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Abstract:
We present a learning-enabled robot Task and Motion Planning (TAMP) algo-
rithm that generates diverse plan skeletons and sorts them by their feasibility, i.e.,
the likelihood of finding values for the action parameters that satisfy all geomet-
ric constraints. We propose PIGINet, a novel Transformer-based architecture that
predicts plan feasibility by tokenizing the plan skeleton, goal condition, and ini-
tial state as a sequence, fusing image, text, and value embeddings. We evalu-
ate the runtime of our learning-enabled TAMP algorithm on several distributions
of kitchen rearrangement problems, comparing its performance to that of non-
learning baselines. Our experiments show that PIGINet substantially improves
planning efficiency, cutting down runtime by 80% on average on pick-and-place
problems with articulated obstacles. It also achieves zero-shot generalization to
problems with unseen object categories thanks to its visual encoding of objects.
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1 INTRODUCTION

Robots planning long-horizon behavior in complex environments must be able to quickly reason
about the impact of the environment’s geometry on what plans are feasible. Many Task and Mo-
tion Planning (TAMP) [1] algorithms accomplish this by balancing the computational time spent
on two processes: 1) finding high-level plan skeletons that satisfy symbolic conditions; and 2) gen-
erating continuous action parameter values that satisfy geometric constraints through sampling or
optimization. This balancing act is particularly challenging when the robot configuration space is
disconnected due to obstruction caused by manipulable obstacles. For example, a mobile robot may
be asked to rearrange food items among fridges, cabinets, and tables. Multiple doors and other food
items may be blocking the paths to reach the goal objects. In these problems, the number of infeasi-
ble candidate plan skeletons increases exponentially as the planning horizon and number of objects
increases. An uninformed TAMP algorithm would waste a substantial amount of time attempting to
satisfy many unsatisfiable plan skeletons before working on the feasible ones.

Figure 1: Example rearrangement problems in our dataset, rendered in IsaacGym. Here, articulated
objects, such as doors, prevent the robot from directly picking and placing objects.



In this work, we present a learning-enabled TAMP algorithm that predicts if a plan skeleton is feasi-
ble before attempting to refine it. Our model, PIGINet, uses a Transformer architecture to encode 1)
a candidate Plan skeleton with Image features of objects, 2) the Goal formula, and 3) relations and
continuous values in the Initial state. PIGINet outputs a probability that the plan skeleton is feasible.
The elements of each action or relation, such as their names, objects, poses, and joint angles, are
processed to produce embeddings of the same length and fused together through averaging. We de-
ploy our learner in a TAMP algorithm that sorts plan skeletons by the learner’s predicted likelihoods
of feasibility. We evaluate the runtime of our learning-enabled TAMP algorithm on several distribu-
tions of unseen problem instances in comparison to a baseline and ablations. Our experiments show
that learning to predict skeleton feasibility can substantially improve planning performance, cutting
down runtime by 80% on average on pick-and-place problems with articulated obstacles.

2 RELATED WORK

Task and Motion Planning (TAMP) Two existing TAMP algorithms use diverse planning tech-
niques [2], which identify multiple distinct plans for a given problem, to produce candidate plan
skeletons to be refined using sampling [3] or optimization [4]. Because diverse planners are un-
aware of the semantics of predicates, many candidate plans have the same sources of infeasibility.
As a result, these TAMP algorithms waste time finding continuous values for similar, unsatisfiable
plan skeletons. Many TAMP algorithms contain mechanisms that provide specific feedback [1] to
the search over plan skeletons using failed motion queries [5] or unsatisfiable constraint sets [6].
However, all of these approaches require expensive geometric planning to first identify failed skele-
tons and second generate the feedback.

