

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DI TRAJ: TRAINING-FREE TRAJECTORY CONTROL FOR VIDEO DIFFUSION TRANSFORMER

Anonymous authors

Paper under double-blind review

Figure 1: **Showcase of DiTraj.** We propose DiTraj, a simple but effective training-free framework for trajectory control in text-to-video generation, specifically designed for DiT-based model. Given an input bbox trajectory guidance, DiTraj enables generating high-quality videos that align with the target trajectory.

ABSTRACT

Diffusion Transformers (DiT)-based video generation models with 3D full attention exhibit strong generative capabilities. Trajectory control represents a user-friendly task in the field of controllable video generation. However, existing methods either require substantial training resources or are specifically designed for U-Net, do not take advantage of the superior performance of DiT. To address these issues, we propose **DiTraj**, a simple but effective training-free framework for trajectory control in text-to-video generation, tailored for DiT. Specifically, first, to inject the object’s trajectory, we propose foreground-background separation guidance: we use the Large Language Model (LLM) to convert user-provided prompts into foreground and background prompts, which respectively guide the generation of foreground and background regions in the video. Then, we analyze 3D full attention and explore the tight correlation between inter-token attention scores and position embedding. Based on this, we propose inter-frame Spatial-Temporal Decoupled 3D-RoPE (STD-RoPE). By modifying only foreground tokens’ position embedding, STD-RoPE eliminates their cross-frame spatial discrepancies, strengthening cross-frame attention among them and thus enhancing trajectory control. Additionally, we achieve **2.5D**-aware trajectory control by regulating the density of position embedding. Extensive experiments demonstrate that our method outperforms previous methods in both video quality and trajectory controllability.

1 INTRODUCTION

In recent years, diffusion models have advanced rapidly (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2022). Owing to their stable generation process and impressive generation quality, they have gradually become the mainstream for visual generation tasks. Benefiting from large-scale image and video datasets, the architecture of video generation models has evolved from the

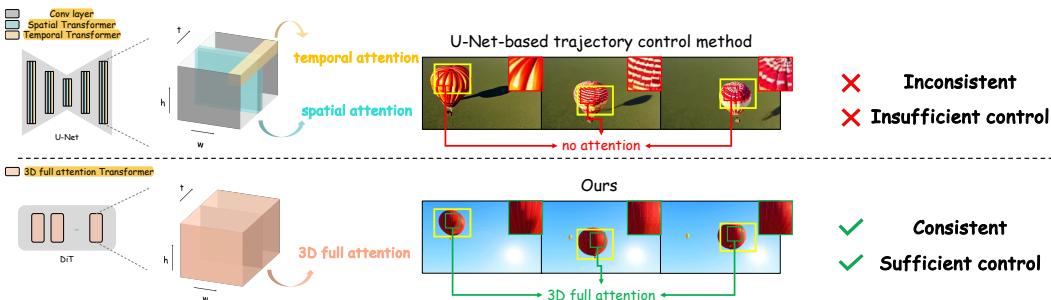


Figure 2: Difference in attention mechanisms between U-Net and DiT. Methods based on U-Net fail to achieve sufficient trajectory control and struggle to maintain the consistency of the object’s appearance. In contrast, our proposed method enables effective control over the object’s trajectory while ensuring the consistency of its appearance.

traditional U-Net (Ronneberger et al., 2015) to the current state-of-the-art Diffusion Transformers (DiT) (Peebles & Xie, 2023). Sora (OpenAI, 2023) has demonstrated that the DiT architecture exhibits excellent scalability and other advantages in video generation tasks, delivering remarkably realistic results. Subsequently, the proposal of numerous DiT-based video generation models—for both open-source (Kong et al., 2025; Wan et al., 2025; Yang et al., 2025b; Zheng et al., 2024) and commercial applications (KlingAI, 2025)—has further advanced the field of video generation.

Researchers not only pursue high-quality generation results but also strive to control the generated video content. Most models offer text-to-video control, in which users guide video generation via prompts to ensure the generated video aligns with the provided textual descriptions. However, relying solely on text often fails to produce the desired results. Although text can control the appearance of objects or scenes, it remains challenging to regulate the trajectory of the object. Controlling the object’s position in each frame of a video via its bounding box, thereby governing the object’s trajectory, would offer significant convenience for users. To address this task, several methods have been proposed which can be categorized into two types: training-based and training-free approaches. Training-based methods (Zhang et al., 2025; Yang et al., 2024) construct dedicated datasets to train additional modules or directly fine-tune the model’s own parameters, but they incur substantial resource costs. In contrast, training-free (Qiu et al., 2024; Jain et al., 2024; Ma et al., 2024; Lian et al., 2024; Chen et al., 2025) methods control object trajectories by modifying noise, constructing attention masks from input cues, assembling noise via inversion and repositioning, or optimizing during inference-time. However, these methods either rely on time-consuming inversion or optimization processes, or are specifically designed for U-Net, failing to leverage the superior performance of DiT. Furthermore, we argue that the U-Net’s segregated spatial and temporal attention mechanisms necessitate extensive implicit propagation of visual features, complicating the preservation of consistency for objects undergoing large motions. In contrast, DiT’s joint spatial-temporal attention mechanism (i.e., 3D full attention) is more suitable for object trajectory control, as illustrated in Fig. 2. We believe that this inherent mechanism of DiT provides favorable conditions for training-free trajectory control.

In this paper, we propose DiTraj, a training-free framework for trajectory control in text-to-video generation. First, we convert user-provided prompts into foreground and background prompts via rational reasoning using a Large Language Model (LLM); these prompts are then used to guide the generation of foreground and background regions in the video, respectively, by constructing a cross-attention mask between video tokens and prompts. Although the separation guidance enables the control over small movements, it performs poorly for large movements. Through in-depth analysis of the 3D full-attention mechanism, we observe that the attention map exhibits a diagonal highlighting property: tokens with similar position embedding yield higher attention scores. This implies that video tokens tend to pay more attention to tokens with adjacent position embedding either in the spatial or temporal dimension; this phenomenon is also mentioned in previous works (Luo et al., 2025; Wen et al., 2025). This property causes the object in the generated videos to remain relatively static and often confines the object to the overlapping regions of bounding-boxes in the trajectory. To resolve this issue, we propose inter-frame Spatial-Temporal Decoupled 3D-RoPE (STD-RoPE),

a simple but effective method for enhancing attention between foreground tokens across different frames by modifying 3D-RoPE (Su et al., 2023). Specifically, in the layout generation phase of the diffusion process, i.e., the first few steps of the denoising process, we modify the position embedding to align the spatial dimension within the bounding-box of each frame, and preserve the original temporal dimension. The aligned spatial dimension enhance attention between inter-frame foreground tokens, thereby improving control precision; meanwhile, the retained temporal dimension ensures the coherence of the object’s motion. However, when we introduce STD-RoPE, some tokens with repeated position embedding emerge, which may lead to the occurrence of artifacts. To address this issue, we introduce a self-attention mask, which eliminates artifacts and further enhances control performance. Additionally, we achieve **2.5D**-aware object trajectory control by regulating the density of position embedding in the bounding-box, which is implemented through nearest-neighbor upsampling on the spatial dimension of the position embedding of tokens in the minimum bounding-box. This strategy controls the object’s trajectory while simultaneously controlling the distance between the object and the camera. In summary, our contributions are as follows:

- We propose DiTraj, the first training-free framework tailored for DiT for trajectory controllable video generation, which requires no inversion and inference-time optimization. It can be easily adapted to most DiT-based video generation models.
- We introduce foreground-background separation guidance, which injects object trajectory into the video generation process via conditional guidance.
- We propose STD-RoPE: a simple but effective method that improves trajectory control capability by enhancing the attention between foreground tokens across different frames in the layout generation phase of the diffusion process. Furthermore, based on this, we achieve **2.5D**-aware object trajectory control by regulating the density of position embedding.
- Extensive experiments demonstrate that DiTraj outperforms existing methods in both video quality and trajectory controllability.

