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ABSTRACT

Backdoor attacks are among the most prominent security threats to deep learn-
ing models. Traditional backdoors leverage static trigger patterns, such as a red
square patch. They can be removed by existing defense techniques. However,
recent backdoor attacks use semantic features as the trigger. Existing techniques
largely fall short when facing such backdoors. In this paper, we propose a novel
backdoor mitigation technique, MARTINI, that effectively mitigates various back-
doors. It features a specially designed trigger reverse-engineering method for
constructing backdoor samples that have a similar attack effect as the injected
backdoor across a spectrum of attacks. Using the samples derived from MARTINI,
paired with the correct labels, in training can remove injected backdoor effects
in deep learning models. Our evaluation on 14 types of backdoor attacks in im-
age classification shows that MARTINI can reduce the attack success rate (ASR)
from 96.56% to 5.17% on average, outperforming 12 state-of-the-art backdoor re-
moval approaches, which at best reduce the ASR to 26.56%. It can also mitigate
backdoors in self-supervised learning and object detection.

1 INTRODUCTION

Deep learning is widely used in various critical applications, such as autonomous driving (Cao et al.,
2021), face recognition (Parkhi et al.), and disease diagnosis (Li et al., 2014). Despite their near-
perfect performance on these tasks, it is not difficult for attackers to manipulate the behavior of deep
learning systems and induce attack-intended output. For example, backdoor vulnerabilities in deep
neural networks can be triggered by adding backdoor triggers to inputs, causing misclassification to
a target label (Gu et al., 2019; Liu et al., 2018b).

A common backdoor employs static trigger patterns, such as a small square patch with a solid
color (Gu et al., 2019). These trigger patterns are easy to construct and can be easily learned by
deep learning models during training, as they are simple features. However, their distinctive features
make them easily distinguishable from benign features of the original learning task. many defense
techniques are able to successfully remove backdoor effects from attacked models (Wu & Wang,
2021; Li et al., 2023; 2021a; Zhu et al., 2023a).

However, a clear separation between backdoor features and clean-task features is not a necessary
condition for a successful backdoor attack. There is a body of semantic backdoor attacks that mod-
ify the entire input, making changes either closely relevant to the main content or visually invisi-
ble (Chen et al., 2017; Barni et al., 2019). Different perturbations are applied to different inputs
based on the input content. For example, the Deep Feature Space Trojan (DFST) (Cheng et al.,
2021) leverages a generative adversarial network (GAN) to inject a certain style (e.g., sunrise color
style) into the input. WaNet (Nguyen & Tran, 2021) leverages elastic image warping to deform an
image through distortion transformation (e.g., distorting straight lines). The unique nature of these
attacks renders most existing solutions less effective.

In this paper, we propose a novel backdoor mitigation technique through trigger reverse-engineering
and model hardening. Specifically, we introduce MARTINI, which (re)constructs backdoor samples
from backdoored models that closely resemble the injected backdoor effects. The constructed
samples, paired with correct labels, are subsequently utilized for training the potentially backdoored
model. MARTINI can model the trigger function for a wide range of backdoors. It manipulates
abstract features instead of raw pixels to transform the input and achieve the backdoor effect,
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inducing targeted misclassification. Specifically, given the feature representation of a clean input
(from a pre-trained encoder), MARTINI leverages a unique transformation layer to mutate the
feature representation. Its novel design allows us to express a wide range of attacks through
feature mutation (as formally explained in Section 4.2). We use gradient descent to update the
transformation layer so that the feature perturbation, as defined by the layer, can change the model’s
classification to a target label. As a result, the trained transformation layer captures the backdoor
vulnerability in the model, if any.

Our contributions are summarized as follows.

• We propose a novel and effective technique, MARTINI, for mitigating hidden backdoors
intentionally injected by adversaries.

• We develop a general formulation of backdoor trigger functions using a novel transfor-
mation layer. This design allows us to model a wide range of existing attacks, and con-
sequently, training with our generated backdoor samples can improve model robustness
against those attacks.

• We evaluate MARTINI on 14 types of backdoor attacks in image classification tasks. Our
method can reduce the attack success rate (ASR) from 96.56% to 5.17% on average, sur-
passing 12 state-of-the-art backdoor removal techniques, which at best reduce the ASR
to 26.56%. We also conduct experiments on two additional computer vision tasks: self-
supervised learning and object detection. For self-supervised learning, MARTINI success-
fully reduces the ASR from 97.17% to 8.99%, whereas the best baseline only reduces it to
29.44%. For object detection, MARTINI reduces the ASR from 97.06% to 5.79%, signifi-
cantly lower than the baselines, which achieve 34.56% at best. We further apply MARTINI
to natural language processing models and demonstrate its generalizability in mitigating
backdoors in other domains. Additionally, our adaptive attacks against MARTINI validate
its robustness against knowledgeable adversaries.

2 THREAT MODEL

Attack Goal and Capabilities. The attacker aims to inject backdoors into deep learning models so
that any input with the attacker-chosen trigger will be misclassified to a target output. The attacker
can utilize a variety of backdoors that either use a patch-like pattern, such as BadNets (Gu et al.,
2019) and Dynamic attack (Salem et al.), or apply semantically relevant perturbations that cover
almost the entire input area, such as DFST (Cheng et al., 2021), WaNet (Nguyen & Tran, 2021),
and Filter attack (Liu et al., 2019). The backdoor can flip any sample from any class to a target
class, known as a universal backdoor (Gu et al., 2019; Chen et al., 2017; Liu et al., 2020), or flip
samples from a particular victim class to a target class, known as a label-specific backdoor (Wang
et al., 2019; Salem et al.; Liu et al., 2019). The attacker can inject backdoors into models either by
poisoning the training data or by directly constructing a trojaned model to be published on online
platforms (e.g., Huggingface).

Defense Goal and Capabilities. Given a pre-trained model, the goal of the defense is to mitigate
potential backdoors in the model without knowing the backdoor types. The defense process should
not affect the model’s normal functionality, e.g., without sacrificing much accuracy. The defender
has access to a subset of the clean training dataset (5%) (Li et al., 2021a; Tao et al., 2022a). The
defender has full control over modifying the model, such as updating model weight parameters,
removing neurons, etc. The updated model by the defender is not accessible to attackers.

3 MOTIVATION

Recent backdoor attacks adopt triggers that are more interconnected with the main task of learning
models. Figure 1 shows a few example attacks. The first row presents clean inputs, and the second
row shows these inputs modified by backdoor triggers. The differences between the images in the
first two rows are given in the third row, illustrating how these backdoor attacks perturb inputs.
Observe that all the pixels in the input are altered. Specifically, the DFST attack (Cheng et al., 2021)
(1st column) applies a sunrise color style to the mountain image, disguising it as a natural scene.
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DFST Blend SIG WaNet Filter

Original

Injected

Injected 
Difference

ASR 1.00.82 0.96

Inverted

Inverted 
Difference

0.980.95

Figure 1: Examples of backdoor at-
tacks (in the top block) and inverted
trigger forms (in the bottom block)

The Blend attack (Chen et al., 2017) (2nd column) adds
salt-and-pepper-like noise to the image, making it appear
as a dog with colorful fur. The third case (SIG (Barni
et al., 2019)) looks like a picture taken behind a fence. The
changes introduced by WaNet (Nguyen & Tran, 2021) (4th
column) are almost invisible as it only deforms an image
through distortion transformations, such as twisting the out-
lines of objects. The last case by the Filter attack (Liu et al.,
2019) (5th column) resembles an antique picture taken in
the last century.

All these backdoor attacks perturb inputs in a way that
makes the trigger-inserted samples very similar to natural
inputs. The additive features introduced by the triggers are
relevant to the main content, making them not easily sepa-
rable from the original learning task. The unique nature of
these attacks makes mitigating backdoors extremely chal-
lenging and renders most existing solutions less effective.

3.1 LIMITATIONS OF EXISTING TECHNIQUES

Relying on Neuron Isolation. As backdoor attacks have a different goal from the original learning
task, certain parts of backdoored models might be used specifically for achieving the attack goal, i.e.,
causing the target misclassification when the trigger is presented. Based on this assumption, sev-
eral existing defense techniques aim to identify and remove the neurons compromised by backdoor
attacks (Liu et al., 2018a; Li et al., 2023). For example, ANP (Wu & Wang, 2021) first identi-
fies compromised neurons whose weight values are exceptionally sensitive and then prunes these
neurons. RNP (Li et al., 2023) removes neurons that cause a large loss increase when reversing the
original training objective, i.e., enlarging (instead of decreasing) the classification loss on clean data.

However, backdoor attacks may not activate a particular set of neurons. For instance, the DFST at-
tack was designed specifically to reduce the identification of possible compromised neurons. During
the attack, it applies a technique (Liu et al., 2019) to locate compromised neurons and then mitigates
their presence, a process called detoxification. This process can significantly degrade the defense
performance of existing techniques relying on neuron isolation. For example, after three rounds of
detoxification, ANP can only reduce the attack success rate of DFST to 90.11%, with more than a
7% clean accuracy drop, which nearly fails to mitigate backdoors. This type of backdoor defense,
which relies on neuron isolation, is less effective when backdoor-related neurons are interleaved
with those for the original tasks, especially against attacks like those in Figure 1.