Learning to speed up TAMP Silver et al. [7] developed a Graph Neural Network (GNN) ap-
proach that ignores irrelevant objects, taking into account object obstruction. Khodeir et al. [8]
extended this approach to predict which optimistic parameter values constructed through lazy sam-
pling should be considered. Because these approaches condition only on the initial and goal state
instead of candidate plans, the learners carry the burden of generalizing over problems that vary sub-
stantially in solutions, which is often challenging. By instead providing a learner candidate plans,
our approach is able to more easily generalize over this distribution of problems.

Several learning-for-TAMP approaches learn single-action feasibility classifiers using tabular [9],
depth image [10, 11, 12], or point cloud [13] encodings of the environment. Kim et al. [14] learned
a cost-to-go heuristic estimator using a relational embedding of the state. Because they consider
individual actions on one plan at a time, any free parameters present in the candidate actions, such
as robot configurations, object placements, and object grasps, must already be assigned via pre-
discretization or sampling. In contrast, our approach is able to consider full plans all at once, allow-
ing it to account for parameters that persist over time in other states and actions.

Multi-modal inputs for robotic manipulation We are inspired by recent works used attention-
based neural networks to encode the state, fusing multi-modal inputs, and make object-centric de-
cisions. Zhu et al. [15] encode states as symbolic and geometric scene graphs and then process
them with GNNs separately to generate the next action name and action parameters. Liu et al. [16]
encode text and visual embeddings in the same sequence for a Transformer encoder by adding each
embedding with a corresponding type and positional encoding. Blukis et al. [17] also uses a Trans-
former encoder to process a sequence of subgoals consisting of action types and arguments into a
vector embedding and combines them with a language embedding through a dense MLP for subgoal
generation. Yuan et al. [18] learn object embeddings by encoding a sequence consisting of image
patches of the whole scene and canonical views of each objects in a Transformer encoder-decoder
architecture and then use the learned embedding for querying object spatial relations or a direction
for gripper movement.

3 PROBLEM FORMULATION

We define a TAMP domain 〈P,A〉 by a set of predicates P and a set of actions A, both of which
can be viewed as tuples with a name, discrete arguments such as objects, and continuous arguments
such as poses (e.g. p0), grasps (e.g. g1), robot configurations (e.g. q0), joint angles (e.g. a0), and
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trajectories (e.g. t1). A TAMP problem 〈O, I,G,A〉 is defined by a set of manipulable objects O,
an initial state I, and a conjunctive set of goal literals G. Table 1 shows some examples of each
consturct. Note that fridge1:door1, fridge1:space1, and fridge1 are three different objects in the
planning problem, since they afford different actions.

Obj Init Goal
tomato1 Graspable(tomato1) Holding(tomato1)
fridge1:door1 IsJoint(fridge1:door1, fridge1) Closed(fridge1:door1)
fridge1:space1 Containable(tomato1, fridge1:space1) In(tomato1, fridge1:space1)
table2 Supported(tomato1, table2, p0) On(tomato1, table2)

Table 1: Example objects (O), initial facts (I), goal conditions (G) and predicates (P)
.

A solution is a finite sequence of action instances that, when sequentially applied to the initial state
I, produces a terminal state where the goal literals G all hold. When the continuous arguments of a
solution are unbound (denoted by the prefix ?), we call it a Skeleton π. Refinement is the process
of finding continuous values for unbound parameters in a skeleton that satisfy the constraints among
those values, such as inverse kinematics and collision-free constraints. A skeleton can be infeasible
for a variety of reasons, for example, the object is not reachable from any grasp, or there is no
collision-free arm trajectory that ends with the gripper at grasp pose. To predict how likely it is to
refine a skeleton, we strip away the continuous arguments to make an action tuple as input to the
learning model that includes only object arguments, as shown on the right of Table 2.

Skeleton π π for PIGINet

move(q0, ?q1) (move)
pullopen(fridge1:door1; a0, ?a1, ?g1, ?t1) (pullopen, fridge1:door1)
move(?q1, ?q2) (move)
pick(tomato1; p0, ?q2, ?g2, ?t2) (pick, tomato1)
move(?q2, ?q3) (move)
place(tomato1; ?p1, ?q3, ?g2, ?t4) (place, tomato1)

Table 2: An example Skeleton π, and simplified action tuples used for plan feasibility prediction.

