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Abstract

We present a method to improve the calibration of deep ensembles in the small data regime in
the presence of unlabeled data. Our approach, which we name U -ensembles, is extremely easy
to implement: given an unlabeled set, for each unlabeled data point, we simply fit a different
randomly selected label with each ensemble member. We provide a theoretical analysis based
on a PAC-Bayes bound which guarantees that for such a labeling we obtain low negative
log-likelihood and high ensemble diversity on testing samples. Empirically, through detailed
experiments, we find that for low to moderately-sized training sets, U -ensembles are more
diverse and provide better calibration than standard ensembles.

1. Introduction

For many application settings of deep learning, there are abundant training data points,
making it easy to train large well-calibrated networks. However, many real-world application
settings remain in the small data regime, where training data is scarce and costly to sample
and label (Perez-Ortiz et al., 2021, Bornschein et al., 2020, Foong et al., 2021), including in
medical and industrial applications of deep learning. In such settings, predictors are often
trained on limited datasets, ranging from several thousand to as few as a few dozen samples. In
such settings, neural networks often operate in an auxiliary fashion to an expert. The network
is expected to detect some positive samples, which might be missed by the expert, or the other
way around. As such a successfully deployed system needs to be not only accurate but also
well calibrated. The dominant approach in such settings is to fine-tune a pre-trained model on
the few available data points. Alternatively, if relevant pre-trained models are not available,
one has to resort to training a smaller architecture from scratch. In both cases, deep ensembles
(Lakshminarayanan et al., 2017) and data augmentation (Shorten and Khoshgoftaar, 2019)
play a key role in improving out-of-sample performance. To obtain well-calibrated predictions,
tempering the final layer logits (Guo et al., 2017, Bornschein et al., 2020) is also crucial. Both
empirically and theoretically, the performance of deep ensembles is intrinsically tied to their
diversity (Fort et al., 2019, Masegosa, 2020). By averaging predictions from a more diverse
set of models, prediction bias is mitigated, thereby enhancing overall performance.

The conventional approach to introducing diversity within deep ensembles involves em-
ploying distinct random initializations for each ensemble member (Lakshminarayanan et al.,
2017). As a result, these ensemble members converge towards different modes of the loss
landscape, each corresponding to a unique predictive function (Fort et al., 2019). This base-
line technique is quite difficult to surpass. Nevertheless, numerous efforts have been made to
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Figure 1: Motivating U-ensembles. (Left) Standard ensemble and (Right) U -ensemble on
toy dataset. For the standard ensemble, all ensemble members converge to the
same solution and the ensemble exhibits no diversity and hence no uncertainty in
the “in-between” domain [−2, 2]. By fitting four different random labels for the
unlabeled datapoint x = 0, U -ensembles learn four significantly different functions
and therefore achieve diversity and informative uncertainty in the “in-between”
domain.

further improve deep ensembles by explicitly encouraging diversity in their predictions (Ramé
and Cord, 2021, Yashima et al., 2022, Masegosa, 2020, Pagliardini et al., 2023, D’Angelo and
Fortuin, 2023). These approaches typically encounter several challenges, which can be sum-
marized as follows: The improvements in test metrics tend to be modest, while the associated
extra costs are substantial. Firstly, diversity-promoting algorithms often involve considerably
more intricate implementation details compared to randomized initializations. Secondly, the
computational and memory demands of existing methods exceed those of the baseline by a sig-
nificant margin. Additionally, some approaches necessitate extensive hyperparameter tuning,
further compounding computational costs.

In light of these considerations, we introduce U -ensembles, an algorithm designed to im-
prove deep ensemble calibration and diversity with minimal deviations from the standard deep
ensemble workflow. Moreover, our algorithm maintains the same computational and memory
requirements as standard deep ensembles, resulting in linear increases in computational costs
with the size of the unlabeled dataset. Our contributions are four-fold:

• Given an ensemble with K members, a training set and an unlabeled set, we propose an
algorithm, which we call U -ensembles, that generates for each unlabeled data point K
random labels and assigns from these a single random label to each ensemble member.
For each ensemble member we then simply fit the training data (with its true labels) as
well as the unlabeled data (with the generated random labels). See Figure 1.

• We provide a PAC-Bayesian analysis of the test performance of the proposed ensemble
in terms of negative log-likelihood and diversity. The final ensemble is guaranteed to be
diverse, and well-calibrated on test data.

• We train models from scratch on CIFAR-10 and CIFAR-100 for the in-distribution and
out-of-distribution settings that demonstrate that for small to medium-sized training
sets of the order of thousands of samples, U -ensembles improve the ECE by up to 1%.
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• We explore the extremely small data regime of the order of dozens of training samples.
We use ViT models pre-trained on Imagenet and fine-tune them on CIFAR-10 and
CIFAR-100 and observe improvements in ECE of up to 12%.

Our method has similar computational requirements as standard ensembles and it only re-
quires extending the training set with pseudo-labeled unlabeled datasets, thus it is ideally
suited for AutoML (He et al., 2021) and EdgeML (Zhu et al., 2020) settings, where one has
tight compute restrictions for fine-tuning and minimal access to the training objectives. Both
settings overlap significantly with medical and industrial applications of deep learning (He
et al., 2021, Zhu et al., 2020).

2. Works on deep ensemble improvements

The method closest to our approach is the Agree to Disagree algorithm (Pagliardini et al.,
2023). Agree to Disagree also forces ensemble members to disagree with each other on un-
labeled data. We deviate significantly from this work: i) Agree to Disagree ensembles are
constructed greedily, ensemble members are added one at a time and are forced to disagree
with the previous ones. By contrast, we propose an embarrassingly parallel optimization
method; ii) In contrast to Pagliardini et al. (2023), we provide a detailed theoretical analysis
on why promoting diversity on unlabeled data helps with generalization; iii) Empirically, we
test the in-distribution setting which the original Agree to Disagree paper did not consider.
We outperform Agree to Disagree ensembles in all experiments.

Wenzel et al. (2020) propose to induce diversity by training on different random initializa-
tions as well as different choices of hyperparameters such as the learning rate and the dropout
rates in different layers. They also construct the ensemble greedily, yielding a memory com-
plexity of either O(#random hyperparameter searches) or O((ensemble size)2). By contrast
we only need O(ensemble size) memory which is critical for EdgeML settings.

Ramé and Cord (2021), Yashima et al. (2022), Masegosa (2020), Ortega et al. (2022)
all propose diversity promoting objectives. These methods exhibit all the shortcomings pre-
viously described, where the cost of implementation, tuning and training cannot easily be
justified: 1) the implementation differs significantly from standard ensembles, 2) the compu-
tational complexity increases significantly, and 3) the algorithm requires extensive hyperpa-
rameter tuning.

D’Angelo and Fortuin (2023) propose to add a Kernelized repulsive term in the training
update rule. This term discourages the ensemble members from converging towards the same
function, thereby assuring members diversity. However this method presents several inherent
challenges : 1) The choice and tuning of Kernel parameters (e.g., bandwidth) is not always
straightforward. 2) Large ensembles with the kernelized term are more expensive to train
compared to our method, due to the additional computational overhead.

Trinh et al. (2023) introduce First-order Repulsive Deep Ensembles (FoRDE), which adds
a kernel-based repulsion term in input-gradient space so that networks within the ensemble
learn complementary features. However, the approach has notable limitations: 1) Training
is roughly three-times slower than standard ensembles. 2) Performance depends heavily on
selecting suitable per-dimension kernel-length scales. 3) Computing and storing input gradi-
ents for every mini-batch increases memory use and limits scalability to very large models or
datasets.
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Jain et al. (2022), Lee et al. (2013) propose to pseudo-label unlabeled data using deep
ensembles trained on labeled data. These pseudo-labeled data are then used to retrain the
ensemble. This approach can improve significantly standard ensembles, however, it is signif-
icantly more costly than our method. First, unlabeled data have to be labeled in multiple
rounds, a fraction at a time. Also, to be fully effective, ensembles have to be “distilled” into
a final single network. Finally, diverse features have to be hand-designed based on the target
task. Our method can be seen as the bare minimum version of pseudo-labeling with minimal
assumptions on the generating data distribution.

Jain et al. (2022), Loh et al. (2023) encourage different ensemble members to be diverse
using data transformations. These approaches are compatible with our method and could
be used in conjunction with it. Note also the link of inducing diversity with the notion of
functional priors on which there is considerable literature for Bayesian neural networks (Tran
et al., 2022).

3. Diversity through unlabeled data

We consider the classification problem with c classes. We denote by 1 :K the set of integers
{1, . . . ,K}, and let the training set be Z = (X,Y ) = {(xi, yi)}ni=1 ∈ (X × Y)n, drawn i.i.d
from a distribution D. Neural networks f : X → Y are parameterized by weights w and
are denoted by f = f(·,w). Let p(y|x, f) be the probability of label y given x and f . In
our case p(y|x, f) is the softmax probability of class y after the softmax function is applied
to the logits of the last layer of a neural network. We consider sets of loss minima {ŵi} for
i ∈ 1 : K, and form a deep ensemble ρ̂(w) = 1

K

∑
i δ(w = ŵi), where δ(x) is the Dirac delta

mass function. To make a prediction on a new datapoint (x, y), the ensemble averages the
probabilities estimated per class by each ensemble member

µ̂(ρ̂; (x, y)) =
1

K

∑
i

p(y|x, f(x, ŵi)), (1)

with the typical goal of achieving low out-of-sample error E(x,y)∼D [− log µ̂(ρ̂; (x, y))].

