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ABSTRACT

We introduce SEALQA, a challenge benchmark for evaluating SEarch-Augmented
Language models on fact-seeking questions where web search yields conflicting,
noisy, or unhelpful results. SEALQA comes in three flavors: (1) SEAL-0 (main) and
(2) SEAL-HARD, both of which assess factual accuracy and reasoning capabilities,
where SEAL-0 targets the most challenging questions that frontier non-reasoning
models (e.g., GPT-4.1) answer with near-zero accuracy; and (3) LONGSEAL, which
extends SEALQA to test long-context, multi-document reasoning in “needle-in-a-
haystack” settings. Our evaluation reveals critical limitations in current models.
Even frontier reasoning models face significant challenges across SEALQA flavors.
On SEAL-0, GPT-5 with tools achieves only 43.2% accuracy at its best reasoning
effort. We also find that even advanced reasoning models (e.g., DEEPSEEK-R1) can
be vulnerable to noisy search results. Notably, increasing test-time compute does
not yield reliable gains across GPT-5 and the O-series of models, with performance
often plateauing or even declining early. Finally, while current models are less
affected by the “lost-in-the-middle” issue, they still fail to reliably identify relevant
documents in LONGSEAL when faced with numerous distractors. To facilitate future
work, we release SEALQA at anonymous.4open.science/r/SealQA.

1 INTRODUCTION

Figure 1: Frontier model performance before (left) and after (right) the release of SEAL-0. Despite
potential data contamination or direct access by agentic models, SEAL-0 continues to pose a significant
challenge for current frontier LLMs. Test-time scaling does not lead to reliable gains, with perfor-
mance often plateauing or even declining early. See Figure 6 and Table 14 for additional results.

Large language models (LLMS) have entered a new scaling paradigm: test-time scaling, where models
dynamically allocate more compute during inference time to improve performance (OpenAI, 2025a;
Google, 2025; xAI, 2025; Anthropic, 2025). This paradigm shift is embodied in reasoning models,
which leverage reinforcement learning and other techniques to guide inference-time strategies such
as chain-of-thought reasoning, recursive refinement, and real-time search (Muennighoff et al., 2025;
Guo et al., 2025; Snell et al., 2024; Geiping et al., 2025). These models can now decompose questions
into subqueries, decide when and how to query a search engine, and fuse retrieved content into
structured reasoning paths (OpenAI, 2025a; Google, 2025; Jin et al., 2025).
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As LLMS advance, benchmarks that rely on static knowledge and simple reasoning become saturated
and fail to keep pace. For example, frontier models now achieve over 90% accuracy on MMLU (Phan
et al., 2025). Furthermore, most evaluations of search-augmented LLMs focus on short factual queries
that top-ranked results answer directly (Vu et al., 2024; Kasai et al., 2023). These setups require only
shallow comprehension and fail to reflect the messy, ambiguous nature of real-world search.
To properly evaluate today’s LLMS, benchmarks that go beyond simple fact lookup are needed.
Real-world search often returns documents that are outdated, misleading, or superficially relevant but
ultimately unhelpful. Navigating this noise requires deeper reasoning that filters inconsistencies, rec-
onciles contradictions, and identifies trustworthy signals. Benchmarks that simulate these challenges
are rare, partly because they are difficult to curate and validate at scale.
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Figure 2: Accuracy of LLMS across benchmarks. SEALQA poses
significant challenges to frontier models.

We introduce SEALQA, a small
but extremely challenging bench-
mark (see Figure 2) for evalu-
ating search-augmented LLMS

on fact-seeking questions. Each
SEALQA question is carefully
crafted by NLP researchers to
trigger ambiguous, conflicting,
or noisy search results (see Fig-
ure 3). This design makes it diffi-
cult to answer questions through
simple keyword matching or by
relying on top-ranked documents.
SEALQA spans a range of ques-
tion types, including time-sensitive questions, across diverse domains such as science, technology,
sports, entertainment, politics, history, geography, etc.

SEALQA questions probe a broad spectrum of complex reasoning skills. These include distinguishing
between similar entities or events, tracking changes to the same entity over time, interpreting
information embedded in search-result plots, charts, or tables, counting multiple items, reasoning
over non-English content, and debunking false premises or common misconceptions (see Figure 7 in
Appendix B for sample questions). All questions are self-contained, verifiable, and require intensive
reasoning to resolve ambiguity, filter misinformation, or reconcile conflicting evidence. These
capabilities are central to modern LLMS but are not adequately captured by existing benchmarks.

To ensure both difficulty and quality, each SEALQA question undergoes a rigorous multi-round vetting
process: an initial phase with two or more graduate-level reviewers, followed by expert approval.
SEALQA comes in three flavors:

• SEAL-0 (main; 111 questions): A carefully curated core set where frontier non-reasoning
models like GPT-4.1 with browsing consistently fail. Each question is iteratively refined
until multiple models fail across several attempts (0% accuracy, hence the “0” in the name).

• SEAL-HARD (254 questions): A broader set that includes SEAL-0 and additional difficult
questions that did not meet our strict failure threshold but remain highly challenging.

• LONGSEAL (254 questions): A “needle-in-a-haystack” variant that tests long-context, multi-
document reasoning. Each question is paired with a large set of retrieved documents, among
which only one contains or implies the correct answer. This document is buried within
irrelevant, noisy, or misleading content.

We intentionally kept SEALQA small due to the high cost and complexity of question development.1
Building the full benchmark required a team of six NLP researchers working over eight months
through multiple development cycles. A smaller benchmark also reduces API evaluation costs, allows
more frequent updates, and aligns with recent emphasis on high-quality, targeted evaluations over
large, noisy ones (Rein et al., 2024; Maia Polo et al., 2024).2 SEALQA is also designed for stable
evaluation with low run-to-run variance.3

1Each question required over an hour on average – roughly 45 minutes to draft, plus additional time for
review and revision. Many initial ideas were discarded as they failed to meaningfully challenge frontier LLMS.

2For example, the widely used GPQA-DIAMOND (Rein et al., 2024), a compact set of 198 expert-vetted questions,
demonstrates how a small, carefully curated dataset can effectively assess a model’s reasoning ability.

3Our questions often lead multiple models to fail across repeated attempts.
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Which company most recently surpassed a $1 trillion 
market capitalization for the first time in its history?

The most 
recent company to surpass a $1 

trillion market capitalization for the first time in 
its history was Berkshire Hathaway.ffThis occurred 
on August 28, 2024. Berkshire Hathaway was the 

first US company outside of tech to 
reach this milestone.

naive model: relies on direct  
lexical or semantic matching

Broadcom surpassed a $1 trillion market 
capitalization for the first time in its history on 

December 13, 2024, becoming the eighth U.S. tech 
company to reach this milestone.

strong model: e ectively retrieves and reasons beyond 
lexical or semantic matching

Figure 3: SEALQA requires intensive reasoning to resolve ambiguity, filter out misinformation, or
reconcile conflicting evidence. See Appendix H for sample model outputs.

Our key contributions are as follows: (1) We introduce SEALQA, a challenge benchmark designed to
evaluate reasoning under noisy, conflicting, and ambiguous search results. SEALQA includes three
flavors: SEAL-0, SEAL-HARD, and LONGSEAL, each targeting different challenges in search-augmented
reasoning; (2) We benchmark a range of LLMS and uncover significant limitations in current retrieval-
augmented approaches. Even state-of-the-art models struggle across SEALQA flavors when faced
with conflicting or misleading context. On SEAL-0, performance remains low even for agentic models
equipped with search tools. We also find that advanced reasoning models can be highly vulnerable to
noisy search results. Notably, increasing test-time compute does not reliably improve performance
across OPENAI’s GPT-5 and O-series of models – performance often plateaus or declines. LONGSEAL

further reveals major weaknesses in long-context reasoning: while current frontier LLMS are more
robust to “lost-in-the-middle” effects (Liu et al., 2024), they still fail to reliably identify and prioritize
relevant evidence amid distractors; and (3) We publicly release SEALQA as a dynamic, versioned
benchmark, and commit to review and update its answers regularly to ensure that evaluations reflect
the most recent knowledge.

2 DATA COLLECTION

In this section, we describe SEALQA, our benchmark designed to capture the complexity of real-world
information-seeking. SEALQA rigorously evaluates a model’s reasoning ability, robustness to noisy
search results, and capacity to handle dynamic, real-world knowledge.

Human annotators: To build SEALQA, we recruited NLP researchers4 as human annotators who
were shown a diverse set of exemplars that illustrated the types of questions we sought to collect.

Question types: Our questions span several categories: (Q1) advanced reasoning, which covers
multi-hop reasoning, interpreting search-result plots, charts, or tables, and performing counting or
calculations; (Q2) entity/event disambiguation, which focuses on distinguishing between similar
entities or events; (Q3) temporal tracking, which requires identifying and differentiating instances of
entities over time; (Q4) cross-lingual reasoning, where the question is in English but answering it
requires retrieving and reasoning over non-English sources; and (Q5) false-premise questions, which
require debunking false assumptions.

