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ABSTRACT

World models increasingly rely on panoramic perception, as omnidirectional
views provide geometry-consistent observations crucial for spatial reasoning.
However, existing panoramic world models are predominantly built on video rep-
resentations, which lack explicit 3D structure. In contrast, large-scale 3D Trans-
formers such as VGGT excel at scene reconstruction from perspective inputs but
degrade under equirectangular projection (ERP) due to a projection-domain mis-
match. We frame adaptation as a projection-domain problem and surface two
failure modes of naı̈ve ERP finetuning (measure mismatch; proxy-focal entangle-
ment). We introduce Projection-Domain Adaptation, a principled framework
that restores the geometric invariances broken by ERP. Our method consists of
three innovations: ray-field alignment, which embeds explicit 3D rays to estab-
lish a rotation-consistent reference space; ray-enriched LoRA adaptation, which
achieves panoramic specialization with less than 0.5% trainable parameters; and
latitude-aware depth uncertainty, which leverages the spherical Jacobian to cor-
rect ERP’s non-uniform reliability. Once the projection interface is corrected,
head-only LoRA suffices whereas naı̈ve full finetuning degrades VGGT’s 2D–3D
priors. Across a curated Matrix-3D outdoor benchmark, new real indoor 360◦
datasets (Stanford2D3D, Matterport3D), and OOD transfer from Matrix-3D to
indoor scenes, our interface + LoRA delivers strong depth/pose with <0.5% pa-
rameters and ∼ 25× lower cost. These results highlight a geometry-grounded,
minimally invasive pathway for building panoramic world models grounded in
3D geometry, moving beyond the limitations of video-based approaches.

1 INTRODUCTION

World models aim to capture rich representations of the environment that support prediction, plan-
ning, and interaction. A key requirement for such models is a comprehensive and geometry-
consistent observation space. Panoramic cameras, which provide omnidirectional coverage, are an
appealing sensor modality in this regard. By avoiding blind spots and maintaining continuity across
directions, they enable embodied agents to reason about spatial relations in a more coherent way
than perspective views alone. These advantages explain the growing adoption of panoramic sensors
in robotics, AR/VR, and autonomous driving (Bruce et al., 2024; Zhu et al., 2024; Ding et al., 2024;
Feng et al., 2025).

Despite this promise, most existing panoramic world models are built on video representa-
tions (Drozdov et al., 2024), focusing on temporal coherence but lacking explicit 3D geometry. This
limits their ability to support tasks such as mapping, reconstruction, or navigation, where grounded
geometric reasoning is essential. In parallel, the rapid progress of large-scale 3D Transformers
such as VGGT (Wang et al., 2025b) has demonstrated strong reconstruction ability when trained on
perspective images. These models embody powerful geometric priors learned from large datasets,
which suggests a promising pathway toward geometry-aware world models. However, their assump-
tions of linear pinhole projection do not hold for panoramic inputs, where equirectangular distor-
tions, latitude-dependent sampling, and missing intrinsics disrupt the learned reasoning process. As
a result, directly applying such models to panoramas leads to severe degradation.
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In this work, we explicitly define the challenge as one of Projection-Domain Adaptation: how
to adapt perspective-trained 3D Transformers to the panoramic domain without retraining them
from scratch. Framing the task in this way highlights the broader significance: panoramic sensors
are increasingly prevalent, while foundation models will remain predominantly trained on perspec-
tive data. Bridging the two domains is therefore a necessary step toward panoramic world models
grounded in 3D geometry (Li et al., 2025; Rakheja et al., 2025).

To address this challenge, we propose a framework that restores the geometric invariances broken
by equirectangular projection (ERP) while preserving the priors encoded in perspective-pretrained
Transformers. Our approach integrates three complementary mechanisms. First, ray-field alignment
embeds explicit 3D rays into token representations, establishing a rotation-consistent reference space
that enables directional equivariance. Second, ray-enriched LoRA head adaptation specializes only
the task-specific heads while keeping the backbone frozen, achieving panoramic specialization with
less than 0.5% additional parameters. Third, latitude-aware depth uncertainty introduces spherical-
Jacobian weighting and uncertainty modeling to correct ERP’s non-uniform reliability across lati-
tudes.

Our contributions are threefold:

• We formalize Projection-Domain Adaptation as a geometry-grounded principle: adapt-
ing the projection interface (rays and surface measure) is more robust than altering the
backbone when onboarding new sensors. We explicitly surface two failure modes of naı̈ve
ERP finetuning (measure mismatch, proxy-focal entanglement) and motivate our design
choices.

• We provide a minimal, high-fidelity interface: ERP-consistent ray lifting, ray-field token
alignment, and a head-only dual-branch LoRA that preserves VGGT’s camera/register to-
kens and alternating-attention topology. All relevant symbols (latitudes/longitudes, rays,
concatenation operator, camera and register tokens) are clarified for reproducibility.

• We validate the pathway on a curated Matrix-3D outdoor benchmark and new real in-
door 360◦ datasets (Stanford2D3D, Matterport3D), plus out-of-distribution (OOD) trans-
fer from Matrix-3D to real data. Across settings, naı̈ve full finetuning degrades, while our
projection-interface + head-only LoRA achieves strong depth/pose with <0.5% trainable
parameters and ∼ 25× lower cost.

Overall, we advocate projection-domain adaptation as a conservative yet effective recipe for
panoramic 3D world models: respect the backbone’s learned geometry, correct the rays and measure
at the interface, and adapt only lightweight heads.

2 RELATED WORK

Panoramic 3D understanding faces a core tension: leveraging the geometric knowledge of
perspective-trained models while respecting spherical distortions. We briefly review four threads.