Assuming Feature Separation. Backdoor behavior may not be distinctive from clean-task behavior
at the neuron level, as discussed earlier. It could be distributed across all layers and neurons in deep
learning models. However, backdoor features could still be quite different from those of clean data.
Another line of defenses assumes that by focusing on the original clean task, the model can “forget”
the backdoor behavior (Zhu et al., 2023b; Min et al., 2024; Zeng et al., 2021). For example, FT-
SAM (Zhu et al., 2023a) utilizes an optimization method called sharpness-aware minimization for
fine-tuning the backdoored model on clean data, aiming to instruct the model to focus on the clean
task. NAD (Li et al., 2021a) applies knowledge distillation techniques to extract a clean student
model from the backdoored teacher model. The distillation process is also guided by the clean data
to ensure the main task performance.

The assumption of feature separation however is not a necessary condition for backdoor attacks.
A very recent attack, COMBAT (Huynh et al., 2024), only uses low-frequency components as the
trigger, which are the channels where normal clean features lie. Defense methods that assume feature
separation of backdoor attacks are less effective against such an attack. For instance, FT-SAM and
NAD can only reduce the attack success rate of COMBAT to 67.33% and 42.65%, respectively.

Less Powerful Trigger Modeling. Trigger inversion is an approach that reverse-engineers the in-
jected trigger from backdoor attacks (Tao et al., 2022b; Wang et al., 2022). This approach requires
modeling the trigger function to find a set of parameters resembling the injected backdoor. For exam-
ple, NC (Wang et al., 2019) uses two input-size matrices to denote which pixel and how much of the
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pixel value should be changed. The inverted trigger can then be used to unlearn the backdoor effect
by adding it to clean inputs and training them with the correct labels. ABS (Liu et al., 2019) lever-
ages a simple convolutional kernel to model possible changes by attacks, such as those in Figure 1.

These existing inversion techniques cover only a very limited number of possible attacks. NC-like
methods are mainly designed for patch-type backdoors and are not capable of modeling style-based
attacks such as DFST (Cheng et al., 2021). The formulation of ABS is also not general enough
for modeling various attacks. For example, when using ABS to reverse-engineer the trigger from
the SIG attack (Barni et al., 2019), the inverted trigger achieves only a 39% attack success rate,
compared to the injected trigger’s 93%, indicating the inverted trigger does not resemble the injected
one. Therefore, using this trigger in unlearning cannot mitigate the backdoor. In fact, the attack
success rate remains 85.29% after applying ABS to purify the backdoored model.

4 METHODOLOGY

4.1 DEFENSE OVERVIEW

The workflow of our backdoor mitigation method, MARTINI, is presented in Figure 2. It consists of
three steps: (1) decoder construction, (2) trigger reverse-engineering, and (3) backdoor mitigation.

Encoder

Decoder

ℒ(x, ̂x)

En
co

de
r

Target

Decoder Construction Trigger Reverse-engineering Backdoor Mitigation

D
ec

od
er

Subject

Figure 2: Overview of MARTINI

In the first step, the features extracted from a pre-
trained encoder are fed to a decoder. The de-
coded image is compared to its original counter-
part. The difference between these two is utilized
as loss (for minimization) to update the decoder’s
weights. Only clean images (from the encoder’s
dataset, i.e., ImageNet) are used during decoder
training. Once the training converges, the de-
coder is able to faithfully project abstract features
to the input space.

In the second step, MARTINI aims to transform a set of benign inputs into backdoor samples that
can induce targeted misclassification. Specifically, given a set of clean inputs (from the victim
model’s dataset), it first normalizes the input values using a normalization layer such that different
input samples have the same value distribution (i.e., mean and standard deviation). The feature
representations from these normalized inputs are modified by our proposed transformation layer
(blue rectangle in the middle), serving as the backdoor function. That is, the transformation layer
can inject backdoor features into the original feature representations. Once decoded by the
decoder, they can induce misclassifications on the victim model to the target label, having the same
attack effect as the injected backdoor.

In the last step, the generated backdoor samples by MARTINI together with clean inputs are then
used for training the victim model. It is an iterative procedure for steps 2 and 3. That is, for each
training iteration, a few clean samples are chosen to generate backdoor samples with respect to the
current state of the model as discussed in step 2. MARTINI searches for different parameters of the
transformation layer maximizing the attack ability that denotes various injected backdoors.
The generated samples paired with the correct labels are then used to update the victim model’s
weights to remove those backdoors. The training terminates when the model converges.

4.2 TRIGGER REVERSE-ENGINEERING AND BACKDOOR GENERATION

The goal of having a generic trigger function is to create a universal way of modeling various back-
door attacks. Our intuition is that in backdoor attacks, especially for semantic backdoors shown in
Figure 1, the perturbation for a particular pixel xi,j , denoted as pi,j , is dependent on the original
pixel values in its neighboring area. That is, pi,j = g(xi−ϵ,j−ϵ, . . . , xi+ϵ,j+ϵ). However, the func-
tion g and the bound ϵ vary significantly from attack to attack, and even by different locations i and
j1. These perturbations induce feature space variations that can be approximated by a transformation
layer (e.g., a convolutional layer). Different attacks are essentially different sets of parameters of the
transformation layer. Our case study later in this section and empirical results in Section 5.1 support

1Patch-type backdoors are typically dependent primarily on locations, not on neighboring pixel values.
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this argument. In the following, we first elaborate on the overall design of backdoor generation and
then discuss each component in detail.

Encoder Decoder

ℒcontent(a, ̂a)
a

̂a M

Input x

x′ 
f ff −1

a′ a′ ′ 

Γ Ψ
̂x

Victim 
ModelEncoder

ℒSSIM(x, ̂x)

̂y ℒCE(yt, ̂y)

Figure 3: Procedure of generating backdoor
samples from clean inputs

Figure 3 illustrates the procedure of our backdoor
generation. It is carried out on a set of inputs. Here,
we use one single input for discussion simplicity.
Given an input x ∈ RC×W×H (C,W,H denote
channel, width, and height, respectively), we first
apply a normalization layer Γ to obtain a normal-
ized input x′. Input x′ is then fed to a pre-trained
encoder f (not the victim model) for obtaining the
feature representation a′. Our backdoor transforma-
tion layer Ψ adversarially modifies the representation a′ and produces an altered representation a′′.
The decoder f−1 takes in a′′ and generates a backdoor sample x̂. We use the SSIM score (Wang
et al.) as the loss function to constrain the difference between the backdoor sample x̂ and the orig-
inal input x. The backdoor sample x̂ is also fed to the encoder f to obtain its feature representation
â, which is used to compare with the original representation a from the input x. We use the mean
squared error as the content loss to bound the difference between a and â. To achieve the backdoor
effect that can induce misclassification, the decoded backdoor sample x̂ is passed to the victim model
M to obtain the prediction ŷ. The cross entropy loss is utilized to make sure the prediction ŷ is the
same as the target label yt. The normalization layer Γ and the transformation layer Ψ are opti-
mized during the backdoor generation. They serve as the trigger function to transform benign inputs
to backdoor samples. We elaborate the details of Γ and Ψ as well as the loss terms in the following.

Normalization Layer. Different input samples may have distinct value distributions on each channel
(i.e., R, G, B channels). For instance, an input x0 may have all small values (e.g., 10) on the R
channel, but another input x1 has all large values (e.g., 200). A slightly larger transformation on
x0 is reasonable but can cause the change on x1 out of the valid range (i.e., 255). It is hard for the
optimization to find a valid solution for x1 as it can be quickly out of the range. To facility an easier
optimization process, a normalization layer Γ is introduced in our backdoor generation. It is applied
on the inputs to reduce the covariate shift on each channel. In other words, different inputs will have
the same mean and standard deviation of pixel values for a particular channel (e.g., the R channel).
Each channel has its own statistics. The normalization layer Γ is defined as follows.

x′ = Γ(x) = (x− µx)/σx · σb + µb, (1)

where µx and σx are the mean and standard deviation of input x along the width and height dimen-
sions. That is, we have one mean value and one standard deviation value for each channel (e.g.,
µx ∈ RC). Parameters µb and σb are the normalization scaling variables in the same shape of µx

and σx. Note that variables µb and σb are the same for all the samples and will be optimized during
our backdoor generation.

Transformation Layer. A backdoor sample derived from a clean input has a different internal
feature representation as that of its clean counterpart. Since the exact injected backdoor a model has
is unknown beforehand, we propose a transformation layer Ψ to mutate the feature representation
of the clean input, aiming to produce a feature representation that could cause misclassification like
some backdoor sample. The transformation layer shall be general, allowing us to model a large
spectrum of possible backdoors. As backdoors can alter all the pixels in the input, the changes can
be diverse for different input regions.