2 RELATED WORK

2.1 TEXT-TO-VIDEO DIFFUSION MODEL

With the advent of diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2022), the Text-to-Image (T2I) field has advanced rapidly in recent years, which has further spurred the development of Text-to-Video (T2V) models. Several foundational models (Khachatryan et al., 2023; Blattmann et al., 2023; Guo et al., 2023) have demonstrated robust video generation capabilities by extending T2I model or training on large-scale image and video datasets. Notably, most of these methods adopt the U-Net architecture. Subsequently, the introduction of Sora (OpenAI, 2023) has showcased the scalability and additional advantages of the DiT architecture in video generation. Recent works, such as CogVideoX Yang et al. (2025b), Mochi1 (Genmo, 2024), Wan (Wan et al., 2025), and HunyuanVideo (Kong et al., 2025), have all leveraged the DiT architecture and achieved remarkable performance.

2.2 TRAJECTORY CONTROL IN VIDEO GENERATION

As video generation models continue to advance in capability, much research has focused on controlling the trajectories of objects in generated videos. For instance, VideoComposer (Wang et al., 2023) and Control-A-Video (Chen et al., 2024) leverage depth maps, sketches, or motion vectors extracted from reference videos as conditional inputs to control the motion of generated videos. Tora (Zhang et al., 2025) integrates text, visual, and trajectory conditions to generate high-fidelity motion videos. LeviTor (Wang et al., 2025) introduces 3D object trajectory control for image-to-video synthesis, addressing the limitations of 2D drag-based control. However, these methods either require extensive training data and computational resources or demand reference videos for fine-tuning. Meanwhile, several training-free methods have been proposed: Peekaboo (Jain et al., 2024) and Trailblazer (Ma et al., 2024) achieve direct object trajectory control by manipulating the attention mechanism within U-Net; FreeTraj (Qiu et al., 2024) injects trajectories via noise initialization and resampling, alongside proposing a soft mask for enhanced control; Motion-zero (Chen et al., 2025) fuses object trajectories with noise through an inversion process; and LVD (Lian et al., 2024)

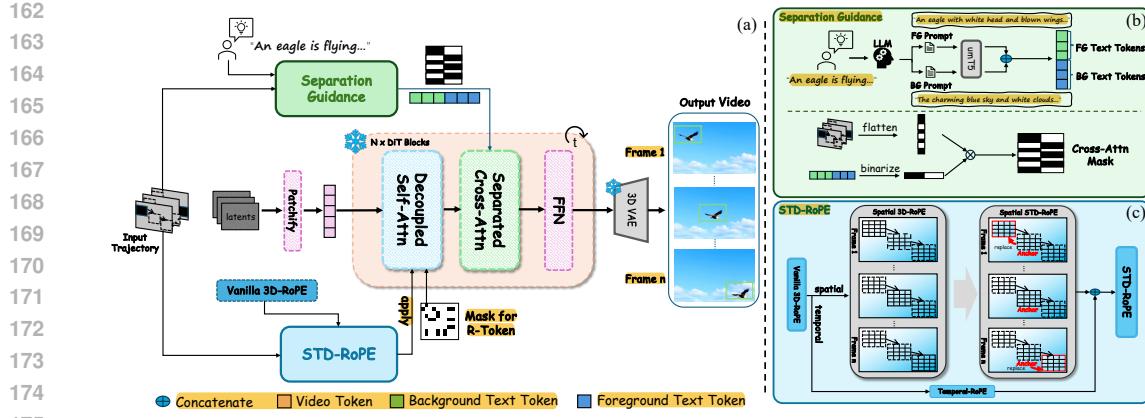


Figure 3: (a) Overview of DiTraj. Given the user-provided prompt and target trajectory, DiTraj achieves training-free trajectory controllable T2V generation. (b) Foreground-background separation conditional guidance. (c) The STD-RoPE processing procedure.

complete trajectory control through inference-time optimization. Constrained by the capabilities of U-Net, the performance of these methods is often unsatisfactory.

3 METHOD

In this section, we first briefly introduce 3D full attention (Yang et al., 2025b) and 3D-RoPE (Su et al., 2023)—two key components in video DiT. We then elaborate on DiTraj: first, we present foreground-background separation guidance; next, we describe STD-RoPE for enhancing attention between foreground tokens across different frames, this part begins with an analysis of the attention map, followed by a detailed introduction to STD-RoPE; subsequently, we explain how to addressing tokens with repeated position embedding; finally, we outline our strategy for achieving 2.5D-aware trajectory control. Our method can be extended to most DiT-based models, we use the Wan2.1(Wan et al., 2025) as a concrete example to elaborate on the technical details in this section.

3.1 PRELIMINARIES

3D full attention. In current video DiT, pixel-level variables $V \in \mathbb{R}^{B \times F \times 3 \times H \times W}$ are first compressed by a 3D-VAE to generate latent variables $z \in \mathbb{R}^{B \times f \times c \times h \times w}$, which are subsequently converted into a sequence of video tokens x with the shape of (B, L, D) via patchifying, where B denotes the batch size, $L = f \times \frac{h}{p} \times \frac{w}{p}$ represents the sequence length, p denotes the patch size, and D indicates the latent dimension. These video tokens are then fed into a transformer block. After position embedding is applied, 3D full attention is computed over the entire token sequence (merged from the three dimensions: height, width, frame). Unlike the spatially and temporally separated attention mechanism in U-Net, 3D full attention enables all tokens across the three dimensions to attend to one another.

3D-RoPE. Rotary Position Embedding (RoPE) (Su et al., 2023) is a position embedding method that integrates dependencies on relative positional information into self-attention, it rotates feature vectors in the complex plane, using different rotation angles to represent distinct relative positions. To adapt to video data, 3D-RoPE extends the RoPE: each latent variable in the video tensor is represented by a 3D coordinate (x, y, t) , where (x, y) and t correspond to spatial and temporal dimensions, respectively. Then 1D-RoPE is applied independently to each of these three dimensions, and the results are concatenated along the channel dimension to produce the final 3D-RoPE.

3.2 FOREGROUND-BACKGROUND SEPARATION GUIDANCE

First, we input the user-provided prompt \mathcal{P}_{ori} with our instruction template into the LLM. Leveraging the LLM’s rational reasoning and appropriate semantic expansion, we derive two task-specific

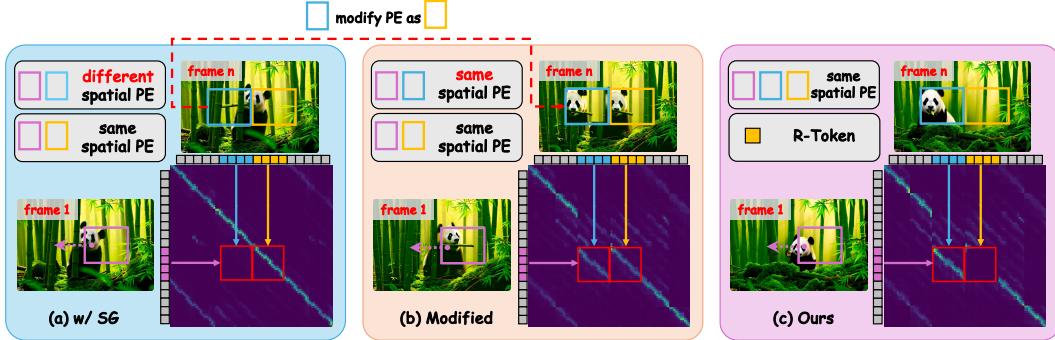


Figure 4: (a) A part of attention map between the first frame and the n-th frame. (b) After modifying the position embedding, regions with the same PE exhibit a similar distribution of attention scores. (c) With STD-RoPE, the attention scores between foreground tokens across different frames are increased in the first step of denoising process. We perform visualization at block 1 in Wan2.1.

prompts: a foreground prompt \mathcal{P}_{fg} (exclusively describing the foreground of the scene in the original prompt) and a background prompt \mathcal{P}_{bg} (exclusively describing the background).