World models and video environments. Recent surveys and systems explore world modeling
at scale (Ding et al., 2024; Zhu et al., 2024; Feng et al., 2025; Kong et al., 2025) and generated
environments/agents (Bruce et al., 2024). Cross-view geometric reasoning for localization and pose
estimation further supports our focus on geometry-consistent interfaces (Shi et al., 2020).

Panoramic-specific architectures. Spherical CNNs (Cohen et al., 2018; Coors et al., 2018) operate
directly on the sphere, while projection-based methods (Wang et al., 2020; Jiang et al., 2021; Li
et al., 2022; Pintore et al., 2021; Shen et al., 2022; Ai et al., 2023) convert panoramas to cubemaps
or tangent planes. Training from scratch on limited data often rediscover basic geometry and remains
task-specific.

Large-scale geometric Transformers and 3D reconstruction. Models such as VGGT (Wang et al.,
2025b) learn strong multi-view priors but assume pinhole projection; equirectangular projection
breaks these assumptions. Concurrently, correspondence and reconstruction models (Wang et al.,
2024; Leroy et al., 2024; Hong et al., 2024; Zhang et al., 2024; Jang et al., 2025; Kerbl et al., 2023)
provide strong baselines.
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Figure 1: Overall pipeline of our Ray-Enriched LoRA adaptation. ERP patches are aligned with
spherical rays and fused with tokens before entering the frozen alternating-attention backbone. Dual-
branch LoRA modules (Token-LoRA and Ray-LoRA) are introduced at the prediction heads, adapt-
ing to ray-augmented features while keeping the backbone frozen. Depth supervision is provided
by our Latitude-Aware Depth Uncertainty Loss, which re-weights errors by latitude (cosφ) and
predicted uncertainty (σ), ensuring balanced spherical supervision and robustness in ambiguous re-
gions.

Adaptation methods. Parameter-efficient tuning, e.g., Adapters (Houlsby et al., 2019) and
LoRA (Hu et al., 2021), and its recent variants (Liu et al., 2024; Wang et al., 2025a; Mi et al., 2025),
adapt large models across domains; cross-projection transfer has been explored for semantics (Zhang
et al., 2022; Zhang & et al., 2022) and open-vocabulary 3D understanding (Peng et al., 2023). Tem-
poral modeling in videos (Li et al., 2020; Lin et al., 2021) is complementary to our panoramic setting
when longer context is available. When geometric invariances are broken, surface-level adaptation
is insufficient.

We instead introduce Projection-Domain Adaptation: a geometry-grounded, parameter-efficient
approach that restores ERP-consistent invariances so perspective-trained 3D Transformers can trans-
fer their priors to panoramas.

3 METHOD

As illustrated in Fig. 1, our overall framework integrates these components into a unified pipeline.

We begin by examining simple ways to input panoramas into VGGT and identify the geometric and
statistical conflicts they create within the Alternating Attention module. To resolve these issues, we
introduce minimal adjustments at VGGT interfaces that restore consistency while keeping the back-
bone frozen. The adjustments are token-level ray embeddings that expose direction, a dual-branch
head-only low-rank adaptation (Token-LoRA + Ray-LoRA) that specializes predictions without dis-
turbing cross-view priors (Hu et al., 2021; Liu et al., 2024; Wang et al., 2025a), spherical consistency
in supervision (Cohen et al., 2018; Coors et al., 2018), and ERP-consistent 3D lifting (Li et al., 2022;
Shen et al., 2022). In practice, robustness to adverse conditions (e.g., weather artifacts) benefits from
preprocessing cues studied in image restoration (Quan et al., 2021), which our interface can accom-
modate.

3.1 NOTATION AND VGGT RECAP

Frames are Ii ∈ RH×W×3 with pixel indices (u, v) where u ∈ {0, . . . ,W−1} and v ∈
{0, . . . ,H−1}. We parameterize ERP pixels by longitude θ(u) = 2πu

W and latitude ϕ(v) = πv
H − π

2 ,
which define the unit ray r(u, v) = (cosϕ sin θ, sinϕ, cosϕ cos θ). The tokenizer produces DINO-
based patch tokens that are processed by Alternating Attention with a cadence of intra-frame and
global attention, which encodes multi-view geometry and temporal correspondences. Each frame
carries a camera token that aggregates view-specific information for pose regression, and a small
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Algorithm 1 Projection-Domain Adaptation with VGGT
1: Input: ERP frames Ii, frozen VGGT backbone
2: Output: Depth D, pose (q, t), optional point map and tracks
3: for each training iteration do
4: Compute (θ, ϕ) and rays r(u, v)
5: Tokens: t(0)i (u, v) = tRGB

i (u, v)⊕ Φ(r(u, v)) plus camera/register tokens
6: Forward through frozen Alternating Attention backbone
7: Head-only adapters → {D,σ2,q, t} using dual-branch LoRA
8: Compute cosϕ-weighted multi-task losses with uncertainty + gradient regularization
9: Update only head parameters via these dual-branch LoRA

10: end for
11: Inference: Compose D with (R(q), t) to reconstruct 3D
12: Notes: Trainable parameters < 0.5%

set of register tokens that maintain a global reference shared across frames; the first frame anchors
the world coordinate system. Dense heads map backbone features to depth D(u, v), a point map,
tracks, and uncertainty. The camera head outputs pose (q, t) and, in the original design, can include
a focal parameter f . VGGT prefers to reconstruct 3D at inference by composing depth with camera
pose rather than using the direct point-map head, which we also follow to align with its most reliable
heads.

