injection of the object’s
trajectory via the foreground-background separation guidance. To achieve better fusion of the fore-
ground and background, we use the separated guidance in the first ta steps of the entire denoise
process and maintain the remaining steps.

3.3 STD-ROPE

Analysis of attention map After injecting the object’s trajectory, the method performs well for
small-movement trajectories but fails to achieve precise control for large-movement ones, even if
we use separated guidance (SG) throughout the entire denoising process (see Fig. 4(a), where the
panda is not within the blue bounding-box in the n-th frame). To investigate this issue, we analyze
the attention map between the tokens of the first frame and the n-th frame in the first step of the
denoising process. As illustrated in Fig. 4(a), the attention map exhibits distinct diagonal stripes, in-
dicating that tokens at the same spatial position (purple and orange tokens in Fig. 4(a)) have stronger
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attention scores, but those in the trajectory (purple and blue tokens in Fig. 4(a)) have weak ones. In
other words, tokens with more similar position embedding (PE) tend to yield higher attention scores
during self-attention computation. We attribute this phenomenon to the fact that when 3D-RoPE is
applied to features, similar 3D-RoPE embeddings lead to comparable rotation angles in the com-
plex plane, resulting in more similar feature representations and thus higher attention scores. To
further validate this, we modify the position embedding of the tokens in the bounding-box of the
n-th frame (blue tokens in Fig. 4(b)), making its spatial position embedding completely consistent
with the bounding-box of the first frame (purple tokens in Fig. 4(b)). The attention map shows that
two regions with the same spatial position embedding (blue and orange tokens in Fig. 4(b)) have
highly similar attention scores, which results in the two regions being highly similar in the n-th
frame. Therefore, we conclude that the poor performance on large-movement trajectories arises
from the following issue: the significant spatial span between foreground tokens across different
frames leads to their excessively low attention scores. As a result, during the layout generation
phase of the denoising process, the latent variables are unable to produce a layout that aligns with
the target trajectory.

Algorithm 1: STD-RoPE
Input: Trajectory T = {B1,B2, . . . ,Bf}, video

tokens x
Output: STD-RoPE: PESTD

1: PE ← 3D-RoPE(x)
2: PEspatial, PEtemporal ← Split(PE)

▷Split the PE along the channel dimension
3: k ← Random(1, f)
4: anchor ← PEspatial[k,Bk]

▷The part of region Bk in the k-th frame of PEspatial

5: i← 1
6: while i ̸= f do

PEspatial[i,Bi]← anchor
i← i+ 1
end

7: PESTD ← Concatenate(PEspatial, PEtemporal)
8: return PESTD

STD-RoPE To address the aforemen-
tioned issue, we propose inter-frame
Spatial-Temporal Decoupled 3D-RoPE
(STD-RoPE). The algorithm is shown
in Alg. 1. This method modifies the
position embedding of video tokens to
eliminate large spatial discrepancies be-
tween foreground tokens across different
frames, strengthen their inter-frame atten-
tion score, thus ensure the generation of
a video spatial layout that conforms to
the target trajectory. Specifically, given a
bounding-box trajectory T, we can deter-
mine which tokens in each frame belong to
foreground tokens based on the bounding-
box B in the trajectory. Then we select
the spatial dimension of position embed-
ding of foreground tokens of an arbitrary
frame as the anchor. We then modify the
position embedding of foreground tokens
in all other frames to align their spatial di-
mensions with the anchor. This alignment ensures consistent spatial dimension of position embed-
ding for foreground tokens across all frames, eliminating spatial discrepancies and increasing the
attention scores between them. Notably, we do not modify the temporal dimension of any token’s
position embedding, this preserves the coherence and rationality of the object’s motion, as well as
the continuity and integrity of the entire video. We modify the position embedding in the first tb
steps of the denoising process.

Mask for R-token A critical issue arises after modifying the position embedding: except for the
frame corresponding to the anchor, multiple pairs of video tokens with identical position embed-
ding emerge in other frames. This induces a shift in the attention score distribution (similar to the
scenario illustrated in Fig. 4(b)), which degrades trajectory control performance and introduces ar-
tifacts in generated videos. To address this issue, R-token mask is introduced into the self-attention
computation. Specifically, within each frame, tokens with repeated position embedding—excluding
foreground tokens—are defined as R-tokens:

SR = Srepeat − Sfg (5)
where Srepeat contains those tokens with repeated position embedding.