4including the authors and their colleagues
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Annotation criteria: Annotators were instructed to write questions with a single, unambiguous
answer (e.g., specifying “on what date” rather than asking “when”). Each question must be supported
by one or more webpages that justify the reference answer, which ensures verifiability. For questions
that involve fresh knowledge, annotators were required to cite regularly updated sources to support
future answer updates. We also classify questions by freshness (Vu et al., 2024): never-changing
(NEVER; answers never change), slow-changing (SLOW; answers change over several years), and
fast-changing (FAST; answers typically change within a year). All questions were designed to appear
natural while still triggering ambiguous, conflicting, or misleading search results when entered
into a search engine like GOOGLE. Each question has a predefined annotation that classifies its
expected search results as CONFLICT. (mixed correct and misleading answers) or UNHELPFUL (no
correct answers). Annotators also provided explanations for each answer, including any necessary
clarification or subtle reasoning. Finally, each question was refined until it consistently caused
multiple models to fail across repeated attempts.

Quality control: We employed a rigorous multi-round review process. Each question was first
reviewed by two or more graduate-level annotators, followed by expert approval. We performed
several rounds of data cleaning, including verification of supporting URLS, answer correctness, and
question clarity. Questions whose answers change too frequently were excluded. For each question,
we also annotated the effective year (when the answer last changed) and the expected next review
date to support future maintenance.

Diversity: SEALQA questions vary in length, with an average of 31 tokens and a maximum of 69.
SEALQA also spans diverse domains: science and technology (26.8%), sports (22.0%), entertainment
(21.7%), politics (9.1%), history and geography (8.3%), and others (12.2%).5 By question category,
72.4% involve advanced reasoning (Q1), 58.3% entity/event disambiguation (Q2), 13.7% temporal
tracking (Q3), 5.5% cross-lingual reasoning (Q4), and 4.3% false-premise detection (Q5). By
freshness, 31.1% are never-changing, 43.7% slow-changing, and 25.2% fast-changing. By effective
year, 22.0% reference 2025 events, 19.3% 2024, and 58.7% prior to 2024.

Curation of SEALQA flavors: To curate SEAL-0, we tested each question against GPT-4O, GPT-4.1,
their MINI variants (OpenAI, 2024a;b; 2025c), and LLAMA-4-SCOUT (Meta, 2025), both with and
without browsing.6 Only questions whose answers all models failed to produce across 10–15 attempts
were retained. This follows current practices for constructing challenging benchmarks; for example,
SIMPLEQA (Wei et al., 2024) was also adversarially collected against GPT-4 responses. SEAL-0 was
then combined with other rejected-but-difficult questions to form SEAL-HARD.

For LONGSEAL, each SEAL-HARD question is paired with a set of retrieved documents: one helpful
(gold) document from annotator-provided webpages, and up to 50 hard negatives that appear relevant
but are unhelpful.7 To ensure difficulty, we used GPT-4O MINI to filter out negatives whose content
might allow the correct answer to be inferred. The gold document was randomly inserted among
the negatives. LONGSEAL contains over 7.6K documents and serves as a testbed for long-context
reasoning under noisy retrieval conditions.

Evaluation protocol: Models are evaluated using a GPT-4O MINI auto-rater adapted from Wei
et al. (2024), which takes the question, predicted answer, and reference answer as input and labels
responses as “correct”, “incorrect”, or “not attempted” (see Appendix C for the full prompt). The
evaluation follows a relaxed protocol that checks whether the main answer is factually correct and
consistent throughout the response.

Auto-rater reliability: To assess the auto-rater’s reliability, two authors independently evaluated
100 answers. Disagreements were resolved through discussion, which produced a unified set of
human ratings that agreed with the auto-rater 98% of the time.

5Following Wei et al. (2024), topic labels were assigned post-hoc using GPT-4O MINI.
6We applied FRESHPROMPT (Vu et al., 2024) to LLAMA-4-SCOUT.
7To collect hard negatives, we used GOOGLE to retrieve the top 10 webpages per question and extracted their

main content using TRAFILATURA (Barbaresi, 2021). To add temporal diversity and potential conflicts, we retrieved
10 more pages restricted to pre-2023 content. We also used GPT-4O MINI to generate three semantically related
queries per question and collected documents for each. Duplicates were removed, and documents whose length
exceeded 10K tokens were excluded.

4
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Table 1: Accuracy on SEAL-0 and SEAL-HARD. Frontier LLMS face significant challenges on SEALQA
questions. † indicates results using CHATGPT’s built-in search; all other search-based results use
FRESHPROMPT (Vu et al., 2024). ∗ indicates evaluation conducted after the release of SEALQA.

Model knowl.
cutoff type SEAL-0 SEAL-HARD

w/o SEARCH w/ SEARCH w/o SEARCH w/ SEARCH

Closed-source models
GPT-4O-MINI Sep 30, 2023 CHAT 0.0 0.0† 9.1 13.4†

GPT-4.1-MINI May 31, 2024 CHAT 0.0 0.0† 13.8 11.8†

GPT-4O Sep 30, 2023 CHAT 0.0 0.0† 11.8 15.0†

GPT-4.1 May 31, 2024 CHAT 0.0 0.0† 15.0 20.5†

O3-MINI-HIGH Sep 30, 2023 REASON. 3.6 1.8 12.6 14.2
O4-MINI-HIGH May 31, 2024 AGENTIC - 4.5 † - 19.3†

O3-HIGH May 31, 2024 AGENTIC - 14.4† - 32.7†

GPT-5-MINI-HIGH ∗ May 31, 2024 REASON. 6.3 41.4† 16.9 60.2†

GPT-5-HIGH ∗ Sep 30, 2024 REASON. 15.3 43.2† 37.8 63.8†

Open-weight models
LLAMA-3.2-3B December 1, 2023 CHAT 0.0 0.0 1.6 3.5
LLAMA-3.1-70B December 2023 CHAT 0.0 0.0 0.0 6.3
LLAMA-4-SCOUT-17B-16E (109B) August 2024 CHAT 0.0 0.0 5.9 5.9
QWEN3-235B-A22B - REASON. 0.0 5.4 4.3 11.4
DEEPSEEK-R1-DISTILL-QWEN-1.5B - REASON. 0.0 2.7 0.0 1.6
DEEPSEEK-R1-DISTILL-QWEN-14B - REASON. 0.9 3.6 0.9 10.6
DEEPSEEK-R1-671B - REASON. 5.4 1.8 22.4 11.0
GPT-OSS-20B-HIGH ∗ June, 2024 REASON. 0.9 4.5 2.7 7.8
GPT-OSS-120B-HIGH ∗ June, 2024 REASON. 0.9 7.2 10.6 16.9

3 EXPERIMENTS

Having established SEALQA, we now set out to evaluate how well today’s LLMS reason over noisy
search results when navigating dynamic, real-world knowledge. Our analysis reveals limitations in
their ability to reconcile conflicting parametric (internal) and retrieved (external) knowledge.

3.1 EXPERIMENT SETUP

3.1.1 SEAL-0 AND SEAL-HARD

Baselines: We benchmarked a wide range of open-weight and proprietary models. These include
chat-oriented models such as GPT-4O, GPT-4.1, their MINI variants (OpenAI, 2024a;b; 2025c), LLAMA-
3.1-70B (Grattafiori et al., 2024), LLAMA-3.2-3B (Meta, 2024), and LLAMA-4-SCOUT-17B-16E-
INSTRUCT (Meta, 2025); advanced reasoning models such as O3-MINI (OpenAI, 2025d), DEEPSEEK-
R1-671B, DEEPSEEK-R1-DISTILL-QWEN-14B/1.5B (Guo et al., 2025), and QWEN3-235B-A22B (Yang
et al., 2025); and agentic tool-use models such as O3 and O4-MINI (OpenAI, 2025e).8 After the release
of SEALQA, we additionally benchmarked GPT-5 and GPT-5-MINI (OpenAI, 2025a), and GPT-OSS-20B

and GPT-OSS-120B (OpenAI, 2025b). We mainly include GPT-5 models as a reference for current
state-of-the-art performance on SEALQA. Data contamination may exist after the release, and we
cannot prevent GPT-5 or other agentic models from accessing our dataset links.

We fed each question as a prompt into each model, using a temperature of 0 when configurable and
the default value otherwise.9 For models without browsing, we applied FRESHPROMPT (Vu et al.,
2024) or SELF-ASK (Press et al., 2023) to inject GOOGLE search results into the prompt. Advanced
reasoning models were evaluated under high reasoning effort settings when configurable, unless
specified otherwise.

Human competitors: To estimate human performance, we asked five graduate-level NLP re-
searchers (not involved in annotation) to independently answer a sample of 50 SEAL-HARD questions.
They had unlimited access to GOOGLE and could use any queries they deemed useful (open search).10

8We used the OPENAI and TOGETHER.AI APIS for OPENAI and open-weight models, respectively.
9OPENAI’s GPT-5 and O-series models only support a fixed temperature of 1.0.

10Each question had a 15-minute time limit.
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Table 2: On SEAL-HARD, LLMS tend to under-
perform on cross-lingual reasoning (Q4) and
false-premise detection (Q5) compared to ad-
vanced reasoning (Q1), entity/event disambigua-
tion (Q2), and temporal tracking (Q3).