The role of the plan feasibility predictor f is to take in an initial state I, a skeleton π, and goal
conditions G and then predict the likelihood that there exists a solution to π. We use f as a scoring
function for ranking a batch of skeletons for refinement:

f(I,π,G) → [0, 1].

4 LEARNING METHOD

Given a problem and a plan, PIGINet first builds a dictionary of embeddings for objects, continuous
values, and text (predicate and action names). Next, it encodes each literal in the initial state and the
goal, as well as each action in the plan, as a token in the input sequence for a Transformer encoder.
The decoded output is the probability of plan feasibility. The architecture is shown in Figure 2.

For objects, we segment the rgb image of the scene to get image crops of individual objects and
salient large parts, process them with a pre-trained vision network [19], then reduce the dimension
of the extracted features with a three-layer Multi-Layer Perceptron (MLP). All objects are rendered
with solid colors, and segmentation is perfect in simulation. Doors and fridge bodies are different
segments. If the objects are occluded, none of its pixels will show except for the background color.
For continuous variables in the initial state, we directly transcribe the values of object poses, object
joint angles, and the robot base configurations. We concatenate the one-hot encoding of the variable
type with the value of the variable. We zero-pad the value tuples such that digits of different value
types occupy different slots. We process the resulting feature vector with a linear and a ReLU layer.
For text, which are rephrases of the names of predicates or actions in the domain, we encode them
with a pre-trained language network [19], then fine-tune the features through a linear and a ReLU
layer. Rephrasing helps deal with strange names such as isjointto and pull-open, which are
rewritten to “this is a joint of that object” and “pull the handle of door joint”.
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For each literal in Init and Goal, as well as each action in π, we add up the embedding of each
element, divide by the number of elements, and add a positional encoding. All literals in I have the
same learned positional encoding, while all literals in G have a different learned positional encoding.
Each action in π has a different sinusoidal positional encoding.

The Transformer encoder takes in a sequence of embeddings for π, G, and I, in that order. We keep
only the first position of the output and add linear and Sigmoid layers to produce binary predictions.
The loss function is binary cross entropy loss between the prediction and actual plan feasibility, i.e.
whether the planner found continuous values that satisfy all the constraints posed by each action in
the plan. For each batch, we add multi-headed attention to enable each position in the sequence to
attend to each other, except for the action tokens, which use a causal mask.
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Figure 2: Architecture diagram of our PIGINet model

5 PLANNING ALGORITHM

We developed a new PDDLStream [20] algorithm that uses our PIGINet for feasibility prediction
by feeding it hundreds of candidate skeletons for sorting. Similar to the focused algorithm [20], it
optimistically instantiates a set of free action parameters X using the available sampling operations.
It repeatedly searches for k distinct plan skeletons to make up a single skeleton batch Πk, where
k ≥ 1 is a hyperparameter. New plans are identified by performing a forward plan-space search
FORBID-SEARCH that forbids any previously identified plans Π from the search’s open list [21].
After k attempts, the batched plans Πk are scored using the learned feasibility predictor f(I,π,G).
Plans that are predicted to have feasibility < 0.5 are discarded, except when all plans in the batch as
below the threshold. The rest are sorted in decreasing order of predicted likelihood of feasibility. The
algorithm attempts to refine each plan in order using sampling via SAMPLE-PLAN. The first fully-
bound plan π∗ is returned as a solution. Algorithm 1 gives the pseudocode for the main algorithm
BATCH-SORTED-TAMP.