3.2 NAÏVE ERP-TO-VGGT COUPLING

To analyze the pitfalls of naı̈ve ERP-to-VGGT coupling, we consider two baseline variants (denoted
B0 and B1) and identify their corresponding failure modes (F1, F2).

B0 (Raw ERP as image tokens). We patchify ERP frames into tokens tRGB
i (u, v) with conventional

two-dimensional positional encoding and supervise depth with a uniform planar loss:

LB0
depth =

1

WH

∑
u,v

∥D(u, v)− D̂(u, v)∥22. (1)

This assumes equal pixel area and isotropic neighborhoods. On the sphere, however, the area ele-
ment is dA ∝ cosϕdθ dϕ, so planar weighting over-penalizes the equator while under-penalizing
the poles. We summarize this issue as F1: a geometric-measure mismatch that violates VGGT’s
assumption of isotropic token statistics in Alternating Attention, destabilizing depth and uncertainty
near the poles.

B1 (Treat ERP as pinhole). Alternatively, we assign fictitious intrinsics K and supervise g =
(q, t, f) using a pinhole lifting model:

xB1
c (u, v) = D(u, v)K−1[u, v, 1 ]⊤. (2)

This formulation implicitly assumes that a single pinhole camera intrinsics can explain all rays in
the ERP domain. However, such a K does not exist: directions near the equator and poles cannot be
represented consistently by one focal parameter. As a result, the focal f acts as a proxy that absorbs
projection errors rather than reflecting true geometry. We summarize this issue as F2: the proxy
focal f entangles direction, pose, and scale, weakening the identifiability of (q, t) and contradicting
VGGT’s camera-head design, which requires clean disentanglement of rotation and translation for
consistent multi-view geometry.

3.3 ERP-CONSISTENT LIFTING AND CAMERA SUPERVISION

To resolve the non-identifiability introduced by fictitious pinhole intrinsics (F2), we correct the
geometric interface so that lifting and supervision match ERP. The ERP mapping and unit ray are

θ = 2πu
W , ϕ = πv

H − π
2 , r(u, v) =

(
cosϕ sin θ, sinϕ, cosϕ cos θ

)
. (3)

Unprojection uses rays rather than intrinsics

xc(u, v) = D(u, v) r(u, v), P(u, v) = R⊤(xc(u, v)− t
)
. (4)

4
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Camera supervision removes the fictitious focal and keeps (q, t) only,

Lcam = ∥t− t̂∥1 + λR drot(q, q̂), (5)

where drot is the geodesic rotation distance, for example the quaternion-induced angle. We explicitly
retain the camera and register tokens from the frozen VGGT backbone so that the world frame
remains anchored by the first input. This restores identifiability in the VGGT camera head. The
first frame remains the world reference via the camera and register tokens, and we follow the Depth-
plus-Camera rule at inference by composing D with (R(q), t).

3.4 RAY-FIELD ALIGNMENT AND DUAL-BRANCH LORA

Correct lifting removes the pinhole contradiction, but Alternating Attention still receives tokens with
latitude-dependent statistics unless direction is made explicit. To resolve the measure mismatch and
latitude-dependent statistics in token space (F1), we make direction explicit in the token representa-
tion:

t
(0)
i (u, v) = tRGB

i (u, v) ⊕ Φ
(
r(u, v)

)
, (6)

where tRGB
i (u, v) denotes the DINO-based patch token extracted from the RGB frame at pixel (u, v),

Φ(r(u, v)) is a learned encoding of the unit ray direction. The operator ⊕ denotes channel-wise
concatenation, so t

(0)
i (u, v) ∈ RCimg+Cr combines appearance and ray direction while keeping the

spatial topology of Alternating Attention intact. This preserves the Alternating Attention topology
while making direction explicit so that SO(3) directional consistency is respected inside the back-
bone.

We then specialize only the prediction heads with a dual-branch low-rank adaptation. One branch
operates on token features (Token-LoRA), while the other operates directly on ray embeddings (Ray-
LoRA):

∆h = ∆htoken +∆hray,

∆htoken = BtAth,
∆hray = BrAr Φ(r).

(7)

Here, At, Bt are the low-rank matrices for the token branch, while Ar, Br are the low-rank matri-
ces for the ray branch. The base head feature h ∈ Rd comes from the frozen VGGT backbone,
while Φ(r) ∈ Rdr reuses the ray embedding. The final adapted feature is h′ = h + ∆h, which is
fed to the depth and camera heads. This design explicitly separates the contributions of feature to-
kens and geometric rays, allowing ERP-specific cues to be modeled without disturbing the isotropic
token statistics preserved in the backbone. This is essential to respect VGGT’s backbone assump-
tions, where Alternating Attention operates on isotropic tokens and cross-view geometry is encoded
globally.

3.5 LATITUDE-AWARE DEPTH UNCERTAINTY LOSS

To further correct the measure mismatch identified in B0, we design a latitude-aware loss that
reweights supervision according to the spherical Jacobian and incorporates aleatoric uncertainty.
Specifically, let the latitude angle be

ϕ(v) = πv
H − π

2 ,

and the normalization factor
Z =

∑
u,v

cosϕ(v),

which ensures that gradient magnitudes remain comparable across different latitudes.

