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ABSTRACT

Although large language models (LLMs) are widely deployed, the data used to
train them is rarely disclosed. Given the incredible scale of this data, up to trillions
of tokens, it is all but certain that it includes potentially problematic text such as
copyrighted materials, personally identifiable information, and test data for widely
reported reference benchmarks. However, we currently have no way to know which
data of these types is included or in what proportions. In this paper, we study the
pretraining data detection problem: given a piece of text and black-box access
to an LLM without knowing the pretraining data, can we determine if the model
was trained on the provided text? To facilitate this study, we introduce a dynamic
benchmark WIKIMIA that uses data created before and after model training to
support gold truth detection. We also introduce a new detection method MIN-K%
PROB based on a simple hypothesis: an unseen example is likely to contain a
few outlier words with low probabilities under the LLM, while a seen example
is less likely to have words with such low probabilities. MIN-K% PROB can
be applied without any knowledge about the pretraining corpus or any additional
training, departing from previous detection methods that require training a reference
model on data that is similar to the pretraining data. Moreover, our experiments
demonstrate that MIN-K% PROB achieves a 7.4% improvement on WIKIMIA over
these previous methods. We apply MIN-K% PROB to three real-world scenarios,
copyrighted book detection, contaminated downstream example detection and
privacy auditing of machine unlearning, and find it a consistently effective solution.

1 INTRODUCTION

As the scale of language model (LM) training corpora has grown, model developers (e.g, GPT-
4 (Brown et al., 2020) and LLaMA 2 (Touvron et al., 2023b)) have become reluctant to disclose the full
composition or sources of their data. This lack of transparency poses critical challenges to scientific
model evaluation and ethical deployment. Critical private information may be exposed during
pretraining; previous work showed that LLMs generated excerpts from copyrighted books (Chang
et al., 2023) and personal emails (Mozes et al., 2023), potentially infringing upon the legal rights
of original content creators and violating their privacy. Additionally, Sainz et al. (2023); Magar &
Schwartz (2022); Narayanan (2023) showed that the pretraining corpus may inadvertently include
benchmark evaluation data, making it difficult to assess the effectiveness of these models.

In this paper, we study the pretraining data detection problem: given a piece of text and black-box
access to an LLM with no knowledge of its pretraining data, can we determine if the model was
pretrained on the text? We present a benchmark, WIKIMIA, and an approach, MIN-K% PROB, for
pretraining data detection. This problem is an instance of Membership Inference Attacks (MIAs),
which was initially proposed by Shokri et al. (2016). Recent work has studied fine-tuning data
detection (Song & Shmatikov, 2019; Shejwalkar et al., 2021; Mahloujifar et al., 2021) as an MIA
problem. However, adopting these methods to detect the pertaining data of contemporary large LLMs
presents two unique technical challenges: First, unlike fine-tuning which usually runs for multiple
epochs, pretraining uses a much larger dataset but exposes each instance only once, significantly
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Figure 1: Overview of MIN-K% PROB. To determine whether a text X is in the pretraining data of
a LLM such as GPT, MIN-K% PROB first gets the probability for each token in X , selects the k%
tokens with minimum probabilities and calculates their average log likelihood. If the average log
likelihood is high, the text is likely in the pretraining data.

reducing the potential memorization required for successful MIAs (Leino & Fredrikson, 2020;
Kandpal et al., 2022). Besides, previous methods often rely on one or more reference models (Carlini
et al., 2022; Watson et al., 2022) trained in the same manner as the target model (e.g., on the shadow
data sampled from the same underlying pretraining data distribution) to achieve precise detection.
This is not possible for large language models, as the training distribution is usually not available and
training would be too expensive.

Our first step towards addressing these challenges is to establish a reliable benchmark. We introduce
WIKIMIA, a dynamic benchmark designed to periodically and automatically evaluate detection
methods on any newly released pretrained LLMs. By leveraging the Wikipedia data timestamp and
the model release date, we select old Wikipedia event data as our member data (i.e, seen data during
pretraining) and recent Wikipedia event data (e.g., after 2023) as our non-member data (unseen). Our
datasets thus exhibit three desirable properties: (1) Accurate: events that occur after LLM pretraining
are guaranteed not to be present in the pretraining data. The temporal nature of events ensures that
non-member data is indeed unseen and not mentioned in the pretraining data. (2) General: our
benchmark is not confined to any specific model and can be applied to various models pretrained
using Wikipedia (e.g., OPT, LLaMA, GPT-Neo) since Wikipedia is a commonly used pretraining data
source. (3) Dynamic: we will continually update our benchmark by gathering newer non-member
data (i.e., more recent events) from Wikipedia since our data construction pipeline is fully automated.