The self-attention mask Mself is then constructed to block attention computation between R-Tokens
and foreground tokens:

Mself
i,j =

{ −∞, i ∈ Sfg and j ∈ SR
−∞, i ∈ SR and j ∈ Sfg
0, other

(6)
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This ensures that during self-attention calculation, no two tokens with identical position embedding
participate in the attention, thereby mitigating the aforementioned issues.

After applying STD-RoPE and the R-token mask, the attention scores of foreground tokens across
different frames are significantly improved during the layout generation phase of the denoising pro-
cess. Ultimately, a layout that aligns with the target trajectory is generated, as illustrated in Fig. 4(c).

3.4 2.5D-AWARE TRAJECTORY CONTROL

Frame anchor Frame i

anchor

…

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

1 2

3 4

nearest-neighbor
upsampling

HIGH DENSITY LOW DENSITY
Closer to camera

Figure 5: 2.5D-aware trajectory control by nearest-neighbor
upsampling from the anchor.

To achieve not only control over
an object’s 2D position in video
frames but also regulation of the ob-
ject’s relative distance to the camera
(i.e., depth control), we refined the
modification of position embedding
in STD-RoPE. Specifically, as illus-
trated in Fig. 5, when a user provides
a trajectory with dynamically sized
bounding-boxes, we adopt the posi-
tion embedding of tokens within the
smallest bounding-box in the trajec-
tory as the anchor (rather than select-
ing an arbitrary frame in sec 3.3). For
all other frames, we modify the posi-
tion embedding of tokens within their
respective bounding-boxes such that their spatial dimensions align with those of the anchor, where
the anchor’s position embedding is first upsized to match the size of the target frame’s bounding-
box via nearest-neighbor upsampling. Thus, in the layout generation process, we use the density
of position embedding values to control the distance between objects and the camera. This design
allows users to implement 2.5D-aware trajectory control by defining a bounding-box trajectory with
dynamic sizes, where variations in bounding-box size correspond to changes in the object’s depth
relative to the camera. The examples are shown in the right side of Fig. 1.

4 EXPERIMENT

4.1 SETTINGS

To validate the generalizability of our method, we adopt two DiT-based models—Wan2.1 (Wan
et al., 2025) and CogVideoX (Yang et al., 2025b)—as our pre-trained model. We set the number
of inference steps to 50, with ta set to 30 and tb set to 5. Additional details are provided in the
supplementary material.

We compared two categories of methods: training-free methods and training-/optimizing-based
methods. The training-free methods include Peekaboo (Jain et al., 2024), Trailblazer (Ma et al.,
2024), and FreeTraj (Qiu et al., 2024); the training-/optimizing-based methods include Tora (Zhang
et al., 2025), Direct-a-video (Yang et al., 2024), and LVD (Lian et al., 2024).

4.2 QUALITATIVE COMPARISON

As shown in Fig. 6, our method achieves the best performance in both control capability and ob-
ject consistency maintenance, outperforming all other methods. Peekaboo (Jain et al., 2024), Free-
Traj (Qiu et al., 2024), and direct-a-video (Yang et al., 2024) exhibit poor control capability, with
the target object in the generated videos failing to align with the target trajectories. Although Trail-
blazer (Ma et al., 2024) and LVD (Lian et al., 2024) realize trajectory control, their subjects are
damaged, which seriously impairs the quality of the generated videos. Based on CogvideoX (Yang
et al., 2025b), our method generates videos of higher quality than Tora (Zhang et al., 2025).
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A horse running, photorealistic, 4k, 
volumetric lighting unreal engine.

Freetraj Peekaboo     Trailbrazer Ours(WAN) Freetraj Peekaboo Trailbrazer Ours(WAN)

A deer walking in a snowy field.

Tora     Direct-a-Video    LVD Ours(CogVideoX) Tora      Direct-a-Video   LVD Ours(CogVideoX)

Figure 6: Qualitative comparison with state-of-the-art methods.

Table 1: Comparison with state-of-the-art methods. Red and Blue denote the best and second
best results, respectively.