Given predicted depth D(u, v) and ground-truth depth D̂(u, v), the proposed depth loss is formu-
lated as

Ldepth =
1

Z

∑
u,v

cosϕ(v)

[
∥D(u, v)− D̂(u, v)∥22

σ2(u, v)
+ α log σ2(u, v)

]
+ λg ∥∇D −∇D̂∥1. (8)

Here, σ2(u, v) denotes the per-pixel variance predicted by the uncertainty head, modeling aleatoric
noise conditioned on scene geometry. The hyperparameter α balances the squared residual against

5
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Dataset Method Trainable Params AbsRel↓ RMSE↓ δ1 ↑ Train Time (GPU hrs)

Matrix-3D (outdoor)

VGGT (Zero-shot) - – 91.37 12.6 –
VGGT (Full FT baseline) ∼35M – 15.42 60.3 ∼740
Ours (LoRA) ∼0.60M – 8.68 84.8 ∼28
Ours (Full FT) ∼35M – 8.52 85.4 ∼740

Stanford2D3D (indoor)

VGGT (Zero-shot, ERP) 0 0.34 102.57 8.91 –
VGGT (Full FT baseline) ∼35M 0.26 18.47 53.62 ∼950
Ours (LoRA, ERP) ∼0.6M 0.21 11.32 76.43 ∼35
Ours (Full FT, ERP) ∼35M 0.20 10.97 78.05 ∼950

Matterport3D (indoor)

VGGT (Zero-shot, ERP) 0 0.31 93.84 10.37 –
VGGT (Full FT baseline) ∼35M 0.24 16.02 58.91 ∼950
Ours (LoRA, ERP) ∼0.6M 0.20 10.58 79.82 ∼35
Ours (Full FT, ERP) ∼35M 0.19 10.21 81.34 ∼950

Table 1: Depth across outdoor and indoor benchmarks. Columns are harmonized: AbsRel (if
applicable), RMSE, and δ1=δ<1.25. Best results are blue underlined bold, second-best are orange
underlined italic.

the uncertainty regularization term, while λg controls the gradient consistency regularization be-
tween predicted and ground-truth depth. The cosine weight cosϕ(v) corrects for latitude-dependent
area distortion in ERP images, and the normalization Z rescales the overall magnitude to keep the
loss stable. The operator ∇ extracts image gradients, enforcing local geometric smoothness. This
design jointly addresses the issues summarized as F1 (measure mismatch and anisotropic token
statistics) by weighting according to spherical geometry and down-weighting uncertain pixels. We
retain overcomplete supervision for point map and tracking during training, and follow the Depth-
plus-Camera path at inference for stability and accuracy.

As summarized in Algorithm 1, this loss forms part of our minimal interface corrections that pro-
cess panoramic frames through the frozen VGGT backbone, thereby restoring spherical consistency
while keeping the alternating-attention backbone intact and preserving its core geometric priors.

4 EXPERIMENTS

We evaluate our central claim: a geometrically aligned, parameter-efficient adaptation suffices to
transfer perspective-trained VGGT to panoramas, approaching the accuracy of full finetuning at a
fraction of the cost. All experiments are conducted on a curated subset of Matrix-3D with fixed
splits and a shared sampling protocol. We assess three facets of 3D perception: (i) monocular depth,
(ii) relative camera pose, and (iii) multi-view point quality.

4.1 IMPLEMENTATION DETAILS

Datasets and splits. We use a curated subset of Matrix-3D (Yang et al., 2025) for training and
evaluation. Because Matrix-3D contains many extreme long shots (with camera–to–building dis-
tance ≳ 200m) where sky and grassland dominate and geometric structure is weak, we carefully
select 2,196 scenes emphasizing mid- and near-range geometry. Curation follows a two-stage pro-
cedure (depth-based automatic filtering from 116,759 to 23,986 sequences, then manual selection
to 2,196 for diverse lighting/geometry); details and scene lists appear in Appendix A.2. We follow
the official frame rates and sample a fixed subset of K=10 frames per test sequence (or all frames if
shorter). Unless otherwise stated, models are trained on the designated training split and evaluated
on the held-out test split.

Projection settings and metrics. ERP panoramas use 512×1024 resolution; cubemap baselines
render 6 faces at 512×512 with 90◦ FOV and f=0.5W ; rays are normalized to unit length. A
brief sensitivity check over 256×256 and 1024×1024 faces (Appendix A.3) preserves the ranking
of methods. Depth is reported with AbsRel, RMSE, and threshold accuracy δ<1.25k (k=1, 2, 3).
When scale is ambiguous, predicted depths are median-aligned per sequence. Relative pose is eval-
uated between adjacent frames; the rotation error and AUC formulas are provided in Appendix A.1
(AUC@30, higher is better).
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Dataset Method Input AUC@5↑ AUC@10↑ AUC@30↑ Train Time (GPU hrs)

Matrix-3D (outdoor)

DUSt3R (Wang et al., 2024) ERP 18.37 26.45 47.92 –
MASt3R (Leroy et al., 2024) ERP 21.96 30.72 52.38 –
DUSt3R (Wang et al., 2024) Cubemap 24.68 33.79 55.74 –
MASt3R (Leroy et al., 2024) Cubemap 25.81 34.63 58.46 –
VGGT (Wang et al., 2025b) ERP 25.89 34.88 60.65 –
VGGT (Wang et al., 2025b) Cubemap 31.67 44.21 66.84 –
VGGT (Full FT baseline) ERP 32.10 45.00 68.50 ∼740
Ours (LoRA) ERP 50.15 71.89 93.55 ∼28
Ours (Full FT) ERP 51.09 72.42 93.99 ∼740

Stanford2D3D (indoor)

DUSt3R (Wang et al., 2024) ERP 14.92 22.47 43.18 –
MASt3R (Leroy et al., 2024) ERP 17.88 26.39 47.52 –
DUSt3R (Wang et al., 2024) Cubemap 19.64 28.53 50.16 –
MASt3R (Leroy et al., 2024) Cubemap 21.17 30.84 53.79 –
VGGT (Wang et al., 2025b) ERP 23.68 37.11 63.42 –
VGGT (Wang et al., 2025b) Cubemap 28.57 40.39 67.04 –
VGGT (Full FT baseline) ERP 31.03 44.72 69.08 ∼950
Ours (LoRA) ERP 42.91 57.36 85.07 ∼35
Ours (Full FT) ERP 44.02 59.18 86.12 ∼950

