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ABSTRACT

Spatial cognition is one fundamental aspect of human intelligence. A key factor
in spatial cognition is understanding the frame of reference (FoR) that identifies
the perspective of spatial relations. However, the Al research has paid very little
attention to this concept. Specifically, there is a lack of dedicated benchmarks and
in-depth experiments analyzing large language models’ (LLMs) understanding of
FoR. To address this issue, we introduce a new benchmark, Frame of Reference
Evaluation in Spatial Reasoning Tasks (FOREST) to evaluate LLMs ability in
understanding FoR. We evaluate the LLMs in identifying the FoR based on tex-
tual context and employ this concept in text-to-image generation. Our results
reveal notable differences and biases in the FoR identification of various LLMs.
Moreover, the bias in FoR interpretations impacts the LLMs’ ability to gener-
ate layouts for text-to-image generation. To deal with these biases, we propose
Spatial-Guided prompting, which guides the model in exploiting the types of spa-
tial relations for a more accurate FoR identification. This approach reduces FoR
bias in LLMs and improves the overall performance of FoR identification. Even-
tually, using FoR information in text-to-image generation leads to a more accurate
visualization of the spatial configuration of objects.

1 INTRODUCTION

Spatial reasoning plays a significant role in human cognition and conducting daily activities. It is
also a crucial aspect in many Al problems, including language grounding (Zhang & Kordjamshidi,
2022; |Yang et al.| 2024), navigation (Yamada et al.,|2024), computer vision (Liu et al.| 2023} |Chen
et al.| [2024), medical domain (Gong et al.l 2023)), and image generation (Gokhale et al.,|2023)). One
key concept in spatial cognition is the frame of reference (FoR), which identifies the perspective
of spatial expressions. |Levinson| (2003) initially defines three basic FoR classes: intrinsic, relative,
and absolute. The intrinsic FoR describes spatial expressions based on the viewer’s perspective,
while the relative FoR uses the object’s perspective. The last type is the absolute FoR, which uses
environmental cues such as cardinal directions. The framework from [Tenbrink! (2011}, which is the
main FoR framework of our work, expanded these basics. These concepts have been studied exten-
sively in cognitive linguistics (Edmonds-Wathen, |2012} Vukovic & Williams, [2015). However, only
limited studies investigate how Al models understand FoR. Recent benchmarks for evaluating spa-
tial understanding primarily focus on reasoning on objects and their spatial relations. For instance,
Shi et al.[(2022), Mirzaee & Kordjamshidi| (2022), and |Rizv1 et al.| (2024)) propose benchmarks that
assess comprehension of complex spatial scenes. While concentrating on complex reasoning tasks,
they give minimal attention to the notion of FoR. They often limit evaluations to intrinsic FoR, us-
ing one object as the center of coordinates. Similarly, recent text-to-image benchmarks (Gokhale
et al., 2023; Huang et al., 2023} |Cho et al.| [2023azb) suffer from the same limitation, where spatial
expressions are evaluated in terms of the relative FoR, i.e., camera perspective. Consequently, this
potentially restricts the situated spatial reasoning abilities in dynamic environments and interactive
settings where the perspective can change. Nonetheless, studies in computer vision (Liu et al., 2023)
and robotics (Liu et al.| | 2010; Kang & Hanl 2023)) have begun exploring FoR understanding.

To systematically investigate the concept of FoR in spatial understanding and provide new resources,
we introduce Frame of Reference Evaluation in Spatial Reasoning Tasks (FOREST) benchmark to
assess models’ ability to understand FoR classes from textual descriptions and extend this to ground-
ing and visualization. Our dataset consists of two splits: ambiguous (A-split) and clear (C-split). The
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A-split contains spatial expressions with FoR ambiguity, meaning multiple valid FoRs can apply to
the explained situation. In contrast, the C-split has spatial expressions with only one valid FoR. This
design allows us to evaluate models’ understanding of spatial expressions in ambiguous and clear
contexts. We conduct experiments with large language models (LLMs) to identify FoR classes in
spatial expressions and employ this concept in text-to-image models. Our findings reveal perfor-
mance differences across FoR classes and show that LLMs tend to be biased toward particular FoRs
when spatial expressions with ambiguous FoRs are provided. The bias is also evident in diffusion
models that use LLM-generated layouts in the image generation pipeline. These diffusion models
tend to perform better in one specific FoR class. To address these biases, we propose Spatial Guided
(SG) prompting, which encourages models to consider general types of spatial relations: direction,
topology, and distance, in their reasoning process. We hypothesize that these relations provide essen-
tial information to help accurately identify FoR classes. Our results confirm this, showing improved
identification of FoR classes, reduced bias, and enhanced layout generation, ultimately benefiting
downstream tasks like text-to-image generation.

To summarize our contributions, 1. We introduce the FOREST benchmark to systematically evaluate
large language models’ abilities to identify FoR classes from textual spatial expressions, experiment-
ing with various in-context learning approaches for FoR identification. 2. We assess the impact of
using FoR information on text-to-image generation using diffusion models, including stable and lay-
out diffusion models. 3. We propose a new prompting approach that considers the types of spatial
relations in its reasoning process and improves FoR identification and image generation quality.

2 PRIMITIVES

We review three aspects of spatial information expressed in language: spatial roles, spatial relations,
and frame of reference.

Spatial Roles. We use the main conceptual roles defined in

spatial language literature (Kordjamshidi et al., 2010} [Tenbrink| Eﬂfr"alﬂelate Bemalintinic
2011) These roles include Locatum (L), Relatum (R), and Per- @ — \ o
spective. The locatum represents the object described in the spa- S e @ D

to describe the location of the locatum. Lastly, perspective is de-

tial expression. While the relatum represents another object used } e
fined as the origin of a coordinate system used as the basis for

determining the direction. For example, “a cat is to the left of a | “z¢
dog from the owner.” In this example, a cat is the locatum, a dog
is a relatum, and the perspective is the owner’s coordinate. =0

Spatial Relations. When dealing with spatial knowledge rep- ,A%_,
resentation and reasoning, often three main relations categories

Internal Relative Internal Intrinsic

are considered: directional, topological, and distance (Hernandez|
1994; (Cohn & Renz, 2008} Kordjamshidi et al.,[2010). Figure 1: Tllustration of FoR
classes. The Cat is the locatum,
the Car is the relatum, and the
arrow indicates the perspective.