Method Video Quality Trajectory Control

SC↑ BC↑ MS↑ AQ↑ IQ↑ Cov↑ mIoU↑ CD↓ AP50↑

Training-/Optimizing-Based Methods
Tora (Zhang et al., 2025) 0.936 0.956 0.988 0.541 0.640 0.95 21.3 0.17 3.4
Direct-a-Video (Yang et al., 2024) 0.923 0.931 0.959 0.478 0.551 0.83 37.7 0.14 22.1
LVD (Lian et al., 2024) 0.931 0.925 0.974 0.593 0.642 0.85 36.6 0.15 20.7

Training-Free Methods
Peekaboo (Jain et al., 2024) 0.920 0.943 0.986 0.482 0.544 0.84 34.0 0.17 18.7
TrailBlazer (Ma et al., 2024) 0.925 0.949 0.971 0.537 0.671 0.86 40.8 0.15 49.1
FreeTraj (Qiu et al., 2024) 0.935 0.950 0.968 0.584 0.650 0.94 37.2 0.11 26.3
Ours (CogvideoX) 0.935 0.956 0.990 0.580 0.652 0.94 45.2 0.14 58.8
Ours (Wan2.1) 0.937 0.957 0.990 0.627 0.677 0.96 47.3 0.09 50.5

4.3 QUANTITATIVE COMPARISON

Evaluation metrics To evaluate video quality, we report five dimensions in VBench (Huang et al.,
2023): Subject Consistency (SC), Background Consistency (BC), Motion Smoothness (MS), Aes-
thetic Quality (AQ) and Imaging Quality (IQ). For trajectory control performance, we follow the
evaluation protocol proposed in (Jain et al., 2024): first, we use the off-the-shelf object detection
model OWL-ViT-large (Minderer et al., 2022) to extract bounding-boxes of target objects in the
generated videos; subsequently, we compute four metrics to quantify control accuracy: Coverage
(Cov), mean Intersection over Union (mIoU), Center Distance (CD), and Average Precision at 50%
IoU (AP50). Here, Cov and CD represent the fraction of generated videos that the bboxes detected
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Table 2: User study. Red denotes the best results.

Method Tora DAV LVD Peekaboo TrailBlazer FreeTraj Ours
Trajectory Alignment 9.72% 5.12% 4.56% 1.93% 12.89% 3.90% 61.88%
Video-Text Alignment 13.60% 3.24% 10.35% 2.24% 4.77% 6.73% 59.07%

Video Quality 11.28% 3.30% 7.71% 6.48% 3.96% 4.17% 63.10%

in more than half of the frames and the distance between the centroid of the generated subject and
input mask, respectively.

As illustrated in Table 1, compared with those U-Net-based training-free methods, our approach
based on Wan2.1 outperforms all other methods across the five dimensions of video quality. And
it significantly surpasses other methods in the four dimensions related to trajectory control, with
improvements of 2.1%, 15.9%, 18.2%, and 2.9% respectively over the second-ranked method in
terms of Cov, mIoU, CD, and AP50. Compared with those training/optimizing-based methods, our
approach also achieves the best performance across all metrics.

In addition, a user study is employed for the assessment of human preferences. 24 participants
are instructed to select the best video in three evaluation aspects: trajectory alignment, video-text
alignment, and video quality. As shown in Table 2, DiTraj outperforms the baseline methods by
a significant margin, confirming the superiority of our approach in terms of trajectory alignment,
video-text alignment, and video quality.

4.4 ABLATION STUDY

Table 3: Ablation study. Red denotes the best results.

Method
Video Quality Trajectory Control

SC↑ MS↑ IQ↑ Cov↑ mIoU↑ CD↓ AP50↑

original 0.924 0.976 0.608 0.97 23.7 0.17 7.7
w/ SG 0.941 0.991 0.691 0.96 35.4 0.12 25.6
DiTraj 0.937 0.990 0.677 0.96 47.3 0.09 50.5

A horse running, photorealistic, 4k, volumetric lighting unreal engine.

original w/ SG DiTraj

Figure 7: Ablation study about proposed modules. We
gradually incorporate the modules we proposed into the base
model to verify their effectiveness.

To validate the effectiveness of
foreground-background separation
guidance (SG) and STD-RoPE,
we conducted experiments with
Wan2.1 in three test settings: the
original model, the model with
only separation guidance (SG) and
the complete DiTraj. As shown in
Table 3, compared with the original
model, the model with SG achieves
improvements in both video quality
and trajectory control capability
(except in Cov dimension). Com-
pared with the model using SG,
the full DiTraj framework shows
a slight decrease of 0.4%, 0.1%,
and 2.0% in the three video quality
metrics (SC, MS, IQ), respectively;
however, it delivers substantial
improvements of 33.6%, 25.0%,
and 97.3% in the three trajectory
control metrics (mIoU, CD, AP50).
As illustrated in Fig. 7, compared
with original model, the integration
of SG yields notable alterations
in the video layout; however, the
object trajectory exhibits insufficient
consistency with the target trajectory
(part of the horse’s body extends
beyond the bounding box range). In
contrast, following the introduction
of STD-RoPE, the object trajectory achieves complete alignment with the target trajectory, enabling
more precise trajectory control.
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5 CONCLUSION