MIA methods for finetuning (Carlini et al., 2022; Watson et al., 2022) usually calibrate the target
model probabilities of an example using a shadow reference model that is trained on a similar
data distribution. However, these approaches are impractical for pretraining data detection due to
the black-box nature of pretraining data and its high computational cost. Therefore, we propose
a reference-free MIA method MIN-K% PROB. Our method is based on a simple hypothesis: an
unseen example tends to contain a few outlier words with low probabilities, whereas a seen example
is less likely to contain words with such low probabilities. MIN-K% PROB computes the average
probabilities of outlier tokens. MIN-K% PROB can be applied without any knowledge about the
pretrainig corpus or any additional training, departing from existing MIA methods, which rely on
shadow reference models (Mattern et al., 2023; Carlini et al., 2021). Our experiments demonstrate
that MIN-K% PROB outperforms the existing strongest baseline by 7.4% in AUC score on WIKIMIA.
Further analysis suggests that the detection performance correlates positively with the model size and
detecting text length.

To verify the applicability of our proposed method in real-world settings, we perform three case
studies: copyrighted book detection (§5), privacy auditing of LLMs (§??) and dataset contamination
detection (§6). We find that MIN-K% PROB significantly outperforms baseline methods in both
scenarios. From our experiments on copyrighted book detection, we see strong evidence that
GPT-3 1 is pretrained on copyrighted books from the Books3 dataset (Gao et al., 2020; Min et al.,
2023). From our experiments on privacy auditing of machine unlearning, we use MIN-K% PROB
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to audit an unlearned LLM that is trained to forget copyrighted books using machine unlearning
techniques (Eldan & Russinovich, 2023) and find such model could still output related copyrighted
content. Furthermore, our controlled study on dataset contamination detection sheds light on the
impact of pretraining design choices on detection difficulty; we find detection becomes harder when
training data sizes increase, and occurrence frequency of the detecting example and learning rates
decreases.

2 PRETRAININING DATA DETECTION PROBLEM

We study pretraining data detection, the problem of detecting whether a piece of text is part of the
training data. First, we formally define the problem and describe its unique challenges that are
not present in prior finetuning data detection studies (§2.1). We then curate WIKIMIA, the first
benchmark for evaluating methods of pretraining data detection (§2.2).

2.1 PROBLEM DEFINITION AND CHALLENGES

We follow the standard definition of the membership inference attack (MIA) by Shokri et al. (2016);
Mattern et al. (2023). Given a language model fθ and its associated pretraining data D = {zi}i∈[n]

sampled from an underlying distribution D, the task objective is to learn a detector h that can infer
the membership of an arbitrary data point x: h(x, fθ) → {0, 1}. We follow the standard setup of
MIA, assuming that the detector has access to the LM only as a black box, and can compute token
probabilities for any data point x.

Challenge 1: Unavailability of the pretraining data distribution. Existing state-of-art MIA
methods for data detection during finetuning (Long et al., 2018; Watson et al., 2022; Mireshghallah
et al., 2022a) typically use reference models gγ to compute the background difficulty of the data point
and to calibrate the output probability of the target language model : h(x, fθ, gγ) → {0, 1}. Such
reference models usually share the same model architecture as fθ and are trained on shadow data
Dshadow ⊂ D (Carlini et al., 2022; Watson et al., 2022), which are sampled from the same underlying
distribution D. These approaches assume that the detector can access (1) the distribution of the target
model’s training data, and (2) a sufficient number of samples from D to train a calibration model.