Model Q1 Q2 Q3 Q4 Q5

W
/O

S
E

A
R

C
H GPT-4.1 14.1 14.2 25.7 0.0 0.0

O3-MINI-HIGH 10.9 14.9 14.3 0.0 0.0
O3-HIGH – – – – –
LLAMA-4-SCOUT 4.9 6.8 5.7 0.0 0.0
DEEPSEEK-R1 20.7 23.0 22.9 7.1 0.0

W
/S

E
A

R
C

H

GPT-4.1 20.1† 17.6† 25.7† 21.4† 9.1†

O3-MINI-HIGH 9.8 10.1 22.9 7.1 9.1
O3-HIGH 31.0† 31.8† 45.7† 14.3† 27.3†
LLAMA-4-SCOUT 4.3 6.8 8.6 0.0 0.0
DEEPSEEK-R1 10.3 10.8 14.3 0.0 18.2

Additionally, after completing the open-search
task, they were given five curated URLs per ques-
tion: one containing the correct answer and four
containing conflicting or misleading information
(oracle).

3.1.2 LONGSEAL

Baselines: We benchmarked GPT-4O-MINI, GPT-
4.1-MINI, LLAMA-4-SCOUT-17B-16E-INSTRUCT,
and additionally LLAMA-3.2-11B-VISION (Meta,
2024), with context windows of 128K, 1M, 1M,
and 128K tokens, respectively.

We followed Liu et al. (2024) to set up a multi-
document QA task where a model receives a ques-
tion and a set of documents: one gold document
that suggests the correct answer, and k hard neg-
atives. The gold document is randomly placed among the k negatives. To answer correctly, the
model must identify and use the gold document from its input context. We evaluated three values
of k: 12, 20, and 30, sampled from 50 hard negatives per question. This setup allows us to assess
how performance varies with the number of negatives and the position of the gold document.11

3.2 RESULTS ON SEAL-0 AND SEAL-HARD

Table 3: Questions that involve rapidly changing
information, i.e., fast-changing questions, pose
significant challenges for LLMS on SEAL-HARD.

Model W/O SEARCH W/ SEARCH

NEVER SLOW FAST NEVER SLOW FAST

GPT-4.1 21.5 18.0 1.6 17.7† 24.3† 17.2†

O3-MINI-HIGH 20.3 12.6 3.1 12.7 10.8 10.9
O3-HIGH – – – 39.2† 36.9† 17.2†

LLAMA-4-SCOUT 10.1 4.5 4.1 6.3 4.5 7.8
DEEPSEEK-R1 32.9 24.3 6.2 15.2 9.9 7.8

SEAL-0 and SEAL-HARD present significant
challenges for frontier LLMS: Table 1 shows
the accuracy of various LLMS on SEAL-0 and
SEAL-HARD without access to a search engine
(W/O SEARCH). Excluding GPT-5 variants, all
other models perform poorly without web ac-
cess, with accuracies ranging from 0.0% to 5.4%
on SEAL-0 and 0.0% to 22.4% on SEAL-HARD.
While proprietary models tend to outperform

open-weight ones, DEEPSEEK-R1-671B stands out
as a notable exception, achieving 5.4% accuracy.
Interestingly, model size does not consistently correlate with performance. For example, both LLAMA-
3.2-3B and LLAMA-3.1-70B score 0.0% on SEAL-0, with the smaller model slightly outperforming
the larger one on SEAL-HARD (1.6% vs. 0.0%). A similar pattern holds for DEEPSEEK-R1-DISTILL-
QWEN, which shows negligible improvement when scaled from 1.5B to 14B (0.0% → 0.9%) on
both datasets. Large mixture-of-expert (MOE) models such as LLAMA-4-SCOUT-17B-16E (109B total
parameters) and QWEN3-235B-A22B also fail to generalize on SEAL-0 (0.0%) and yield only modest
gains on SEAL-HARD (5.9% and 4.3%, respectively). Additionally, reasoning-focused models do
not consistently outperform general-purpose chat models, as seen with QWEN3-235B-A22B and
LLAMA-4-SCOUT-17B-16E, with DEEPSEEK-R1-671B as the exception.

Table 4: LLMS struggle with questions that in-
volve recent information on SEAL-HARD.

Model W/O SEARCH W/ SEARCH

< 2024 2024 2025 < 2024 2024 2025

GPT-4.1 23.5 6.1 0.0 25.5† 20.4† 7.1†
O3-MINI-HIGH 20.5 2.6 1.4 14.4 12.8 4.3
O3-HIGH – – – 45.9† 15.4† 14.5†

LLAMA-4-SCOUT 8.7 4.1 0.0 7.4 6.1 1.8
DEEPSEEK-R1 35.6 8.2 0.0 14.8 6.1 5.4

Tables 2, 3, 4, and 5 show a breakdown of
SEAL-HARD results by question category (see
Appendix D for full results). Overall, all
models show limitations across question cat-
egories, especially on cross-lingual reasoning,
false-premise detection, and questions that in-
volve recent or rapidly changing information.
Performance also degrades more when search re-
sults are unhelpful than when they contain con-
flicting answers.12

11The average prompt lengths across all examples are 27.6K, 54.5K, and 70.1K tokens, with 100%, 99.2%,
and 96.7% of prompts fitting within the 128K context window of GPT-4O-MINI and LLAMA-3.2-11B, for k = 12,
20, and 30, respectively.

12Additionally, we find that open-weight models like LLAMA-4-SCOUT and DEEPSEEK-R1 choose to “not attempt”
questions more often than proprietary models such as GPT-4.1, O4-MINI, and O3 (see Appendix E).
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Table 5: On SEAL-HARD, performance degrades
more when search results are uniformly unhelp-
ful than when they contain conflicting answers.

Model W/O SEARCH W/ SEARCH

UNHELPFUL CONFLICT. UNHELPFUL CONFLICT.

GPT-4.1 14.5 15.3 18.2† 22.2†

O3-MINI-HIGH 10.9 13.9 8.2 13.9
O3-HIGH – – 30.0† 34.7†

LLAMA-4-SCOUT 3.6 7.6 4.5 6.9
DEEPSEEK-R1 20.9 23.6 9.1 12.5

Naive search and integration can amplify noise
rather than improve accuracy: Table 1 (W/O

SEARCH) and Figure 4 show the effects of web
search on model performance. In general, search
improves accuracy across models. Agentic reason-
ing models such as O3 and O4-MINI, which can use
tools within CHATGPT including web search, per-
form significantly better than others. O3 achieves
14.4% on SEAL-0 and 32.7% on SEAL-HARD.
Our results suggest that training models to under-
stand and execute search queries, as done in CHATGPT’s built-in search, is more effective than
retrieval-based prompting methods like FRESHPROMPT. While GPT-4.1 gains a performance boost
from built-in search (+5.5%), FRESHPROMPT slightly reduces its accuracy (15.0% → 14.6%). Built-in
search generally improves performance on SEAL-HARD for both GPT-4.0 and GPT-4.1. With that
said, FRESHPROMPT remains useful for most open-weight models without tool-use training. For
example, QWEN3-235B-A22B and DEEPSEEK-R1-DISTILL-QWEN-14B achieve gains of +7.1% and
+9.7%, respectively, on SEAL-HARD when using FRESHPROMPT.
However, search can sometimes be detrimental. GPT-4.1-MINI, when equipped with built-in search,
drops in accuracy from 13.8% to 11.8%. Since SEALQA questions are designed to elicit conflicting or
noisy search results, naive retrieval and integration can harm model accuracy.
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Figure 4: Advanced reasoning models such as
DEEPSEEK-R1-671B and O3-MINI are highly vul-
nerable to noisy search results.

Advanced reasoning models can be highly vul-
nerable to noisy search results: As shown in
Table 1 (W/O SEARCH) and Figure 4, DEEPSEEK-
R1-671B and O3-MINI are dramatically more sen-
sitive to input noise than other models. For ex-
ample, DEEPSEEK-R1-671B’s performance drops
from 22.4% to 11.0% when using FRESHPROMPT.
Our ablation (Table 3 and Table 4) reveals that
FRESHPROMPT improves DEEPSEEK-R1-671B’s
performance on fast-changing (+1.6%) and 2025-
specific (+5.4%) questions, but leads to large drops
on static or older questions (-17.7% on never-
changing, and -20.8% on pre-2024). GPT-4.1-
MINI shows a similar trend with CHATGPT’s built-in search, though the decline is less pronounced.
In contrast, open-weight models with weaker reasoning capabilities (e.g., QWEN3-235B-A22B and
DEEPSEEK-R1-DISTILL-QWEN-14B) consistently benefit from FRESHPROMPT.
Among retrieval-based prompting methods, SELF-ASK, which decomposes questions into sub-
questions, is generally more effective than FRESHPROMPT, which issues direct searches and thus
triggers more noise for SEALQA’s adversarial questions. However, both methods harm the accuracy
of DEEPSEEK-R1-671B and O3-MINI.