6 EXPERIMENTS & RESULTS

We carried out experiments to answer the following three questions about the model: (1) Efficiency:
Can PIGINet improve planning speed without sacrificing planner success rate? (2) Generalization:
Can a model trained on some problems perform well in other problems? (3) Ablation: Can the
model still perform well with less input encoding?
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Algorithm 1 Batch Sorted TAMP Plan Prediction

Require: Feasibility predictor: f(I,π,G) → [0, 1]
1: procedure BATCH-SORTED-TAMP(O, I,G,A; k)
2: X ← ∅ ⊲ Initialize free parameters
3: Π ← ∅ ⊲ Initialize identified plans
4: while True do
5: Πk ← ∅ ⊲ Initialize batch of at most k plans
6: for i ∈ {1, ..., k} do
7: π ← FORBID-SEARCH(O, X, I,G,A;Π) ⊲ Search but forbid plans Π
8: if π ∕= None then ⊲ Identified a new plan skeleton
9: Π ∪= {π}; Πk ∪= {π} ⊲ Update the plan skeleton batches

10: else ⊲ Infeasible search subproblem
11: X ∪= NEW-PARAMETERS(O, I) ⊲ Add more free parameters
12: P =

!
〈f(I,π,G),π〉 | π ∈ Πk

"
⊲ Scored plan skeletons

13: for 〈p,π〉 ∈ reversed(sorted(P )) do ⊲ Process in decreasing order of score
14: if p > 0 then ⊲ Process if positive score
15: π∗ = SAMPLE-PLAN(π; I,G) ⊲ Attempt to bind the plan skeleton
16: if π∗ ∕= None then ⊲ Successfully bound the skeleton
17: return π∗ ⊲ Return the bound solution

Dataset In our experimental domain, there are fridges on top of tables and food items inside the
fridges or on the table. Each door fridge is closed 50% of the time or in a position sampled uniformly
at random across its joint limits. We also randomly sample the pose of objects, the height of tables,
and the initial base configuration of a PR2 robot. There are one or two instances of each object in
each scene. The goal is to hold the food, place the food on the table, or place the food in the fridge.

After sampling a scene and a goal, we run the new planning algorithm to generate diverse skeletons
for the problem and one solution to produce positive labels. Then we render the segmented images
in PyBullet before training and testing. We save the problem 〈O, I,G〉 along with the skeletons
and images as one data point. In this way, we generated a dataset of 4,620 problems for training
(with a 9-to-1 train/val split) and an additional 50 problems for testing integration with planners for
each task. Depending on whether the initial pose of the food, the door handle, and the destination
region is reachable, the robot may need to open ten to four doors in order to accomplish the task,
resulting in minimum plan lengths ranging from two to twelve actions. We used articulated objects
from PartNet-Mobility dataset [22] and convex food objects sourced online. We used nine models
of fridges, eleven models of food items, and ten models of tables. They differ in shape, size, color,
and texture, as shown in Figure 1.

During training, we augment the images with random crops, rotations, shifts, warps, color jittering,
blurring, and grayscale. We used a pre-trained CLIP model [19] for image and text embedding. For
efficiency of training Transformers, we used a max sequence length of 32 and truncate extra input
tokens in I after randomly shuffling them.

Planner performance: First, we investigate the effectiveness of PIGINet for speeding up plan-
ning. We expect the benefit of sorting skeletons based on feasibility prediction to be more pro-
nounced for longer-horizon plans, e.g., when the goal cannot be achieved by a single pick or
place, such as when moving objects table-to-fridge (one fridge table in) or fridge-to-fridge
(two fridge in). We compared these two pick-and-place problems with two single-pick prob-
lems, in a scene with either (1) one fridge and a table (one fridge table pick) or (2) two fridges
(two table pick). We used 50 problems for each of the four tasks and ran the planners with a
300-second timeout (the final refinement phase may take longer).