$$\mathcal{P}_{fg}, \mathcal{P}_{bg} = LLM(\mathcal{P}_{ori}) \quad (1)$$

These two prompts serve to guide the generation of the video's foreground and background regions, respectively. Subsequently, we feed two prompts into the text encoder \mathcal{E}_{text} separately, concatenate their output embeddings to form the Union Condition Embedding:

$$C^u = \text{Concatenate}(\mathcal{E}_{text}(\mathcal{P}_{fg}), \mathcal{E}_{text}(\mathcal{P}_{bg})), \quad (2)$$

and input this embedding into the cross-attention layer guiding the generation process. To implement foreground-background separation guidance, we construct a cross-attention mask \mathbf{M}^{cross} based on the bounding-box trajectory \mathbb{T} , which is composed of f -frame bounding-boxes: $\mathbb{T} = \{\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_f\}$. Each bounding-box \mathcal{B} is defined by the relative position coordinates of its top-left and bottom-right corners. Thus, we can determine which video tokens are within the trajectory area.

$$\mathbf{M}_{i,j}^{cross} = \begin{cases} 0, & i \in \mathbb{S}_{fg} \text{ and } C_j^u \in \mathcal{E}_{text}(\mathcal{P}_{fg}) \\ 0, & i \notin \mathbb{S}_{fg} \text{ and } C_j^u \in \mathcal{E}_{text}(\mathcal{P}_{bg}) \\ -\infty, & \text{other} \end{cases} \quad (3)$$

where $\mathbb{S}_{fg} = \{i \mid x_i \in \mathbb{T}\}$. This mask enforces that foreground tokens in the generated video are guided by the foreground prompt, while background tokens are guided by the background prompt. Thus, the cross-attention becomes:

$$\text{CrossAttention}(x, C^u, \mathbf{M}^{cross}) = \text{softmax}\left(\frac{(W_q \cdot x) \cdot (W_k \cdot C^u)^T}{\sqrt{D}} + \mathbf{M}^{cross} \cdot (W_v \cdot C^u)\right) \quad (4)$$

where W_q , W_k , and W_v are the parameter matrices, which are used to calculate the query, key, and value in the cross-attention, respectively. In this manner, we achieve the injection of the object's trajectory via the foreground-background separation guidance. To achieve better fusion of the foreground and background, we use the separated guidance in the first t_a steps of the entire denoising process and maintain the remaining steps.

3.3 STD-ROPE

Analysis of attention map After injecting the object's trajectory, the method performs well for small-movement trajectories but fails to achieve precise control for large-movement ones, even if we use separated guidance (SG) throughout the entire denoising process (see Fig. 4(a), where the panda is not within the blue bounding-box in the n-th frame). To investigate this issue, we analyze the attention map between the tokens of the first frame and the n-th frame in the first step of the denoising process. As illustrated in Fig. 4(a), the attention map exhibits distinct diagonal stripes, indicating that tokens at the same spatial position (purple and orange tokens in Fig. 4(a)) have stronger

attention scores, but those in the trajectory (purple and blue tokens in Fig. 4(a)) have weak ones. In other words, tokens with more similar position embedding (PE) tend to yield higher attention scores during self-attention computation. We attribute this phenomenon to the fact that when 3D-RoPE is applied to features, similar 3D-RoPE embeddings lead to comparable rotation angles in the complex plane, resulting in more similar feature representations and thus higher attention scores. To further validate this, we modify the position embedding of the tokens in the bounding-box of the n -th frame (blue tokens in Fig. 4(b)), making its spatial position embedding completely consistent with the bounding-box of the first frame (purple tokens in Fig. 4(b)). The attention map shows that two regions with the same spatial position embedding (blue and orange tokens in Fig. 4(b)) have highly similar attention scores, which results in the two regions being highly similar in the n -th frame. Therefore, we conclude that the poor performance on large-movement trajectories arises from the following issue: the significant spatial span between foreground tokens across different frames leads to their excessively low attention scores. As a result, during the layout generation phase of the denoising process, the latent variables are unable to produce a layout that aligns with the target trajectory.

STD-RoPE To address the aforementioned issue, we propose inter-frame Spatial-Temporal Decoupled 3D-RoPE (STD-RoPE). The algorithm is shown in Alg. 1. This method modifies the position embedding of video tokens to eliminate large spatial discrepancies between foreground tokens across different frames, strengthen their inter-frame attention score, thus ensure the generation of a video spatial layout that conforms to the target trajectory. Specifically, given a bounding-box trajectory \mathbb{T} , we can determine which tokens in each frame belong to foreground tokens based on the bounding-box \mathcal{B} in the trajectory. Then we select the spatial dimension of position embedding of foreground tokens of an arbitrary frame as the anchor. We then modify the position embedding of foreground tokens in all other frames to align their spatial dimensions with the anchor. This alignment ensures consistent spatial dimension of position embedding for foreground tokens across all frames, eliminating spatial discrepancies and increasing the attention scores between them. Notably, we do not modify the temporal dimension of any token’s position embedding, this preserves the coherence and rationality of the object’s motion, as well as the continuity and integrity of the entire video. We modify the position embedding in the first t_b steps of the denoising process.

Mask for R-token A critical issue arises after modifying the position embedding: except for the frame corresponding to the anchor, multiple pairs of video tokens with identical position embedding emerge in other frames. This induces a shift in the attention score distribution (similar to the scenario illustrated in Fig. 4(b)), which degrades trajectory control performance and introduces artifacts in generated videos. To address this issue, R-token mask is introduced into the self-attention computation. Specifically, within each frame, tokens with repeated position embedding—excluding foreground tokens—are defined as R-tokens:

$$\mathbb{S}_R = \mathbb{S}_{repeat} - \mathbb{S}_{fg} \quad (5)$$

where \mathbb{S}_{repeat} contains those tokens with repeated position embedding.

The self-attention mask \mathbf{M}^{self} is then constructed to block attention computation between R-Tokens and foreground tokens:

$$\mathbf{M}_{i,j}^{self} = \begin{cases} -\infty, & i \in \mathbb{S}_{fg} \text{ and } j \in \mathbb{S}_R \\ -\infty, & i \in \mathbb{S}_R \text{ and } j \in \mathbb{S}_{fg} \\ 0, & \text{otherwise} \end{cases} \quad (6)$$

324 This ensures that during self-attention calculation, no two tokens with identical position embedding
 325 participate in the attention, thereby mitigating the aforementioned issues.
 326

327 After applying STD-RoPE and the R-token mask, the attention scores of foreground tokens across
 328 different frames are significantly improved during the layout generation phase of the denoising pro-
 329 cess. Ultimately, a layout that aligns with the target trajectory is generated, as illustrated in Fig. 4(c).
 330

331 3.4 2.5D-AWARE TRAJECTORY CONTROL

333 To achieve not only control over
 334 an object’s 2D position in video
 335 frames but also regulation of the ob-
 336 ject’s relative distance to the camera
 337 (i.e., depth control), we refined the
 338 modification of position embedding
 339 in STD-RoPE. Specifically, as illus-
 340 trated in Fig. 5, when a user provides
 341 a trajectory with dynamically sized
 342 bounding-boxes, we adopt the pos-
 343 ition embedding of tokens within the
 344 smallest bounding-box in the trajec-
 345 tory as the anchor (rather than select-
 346 ing an arbitrary frame in sec 3.3). For
 347 all other frames, we modify the pos-
 348 ition embedding of tokens within their
 349 respective bounding-boxes such that
 350 their spatial dimensions align with
 351 those of the anchor, where
 352 the anchor’s position embedding
 353 is first upsized to match the size of the target frame’s bounding-
 354 box via nearest-neighbor upsample-
 355 ing. Thus, in the layout generation
 356 process, we use the density
 357 of position embedding values to
 358 control the distance between
 359 objects and the camera. This design
 360 allows users to implement 2.5D-aware
 361 trajectory control by defining a
 362 bounding-box trajectory with
 363 dynamic sizes, where variations in
 364 bounding-box size correspond to
 365 changes in the object’s depth
 366 relative to the camera. The examples
 367 are shown in the right side of Fig. 1.
 368

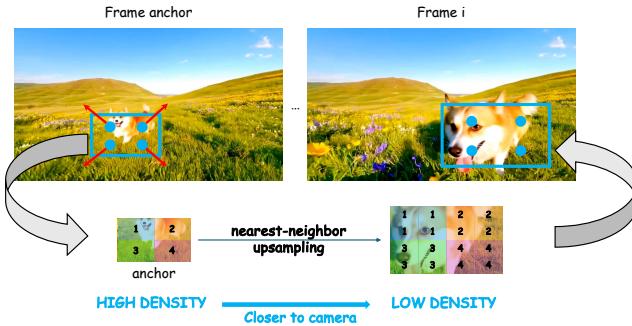


Figure 5: 2.5D-aware trajectory control by nearest-neighbor upsampling from the anchor.