1. Directional: These relations define one object’s direction from
another based on specific coordinates. Examples of relations in-
clude left, right, above, and below.

2. Topological: These relations describe the containment between two objects, such as inside.

3. Distance: These relations provide qualitative and quantitative relations between entities. Exam-
ples of qualitative distance relations are near and far, and quantitative distance relations are 3km.

Spatial Frame of Reference. We use the four frames of reference investigated in-depth in the
cognitive linguistic studies (Tenbrink, [2011}) and are defined as follows.

1. external intrinsic. It describes a spatial relation based on the relatum’s perspective, which does
not contain the locatum. The top-right image in Figure [T]illustrates this scenario with the sentence,
“A cat is to the right of the car from the car’s perspective.”

2. external relative. It presents a spatial relation based on the observer’s perspective, which may not
presented in the context. The top-left image in Figure[T|shows an example with the sentence, “A cat
is to the left of a car from my perspective.”
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3. internal intrinsic. It expresses a spatial relation based on the relatum’s perspective, which contains
the locatum. The bottom-right image in Figure[T|illustrates this circumstance with the sentence, “The
cat is inside and back of a car from a car’s point of view.”

4. internal relative. It describes a spatial relation from the observer’s perspective where the locatum
is inside the relatum. The bottom-left image in Figure [l displays this relation with the sentence, “A
cat is inside and to the left of the car from my perspective.”

3 FOREST DATASET CONSTRUCTION

We propose a new problem setting to identify the FoR in linguistic expressions to evaluate the
LLMs’ understanding on spatial frames of reference(FoR).. In this setting, the language model re-
ceives a textual spatial explanation as input, denoted as 7', and the model outputs an FoR class in
F 0R={external intrinsic, external relative, internal relative, internal intrinsic} according to the prim-
itives defined in Section[2} We introduce the Frame of Reference Evaluation in Spatial Reasoning
Tasks (FOREST) benchmark to evaluate models’ performance on this problem. We should note that
identifying FoR is challenging and, in some cases, inherently ambiguous. For example, in “a cat is
to the left of a dog.”, It has two correct interpretations. The first one is external relative FoR inter-
pretation, “a cat is to the left of a dog from the camera’s perspective.” Another valid interpretation
for external intrinsic FoR is “a cat is to the left of a dog from the dog’s perspective.” To distinguish
clear from ambiguous cases, we create two splits for our FOREST dataset: ambiguous (A-split) and
clear (C-split). Spatial expressions in the A-split can have more than one valid FoR, while C-split
expressions only have one valid FoR.

3.1 FOR CATEGORIES BASED ON RELATUM TYPE

Using the FoR classes defined in Section 2] we found that two properties of relatum cause FoR am-
biguity. The first property is the relatum’s intrinsic direction. It creates ambiguity between intrinsic
and relative FoR classes since spatial relations can originate from both the relatum’s and observer’s
perspectives. The second is the relatum’s affordance as a container. It introduces the ambiguity be-
tween internal and external FoR classes since spatial relations can refer to the inside and outside of
the relatum. We use the combination of these two properties to define four cases of relatum: the cow
case, box case, car case, and pen case. We use these cases to divide the A-split of our dataset into
four subsets. Then, we create clear counterparts of these cases to generate the C-split of our dataset.
There are two types of clear cases. The first type is inherently clear from the context, such as “a
pencil is to the right of a pen.” In this case, there are no different interpretations about the spatial
configuration of the two objects. However, another type needs additional information to be clear,
such as “A cat is to the left of the dog.” In this type, we add a clause clarifying the perspective or
topology. For example, “the cat is to the left of the dog from the dog’s perspective.” In the following,
we further clarify the four ambiguous cases based on the properties of the relatum.

Case 1: Cow Case. We create a cow case as a subset of our A-split. We select a relatum with
intrinsic directions but without affordance as the container. The obvious example is a cow, which
should not be a container but has a front and back. In such a case, the relatum potentially provides
a perspective for spatial relations. Thus, the applicable FoR classes are FoR = {external intrinsic,
external relative }. We explicitly augment such cases with perspective information to resolve the am-
biguity and add their clear counterparts to the C-split. To specify the perspective, we use templates
for augmenting clauses, such as “from {relatum}’s perspective” for external intrinsic or “from my
perspective” for external relative. An example of A-split context is “a cat is to the right of the cow.”
The counterparts included in the C-split are “a cat is to the right of the cow from cow’s perspective.”
for external intrinsic and ““a cat is to the right of the cow from my perspective” for external intrinsic.

Case 2: Box Case. We create a box-case subset as part of the A-split. Unlike the cow case, the
relatum selected in this subset can be a container but lacks intrinsic directions. For example, a box
can serve as a container without having intrinsic directions. An internal FoR can be established
since the relatum can be a container. Accordingly, the applicable FoR classes of this context are
FoR = {external relative, internal relative}, causing the ambiguity. To include their unambiguous
counterparts in the C-split, we explicitly specify the topology between locatum and relatum by
adding “inside” for internal relative and “outside” for external relative in the spatial expression.
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An example of the A-split context is “A cat is to the right of the box.” The counterpart for internal
relative is ““a cat is inside and to the right of the box.” The counterpart for external relative is ““a cat
is outside and to the right of the box.” We add both counterparts in the C-split.

Case 3: Car Case. We introduce the third case subset of A-split, Car case. We select the relatum
with intrinsic direction and affordance as a container for this case. With these two properties, the
relatum can provide the perspective for spatial relations and have the locatum inside, allowing both
intrinsic and internal FoR classes. An obvious example is a car that can be a container with intrinsic
directions. Therefore, the applicable frames of reference classes are FoR = { external relative
external intrinsic, internal intrinsic, internal relative}, which introduces FoR ambiguity. We resolve
this ambiguity by including perspective and topology information in the context to create clear
counterparts for the C-split. The template for augment clauses is reused from the Cow case and Box
case for perspective and topology information, respectively. A proper example of context in A-split
is “a person is in front of the car.” The four counterparts to include in the C-split are “a person is
outside and in front of the car from the car itself” for external intrinsic, “a person is outside and in
front of the car from the observer” for external relative, “a person is inside and in front of the car
from the car itself” for internal intrinsic, and “a person is inside and in front of the car from the
observer” for internal relative.