We compared the planning time of five different planner ablations of Algorithm 1. Baseline is a
learning-free planner that always returns f(I,π,G) = 1, attemping to refine every skeleton in the
order of ascending plan length. PIGI sorts the plans with the probability generated by our PIGINet
after Sigmoid. PIGI-0/1 uses PIGINet as a binary classifier to reject plans and attempting the
accepted ones in ascending order of plan length. PIGI-all is trained on all tasks in the dataset
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(a) The runtime of PIGINet-enabled planners compared to a non-learning Baseline and a clairvoyant Oracle.

(b) The number of false positive skeletons refined. The scattered dot sizes are proportional to their log density.

Figure 3: Evaluation of classification models. The number in bracket indicates the number of prob-
lems in the test set, while the grey number under each bar indicates the number of problems solved
by the planner. Note that each subplot has a different y-axis.

instead of just the task tested. Oracle refines only one plan skeleton that’s already logged to be
feasible offline, severing as an upper bound on possible performance.

Figure 3(a) shows that PIGINet is able to cut down planning time substantially, especially in longer-
horizon problems (↓ 80%). Given 50 or 100 plan skeletons, the model usually cuts down the number
of infeasible plans to 1 - 4 and finds a solution after sampling one or two false positive skeletons,
as shown in Figure 3(b). Note that the improvement on the number of false positive skeletons is
larger than that on planning time for the second task two table pick. This disparity is because the
shorter plans prioritized by the Baseline planner imposes less constraints thus needs less time to be
proven infeasible during refinement than those ranked top by PIGINet, which have similar lengths to
the True Positive plans. PIGI-0/1 sometimes failed to find a plan because of its hard cutoff, while
PIGI has a way to recover from prediction error by still attempting skeletons with prediction scores
< 0.5 but are ranked high.

Generalization over geometry: Next, we held out one instance of an object during training and
tested the model on a test set with that instance appearing in each example. We experimented with
three food instances and three fridge instances. Figure 4(a) shows that the models have equally good
prediction accuracy on the unseen object instances as the seen ones. We also created a test set where
the goal is to rearrange staplers instead of food items. Five different stapler models from PartNet-
Mobility dataset were used. We see similar improvements like those in Figure 3, showing that the
models can generalize to similar problems with different categories and shape of objects.

Learner ablations: Finally, we studied how the prediction accuracy on the test set is affected
when we remove different components of the multi-modal encoding.

To test object embeddings, we experimented with pre-trained image features (with fine-tuning), ran-
domized one-hot encoding, or these two added element-wise. Without the added one-hot encoding,
multiple objects that are occluded will have the same image features because no pixels will be ob-
served in the segmented crop. Figure 5(a) shows that PIGINet with image features performs slightly
better than that without, while adding one-hot identifiers does not contribute much.
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(a) Leave-one-out accuracy. (b) Testing runtime on the stapler env. (c) Testing FP count on the stapler env.

Figure 4: Evaluating the model’s generalization on unseen objects.

Figure 5: Classification performance on the test set across ablations of our method in multi-modal
embedding and sequence composition schemes.

To test value embeddings, we experimented with removing all values, removing just object pose
values, and removing just door position values. Figure 5(b) shows that removing value embeddings
does not affect performance significantly.

However, if we remove both value embeddings and image features, the performance is severely com-
promised, as shown in Figure 5(c). We suspect that image features of objects provide redundant
information as the continuous values for representing the geometric state of the world.

To test text embeddings, we experimented with using pre-trained CLIP text features or a fixed one-
hot encoding. Figure 5(d) shows that CLIP features improved performance. We also experimented
with dropping all initial literals from the sequence input. As a result, performance suffered, as shown
in Figure 5(e).

7 CONCLUSION

To speed up TAMP planning, we developed a novel learning architecture, PIGINet, that encodes ini-
tial states, goal, and candidate plans to predict plan feasibility. The model is shown to reduce plan-
ning time on long-horizon rearrangement problems with articulated obstacles, where uninformed
planners suffer from wasted refinement efforts. PIGINet also achieves zero-shot generalization to
unseen movable object categories thanks to its visual encoding of objects.
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