We present DiTraj, the first DiT-specific training-free method for object trajectory control in T2V
generation, without inversion and inference-time optimization. Firstly, we inject the object trajectory
into the generation process by foreground-background separation guidance. Subsequently, we pro-
pose STD-RoPE to eliminate the spatial dimension discrepancy between foreground tokens across
different frames, increasing the attention score among them during the layout generation phase of
the denoising process, thereby enhancing the trajectory control capability. Moreover, we achieve
2.5D-aware trajectory control by regulating the density of position embedding. We reveal the poten-
tial connection between position embedding and attention score, and use it to control the generation
of video layouts. We hope that our work can offer valuable insight for future work on DiT-based
controllable trajectory video generation.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS IN PAPER WRITING

In the process of writing our article, we used large language models (LLMs) to aid and polish
writing. Specifically, we leverage LLMs to check for grammatical errors and correct punctuation
usage. Additionally, we utilize LLMs to enhance the fluency of some sentences and the accuracy
of word choice in the paper, thereby improving its readability. No LLMs are employed to generate
new ideas, and the research process is conducted by the authors.

A.2 IMPLEMENTATION

A.2.1 HYPERPARAMETERS

We use Qwen3 (Yang et al., 2025a) as our LLM. For Wan-based (Wan et al., 2025) DiTraj, the
inference resolution is fixed at 480×832 pixels and the video length is 81 frames, the scale of the
classifier-free guidance is set to 5. For CogvideoX-based (Yang et al., 2025b) DiTraj, the inference
resolution is fixed at 480×720 pixels and the video length is 49 frames, the scale of the classifier-free
guidance is set to 6. All experiments are conducted on a single NVIDIA A100 GPU.

For quantitative comparison, we generate a total of 560 videos for each inference method, utilizing
56 prompts. We initialize 10 random initial noises for each prompt for direct inference.

It is worth noting that for the evaluation of trajectory control capability, regarding all bounding-box-
based trajectory control methods (Jain et al., 2024; Ma et al., 2024; Qiu et al., 2024; Lian et al.,
2024; Yang et al., 2024) (i.e., all methods except Tora (Zhang et al., 2025)), we use the bounding-
box trajectory corresponding to each prompt as the condition to guide generation; whereas for Tora,
which adopts a point-based trajectory guidance condition, we use the center point of the bounding-
box corresponding to each prompt as the condition for guiding generation. For all these methods, we
followed their original models and parameter settings as reported in their respective research papers.

A.2.2 PROMPTS

Our prompt set is mostly extended from previous baselines (Jain et al., 2024; Ma et al., 2024), and we
manually designed a bounding-box trajectory for each prompt to ensure the diversity and rationality.
The prompt word(s) in bold case is the subject for positioning:

• A woodpecker climbing up a tree trunk.

• A squirrel descending a tree after gathering nuts.

• A bird diving towards the water to catch fish.

• A frog leaping up to catch a fly.

• A parrot flying upwards towards the treetops.

• A squirrel jumping from one tree to another.

• A rabbit burrowing downwards into its warren.

• A satellite orbiting Earth in outer space.

• A skateboarder performing tricks at a skate park.

• A leaf falling gently from a tree.

• A paper plane gliding in the air.

• A bear climbing down a tree after spotting a threat.

• A duck diving underwater in search of food.

• A kangaroo hopping down a gentle slope.

• An owl swooping down on its prey during the night.

• A hot air balloon drifting across a clear sky.

• A red double-decker bus moving through London streets.
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• A jet plane flying high in the sky.

• A helicopter hovering above a cityscape.

• A roller coaster looping in an amusement park.

• A streetcar trundling down tracks in a historic district.

• A rocket launching into space from a launchpad.

• A deer walking in a snowy field.

• A horse grazing in a meadow.

• A fox running in a forest clearing.

• A swan floating gracefully on a lake.

• A panda walking and munching bamboo in a bamboo forest.

• A penguin walking on an iceberg.

• A lion walking in the savanna grass.

• An owl flying in a tree at night.

• A dolphin just breaking the ocean surface.

• A camel walking in a desert landscape.

• A kangaroo jumping in the Australian outback.