369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725

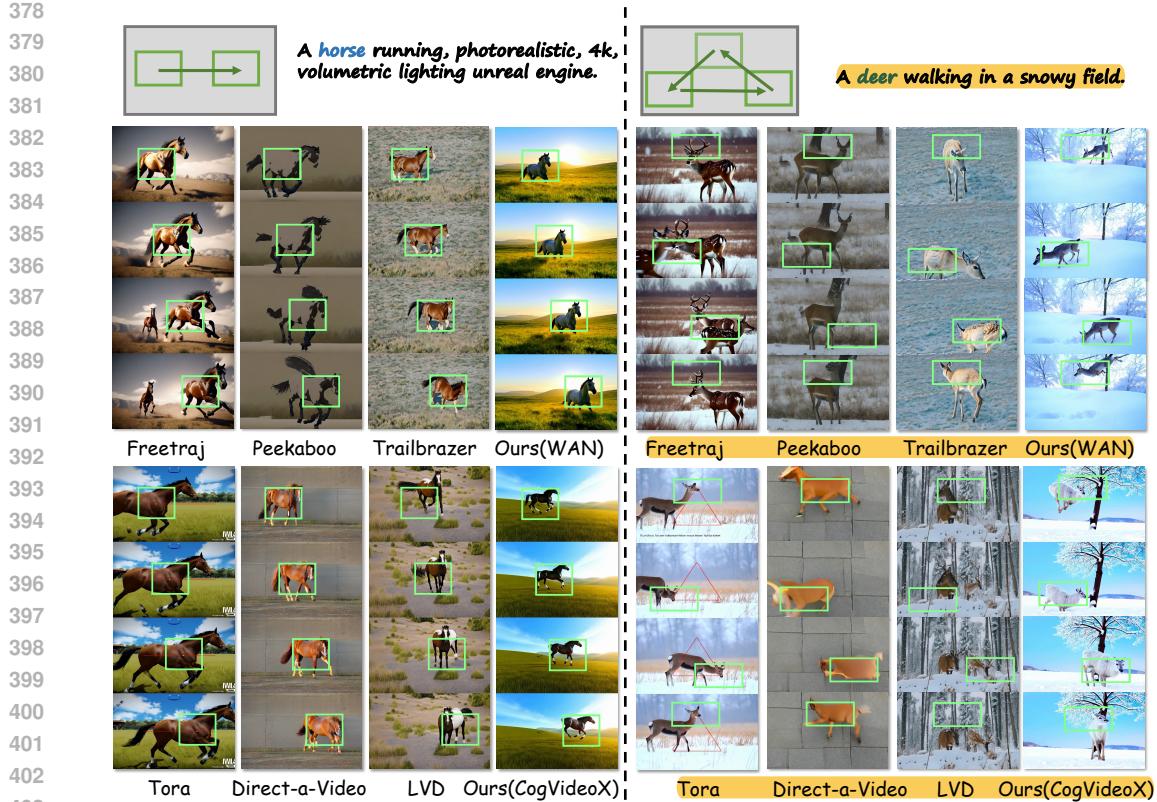


Figure 6: Qualitative comparison with state-of-the-art methods.

Table 1: Comparison with state-of-the-art methods. Red and Blue denote the best and second best results, respectively.

Method	Video Quality					Trajectory Control			
	SC↑	BC↑	MS↑	AQ↑	IQ↑	Cov↑	mIoU↑	CD↓	AP50↑
Training-/Optimizing-Based Methods									
Tora (Zhang et al., 2025)	0.936	0.956	0.988	0.541	0.640	0.95	21.3	0.17	3.4
Direct-a-Video (Yang et al., 2024)	0.923	0.931	0.959	0.478	0.551	0.83	37.7	0.14	22.1
LVD (Lian et al., 2024)	0.931	0.925	0.974	0.593	0.642	0.85	36.6	0.15	20.7
Training-Free Methods									
Peekaboo (Jain et al., 2024)	0.920	0.943	0.986	0.482	0.544	0.84	34.0	0.17	18.7
TrailBlazer (Ma et al., 2024)	0.925	0.949	0.971	0.537	0.671	0.86	40.8	0.15	49.1
FreeTraj (Qiu et al., 2024)	0.935	0.950	0.968	0.584	0.650	0.94	37.2	0.11	26.3
Ours (CogvideoX)	0.935	0.956	0.990	0.580	0.652	0.94	45.2	0.14	58.8
Ours (Wan.2.1)	0.937	0.957	0.990	0.627	0.677	0.96	47.3	0.09	50.5

4.3 QUANTITATIVE COMPARISON

Evaluation metrics To evaluate video quality, we report five dimensions in VBench (Huang et al., 2023): Subject Consistency (SC), Background Consistency (BC), Motion Smoothness (MS), Aesthetic Quality (AQ) and Imaging Quality (IQ). For trajectory control performance, we follow the evaluation protocol proposed in (Jain et al., 2024): first, we use the off-the-shelf object detection model OWL-ViT-large (Minderer et al., 2022) to extract bounding-boxes of target objects in the generated videos; subsequently, we compute four metrics to quantify control accuracy: Coverage (Cov), mean Intersection over Union (mIoU), Center Distance (CD), and Average Precision at 50% IoU (AP50). Here, Cov and CD represent the fraction of generated videos that the bboxes detected

432
433
434 Table 2: User study. **Red** denotes the best results.
435
436
437

Method	Tora	DAV	LVD	Peekaboo	TrailBlazer	FreeTraj	Ours
Trajectory Alignment	9.72%	5.12%	4.56%	1.93%	12.89%	3.90%	61.88%
Video-Text Alignment	13.60%	3.24%	10.35%	2.24%	4.77%	6.73%	59.07%
Video Quality	11.28%	3.30%	7.71%	6.48%	3.96%	4.17%	63.10%

438 in more than half of the frames and the distance between the centroid of the generated subject and
439 input mask, respectively.
440

441 As illustrated in Table 1, compared with those U-Net-based training-free methods, our approach
442 based on Wan2.1 outperforms all other methods across the five dimensions of video quality. And
443 it significantly surpasses other methods in the four dimensions related to trajectory control, with
444 improvements of 2.1%, 15.9%, 18.2%, and 2.9% respectively over the second-ranked method in
445 terms of Cov, mIoU, CD, and AP50. Compared with those training/optimizing-based methods, our
446 approach also achieves the best performance across all metrics.
447

448 In addition, a user study is employed for the assessment of human preferences. 24 participants
449 are instructed to select the best video in three evaluation aspects: trajectory alignment, video-text
450 alignment, and video quality. As shown in Table 2, DiTraj outperforms the baseline methods by
451 a significant margin, confirming the superiority of our approach in terms of trajectory alignment,
452 video-text alignment, and video quality.
453