Let L̂ℓnllZ (f) = − 1
n

∑
i log(p(yi|xi, f)) be the cross-entropy training loss. The standard

deep ensemble algorithm then optimizes minŵi
L̂ℓnllZ (f(·; ŵi)) + γ∥ŵi∥22 for each ensemble

member i ∈ 1 : K independently, using different random initializations for ŵi. Even if
all ŵi are learned independently, the different random initializations yield some diversity in
the predictions. Instead of using only random initializations as a source of diversity, our
method encourages the ensemble to be diverse on a new unlabeled set U . By learning useful
features on the training set Z and promoting diversity on the unlabeled set U , the resulting
ensemble is more diverse than standard ensembles and generalizes better to new data. To
extract meaningful features from Z, it is adequate to train with the real labels using the cross-
entropy loss for each ensemble member, following the standard ensemble approach. Therefore,
our focus is on finding an efficient method to ensure diversity within U .

Promoting diversity on an unlabeled set U . Given predictions p(y|x, f(x, ŵi)) for each
ensemble member ŵi, we first need to define a metric of diversity which to be maximized.
Specifically, we consider the empirical variance of p(y|x, f(x, ŵj)) for ensemble ρ̂, given a
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signal (x, y), as a metric of diversity:

V̂(ρ̂; (x, y)) =
1

K

K∑
i=1

(
p(y|x, f(x, ŵi))− µ̂(ρ̂; (x, y))

)2
. (2)

The higher the variance, the higher the diversity of ensemble ρ̂ on (x, y). Not only is this
an intuitive diversity measure, but as established in Theorem 1, V̂(ρ̂; (x, y)) relates to a
PAC-Bayesian analysis of the out-of-sample error.

We then make the crucial assumption that our ensemble can perfectly fit random labels∗

on unlabeled samples (x, y). This allows us to propose a very simple method to achieve a
high value for the diversity term. Consider a single unlabeled point (x, y) in a two-class
classification problem y ∈ {0, 1}, where the unknown label is y = 1, and two ensemble
members ŵ1 and ŵ2 (here y exists but is unknown during training). Let ŵ1 fit label 0 and
ŵ2 fit label 1. Then p(y = 1|x, ŵ1) = 0 and p(y = 1|x, ŵ2) = 1 (because both ensemble
members perfectly fit their assigned labels) and we get µ̂(ρ̂; (x, y = 1)) = 1/2 and V̂(ρ̂; (x, y =
1)) = 1/4. Therefore, by assigning a distinct label to each ensemble member for every data
point (x, y), we can achieve diverse predictions on the unlabeled set, even without prior
knowledge of the true label y = 1 during training.

The most straightforward approach for generating diverse labels among ensemble members
is to assign random labels. Given a K-ensemble, sampling K labels from the c classes for
each unlabeled datapoint x can be done in two ways: with replacement, which can operate
without constraint, or without replacement, which is applicable when K ≤ c. We then
assign one of the K labels to each ensemble member. See Algorithm 1. In short, training
U -ensembles simply requires to construct K randomly labeled sets Ui and then optimize

L̂ℓnllZ (f(·; ŵi)) + βL̂ℓnllUi
(f(·; ŵi)) + γ∥ŵi∥22 (3)

with the optimization algorithm of our choice for each ensemble member.

Algorithm 1 U -ensembles with or without replacement

Input Weight of the unlabeled loss β, ℓ2 regularization strength γ, training data Z, unlabeled
data U , number of ensemble members K
Output Ensemble ρ̂(w) = 1

K

∑
i δ(w = ŵi)

1: for i in 1 : K do
2: Ui ← {}
3: for x in U do
4: Sample y with of without replacement from 1 : c
5: Ui ← Ui ∪ (x, y)
6: end for
7: ŵi ← Random Initialization
8: min

ŵi

L̂ℓnllZ (f(·; ŵi)) + βL̂ℓnllUi
(f(·; ŵi)) + γ∥ŵi∥22

9: end for

∗The question of whether neural networks can fit random labels has been extensively explored in Zhang
et al. (2021) who show that architectures as small as single-layer MLPs can easily fit random labels over
CIFAR-10.
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Table 1: With replacement vs without replacement. CIFAR-10 dataset and LeNet ar-
chitecture. We analyze the case of in-distribution performance, 1000 training sam-
ples, 5000 unlabeled samples and 10 ensemble members. U -ensembles with replace-
ment outperform standard ensembles and are in turn outperformed by U -ensembles
without replacement.

Method Acc ↑ ECE ↓ TACE ↓ Brier Rel. ↓ NLL ↓ Eρ̂∼A[V̂(ρ̂)]

Standard ensemble 0.513 0.153 0.032 0.121 1.732 -
U -ensemble w/ replacement 0.510 0.137 0.030 0.120 1.680 0.04
U -ensemble w/o replacement 0.514 0.131 0.028 0.117 1.650 0.045

We derive now a PAC-Bayes bound† that links the out-of-sample loss to the diversity and
the complexity of the classifier achieved by Algorithm 1 through random labeling.

Theorem 1 (Informal) Assume a training set Z and an unlabeled set U drawn from D. Let
Algorithm 1 generate an ensemble ρ̂(w) = 1

K

∑
i δ(w = ŵi), which we denote by ρ̂ ∼ A,

based on random labels U , where each member fits both real and random labels perfectly. With
probability over Z and U larger than 1− δ, for all γ ∈ (0, 2) simultaneously, we have

Eρ̂∼A
[
E(y,x)∼D

[
− log

∑
i

p(y|x, f(·; ŵi))/K
]]

≤ Eρ̂∼A
[∑

i

hδ
(
∥ŵi∥22

)
/K
]

︸ ︷︷ ︸
complexity

−
(
1− γ

2

)
Eρ̂∼A

[
V̂(ρ̂;U)

]
︸ ︷︷ ︸

diversity

where hδ : R+ → R+ is a strictly increasing function, and V̂(ρ̂;U) is the variance term (2)
of the ensemble on unlabeled data U .

Theorem 1 indicates that if we can perfectly fit our training and unlabeled sets, out-of-
sample performance is determined by a tradeoff between the ensemble complexity and the
ensemble diversity on the unlabeled set U (the result is in expectation over the randomness
of the labels). Note that the loss on the training data does not appear on the RHS as it is 0
by definition, since we assume that we fit the labels perfectly.

However, even if we perfectly fit random labels on the unlabeled set, not all labellings
result in the same diversity. We next find analytical values for the expected diversity of the
ensemble generated by Algorithm 1.

Proposition 2 (Informal) If labels are assigned to the unlabeled data with replacement then

Eρ̂∼A
[
V̂(ρ̂)

]
=

1

2

K∑
r=0

g(r)

(
K

r

)
1

cr

(
1− 1

c

)K−r
, (4)

†Variants of the bound of Theorem 1 have appeared in recent works for majority-vote classifiers (Thiemann
et al., 2017, Wu and Seldin, 2022, Masegosa et al., 2020, Masegosa, 2020). However, to the best of our
knowledge, this particular version is novel in the deep ensemble case.
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Figure 2: U-ensembles and other methods. Let c = 10 and let K be an integer such that
1 ≤ K ≤ 10 (i.e., K ∈ 1 : 10). (Top row) We plot Eρ̂∼A[V̂(ρ̂)] with and with-
out replacement. Sampling without replacement results in more diverse ensembles.
Improvements in ECE plateau around K = 8 for standard ensembles, but con-
tinue improving for U -ensembles. (Bottom left) Compared to Figure 1, with more
training data the standard ensemble fits well the true function. (Bottom middle)
The additional training data overlap with the unlabeled datapoint x = 0 and cause
the U -ensemble to underfit. (Bottom right) The additional unlabeled datapoints
x = −3, x = 3 overlap with training datapoints and cause the U -ensemble to un-
derfit.

where function g is defined by

g(r) =
r

K

(
1− r

K

)2
+ (1− r

K
)
( r
K

)2
.

If labels are assigned to the unlabeled data without replacement then

Eρ̂∼A
[
V̂(ρ̂)

]
=

1

c

(
1− 1

K

)
. (5)

The proof is deferred to Appendix B. We make three important observations from this
analysis.

• U -ensembles achieve strictly increasing diversity with the ensemble size K for both
sampling with and without replacement (Equation (4), Equation (5) and Figure 2).
This is not necessarily the case for standard ensembles.

• Equation (4), Equation (5) and Figure 2 indicate that sampling without replacement
results in higher diversity compared to sampling with replacement.

• Our function, could become more complex without becoming sufficiently diverse. Then
the complexity term in Theorem 1 will start to dominate the diversity term, resulting
in worse out-of-sample performance. This can happen when Z and U start to overlap
as we explain in Figure 2.

4. Experiments

We conducted four types of experiments: (i) small-scale experiments to test the intuitions from
Section 3 (ii) experiments on in-distribution testing data when transfer learning isn’t available,
(iii) corresponding experiments on distribution shifts, (iv) experiments on transfer learning.
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To approximate the presence of unlabeled data using common classification datasets, given a
training set Z, we reserve a validation set Zval, and a training set Ztrain and use the remaining
datapoints as a pool for unlabeled data U . We keep the testing data Ztest unchanged.