Case 4: Pen Case. We called the last subset of A-split with the Pen case. The last case covers the
circumstance that the relatum neither has the intrinsic direction nor the affordance as a container. An
obvious example is a pen that does not have a left or right direction nor the ability to be a container.
Lacking these two properties, the created context should be clear and have one applicable FoR,
FoR = { external relative}. There is no ambiguity to clarify since there is only one valid FoR class.
Therefore, we can reuse it in the C-split without modifications. An example of such a context is “the
book is to the left of a pen.”

3.2 CONTEXT VISUALIZATION

As a part of the dataset, we include the image visualizations of spatial expressions. In intrinsic FoOR
classes, the relatum’s perspective influences how we position the locatum when visualizing spatial
expressions, leading to visualization ambiguity. For example, given the expression “a cow is to the
right of a car relative to the car,” with the car’s position fixed in the scene, the cows can be placed in
different positions depending on the car’s orientation. To address this issue, we extend the context
in both splits of FOREST by adding the relatum’s orientation information. To specify the relatum’s
orientation, we use templates such as “facing forward.” For instance, “a cat is to the left of a dog”
is extended to “a cat is to the left of a dog, facing forward.” In this way, we obtain I-A-split from
A-split and I-C-split from C-split. We restrict I-A-split and I-C-split to external FoR classes to avoid
occlusion in the visualization since one object can become invisible in internal FoR classes. We then
create scene configurations based on the spatial expressions in I-A-split and I-C-split, as illustrated
in Figure [2 We use the Unity-3D simulator [1_-] to process scene configurations and generate four
visualizations for each one. The detail on the simulation is provided in the Appendix B}

3.3 RELATUM/LOCATUM SELECTION

We selected nine object sets to support the four FoR cases defined above. For instance, an example
set of objects is “small objects with intrinsic direction.” Selected objects in this group, such as
dogs and cats, are guaranteed to have intrinsic direction without the affordance of being containers.
This set is used to create the Cow Case context and visualization. All sets of objects are in the
Appendix [B] The total number of selected objects is 20, enough to cover all defined FoR cases.

3.4 DATASET CREATION PROCEDURE

The pipeline is illustrated in Figure[2]to combine all the above-explained procedures. First, we select
a set of locatum and relatum based on the FoR cases defined in Section to form A-split spatial
expressions. We substitute the actual locatum and relatum objects in the Spatial Relation template,
“<locatum> <spatial relation> <relatum>.” In the figure, left is the spatial relation, locatum is a
horse, and relatum is a cow. After obtaining the A-split contexts, we create their counterparts using

'https://unity.com
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the perspective/topology clauses described in Section [3.I] represented in yellow text. Next, we
apply the orientation template described in Section [3.2]to prepare the context for the visualization.
We then create the scene configuration from modified spatial expression and send it to the simulator
to finalize visualizations. The dataset statistic is in Appendix[A] and the complete sets of all patterns
and entities are included in Appendix

Augmenting with Scene Configuration

Visualization

Textual Template

Relatum Orientation Template
[ I-A-split
Cow Case I-C-split e
(relatum / locatum) [ “ig"
“A horse isto "FRIMG000000",
“context": “A horse is
the left of a
cow, <thatis is facing backward,
-spli - . fromthe cow’s
A-split (Cow-Case) facing

<Ahorse>is <a |

S perspective”,

cene g "
backward> - —| label

o ’ Template "external intrinsic"

Direction from the

Template
Perspective/Topology Template

cow’s “locatum"”: "horse”,
¥
( C-split \

. ” "relatum"”: "cow",
perspective “relatum_dir"
) '”] “back”,

Ahorseis is to the left of a cow [

“relation": "left"
—— \#

Figure 2: The pipeline of creating FOREST dataset starts by selecting the locatum and relatum based
on defined FoR cases. Next, a spatial template is applied to generate the A-split, which is then
extended into the C-split by applying a topology/perspective template. Afterward, the I-C-split and
I-A-split are created by including a direction template into the C-split and A-split. Finally, scene
configurations are generated from the I-C-split and I-A-split to create visualizations using Unity3D.

4 MODELS AND TASKS

4.1 FOR IDENTIFICATION

Task. We evaluate the LLMs’ performance in recognizing the FoR classes from given spatial
expressions. The LLMs receive aspatial expression, denoted as T', and output one FoR class, F',
from the valid set of FoR classes, F' € FoR = {external relative, external intrinsic, internal intrinsic,
internal relative}. All in-context learning examples are in the Appendix

Zero-shot model. We follow the regular setting of zero-shot prompting. We only provide instruction
to LLM with spatial context. The instruction prompt briefly explains each class of the FoR and
candidate answers for the LLM. We called the LLM with the instruction prompt and 7" to find F'.

Few-shot model. We manually craft four spatial expressions for each FoR class. To avoid creating
bias, each spatial expression is ensured to fit in only one FoR class. These expressions serve as
examples of our few-shotsetting. We provide these examples in addition to the instruction as a part
of the prompt, followed by T" and query F' from the LLM.

Chain-of-Thought (CoT) model. To create CoT examples, we modify the prompt
to require reasoning before answering. Then, we manually crafted reasoning explanations with
the necessary information for each example used in few-shot. Finally, we call the LLMs, adding
modified instructions to updated examples, followed by 7" and query F'.

Spatial-Guided Prompting (SG) model. We hypothesize that the general spatial relation types
defined in Section 2] can provide meaningful information for recognizing FoR classes. For instance,
a topological relation, such as “inside,” is intuitively associated with an internal FoR. Therefore,
we propose Spatial-Guided Prompting to direct the model in identifying the type of relations be-
fore querying F'. We revise the prompting instruction to guide the model in considering these three
aspects. Then, we manually explain these three aspects. We specify the relation’s origin from the
context for direction relations, such as “’the left direction is relative to the observer.” We hypothesize
that this information helps the model distinguish between intrinsic and relative FoR. Next, we spec-
ify whether the locatum is inside or outside the relatum for topological relations. This information
should help distinguish between internal and external FoR classes. Lastly, we provide the potential
quantitative distance, e.g., far. This quantitative distance further encourages identifying the correct
topological and directional relations. Eventually, we insert these new explanations in examples and
call the model with the updated instructions followed by T to query F'.
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4.2 TEXT-TO-IMAGE (T2I)

Task. The input to the text-to-image is a spatial expression, 7', and output from the model is a
generated image, denoted as I, corresponding to given 7. This task aims to determine the diffusion
models’ ability to consider FoR by assessing their generated images.