• A colorful hot air balloon tethered to the ground.

• A corgi running on the grassland on the grassland.

• A corgi running on the grassland in the snow.

• A man in gray clothes running in the summer.

• A knight riding a horse on a race course.

• A horse galloping on a street.

• A lion running on the grasslands.

• A dog running across the garden, photorealistic, 4k.

• A tiger walking in the forest, photorealistic, 4k, high definition.

• Iron Man surfing on the sea.

• A tiger running in the forest, photorealistic, 4k, high definition.

• A horse running, photorealistic, 4k, volumetric lighting unreal engine.

• A panda surfing in the universe.

• A chihuahua in an astronaut suit floating in the universe, cinematic lighting, glow effect.

• An astronaut waving his hands on the moon.

• A horse galloping through a meadow.

• A bear running in the ruins, photorealistic, 4k, high definition.

• A barrel floating in a river.

• A dark knight riding a horse on the grassland.

• A wooden boat moving on the sea.

• A red car turning around on a countryside road, photorealistic, 4k.

• A majestic eagle soaring high above the treetops, surveying its territory.

• A bald eagle flying in the blue sky.
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A.2.3 INSTRUCTION TEMPLATE FOR FOREGROUND-BACKGROUND SEPARATION GUIDANCE

The instruction template input into the LLM in Sec 3.2 is as follows:

You are a prompt engineer. Users will provide you with a prompt for generating videos. Your task
is to understand this prompt, distinguish the main subject (foreground) and the background, and
finally return a prompt that only describes the main subject and a prompt that only describes the
background. The requirements are as follows: 1. The output format is: foreground prompt: [prompt
describing only the main subject] background prompt: [prompt describing only the background]
2. The lengths of foreground prompt and background prompt should be around 80-100 words long.
3. The foreground prompt should include a description of a close-up shot, indicating that the main
subject fills the entire frame. 4. The content described in the background prompt should be con-
sistent with the background content of the prompt provided by the user, and it must not contain
fields related to the main subject, nor include information about the foreground subject. Example:
User: Realistic photography style, a medium-sized gray-and-white dog with fluffy fur running to the
right. The dog has bright black eyes, perked ears, and a wagging tail. Its legs are in mid-stride,
paws lifting off the ground, mouth slightly open as if panting. The background is a sunlit green
lawn with a few scattered flowers. The camera follows the dog in a smooth tracking shot, capturing
its energetic movement. Medium shot from a low angle, emphasizing the dog’s speed and vitality.
foreground prompt: Realistic photography style, a medium-sized gray-and-white dog with fluffy fur
running to the right. The dog has bright black eyes, perked ears, and a wagging tail. Its legs are in
mid-stride, paws lifting off the ground, mouth slightly open as if panting. The camera follows the dog
in a smooth tracking shot, capturing its energetic movement. Close shot from a low angle, empha-
sizing the dog’s speed and vitality. background prompt: Hyper-realistic photography, a lush garden
bathed in soft afternoon sunlight. Vibrant roses in red, pink, and yellow bloom densely on climbing
trellises, while green ivy creeps up weathered stone walls. A small stone fountain gurgles gently in
the center, with water rippling and reflecting the sky. Butterflies flit between lavender bushes, and a
honeybee hovers above a daisy. The grass is neatly trimmed, with a winding gravel path. I will now
provide the prompt for you. Please directly output the foreground prompt and background prompt
follow the format without extra responses and quotation mark.

A.3 MORE EXPERIMENT

A.3.1 INFERENCE OVERHEAD

Table 4: Inference overhead.

Method Inference time(s)

Wan2.1-1.3B 185
DiTraj (Wan2.1-1.3B) 196↑ 5.9%

CogvideoX-5B 213
DiTraj (CogvideoX-5B) 223↑ 4.7%

We also evaluated the additional inference overhead in-
curred by DiTraj. As shown in Table 4, DiTraj re-
sults in an extra inference time of 5.9% and 4.7%
on Wan2.1-1.3B and CogvideX-5B, respectively. Our
method achieves high-quality trajectory control with a
low additional inference overhead.

A.3.2 ABLATION STUDY OF ta AND tb

Table 5: Ablation study on ta and tb. Bold denote the best results.