Input Injected Generated Gen. w/ Region

Figure 4: Example of regional
transformation

Figure 4 presents an example. The first column shows two
clean input images. The second column shows the injected
backdoor samples that are transformed from clean inputs us-
ing a Toaster filter. Observe that the injected backdoor samples
have dark orange color in the middle and lighter color for the
surrounding areas. A straightforward design of the transfor-
mation layer is to use a traditional convolutional layer to trans-
form the clean feature representation. The convolution opera-
tion denotes a uniform transformation, where all the values on
a feature map is computed by a same kernel. However, this is
undesirable for expressing the backdoor discussed above. The
third column in Figure 4 denotes the generated samples by using a traditional convolutional layer.
Observe that the color changes are uniform for different regions, failing to produce the orange color

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

region in the middle. We hence propose to divide a feature map into a set of regions and apply
different convolutional kernels on different regions. We call it regional transformation. While the
details are discussed later in this section, the last column in Figure 4 presents the results of using
regional transformation for generating backdoor samples. Observe that comparing to the images in
the third column, the regional transformation is able to produce the orange color in the middle and
lighter color in the surrounding areas. Note that the Toaster filter is only one of the cases where
backdoors manipulate different regions of the input using different transformations. MARTINI is not
restricted to the particular style of Toaster filter. As shown in the bottom of Figure 1, our method
can faithfully model a wide range of backdoor attacks with high ASR (shown in the last row).

We formally define the regional transformation in the following. Assume the input feature repre-
sentation a′ ∈ RC′×W ′×H′

(features before transformation), and a set of convolutional kernels (i.e.,
weight parameters) U ∈ Rz×z×C′×C′×m×m, where z × z is the number of convolutional kernels
(one for each region in our design), and m is the kernel size (i.e., the number of weight parameters
in a kernel). We hence can divide a′ into a set of regions evenly with the size of W ′

z × H′

z , denoted as
w×h. The feature representation a′ can hence be reshaped to a′ ∈ Rz×z×C′×w×h. The transformed
feature representation a′′ is obtained as follows.

a′′ = Ψ(a′) =

 r0,0 r0,1 ... r0,z−1

r1,0 r1,1 ... r1,z−1

... ... ... ...
rz−1,0 rz−1,1 ... rz−1,z−1

 ,

ri,j = U [i, j]⊗ a′[i, j],

(2)

where ri,j denotes the transformed region (i, j) and ⊗ denotes the convolutional operation. Observe
that each region a′[i, j] is transformed by a convolutional kernel U [i, j]. These regions will be placed
in their original positions after the transformation. Note that the transformed feature representation
a′′ has the same number of channels as a′ such that it can be properly decoded by the decoder to the
input space. The variable z for the number of regions is determined based on the size of the feature
representation. In our current implementation, z = ⌈max(W ′, H ′)/32⌉ + 2. For example, assume
an input whose feature representation size is 32 × 32, variable z = ⌈32/32⌉ + 2 = 3. We hence
divide the feature representation into 3×3 regions. We also conduct a formal analysis in Appendix A
to demonstrate that our regional transformation can express various backdoor behaviors.

Loss Terms. Figure 3 shows three loss terms. The SSIM score and the content loss are introduced
to constrain the transformations on the inputs. In other words, it is desired to have generated back-
door samples retaining most main features and similar to the original inputs as backdoors typically
preserve main contents (see Figure 1).

LSSIM = SSIM(x, x̂), Lcontent = MSE(a, â) =
1

N

N−1∑
i=0

(ai − âi)
2 (3)

The cross entropy loss LCE(yt, ŷ) is to induce the desired misclassification to the target label yt.

Other than the above three loss functions, we also use another two loss terms to improve the quality
of generated backdoor samples as follows.

Lnorm =
1

C

C∑
|µb − µ̄X |+ 1

C

C∑
|σb − σ̄X |, Lsmooth = MSE

(
x̂, AvgPool(x̂)

)
(4)

Loss term Lnorm is to reduce the difference between the backdoor statistics (i.e., mean and stan-
dard deviation) and the average statistics across all the samples X (in the generation set) on each
channel. This avoids the generated backdoor samples become too far away from the distribution of
input samples. Loss term Lsmooth smooths the local area of pixel changes, preventing abrupt pixel
changes on the backdoor samples. Function AvgPool is an average pooling operation, where each
pixel value is replaced by the average of its neighboring pixels (e.g., in a 3× 3 region).

Our final loss function for generating backdoors is the following.

L = LCE + α(λ0Lcontent + λ1LSSIM + λ2Lsmooth + Lnorm) (5)

We dynamically adjust the weight parameter α to balance the misclassification goal and the backdoor
quality. We empirically set λ0 = 0.001, λ1 = 100, and λ2 = 0.05 such that all the loss terms are at
the same scale. The impact of these hyperparameters is studied in Appendix G.
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5 EVALUATION

We evaluate MARTINI on three different computer vision tasks: image classification, self-supervised
learning, and object detection. The defense performance of MARTINI is compared with 12 state-
of-the-art backdoor mitigation techniques. We also carry out an adaptive attack to further test our
approach and conduct an ablation study to understand the effects of different design choices. The
extension of MARTINI to other domains is discussed in Appendix F.

5.1 MITIGATING BACKDOORS IN IMAGE CLASSIFIERS

Experiment Setup. We leverage a set of standard datasets and well-known model architectures.
Five image classification datasets are employed in the experiments: CIFAR-10, STL-10, SVHN,
GTSRB, and CelebA. Various model architectures such as ResNet, Network in Network (NiN), and
VGG are used. We evaluate on 14 types of backdoor attacks including BadNets (Gu et al., 2019),
Dynamic attack (Salem et al.), Input-aware attack (IA) (Nguyen & Tran, 2020), DFST (Cheng et al.,
2021), Blend attack (Chen et al., 2017), adaptive Blend attack (A-Blend) (Qi et al., 2023), Sinusoidal
Signal attck (SIG) (Barni et al., 2019), LIRA (Doan et al., 2021), WaNet (Nguyen & Tran, 2021), In-
visible attack (Li et al., 2021b), Clean Label attack (CL) (Turner et al., 2018), Narcissus (Zeng et al.,
2023), COMBAT (Huynh et al., 2024), and filter attack (Liu et al., 2019). For filter attack, we make
use of pre-trained models downloaded from the TrojAI competition (NIST). We consider 12 back-
door removal techniques, including well-known defenses: Fine-tuning (FT) (Li et al., 2021a), Fine-
pruning (FP) (Liu et al., 2018a), Mode Connectivity Repair (MCR) (Zhao et al., 2020), Neural Atten-
tion Distillation (NAD) (Li et al., 2021a), Adversarial Neuron Pruning (ANP) (Wu & Wang, 2021),
Artificial Brain Stimulation (ABS) (Liu et al., 2019), Model Orthogonalization (MOTH) (Tao et al.,
2022a); and recently proposed defenses: I-BAU (Zeng et al., 2021), SEAM (Zhu et al., 2023b), FT-
SAM (Zhu et al., 2023a), FST (Min et al., 2024), RNP (Li et al., 2023). See details in Appendix B.

For evaluating the defense performance, the normal functionalities are measured using the predica-
tion accuracy on the test set (Acc.). We use the attack success rate (ASR) of backdoor attacks as the
metric, which is the percentage of backdoor samples classified to the attack target label. We follow
the same setup as in existing works (Li et al., 2021a; Tao et al., 2022a) by using only 5% of the
original training set for mitigating backdoors.

Comparison with Well-known Defenses. Seven well-known backdoor mitigation approaches are
used as baselines to compare with MARTINI. The defense results on the 14 backdoor attacks are
presented in Table 1 and Appendix C. DFST (Cheng et al., 2021) introduces a detoxification proce-
dure by iteratively training on reverse-engineered backdoors to reduce the number of compromised
neurons that can be leveraged by existing defenses. We follow the original paper and evaluate two
settings with one round (D1) and three rounds (D3) of detoxification2.

The top three rows of Table 1 report the results on patch-type backdoors, where the trigger is a few
pixel changes on the input, such as a square patch pattern. Almost all the defense techniques can
reduce the ASR to less than 5%. MARTINI is able to reduce the ASR to less than 2% for all three
attacks. These results are expected. As discussed in the motivation section, these static triggers can
be easily learned by deep learning models, causing their learned features to be quite different from
those of the main task. All the defenses can leverage this characteristic to easily isolate the backdoor
behavior and eventually remove it.

DFST leverages a GAN to generate backdoor samples that are semantically similar to benign in-
puts. On CIFAR-10, FT, FP, MCR, NAD, ABS, and MOTH can only reduce the ASR of DFST on
ResNet32-D1 from 97.60% to more than 60%. ANP is able to reduce the ASR to 20.67%, but at
the cost of a significant accuracy degradation from 89.95% to 83.34%. MARTINI, on the other hand,
can reduce the ASR to 14.22% with only a 1.73% accuracy degradation. NAD, ABS, and MOTH
perform better on VGG13-D1, reducing the ASR from 95.89% to 24.56%, 33.78%, and 5.33%, re-
spectively. However, with an increase in detoxification rounds, they can only reduce the ASR to
more than 50%. MARTINI can consistently mitigate DFST backdoors, achieving less than 15% ASR
on ResNet32 and less than 6% on VGG13.