To test in-distribution performance, we use the standard CIFAR-10 and CIFAR-100
datasets (Krizhevsky and Hinton, 2009). We explore a variety of dataset sizes. Specifically,
for both datasets, we keep the original testing set such that |Ztest| = 10000, and we use 5000
samples from the training set as unlabeled data U and 5000 samples as validation data Zval.
For training, we use datasets Ztrain of size 1000, 2000, 4000, 10000 and 40000. We use three
types of neural network architectures, a LeNet architecture (LeCun et al., 1998), an MLP
architecture with 2 hidden layers (Goodfellow et al., 2016), and a WideResNet22 architecture
(Zagoruyko and Komodakis, 2016). For both datasets, we used the standard augmentation
setup of random flips + crops. We note that similar training-unlabeled set splits for CIFAR-10
and CIFAR-100 have been explored before in Alayrac et al. (2019), Jain et al. (2022).

We measure testing performance using accuracy as well as calibration on the testing set.
Specifically, we measure calibration using the Expected Calibration Error (ECE) (Naeini et al.,
2015), the Thresholded Adaptive Calibration Error (TACE) (Nixon et al., 2019), the Brier
Score Reliability (Brier Rel.) (Murphy, 1973), and the Negative Log-Likelihood (NLL). We
also measure the diversity of the ensemble on the test set using the average mutual information
between ensemble member predictions. More specifically for each ensemble we treat its output
as a random variable giving values in 1 : c. We compute the Mutual Information (MI) of this
random variable between all ensemble pairs and take the average. Lower MI then corresponds
to more diverse ensembles.

For standard ensembles we simply minimize L̂ℓnllZ (f(·; ŵi)) + γ∥ŵi∥22 for each ensemble
member using different random initializations. For U -ensembles we optimize (3). For both
cases, we train each ensemble member using AdamW (Loshchilov and Hutter, 2018). For
hyperparameter tuning we perform a random search with 50 trials, using Hydra (Yadan,
2019). The details for the hyperparameter tuning ranges can be found in the supplementary.
Table 2 presents the results for a training set of size 1000.

4.1. Small-scale experiments

We first establish that in accordance with Section 3, sampling without replacement outper-
forms sampling with replacement. We use an ensemble of size 10, the LeNet architecture and
the CIFAR-10 dataset. In Table 1 we see that U -ensembles and sampling with replacement
outperforms Standard ensembles in Expected Calibration Error by 1.6%. Sampling without
replacement results in further improvements of 0.6%. We replicate these results on average
with further experiments in the supplementary. We thus use sampling without replacement
in the rest of the experiments. Furthermore, in Figure 2 we then show that increasing the
ensemble size K results in continuous improvements in ECE for the U -ensemble while the
ECE for the Standard ensemble plateaus.

4.2. In-distribution performance

We present in Table 2 detailed results across our architectures for the CIFAR-100 dataset,
where transfer learning is not applicable and full-model training is required. We also study
the CIFAR-10 case, with results provided in Appendix E.
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Figure 3: Varying the training and unlabeled set. (Top) For full-network training, we
vary the labeled set size Z ∈ {1000, 2000, 4000, 10000, 40000}. U -ensembles match
standard ensembles in accuracy (lines overlap) but consistently improve ECE, with
diminishing gains as Z grows. (Bottom) In ViT transfer learning, we fix one of
|Z| = 70 or 100 and vary the other. Calibration initially improves but then degrades
as the two sets grow and begin to overlap.

We see that U -ensembles have comparable accuracy to standard ensembles but with sig-
nificantly better calibration across all calibration metrics. In terms of ECE we gain up to
12%. We also see that U -ensembles achieve significantly higher diversity between ensemble
members by up to 0.4.

We also apply tempering (Guo et al., 2017) on Standard and U -ensembles, and see that
U -ensembles retain gains in ECE of up to 1%. We use 3 seeds for all experiments.

We also compare with Masegosa ensembles (Masegosa, 2020), Agree to Disagree ensembles
(Pagliardini et al., 2023) , Repulsive ensembles (D’Angelo and Fortuin, 2023) and Langevin
dynamics (in the Appendix). We attempted to implement DICE ensembles (Ramé and Cord,
2021) but could not replicate a version that converged consistently. We see that Masegosa
and Agree to Disagree ensembles tend to underfit the data and have worse testing accuracy
than U -ensembles. In particular, Agree to Disagree ensembles also have in general worse
calibration. Masegosa ensembles on the other hand have somewhat better calibration than
U -ensembles in most cases. While repulsive ensembles show accuracy and MI on par with
U -ensembles across different architectures, they underperform in terms of ECE. Additionally,
we conducted experiments on Langevin ensembles, with the results reported in Appendix E.

During training, our algorithm compares very favorably in terms of time and space com-
plexity with both Masegosa and Agree to Disagree ensembles. Standard and U ensembles
can have as low as constant memory cost as the ensemble size increases, if ensemble members
are trained sequentially. On the other hand, Masegosa and Agree to Disagree ensembles in
general scale like O(K) as all the ensemble members have to be trained jointly. Analyzing
the computational cost is more complicated, however in general Masegosa ensembles require
approximately ×2 the computational time of Standard ensembles. Agree to Disagree ensem-
bles scale roughly as O(K) as ensemble members have to be computed one at a time. In
the supplementary we compare the computational cost of Standard, U and Agree to Disagree
ensembles.
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Table 2: In-distribution performance on CIFAR-100 (1000 training samples, 5000 un-
labeled samples, 10 ensemble members). U -ensembles match standard ensembles in
accuracy but outperform them in all calibration metrics, consistently across archi-
tectures. Their lower mutual information (MI) indicates greater diversity. Masegosa
and Agree to Disagree often underfit, showing lower accuracy. We also assess the
performance of U -ensembles in comparison with Repulsive ensembles : U -ensembles
achieve comparable accuracy and MI but clearly outperform Repulsive ensembles in
Expected Calibration Error (ECE). Tempering refers to (Guo et al., 2017), while
U -Tempering combines this with U-ensembles.

Dataset Arch. Method Acc ↑ ECE ↓ TACE ↓ Brier Rel. ↓ NLL ↓ MI ↓

CIFAR-100 LeNet

Standard 0.149 0.300 0.007 0.212 8.817 2.276
Agree Dis. 0.113 0.229 0.007 0.156 7.568 1.628
Masegosa 0.139 0.087 0.005 0.070 4.193 2.129
Repulsive 0.149 0.256 0.007 0.173 6.094 2.432
Tempering 0.149 0.017 0.0039 0.049 3.854 2.236

U-ensembles 0.147 0.186 0.006 0.131 5.115 1.826
U-Tempering 0.147 0.008 0.0038 0.048 3.929 1.661

CIFAR-100 MLP

Standard 0.102 0.183 0.007 0.114 5.173 3.142
Agree Dis. 0.093 0.359 0.008 0.243 7.247 2.881
Masegosa 0.093 0.257 0.008 0.160 6.134 3.103
Repulsive 0.102 0.161 0.006 0.101 4.993 3.141
Tempering 0.102 0.008 0.00417 0.036 4.155 3.128

U-ensembles 0.103 0.156 0.006 0.106 4.906 3.014
U-Tempering 0.103 0.019 0.003 0.036 4.090 2.807

CIFAR-100 ResNet22

Standard 0.137 0.196 0.007 0.141 7.810 1.688
Agree Dis. 0.132 0.172 0.007 0.124 6.831 1.708
Repulsive 0.130 0.178 0.007 0.131 7.649 1.574
Tempering 0.137 0.011 0.004 0.040 3.891 1.608

U-ensembles 0.135 0.135 0.006 0.099 4.922 1.475
U-Tempering 0.135 0.018 0.003 0.036 3.930 1.432

Figure 4: CIFAR-10 robustness to common corruptions. We evaluate our models on
the CIFAR-10-C dataset (Hendrycks and Dietterich, 2018), which includes 15 cor-
ruption types at 5 intensity levels. For each level, we report the average test accu-
racy and ECE across corruptions. The U -ensemble matches the standard ensemble
in accuracy and consistently achieves better calibration across all levels.
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Table 3: Transfer Learning Setup. We explore an extremely small data regime using
transfer learning from Imagenet to CIFAR-10 and CIFAR-100. U -ensembles improve
the ECE by up to 12% over Standard ensembles.

Dataset Model Ensemble Z U Acc ↑ ECE ↓ TACE ↓ Brier ↓

CIFAR-10
ViTB16

Standard

20

- 0.629 0.101 0.057 0.516
U -ensemble 20 0.628 0.022 0.055 0.496

ViTL16
Standard - 0.613 0.132 0.07 0.518
U -ensemble 20 0.627 0.012 0.056 0.479

CIFAR-100
ViTB16

Standard

70

- 0.297 0.038 0.006 0.873
U -ensemble 20 0.297 0.022 0.006 0.867

ViTL16
Standard - 0.339 0.077 0.006 0.802
U -ensemble 20 0.345 0.026 0.006 0.785

Since the accuracy for CIFAR-100 is low with 1000 training samples, we then explore the
effect of increasing the dataset size. We plot the results of varying the training set size in
{1000, 2000, 4000, 10000, 40000} in Figure 3. We observe that U -ensembles continue achieving
the same accuracy as standard ensembles for all training set sizes. At the same time, they
retain large improvements in calibration, in terms of the ECE, for small to medium size
training sets. For larger training sets the improvements gradually decrease, as the training
and unlabeled sets start to overlap. We obtain similar results for CIFAR-10.