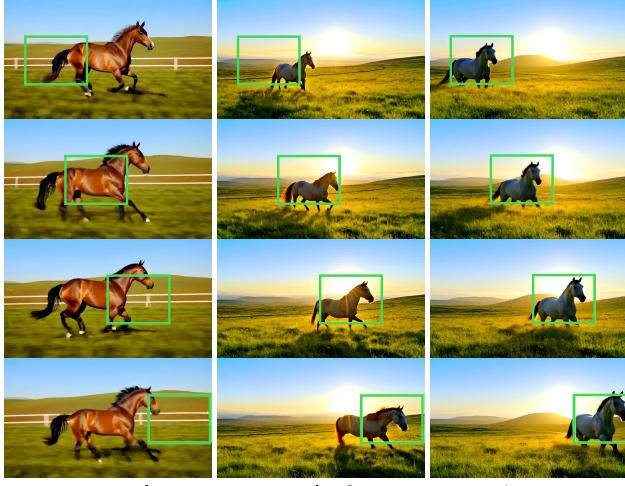
454 4.4 ABLATION STUDY

455 To validate the effectiveness of
456 foreground-background separation
457 guidance (SG) and STD-RoPE,
458 we conducted experiments with
459 Wan2.1 in three test settings: the
460 original model, the model with
461 only separation guidance (SG) and
462 the complete DiTraj. As shown in
463 Table 3, compared with the original
464 model, the model with SG achieves
465 improvements in both video quality
466 and trajectory control capability
467 (except in Cov dimension). Com-
468 pared with the model using SG,
469 the full DiTraj framework shows
470 a slight decrease of 0.4%, 0.1%,
471 and 2.0% in the three video quality
472 metrics (SC, MS, IQ), respectively;
473 however, it delivers substantial
474 improvements of 33.6%, 25.0%,
475 and 97.3% in the three trajectory
476 control metrics (mIoU, CD, AP50).
477 As illustrated in Fig. 7, compared
478 with original model, the integration
479 of SG yields notable alterations
480 in the video layout; however, the
481 object trajectory exhibits insufficient
482 consistency with the target trajectory
483 (part of the horse’s body extends
484 beyond the bounding box range). In
485 contrast, following the introduction
486 of STD-RoPE, the object trajectory
487 achieves complete alignment with the target trajectory, enabling
488 more precise trajectory control.
489

490 Table 3: **Ablation study.** **Red** denotes the best results.
491

Method	Video Quality			Trajectory Control			
	SC↑	MS↑	IQ↑	Cov↑	mIoU↑	CD↓	AP50↑
original	0.924	0.976	0.608	0.97	23.7	0.17	7.7
w/ SG	0.941	0.991	0.691	0.96	35.4	0.12	25.6
DiTraj	0.937	0.990	0.677	0.96	47.3	0.09	50.5

492 A horse running, photorealistic, 4k, volumetric lighting unreal engine.
493


494 Figure 7: **Ablation study about proposed modules.** We
495 gradually incorporate the modules we proposed into the base
496 model to verify their effectiveness.
497

486 5 CONCLUSION
487

488 We present DiTraj, the first DiT-specific training-free method for object trajectory control in T2V
489 generation, without inversion and inference-time optimization. Firstly, we inject the object trajectory
490 into the generation process by foreground-background separation guidance. Subsequently, we pro-
491 pose STD-RoPE to eliminate the spatial dimension discrepancy between foreground tokens across
492 different frames, increasing the attention score among them during the layout generation phase of
493 the denoising process, thereby enhancing the trajectory control capability. Moreover, we achieve
494 2.5D-aware trajectory control by regulating the density of position embedding. We reveal the poten-
495 tial connection between position embedding and attention score, and use it to control the generation
496 of video layouts. We hope that our work can offer valuable insight for future work on DiT-based
497 controllable trajectory video generation.

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
543 and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion
544 models, 2023. URL <https://arxiv.org/abs/2304.08818>.

545 Changgu Chen, Junwei Shu, Gaoqi He, Changbo Wang, and Yang Li. Motion-zero: Zero-shot
546 moving object control framework for diffusion-based video generation, 2025. URL <https://arxiv.org/abs/2401.10150>.

547 Weifeng Chen, Yatai Ji, Jie Wu, Hefeng Wu, Pan Xie, Jiashi Li, Xin Xia, Xuefeng Xiao, and Liang
548 Lin. Control-a-video: Controllable text-to-video diffusion models with motion prior and reward
549 feedback learning, 2024. URL <https://arxiv.org/abs/2305.13840>.

550 Genmo. Mochi 1: A new sota in open-source video generation models. <https://www.genmo.ai/blog/>, 2024.

551 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
552 Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffu-
553 sion models without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.

554 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
555 neural information processing systems*, 33:6840–6851, 2020.

556 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
557 ingle Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua
558 Lin, Yu Qiao, and Ziwei Liu. Vbench: Comprehensive benchmark suite for video generative
559 models, 2023. URL <https://arxiv.org/abs/2311.17982>.

560 Yash Jain, Anshul Nasery, Vibhav Vineet, and Harkirat Behl. Peekaboo: Interactive video generation
561 via masked-diffusion, 2024. URL <https://arxiv.org/abs/2312.07509>.

562 Levon Khachatryan, Andranik Moysian, Vahram Tadevosyan, Roberto Henschel, Zhangyang
563 Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models
564 are zero-shot video generators, 2023. URL <https://arxiv.org/abs/2303.13439>.

565 KlingAI. Kling. <https://klingai.kuaishou.com/>, 2025.

566 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
567 Bo Wu, Jianwei Zhang, Katrina Wu, Qin Lin, Junkun Yuan, Yanxin Long, Aladdin Wang, An-
568 dong Wang, Changlin Li, Duojun Huang, Fang Yang, Hao Tan, Hongmei Wang, Jacob Song,
569 Jiawang Bai, Jianbing Wu, Jinbao Xue, Joey Wang, Kai Wang, Mengyang Liu, Pengyu Li, Shuai
570 Li, Weiyan Wang, Wenqing Yu, Xinchi Deng, Yang Li, Yi Chen, Yutao Cui, Yuanbo Peng, Zhen-
571 tao Yu, Zhiyu He, Zhiyong Xu, Zixiang Zhou, Zunnan Xu, Yangyu Tao, Qinglin Lu, Song-
572 tao Liu, Dax Zhou, Hongfa Wang, Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, and Caesar
573 Zhong. Hunyuvideo: A systematic framework for large video generative models, 2025. URL
574 <https://arxiv.org/abs/2412.03603>.

575 Long Lian, Baifeng Shi, Adam Yala, Trevor Darrell, and Boyi Li. Llm-grounded video diffusion
576 models, 2024. URL <https://arxiv.org/abs/2309.17444>.

577 Yang Luo, Xuanlei Zhao, Mengzhao Chen, Kaipeng Zhang, Wenqi Shao, Kai Wang, Zhangyang
578 Wang, and Yang You. Enhance-a-video: Better generated video for free, 2025. URL <https://arxiv.org/abs/2502.07508>.

579 Wan-Duo Kurt Ma, J. P. Lewis, and W. Bastiaan Kleijn. Trailblazer: Trajectory control for diffusion-
580 based video generation, 2024. URL <https://arxiv.org/abs/2401.00896>.

581 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
582 Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao
583 Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. Simple open-vocabulary object detec-
584 tion with vision transformers, 2022. URL <https://arxiv.org/abs/2205.06230>.

594 Xun Long Ng, Kian Eng Ong, Qichen Zheng, Yun Ni, Si Yong Yeo, and Jun Liu. Animal kingdom:
 595 A large and diverse dataset for animal behavior understanding, 2022. URL <https://arxiv.org/abs/2204.08129>.

597

598 OpenAI. Video Generation Models as World Simulators. <https://openai.com/index/video-generation-models-as-world-simulators/>, 2023. Accessed: Feb. 2024.

600

601 William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL <https://arxiv.org/abs/2212.09748>.

602

603 Haonan Qiu, Zhaoxi Chen, Zhouxia Wang, Yingqing He, Menghan Xia, and Ziwei Liu. Freetraj:
 604 Tuning-free trajectory control in video diffusion models, 2024. URL <https://arxiv.org/abs/2406.16863>.

605

606 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 607 image segmentation. In *Medical image computing and computer-assisted intervention-MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18*, pp. 234–241. Springer, 2015.

608

609

610

611 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 612 learning using nonequilibrium thermodynamics. In *International conference on machine learning*, pp. 2256–2265. pmlr, 2015.

613

614

615 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL <https://arxiv.org/abs/2010.02502>.

616

617 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
 618 transformer with rotary position embedding, 2023. URL <https://arxiv.org/abs/2104.09864>.

619

620

621 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 622 Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
 623 Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
 624 Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
 625 Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
 626 Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
 627 Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
 628 Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
 629 Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models,
 2025. URL <https://arxiv.org/abs/2503.20314>.

630

631 Hanlin Wang, Hao Ouyang, Qiuyu Wang, Wen Wang, Ka Leong Cheng, Qifeng Chen, Yujun Shen,
 632 and Limin Wang. Levitor: 3d trajectory oriented image-to-video synthesis, 2025. URL <https://arxiv.org/abs/2412.15214>.