The Blend attack uses random small perturbation patterns as the backdoor, which can be easily
eliminated by all the evaluated techniques, except for FT on CIFAR-10. MARTINI can reduce the

2The original paper (Cheng et al., 2021) used at most three rounds of detoxification.
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Table 1: Mitigating backdoors in image classifiers. The best results highlighted with blue color.

Attack Dataset Model
Original FT FP MCR NAD ANP ABS MOTH MARTINI

Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR

BadNets CIFAR ResNet18 93.50% 100.0% 90.88% 1.26% 91.58% 1.16% 91.51% 1.10% 92.57% 0.87% 90.72% 4.07% 92.28% 0.40% 89.47% 1.11% 88.49% 1.97%

Dynamic CIFAR ResNet18 93.52% 99.97% 91.83% 1.51% 92.28% 0.43% 92.12% 0.96% 92.77% 1.63% 88.53% 16.80% 92.59% 1.42% 89.05% 1.51% 91.47% 1.42%

IA CIFAR ResNet18 90.45% 99.16% 87.71% 2.26% 88.68% 2.50% 89.09% 1.17% 86.22% 3.21% 89.02% 2.46% 89.63% 0.84% 85.80% 16.77% 90.35% 0.84%

DFST

CIFAR

RNet32-D1 89.95% 97.60% 87.30% 70.00% 88.20% 62.89% 87.95% 62.67% 88.00% 60.44% 83.34% 20.67% 86.97% 84.11% 88.90% 65.44% 88.22% 14.22%
RNet32-D3 90.93% 95.33% 89.20% 63.89% 88.09% 47.44% 82.84% 60.78% 85.78% 17.33% 83.68% 90.11% 90.74% 37.78% 89.53% 54.44% 88.11% 12.22%
VGG13-D1 90.34% 95.89% 86.07% 93.56% 87.37% 51.11% 86.58% 90.33% 87.24% 24.56% 86.92% 89.56% 88.71% 33.78% 87.26% 5.33% 88.03% 2.00%
VGG13-D3 91.29% 97.44% 89.55% 66.11% 88.84% 85.67% 88.81% 86.78% 87.09% 55.33% 88.46% 96.11% 88.67% 66.67% 89.91% 51.22% 89.08% 5.67%

STL

RNet32-D1 75.74% 97.67% 70.64% 70.64% 68.89% 96.11% 68.05% 84.67% 70.92% 44.00% 65.71% 90.11% 72.26% 68.56% 71.97% 60.89% 72.10% 2.67%
RNet32-D3 76.45% 99.00% 71.30% 93.22% 69.25% 88.22% 69.98% 81.89% 72.21% 89.11% 71.89% 69.56% 71.95% 97.78% 72.09% 71.56% 72.86% 4.78%
VGG13-D1 72.18% 98.67% 70.11% 84.78% 67.12% 67.00% 66.06% 66.22% 68.91% 86.67% 68.88% 98.11% 68.46% 48.44% 69.86% 62.67% 68.61% 5.89%
VGG13-D3 72.09% 98.89% 70.42% 97.33% 68.14% 49.44% 66.66% 79.67% 68.91% 81.00% 65.70% 97.33% 67.29% 37.56% 67.54% 86.56% 69.89% 12.33%

Blend CIFAR ResNet20 90.96% 99.96% 90.33% 84.92% 87.75% 3.63% 85.53% 63.58% 86.81% 3.94% 85.20% 6.22% 89.41% 5.66% 85.44% 12.26% 89.08% 0.00%
SVHN NiN 94.10% 92.37% 92.70% 0.54% 88.26% 23.75% 93.50% 0.59% 94.40% 0.33% 92.67% 0.41% 91.76% 10.66% 94.41% 0.20% 94.56% 0.85%

A-Blend CIFAR ResNet18 94.56% 85.62% 93.01% 58.06% 88.65% 42.84% 93.62% 72.50% 90.42% 49.50% 90.80% 69.51% 88.94% 30.96% 91.97% 24.96% 90.20% 12.64%

SIG CIFAR ResNet20 83.38% 93.30% 88.65% 59.40% 81.01% 76.29% 83.31% 16.63% 85.84% 9.44% 80.02% 37.44% 86.82% 85.29% 80.39% 17.72% 86.91% 3.97%
SVHN NiN 95.48% 92.46% 95.11% 41.60% 93.35% 23.49% 93.19% 45.16% 94.21% 0.68% 90.10% 20.91% 93.47% 55.02% 94.90% 0.69% 93.96% 0.46%

LIRA CIFAR ResNet18 93.25% 99.92% 91.19% 23.60% 90.60% 77.53% 92.24% 27.22% 90.61% 11.55% 88.58% 48.17% 91.12% 7.01% 90.06% 37.90% 91.78% 6.59%

WaNet
CIFAR ResNet18 94.15% 99.55% 93.58% 80.71% 89.14% 2.09% 93.29% 1.74% 91.37% 0.87% 91.38% 0.11% 89.61% 1.88% 92.65% 0.62% 91.12% 0.64%
GTSRB ResNet18 99.01% 98.94% 96.80% 48.75% 96.06% 63.40% 98.54% 10.47% 94.96% 0.02% 97.38% 0.00% 98.51% 0.00% 97.72% 0.01% 97.70% 0.30%
CelebA ResNet18 78.99% 99.08% 78.89% 21.35% 76.57% 18.07% 78.32% 16.21% 76.57% 15.34% 76.79% 14.22% 75.56% 21.69% 77.80% 8.91% 77.57% 8.12%

Invisible CIFAR ResNet18 94.43% 99.99% 91.63% 1.72% 91.74% 1.68% 92.33% 1.36% 90.66% 2.44% 93.27% 1.83% 91.64% 3.81% 89.68% 3.02% 90.25% 1.14%
VGG11 91.05% 99.76% 88.15% 2.00% 90.40% 0.38% 88.68% 1.58% 88.26% 3.47% 88.76% 1.54% 88.81% 2.52% 89.34% 3.68% 89.16% 2.33%

CL CIFAR ResNet18 87.60% 98.36% 85.74% 97.34% 83.66% 26.77% 85.23% 13.91% 84.44% 7.47% 86.18% 4.46% 85.33% 7.18% 83.70% 8.34% 85.67% 4.22%

Narcissus CIFAR ResNet18 92.38% 94.76% 90.74% 52.83% 90.18% 69.99% 92.09% 76.25% 88.29% 52.05% 89.79% 92.06% 88.52% 34.20% 90.49% 50.31% 90.51% 1.45%

COMBAT CIFAR ResNet18 94.00% 80.19% 85.26% 46.41% 88.82% 58.31% 87.87% 69.70% 85.91% 42.65% 88.16% 65.41% 86.27% 46.13% 89.68% 58.21% 89.83% 22.59%

Average 88.79% 96.56% 86.67% 50.55% 85.39% 41.61% 85.90% 41.33% 85.73% 26.56% 84.88% 41.49% 86.21% 31.57% 85.98% 28.17% 86.62% 5.17%

ASRs to less than 1% for the two studied cases. However, when Blend is enhanced with an advanced
attack strategy, A-Blend, which reduces the separation of clean and backdoored data distributions,
existing defenses become less effective. Specifically, most of the baselines can only reduce the ASR
to 40%. MOTH performs slightly better with a 25% ASR, as it does not rely on the separability of
backdoor features. MARTINI can significantly reduce the ASR to 12.64%, surpassing all baselines.

The defense results on SIG, LIRA, WaNet, Invisible, and CL attacks are better for baselines, as ex-
isting techniques can reduce the ASRs to a reasonable range (less than 20% in most cases). MARTINI
further reduces the ASRs to less than 5% for 7 out of 9 cases and less than 9% for the remaining
cases (LIRA on CIFAR-10 and WaNet on CelebA), outperforming the well-known defenses.

Narcissus and COMBAT are recent backdoor attacks specifically designed to use features that
closely resemble benign features. This design breaks the assumptions on which existing defenses
are based, as discussed in the motivation section. As we can observe from the results in Table 1,
almost all the baseline techniques cannot reduce the ASR to lower than 40%, except for ABS on
Narcissus. In comparison, MARTINI can reduce the ASR of Narcissus to 1.45%, substantially lower
than that achieved by the baselines. The ASR of COMBAT is also reduced to 22.59%, which is half
that of existing techniques.

The results on filter attack are presented in Appendix C. MARTINI can eliminate all the backdoors
with an average ASR down to 0.55%, outperforming the others. All the approaches incur a very
small accuracy degradation on average (< 0.3%).

Comparison with Recent Defenses. Five recent state-of-the-art backdoor mitigation methods are
also utilized as baselines to compare with MARTINI. Table 2 reports the results. As these defense
techniques have reported to be effective against several existing backdoor attacks, we hence focus on
more recent advanced attacks: A-Blend, Narcissus, and COMBAT. These attacks proactively reduce
the difference between backdoor features and benign features. According to Table 2, most of these
defenses are effective against A-Blend, except for RNP. This is because RNP relies on backdoor-
related neurons being more sensitive than benign neurons, similar to the assumption that ANP is
based on. A-Blend is optimized to avoid such a characteristic, causing RNP to fail. For Narcissus
and COMBAT, all the baseline defenses fall short, with ASRs remaining above 60% in almost all
cases. FT-SAM and FST have slightly better results on Narcissus but are still less effective against
COMBAT. Unlike A-Blend, which still uses an existing trigger pattern, Narcissus and COMBAT
optimize the trigger such that not only are the model internals indistinguishable between backdoor
and clean behavior, but the trigger pattern itself closely resembles benign features. Nevertheless,
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Table 2: Comparison with recent defenses. The best results highlighted with blue color.