4.3. Out-of-distribution (OOD) generalization

We evaluated U -ensembles and standard ensembles on difficult out-of-distribution tasks for
CIFAR-10 dataset, for the case of 1000 training samples. Specifically, we followed the approach
introduced in Hendrycks and Dietterich (2018) which proposed to evaluate the robustness of
image classification algorithms to 15 common corruption types. We apply the corruption
in 5 levels of increasing severity and evaluate the average test accuracy and calibration in
terms of ECE across all corruption types. We plot the results Figure 4. We obsereve that
U -ensembles retain the same testing accuracy as standard ensembles. At the same time, they
are significantly better calibrated in terms of the Expected Calibration Error. This holds
for all tested architectures and for all corruption levels. We further assess the robustness to
Gaussian noise inputs; results are reported in Appendix G.

4.4. Transfer learning

We also explore the transfer learning setting where a classifier has been pretrained on data
from a distribution D1 and fine-tuned for the target task on data from another distribution D2.
Specifically, we use Vision Transformer (ViT) models that have been pretrained on Imagenet
(Deng et al., 2009) and we fine-tune them on CIFAR-10 and CIFAR-100. We use two ViT
architectures ViT-Base with 12 layers and ViT-Large with 24 layers, and an MLP fine-tuning
head with 100 hidden dimensions. We explore settings with extremely small training set sizes
|Z| ∈ {10, 20, 50, 70, 100} and equivalently small unlabeled set sizes |U | ∈ {10, 20, 50, 70, 100}.
We use ensembles of size 10 and perform the fine-tuning using AdamW. We compare Standard
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ensembles and U -ensembles for |Z| = 20 for CIFAR-10 and |Z| = 70 for CIFAR-100 in Table
3, and defer all other results to the supplementary.

We see that even with these extremely small training sets the fine-tuned models learn
non-trivial representations and achieve non-trivial test accuracy. U -ensembles achieve ∼ 10%
improvement in ECE on average for CIFAR-10 and ∼ 3.5% improvement for CIFAR-100.
Similarly the TACE, Brier improve consistently. Figure 3 plots the effect of varying the train-
ing and unlabeled set sizes, where ECE gains initially increase before gradually reversing. We
further investigate transfer learning using ConvNeXt (Liu et al., 2022), SwinTransformer (Liu
et al., 2021), and MaxViT (Tu et al., 2022) (all pretrained on ImageNet), where we fine-tune
them on CIFAR-10, CIFAR-100, RxRx1 (Taylor et al., 2019), and iWildCam (Beery et al.,
2020) under the same framework as ViT using ensembles of size 10 and AdamW; we defer the
results to Appendix H.

5. Role of the hyperparameter β

We saw that if either the training or the unlabeled set is too large we might lose any gains
in ECE, and other calibration metrics. In such a case standard ensembles could out-perform
U -ensembles. In the presence of a validation set the hyperparameter β plays a crucial role in
ensuring good out-of-sample performance. By including β = 0 in a hyperparameter search we
can always default to this value and therefore to Standard ensembles.

At the same time, in the small data regime, a validation set might not be available. In
Figure 3 we observe that our gains show statistical regularity across different architectures. In
the supplementary, we include additional experiments that show that our gains show statistical
regularity across different datasets as well. This indicates that we should be able to assess
whether unlabeled samples are beneficial solely through transfer learning. In particular, our
experiments indicate that for datasets similar to CIFAR-10 and CIFAR-100 we should expect
improvements from U -ensembles for |Z| ≈ 20 and |U | ≈ 20 while for other cases we should
default to Standard ensembles.

6. Conclusion

In this work, we introduced U -ensembles, a novel deep ensemble algorithm that achieves
improved calibration with minimal changes to the Standard deep ensemble pipeline, in the
presence of unlabeled data. Future work includes circumventing the use of unlabeled data, by
using augmented versions of existing datapoints, or even random Gaussian noise as inputs.
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Appendix A. Proof of Theorem 1

We start from the following Theorem by Masegosa, 2020.

Theorem 1 (Masegosa, 2020) For any distribution ρ̂ on F

E(y,x)∼D [− lnEw∼ρ̂ [p(y|x, f(x;w))]] ≤ Ew∼ρ̂

[
Lℓnll(y,x)∼D(f(x;w))

]
−V(ρ̂) (6)

where V(ρ̂) is a variance term defined as

V(ρ̂) = E(y,x)∼D

[
1

2maxw p(y|x;w)
Ew∼ρ̂

[
(p(y|x,w)−Ew∼ρ̂ (p(y|x,w)))2

]]
. (7)

We need to bound V(ρ̂) and Ew∼ρ̂

[
Lℓnll(y,x)∼D(f(x;w))

]
using their empirical versions.

We will use a labeled training set Z to bound the term Ew∼ρ̂

[
Lℓnll(y,x)∼D(f(x;w))

]
and an

unlabeled set U to bound V(ρ̂). To bound the terms we will use existing PAC-Bayes bounds.
The variance term has to be rewritten in the form Ew∼ρ̂E(y,x)∼D [L(y,x,w)] in which PAC-
Bayes bounds are directly applicable.

Let us assume as in Masegosa (2020) that the model likelihood is bounded:

Assumption 2 (Masegosa, 2020) There exists a constant C < ∞ such that ∀x ∈ X ,
maxy,w p(y|x;w) ≤ C.

Note that this assumption holds for the classification setting with C = 1. Then the variance
can be written as

V(ρ̂) =
1

2
E(y,x)∼D

[
Ew∼ρ̂

[
(p(y|x,w)−Ew∼ρ̂ (p(y|x,w)))2

]]
=

1

2
E(y,x)∼DEw∼ρ̂

[
p(y|x,w)2

]
− 1

2
E(y,x)∼D [Ew∼ρ̂p(y|x,w)]2

=
1

2
E(y,x)∼DEw∼ρ̂

[
p(y|x,w)2

]
− 1

2
E(y,x)∼D

[
Ew∼ρ̂p(y|x,w)Ew′∼ρ̂p(y|x,w′)

]
=

1

2
E(y,x)∼DEρ̂(w,w′)

[
p(y|x,w)2 − p(y|x,w)p(y|x,w′)

]
=

1

2
E(y,x)∼DEρ̂(w,w′)

[
L(y,x,w,w′)

]
(8)

where L(y,x,w,w′) = p(y|x,w)2 − p(y|x,w)p(y|x,w′) and ρ̂(w,w′) = ρ̂(w)ρ̂(w′).

We can then use the following PAC-Bayes theorem to lower bound V(ρ̂) through it’s
empirical estimate, noting that L(y,x,w,w′) ≤ 1 which is a requirement for this bound.
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Theorem 3 (PAC-Bayes-λ, Thiemann et al., 2017) For any probability distribution π
on F that is independent of U and any δ1 ∈ (0, 1), with probability at least 1 − δ1 over a
random draw of a sample U , for all distributions ρ̂ on F and all γ ∈ (0, 2) simultaneously and
a bounded loss L ≤ 1

Ew∼ρ̂E(y,x)∼D [L(y,x,w)] ≥
(
1− γ

2

)
Ew∼ρ̂

1

m

∑
(y,x)∈U

[L(y,x,w)]− KL(ρ̂||π) + ln(2
√
m/δ)

γm

(9)

We then turn to the term Ew∼ρ̂

[
Lℓnll(y,x)∼D(f(x;w))

]
where L is unbounded due to the

NLL loss. We will use the following bound:

Theorem 4 (Alquier et al., 2016) For any probability distribution π on F that is inde-
pendent of Z and any δ2 ∈ (0, 1), with probability at least 1 − δ2 over a random draw of a
sample Z, for all distributions ρ̂ on F and γ > 0

Ew∼ρ̂

[
Lℓnll(y,x)∼D(f(x;w))

]
≤ Ew∼ρ̂

[
L̂ℓnllZ (f(x;w))

]
+

KL(ρ̂||π) + ln(1δ ) + ψπ,D(γ, n)

γn
(10)

where

ψπ,D(γ, n) = lnEπED

[
e
γn

(
Lℓnll
(y,x)∼D(f(x;w))−L̂ℓnll

Z (f(x;w))
)]
. (11)

By setting γ1 = γ2 = γ/2 and taking a union bound we then get:

Theorem 5 For any probability distribution π on F that is independent of U and Z and any
δ ∈ (0, 1), with probability at least 1 − δ over a random draw of a sample U and Z, for all
distributions ρ̂ on F and all γ ∈ (0, 2) simultaneously

E(y,x)∼D [− lnEw∼ρ̂ [p(y|x, f(x;w))]] ≤

Ew∼ρ̂

[
L̂ℓnllZ (f(x;w))

]
+

KL(ρ̂||π) + ln(1/δ) + ψπ,D(γ, n)

γn

−
(
1− γ

2

)
V̂(ρ̂) +

KL(ρ̂||π) + ln(2
√
m/δ)

γm
.