Stable Diffusion models. We evaluate the performance of the stable diffusion models for the sim-
plest baseline of T2I models. This model only needs the scene description as input. Therefore, we
provide 7' to the model and expect an output image of 1.

Layout Diffusion models. We evaluate the Layout Diffusion model for more advanced T2I models.
The layout diffusion model has two phases: text-to-layout and layout-to-image. As the LLMs can
be used to generate the bounding box layout (Cho et al,[2023b} [Lian et al.,[2024)), we provide T to
LLMs with the instruction to generate the layout including bounding box coordinates for each object
in the format of {object: [x,y,w, h]}, where x and y represent the starting point of the bounding
box and h and w represent the height and width of the bounding box. After generating the bounding
box coordinates, they are provided with 7" as an additional input for the layout-to-image model to
create the output image, I.

Spatial-Guide Layout Diffusion models. We propose Spatial-Guide Layout Diffusion pipeline for
image generation, which introduces an additional step before the text-to-layout phase. This step in-
volves obtaining the FoR information from 7', denoted as S(T"). We guide LLMs to extract direction,
topology, and distance information from 7T to generate S(T). Following the SG prompting proce-
dure, we create examples for this step. Then, we provide examples to help the model understand the
task and generate S(T'). Once S(T') is generated, it is used as supplementary information to guide
the LLMs in generating bounding box coordinates. This model allows us to consider FoRs in image
generation and assess their impact on the T2I task. After obtaining the bounding box coordinates,
we follow the same outline in Layout Diffusion to generate the final image.

5 EXPERIMENTAL RESULTS

(a) An image generated from SD-2.1. (b) An image generated from LLlam3-8B + GLIGEN.

Figure 3: Two images generated from the ambiguous spatial expression “A car is to the right of a
cow.” (a) is correct by intrinsic FoR interpretation, while (b) is correct by relative FoR interpretation.

5.1 EVALUATION METRICS

FoR Identification. We report the accuracy of the model on the multi-class classification task.
Note that the expressions in A-split can have multiple correct answers. Therefore, we consider the
prediction correct when it is in one of the valid FoR classes for the given spatial expression.

T2I. To evaluate the generated images, we assess the generated objects and their spatial relation-
ships. To do so, inspired by spatialEval 2023b)), we detect the spatial relation in images.
However, we modify their approach to consider the given FOR when evaluating spatial relations. In
particular, we convert all relations based on their FoR to be expressed from camera view and then
pass it to spatialEval evaluation since spatialEval assumes the camera perspective. When evalu-
ating the generated image from a context with FOR ambiguity, we consider it correct if it fits one
of the valid FoRs for the given situation. See Figure [3] where context with FoR ambiguity pro-
duces two correct images in different FoR interpretations. We report the evaluation score in terms of
VISOR 4,4 and VISOR,;,c0nq (Gokhale et al.}[2023). VISOR score is a metric designed to compare
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the spatial understanding abilities of T2I models. The VISOR_,,,,4 evaluates the spatial relations and
only includes the cases with both objects mentioned in the spatial expression correctly appearing in
the generated image. In other words, it ignores cases with object errors and focuses on how well the
model interprets spatial relations, which is the target of our work. While the VISOR ,,¢0nq €valuates
the model’s overall performance, including object creation errors.

5.2 EXPERIMENTAL SETTING

FoR Identification. We selected five different LLMs including Llama3-8B, LLama3-70B (Llama,
2024), Gemma2-9B (Gemma, [2024), GPT-3.5-turbo (Brown et al., [2020), and GPT-40 (OpenAl,
2024) as the backbones for prompt engineering. The version of GPT-3.5-turbo is “’gpt-3.5-turbo-
0125,” and GPT-40 is "gpt-40-2024-05-13". We set the temperature of all models to be 0 to make the
experiments reproducible. For each model, we apply several in-context learning (ICL) approaches
including, zero-shot, few-shot, CoT, and our technique of Spatial-Guided Prompting (SG) as de-
scribed in Section .1 For few-shot, CoT, and SG, we provide four examples to the models. The
procedures for creating examples for each ICL are described in Section[d.1] The data splits used in
these experiments are A-split and C-spilt.

T2I. We select Stable Diffusion 1.5 (SD-1.5) and Stable Diffusion 2.1 (SD-2.1) (Rombach et al.
2021) for stable diffusion models. For the backbone of layout-to-image, we choose GLIGEN (Li
et al.|[2023). We utilize LLama3-8B and LLama3-70B to handle the transition from spatial descrip-
tion to the textual bounding box information. The bounding box format is described in Section 4.2}
To generate FoR information, we use the same selection of LLMs for the Spatial-Guided Layout
Diffusion (SG Layout Diffusion), explained in Section We generated four images per spatial
expression to evaluate performance and calculated the VISOR score, following the original paper
in |Gokhale et al.| (2023). The number of inference steps for all text-to-image models was set to
50. The data splits used in these experiments are I-A-split and I-C-split. For the evaluation, we
select grounding DINO (Liu et al.}[2024) and DPT (Ranftl et al.|[2021)), following VPEval|Cho et al.
(2023b)), to detect objects and depth map, respectively.

We conduct all experiments and evaluations on GPU A6000, taking roughly 300 GPU hours.