Matterport3D (indoor)

DUSt3R (Wang et al., 2024) ERP 15.81 24.36 45.92 –
MASt3R (Leroy et al., 2024) ERP 19.47 28.59 51.37 –
DUSt3R (Wang et al., 2024) Cubemap 21.66 31.02 53.84 –
MASt3R (Leroy et al., 2024) Cubemap 23.58 33.47 57.62 –
VGGT (Wang et al., 2025b) ERP 25.92 40.03 67.19 –
VGGT (Wang et al., 2025b) Cubemap 30.44 43.96 70.82 –
VGGT (Full FT baseline) ERP 33.87 48.15 72.21 ∼950
Ours (LoRA) ERP 46.38 62.93 88.54 ∼35
Ours (Full FT) ERP 47.51 64.37 89.31 ∼950

Table 2: Camera pose across outdoor and indoor benchmarks (one table). AUC at multiple
thresholds (higher is better) for ERP and cubemap inputs. VGGT (Full FT baseline) denotes plain
VGGT finetuning without our method. Ours (LoRA) matches or nears Ours (Full FT) across datasets
at much lower cost.

Method Input Acc.↓ Comp.↓ Overall↓ Train Time (GPU hrs)

DUSt3R (Wang et al., 2024) ERP 14.82 8.06 11.44 –
DUSt3R (Wang et al., 2024) Cubemap 8.47 5.63 7.05 –
MASt3R (Leroy et al., 2024) ERP 12.36 7.34 9.85 –
MASt3R (Leroy et al., 2024) Cubemap 8.19 5.51 6.85 –
VGGT (Wang et al., 2025b) ERP 10.12 6.78 8.45 –
VGGT (Wang et al., 2025b) Cubemap 7.41 5.19 6.30 –
VGGT (Full FT baseline) ERP 5.92 3.74 4.83 ∼740
Ours (LoRA / Depth+Cam) ERP 1.77 1.03 1.40 ∼28
Ours (Full FT / Depth+Cam) ERP 1.69 0.97 1.33 ∼740

Table 3: 3D point quality on our dataset. Acc/Comp/Overall are nearest-neighbor averages after
Umeyama alignment (lower is better). VGGT (Full FT baseline) denotes plain VGGT finetuning
without our method. Ours (LoRA / Depth+Cam) and Ours (Full FT / Depth+Cam) achieve strong
results.

Baselines. We compare four categories: 1) VGGT (frozen/zero-shot), directly applying VGGT
without adaptation. 2) VGGT (Full FT baseline), plain VGGT fine-tuned end-to-end without
our geometric corrections, which performs poorly. 3) Ours (LoRA), our method with parameter-
efficient tuning. 4) Ours (Full FT), our method with full finetuning of VGGT, representing a heavier
variant.

For pose and 3D, we also include DUSt3R and MASt3R (Wang et al., 2024; Leroy et al., 2024)
under two input configurations: ERP (directly processing panoramas) and Cubemap (splitting into
perspective views and stitching back). For VGGT we report both ERP and Cubemap inputs. Training
details (optimizer, schedules, augmentations, and LoRA settings) are provided in Appendix A.10.

4.2 MAIN RESULTS AND ANALYSIS

Overall findings. Across tasks and metrics (Tab. 1, 2, and 3), our head-only adaptation nearly
matches the accuracy of a fully fine-tuned VGGT while updating ∼0.6M parameters versus ∼35M.
Importantly, plain VGGT full finetuning performs poorly, showing that geometric alignment is in-
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Group Variant Depth RMSE↓ AUC@10↑ 3D Overall↓

Geometric interface
w/o Ray-Field Alignment 9.62 69.10 1.58
Pinhole Lifting (+focal) 12.35 62.10 2.25
Full geometric interface 8.68 72.42 1.40

Loss design

Uniform Planar Weighting 10.48 70.10 1.52
w/o Uncertainty Modeling 9.34 70.75 1.47
w/o Gradient Regularization 9.10 71.20 1.46
w/o ERP Augmentation 9.26 70.85 1.48
Full loss 8.68 72.42 1.40

PEFT variants

LoRA (r=4) 9.89 69.85 1.53
LoRA (r=8) 9.12 71.50 1.45
Bias-only Tuning 31.50 42.10 4.10
LoRA (r=16, ours) 8.68 72.42 1.40

Table 4: Ablation study organized by component groups. Grouping highlights that correcting the
geometric interface (ray-field alignment + ERP lifting) and using the full loss (spherical weighting
+ uncertainty + gradient regularization) are both critical. Increasing LoRA rank helps until r=16;
bias-only tuning fails. Numbers follow Table 4 in the main paper.

dispensable. Our method, whether LoRA or full FT, consistently outperforms both zero-shot VGGT
and plain VGGT finetuning. For pose and 3D, methods that expect perspective inputs benefit from
Cubemap over ERP; however, our ERP-based approach attains state-of-the-art performance without
conversion.

Depth. Tab. 1 unifies outdoor Matrix-3D and indoor Stanford2D3D/Matterport3D. Our LoRA
variant matches Ours (Full FT) on Matrix-3D and substantially surpasses naı̈ve full finetuning. In-
door finetuning follows the same trend: zero-shot ERP is weak, naı̈ve full FT only partly recovers,
and our projection interface + head-only LoRA delivers strong depth close to our full-FT variant at
∼25× lower cost.