(12)

What remains is to define the prior π and posterior ρ̂ distributions appropriately. We first
set ρ̂(w) = 1

K

∑
i δ(w = ŵi) which denotes an ensemble. We then follow Masegosa (2020) in

properly defining the KL between ρ̂(w) and a given prior. Specifically, we restrict ourselves
to a new family of priors, denoted πF (w). For any prior πF (w) within this family, its support
is contained in wF , which denotes the space of real number vectors of dimension M that can
be represented under a finite-precision scheme using F bits to encode each element of the
vector. So we have supp(πF ) ⊆ wF ⊆ RM . This prior distribution πF can be expressed
as, πF (w) =

∑
w′∈wF

ww′δ(w = w′) where ww′ are positive scalar values parametrizing this
prior distribution. They satisfy ww′ ≥ 0 and

∑
ww′ = 1. In this way, we can define a

finite-precision counterpart to the Gaussian distribution where ww′ = 1
Ae

−||w′||22 and A is an
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appropriate normalization constant. Puting everything back in (12) we get

E(y,x)∼D

[
− ln

1

K

∑
i

[p(y|x, f(x; ŵi))]

]

≤ 1

K

∑
i

[
L̂ℓnllZ (f(x; ŵi))

]
−
(
1− γ

2

)
V̂(ρ̂) +

1

K

∑
i

hδ
(
∥ŵi∥22

)
, (13)

where the increasing function δ is defined by

hδ
(
∥ŵi∥22

)
=
∥ŵi∥22 + lnA+K ln(1/δ) +Kψπ,D(γ, n)

γn
+
∥ŵi∥22 + lnA+K ln(2

√
m/δ)

γm
, (14)

which holds for any δ ∈ (0, 1), with probability at least 1− δ over a random draw of a sample
U and Z.

Given Inequality (13), we can take the expectation over an algorithm, ρ̂ ∼ A which
perfectly fits both real labels on the training set and random labels on the unlabeled set, to
obtain

Eρ̂∼AE(y,x)∼D

[
− ln

1

K

∑
i

[p(y|x, f(x; ŵi))]

]

≤ Eρ̂∼A

[
1

K

∑
i

[
L̂ℓnllZ (f(x; ŵi))

]]
−Eρ̂∼A

[(
1− γ

2

)
V̂(ρ̂)

]
+Eρ̂∼A

[
1

K

∑
i

hδ
(
∥ŵi∥22

)]
,

(15)

which holds for any δ ∈ (0, 1), with probability at least 1− δ over a random draw of a sample
U and Z. We get Theorem 3.1 by noting that since A perfectly fits the training set then the
first term on the RHS of (15) becomes zero.

Some further technical points need to be discussed at this point. Formally, Theorem 4
holds for a single value of γ. In order to combine both PAC-Bayes bounds we would need to
form a grid over γ in the range (0, 2) and do a union bound over this grid. The combined
bound would then hold only for values on this grid. This results analysis only results in
a negligible loosening of the bound (Dziugaite and Roy, 2017) and as such we neglect this
discussion.

Since we have defined our bound in the discrete setting we cannot technically take deriva-
tives of the resulting objective. However, as discussed in Masegosa (2020) during optimization
we simply use the continuous version of all functions, knowing that we will arrive at a solution
of finite precision.

Appendix B. Proof of Proposition 2

We break this proof into two parts, sampling with replacement and sampling without replace-
ment. We first note that the variance term has the following empirical form

V̂(ρ̂) =
1

2m

∑
(x,y)∈U

 1

K

∑
j

(p(y|x,wj)−
1

K

∑
i

(p(y|x,wi))

)2
 (16)

we then explore this term in the two settings.
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B.1. Sampling without replacement

Proposition 6 Assume an unlabeled set U ∈ Dm, c number of classes, and a labeling dis-
tribution R which for each sample (x, ·) ∈ U selects K ≤ c labels from (1 : c) randomly
without replacement such that yr ∈ (1 : c)K . Let A be an algorithm that takes yr as input
and generates an ensemble ρ̂(w) = 1

K

∑
i δ(w = ŵi) such that ∀i, f(x, ŵi) perfectly fits yr[i]

Eρ̂∼A

[
V̂(ρ̂)

]
=
K − 1

2cK
(17)

where the randomness is over yr and we suppress the index for the different unlabeled points.

Proof We first discuss some preliminaries. We assume that each ensemble member fits
the label assigned to it perfectly. Given a sample (x, y) and K randomly sampled labels
yr ∈ (1 : c)K , without replacement, where only the ath label is the true label y, we have
p(y|x,wa) = 1 and p(y|x,wi) = 0, ∀i ̸= a.

The expectation of the variance term can now be simply obtained by separating the cases
when y is in the random labels yr ∈ (1 : c)K and the cases when it is not. We get

Eρ̂∼A

[
V̂(ρ̂)

]
= Eρ̂∼A

 1

2m

∑
(x,y)∈U

 1

K

∑
j

(p(y|x,wj)−
1

K

∑
i

(p(y|x,wi))

)2


=
1

2m

∑
U

 1

K

∑
j

(p(y|x,wj)−
1

K

∑
i

(p(y|x,wi))

)2
 · ∫ I{y in randomized labels}dr

+
1

K

∑
j

(p(y|x,wj)−
1

K

∑
i

(p(y|x,wi))

)2
 · ∫ I{y not in randomized labels}dr


=

1

2m

∑
U

[
K − 1

K2
·
∫

I{y in randomized labels}dr + 0 ·
∫

I{y not in randomized labels}dr
]

=
1

2m

∑
U

K − 1

K2
· K
c

=
K − 1

2cK
.

(18)

In line 4 we used the fact that the probability of sampling label y in K trials without
replacement from a pool of c labels is K

c .

In line 3 we used the fact that the term 1
K

∑
j

[(
p(y|x,wj)− 1

K

∑
i (p(y|x,wi))

)2]
only

has two possible values.

20



U-ensembles

Let the true label y be in the K sampled labels, specifically let us assume that it is the
ath sampled label. We can write

1

K

∑
j

(p(y|x,wj)−
1

K

∑
i

(p(y|x,wi))

)2


=
1

K

∑
j

p(y|x,wj)−
1

K

p(y|x,wa) +
∑
i ̸=a

p(y|x,wi)

2
=

1

K

∑
j

[(
p(y|x,wj)−

1

K
(1 + 0)

)2
]

=
1

K

[(p(y|x,wa)−
1

K

)2
]
+
∑
j ̸=a

[(
p(y|x,wj)−

1

K

)2
]

=
1

K

([(
1− 1

K

)2
]
+ (K − 1) ·

[(
0− 1

K

)2
])

=
K − 1

K2
.

(19)

Now let the true label y not be in the K sampled labels. We get

1

K

∑
j

(p(y|x,wj)−
1

K

∑
i

(p(y|x,wi))

)2


=
1

K

∑
j

[(
p(y|x,wj)−

1

K
· 0
)2
]

=
1

K

∑
j

[
(0− 0)2

]
= 0,

(20)

where we use the fact that p(y|x,wi) = 0, ∀i if ensemble member i does not fit the true label
y but another random label.

B.2. Sampling with replacement

Here we analyze the more complicated case of sampling with replacement. The crucial point
is taking into account that the value of the variance term can be cast as the expectation of a
function determined only by the number of times we draw the correct class y. We then use
the fact that being successful r times in K independent trials with a probability p = 1

c of
success corresponds to a Binomial distribution with parameters K and p = 1

c .
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Proposition 7 Assume an unlabeled set U ∈ Dm, c number of classes, and a labeling dis-
tribution R which for each sample (x, ·) ∈ U selects K ≤ c labels from (1 : c) randomly
with replacement such that yr ∈ (1 : c)K . Let A be an algorithm that takes yr as input and
generates an ensemble ρ̂(w) = 1

K

∑
i δ(w = ŵi) such that ∀i, f(x, ŵi) perfectly fits yr[i]

Eρ̂∼A

[
V̂(ρ̂)

]
=

1

2

[∑
r

g(r)

(
K

r

)(
1

c

)r (
1− 1

c

)K−r
]

(21)

where g(r) = 1
K

[
r ·
(
1− r

K

)2
+ (K − r) ·

(
r
K

)2]
, the randomness is over yr and we suppress

the index for the different unlabeled points.

Proof To analyze this case we need to first assume that given a datasample (x, y) the

value of 1
K

∑
j

[(
p(y|x,wj)− 1

K

∑
i (p(y|x,wi))

)2]
only depends on r the number of times we

sample the true label y in K trials with replacement from a pool of c possible labels. Let’s
then assume that the values are given from a function g(r), it is obvious that what we are
evaluating is the expectation of the function g(r) under the Binomial distribution. We get

Eρ̂∼A

[
V̂(ρ̂)

]
= Eρ̂∼A

 1

2m

∑
U

 1

K

∑
j

(p(y|x,wj)−
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∑
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)2


=
1

2m

∑
U

[∑
r

g(r)

(
K

r

)(
1

c

)r (
1− 1

c

)K−r
]

=
1

2

[∑
r

g(r)

(
K

r

)(
1

c

)r (
1− 1

c

)K−r
]

(22)

where in line 3 we used the fact that the internal expectation is the same for all values in U .

To derive the form of g(r) we first assume that given a sample (x, y) only r out of K trials
with replacement sample the true label y. Denote the set of r ensemble members that fit the
true label y as S. We then get
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1
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(23)

Appendix C. Additional conditions for a high-probability bound

Theorem 3.1 holds only in expectation. We give here some additional steps that are needed to
obtain a high probability bound. Given inequality (13), we can take the expectation over an
algorithm, ρ̂ ∼ A which perfectly fits both real labels on the training set and random labels
on the unlabeled set, to obtain

Eρ̂∼AE(y,x)∼D

[
− ln

1

K

∑
i

[p(y|x, f(x; ŵi))]

]

≤ Eρ̂∼A

[
1

K

∑
i

[
L̂ℓnllZ (f(x; ŵi))

]]
−Eρ̂∼A

[(
1− γ

2

)
V̂(ρ̂)

]
+Eρ̂∼A

[
1

K

∑
i

hδ
(
∥ŵi∥22

)]
,

(24)

which holds for any δ ∈ (0, 1), with probability at least 1− δ over a random draw of a sample
U and Z. We get Theorem 3.1 by noting that since A perfectly fits the training set then the
first term on the RHS of (24) becomes zero.