633

634 Xiang Wang, Hangjie Yuan, Shiwei Zhang, Dayou Chen, Jiuniu Wang, Yingya Zhang, Yujun Shen,
 635 Deli Zhao, and Jingren Zhou. Videocomposer: Compositional video synthesis with motion con-
 636 trollability, 2023. URL <https://arxiv.org/abs/2306.02018>.

637

638 Yuxin Wen, Jim Wu, Ajay Jain, Tom Goldstein, and Ashwinne Panda. Analysis of attention in video
 639 diffusion transformers, 2025. URL <https://arxiv.org/abs/2504.10317>.

640

641 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 642 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 643 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 644 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 645 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 646 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 647 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 648 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 649 Qiu. Qwen3 technical report, 2025a. URL <https://arxiv.org/abs/2505.09388>.

648 Shiyuan Yang, Liang Hou, Haibin Huang, Chongyang Ma, Pengfei Wan, Di Zhang, Xiaodong Chen,
649 and Jing Liao. Direct-a-video: Customized video generation with user-directed camera movement
650 and object motion. In *Special Interest Group on Computer Graphics and Interactive Techniques*
651 *Conference Conference Papers*, SIGGRAPH '24, pp. 1–12. ACM, July 2024. doi: 10.1145/
652 3641519.3657481. URL <http://dx.doi.org/10.1145/3641519.3657481>.

653 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
654 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Yuxuan Zhang, Weihan Wang, Yean Cheng,
655 Bin Xu, Xiaotao Gu, Yuxiao Dong, and Jie Tang. Cogvideox: Text-to-video diffusion models
656 with an expert transformer, 2025b. URL <https://arxiv.org/abs/2408.06072>.

657 Zhenghao Zhang, Junchao Liao, Menghao Li, Zuozhuo Dai, Bingxue Qiu, Siyu Zhu, Long Qin, and
658 Weizhi Wang. Tora: Trajectory-oriented diffusion transformer for video generation, 2025. URL
659 <https://arxiv.org/abs/2407.21705>.

660 Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
661 Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all,
662 2024. URL <https://arxiv.org/abs/2412.20404>.

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703 A APPENDIX704
705 A.1 USE OF LARGE LANGUAGE MODELS IN PAPER WRITING706
707 In the process of writing our article, we used large language models (LLMs) to aid and polish
708 writing. Specifically, we leverage LLMs to check for grammatical errors and correct punctuation
709 usage. Additionally, we utilize LLMs to enhance the fluency of some sentences and the accuracy
710 of word choice in the paper, thereby improving its readability. No LLMs are employed to generate
711 new ideas, and the research process is conducted by the authors.712
713 A.2 IMPLEMENTATION714
A.2.1 HYPERPARAMETERS715
716 We use Qwen3 (Yang et al., 2025a) as our LLM. For Wan-based (Wan et al., 2025) DiTraj, the
717 inference resolution is fixed at 480×832 pixels and the video length is 81 frames, the scale of the
718 classifier-free guidance is set to 5. For CogvideoX-based (Yang et al., 2025b) DiTraj, the inference
719 resolution is fixed at 480×720 pixels and the video length is 49 frames, the scale of the classifier-free
720 guidance is set to 6. All experiments are conducted on a single NVIDIA A100 GPU.721
722 For quantitative comparison, we generate a total of 560 videos for each inference method, utilizing
723 56 prompts. We initialize 10 random initial noises for each prompt for direct inference.724
725 It is worth noting that for the evaluation of trajectory control capability, regarding all bounding-box-
726 based trajectory control methods (Jain et al., 2024; Ma et al., 2024; Qiu et al., 2024; Lian et al.,
727 2024; Yang et al., 2024) (i.e., all methods except Tora (Zhang et al., 2025)), we use the bounding-
728 box trajectory corresponding to each prompt as the condition to guide generation; whereas for Tora,
729 which adopts a point-based trajectory guidance condition, we use the center point of the bounding-
730 box corresponding to each prompt as the condition for guiding generation. For all these methods, we
731 followed their original models and parameter settings as reported in their respective research papers.732
733 A.2.2 PROMPTS734
Our prompt set is mostly extended from previous baselines (Jain et al., 2024; Ma et al., 2024), and we
735 manually designed a bounding-box trajectory for each prompt to ensure the diversity and rationality.
736 The prompt word(s) in bold case is the subject for positioning:737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

- A **woodpecker** climbing up a tree trunk.
- A **squirrel** descending a tree after gathering nuts.
- A **bird** diving towards the water to catch fish.
- A **frog** leaping up to catch a fly.
- A **parrot** flying upwards towards the treetops.
- A **squirrel** jumping from one tree to another.
- A **rabbit** burrowing downwards into its warren.
- A **satellite** orbiting Earth in outer space.
- A **skateboarder** performing tricks at a skate park.
- A **leaf** falling gently from a tree.
- A **paper plane** gliding in the air.
- A **bear** climbing down a tree after spotting a threat.
- A **duck** diving underwater in search of food.
- A **kangaroo** hopping down a gentle slope.
- An **owl** swooping down on its prey during the night.
- A **hot air balloon** drifting across a clear sky.
- A **red double-decker bus** moving through London streets.

756 • A **jet plane** flying high in the sky.
757 • A **helicopter** hovering above a cityscape.
758 • A **roller coaster** looping in an amusement park.
759 • A **streetcar** trundling down tracks in a historic district.
760 • A **rocket** launching into space from a launchpad.
761 • A **deer** walking in a snowy field.
762 • A **horse** grazing in a meadow.
763 • A **fox** running in a forest clearing.
764 • A **swan** floating gracefully on a lake.
765 • A **panda** walking and munching bamboo in a bamboo forest.
766 • A **penguin** walking on an iceberg.
767 • A **lion** walking in the savanna grass.
768 • An **owl** flying in a tree at night.
769 • A **dolphin** just breaking the ocean surface.
770 • A **camel** walking in a desert landscape.
771 • A **kangaroo** jumping in the Australian outback.
772 • A **colorful hot air balloon** tethered to the ground.
773 • A **corgi** running on the grassland on the grassland.
774 • A **corgi** running on the grassland in the snow.
775 • A **man** in gray clothes running in the summer.
776 • A **knight** riding a horse on a race course.
777 • A **horse** galloping on a street.
778 • A **lion** running on the grasslands.
779 • A **dog** running across the garden, photorealistic, 4k.
780 • A **tiger** walking in the forest, photorealistic, 4k, high definition.
781 • **Iron Man** surfing on the sea.
782 • A **tiger** running in the forest, photorealistic, 4k, high definition.
783 • A **horse** running, photorealistic, 4k, volumetric lighting unreal engine.
784 • A **panda** surfing in the universe.
785 • A **chihuahua** in an astronaut suit floating in the universe, cinematic lighting, glow effect.
786 • An **astronaut** waving his hands on the moon.
787 • A **horse** galloping through a meadow.
788 • A **bear** running in the ruins, photorealistic, 4k, high definition.
789 • A **barrel** floating in a river.
790 • A **dark knight** riding a horse on the grassland.
791 • A **wooden boat** moving on the sea.
792 • A **red car** turning around on a countryside road, photorealistic, 4k.
793 • A **majestic eagle** soaring high above the treetops, surveying its territory.
794 • A **bald eagle** flying in the blue sky.