Video Quality Trajectory Control

ta tb SC↑ MS↑ IQ↑ Cov↑ mIoU↑ CD↓ AP50↑

0 0 0.924 0.976 0.608 0.97 23.7 0.17 7.7
5 0 0.934 0.982 0.687 0.97 32.1 0.15 17.9
30 0 0.941 0.991 0.691 0.96 35.4 0.12 25.6
50 0 0.939 0.986 0.688 0.95 36.6 0.12 25.9

30 1 0.939 0.991 0.688 0.96 37.9 0.11 30.7
30 5 0.937 0.990 0.677 0.96 47.3 0.09 50.5
30 10 0.928 0.972 0.642 0.95 45.1 0.11 47.4
30 20 0.911 0.964 0.621 0.92 41.1 0.12 44.7

Regarding the selection of ta and tb,
we conducted ablation experiments
on them based on Wan2.1 respec-
tively. For ta, as illustrated in Fig. 8
and Table 5, when ta is greater than 5,
the generated videos and their quan-
titative results are very close. For tb,
as illustrated in Fig. 9, excessively
small values (e.g. 1) will lead to in-
sufficient control ability, while exces-
sively large values (e.g. 10, 20) will
result in the appearance of artifacts.
Therefore, we selected 30 and 5 as
the relatively optimal values for ta and tb, respectively.
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A horse running, photorealistic, 4k, volumetric lighting unreal engine.

ta = 0 ta = 5 ta = 30 ta = 50

Figure 8: Results generated by varying ta when
tb is fixed to 0.

A horse running, photorealistic, 4k, volumetric lighting unreal engine.

tb = 1 tb = 5 tb = 10 tb = 20

Figure 9: Results generated by varying tb when
ta is fixed to 30.

Table 7: Experiments on two different ways of handling the temporal dimension. Red denotes the
best results.

Method Video Quality Trajectory Control

SC↑ BC↑ MS↑ AQ↑ IQ↑ Cov↑ mIoU↑ CD↓ AP50↑

Retaining 0.937 0.957 0.990 0.627 0.677 0.96 47.3 0.09 50.5
Aligning 0.930 0.952 0.957 0.619 0.676 0.96 47.7 0.10 50.8

A.3.3 ADDITIONAL METRICS ON VIDEO QUALITY

We have supplemented the FVD, FID, and IS metrics. We used 500 randomly selected videos from
AnimalKingdom (Ng et al., 2022) as the real distribution. The results are shown in Table 6.

A.3.4 TEMPORAL DIMENSION OF STD-ROPE
Table 6: Additional metrics on video quality. Bold denote the best
results.

Method FVD↓ FID↓ IS↑

FreeTraj (Qiu et al., 2024) 1946 101.4 14.78
Peekaboo (Jain et al., 2024) 1287 90.64 13.08
Trailblazer (Ma et al., 2024) 1336 89.32 15.25

Direct-a-Video (Yang et al., 2024) 1455 102.8 13.73
LVD (Lian et al., 2024) 1288 99.81 14.19

Tora (Zhang et al., 2025) 1198 91.33 15.79
DiTraj 1168 89.08 15.91

In STD-RoPE, the purpose of re-
taining the temporal dimension is to
maintain the coherence of motion in
the foreground region of each frame.
If we align the temporal dimensions
of all frames, the position embed-
ding of the foreground region in each
frame will be identical. This will
cause the content in the foreground
region of all frames to become al-
most the same, leading to rigid and
unsmooth object motions. To verify this, we conducted an experiment comparing the two schemes
of retaining the temporal dimension and aligning the temporal dimension. The Table 7 indicates
that aligning the temporal dimension leads to a decline in video quality, particularly in terms of MS
(Motion Smoothness).

A.4 MORE RESULTS

More results are shown in Fig. 10, Fig. 11 and Fig. 12.
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A swan floating 
gracefully on a lake.

A wooden boat moving 
on the sea.

A corgi running on the 
grassland in the snow.

A parrot flying upwards 
towards the treetops.

A penguin walking 
on an iceberg.

A horse grazing in a 
meadow.

A bear running in 
the ruins.

Figure 10: More results generated from DiTraj.

A parrot flying upwards towards the treetops.

A hot air balloon drifting across a clear sky.

A bird diving towards the water to catch fish.

A duck diving underwater in search of food.

A frog leaping up to catch a fly.

A woodpecker climbing up a tree trunk.

Figure 11: More results generated from DiTraj.
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A panda surfing in the universe.

A hot air balloon drifting across a clear sky.

A parrot flying upwards towards the treetops.

A woodpecker climbing up a tree trunk.

A chihuahua in an astronaut suit floating in the universe.

A penguin walking on an iceberg.

Figure 12: More results generated from DiTraj.
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