First consider sampling without replacement such that we have

Eρ̂∼A

[(
1− γ

2

)
V̂(ρ̂)

]
=
(
1− γ

2

) K − 1

2cK
.
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Then, setting L1(ρ̂) = 1
K

∑
i

[
L̂ℓnllZ (f(x; ŵi))

]
and L2(ρ̂) = 1

K

∑
i hδ

(
∥ŵi∥22

)
we note that

both L1 and L2 are in general unbounded. To obtain a high-probability bound on

Eρ̂∼AE(y,x)∼D

[
− ln

1

K

∑
i

[p(y|x, f(x; ŵi))]

]
,

we need additional conditions on A namely that it outputs ρ̂ such that L1(ρ̂) ≤ B and
L2(ρ̂) ≤ C where B,C are positive constants.

Then, for a finite sample R ∈ Ar and using Hoeffding’s inequality and applying a union
bound we can write

Eρ̂∼AE(y,x)∼D

− ln
1

K

∑
i∈ρ̂

[p(y|x, f(x; ŵi))]


≤ 1

r

∑
ρ̂∈R

 1

K

∑
i∈ρ̂

[
L̂ℓnllZ (f(x; ŵi))

]+

√
B2 ln 1/b

2r

−
(
1− γ

2

) K − 1

2cK
+

1

r

∑
ρ̂∈R

 1

K

∑
i∈ρ̂

hδ
(
∥ŵi∥22

)+

√
C2 ln 1/c

2r
,

which holds with probability 1− (δ + b+ c) over the random draws of U ∈ Dm, Z ∈ Dn and
R ∈ Ar for b, c ∈ (0, 1). The bound still holds for the expectation over ρ̂ ∼ A and not with
high probability for a single draw from A. It guarantees that on average, ensembles that fit the
training data and the randomly labeled data well, while having low complexity will generalize
well to unseen data. In our experimental section, however, we have found that optimizing a
single ensemble using our U -ensemble objective achieves all the desirable properties.

Appendix D. Sampling with versus without replacement

We first plot the theoretical variance when sampling with replacement compared to when sam-
pling without replacement. We see that sampling with replacement results in higher variance
for the same number of ensemble members and thus higher diversity for the corresponding
ensemble.

We perform the CIFAR-10 and CIFAR-100 experiments with an ensemble size of 10, using
sampling with and without replacement and compare the results in Table 4. In the last row we
compute the average difference between the metrics when sampling without replacement com-
pared to sampling with replacement. We see that on average sampling without replacement
results in improvements across different calibration metrics such as the ECE, Brier Reliability
and Negative Log-Likelihood. The accuracy and the TACE remain relatively unchanged. At
the same time the diversity of the ensemble also improves. These results validate our theo-
retical analysis, and further motivate improving the ensemble diversity using labels sampled
without replacement.
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Figure 5: We consider c = 10 and K ∈ 1 : 10 and plot the variance term Eρ̂∼A[V̂(ρ̂)] with
and without replacement. We see that sampling with replacement results in higher
variance for the same number of ensemble members and thus higher diversity for
the corresponding ensemble.

Table 4: With replacement vs without replacement. We analyze the case of ID perfor-
mance, 1000 training samples, 10 ensemble members. Sampling the random labels in
U -ensembles without replacement, on average results in improvements in calibration
metrics such the ECE, the Brier Reliability and the Negative Log-Likelihood. The
accuracy and the TACE remain relatively unchanged.

Dataset / Arch. Method Acc ↑ ECE ↓ TACE ↓ Brier Rel. ↓ NLL ↓ MI ↓

CIFAR-10 w/ replacement 0.510 0.137 0.030 0.120 1.680 1.236
/ LeNet w/o replacement 0.514 0.131 0.028 0.117 1.650 1.245

CIFAR-10 w/ replacement 0.401 0.083 0.022 0.087 1.753 1.650
/ MLP w/o replacement 0.401 0.098 0.023 0.092 1.767 1.559

CIFAR-10 w/ replacement 0.520 0.016 0.020 0.090 1.471 0.699
/ ResNet22 w/o replacement 0.525 0.013 0.018 0.087 1.460 0.691

CIFAR-100 w/ replacement 0.145 0.220 0.006 0.151 5.343 1.988
/ LeNet w/o replacement 0.147 0.155 0.006 0.113 4.846 1.654

CIFAR-100 w/ replacement 0.103 0.116 0.005 0.078 4.447 3.047
/ MLP w/o replacement 0.103 0.040 0.004 0.049 4.171 2.807

CIFAR-100 w/ replacement 0.134 0.093 0.006 0.074 4.266 1.086
/ ResNet22 w/o replacement 0.134 0.135 0.006 0.099 4.892 1.476

mean diff. w/o - w/ -0.001 -0.015 -0.0006 -0.010 -0.033 -0.031
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Figure 6: CIFAR-10 robustness to Gaussian noise. We evaluate our models on noisy
CIFAR-10 images with different variance values. For each level, we report the
average test accuracy and ECE across corruptions. We see that the U -ensembles
have similar accuracy and yield better calibration in different settings.

Appendix E. In-distribution performance

Table 5 shows the CIFAR-10 in-distribution performance for 1000 training samples, 5000
unlabeled samples and 10 ensemble members. U -ensembles yield similar accuracy to standard
ensembles while reducing ECE by up to 11.9% and MI by up to 0.264. These improvements
hold across all architectures. We also observe that the testing accuracy is low, however, this
is to be expected due to the small size of the training dataset Ztrain. We also apply tempering
(Guo et al., 2017) on Standard and U -ensembles, and see that U -ensembles retain gains in
ECE of up to 1%. We use 3 seeds for all experiments.

Appendix F. Langevin dynamics experiments

We also compare against ensembles generated using Langevin dynamics. These are a popular
and efficient method for obtaining diverse ensembles (Izmailov et al., 2021, Zhang et al., 2022,
Garriga-Alonso and Fortuin, 2021), and are motivated as approximately sampling from the
true Bayesian posterior.

For Langevin ensembles, we aim to minimize L̂ℓnllZ (f(·; ŵi)) + γ∥ŵi∥22, with the following

update rule wt+1 = wt−α∇wL̂ℓnllZ (f(·;wt))+
√
2α ϵ where ϵ ∼ N (0, β) and α represents the

learning rate (Zhang et al., 2022, Garriga-Alonso and Fortuin, 2021). We ran the experiments
on the LeNet and MLP architectures for both CIFAR-10 and CIFAR-100. We set β = 1 for
the MLP and LeNet networks and β = 0.001 for the ResNet22 network. We used α = 0.001
for all networks and trained for 300 epochs with a batch size of 32. The results are reported
in Table 6.

Appendix G. Robustness to random noise

We evaluated U -ensembles and standard ensembles on challenging out-of-distribution CIFAR-10
tasks using only 1,000 training samples, testing robustness to Gaussian noise with variances
{0.001, 0.01, 0.1, 1} and reporting average test accuracy and ECE across corruptions in Fig-
ure 6, where U -ensembles match standard ensembles in accuracy while reducing ECE by 2%
on LeNet and ResNet22 and 12% on MLP.
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Table 5: In-distribution performance on CIFAR-10 (1000 training samples, 5000 vali-
dation samples, 10 ensemble members). U -ensembles retain approximately the same
accuracy as standard ensembles. At the same time, they achieve significantly bet-
ter calibration in all calibration metrics. The improvements are consistent across
all tested architectures and both datasets. We also observe that the Mutual Infor-
mation (MI) of U-ensembles is significantly lower than standard ensembles. Thus,
U -ensembles are more diverse than standard ensembles, which explains their im-
proved calibration. Masegosa, Agree to Disagree, and Langevin ensembles often
underfit, resulting in lower accuracy. Repulsive ensembles achieve strong accuracy
and MI due to enforced diversity but have higher ECE than U -ensembles. Tem-
pering follows Guo et al. (2017), while U -Tempering combines this approach with
U -ensembles.

Dataset Arch. Method Acc ↑ ECE ↓ TACE ↓ Brier Rel. ↓ NLL ↓ MI ↓

CIFAR-10 LeNet

Standard 0.516 0.176 0.034 0.133 2.043 1.320
Agree Dis. 0.432 0.251 0.050 0.168 2.250 1.552
Masegosa 0.492 0.103 0.024 0.073 1.454 1.179
Repulsive 0.509 0.184 0.035 0.137 2.067 1.289
Tempering 0.516 0.024 0.0158 0.080 1.419 1.329

U-ensembles 0.511 0.133 0.028 0.118 1.664 1.201
U-Tempering 0.511 0.014 0.0145 0.080 1.437 1.215

CIFAR-10 MLP

Standard 0.402 0.205 0.043 0.144 2.078 1.622
Agree Dis. 0.354 0.358 0.066 0.239 3.201 1.547
Masegosa 0.383 0.024 0.024 0.068 1.768 1.711
Repulsive 0.403 0.142 0.032 0.110 1.849 1.624
Tempering 0.402 0.020 0.0134 0.060 1.710 1.625

U-ensembles 0.401 0.086 0.023 0.087 1.782 1.525
U-Tempering 0.401 0.019 0.0133 0.060 1.690 1.554

CIFAR-10 ResNet22

Standard 0.527 0.087 0.024 0.106 1.690 0.939
Agree Dis. 0.478 0.051 0.020 0.087 1.633 0.706
Repulsive 0.509 0.092 0.025 0.107 1.704 0.905
Tempering 0.527 0.016 0.017 0.086 1.354 0.976

U-ensembles 0.527 0.014 0.017 0.082 1.436 0.675
U-Tempering 0.527 0.010 0.017 0.086 1.449 0.691
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Table 6: In-distribution performance on CIFAR-10 and CIFAR-100 for Langevin
ensembles. (1000 training samples, 5000 unlabeled samples, 10 ensemble mem-
bers). U -Tempering combines tempering (Guo et al., 2017) with U -ensembles. We
observe that Langevin ensembles underfit, resulting in lower accuracy compared to
U -ensembles. Furthermore, we observe that the Mutual Information (MI) of U-
ensembles is significantly lower than Langevin ensembles. Thus, U -ensembles are
more diverse than Langevin ensembles. The severe underfitting of Langevin dy-
namics make comparison with U-ensembles difficult due to the known tradeoff be-
tween accuracy and calibratrion. In general U-ensembles with tempering outperform
Langevin dynamics while also having higher accuracy.