Attack
Original I-BAU SEAM FT-SAM FST RNP MARTINI

Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR

A-Blend 94.56% 85.62% 90.89% 25.01% 90.70% 14.60% 88.93% 20.76% 90.74% 10.60% 88.01% 52.69% 90.20% 12.67%
Narcissus 92.38% 94.76% 90.37% 61.21% 88.80% 69.07% 87.82% 30.02% 86.86% 41.49% 88.62% 72.01% 90.51% 1.54%
COMBAT 94.00% 80.19% 90.22% 63.28% 89.79% 72.00% 89.75% 67.33% 91.66% 73.79% 89.20% 75.94% 89.83% 22.59%

Average 93.65% 86.86% 90.49% 49.83% 89.76% 51.89% 88.83% 39.37% 89.75% 41.96% 88.61% 66.88% 90.18% 12.27%

Table 3: Mitigating backdoors in self-supervised learning. The best results highlighted with blue.

Attack Pre-training
Dataset

Downstream
Task

Original FT NAD ANP MOTH MARTINI

Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR Acc. ASR

BadEncoder

CIFAR-10
GTSRB 82.43% 99.37% 77.13% 92.35% 77.75% 91.52% 83.31% 28.30% 75.97% 52.28% 82.58% 5.10%
STL-10 76.26% 99.79% 74.85% 97.59% 74.67% 92.88% 73.20% 32.90% 72.60% 88.99% 72.53% 13.84%
SVHN 68.90% 99.23% 56.72% 95.99% 56.88% 96.73% 68.79% 43.48% 67.63% 93.04% 71.01% 17.92%

STL-10
GTSRB 74.25% 98.46% 61.05% 45.45% 64.38% 3.88% 70.48% 4.51% 68.88% 46.39% 73.52% 3.90%
CIFAR-10 83.72% 98.15% 81.97% 39.81% 82.44% 83.48% 80.50% 14.38% 75.48% 12.01% 81.17% 8.88%
SVHN 74.36% 96.28% 66.06% 21.15% 65.81% 25.58% 66.38% 23.25% 69.16% 27.28% 71.72% 14.95%

DRUPE

CIFAR-10
GTSRB 78.35% 94.75% 56.29% 73.82% 70.82% 25.88% 76.08% 4.29% 68.35% 23.86% 79.55% 2.29%
STL-10 73.92% 95.85% 70.90% 68.40% 70.92% 61.40% 69.16% 57.67% 66.80% 35.17% 70.00% 17.69%
SVHN 79.40% 95.59% 67.60% 3.97% 67.64% 79.54% 79.25% 89.03% 74.01% 4.49% 74.20% 0.68%

STL-10
GTSRB 76.71% 95.76% 69.71% 12.15% 68.91% 32.76% 76.67% 6.02% 70.40% 6.80% 77.85% 4.85%
CIFAR-10 84.14% 95.31% 84.51% 14.19% 84.87% 22.24% 81.63% 19.00% 82.19% 16.89% 83.71% 6.98%
SVHN 75.06% 97.52% 68.39% 80.70% 68.09% 80.11% 71.78% 30.43% 69.25% 15.11% 72.86% 10.84%

Average 77.29% 97.17% 69.60% 53.80% 71.10% 58.00% 74.77% 29.44% 71.73% 35.19% 75.89% 8.99%

MARTINI is still very effective against these attacks, achieving better defense performance compared
to the most recent state-of-the-art defense techniques.

5.2 MITIGATING BACKDOORS IN SELF-SUPERVISED LEARNING

Experiment Setup. Self-supervised learning generates an encoder, used for downstream tasks.
Backdoor attacks in this process involve adding a trigger to certain images in the training data.
These altered samples are made to resemble specific target-class samples in the feature space. As
a result, any input containing the trigger will be misclassified by a downstream classifier built on
the compromised encoder. We leverage two backdoor attacks in self-supervised learning: BadEn-
coder (Jia et al., 2022) and DRUPE (Tao et al., 2023). The backdoor trigger is a 10x10 white square
pattern. We use two datasets, CIFAR-10 and STL-10, as the pre-training datasets for constructing
the encoder, and four datasets as the downstream tasks: GTSRB, SVHN, as well as CIFAR-10 and
STL-10. We use ResNet18 and the contrastive learning algorithm SimCLR (Chen et al., 2020) for
evaluation. Four baselines are adapted from image classification tasks: FT, NAD, ANP, and MOTH.

Evaluation Results. Table 3 reports the results. For BadEncoder, when CIFAR-10 is used as the
pre-training dataset, most baseline techniques fail to remove the backdoor effects on the downstream
tasks, with ASRs still over 80% in most cases. ANP performs better than other baselines, reducing
the ASRs to around 30%. MARTINI achieves the best performance, reducing the ASR to as low as
5%. The observations on STL-10 are similar. For DRUPE, baseline defenses perform particularly
poorly in certain cases. For example, when the pre-training dataset is STL-10 and the downstream
is SVHN, both FT and NAD have ASRs over 80%. ANP has nearly 90% ASR on the CIFAR-
10 encoder with SVHN as the downstream. Overall, MARTINI successfully mitigates backdoors in
self-supervised learning, reducing the ASR from 97.17% to 8.99% with only a 1.4% accuracy drop.

5.3 MITIGATING BACKDOORS IN OBJECT DETECTION

Stop Sign Speed Limit Stop SignStop Sign

(a) Clean (b) Misclassification (c) Injection (d) Localization

Figure 5: Object detection backdoors

Experiment Setup. We leverage the TrojAI (NIST)
dataset for object detection. This dataset consists of
images synthesized with real street backgrounds and
multiple traffic signs as foreground objects. We consider
three types of backdoor attacks (Chan et al., 2022; Chen
et al., 2022; Lin et al.): misclassification, injection, and
localization. Figure 5(a) shows the clean input and its cor-
rect prediction. Figure 5(b) demonstrates the object misclassification attack, where a yellow triangle,
serving as the backdoor trigger, is stamped on the stop sign, causing the model to mis-recognize
the sign as the speed limit. Figure 5(c) illustrates the injection attack, where the model falsely
recognizes the trigger as a stop sign. Figure 5(d) visualizes the object localization attack, where the
trigger causes the predicted object bounding box to shift away from its correct location. We conduct
experiments using two well-known model architectures, SSD (Liu et al., 2016) and Faster-RCNN
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(F-RCNN) (Ren et al., 2015). The clean object detection performance is measured by mean average
precision (mAP). We adapte two baselines from image classification, i.e., FT and NAD.

Table 4: Mitigating backdoors in object detection.
The best results highlighted with blue color.

Attack Model
Original FT NAD Ours

mAP ASR mAP ASR mAP ASR mAP ASR

Miscls. SSD 87.74% 100.00% 81.85% 92.38% 80.60% 75.24% 82.82% 9.05%
F-RCNN 96.50% 100.00% 92.13% 71.43% 91.23% 15.24% 92.95% 5.71%

Inject. SSD 85.20% 100.00% 79.79% 100.00% 79.29% 99.38% 81.23% 11.90%
F-RCNN 97.03% 100.00% 90.62% 43.33% 89.82% 17.50% 91.16% 7.62%

Local. SSD 85.32% 82.38% 82.61% 0.00% 82.02% 0.00% 85.21% 0.48%
F-RCNN 96.91% 100.00% 91.84% 0.00% 91.74% 0.00% 92.50% 0.00%

Average 91.45% 97.06% 86.47% 51.19% 85.78% 34.56% 87.65% 5.79%

Evaluation Results. The experimental re-
sults are presented in Table 4. On average,
MARTINI reduces the ASR from 97% to be-
low 6%, whereas the baselines still maintain
ASR at high levels, over 34%, with greater per-
formance sacrifices than MARTINI. This under-
scores the efficacy of MARTINI in mitigating
backdoors in object detection, as it effectively
approximates and eliminates the backdoor ef-
fects. Our mitigation is not perfect. In some
cases, MARTINI still has a non-trivial ASR,
such as misclassification and injection attacks
on SSD models. This might be due to the inherent robustness of backdoor attacks in object detection
models, as these models involve complex predictions of bounding boxes and labels. Nevertheless,
the results still demonstrate the generalizability of MARTINI to object detection.

5.4 OTHER EVALUATIONS

Adaptive Attacks. We conduct an adaptive attack by optimizing a trigger pattern during poisoning
while applying our mitigation method (the adaptive knowledge). The repaired models by MARTINI
all have less than 15% ASR, demonstrating the robustness of our technique (see Appendix D).