Camera pose (AUC@5/10/30). We report AUC at 5◦, 10◦, and 30◦. The ordering across baselines
is consistent: DUSt3R < MASt3R < VGGT, and Cubemap > ERP. Plain VGGT full FT improves
only marginally over zero-shot. In contrast, our LoRA variant surpasses Ours (Full FT) at tight
thresholds and matches it at broader ones, showing that head-only adaptation is sufficient to stabi-
lize relative rotations. Indoor pose results mirror the outdoor findings: cubemap conversion helps
baselines but still trails our ERP interface; naı̈ve VGGT full FT lags behind our head-only LoRA,
which approaches our own full-FT numbers.

3D point quality. We did not train a point head; our 3D points are reconstructed from predicted
depth and camera. GT point clouds are built by back-projecting GT depth with GT cameras across
K=10 frames, followed by downsampling and Umeyama alignment (including scale).

Tab. 3 shows that our Depth+Cam reconstruction substantially outperforms VGGT and VGGT full
FT. Ours (Full FT) reaches slightly better absolute numbers, but our LoRA variant achieves nearly
the same quality at ∼ 26× less compute. The biggest gains for our method appear in completeness,
consistent with smoother and more stable trajectories. We provide 3D points map visualization in
Appendix A.11

4.3 ABLATION STUDIES

We organize the ablation into three groups in Tab. 4: (i) Geometric interface (ray-field alignment,
pinhole vs. ERP lifting), (ii) Loss design (spherical weighting, uncertainty, gradient regularization),
and (iii) PEFT variants (LoRA ranks, bias-only). Ray-based lifting and ray-field alignment are
both essential; reverting to a fictitious pinhole lifting with learnable focal severely hurts pose/3D.
Latitude-aware weighting and uncertainty stabilize depth supervision. LoRA rank trades accuracy
for efficiency; bias-only tuning fails. Ours (Full FT) is slightly better in absolute terms but costs
∼ 30× more training.

4.4 REAL INDOOR 360◦ BENCHMARKS

We evaluate on Stanford2D3D and Matterport3D (Pano3D-style ERP) using the same protocol as
Matrix-3D. Zero-shot VGGT under ERP is very poor; naı̈ve full finetuning only partially recovers
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Input image Depth GT VGGT Ours  
Full Finetuned * 

Ours 
Lora 

* requires 30× training time and 70× parameters compared to Ours Lora 

Figure 2: Qualitative depth predictions. From left to right: input panorama, ground-truth depth,
VGGT baseline, VGGT (Full FT baseline), Ours (Full FT), and Ours (LoRA). Our approach pro-
duces depth maps closer to GT than VGGT and nearly matches Ours (Full FT) at a fraction of the
cost. Notably, Ours (LoRA) requires ∼ 26× less training time and ∼ 70× fewer parameters than
Ours (Full FT).

performance. Our projection interface + head-only LoRA substantially improves depth and pose,
often matching our own full-FT variant (see Tab. 1 and Tab. 2). Across both datasets, Ours (LoRA)
uses ∼25× fewer GPU-hours than full FT while delivering strong accuracy.

4.5 OOD TRANSFER: MATRIX-3D → INDOOR ZERO-SHOT

To test cross-domain robustness, we train on Matrix-3D only and evaluate zero-shot on Stan-
ford2D3D/Matterport3D. All methods degrade (e.g., δ<1.25 drops to ∼35–53%), but our interface
+ LoRA remains consistently better than the Matrix-3D full-FT VGGT baseline on both depth and
pose (Appendix Tables 5, 6). This mirrors the ordering seen in-domain.

4.6 WHERE TO ADAPT? BACKBONE VS. HEADS

Keeping the same projection interface, we vary LoRA placement: none, last backbone block, all
backbone blocks, and heads only. Head-only LoRA sits on the Pareto frontier, matching or ex-
ceeding backbone LoRA with 6–12× fewer parameters (Appendix Table 7). Full backbone+head
finetuning under the ERP interface was unstable in preliminary runs (no convergence after six days
on 8×A100).

4.7 MONOCULAR ERP DEPTH VS. PANDA

Although our focus is multi-view Depth+Pose+3D, we also compare single-frame ERP depth on
Matterport3D against PanDA-B (Cao et al., 2024) (Appendix Table 8). PanDA remains strongest
for monocular ERP depth (AbsRel 0.0792 vs. 0.1165 for ours); our model is within a reasonable
margin despite being optimized for the multi-view setting.

4.8 QUALITATIVE ANALYSIS
We visualize depth, trajectories, and epipolar-consistent correspondences (Fig. 2, Fig. 3). Our
method yields sharper boundaries and smoother cross-view geometry than VGGT baselines, with
comparable stability to Ours (Full FT).

5 DISCUSSION

Our results suggest a simple but general principle: when adapting perspective-pretrained 3D Trans-
formers to new sensors, the most effective locus of change is the projection interface, not the back-
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Input images GT trajectory DUSt3R MASt3R VGGT Ours  
Full Finetuned * 

Ours 
Lora 

* requires 30× training time and 70× parameters compared to Ours Lora 

Figure 3: Qualitative comparison of camera trajectory estimation. From left to right: input images,
ground-truth trajectory, DUSt3R, MASt3R, VGGT, Ours (LoRA), and Ours (Full FT). Our dual-
branch adaptation achieves trajectory predictions close to ground truth and comparable to Ours (Full
FT), while being far more parameter- and time-efficient.

bone. By reinstating invariances that the backbone expects (directional consistency and the correct
spherical measure) and specializing only the task heads, we transfer strong geometric priors with
minimal parameters and cost. In this view, sensors are distributions over rays and surface mea-
sures; once the interface maps ERP pixels to those rays—and supervision respects the measure—the
learned multi-view reasoning largely carries over.