Dataset Arch. Method Acc ↑ ECE ↓ TACE ↓ Brier Rel. ↓ NLL ↓ MI ↓

CIFAR-10

LeNet
Langevin 0.424 0.047 0.016 0.073 1.625 1.824

U -ensembles 0.511 0.133 0.028 0.118 1.664 1.201
U -Tempering 0.511 0.014 0.0145 0.080 1.437 1.215

MLP
Langevin 0.381 0.024 0.015 0.058 1.733 2.064

U -ensembles 0.401 0.086 0.023 0.087 1.782 1.525
U -Tempering 0.401 0.019 0.0133 0.060 1.690 1.554

ResNet22
Langevin 0.215 0.025 0.022 0.0 2.074 0.752

U -ensembles 0.527 0.014 0.017 0.082 1.436 0.675
U -Tempering 0.527 0.010 0.017 0.086 1.449 0.691

CIFAR-100

LeNet
Langevin 0.114 0.146 0.006 0.094 4.595 2.972

U -ensembles 0.147 0.186 0.006 0.131 5.115 1.826
U -Tempering 0.147 0.008 0.0038 0.048 3.929 1.661

MLP
Langevin 0.092 0.006 0.005 0.00 4.247 3.480

U -ensembles 0.103 0.156 0.006 0.106 4.906 3.014
U -Tempering 0.103 0.019 0.003 0.036 4.090 2.807

ResNet22
Langevin 0.033 0.010 0.004 0.00 4.408 0.859

U -ensembles 0.135 0.135 0.006 0.099 4.922 1.475
U -Tempering 0.135 0.018 0.003 0.036 3.930 1.432

Appendix H. Transfer Learning

We evaluate our models in the transfer learning task by fine-tuning different classifiers on
four datasets: CIFAR-10, CIFAR-100, RxRx1, and iWildCam. The last two datasets are part
of the WILDS set of datasets (Koh et al., 2021) aimed at benchmarking out-of-distribution
generalization. iWildCam contains images of animals, captured with camera traps as part
of a wildlife biodiversity program. RxRx1 contains 3-channel images of cells obtained by
fluorescent microscopy, and the label indicates which of 1,139 genetic treatments (including
no treatment) the cells received.

Our experiments are conducted under an extremely low-data regime, using training sizes
of |Z| = 20 for CIFAR-10 and |Z| = 70 for CIFAR-100, iWildCam. For all datasets, we include
|U | = 20 unlabeled examples. In the case of RxRx1, due to its large number of classes, we
set |Z| = 500 and |U | = 100, as smaller labeled sets lead to significantly low accuracy since
RxRx1 has 1139 classes. All models are fine-tuned using AdamW, and we report results for
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Table 7: Transfer Learning Across Different Architectures and Datasets. We con-
duct experiments to evaluate transfer learning from ImageNet to different datasets
in the small-data regime. U -ensembles often show modest improvements in ECE
across different architectures. .

Dataset Z U Model Std-Acc ↑ U -Acc ↑ Std-ECE ↓ U -ECE ↓

CIFAR-10 20 20
ConvNeXt 0.4655 0.4471 0.079 0.058

SwinTransformer 0.4217 0.4351 0.217 0.206
MaxViT 0.4294 0.3479 0.123 0.033

CIFAR-100 70 20
ConvNeXt 0.1688 0.1693 0.009 0.009

SwinTransformer 0.1783 0.1820 0.115 0.121
MaxViT 0.1167 0.1253 0.053 0.045

RxRx1 500 100
ConvNeXt 0.0061 0.0064 0.0121 0.0123

SwinTransformer 0.0042 0.0048 0.008 0.0065
MaxViT 0.0077 0.0080 0.0022 0.0025

iWildCam 70 20
ConvNeXt 0.3399 0.3384 0.108 0.094

SwinTransformer 0.3800 0.3090 0.078 0.085
MaxViT 0.3307 0.3300 0.313 0.298

ensembles of size 10. A comparison between standard ensembles and U -ensembles is given in
Table 7.

Even with extremely small training sets, the fine-tuned models learn non-trivial repre-
sentations and achieve meaningful test accuracy. U -ensembles often outperform standard
ensembles in terms of ECE for various architectures, while retaining the standard ensemble
accuracy.

Appendix I. Additional datasets

Here we explore additional datasets, the SVHN dataset (Buitinck et al., 2013) and the STL10
dataset (Coates et al., 2011). We use 1000 training samples, 3000 validation samples, 1000
unlabeled samples and the original test sets for both datasets. We plot the results in Table 8.
We see that on average the results much those for the CIFAR-10 and CIFAR-100 cases.
U -ensembles achieve improvements in calibration while typically not hurting accuracy.

Appendix J. Experimental setup

We ran all experiments using A100, and V100 NVIDIA GPUs on our cluster. In total, the
experiments consumed approximately 10000 hours of GPU time. The implementations were
done in JAX (Bradbury et al., 2018). While data loading was done in Tensorflow (Abadi
et al., 2015). For U -ensembles, for the LeNet architecture we investigated epochs in the
range [100, 120, 140, 160, 180, 200, 220, 240, 260], for the MLP [100, 120, 140, 160, 180, 200, 220
, 240, 260], for the ResNet [200, 220, 250, 270, 300, 320, 350, 370, 400]. For the regularization
strength, we searched in the range [1, 0.1, 0.05, 0.01, 0] and for the optimizer learning rate
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Table 8: ID performance, 1000 training samples, 5000 unlabeled samples, 10 en-
semble members. U -ensembles retain approximately the same accuracy as stan-
dard ensembles. At the same time, they achieve significantly better calibration in
all calibration metrics. These results are consistent with the experiments for the
CIFAR-10 and the CIFAR-100. The only outlier is the ResNet22 architecture for
the STL10 dataset, where U -ensembles underfit the data.

Dataset / Aug Method Acc ↑ ECE ↓ TACE ↓ Brier Rel. ↓ NLL ↓ MI ↓

SVHN Standard 0.618 0.138 0.028 0.114 1.679 1.561
/ LeNet ν-ensembles 0.605 0.083 0.023 0.102 1.371 1.792

SVHN Standard 0.474 0.252 0.047 0.170 2.748 1.733
/ MLP ν-ensembles 0.471 0.157 0.037 0.128 2.008 1.653

SVHN Standard 0.707 0.070 0.019 0.098 1.012 0.921
/ ResNet22 ν-ensembles 0.700 0.070 0.019 0.096 0.988 0.906

STL10 Standard 0.309 0.045 0.018 0.051 1.91 1.821
/ LeNet ν-ensembles 0.310 0.020 0.017 0.043 1.896 1.854

STL10 Standard 0.302 0.021 0.016 0.037 1.905 1.714
/ MLP ν-ensembles 0.302 0.013 0.015 0.033 1.897 1.660

STL10 Standard 0.302 0.037 0.018 0.045 1.898 0.865
/ ResNet22 ν-ensembles 0.278 0.217 0.050 0.134 2.423 0.642
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Table 9: Full results for CIFAR-10 ViTB16 fine-tuning experiments.

Model Ensemble Z Size U Size Acc ↑ ECE ↓ TACE ↓ Brier ↓ AUROC ↑

ViTB16 standard 10 10 0.39 0.093 0.094 0.766 0.802
ViTB16 standard 20 10 0.629 0.101 0.057 0.516 0.856
ViTB16 standard 50 10 0.873 0.025 0.019 0.188 0.877
ViTB16 standard 70 10 0.888 0.01 0.013 0.162 0.902

ViTB16 U -ensembles 10 10 0.472 0.036 0.069 0.677 0.791
ViTB16 U -ensembles 10 50 0.452 0.03 0.048 0.659 0.839
ViTB16 U -ensembles 10 100 0.458 0.052 0.069 0.681 0.826

ViTB16 U -ensembles 20 10 0.655 0.042 0.059 0.495 0.823
ViTB16 U -ensembles 20 20 0.628 0.022 0.055 0.496 0.856
ViTB16 U -ensembles 20 50 0.646 0.032 0.053 0.483 0.861
ViTB16 U -ensembles 20 70 0.637 0.044 0.052 0.479 0.872
ViTB16 U -ensembles 20 100 0.625 0.075 0.064 0.506 0.86

ViTB16 U -ensembles 50 10 0.867 0.063 0.022 0.208 0.864
ViTB16 U -ensembles 50 20 0.879 0.095 0.025 0.199 0.866
ViTB16 U -ensembles 50 50 0.877 0.089 0.025 0.197 0.872
ViTB16 U -ensembles 50 70 0.871 0.087 0.026 0.204 0.87
ViTB16 U -ensembles 50 100 0.862 0.104 0.028 0.222 0.867

ViTB16 U -ensembles 70 10 0.878 0.038 0.017 0.183 0.895
ViTB16 U -ensembles 70 20 0.864 0.053 0.021 0.205 0.882
ViTB16 U -ensembles 70 50 0.885 0.075 0.024 0.18 0.896
ViTB16 U -ensembles 70 70 0.886 0.075 0.023 0.178 0.897
ViTB16 U -ensembles 70 100 0.852 0.106 0.03 0.232 0.882

in [0.0001, 0.001]. We investigated the same epoch and learning rate ranges for Standard
ensembles. Agree to Disagree ensembles contain a single hyperparameter α. We tested values
in the range [1, 0.1, 0.01, 0.001, 0.0001].