Test-time scaling does not lead to reliable gains on SEALQA: Models like GPT-5 and the O-series
have shown strong reasoning capabilities, with consistent improvements from increased test-time
compute. However, we find that this approach does not yield reliable gains on SEALQA.
Figure 1 illustrates test-time scaling effects on SEAL-0 questions across different reasoning effort
settings: low, medium, and high, where higher levels correspond to more reasoning tokens. O3-MINI’s
accuracy plateaus despite scaling, with scores of 1.8%, 2.7%, and 1.8% at low, medium, and high
effort levels, respectively. O4-MINI’s accuracy peaks at low effort (6.3%), but drops with more
compute at medium (5.4%) and high (4.5%) settings. While O3 achieves the highest overall accuracy
among the O-series, scaling also fails to provide reliable gains, with accuracies of 11.7%, 17.1%, and
14.4% across the three effort levels. Similar trends are observed on the latest GPT-5 models.
We conjecture that increased reasoning over noisy search results may impair performance. As test-
time compute grows, longer chains of thought can amplify spurious or irrelevant information, which
entangles the model in misleading evidence and ultimately reduces accuracy.

The effect of repeated sampling: We also examined the effect of repeated sampling (Brown
et al., 2024). Each model was sampled five times, and an answer was counted as cor-
rect if any attempt was correct. Due to O3’s high API cost, this experiment was restricted
to O3-MINI and O4-MINI, evaluated on SEAL-0 at medium reasoning effort. In this setting,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: Frontier LLMS fail to reliably identify
relevant documents in LONGSEAL when numerous
distractors are present, despite being less prone to
“lost-in-the-middle” failures (Liu et al., 2024).

O3-MINI and O4-MINI achieved 9% and 16.2%
accuracy, respectively. These results again show
that SEAL-0 is extremely challenging, even for
agentic reasoning models with full tool access.

SEALQA requires careful search and robust
reasoning: Table 12 in Appendix F shows that
frontier LLMs lag behind humans on SEALQA:
the best model, O3-HIGH, reached 28.0% accu-
racy, compared with human averages of 38.8% in
open search and 50.4% in oracle, and top human
scores of 64.0% and 72.0%, respectively. Hu-
mans answered within five minutes in 52.8% of
cases but were correct only 53.0% of the time,
which highlights the dual challenge of retriev-
ing relevant information and reasoning through
conflicting sources in SEALQA.

3.3 RESULTS ON LONGSEAL

We now switch gears to discuss our evaluation
results on LONGSEAL (Figure 5).

Frontier LLMS struggle on LONGSEAL with in-
creased distractors: All models exhibit a clear
drop in accuracy as the number of hard negatives
increases. For example, when the gold document
appears immediately after the question (1st po-
sition), GPT-4.1-MINI’s accuracy decreases from
32.7% at k = 12 (12 hard negatives) to 29.9% at
k = 20 and 29.5% at k = 30. The degradation
is more pronounced in smaller or less capable
models: GPT-4O-MINI falls from 24.0% to 6.3%
and then 3.9%, while LLAMA-3.2-11B drops from 10.2% to 2.0% and 2.4%.

Table 6: Frontier models fail to extract correct
answers even when no distractors are provided.

Models W/ EVIDENCE W/O SEARCH W/ SEARCH

GPT-4.1 48.0 15.0 20.5
O3-MINI 56.7 14.6 12.2
LLAMA-4-SCOUT 33.5 5.9 5.9
DEEPSEEK-R1 49.2 19.3 15.4

These results indicate that simply increasing con-
text size does not guarantee effective context use.
When many hard negatives are present, models
often struggle to identify and prioritize the gold
document. The primary failure mode appears to
be the inability to reliably filter relevant from ir-
relevant content at scale. High distractor density
impairs relevance estimation, even when all input
documents fit within the context window. This
suggests a need for architectural advances or training strategies that enhance implicit retrieval and
salience detection to improve performance in large-context, multi-document QA settings.
To understand why models achieve low performance, we conducted an experiment to disentangle
reasoning from retrieval. In this setup, models received only gold documents, with hard negatives
removed. Table 6 shows that performance remains low even under these ideal conditions (W /
EVIDENCE). GPT-4.1 and O3-MINI achieved only 48.0% and 56.7%, respectively, and no open-source
models exceeded 50.0%. These results suggest that SEALQA’s difficulty arises from both reasoning
and retrieval challenges.

Absence of classic positional bias in Liu et al. (2024): Unlike earlier work that reports a strong
“lost in the middle” effect, our results show no clear U-shaped positional trend. GPT-4.1-MINI maintains
stable accuracy across positions, with only minor fluctuations from start to end; even at k = 30, its
performance varies little between early, middle, and late placements. LLAMA-4-SCOUT shows a
slight improvement toward later positions, but no consistent dip in the middle.

This absence of positional bias suggests that newer models may have mitigated some of the structural
weaknesses previously associated with position encoding. However, the broader challenge remains:
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frontier LLMs lag behind humans on SEALQA:
the best model, O3-HIGH, reached 28.0% accu-
racy, compared with human averages of 38.8% in
open search and 50.4% in oracle, and top human
scores of 64.0% and 72.0%, respectively. Hu-
mans answered within five minutes in 52.8% of
cases but were correct only 53.0% of the time,
which highlights the dual challenge of retriev-
ing relevant information and reasoning through
conflicting sources in SEALQA.

3.3 RESULTS ON LONGSEAL

We now switch gears to discuss our evaluation
results on LONGSEAL (Figure 5).

Frontier LLMS struggle on LONGSEAL with in-
creased distractors: All models exhibit a clear
drop in accuracy as the number of hard negatives
increases. For example, when the gold document
appears immediately after the question (1st po-
sition), GPT-4.1-MINI’s accuracy decreases from
32.7% at k = 12 (12 hard negatives, Figure 5a)
to 29.9% at k = 20 and 29.5% at k = 30 (Fig-
ure 5b and c, respectively). The degradation is
more pronounced in smaller or less capable mod-
els: GPT-4O-MINI falls from 24.0% to 6.3% and
then 3.9%, while LLAMA-3.2-11B drops from
10.2% to 2.0% and 2.4%.

These results indicate that simply increasing con-
text size does not guarantee effective context use. When many hard negatives are present, models
often struggle to identify and prioritize the gold document. The primary failure mode appears to be
the inability to reliably filter relevant from irrelevant content at scale. High distractor density impairs
relevance estimation, even when all input documents fit within the context window. This suggests
a need for architectural advances or training strategies that enhance implicit retrieval and salience
detection to improve performance in large-context, multi-document QA settings.

Table 6: Frontier models fail to extract correct
answers even when no distractors are provided.

Models W/ EVIDENCE W/O SEARCH W/ SEARCH

GPT-4.1 48.0 15.0 20.5
O3-MINI 56.7 14.6 12.2
LLAMA-4-SCOUT 33.5 5.9 5.9
DEEPSEEK-R1 49.2 19.3 15.4

To understand why models achieve low perfor-
mance, we conducted an experiment to disentan-
gle reasoning from retrieval. In this setup, models
received only gold documents, with hard nega-
tives removed. Table 6 shows that performance
remains low even under these ideal conditions
(W / EVIDENCE). GPT-4.1 and O3-MINI achieved
only 48.0% and 56.7%, respectively, and no open-
source models exceeded 50.0%. These results
suggest that SEALQA’s difficulty arises from both reasoning and retrieval challenges.

Absence of classic positional bias in Liu et al. (2024): Unlike earlier work that reports a strong
“lost in the middle” effect, our results show no clear U-shaped positional trend. GPT-4.1-MINI maintains
stable accuracy across positions, with only minor fluctuations from start to end; even at k = 30, its
performance varies little between early, middle, and late placements. LLAMA-4-SCOUT shows a
slight improvement toward later positions, but no consistent dip in the middle.
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This absence of positional bias suggests that newer models may have mitigated some of the structural
weaknesses previously associated with position encoding. However, the broader challenge remains:
regardless of position, models often fail to recognize the gold document when distractors are numerous.
The issue has shifted from sensitivity to position to a more general difficulty in modeling relevance
within large, noisy contexts.

4 RELATED WORK

Reasoning under knowledge conflict: Prior work shows that LLMS can be vulnerable to misinfor-
mation (Pan et al., 2023), irrelevant context (Shi et al., 2023), and conflicting sources (Kazemi et al.,
2023). Retrieval quality strongly influences model output; however, contradictions between sources
often have only a minimal effect on model confidence (Chen et al., 2022). Wan et al. (2024) find that
models prioritize surface-level relevance over credibility indicators such as scientific references or
neutral tone. While LLMS can detect conflict (Jiayang et al., 2024), they struggle to resolve it (Wang
et al., 2024; Xu et al., 2024a). Models also exhibit confirmation bias by favoring evidence that aligns
with their parametric memory (Chen et al., 2022), often resolving contradictions in favor of internal
knowledge (Jin et al., 2024; Jiayang et al., 2024). Still, Xie et al. (2024b) show that models remain
highly receptive to contradictory external evidence when it is coherent and convincing. Additional
biases include favoring frequent evidence and relying on memory for common knowledge but external
sources for long-tail knowledge (Jin et al., 2024). See Xu et al. (2024b) for a comprehensive survey.
Building on these insights, recent work has introduced benchmarks targeting specific types of re-
trieval conflicts. Some focus on specific challenges, such as entity ambiguity (AMBIGDOCS; Lee et al.,
2024), credible yet conflicting sources (WIKICONTRADICT; Hou et al., 2024), debatable questions
(DEBATEQA; Xu et al., 2024a), and Shaier et al. (2024) for citation-aware QA under ambiguity.
Other assess model behavior under noisy contexts, such as faithfulness under unanswerable, incon-
sistent, and counterfactual contexts (FAITHEVAL; Ming et al., 2025), or reasoning over conflicting
contexts (QACC; Liu et al., 2025), as well as analyzing what shapes predictions, such as textual
features (CONFLICTINGQA; Wan et al., 2024) and conflict sources (CONFLICTBANK; Su et al., 2024).
Most recently, Wang et al. (2025) augment AMBIGDOCS examples with simulated ambiguity, misin-
formation, and noise to create RAMDOCS. Our work complements this growing body by introducing
a unified benchmark that brings together real-world challenges, such as ambiguity, misinformation,
temporal drift, and noisy retrieval, through expert-curated, naturally occurring questions, without
relying on synthetic augmentation.