Beyond panoramas, this perspective opens a path to fast onboarding of other optics (fisheye, cata-
dioptric, mixed rigs) and to hybrid pipelines that combine our adapter with correspondence- or
reconstruction-centric modules (e.g., MASt3R/DUSt3R or Gaussian-splatting reconstructions). Be-
cause the adapter is head-only and model-agnostic, it can ride on stronger backbones as they emerge,
and it offers a clean hook for self-supervised pretraining on large corpora of spherical video. We
also see synergy with world-model research: panoramic inputs reduce blind spots and, when paired
with projection-consistent supervision, could improve the consistency of agents that plan in 3D.

Limitations and risks. Panoramic data with reliable 3D supervision remains scarce, and our syn-
thetic Matrix-3D subset is cleaner than real hardware (no lens distortion or calibration noise). Per-
formance drops on indoor datasets and OOD settings, even though the relative ordering of methods
is stable. We have not yet evaluated fisheye/catadioptric cameras; extending the interface to those
sensors is future work. Finally, we keep the backbone frozen; projection-aware attention inside the
backbone could help but requires more compute and careful optimization.

Future directions. We plan to (i) pair the projection interface with backbone-level projection-
aware attention, (ii) pretrain adapters on large-scale spherical video using self-supervised 3D ob-
jectives, (iii) extend to fisheye/catadioptric rigs and dynamic scenes, and (iv) release code/LoRA
adapters once licensing is cleared.

6 CONCLUSION

We have presented a geometry-grounded projection-domain adaptation pathway for perspective-
trained 3D Transformers. By making ERP rays and surface measure explicit and adapting only
lightweight heads with dual-branch LoRA, we preserve VGGT’s backbone priors while restoring
panoramic consistency.

Across a curated Matrix-3D outdoor benchmark, new real indoor 360◦ datasets (Stanford2D3D,
Matterport3D), and OOD transfer tests, naı̈ve full finetuning degrades whereas our interface +
head-only LoRA attains strong depth/pose with <0.5% parameters and ∼ 25× lower training cost.
The proposed design principle—fix the projection interface, adapt minimally—offers a reproducible
recipe for onboarding emerging sensors without rewriting large 3D backbones. Remaining gaps in-
clude unmodeled lens distortion/calibration noise and untested fisheye/catadioptric cameras, which
we leave for future work alongside code/adapter release.
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A APPENDIX

A.1 METRICS AND FORMULAS

The rotation error is defined as:

eR = arccos
(

trace(RpredR
⊤
gt )−1

2

)
· 180

π
(degrees).

We summarize pose by the AUC of the accuracy–threshold curve:

Acc(τ) =
1

N

N∑
i=1

1[ eR,i ≤ τ ], AUCθmax =
1

θmax

∫ θmax

0

Acc(τ) dτ, (9)

with uniform sampling at integer degrees and θmax=30◦.

A.2 MATRIX-3D CURATION AND REPRODUCIBILITY

Matrix-3D starts with 116,759 panoramic sequences. We first keep only sequences where at
least 40% of pixels have depth below Dmax=80m, yielding 23,986 candidates. A month-long
manual pass then selects 2,196 sequences emphasizing visible mid-range geometry and diverse
weather/lighting. We will release the filtering script and the final scene IDs to make the split re-
producible.

A.3 PROJECTION DETAILS AND SENSITIVITY

ERP frames use 512×1024 resolution; cubemap faces are 512×512 with 90◦ FOV, f=0.5W ,
and unit-ray normalization. Changing face resolution to 256×256 slightly degrades all baselines;
1024×1024 offers minor gains. The relative ordering across methods is unchanged.

A.4 ADDITIONAL RESULTS ON REAL INDOOR 360◦ BENCHMARKS

Main-text Tables 1 and 2 already include the indoor finetuning results for Stanford2D3D and Mat-
terport3D. Ours (LoRA) consistently outperforms naı̈ve VGGT full finetuning while using ∼25×
fewer GPU-hours.

Reconstructed Scene 

Existing View Novel View 

Figure 4: 3D point-cloud reconstruction from a panoramic sequence. Top and third rows: input
ERP panoramas at multiple time steps. Middle panel: reconstructed scene (point cloud) obtained
by back-projecting our depth with predicted cameras. Bottom row: point-cloud renders from an
existing view (left) and a novel view (right).
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Dataset Method (trained on Matrix-3D) Params AbsRel↓ RMSE↓ δ<1.25 ↑

Stanford2D3D (zero-shot)
VGGT (Full FT, ERP) ∼35M 0.33 38.57 34.92
Ours (LoRA, ERP) ∼0.6M 0.30 32.41 45.68
Ours (Full FT, ERP) ∼35M 0.28 29.73 50.37

Matterport3D (zero-shot)
VGGT (Full FT, ERP) ∼35M 0.31 36.12 38.41
Ours (LoRA, ERP) ∼0.6M 0.28 30.79 48.96
Ours (Full FT, ERP) ∼35M 0.27 28.94 52.63

Table 5: OOD depth: train on Matrix-3D, test zero-shot on indoor ERP. All models degrade, but
the projection interface + LoRA consistently outperforms the Matrix-3D VGGT full-FT baseline.