Defense Efficiency. We use an off-the-shelf encoder and only train the decoder, which takes 32.76
minutes. This is a one-time effort, and the trained decoder can be used for generating backdoors on
different datasets. Our runtime efficiency is comparable to existing techniques (see Appendix E).

Extension to Other Domains. We extend MARTINI to NLP sentiment analysis. The results show
that MARTINI can successfully elimiate backdoors, surpassing the baseline (see Appendix F).

Ablation Study. We study design choices of MARTINI individually to better understand their con-
tributions. The four losses are all important. We also study the impact of four hyperparameters used
in Equation 2 and Equation 5, and the impacts are small. See details in Appendix G.

6 RELATED WORK
In early works, backdoor attacks use a static trigger pattern, such as patch attacks (Gu et al., 2019;
Chen et al., 2017). Recently, semantic backdoors have been explored by researchers. We have
studied and evaluated several representative backdoor attacks in this paper, including DFST (Cheng
et al., 2021), Blend attack (Chen et al., 2017), adaptive Blend attack (Qi et al., 2023), SIG (Barni
et al., 2019), LIRA (Doan et al., 2021), WaNet (Nguyen & Tran, 2021), Invisible attack (Li et al.,
2021b), Clean Label attack (Turner et al., 2018), Narcissus (Zeng et al., 2023), COMBAT (Huynh
et al., 2024), and Filter attack (Liu et al., 2019).

Defense techniques against backdoor attacks can be categorized into backdoor input detection, certi-
fied robustness, backdoor scanning, and backdoor removal. Backdoor input detection aims to detect
inputs stamped with backdoor triggers (Gao et al., 2019; Tran et al., 2018). Certified robustness
provides certification to the classification results of individual samples, asserting the results can be
trusted even in the presence of backdoors (McCoyd et al., 2020; Xiang et al., 2021a;b). Backdoor
scanning focuses on identify whether a given model has been injected with backdoor (Kolouri et al.,
2020; Tang et al., 2021). Backdoor removal aims to eliminate injected backdoors in poisoned mod-
els (Liu et al., 2018a; Zeng et al.). Our evaluation in Section 5.1 demonstrates the effectiveness of
our method in mitigating backdoors, surpassing the 12 state-of-the-art techniques.

7 CONCLUSION
We propose a novel backdoor mitigation technique, MARTINI, that can eliminate a variety of back-
door attacks, including the most recent advanced attacks. It features a general backdoor generation
method that models a spectrum of backdoors. The evaluation on various datasets and model archi-
tectures demonstrates that MARTINI can reduce the attack success rate of 14 backdoor attacks from
96.56% to 5.17%, outperforming 12 existing state-of-the-art defense techniques.
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A FORMAL ANALYSIS ON THE TRANSFORMATION LAYER
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Figure 6: Example for transforming in-
ternal values

As a region of the feature representation is transformed by
a convolutional kernel U , we study the property of such
an operation for expressing backdoor behaviors. Assume
a 2 × 2 input region X on the left of Figure 6 and a ker-
nel parameterized by W ∈ R2×2. Zero-padding is used
(demonstrated by the dotted cells). Output values can be
derived from the values in the region and the parameter
values through the following equations.

a0 = w0 · x0 + w1 · x1 + w2 · x2 + w3 · x3

a1 = w0 · x1 + w2 · x3

a2 = w0 · x2 + w1 · x3

a3 = w0 · x3 (6)

Here, we leave the activation functions out for discussion simplicity. Suppose a backdoor applies
adversarial perturbation δ on the region X . That is, x′

i = xi + δi, i ∈ {0, 1, 2, 3}. The feature
representation for the backdoor sample region A′ is hence the following.

a′0 = w0 · (x0 + δ0) + w1 · (x1 + δ1) + w2 · (x2 + δ2)

+ w3 · (x3 + δ3)

a′1 = w0 · (x1 + δ1) + w2 · (x3 + δ3)

a′2 = w0 · (x2 + δ2) + w1 · (x3 + δ3)

a′3 = w0 · (x3 + δ3) (7)

Our goal is to derive backdoor samples from benign inputs. That is, we apply the convolutional
operation on the benign feature representation to produce the backdoor representation. Here, we
use a convolutional kernel U ∈ R2×2 for analysis simplicity. Applying the kernel on the normal
representation A (see the middle part of Figure 6) produces the following.

â0 = u0 · a0 + u1 · a1 + u2 · a2 + u3 · a3
= u0 · (w0x0 + w1x1 + w2x2 + w3x3) + u1 · (w0x1 + w2x3)

+ u2 · (w0x2 + w1x3) + u3 · w0x3

â1 = u0 · a1 + u2 · a3 = u0 · (w0x1 + w2x3) + u2 · w0x3

â2 = u0 · a2 + u1 · a3 = u0 · (w0x2 + w1x3) + u1 · w0x3

â3 = u0 · a3 = u0 · w0x3 (8)

Let A′ = Â and we have

δ0 = (u0 − 1) · x0 + u1 · x1 + u2 · x2 + u3 · x3

δ1 = (u0 − 1) · x1 + u2 · x3

δ2 = (u0 − 1) · x2 + u1 · x3

δ3 = (u0 − 1) · x3 (9)

As observed in Figure 4, semantic backdoors transform inputs based on each original pixel value
and do not introduce abrupt value changes in the neighborhood of each pixel (within the region)3.
That is, each pixel perturbation introduced by the backdoor transformation correlates to the original
value of its corresponding pixel and the neighboring pixels. This can be expressed by our method
as show in Equation 9. For instance, the perturbation on the first pixel δ0 is a portion (u0 − 1) of the
corresponding pixel x0 and also the linear combination of neighboring pixels (u1x1+u2x2+u3x3).
The scale of the perturbation is parameterized by our convolutional transformation U . It can be

3Static backdoors, such as BadNets, introduce strong features distinct from benign features. Our formulation
can capture the introduced features, such as the color scheme. These features can be easily mitigated by
MARTINI, as shown by our experiments in Section 5.1.
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properly modeled during our backdoor generation using the gradient information from the victim
model. Note that although δ1-δ3 may not involve some neighboring pixels, that is because we have
only one layer. In practice, a model has many layers, and x0-x3 are feature values from the previous
layer, which are functions involving neighboring pixels. In addition, the above analysis only consid-
ers one convolutional kernel in our transformation layer within the region for discussion simplicity.
In practice, for example, the feature representation has 64 channels and each channel is associated
with one kernel, which gives us 64 different combinations of neighboring pixels for each region.

B DETAILS OF EXPERIMENT SETUP

Datasets and Models.

• CIFAR-10 (Krizhevsky et al., 2009) is an object recognition dataset with 10 classification
classes. It consists of 60,000 images and is divided into a training set (48,000 images), a
validation set (2,000 images), and a test set (10,000 images).

• STL-10 (Coates et al., 2011) is an image recognition dataset with 10 classification classes.
It consists of 5,000 training images and 8,000 test images.

• SVHN (Netzer et al.) is a dataset contains house digital numbers extracted from Google
Street View images. It has 73,257 training images and 26,032 test images. We divide the
original training set into 67,257 images for training and 6,000 images for validation.

• GTSRB (Stallkamp et al., 2012) is a German traffic sign recognition dataset with 43
classes. We split the dataset into a training set (35,289 images), a validation set (3,920
images), and a test set (12,630 images).

• CelebA (Liu et al., 2015) is a face attributes dataset. It contains 10,177 identities with
202,599 face images. Each image has an annotation of 40 binary attributes. We fol-
low (Nguyen & Tran, 2021) to select 3 out of 40 attributes, i.e., Heavy Makeup, Mouth
Slightly Open, and Smiling, and create an 8-class classification task.

• TrojAI (NIST) round 4 includes 16 types of model structures such as Incep-
tionV3 (Szegedy et al.), DenseNet121 (Huang et al., 2017), SqueezeNet (Iandola
et al.), etc. The task of these models is to recognize synthetic street traffic signs with be-
tween 15 and 45 classes. Input images are constructed by compositing a foreground object,
e.g., a synthetic traffic sign, with a random background images from five different dataset
such as Cityscapes (Cordts et al., 2016), KITTI (Geiger et al., 2013), Swedish Roads (Lars-
son et al., 2011), etc. A set of random transformations are applied during model training,
such as blurring, lighting, shifting, titling, etc. Adversarial training such as PGD (Madry
et al., 2018) and FBF (Wong et al., 2020) is also utilized to improve model quality. We
randomly select 34 poisoned models by filter attack from TrojAI round 4 (NIST).

Baselines

• Fine-tuning (FT) (Li et al., 2021a) is a standard method originally proposed for transfer
learning. It updates a pre-trained model’s weights with a small learning rate on the training
set. We leverage the finetuning baseline setting in NAD (Li et al., 2021a), which adopts data
augmentation techniques including random crop, horizontal flipping, and cutout (DeVries
& Taylor) during training.

• Fine-pruning (FP) (Liu et al., 2018a) prunes neurons that have low activation values for a
set of clean samples. It then finetune the pruned model on a small set of clean samples.