5.3 RESULTS

A-split C-Split
Model Avg. ER-C-Split EI-C-Split 11-C-Split IR-C-Split
Gemma2-9B (0-shot) 94.17 60.45 94.24 35.98 53.91 57.66
Gemma2-9B (4-shot) 59.58 64.29( ) 55.89(] 38.34) 72.61( ) 74.22( ) 54.44(] 3.23)
Gemma2-9B (CoT) 60.49 65.64( ) 60.49(] 33.74) 60.54( ) 87.50( ) 54.03( 3.63)
Gemma2-9B (SG)(Our) 72.67 70.13( ) 65.87(] 28.37) 65.54( ) 53.12(1 0.78) 95.97( )
Ilama3-8B (0-shot) 59.58 65.73 60.36 83.80 56.25 62.50
llama3-8B (4-shot) 59.58 63.32(] 2.41) 58.68() 1.68) 61.74(] 22.07) 81.25( ) 51.61(, 10.89)
llama3-8B (CoT) 66.19 68.31( ) 66.19( ) 56.63(1 27.17) 99.22( ) 51.21( 11.29)
1lama3-8B (SG) (Our) 72.73 67.08( ) 69.88( ) 49.24(] 34.57) 100.00( ) 49.19( 13.31)
Ilama3-70B (0-shot) 77.33 44.62 35.04 32.39 57.81 53.23
llama3-70B (4-shot) 59.78 63.81( ) 59.78( ) 66.52( ) 77.34( ) 51.61() 1.61)
Ilama3-70B (CoT) 66.00 70.88( ) 68.01( ) 65.65( ) 91.41( ) 58.47( )
1lama3-70B (SG) (Our) 74.94 83.33( ) 78.17( ) 70.87( ) 100.00( ) 84.27( )
GPT3.5 (0-shot) 60.88 62.04 60.62 62.50 74.22 50.81
GPT3.5 (4-shot) 59.58 72.68( ) 39.64( 20.98) 99.89( ) 100.00( ) 51.21( )
GPT3.5 (CoT) 59.13 70.65( ) 59.52() 1.10) 74.67( ) 100.00( ) 48.39(] 2.42)
GPT3.5 (SG) (Our) 77.59 82.01( ) 69.62( ) 97.93( ) 100.00( ) 60.48( )
GPT4o (0-shot) 59.90 77.85 60.43 99.35 100.00 51.61
GPT4o (4-shot) 59.78 82.32( ) 59.91() 0.52) 100.00( ) 100.00 69.35( )
GPT4o (CoT) 64.31 81.49( ) 63.99( ) 99.89( ) 100.00 62.10( )
GPT4o0 (SG) (Our) 69.88 85.78( ) 70.08( ) 99.67( ) 100.00 73.39( )

Table 1: Accuracy results report from FoR Identification with LLMs. The correct prediction is one
of the valid FoR classes for the given spatial expression. All FoR classes are external relative (ER),
external intrinsic (EI), internal intrinsic (II), and internal relative (IR).

5.3.1 FoR BiAs IN LLMs

C-spilt. The zero-shot setting reflects the LLMs’ inherent bias in identifying FoR. Table[I] presents
the accuracy for each FoR class in C-split, where sentences explicitly include information about
topology and perspectives. We found that some models strongly recognize specific FoR classes.
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Notably, Gemme2-9B achieves a near-perfect accuracy of 94.24% on external relative FoR but per-
forms poorly on other classes, especially external intrinsic. In contrast, GPT40 shows exceptional
performance in intrinsic FoR classes, with 99.35% for external intrinsic and 100% for internal in-
trinsic, showing an opposite behavior to Gemma?2.

A-spilt. We examine the FoR bias in the A-split. Based on the results in Table [T} we plotted
the top-3 models’ results (Gemma2-9B, Llama3-70B, and GPT40) for a more precise analysis in
Figures ] The plots show the frequencies of each FoR category. According to the plot, Gemma
and GPT have strong biases toward external relative and external intrinsic, respectively. This bias
helps Gemma?2 perform well in the A-split since all spatial expressions can be interpreted as external
relative. However, GPT40’s bias leads to errors when intrinsic FoRs aren’t valid, as in the Box and
Pen cases (see plots (c) and (d)). Llama3 exhibits different behavior, showing a bias based on the
relatum’s properties, specifically the relatum’s affordance as a container. In cases where relatum
cannot serve as containers, i.e., Cow and Pen cases, Llama3 favors external relative. Conversely,
Llama3 tends to favor external intrinsic when the relatum has the potential to be a container.

5.3.2 BEHAVIOR WITH ICL VARIATIONS

Ul

(a) Results of Cow Case in A-Split.
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(c) Results of Box Case in A-Split. (d) Results of Pen Case in A-Split.

Figure 4: Red shows the wrong FoR identifications, and green shows the correct ones. The dark
color is for relative FoRs, while the light color is for intrinsic FoRs. The round shape is for the
external FoRs, while the square is for internal FoRs. The depth of the plots shows the four FoRs,
1.e., external relative, external intrinsic, internal intrinsic, and internal relative, from front to back.

C-spilt. We observe the models’ behavior under various in-context learning (ICL) methods. In the
C-split results from Table[T} the few-shot method outperforms zero-shot for most LLMs in intrinsic
FoR classes. However, this approach often leads to decreased performance in relative FoRs. Then,
we notice that applying CoT prompting generally improves performance in larger LLMs. However,
CoT causes performance drops in Gemma2-9B and GPT-3.5, similar to few-shot. The decline is
less severe for external relative FOR but more pronounced for internal relative FoR. Our proposed
Spatial-Guide (SG) prompting significantly outperforms CoT, especially for larger models. GPT4o,
using SG prompting, achieves state-of-the-art (SOTA) performance compared to other baselines.
However, applying SG prompting to smaller models like Gemma2-9B and Llama3-8B has draw-
backs. For Gemma2-9B, performance decreases in external relative and internal intrinsic FOR while
improving in external intrinsic and internal relative. Interestingly, this effect is reversed for Llama3-
8B. The same dropping trend can be seen when prompting requiring a longer explanation is applied
to Llama3-8B.
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A-spilt. We use the same Figure [4] to observe the behavior when applying ICL. The A-split shows
minimal improvement with ICL variations, though some notable changes are observed. With few-
shot, all models show a strong bias toward external intrinsic FoR, even when the relatum lacks
intrinsic directions, i.e., Box and Pen cases. This bias appears even in Gemma?2-9B, which usually
behaves differently. This suggests that the models pick up biases from the examples despite efforts
to avoid such patterns. However, CoT reduces some bias, leading LLMs to revisit relative, which
is generally valid across scenarios. In Gemma2, the model predicts relative FOR where the relatum
has intrinsic directions, i.e., Cow and Car cases. Llama3 behaves similarly in cases where the
relatum cannot act as a container, i.e., Cow and Pen cases. GPT4o0, however, does not depend on the
relatum’s properties and shows slight improvements across all cases. Unlike CoT, our SG prompting
is effective in all scenarios. It significantly reduces biases while following a similar pattern to CoT.
Specifically, SG prompting increases external relative predictions for Car and Cow in Gemma2-
9B, and for Cow and Pen in Llama3-70B. Nevertheless, GPT4o shows only a slight bias reduction.
However, Our proposed method improves the overall performance of most models, as shown in
Table[I} The Llama3-70B behaviors are also seen in LLama3-8B and GPT3.5. The plots for these
LLMs are in Appendix [E|due to lack of space.