Measuring factuality and reasoning in LLMS: SEALQA aligns with a growing body of work on
time-sensitive QA benchmarks (Chen et al., 2021; Zhang & Choi, 2021; Liska et al., 2022; Kasai
et al., 2023; Vu et al., 2024, inter alia). SEALQA also fits among recent challenging benchmarks
that evaluate LLMS across factuality, reasoning, and retrieval. Benchmarks like MMLU (Hendrycks
et al., 2021a), MATH (Hendrycks et al., 2021b), GPQA (Rein et al., 2024), and HUMANITY’S LAST

EXAM (Phan et al., 2025) focus on academic or expert-level reasoning. Others evaluate open-domain
retrieval (FRESHSTACK; Thakur et al., 2025), multi-hop, multi-document reasoning (FRAMES; Krishna
et al., 2025), and real-world software engineering tasks (SWE-BENCH; Xie et al., 2024a). Targeted
evaluations such as SIMPLEQA (Wei et al., 2024) and BROWSECOMP (Wei et al., 2025) measure factual
recall and web browsing competence. These datasets push different axes of model performance,
and SEALQA complements them by providing a unified benchmark spanning all three dimensions:
factuality, reasoning, and retrieval, through naturally occurring, adversarially curated questions that
reflect real-world QA complexity.

5 CONCLUSION

We introduce SEALQA, a benchmark for evaluating Search-Augmented Language Models on chal-
lenging factual questions where web search results may be conflicting, noisy, or irrelevant. SEALQA
includes three flavors: SEAL-0, which includes questions that challenge today’s frontier models; SEAL-
HARD, a wider collection of difficult queries; and LONGSEAL, which is designed to test long-context
reasoning in “needle-in-a-haystack” settings. Our evaluations show that frontier LLMS, including
agentic models with search tools, underperform on SEALQA and are vulnerable to noisy search results,
with increased test-time compute often not leading to reliable performance gains. LONGSEAL in
particular highlights the difficulty models face in identifying relevant information amid distractors,
though they exhibit reduced susceptibility to the “lost-in-the-middle” issue. We hope that SEALQA
will spur more fundamental research into tackling real-world challenges in retrieval-augmented
reasoning.
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CODE OF ETHICS AND ETHICS STATEMENT

We ensure that all sources used in SEALQA are publicly available and used exclusively for academic
research in full compliance with the copyright terms of the original sources. We carefully verify
that none of the data include harmful content such as racial discrimination, violence, or private
information. The dataset is freely available to researchers for academic purposes. All data and
experiments presented in our work follow scientific standards that guarantee the authenticity and
accuracy of the results.

REPRODUCIBILITY

The datasets and annotation process are detailed in Section 2, and the experimental settings are
presented in Section 3.
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A ADDITIONAL TEST-TIME SCALING RESULTS ON SEALQA

Figure 6: Frontier model performance before (left) and after (right) the release of SEAL-HARD.
Despite potential data contamination or direct access by agentic models, SEAL-HARD continues to
pose a significant challenge for current frontier LLMs.
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B SAMPLE SEALQA QUESTIONS

Question Type Freshness Answer Explanation

What is the smallest cube 
number which can be 
expressed as the sum of 
two different positive cube 
numbers in two different 
ways?

entity/event 
disambiguation, 
false-premise 
detection

never-
changing

According to the 
Fermat's Last 
Theorem, it is 
impossible for a 
cube number to 
be a sum of two 
cube numbers.

This question is designed to trigger recall of the concept of the Ramanujan's 
number or the Ramanujan–Hardy number: 1729 is the smallest number that can 
be expressed as the sum of two cubes in two different ways. Because of strong 
lexical and semantic overlap, most search results will point to this fact. As a 
result, "naive" models might incorrectly answer 1729. According to the Fermat's 
Last Theorem, it is impossible for a cube number to be a sum of two cube 
numbers.

What was the most recent 
award Yann LeCun, 
Geoffrey Hinton, and 
Yoshua Bengio won 
together for their work on 
deep neural networks?

temporal 
tracking

slow-
changing

The 2025 Queen 
Elizabeth Prize 
for Engineering

This question aims to recall the 2018 Turing Award, won by Yann LeCun, Geoffrey 
Hinton, and Yoshua Bengio. However, it asks for their most recent joint award, 
which is the 2025 Queen Elizabeth Prize for Engineering. Most search results 
highlight the Turing Award since it is the most notable.

How many total offices has 
Google opened across the 
Asia–Pacific, Africa, and 
Middle East regions since 
January 1, 2022?

advanced 
reasoning

fast-
changing

11 This question requires comparing the total number of Google offices in the Asia–
Pacific, Africa, and Middle East regions on January 1, 2022, with the current total. 
The difference shows how many offices have opened since that date. Based on 
the cited Wikipedia pages that list Google’s offices by region — one from January 
1, 2022, and one current — the total was 18+5=23 on January 1, 2022, and the 
current total is 26+8=34. Therefore, the correct answer is 34-23=11.

Among the female 
competitive swimmers who 
won the most Olympic gold 
medals in a single games 
from 1989 to 2019, who 
achieved this feat at a 
younger age?

advanced 
reasoning

never-
changing

Missy Franklin This question involves listing multiple Olympic gold medalists at a single Games 
and identifying among the female competitive swimmers who won the most 
Olympic gold medals in a single games from 1989 to 2019, who achieved this feat 
at a younger age. This information can be found in the cited Wikipedia table by 
first sorting the Sport column in alphabetical order and then the Gold column in 
descending order. Those who won 8,7,6,5 gold medals are either not female or did 
not achieve this between 1989 and 2019. The following are female competitive 
swimmers who won 4 medals in a single Games between 1989 and 2019: Katie 
Ledecky (born 1997, Summer Olympic 2016, so she was around 19 years old), 
Missy Franklin (born 1995, Summer Olympic 2012, around 17 years old), and Amy 
Van Dyken (born 1973, Summer Olympic 1996, around 23 years old). Therefore, the 
correct answer is Missy Franklin.

Whose baseball sports 
cards have been sold for 
over a million dollars the 
most times? For the same 
card, only the highest sale 
value is counted.

advanced 
reasoning

slow-
changing

Babe Ruth This question requires filtering a table to include only baseball players, selecting 
sports cards sold for over one million dollars, and removing duplicate sales of the 
same card; then, group the results by player name to determine who appears 
most frequently. The correct answer is Babe Ruth. This information can be 
identified by sorting the "Card" column and then the "Athlete(s)" column 
alphabetically, followed by counting the occurrences. Both Babe Ruth and LeBron 
James had 4 cards. However, LeBron James is not a baseball player.

I am a father of two 
undergraduate sons who 
enrolled in Virginia Tech's 
Virtual Campus for 
Summer 2025. One was a 
Virginia resident taking 6 
credit hours, and the other 
was a non-resident taking 
8 credit hours. What was 
the total tuition I needed to 
pay for both?

advanced 
reasoning

never-
changing

$14,746 This question involves retrieving the tuition and fees for Virginia Tech's 
undergraduate virtual campus during the Summer 2025 semester. Tuition was 
$548.00 per credit hour for Virginia residents and $1,432.25 per credit hour for 
non-Virginia residents. Therefore, the correct answer is 6*548.00 + 8*1,432.25 = 
$14,746.

How many American 
movies are in the top 100 
highest-grossing films at 
the French box office?

cross-lingual 
reasoning

fast-
changing

59 This question requires identifying the top 100 highest-grossing list at the French 
box office and determining how many of those films are American productions. 
Based on the cited Wikipedia article written in French, the correct answer is 59.

What is the valency of 
mercury in Mercury(I) 
chloride?

entity/event 
disambiguation

never-
changing

2 The question is based on a common misunderstanding that valency and oxidation 
state is the same. In Hg2Cl2, the oxidation state of mercury is +1 while its valency is 
2.

Figure 7: SEALQA questions test a broad range of reasoning skills that are often overlooked in existing
benchmarks.
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C TEMPLATE FOR GPT-4O MINI AUTO-RATER

GRADER_TEMPLATE = """
Your job is to look at a question, a gold target, and a predicted answer,

and then assign a grade of either ["CORRECT", "INCORRECT", "
NOT_ATTEMPTED"].

First, I will give examples of each grade, and then you will grade a new
example.