810 A.2.3 INSTRUCTION TEMPLATE FOR FOREGROUND-BACKGROUND SEPARATION GUIDANCE
811812 The instruction template input into the LLM in Sec 3.2 is as follows:
813

814 *You are a prompt engineer. Users will provide you with a prompt for generating videos. Your task
815 is to understand this prompt, distinguish the main subject (foreground) and the background, and
816 finally return a prompt that only describes the main subject and a prompt that only describes the
817 background. The requirements are as follows: 1. The output format is: foreground_prompt: [prompt
818 describing only the main subject] background_prompt: [prompt describing only the background]
819 2. The lengths of foreground_prompt and background_prompt should be around 80-100 words long.
820 3. The foreground_prompt should include a description of a close-up shot, indicating that the main
821 subject fills the entire frame. 4. The content described in the background_prompt should be con-
822 sistent with the background content of the prompt provided by the user, and it must not contain
823 fields related to the main subject, nor include information about the foreground subject. Example:
824 User: Realistic photography style, a medium-sized gray-and-white dog with fluffy fur running to the
825 right. The dog has bright black eyes, perked ears, and a wagging tail. Its legs are in mid-stride,
826 paws lifting off the ground, mouth slightly open as if panting. The background is a sunlit green
827 lawn with a few scattered flowers. The camera follows the dog in a smooth tracking shot, capturing
828 its energetic movement. Medium shot from a low angle, emphasizing the dog's speed and vitality.
829 foreground_prompt: Realistic photography style, a medium-sized gray-and-white dog with fluffy fur
830 running to the right. The dog has bright black eyes, perked ears, and a wagging tail. Its legs are in
831 mid-stride, paws lifting off the ground, mouth slightly open as if panting. The camera follows the dog
832 in a smooth tracking shot, capturing its energetic movement. Close shot from a low angle, empha-
833 sizing the dog's speed and vitality. background_prompt: Hyper-realistic photography, a lush garden
834 bathed in soft afternoon sunlight. Vibrant roses in red, pink, and yellow bloom densely on climbing
835 trellises, while green ivy creeps up weathered stone walls. A small stone fountain gurgles gently in
836 the center, with water rippling and reflecting the sky. Butterflies flit between lavender bushes, and a
837 honeybee hovers above a daisy. The grass is neatly trimmed, with a winding gravel path. I will now
838 provide the prompt for you. Please directly output the foreground_prompt and background_prompt
839 follow the format without extra responses and quotation mark.*

838
839 A.3 MORE EXPERIMENT
840841 A.3.1 INFERENCE OVERHEAD
842

843 We also evaluated the additional inference overhead in-
844 curred by DiTraj. As shown in Table 4, DiTraj re-
845 sults in an extra inference time of 5.9% and 4.7%
846 on Wan2.1-1.3B and CogvideX-5B, respectively. Our
847 method achieves high-quality trajectory control with a
848 low additional inference overhead.

849 A.3.2 ABLATION STUDY OF t_a AND t_b
850

851 Regarding the selection of t_a and t_b ,
852 we conducted ablation experiments
853 on them based on Wan2.1 respec-
854 tively. For t_a , as illustrated in Fig. 8
855 and Table 5, when t_a is greater than 5,
856 the generated videos and their quan-
857 titative results are very close. For t_b ,
858 as illustrated in Fig. 9, excessively
859 small values (e.g. 1) will lead to in-
860 sufficient control ability, while exces-
861 sively large values (e.g. 10, 20) will
862 result in the appearance of artifacts.
863 Therefore, we selected 30 and 5 as
864 the relatively optimal values for t_a and t_b , respectively.

Table 4: Inference overhead.

Method	Inference time(s)
Wan2.1-1.3B	185
DiTraj (Wan2.1-1.3B)	196 \uparrow 5.9%
CogvideoX-5B	213
DiTraj (CogvideoX-5B)	223 \uparrow 4.7%

Table 5: Ablation study on t_a and t_b . **Bold** denote the best results.

t_a	t_b	Video Quality			Trajectory Control			
		SC \uparrow	MS \uparrow	IQ \uparrow	Cov \uparrow	mIoU \uparrow	CD \downarrow	AP50 \uparrow
0	0	0.924	0.976	0.608	0.97	23.7	0.17	7.7
5	0	0.934	0.982	0.687	0.97	32.1	0.15	17.9
30	0	0.941	0.991	0.691	0.96	35.4	0.12	25.6
50	0	0.939	0.986	0.688	0.95	36.6	0.12	25.9
30	1	0.939	0.991	0.688	0.96	37.9	0.11	30.7
30	5	0.937	0.990	0.677	0.96	47.3	0.09	50.5
30	10	0.928	0.972	0.642	0.95	45.1	0.11	47.4
30	20	0.911	0.964	0.621	0.92	41.1	0.12	44.7

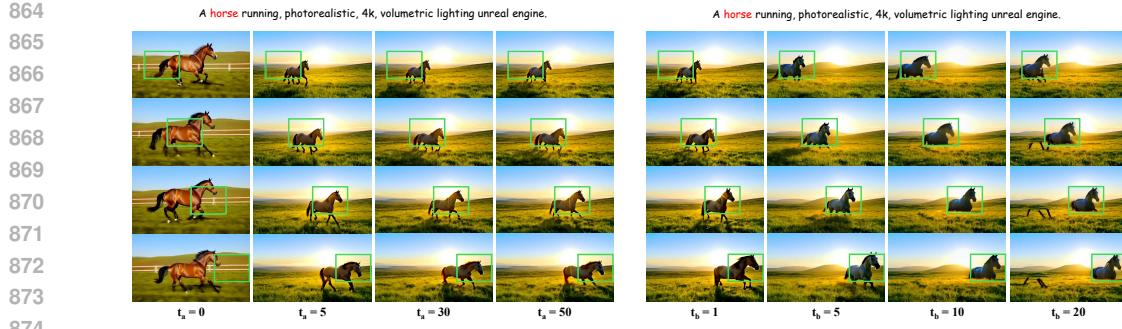


Figure 8: Results generated by varying t_a when t_b is fixed to 0.

Table 7: Experiments on two different ways of handling the temporal dimension. **Red** denotes the best results.

Method	Video Quality					Trajectory Control			
	SC↑	BC↑	MS↑	AQ↑	IQ↑	Cov↑	mIoU↑	CD↓	AP50↑
Retaining	0.937	0.957	0.990	0.627	0.677	0.96	47.3	0.09	50.5
Aligning	0.930	0.952	0.957	0.619	0.676	0.96	47.7	0.10	50.8

A.3.3 ADDITIONAL METRICS ON VIDEO QUALITY

We have supplemented the FVD, FID, and IS metrics. We used 500 randomly selected videos from AnimalKingdom (Ng et al., 2022) as the real distribution. The results are shown in Table 6.

A.3.4 TEMPORAL DIMENSION OF STD-ROPE

In STD-RoPE, the purpose of retaining the temporal dimension is to maintain the coherence of motion in the foreground region of each frame. If we align the temporal dimensions of all frames, the position embedding of the foreground region in each frame will be identical. This will cause the content in the foreground region of all frames to become almost the same, leading to rigid and unsmooth object motions. To verify this, we conducted an experiment comparing the two schemes of retaining the temporal dimension and aligning the temporal dimension. The Table 7 indicates that aligning the temporal dimension leads to a decline in video quality, particularly in terms of MS (Motion Smoothness).

A.4 MORE RESULTS

More results are shown in Fig. 10, Fig. 11 and Fig. 12.

Table 6: Additional metrics on video quality. **Bold** denote the best results.

Method	FVD↓	FID↓	IS↑
FreeTraj (Qiu et al., 2024)	1946	101.4	14.78
Peekaboo (Jain et al., 2024)	1287	90.64	13.08
Trailblazer (Ma et al., 2024)	1336	89.32	15.25
Direct-a-Video (Yang et al., 2024)	1455	102.8	13.73
LVD (Lian et al., 2024)	1288	99.81	14.19
Tora (Zhang et al., 2025)	1198	91.33	15.79
DiTraj	1168	89.08	15.91