5.3.3 FOR IMPACT ON IMAGE GENERATION

VISOR(%)
Model cond (I) cond (R) \ cond (avg) | cond (I) cond (R) \ cond (avg)
I-A-Split I-C-Split
SD-1.5 72.72 48.95 68.72 53.92 53.77 53.83
SD-2.1 79.46 54.10 75.39 60.06 59.64 59.83
Llama3-8B + GLIGEN 79.45 66.08 77.38 57.51 65.98 62.12
Llama3-70B + GLIGEN 83.94 68.68 81.43 56.47 69.53 63.49
Llama3-8B + SG + GLIGEN (Our) 85.42 71.14 83.17 58.84 70.36 65.15
Llama3-70B + SG + GLIGEN (Our) | 87.13 66.56 83.75 56.77 70.04 64.06

Table 2: VISOR,,4 score on the I-A-Split and I-C-Split where I refer to the Cow Case and Car
Case where relatum has intrinsic directions, and R refer to the Box Case and Pen case where relatum
lacks intrinsic directions, avg is mirco-average of I and R. cond are explained in Section@

We evaluate SG layout diffusion to assess the impact of

using FoR on image generation. We focus on VISOR ,,,4 Model EI ER
as it better reflects the model’s spatial understanding than | 3> phapeal IS
the overall performance measured by VISOR ;,cong- Due [ Tiama3-8B + GLIGEN 53.67 | 25.78
E : . Llama3-70B + GLIGEN 54.49 29.45
to space limitations, VISOR ncond results are reported in | |},03 s, 'S + GLIGEN 0wy | 57.46 | 27.96
Appendix [D] Table [2] shows that adding FoR informa- [ Liama3-70B + SG + GLIGEN ©un | 56.54 | 30.59

tion (Llama3 + SG + GLIGEN) improves performance )
across all splits compared to the baseline models (Llama3 Table 3: The separate accuracy visual-
+ GLIGEN). The most significant gains occur when the 12€d Cow and Car Case in I-A-Split for
relatum lacks intrinsic direction, making external relative €Xternal relative (ER) and external in-
FoR the only valid option. This demonstrates an im- trinsic interpretations (EI) of FoR.
proved understanding of SG layout diffusion regarding relative FoRs. The performance gap in
relative FoR understanding is further evident when comparing SD-2.1 with Llama3 + GLIGEN.
GLIGEN models consistently perform better due to their ability to use spatial configurations based
on bounding boxes. However, SD-2.1 surpasses all GLIGEN-based models, including ours, when
FoR is intrinsic, as seen in the cond(/) of the I-C split in Table 2] This limitation likely arises from
the reliance on bounding boxes for generating spatial configurations, which complicates handling in-
trinsic FoR due to the lack of object properties and orientation. This challenge is further highlighted
in Table [3] which analyzes the I-A split in the Cow and Car case. In this case, GLIGEN favors
external relative interpretations more than SD-2.1. Also, the results suggest Llama may be biased
toward external intrinsic FOR when generating layouts that align with the FoR class identification in
SG prompting. Incorporating FoR enhances intrinsic FoR understanding, showing improvements in
our method compared to the layout diffusion baseline in both Cow and Car case splits.

To further explain these improvements, we assess the generated bounding boxes in the I-C
split for left and right relations relative to the camera since these can be evaluated using only
bounding boxes without depth information. As seen is Table ] our SG prompting improved

9
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Llama3-70B’s by 3.48%, while Llama3-8B saw a slight decrease [ Model Layout | Layouteoy, g

of 0.22%. This evaluation was conducted on all generated lay- pamtS o | et | e

outs from the I-C split, which differs from the evaluation sub- Llama3-70B 88.47 93.16
Llama3-70B + SG 91.95 95.45

set of images used for VISOR ;4 in Table E} For a consistent
evaluation, we report the layout.,,q score in the same table. Table 4: Layout accuracy where
Layout.,,,q shows that Llama3-8B improves within the same spatial relations are left or right
evaluation subset with VISOR,,,4. Overall, by incorporating relative to the camera. Lay-
FoR information through SG layout diffusion, Llama3 generates
better spatial configurations, enhancing image generation perfor-
mance.

out is evaluated for all gener-
ated layouts in I-C split while
Layout,,,q uses the same testing
examples as VISOR ., 4-

6 RELATED WORKS

Understanding situated spatial expressions requires knowledge of the frame of reference (FoR),
which defines the coordinate system used to describe objects’ positions. A detailed study of the FOR
on multiple natural languages was conducted in (Levinson, [2003)), which categorizes the FoR into
three basic categories: intrinsic, relative, and absolute. Inspired by this basic framework, [Tenbrink:
2011 proposed a more comprehensive framework for specifying the FoR, used as the primary refer-
ence of our study. Their frameworks extended the basics with other spatial relation concepts, such as
topology and temporal. Cognitive studies have increasingly focused on how humans perceive spa-
tial FoR. Many findings in these studies suggest that humans favor specific FoR classes (Edmonds-
‘Wathen|, [2012; [Vukovic & Williams|, 2015} |[Shusterman & Li, 2016} [Ruotolo et al., 2016)) For in-
stance, |Ruotolo et al.|2016|investigated how the FoR affects the human’s ability to memorize and
describe the scene within a limited time. They found that participants were better at describing and
answering questions when the spatial relations were based on participants’ position, as opposed to
using other objects as reference points. This highlights a gap between the relative and intrinsic FoR.