The following are examples of CORRECT predicted answers.
‘‘‘
Question: What are the names of Barack Obama’s children?
Gold target: Malia Obama and Sasha Obama
Predicted answer 1: sasha and malia obama
Predicted answer 2: most people would say Malia and Sasha, but I’m not

sure and would have to double check
Predicted answer 3: Barack Obama has two daughters. Their names are Malia

Ann and Natasha Marian, but they are commonly referred to as Malia
Obama and Sasha Obama. Malia was born on July 4, 1998, and Sasha was
born on June 10, 2001.

‘‘‘
These predicted answers are all CORRECT because:

- They fully contain the important information in the gold target.
- They do not contain any information that contradicts the gold target.

- Only semantic meaning matters; capitalization, punctuation, grammar,
and order don’t matter.

- Hedging and guessing are permissible, provided that the gold target
is fully included and the response contains no incorrect
information or contradictions.

The following are examples of INCORRECT predicted answers.
‘‘‘
Question: What are the names of Barack Obama’s children?
Gold target: Malia and Sasha
Predicted answer 1: Malia.
Predicted answer 2: Malia, Sasha, and Susan.
Predicted answer 3: Barack Obama does not have any children.
Predicted answer 4: I think it’s either Malia and Sasha. Or it could be

Malia and Jackie. Or it could be Joey and Malia.
Predicted answer 4: While I don’t know their exact names, I can tell you

that Barack Obama has three children.
Predicted answer 5: It’s possible you may mean Betsy and Olivia. However,

you should clarify further details with updated references if
necessary. Is that the correct answer?

Predicted answer 6: It may be the case that Obama’s child is named James.
However, it’s recommended to confirm the most accurate and updated

information since this could change over time. This model may not
always reflect the most current information.

‘‘‘
These predicted answers are all INCORRECT because:

- A factual statement in the answer contradicts the gold target.
Incorrect statements that have some hedging (e.g., "it is possible
that", "although i’m not sure, i think") are also considered
incorrect.

The following are examples of NOT_ATTEMPTED predicted answers.
‘‘‘
Question: What are the names of Barack Obama’s children?
Gold target: Malia and Sasha
Predicted answer 1: I don’t know.
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Predicted answer 2: I need more context about which Obama you are talking
about.

Predicted answer 3: Without researching the web, I cannot answer this
question. However, I can tell you that Barack Obama has two children.

Predicted answer 4: Barack Obama has two children. I know that one of
them is Malia, but I’m not sure about the other one.

‘‘‘
These predicted answers are all NOT_ATTEMPTED because:

- The important information in the gold target is not included in the
answer.

- No statements in the answer contradict the gold target.

Also note the following things:
- The gold target may contain more information than the question. In such

cases, the predicted answer only needs to contain the information
that is in the question.
- For example, consider the question "What episode did Derek and

Meredith get legally married in Grey’s Anatomy?" with gold target
"Season 7, Episode 20: White Wedding". Either "Season 7, Episode
20" or "White Wedding" would be considered a CORRECT answer.

- Do not punish predicted answers if they omit information that would be
clearly inferred from the question.
- For example, consider the question "What city is OpenAI

headquartered in?" and the gold target "San Francisco, California".
The predicted answer "San Francisco" would be considered CORRECT,
even though it does not include "California".

- Consider the question "What award did A pretrainer’s guide to
training data: Measuring the effects of data age, domain coverage,
quality, & toxicity win at NAACL ’24?", the gold target is "
Outstanding Paper Award". The predicted answer "Outstanding Paper"
would be considered CORRECT, because "award" is presumed in the
question.

- Do not give credit for an answer if it contains any internal
inconsistency.
- For example, consider the question: "How many NBA players have

scored 60 or more points in a regular season game since 2024?"
with the gold answer "8". A response is INCORRECT if it states "8
players" but lists 7 or 9, or if it initially says "8 players" but
later contradicts this by concluding 7 or 9.

Here is a new example. Simply reply with either CORRECT, INCORRECT, NOT
ATTEMPTED. Don’t apologize or correct yourself if there was a mistake;
we are just trying to grade the answer.

‘‘‘
Question: {question}
Gold target: {target}
Predicted answer: {predicted_answer}
‘‘‘

Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
C: NOT_ATTEMPTED

Just return the letters "A", "B", or "C", with no text around it.
""".strip()

D SEAL-HARD RESULTS BY QUESTION CATEGORY

Tables 7, 8, 9, 10, and 11 show a breakdown of SEAL-HARD results by question category. Overall,
models perform poorly across question categories, especially on cross-lingual reasoning, false-
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premise detection, and questions that involve recent or rapidly changing information. Performance
also degrades more when search results are uniformly unhelpful than when they contain conflicting
answers.
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† indicates results using CHATGPT’s built-in search; all other search-based results use FRESH-
PROMPT (Vu et al., 2024).

Table 7: On SEAL-HARD, LLMS tend to underperform on cross-lingual reasoning (Q4) and false-
premise detection (Q5) compared to advanced reasoning (Q1), entity/event disambiguation (Q2), and
temporal tracking (Q3).

Model W/O SEARCH

Q1 Q2 Q3 Q4 Q5

Closed-source models
GPT-4O-MINI 6.5 7.4 22.9 7.1 0.0
GPT-4.1-MINI 10.9 15.5 22.9 14.3 9.1
GPT-4O 9.8 13.5 11.4 0.0 0.0
GPT-4.1 14.1 14.2 25.7 0.0 0.0
O3-MINI-HIGH 10.9 14.9 14.3 0.0 0.0
O4-MINI-HIGH – – – – –
O3-HIGH – – – – –
GPT-5-MINI-HIGH 15.2 18.9 20.0 0.0 9.1
GPT-5-HIGH 34.2 41.9 34.3 21.4 36.4

Open-weight models
LLAMA-3.2-3B 0.0 1.4 0.0 0.0 0.0
LLAMA-3.1-70B 3.3 4.7 5.7 0.0 0.0
LLAMA-4-SCOUT-17B-16E (109B) 4.9 6.8 5.7 0.0 0.0
QWEN3-235B-A22B 2.2 4.1 5.7 0.0 0.0
DEEPSEEK-R1-DISTILL-QWEN-1.5B 1.1 2.0 0.0 0.0 0.0
DEEPSEEK-R1-DISTILL-QWEN-14B 6.5 8.1 17.1 0.0 0.0
DEEPSEEK-R1-671B 20.7 23.0 22.9 7.1 0.0
DEEPSEEK-R1-0528-671B 18.5 19.6 20.0 7.1 9.1
GPT-OSS-20B-HIGH 2.2 3.4 0.0 0.0 9.1
GPT-OSS-120B-HIGH 8.7 13.5 5.7 0.0 9.1
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Table 8: On SEAL-HARD, LLMS tend to underperform on cross-lingual reasoning (Q4) and false-
premise detection (Q5) compared to advanced reasoning (Q1), entity/event disambiguation (Q2), and
temporal tracking (Q3).

Model W/ SEARCH

Q1 Q2 Q3 Q4 Q5

Closed-source models
GPT-4O-MINI 11.4† 10.8† 17.1† 14.3† 9.1†

GPT-4.1-MINI 8.2† 11.5† 14.3† 0.0† 0.0†

GPT-4O 11.4† 15.5† 17.1† 7.1† 0.0†

GPT-4.1 20.1† 17.6† 25.7† 21.4† 9.1†

O3-MINI-HIGH 9.8 10.1 22.9 7.1 9.1
O4-MINI-HIGH 20.1† 18.2† 22.6† 0.0† 9.1†

O3-HIGH 31.0† 31.8† 45.7† 14.3† 27.3†

GPT-5-MINI-HIGH 61.4† 57.4† 57.1† 57.14† 45.5†

GPT-5-HIGH 64.7† 60.8† 57.1† 57.1† 54.5†

Open-weight models
LLAMA-3.2-3B 2.7 2.7 8.6 0.0 0.0
LLAMA-3.1-70B 4.3 4.7 14.3 7.1 9.1
LLAMA-4-SCOUT-17B-16E (109B) 4.3 6.8 8.6 0.0 0.0
QWEN3-235B-A22B 9.2 10.8 14.3 0.0 18.2
DEEPSEEK-R1-DISTILL-QWEN-1.5B 1.1 2.7 0.0 0.0 0.0
DEEPSEEK-R1-DISTILL-QWEN-14B 8.2 9.5 25.7 0.0 18.2
DEEPSEEK-R1-671B 10.3 10.8 14.3 0.0 18.2
DEEPSEEK-R1-0528-671B 15.2 12.8 17.1 7.1 18.2
GPT-OSS-20B-HIGH 5.4 9.5 8.6 0.0 18.2
GPT-OSS-120B-HIGH 13.0 22.3 11.4 0.0 36.4
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† indicates results using CHATGPT’s built-in search; all other search-based results use FRESH-
PROMPT (Vu et al., 2024).

Table 9: Questions that involve rapidly changing information, i.e., fast-changing questions, pose
significant challenges for LLMS on SEAL-HARD.