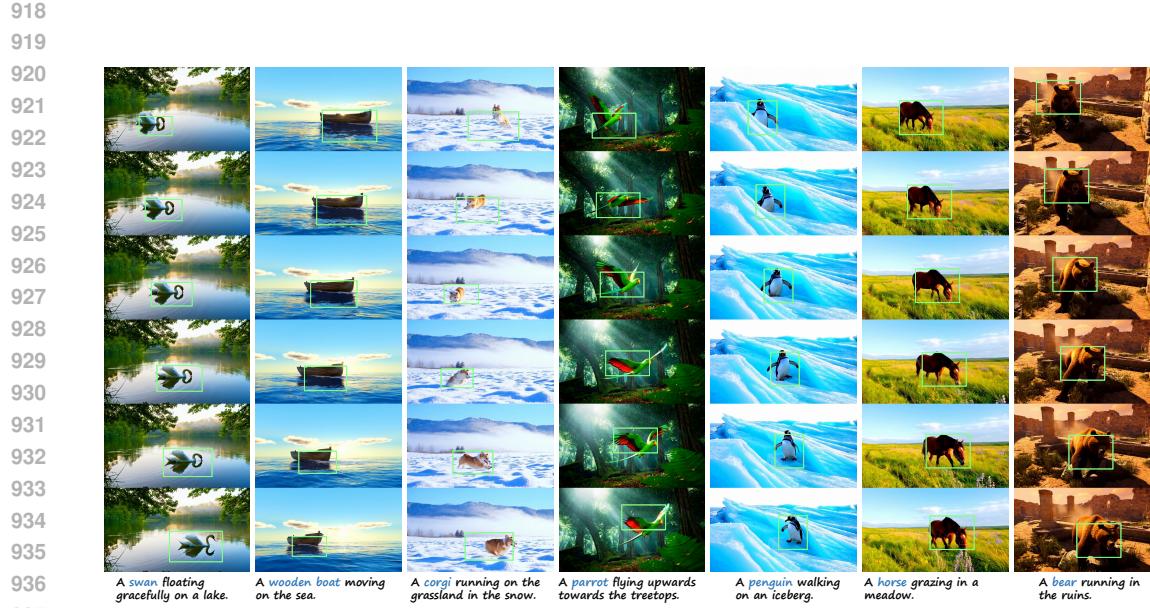


Figure 10: More results generated from DiTraj.

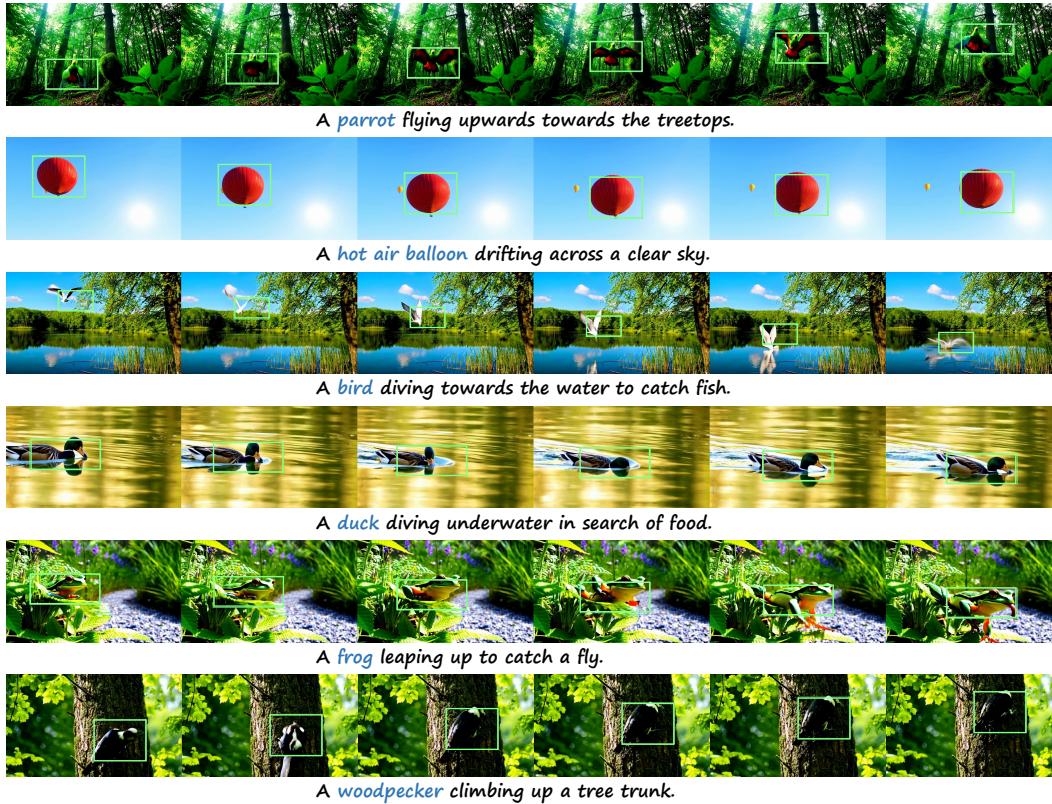


Figure 11: More results generated from DiTraj.

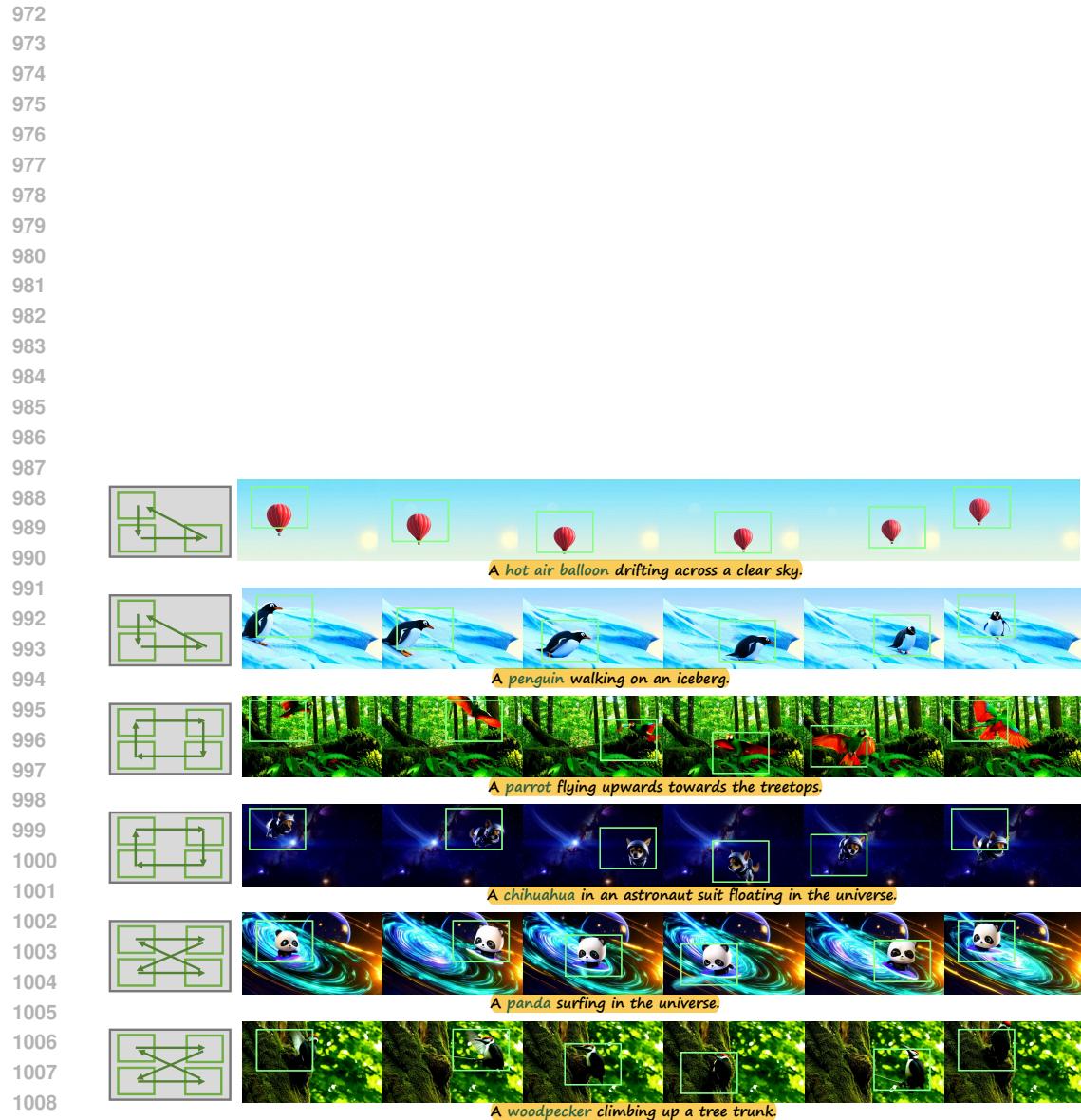


Figure 12: More results generated from DiTraj.

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025