Several benchmarks have been developed across various domains to evaluate the spatial understand-
ing of computation models. In the text-based domain, recent benchmarks focus on navigating with
spatial instructions (Yamada et al., 2024) or question-answering tasks (Shi et al., [2022; Mirzaee
& Kordjamshidi, [2022; |Rizvi et al.| [2024). These benchmarks are developed to assess the spatial
reasoning capability without paying much attention to FoR. Existing research often lacks explicit
consideration of FoR, and the benchmarks do not include FoR annotations. Consequently, evaluat-
ing FoR understanding remains a research gap in spatial reasoning-related work. Similarly, text-to-
image (T2I)benchmarks (Gokhale et al., 2023} [Huang et al.,|2023}|Cho et al.,[2023agb)) face the same
issue. They usually focus on correctly placing two objects based on spatial relation from the camera
perspective and relative FoR. Nevertheless, few works in vision-text domains are starting to recog-
nize the importance of a FoR (Chen et al., 2024; [Liu et al.} 2023). One notable study is provided
by |Liu et al.[2023| They provide a case study on the FoR and results showing that making the model
capable of understanding the FoR affects downstream performance on visual question answering.
However, their study is limited in terms of FoR categories. In our work, we extend the coverage of
benchmarks into more diverse frames of reference for the FoR recognition tasks. Moreover, we are
the first to study the impact of FoR identification on text-to-image generation as a downstream task.

7 CONCLUSION

Given the significance of spatial reasoning in Al applications and the importance of understanding
spatial frame of reference (FoR), we introduce Frame of Reference Evaluation in Spatial Reasoning
Tasks (FOREST) benchmark to assess FoR comprehension in text-based spatial expressions and its
impact on grounding in visual modality by diffusion models. Our benchmark results reveal notable
differences in FoR identification in various LLMs. Moreover, the bias in FoR interpretations im-
pacts the LLMs’ ability to generate layouts for text-to-image generation. To deal with these biases,
we propose Spatial-Guided prompting, which guides the model in considering the type of spatial
relations: topology, distance, and direction for a more accurate FoR identification. This approach
reduces the FoR biases in LLMs and improves the overall performance of the FoR identification
task. Eventually, it enhances text-to-image generation performance by providing more accurate spa-
tial configurations.

10
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A  DATASET STATISTICS

The FoREST dataset statistic is provided in the Table 3]

Case A-Split | I-A-Split FoR class C-Spilt | I-C-Spilt
Cow Case 792 3168 External Relative 1528 4288
Box Case 120 120 External Intrinsic 920 3680
Car Case 128 512 Internal Intrinsic 128 0
Pen Case 488 488 Internal Relative 248 0

Total 1528 4288 Total 2824 7968

Table 5: Dataset Statistic of FOREST dataset.

B DETAILS CREATION OF FOREST DATASET

We define the nine categories of objects selected in our dataset as indicated below in Table [6] We
select sets of locatum and relatum based on the properties of each class to cover four cases of frame
of reference defined in Section[3.1] Notice that we also consider the appropriateness of the container;
for example, the car should not contain the bus.

Based on the selected locatum and relatum. To create an A-split spatial expression, we substitute
the actual locatum and relatum objects in the Spatial Relation template. After obtaining the A-split
contexts, we create their counterparts using the perspective/topology clauses to make the counter-
parts in C-spilt. Then, we obtain the I-A and I-C split by applying the directional template to the
first occurrence of relatum when it has intrinsic directions. The directional templates are “that is fac-
ing towards,” ’that is facing backward,” “’that is facing to the left,” and "that is facing to the right.”
All the templates are in the Table[7} We then construct the scene configuration from each modified
spatial expression and send it to the simulator developed using Unity3D. Eventually, the simulator
produces four visualization images for each scene configuration.

Category Object Intrinsic Direction | Container
small object without intrinsic directions | umbrella, bag, suitcase, fire hydrant X X
bog object with intrinsic directions bench, chair v X
big object without intrinsic direction water tank X X
container box, container X v
small animal chicken, dog, cat v X
big animal deer, horse, cow, sheep v X
small vehicle bicycle v X
big vehicle bus, car v v
tree tree X X

Table 6: All selected objects with two properties: intrinsic direction, affordance of being container
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Bench

Chair Chicken Container

Suitcase Horse Deer Fire Hydrant

Bicycle Umbrella Tree Water Tank Sheep

Figure 5: All 3d models used to generate visualizations for FOREST.

B.1 SIMULATION DETAILS

The simulation starts with randomly placing the relatum into the scene with the orientation based
on the given scene configuration. We randomly select the orientation by given scene configuration,
[-40, 40] for front, [40, 140] for left, [140, 220] for back, and [220, 320] for right. Then, we create
the locatum from the relatum position and move it in the spatial relation provided. If the frame
of reference is relative, we move the locatum based on the camera’s orientation. Otherwise, we
move it from the relatum’s orientation. Then, we check the camera’s visibility of both objects. If
one of them is not visible, we repeat the process of generating the relatum until the correct place-
ment is achieved. After getting the proper placement, we randomly choose the background from 6
backgrounds. Eventually, we repeat the procedures four times for one configuration.

B.2 OBIJECT MODELS AND BACKGROUND

For the object models and background, we find it from the unity assert storg”| All of them are free
and available for download. All of the 3D models used are shown in Figure

B.3 TEXTUAL TEMPLATES

All the templates used to create FOREST are given in Table[7}

C IN-CONTEXT LEARNING

We provide the prompting for each in-context learning. The prompting for zero-shot and few-shot is
provided in Listing[I] The instruction answer for these two in-context learning is “Answer only the
category without any explanation. The answer should be in the form of { Answer: Category.}”

For the Chain of Thought (CoT), we only modified the instruction answer to “Answer only the
category with an explanation. The answer should be in the form of {Explanation: Explanation
Answer: Category.}” Similarly to CoT, we only modified the instruction answer to “Answer only

“https://assetstore.unity.com
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{locatum} is in front of {relatum}
{locatum} is on the left of {relatum}
{locatum} is to the left of {relatum}
Spatial Relation Templates {locatum} is behind of {relatum}

{locatum} is back of {relatum}
{locatum} is on the right of {relatum}
{locatum} is to the right of {relatum}

within {relatum}
Topology Templates and inside {relatum}
and outside of {relatum}

from {relatum}’s view

relative to {relatum}
Perspective Templates from {relatum}’s perspective

from my perspective
from my point of view
relative to observer

that is facing toward
Directional Templates that is facing backward
that is facing to the left
that is facing to the right

Table 7: All templates used to create FOREST dataset.

the category with an explanation regarding topological, distance, and direction aspects. The answer
should be in the form of { Explanation: Explanation Answer: Category.}”, respectively. The example
responses are provided in Listing 2] for Spatial Guided prompting.