Model W/O SEARCH W/ SEARCH

NEVER SLOW FAST NEVER SLOW FAST

Closed-source models
GPT-4O-MINI 15.2 9.0 1.6 16.5† 10.8† 14.1†

GPT-4.1-MINI 20.3 15.3 3.1 12.7† 10.8† 12.5†

GPT-4O 16.5 12.6 4.7 15.2† 15.3† 14.1†

GPT-4.1 21.5 18.0 1.6 17.7† 24.3† 17.2†

O3-MINI-HIGH 20.3 12.6 3.1 12.7 10.8 10.9
O4-MINI-HIGH – – – 24.1† 19.8† 12.5†

O3-HIGH – – – 39.2† 36.9† 17.2†

GPT-5-MINI-HIGH 27.8 16.2 4.7 55.7† 63.1† 60.9†

GPT-5-HIGH 48.1 42.3 17.2 64.6† 69.4† 53.1†

Open-weight models
LLAMA-3.2-3B 1.3 0.9 0.0 3.8 4.5 1.6
LLAMA-3.1-70B 7.6 2.7 3.1 6.3 8.1 3.1
LLAMA-4-SCOUT-17B-16E (109B) 10.1 4.5 4.1 6.3 4.5 7.8
QWEN3-235B-A22B 7.6 3.6 1.6 12.7 8.1 15.6
DEEPSEEK-R1-DISTILL-QWEN-1.5B 0.0 1.8 1.6 1.3 2.7 0.0
DEEPSEEK-R1-DISTILL-QWEN-14B 7.6 9.0 4.7 10.1 9.0 14.1
DEEPSEEK-R1-671B 32.9 24.3 6.2 15.2 9.9 7.8
DEEPSEEK-R1-0528-671B 31.6 18.0 6.3 19.0 14.4 12.5
GPT-OSS-20B-HIGH 5.1 2.7 0.0 11.4 6.3 6.3
GPT-OSS-120B-HIGH 19.0 8.1 4.7 29.1 13.5 7.8
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Table 10: LLMS struggle with questions that involve recent information on SEAL-HARD.

Model W/O SEARCH W/ SEARCH

BEFORE 2024 2024 2025 BEFORE 2024 2024 2025

Closed-source models
GPT-4O-MINI 13.4 6.1 0.0 16.1† 16.3† 3.6†

GPT-4.1-MINI 20.1 8.2 1.8 10.7† 20.4† 7.1†

GPT-4O 16.8 8.2 1.8 15.4† 18.4† 10.7†

GPT-4.1 23.5 6.1 0.0 25.5† 20.4† 7.1†

O3-MINI-HIGH 20.5 2.6 1.4 14.4 12.8 4.3
O4-MINI-HIGH – – – 26.7† 7.7† 10.1†

O3-HIGH – – – 45.9† 15.4† 14.5†

GPT-5-MINI-HIGH 26.7 2.6 4.3 58.9† 66.7† 59.4†

GPT-5-HIGH 50.0 30.8 15.9 67.1† 61.5† 58.0†

Open-weight models
LLAMA-3.2-3B 1.3 0.0 0.0 5.4 2.0 0.0
LLAMA-3.1-70B 6.0 2.0 1.8 8.7 6.1 0.0
LLAMA-4-SCOUT-17B-16E (109B) 8.7 4.1 0.0 7.4 6.1 1.8
QWEN3-235B-A22B 6.7 2.0 0.0 12.8 16.3 3.6
DEEPSEEK-R1-DISTILL-QWEN-1.5B 0.7 2.0 1.8 2.7 0.0 0.0
DEEPSEEK-R1-DISTILL-QWEN-14B 10.7 6.1 0.0 11.4 14.3 5.4
DEEPSEEK-R1-671B 35.6 8.2 0.0 14.8 6.1 5.4
DEEPSEEK-R1-0528-671B 27.5 10.2 5.4 19.5 14.3 5.4
GPT-OSS-20B-HIGH 3.4 0.0 2.9 8.9 11.4 6.3
GPT-OSS-120B-HIGH 14.4 2.6 7.2 23.3 7.7 8.7

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

† indicates results using CHATGPT’s built-in search; all other search-based results use FRESH-
PROMPT (Vu et al., 2024).

Table 11: On SEAL-HARD, performance degrades more when search results are uniformly unhelpful
than when they contain conflicting answers.

Model W/O SEARCH W/ SEARCH

UNHELPFUL CONFLICTING UNHELPFUL CONFLICTING

Closed-source models
GPT-4O-MINI 7.2 10.4 10.9† 15.3†

GPT-4.1-MINI 10.0 16.6 10.0† 13.2†

GPT-4O 9.0 13.8 11.8† 17.4†

GPT-4.1 14.5 15.3 18.2† 22.2†

O3-MINI-HIGH 10.9 13.9 8.2 13.9
O4-MINI-HIGH – – 18.2† 20.1†

O3-HIGH – – 30.0† 34.7†

GPT-5-MINI-HIGH 11.8 20.8 58.2† 61.8†

GPT-5-HIGH 36.4 38.9 62.7† 64.6†

Open-weight models
LLAMA-3.2-3B 0.0 1.3 2.7 4.2
LLAMA-3.1-70B 1.8 6.2 4.5 7.6
LLAMA-4-SCOUT-17B-16E (109B) 3.6 7.6 4.5 6.9
QWEN3-235B-A22B 3.6 4.8 8.2 13.9
DEEPSEEK-R1-DISTILL-QWEN-1.5B 0.0 2.0 2.7 0.7
DEEPSEEK-R1-DISTILL-QWEN-14B 2.7 11.1 7.3 13.2
DEEPSEEK-R1-671B 20.9 23.6 9.1 12.5
DEEPSEEK-R1-0528-671B 18.2 20.1 11.8 18.1
GPT-OSS-20B-HIGH 1.8 3.5 5.4 9.7
GPT-OSS-120B-HIGH 6.4 13.9 7.3 24.3
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E SEAL-HARD RESULTS BY ANSWER TYPE

Figure 8 shows SEAL-HARD results broken down by answer type: “correct”, “incorrect”, and “not
attempted”. We find that open-weight models like LLAMA-4-SCOUT and DEEPSEEK-R1 choose to “not
attempt” questions more often than proprietary models such as GPT-4.1, O4-MINI, and O3.

L -4-S D S -R1 GPT-4.1 4- 3

/  s
5.9%28.7%

65.4%

22.4%

9.5%

68.1%

15.0%
0.8%

84.2%

- -

/ s
5.9%

15.8%

78.3%

11.0%
6.7%

82.3%

20.5%

2.0%

77.5%

19.7%

1.2%

79.1%

34.6%

0.8%

64.6%

S -H  results by answer type

correct incorrect not attempted

Figure 8: On SEAL-HARD, open-weight models like LLAMA-4-SCOUT and DEEPSEEK-R1 choose to
“not attempt” questions more often than proprietary models such as GPT-4.1, O4-MINI, and O3.
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F HUMAN PERFORMANCE

Table 12: Performance of humans and frontier models on a subset of 50 SEAL-HARD questions.

(a) Performance of frontier models

Model Accuracy (%)
GPT-4O 6.0
GPT-4.1 6.0
O3-MINI-HIGH 8.0
O4-MINI-HIGH 12.0
O3-HIGH 28.0

(b) Performance of Humans

Overall accuracy (%) Open Oracle
Average accuracy 38.8 50.4
Best accuracy 64.0 72.0

Answer speed and accuracy
Share of answers given < 5 minutes 52.8
Accuracy of those fast answers 53.0

G QUALITATIVE ANALYSIS

Two authors independently evaluated 100 responses from six models: GPT-4.1 (without search, with
FRESHPROMPT, and with built-in search); O3-MINI, O3 (both under a medium reasoning effort); and
DEEPSEEK-R1-671B. Our analysis reveals clear differences across models in their reasoning and use
of external knowledge. Among the GPT-4.1 variants, the base model without search occasionally
includes relevant URLS but often produces inaccurate answers due to outdated knowledge. The
FRESHPROMPT version is better at detecting false-premise questions and tends to be more concise,
though its accuracy depends heavily on retrieval quality. The built-in search variant produces more
logically coherent answers and higher-quality citations, which supports factual verification, though it
still exhibits occasional errors. We find that O3 is capable of producing more informed and concise
responses; however, it sometimes overthinks and mistakenly rejects valid answers. O3-MINI’s outputs
are easy to follow, yet the model occasionally misses relevant reasoning paths. Notably, both models
generally acknowledge their knowledge cutoffs for time-sensitive queries, seek clarification, and
suggest alternative strategies to support user decision-making. Finally, DEEPSEEK-R1-671B tends
to overthink and frequently repeats phrases like “wait”, “let me think”, and “alternatively” without
arriving at a clear conclusion. Its lack of structured formatting also makes its responses harder to
follow compared to GPT-4.1 and O3 models.
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H SAMPLE MODEL OUTPUTS

Table 13: Sample responses from several frontier models. Text in blue shows when a model starts on the correct
reasoning path but later shifts to an incorrect conclusion, which is shown in red.

O4-MINI-HIGH

Who is the only
female artist
to have topped
Spotify’s list of
most-streamed
artists in
three consec-
utive years
(2020–2022)?