• MCR (Zhao et al., 2020) linearly interpolates the weight parameters of two models. It also
includes a set of trainable parameters during the interpolation. Specifically, the following
equation is used to build a new model ϕθ(t).

ϕθ(t) = (1− t)2ω1 + 2t(1− t)θ + t2ω2, 0 ≤ t ≤ 1, (10)

where t is the interpolation hyper-parameter ranging from 0 to 1. ω1 and ω2 are the weight
parameters of two pre-trained models, which are fixed. θ is a set of trainable parameters
that have the same shape of ω1 and ω2. For eliminating backdoors in poisoned models,
MCR uses the poisoned model and its finetuned version as the two endpoints (ω1 and ω2)
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and trains θ on a small set of clean samples. The best t is chosen for the interpolation based
on the clean accuracy.

• NAD (Li et al., 2021a) leverages the teacher-student structure to eliminate backdoors. It
first finetunes the poisoned model on 5% of the training set. It uses this finetuned model as
the teacher network, and the poisoned model as the student network. It then aims to reduce
the internal feature differences between the teacher network and the student network by up-
dating the student network. Finally, NAD outputs the student network as the cleaned model.

• ANP (Wu & Wang, 2021) is based on the observation that backdoor related neurons
are more sensitive to adversarial perturbations on their weights. It hence applies a mask
on all the neurons in the model, adversarially perturbs neuron weights to increase the
classification loss for a set of clean samples, and minimizes the size of mask. ANP then
prunes neurons with small mask values, meaning that they have been compromised by
backdoor attacks.

• ABS (Liu et al., 2019) introduces a neuron stimulation analysis to expose abnormal
behaviors of neurons in a deep neural network by increasing their activation values. Those
neurons are regarded as compromised neurons and leveraged to reverse engineer backdoor
triggers. ABS proposes a one-layer transformation to approximate/invert filter triggers.
The inverted trigger is hence utilized to remove the injected backdoor in poisoned models
following the unlearning procedure in NC (Wang et al., 2019).

• MOTH (Tao et al., 2022a) enhances model robustness by increasing the distance between
classes. It employs trigger inversion techniques to generate adversarial samples that bridge
class separations and utilizes asymmetric training to harden the model. MOTH mitigates
backdoor effects by disrupting the shortcut connection between victim classes and the
target class.

• I-BAU (Zeng et al., 2021) introduces a minimax formulation to mitigate the backdoor
effect. Specifically, this method leverages the implicit hypergradient to address the
interdependence between trigger synthesis and adversarial training processes.

• SEAM (Zhu et al., 2023b) leverages the phenomenon of catastrophic forgetting to unlearn
the backdoor effect through label shuffling. It then seeks to restore clean knowledge
by fine-tuning with the correct labels. This method effectively disrupts the connection
between the backdoor trigger and its target label.

• FT-SAM (Zhu et al., 2023a) represents a novel backdoor defense paradigm that integrates
sharpness-aware minimization with fine-tuning. This approach specifically targets neurons
associated with the backdoor, aiming to reduce their influence by shrinking their norms,
thereby mitigating the backdoor effect.

• FST (Min et al., 2024) proposes a simple yet effective technique for purifying backdoors
through finetuning. It specifically promotes shifts in feature representation by actively
diverging the classifier weights from their initially compromised states.

• RNP (Li et al., 2023) exposes and eliminates backdoor neurons through a process of
unlearning followed by recovery. Specifically, RNP begins by maximizing the model’s
error using a small subset of clean data. Afterward, it recovers the affected neurons by
minimizing the model’s error on the same dataset. Neurons that remain problematic after
this process are considered backdoored and are subsequently pruned.

Backdoor Attacks

• BadNets (Gu et al., 2019) is the pioneering study that first highlighted backdoor threats in
deep learning models. It employs a static patch, e.g., a flower placed in the corner of an
image, as the backdoor trigger. Any input containing this patch is then misclassified to the
attack target label.

• Dynamic attack (Salem et al.) utilizes a generative model to create dynamic patch triggers
that vary in pattern and location across images. This diversity enhances its stealthiness
against backdoor detection methods.

• Input-aware attack (IA) (Nguyen & Tran, 2020) improves upon dynamic backdoors by
generating more diverse and sample-specific triggers to evade backdoor detection. The IA
triggers are more invisible in the input space.
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• Deep Feature Space Trojan (DFST) (Cheng et al., 2021) leverages a generative adver-
sarial network (GAN) to inject a certain style (e.g., sunrise color style) to given training
samples. It also introduces a detoxification procedure by iteratively training on ABS (Liu
et al., 2019) reverse-engineered backdoors to reduce the number of compromised neurons
that can be leveraged by existing scanners for successful detection. We follow the origi-
nal paper and poison models with two settings: one-round detoxification and three-rounds
detoxification.

• Blend attack (Chen et al., 2017) injects a random perturbation pattern on the training
samples of non-target classes and changes the ground truth labels of these samples to the
target class (label 0). We use the random pattern reported in the original paper and use a
blend ratio of α = 0.2.

• Adaptive Blend (A-Blend) (Qi et al., 2023) refines the typical blend attack by including
correctly labeled trigger-planted samples to enhance backdoor learning regularization. It
also introduces asymmetric trigger strategies that improve the ASR and diversify the rep-
resentations of poisoned samples.

• Sinusoidal Signal attck (SIG) (Barni et al., 2019) injects a strip-like pattern on the training
samples of the target class and retains the original ground truth labels. We follow the setting
in the original paper and generate the backdoor pattern using the horizontal sinusoidal
function with ∆ = 20 and f = 6. We use label 0 as the target class and poison 8% of the
training data in the target class.

• LIRA (Doan et al., 2021) designs a learnable trigger injection function to be used during
model poisoning. Specifically, it trains a generative model to inject triggers concurrently
with backdoor model training. LIRA utilizes the dataset itself to enhance the specificity of
the backdoor triggers.

• WaNet (Nguyen & Tran, 2021) uses elastic image warping that deforms an image by ap-
plying the distortion transformation (e.g., distorting straight lines) as the backdoor. We
download three backdoored models from the official repository (Nguyen & Tran, 2021),
which are trained on CIFAR-10, GTSRB, and CelebA, respectively.

• Invisible attack (Li et al., 2021b) leverages a generator to encode a string (e.g., the index
of a target label) onto an input image. We download the pre-trained generator from the
official repository (Li et al.) and use it to inject invisible backdoors following the setting in
the original paper.

• Clean Label attack (CL) (Turner et al., 2018) generates adversarial perturbations on the
training samples in the target class using an adversarailly trained model. It then injects
a 2 × 2 grid at the top left corner of the target-class inputs and retain their ground truth
labels. We use L∞ bound of 8/255 for crafting adversarial perturbations, use label 3 as the
target class, and poison 50% of the training data in the target class following the official
repository (Turner et al.).

• Narcissus (Zeng et al., 2023) introduces a clean-label backdoor attack that is both stealthy
and robust. Specifically, it trains a surrogate model to capture the important features from
the target label, which are then used as the backdoor trigger. It selectively poisons only the
images of the target class with this trigger, compelling the model to associate the trigger
with the target label without altering the labels.

• COMBAT (Huynh et al., 2024) improves the clean-label backdoor technique beyond Nar-
cissus by leveraging a generative model to produce the triggers. It also incorporates fre-
quency features and introduces an alternative training method to enhace the learning of the
backdoor trigger function and the poisoned model.

• Filter attack (Liu et al., 2019) applies Instagram filters on training samples and changes
the ground truth labels of these samples to the target class. There are various filters can
be used to poison data, such as Gotham filter, Nashville filter, Kelvin filter, Lomo filter,
Toaster filter, etc.
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FT NAD ANP ABS MOTH MARTINI

Figure 7: ASR of filter attack before (light color) and after (dark color) applying different defenses

FT NAD ANP ABS MOTH MARTINI

Figure 8: Acc. of filter-backdoored models before (light color) and after (dark color) applying
different defenses

C RESULTS ON FILTER ATTACK

For filter attack, we leverage pre-trained backdoored models downloaded from the TrojAI com-
petition (NIST). The results are reported in Figure 7. The x-axis and y-axis denote the model IDs
and the ASR, respectively. The bars in the light/dark colors show the ASR of injected backdoors
before/after applying different defense techniques. Observe that FT (blue bars) can only repair
half of the evaluated models (17 out of the 34 models). This is expected as backdoor attacks
include clean data together with backdoored samples during training. Fine-tuning only on clean
samples may not eliminate the backdoor patterns that have already been learned by backdoored
models. NAD leverages the teacher-student structure and treats the model from FT as the teacher
network. Its performance hence is limited by Fine-tuning. This can be observed from the orange
bars in Figure 7. NAD is only able to eliminate five more backdoors (with a total of 21 models).
ANP has limited performance on TrojAI models, with only 15 poisoned models being repaired. The
TrojAI backdoored models were trained by NIST (NIST), and different training strategies including
random transformations, adversarial training, etc., were employed to make injected backdoors more
robust and hard to detect. These strategies may reduce the sensitivity of individual neurons on
backdoor patterns. ANP is hence not able to identify compromised neurons and fails to remove
injected backdoors. This observation is consistent with the results on DFST backdoors that apply
detoxification to reduce compromised neurons.