For the transfer learning experiments, we used the ViT implementations available in
Torchvision (Marcel and Rodriguez, 2010). These were pre-trained on Imagenet.

Appendix K. Additional figures

In Figure 7 we plot the effect of varying the training set and the unlabeled set. In Figure 8 we
make some comparisons between the computational time for U -ensembles vs other methods.
In Tables 9, 10, 11, 12 we plot the full results on the fine-tuning experiments for CIFAR-10
and CIFAR-100.
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Table 10: Full results for CIFAR-10 ViTL16 fine-tuning experiments.

Model Ensemble Z Size U Size Acc ↑ ECE ↓ TACE ↓ Brier ↓ AUROC ↑

ViTL16 standard 10 10 0.44 0.095 0.091 0.697 0.839
ViTL16 standard 20 10 0.613 0.132 0.07 0.518 0.931
ViTL16 standard 50 10 0.936 0.025 0.009 0.098 0.928
ViTL16 standard 70 10 0.931 0.01 0.01 0.103 0.926

ViTL16 U -ensembles 10 10 0.497 0.027 0.073 0.631 0.848
ViTL16 U -ensembles 10 50 0.497 0.09 0.064 0.61 0.913
ViTL16 U -ensembles 10 100 0.482 0.069 0.075 0.641 0.874

ViTL16 U -ensembles 20 10 0.618 0.028 0.067 0.504 0.882
ViTL16 U -ensembles 20 20 0.627 0.012 0.056 0.479 0.894
ViTL16 U -ensembles 20 50 0.631 0.041 0.053 0.46 0.907
ViTL16 U -ensembles 20 70 0.644 0.048 0.052 0.446 0.913
ViTL16 U -ensembles 20 100 0.648 0.073 0.048 0.439 0.915

ViTL16 U -ensembles 50 10 0.924 0.062 0.015 0.133 0.895
ViTL16 U -ensembles 50 20 0.929 0.064 0.016 0.117 0.918
ViTL16 U -ensembles 50 50 0.933 0.066 0.015 0.112 0.92
ViTL16 U -ensembles 50 70 0.93 0.079 0.018 0.121 0.918
ViTL16 U -ensembles 50 100 0.918 0.102 0.024 0.148 0.903

ViTL16 U -ensembles 70 10 0.929 0.038 0.012 0.118 0.907
ViTL16 U -ensembles 70 20 0.93 0.063 0.017 0.117 0.91
ViTL16 U -ensembles 70 50 0.922 0.051 0.017 0.123 0.912
ViTL16 U -ensembles 70 70 0.927 0.058 0.016 0.12 0.913
ViTL16 U -ensembles 70 100 0.923 0.078 0.02 0.133 0.905
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Table 11: Full results for CIFAR-100 ViTB16 fine-tuning experiments.

Model Ensemble Z Size U Size Acc ↑ ECE ↓ TACE ↓ Brier ↓ AUROC ↑

ViTB16 standard 10 10 0.076 0.037 0.007 0.984 0.907
ViTB16 standard 20 10 0.131 0.065 0.009 0.97 0.829
ViTB16 standard 50 10 0.231 0.079 0.007 0.926 0.78
ViTB16 standard 70 10 0.297 0.038 nan 0.873 0.766

ViTB16 U -ensembles 10 10 0.077 0.037 0.007 0.984 0.893
ViTB16 U -ensembles 10 50 0.076 0.038 0.007 0.984 0.914
ViTB16 U -ensembles 10 100 0.076 0.065 0.008 0.976 0.911

ViTB16 U -ensembles 20 10 0.129 0.065 0.009 0.971 0.829
ViTB16 U -ensembles 20 20 0.126 0.053 0.009 0.97 0.819
ViTB16 U -ensembles 20 50 0.132 0.053 0.011 0.962 0.844
ViTB16 U -ensembles 20 70 0.135 0.056 0.01 0.96 0.848
ViTB16 U -ensembles 20 100 0.134 0.067 0.011 0.96 0.853

ViTB16 U -ensembles 50 10 0.235 0.028 nan 0.913 0.787
ViTB16 U -ensembles 50 20 0.215 0.039 nan 0.92 0.82
ViTB16 U -ensembles 50 50 0.234 0.061 0.007 0.922 0.773
ViTB16 U -ensembles 50 70 0.238 0.037 nan 0.91 0.788
ViTB16 U -ensembles 50 100 0.233 0.025 0.01 0.917 0.765

ViTB16 U -ensembles 70 10 0.288 0.029 nan 0.879 0.762
ViTB16 U -ensembles 70 20 0.297 0.022 nan 0.867 0.768
ViTB16 U -ensembles 70 50 0.296 0.028 nan 0.869 0.763
ViTB16 U -ensembles 70 70 0.298 0.032 nan 0.869 0.764
ViTB16 U -ensembles 70 100 0.293 0.034 nan 0.874 0.768
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Table 12: Full results for CIFAR-100 ViTL16 fine-tuning experiments.

Model Ensemble Z Size U Size Acc ↑ ECE ↓ TACE ↓ Brier ↓ AUROC ↑

ViTL16 standard 10 10 0.08 0.042 0.007 0.981 0.899
ViTL16 standard 20 10 0.136 0.051 0.01 0.951 0.873
ViTL16 standard 50 10 0.25 0.056 0.012 0.89 0.831
ViTL16 standard 70 10 0.339 0.077 0.006 0.802 0.869

ViTL16 U -ensembles 10 10 0.074 0.042 0.008 0.981 0.904
ViTL16 U -ensembles 10 50 0.086 0.045 0.008 0.964 0.904
ViTL16 U -ensembles 10 100 0.087 0.048 0.009 0.965 0.892

ViTL16 U -ensembles 20 10 0.137 0.053 0.009 0.951 0.871
ViTL16 U -ensembles 20 20 0.139 0.046 0.01 0.947 0.863
ViTL16 U -ensembles 20 50 0.144 0.04 0.01 0.942 0.853
ViTL16 U -ensembles 20 70 0.143 0.041 0.01 0.94 0.864
ViTL16 U -ensembles 20 100 0.139 0.046 0.01 0.948 0.864

ViTL16 U -ensembles 50 10 0.258 0.063 0.007 0.872 0.861
ViTL16 U -ensembles 50 20 0.254 0.045 0.007 0.871 0.871
ViTL16 U -ensembles 50 50 0.26 0.06 0.007 0.87 0.86
ViTL16 U -ensembles 50 70 0.262 0.031 0.011 0.872 0.837
ViTL16 U -ensembles 50 100 0.258 0.019 0.01 0.868 0.855

ViTL16 U -ensembles 70 10 0.341 0.041 0.006 0.791 0.872
ViTL16 U -ensembles 70 20 0.345 0.026 0.006 0.785 0.876
ViTL16 U -ensembles 70 50 0.344 0.03 0.006 0.784 0.878
ViTL16 U -ensembles 70 70 0.345 0.033 0.006 0.787 0.873
ViTL16 U -ensembles 70 100 0.338 0.036 0.006 0.791 0.877
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CIFAR-10, full network training

CIFAR-100, full network training

CIFAR-10, transfer learning

CIFAR-100, transfer learning

Figure 7: Varying the training and unlabeled set. (First two rows) For both standard
and U -ensembles, and full network training, we vary the size of the training set
Z in {1000, 2000, 4000, 10000, 40000}. U -ensembles have the same test accuracy
as standard ensembles (they overlap in the figure) while improving the Expected
Calibration Error (ECE). Gains slowly decrease as the training set increases. (Third
row) In the ViT transfer learning setup for CIFAR-10 we alternate between fixing
the training set |Z| = 70 and the unlabeled set |Z| = 100 and varying the other
set. In both cases calibration first improves and then worsens as each set becomes
too large. (Fourth) In the ViT transfer learning setup for CIFAR-100 we alternate
between fixing the training set |Z| = 20 and the unlabeled set |Z| = 50 and varying
the other set. In both cases calibration first improves and then worsens as each set
becomes too large.

35



Pitas Bourrous Arbel

Figure 8: Comparing the computation times for CIFAR-10 and various architec-
tures. We compare the training time of Standard, U and Agree to Disagree en-
sembles, for the CIFAR-10 dataset with 1000 training samples and 5000 unlabeled
samples. We plot (total training time)/(epochs ∗ ensemble size). Agree to Disagree
ensembles have to be trained sequentially and have higher computational complex-
ity for each member.
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