No one **Recalling top artists**
Okay, let’s verify the most-streamed artists on Spotify by year. For 2020, it
was Bad Bunny with 8.3 billion streams. In 2021, I initially thought Drake
topped the list, and indeed, he did with about 9.2 billion, followed by Bad
Bunny at 9.1 billion and J. Cole third. Moving to 2022, it looks like Bad
Bunny returned to the top with 18 billion streams, confirming he was the
most streamed artist again. I’ll need to check the latest articles for more
accuracy.
**Identifying the top female artist**
Let’s figure out who the only female artist is that topped Spotify’s list of
most-streamed artists for three consecutive years, specifically from 2020
to 2022. Bad Bunny was the top male artist, so it can’t be him. I think the
question might refer to female artists, possibly indicating records within
that category.
Ariana Grande could be a candidate since she topped the female artist list
in 2020. I need to confirm if she held that position in 2021 and 2022 as
well. Let’s check!
**Clarifying the top female artist question**
I’m trying to break down whether the phrase “only female artist to have
topped Spotify’s list of most-streamed artists in three consecutive years”
refers to a global category or just female artists. It seems like it might hint
at the global list, but Bad Bunny and Drake held those spots in 2020 and
2021, suggesting no female artists topped that list globally . Instead, I
think it might refer to female artist categories specifically, likely hinting at
Taylor Swift, who seems to have topped the lists in those years—I’ll need
to confirm that!
**Confirming top female artist status**
Let’s clarify the question about which female artist topped Spotify’s list of
most-streamed artists in three consecutive years from 2020 to 2022. I see
that during this period, no female artist topped the global charts, as those
positions went to male artists . It seems the question likely refers to the
female category specifically. Given that Taylor Swift has been highlighted
as the top female artist for those years, it appears she’s the answer. I’ll
double-check the details to ensure accuracy!
**Identifying the top artist**
I’ve figured it out: the answer is Taylor Swift. From 2020 to 2022, she was
Spotify’s most-streamed female artist globally. This makes her the only
female artist to top that list for three consecutive years . Although there
might be some confusion with Ariana Grande, it’s definitely Taylor who
holds this title. If I summarize my findings, I can simply state that Taylor
Swift was the most-streamed artist during those years, confirming my final
answer clearly as Taylor Swift.
Final answer: Taylor Swift. She was Spotify’s most-streamed (female)
artist globally in 2020, 2021 and 2022—making her the only woman to
top that chart three years running.

Question Correct
answer Model response
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Table 13: Sample responses from several frontier models. Text in blue shows when a model starts on the correct
reasoning path but later shifts to an incorrect conclusion, which is shown in red. (Continued)

O3-HIGH

How many
times has a
U.S. team
won the ICPC
World Finals
after 1997—a
period largely
dominated by
Russian and
Chinese teams?

One **Counting ICPC Wins for U.S. Teams**
I’m analyzing how many times a U.S. team has won the ICPC World
Finals since 1997, a period dominated by Russian and Chinese teams.
After verifying the winners from 1998 to the present (2024), it’s clear that
I need to count the instances where the winning university is from the U.S.
Based on my recap, it seems like there might be two wins. My next step is
to confirm this with the full list of winners.
**Recalling ICPC Winners**
I’m compiling the winners of the ICPC from the years following 1997. The
last U.S. win I note is from 1997, when Harvey Mudd College triumphed.
After that, the champions seem mostly to come from Russia and China.
I’m looking back at the details year by year to see if there were any U.S.
winners in the years following 1997. So far, it looks like there might not
be many left, which I’ll confirm soon.
**Confirming U.S. ICPC Wins**
I’m sorting through the ICPC winners since 1998 to determine how many
times a U.S. team has won since then, starting with the list of champions.
It looks like after checking the winners, St. Petersburg ITMO and Moscow
State University frequently took the title. However, I want to confirm that
there was indeed a U.S. win in 2022 by MIT. Overall, I suspect there’s
only one U.S. win after 1997, which I’ll clarify soon.
Final answer: Zero. Since Harvey Mudd College’s victory in 1997, no
U.S. university has won the ICPC World Finals.

GPT-5-HIGH

Which two
countries share
the longest
continuous
international
border in the
world by total
length?

Kazakhstan
and Russia

**Answering border question**
I need to answer which two countries share the longest continuous inter-
national border. That would be Canada and the United States, which is
about 8,891 kilometers (or 5,525 miles) long, including Alaska. I want
to be clear, as it’s often quoted this way. The question highlights that it’s
a stable fact, so I don’t need to look anything up. Keeping it concise is
essential, but mentioning Alaska might be good for clarity. **Clarifying
the border definition**
I need to be cautious about using the web.run tool since the fact I’m ad-
dressing is stable and won’t change—it’s not necessary to browse. For a
concise response, I’ll state that Canada and the United States share the
longest continuous international border, approximately 8,891 kilometers
(or 5,525 miles). The term ""continuous"" might imply that it’s not sepa-
rated by maritime boundaries. While it’s punctuated by water in the Great
Lakes, it’s still considered continuous because those areas are recognized
as part of the international border.
Final answer: Canada and the United States (about 8,891 km / 5,525
miles).

Question Correct
answer Model response
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Table 13: Sample responses from several frontier models. Text in blue shows when a model starts on the correct
reasoning path but later shifts to an incorrect conclusion, which is shown in red. (Continued)

DEEPSEEK-R1

Which tropical
rainforest rep-
resents a quar-
ter of the to-
tal area of re-
maining tropi-
cal forests on
Earth and com-
prises one of
the largest and
most biodiverse
tracts of tropi-
cal rainforest in
the world?

Congolian
rainforests

Okay, so the question is asking which tropical rainforest represents a
quarter of the remaining tropical forests and is one of the largest and most
biodiverse. Let me think.
First, I know the major tropical rainforests are the Amazon, Congo Basin,
and the Southeast Asian ones like Borneo and New Guinea. The Amazon
is the biggest, right? But I need to confirm if it’s a quarter of the remaining
area. The Congo Basin is also huge. Then there’s the issue of biodiversity.
The Amazon is known for its biodiversity, but so are some others.
Wait, the question says ""a quarter of the total area of remaining tropical
forests."" So which one is that? The Amazon is often cited as the largest,
covering around 5.5 million square kilometers. If the total remaining
tropical forests are, say, around 20 million square kilometers, then the
Amazon would be about a quarter. Let me check approximate numbers.
I remember that the total tropical forest area is decreasing, but estimates
might vary. Some sources say the Amazon is about half of the world’s
remaining rainforests. Wait, that might not be right. Maybe the Amazon is
about a third? Hmm.
Alternatively, maybe the Congo Basin is second, but the Amazon is defi-
nitely larger. If the total remaining tropical rainforest is, say, 10 million
square km, then the Amazon being 5.5 million would be more than half.
But maybe the total is higher. Let me think. According to some sources,
tropical rainforests cover about 17-20 million square km globally. The
Amazon is around 5.5 million, so that’s roughly a third. Wait, but the ques-
tion says a quarter. Maybe the answer is the Amazon, but the percentage
is a quarter. Maybe the total remaining is higher. Alternatively, perhaps
the user is referring to the Amazon as a quarter.
Also, the part about ""comprises one of the largest and most biodiverse
tracts."" The Amazon is definitely one of the most biodiverse. The Congo
Basin is also biodiverse but maybe less so. Southeast Asian rainforests
are biodiverse too but smaller in area. So putting it all together, the
answer is likely the Amazon Rainforest. But I need to make sure about the
percentage. If the total remaining tropical rainforests are approximately 20
million km², then the Amazon at 5.5 million would be about 27.5%, which
is roughly a quarter. So that fits. Therefore, the answer is the Amazon
Rainforest.
Final answer: The **Amazon Rainforest** represents approximately a
quarter of the total area of remaining tropical forests on Earth and is one
of the largest and most biodiverse tracts of tropical rainforest in the world.
- **Size**: Spanning around 5.5 million square kilometers (2.1 million
square miles), it covers about 27% of the globe’s remaining tropical forest
area (estimated at 20 million km² total).
- **Biodiversity**: It hosts 10% of known species, including iconic
wildlife like jaguars, pink river dolphins, and countless plant and insect
species.
- **Geographic Reach**: It spans nine countries, with the majority in
Brazil, and plays a critical role in global carbon storage and climate
regulation.
This immense ecosystem is often termed the ""lungs of the Earth"" due to
its vital role in absorbing carbon dioxide and producing oxygen.

Question Correct
answer Model response

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

I ADDITIONAL SEAL-0 RESULTS

† indicates results using the model’s built-in search; all other search-based results use FRESH-
PROMPT (Vu et al., 2024).

Table 14: SEAL-0 poses a significant challenge for a range of both closed and open-source models.

Model Accuracy
Closed-source models

GROK 4 20.7†

GEMINI 2.5 PRO 19.8†

O3-PRO 18.9†

O3 15.3†

GEMINI 2.5 FLASH 13.5†

O4-MINI 6.3†

GROK 3 5.4†

GEMINI 2.5 FLASH-LITE 2.7†
O3-MINI 2.7
GROK 3 MINI 2.7†

GPT-4.1 0.0†

GPT-4.1 MINI 0.0†

Open-weight models
QWEN3-235B-A22B 5.4
DEEPSEEK-R1-671B 4.5
LLAMA-4-SCOUT-17B-16E (109B) 0.0
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