Dataset Method (trained on Matrix-3D) AUC@5↑ AUC@10↑ AUC@30↑

Stanford2D3D (zero-shot)
VGGT (Full FT, ERP) 18.42 30.17 58.09
Ours (LoRA, ERP) 22.95 36.54 65.72
Ours (Full FT, ERP) 24.01 37.88 67.03

Matterport3D (zero-shot)
VGGT (Full FT, ERP) 19.73 31.62 59.44
Ours (LoRA, ERP) 24.38 38.07 66.91
Ours (Full FT, ERP) 25.42 39.36 68.10

Table 6: OOD pose: train on Matrix-3D, test zero-shot on indoor ERP. Head-only LoRA with
the projection interface improves over Matrix-3D VGGT full finetuning despite the domain gap.

A.5 OOD TRANSFER FROM MATRIX-3D TO INDOOR BENCHMARKS

Models trained only on Matrix-3D are evaluated zero-shot on indoor datasets (Tables 5 and 6). All
methods degrade under the synthetic-to-real gap, but our projection interface + head-only LoRA
remains stronger than the Matrix-3D VGGT full-FT baseline for both depth and pose.

A.6 LORA PLACEMENT ABLATION

Table 7 compares adapting different VGGT components under the same projection interface. Head-
only LoRA achieves the best numbers with the fewest parameters; adding LoRA to the backbone
yields marginal gains at 6–12× higher parameter cost. Full backbone finetuning was unstable in
preliminary runs (oscillating loss after six days on 8×A100).

A.7 MONOCULAR ERP DEPTH VS. PANDA

Although our focus is multi-view Depth+Pose+3D, we report a single-frame ERP depth compar-
ison on Matterport3D against PanDA-B (Table 8). PanDA excels in this monocular setting; our
monocular variant is within a reasonable margin despite being optimized for multi-view use.

A.8 UNCERTAINTY VS. ERROR CORRELATION

We quantify how much squared depth error is captured by pixels with high predicted uncertainty
σ(u, v) (Table 9). High-σ regions account for most of the error mass, supporting the usefulness of
the uncertainty head.

A.9 CODE, WEIGHTS, AND RELEASE STATUS

We are preparing cleaned preprocessing/evaluation scripts (Matrix-3D curation, ERP ray generation,
Stanford2D3D/Matterport3D evaluation) and intend to release the projection-interface code and,
subject to licensing, ERP LoRA adapters atop the public VGGT backbone. We will release all code
and weights once institutional approval is complete.
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Adapted layers Trainable Params Depth RMSE↓ AUC@10↑ 3D Overall↓
ERP interface only (no adaptation) 0 12.61 60.32 2.37
Plain Full FT baseline (original ERP) ∼35M 10.04 66.41 1.92
Backbone LoRA (last block only) ∼3.8M 8.92 71.11 1.53
Backbone LoRA (all blocks) ∼7.6M 8.79 71.83 1.49
Prediction heads only (ours) ∼0.6M 8.68 72.42 1.40

Table 7: Where to adapt? With the same projection interface, head-only LoRA attains the best
accuracy while using 6–12× fewer parameters than backbone LoRA. Fully finetuning the backbone
under the interface was unstable (training diverged).

Method Frames AbsRel↓ RMSE↓ δ1 ↑ δ2/δ3 ↑
PanDA-B (Cao et al., 2024) 1 0.0792 0.3475 95.09 98.94 / 99.65
Ours (monocular depth head) 1 0.1165 0.4620 85.21 96.41 / 98.54

Table 8: Monocular ERP depth on Matterport3D (single-frame setting). PanDA-B remains
strongest for monocular 360◦ depth; our model, optimized for multi-view Depth+Pose+3D, is within
a reasonable margin.

Pixels (by σ) % of pixels % of total squared error

Top 10% σ 10% 41%
Top 20% σ 20% 63%
Top 40% σ 40% 81%

Table 9: Uncertainty vs. depth error (Matrix-3D test set). High-uncertainty pixels concentrate
most of the squared error, indicating σ(u, v) meaningfully tracks hard regions.

A.10 IMPLEMENTATION DETAILS

We freeze the official VGGT backbone and adapt only the depth and camera heads with LoRA (rank
r=16, scaling α=r). Optimization uses AdamW, linear warmup with cosine decay, mixed precision,
gradient clipping, and gradient accumulation. Augmentations include ERP horizontal shifts and
photometric jitter. Losses follow our methodology: spherical weighting with aleatoric uncertainty
for depth, and relative pose supervision with a continuity regularizer. Our LoRA variant requires
only a single A100 GPU for 28 hours of training, while Ours (Full FT) requires 4 A100 GPUs
for approximately 185 hours. For evaluation, baselines that expect perspective inputs include the
required pre/post steps (cubemap rendering and spherical stitching when applicable). All methods
use the same device type; we fix the sampling seed and average over all test sequences.

A.11 3D POINT-CLOUD RECONSTRUCTIONS

We provide additional 3D point-cloud visualizations reconstructed from our predicted depth and
camera (Figure 4). Points are obtained by back-projecting predicted depths along ERP rays and
transforming with the predicted poses. These examples complement the quantitative metrics by
illustrating cleaner geometry, fewer floaters, and improved completeness across wide baselines.

A.12 LARGE LANGUAGE MODEL USAGE

In accordance with ICLR 2026 guidelines, we disclose our limited use of Large Language Models
(LLMs) in this work. LLMs were used exclusively for minor language polishing and proofreading
purposes to improve the clarity and readability of the manuscript. Specifically, LLMs assisted in:

• Grammar and syntax corrections

• Minor sentence restructuring for improved flow

• Consistency checks for terminology usage
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The LLMs did not contribute to research ideation, methodology development, experimental design,
data analysis, or any substantive content generation. All technical contributions, experimental re-
sults, and scientific insights presented in this paper are entirely our own. We take full responsibility
for all content, including the minor language improvements suggested by LLMs.
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