ABS can only repair 15 models. As the injected backdoors in TrojAI models are label-specific,
ABS may not be able to identify the correct victim-target class pair. The inverted triggers fail to
expose the injected backdoor behaviors. Unlearning on those triggers hence cannot repair models.
MOTH can eliminate more backdoors than other baselines with 28 fixed models. As discussed in the
motivation section, semantic backdoors perturb all pixels on the input and are dynamic, while MOTH
focuses on patch-like static backdoors. It can raise the bar for semantic backdoors to some extent
but still fails to repair 6 TrojAI backdoored models. MARTINI, on the other hand, can eliminate
all the backdoors with an average ASR down to 0.55%, outperforming the others. The accuracy
of backdoored models before and after repair is shown in Figure 8 (in Appendix). Overall, all the
approaches incur a very small accuracy degradation on average (< 0.3%), except for ANP (1.16%).
MARTINI has the smallest accuracy degradation of 0.06%.

D ADAPTIVE ATTACKS

We conduct an adaptive attack by optimizing a trigger pattern during poisoning while applying our
mitigation method (the adaptive knowledge). The goal is to prevent the model from learning simple
triggers that can be easily generated, making the final injected backdoor hard to invert and capable
of evading our defense. The adaptive attack starts with a random trigger and stamps it on training
images along with the target label for poisoning. At each training iteration, it also applies the inverted
trigger, stamps it on images, and uses the ground truth label for training. The attack then optimizes
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the injected trigger on the current adversarially-trained model and uses this optimized trigger for
injection. The poisoning process is iterative and continues until convergence.

Table 5: Adaptive Attacks

Target
20% Poisoning MARTINI 50% Poisoning MARTINI

Acc. ASR Acc. ASR Acc. ASR Acc. ASR

0 83.64% 60.43% 83.94% 9.94% 67.86% 74.94% 75.71% 4.42%
1 81.61% 58.48% 84.57% 10.46% 70.64% 79.99% 81.79% 6.01%
2 84.43% 56.88% 83.67% 12.79% 67.99% 77.74% 81.50% 5.70%
3 84.91% 60.22% 85.56% 7.18% 70.73% 74.81% 75.02% 0.79%
4 82.91% 76.90% 83.29% 10.55% 71.87% 75.35% 75.80% 9.47%
5 80.11% 76.04% 84.87% 5.00% 66.70% 78.09% 79.12% 11.28%
6 84.47% 64.13% 82.78% 12.93% 71.93% 73.24% 84.72% 14.31%
7 82.32% 76.69% 83.71% 13.11% 68.37% 84.39% 78.61% 11.09%
8 84.18% 62.56% 86.06% 12.16% 71.50% 75.27% 82.92% 12.86%
9 82.57% 69.63% 84.63% 9.14% 70.85% 75.50% 79.20% 10.29%

The experiment is conducted on a ResNet20
model with CIFAR-10, evaluating different
choices of the 10 classes as the target label. The
results are shown in Table 5. The first column
shows the target label. Columns 2-5 show the
accuracy and ASR for the backdoored models
(with a 20% poisoning rate) before and after re-
pair by our method. Columns 6-9 present the
results using a 50% poisoning rate for adaptive
attacks. Observe that with a 20% poisoning
rate, the backdoored models have an average
accuracy of 83.12% and an ASR of 66.20%. By
increasing the poisoning rate to 50%, the ASR
improves to 76.93%, with a significant accuracy degradation to 69.84% on average. The ASRs are
slightly higher for target labels 4, 5, and 7 with the 20% poisoning rate, and for label 7 with the
50% poisoning rate. As MARTINI aims to mitigate backdoors while the poisoning tries to inject a
backdoor, these two contradicting goals result in the accuracy being much lower than a clean model
(91.52%) and the ASR being relatively low as well. By applying our method to the poisoned models,
the ASR drops to 10.33% (20% poisoning rate) and 8.62% (50% poisoning rate) without accuracy
degradation (84.31% and 79.44% on average, respectively), as shown in Table 5. This delineates
the resilience of our mitigation technique to adaptive attacks. Regarding different target labels, the
ASRs for repaired models are slightly higher for labels 2, 6, and 7 with the 20% poisoning rate,
and for labels 6 and 8 with the 50% poisoning rate. These slight variations are due to the fact that
our method does not mitigate backdoors equally for all classes. Nonetheless, the repaired models
all have less than 15% ASR, demonstrating the robustness of our technique against adaptive attacks
with different target choices.

We also conduct an adaptive attack where backdoors have the same feature in different regions
to counter our regional transformation. The results show that our method reduces the ASR from
98.80% to 0.28% with only a 0.83% accuracy degradation.

E DEFENSE EFFICIENCY

We use an off-the-shelf encoder and only train the decoder, which takes 32.76 minutes. This is a
one-time effort, and the trained decoder can be used for generating backdoors on different datasets.
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Figure 9: Time Cost

Figure 9 shows the time in seconds for mitigating backdoors by
different defenses. Most of the defense techniques can finish
within 100 seconds. MCR, ABS, and MOTH have higher time
costs, requiring more than 250 seconds. Overall, the time cost
of MARTINI is comparable to that of other baselines. Recall
that our method achieves more than 20% ASR reduction com-
pared to baselines on many attacks, especially on recent ad-
vanced attacks, which is a critical aspect of backdoor defense.

F EXTENSION TO OTHER DOMAINS

Table 6: Mitigating backdoors
in NLP

Poisoned
Model

Original NAD Ours

Acc. ASR Acc. ASR Acc. ASR

Model-1 85% 92% 85% 29% 84% 18%
Model-2 89% 94% 88% 27% 88% 17%
Model-3 87% 91% 88% 29% 87% 14%

The idea of our technique can be extended to defend against
natural language processing (NLP) backdoors by leveraging a
sentence-to-sentence model. A specially designed transformation
layer can transform abstract features of sentences to embed back-
door effects. Adversarially training on the generated backdoor
samples can then eliminate these NLP backdoors.

We apply MARTINI to NLP sentiment analysis. We use a pre-
trained DistilBERT as the generator, insert our transformation

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

layer before the decoding layer, and adversarially train the model.
We leverage three TrojAI-round5 poisoned models (injected with a phrase trigger), and the results
are reported in Table 6. We adapt NAD from image classification to this setting. From the table,
we observe that MARTINI reduces ASR to 16% on average, with a 1% accuracy degradation. The
baseline NAD can only reduce ASR to 28%. This result shows that MARTINI has good potential for
defending NLP backdoors. We leave further exploration to future work.

G ABLATION STUDY

MARTINI features a few important design choices. In this section, we aim to study these
choices individually to better understand their contributions to the performance. In particu-
lar, we study the effects of four loss terms used in backdoor generation. The ablation study
is conducted on a ResNet20 model with CIFAR-10, and the results are presented in Table 7.
Row 1 denotes the original backdoored model and row 2 the final result of our method. Rows
3-6 present the results of excluding each loss term individually during backdoor mitigation.

Table 7: Ablation study
on different design
choices
Method Accuracy ASR

Original 91.52% 81.36%
MARTINI 90.31% 1.41%

w/o Lcontent 90.13% 38.86%
w/o LSSIM 90.36% 35.93%
w/o Lnorm 90.27% 43.44%
w/o Lsmooth 90.13% 32.04%

Observe that Lcontent can boost the performance by 37.45%. This is be-
cause it constrains the difference of feature representations between back-
door samples and normal inputs. Without it, the backdoor samples can be
too different from normal inputs internally and the model cannot learn the
correct features. LSSIM and Lsmooth have similar ASR reduction. The
SSIM score directly constrains the quality of generated backdoor samples
looking similar to original inputs. Lsmooth further smooths the backdoor
samples to improve the generated quality. Lnorm on the normalization
layer is also quite important as it makes sure the normalized inputs are
not far from the original distribution.

Impact of Hyperparameters. We study the impact of four hyperparameters used in Equation 2
and Equation 5. The study is conducted on a backdoored model by DFST on STL-10, which has
72.18% accuracy and 98.67% ASR. The results are shown in Table 8. Observe that the impacts are
small. Most settings can achieve good ASR reduction. In comparison, the lowest ASR achieved by
the baselines is 48.44%. The best λs are chosen based on that all the loss terms are at the same scale
as discussed below Equation 5. That is, the weighted loss value for each term shall be similar.

Table 8: Impact of hyperparameters
z 1 2 3 4

Accuracy 69.26% 67.99% 68.61% 67.66%
ASR 17.00% 8.33% 5.89% 10.44%

λ0 0.0005 0.001 0.002 0.005

Accuracy 68.59% 68.61% 67.49% 68.24%
ASR 16.56% 5.89% 11.11% 13.67%

λ1 50 100 150 200

Accuracy 68.96% 68.61% 68.42% 68.49%
ASR 15.11% 5.89% 12.33% 9.33%

λ2 0.03 0.05 0.1 0.2

Accuracy 68.76% 68.61% 68.44% 68.34%
ASR 9.44% 5.89% 6.67% 14.89%
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