# Instruction to find frame of reference class of given context

mmnn

Instruction:

You specialize in language and spatial relations, specifically in the
reference frame of context. Identify the following context into the
frame of reference categories (external intrinsic, internal intrinsic
, external relative, internal relative) based on the information.

External intrinsic is the context that uses spatial relation to describe
the relative position of the object by referring to the referenced
object’s intrinsic directions, and both objects do not contain one
another.

Internal intrinsic is the context that uses spatial relation to describe
the relative position of the object by referring to the referenced
object’s intrinsic directions, and one object is inside another one.

External relative is the context that uses spatial relation to describe
the relative position of the object by referring to the referenced
observer’s intrinsic directions, and both objects do not contain one
another.

Internal relative is the context that uses spatial relation to describe

the relative position of the object by referring to the referenced
observer’s intrinsic directions, and one object is inside another one

{Instruction answer}

Context: {spatial exprssion}

nwn

# Instruction for generate bounding box
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Your task is to generate the bounding boxes of objects mentioned in the

caption.

The image is size 512x512. The bounding box should be in the format of (x

, y, width, height). Please considering the frame of reference of
caption and direction of reference object if possible. If needed, you
can make the reasonable guess.

nwn

Listing 1: Prompting to find the frame of reference class of given context and generate bounding
box layout

## This is example response used in few-shot, CoT, and SG

#
#
#

#

H o

H H

Example 1: The bird is in front of the car relative to the car.

Few-shot response: Answer: external intrinsic

CoT response: Explanation: The position of the bird refers to the front

direction of the car. Answer: external intrinsic.

SG response: Explanation: Topological: A bird is outside of the car.
Distance: A bird may be slightly far from the front of the car from
the context. Direction: The car, the relative object, has the
direction, and the bird is actually in front of the car. Answer:
external intrinsic "

Example 2: The bird is inside of the car and left of the car from the
car’s perspective.

Few—-shot response: Answer: internal intrinsic

CoT response: Explanation: The spatial relationship is described
relative to the inside of the car. The bird is accuracy left of the
car. Answer: internal intrinsic.

SG response: Explanation: Topological: A bird is inside the car.
Distance: A bird should be in the same location as the car from the
context. Direction: The car which is the relative object has the
direction, and bird is in the front side of the car. Answer: internal

intrinsic.

Example 3: The box is inside and at the back of the room.

Few-shot response: Answer: internal relative

CoT response: Explanation: The box is inside of the room, and the room
doesn’t have an intrinsic direction, which makes the back relation
based on the observer’s perspective of the room. Answer: internal
relative.

SG response: Explanation: Topological: box is inside of the room.
Distance: box should be in the same location with the room from the
context. Direction: Room doesn’t have the direction and context
refere from observer perspective for box is in the back of the room.
Answer: internal relative.

Example 4: A phone is on the left of a tablet from my perspective.

Few-shot response: Answer: internal relative

CoT response: Explanation: left relation is based on the observer’s (me
) perspective to the room even if tablet has the intrinsic direction
and a phone is not inside the tablet. Answer: external relative.

SG response: Explanation: Topological: phone is not inside of the
tablet. Distance: phone may has some distance from tablet according
to the context. Direction: even if tablet has direction, the context
left relation is refered from observer’s perspective that a phone is
on the left side of the tablet location. Answer: external relative.

Listing 2: Spatial expression examples with the response for few-shots, Chain-of-Thought (CoT),
and Spatial Guide (SG) prompting

16




Under review as a conference paper at ICLR 2025

D VISOR SCORE

VISOR,.cond provides the overall spatial relation score, including images with object generation
errors. Since it is less focused on evaluating spatial interpretation than VISOR 4, which assesses
explicitly the text-to-image model’s spatial reasoning, we report VISOR,,,conq results here in the
Table|§|rather than in the main paper. The results are similar to the pattern observed in VISOR 1, cond
that the based model performs better in the relative frame of reference, while the model is better in
the intrinsic frame of reference.

VISOR(%)
Model uncond (I) uncond (R) \ uncond (avg) | uncond (I) uncond (R) \ uncond (avg)
I-A-Split 1-C-Split
SD-1.5 45.43 33.22 43.51 35.06 35.68 35.40
SD-2.1 62.87 43.90 59.89 45.98 46.59 46.31
Llama3-8B + GLIGEN 46.74 38.16 45.39 33.98 39.36 36.89
Llama3-70B + GLIGEN 54.33 46.89 53.17 38.04 46.04 42.37
Llama3-8B + SG + GLIGEN (Our) 51.83 43.24 50.48 36.28 44.43 40.70
Llama3-70B + SG + GLIGEN (Our) 58.92 47.44 57.12 38.23 48.62 43.86

Table 8: VISOR,,cong score on the I-A-Split and I-C-Split where I refer to the Cow Case and
Car Case where relatum has intrinsic directions, and R refer to the Box Case and Pen case where
relatum lacks intrinsic directions, avg is mirco-average of I and R. cond and uncond are explained

in Section @

E A-SPLIT PLOT FOR FREQUENCY PREDICTIONS

Due to a lack of space and the same behavior as explained for LLama3-70B in Section [5.3.2} we
provide the plot for Llama3-8B and GPT3.5 here in Table[6]instead of the main paper.
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(c) Results of Box Case in A-Split. (d) Results of Pen Case in A-Split.

Figure 6: Red shows the wrong FoR identifications, and green shows the correct ones. The dark
color is for relative FoRs, while the light color is for intrinsic FoRs. The round shape is for the
external FoRs, while the square is for internal FoRs. The depth of the plots shows the four FoRs,
i.e., external relative, external intrinsic, internal intrinsic, and internal relative, from front to back.
This plot is the result of the rest of LLMs.
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