However, this assumption of accessing the distribution of pretraining training data is not realistic
because such information is not always available (e.g., not released by model developers (Touvron
et al., 2023b; OpenAI, 2023)). Even if access were possible, pretraining a reference model on it would
be extremely computationally expensive given the incredible scale of pretraining data. In summary,
the pretraining data detection problem aligns with the MIA definition but includes an assumption that
the detector has no access to pretraining data distribution D.

Challenge 2: Detection difficulty. Pretraining and finetuning differ significantly in the amount
of data and compute used, as well as in optimization setups like training epochs and learning rate
schedules. These factors significantly impact detection difficulty. One might intuitively deduce that
detection becomes harder when dataset sizes increase, and the training epochs and learning rates
decrease. We briefly describe some theoretical evidence that inform these intuitions in the following
and show empirical results that support these hypotheses in §6.

To illustrate, given an example z ∈ D, we denote the model output as fθ(z) Now, take another
example y sampled from D \D (not part of the pretraining data). Determining whether an example
x was part of the training set becomes challenging if the outputs fθ(z) and fθ(y) are similar. The
degree of similarity between fθ(z) and fθ(y) can be quantified using the total variation distance.
According to previous research (Hardt et al., 2016; Bassily et al., 2020), the bound on this total
variation distance between fθ(z) and fθ(y) is directly proportional to the occurrence frequency of
the example x, learning rates, and the inverse of dataset size, which implies the detection difficulty
correlates with these factors as well.
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2.2 WIKIMIA: A DYNAMIC EVALUATION BENCHMARK

We construct our benchmark by using events added to Wikipedia after specific dates, treating them as
non-member data since they are guaranteed not to be present in the pretraining data, which is the key
idea behind our benchmark.

Data construction. We collect recent event pages from Wikipedia. Step 1: We set January 1,
2023 as the cutoff date, considering events occurring post-2023 as recent events (non-member data).
We used the Wikipedia API to automatically retrieve articles and applied two filtering criteria: (1)
the articles must belong to the event category, and (2) the page must be created post 2023. Step 2:
For member data, we collected articles created before 2017 because many pretrained models, e.g.,
LLaMA, GPT-NeoX and OPT, were released after 2017 and incorporate Wikipedia dumps into their
pretraining data. Step 3: Additionally, we filtered out Wikipedia pages lacking meaningful text, such
as pages titled "Timeline of ..." or "List of ...". Given the limited number of events post-2023, we
ultimately collected 394 recent events as our non-member data, and we randomly selected 394 events
from pre-2016 Wikipedia pages as our member data. The data construction pipeline is automated,
allowing for the curation of new non-member data for future cutoff dates.

Benchmark setting. In practice, LM users may need to detect texts that are paraphrased and edited,
as well. Previous studies employing MIA have exclusively focused on detecting examples that exactly
match the data used during pretraining. It remains an open question whether MIA methods can
be employed to identify paraphrased examples that convey the same meaning as the original. In
addition to the verbatim setting (original), we therefore introduce a paraphrase setting we leverage
ChatGPT2 to paraphrase the examples and subsequently assess if the MIA metric can effectively
identify semantically equivalent examples.

Moreover, previous MIA evaluations usually mix different-length data in evaluation and report a
single performance metric. However, our results reveal that data length significantly impacts the
difficulty of detection. Intuitively, shorter sentences are harder to detect. Consequently, different data
length buckets may lead to varying rankings of MIA methods. To investigate this further, we propose
a different-length setting: we truncate the Wikipedia event data into different lengths—32, 64, 128,
256—and separately report the MIA methods’ performance for each length segment. We describe the
desirable properties in Appendix B.

3 MIN-K% PROB: A SIMPLE REFERENCE-FREE PRETRAINING DATA
DETECTION METHOD

We introduce a pretraining data detection method MIN-K% PROB that leverages minimum token
probabilities of a text for detection. MIN-K% PROB is based on the hypothesis that a non-member
example is more likely to include a few outlier words with high negative log-likelihood (or low
probability), while a member example is less likely to include words with high negative log-likelihood.

Consider a sequence of tokens in a sentence, denoted as x = x1, x2, ..., xN , the log-likelihood of a
token, xi, given its preceding tokens is calculated as log p(xi|x1, ..., xi−1). We then select the k%
of tokens from x with the minimum token probability to form a set, Min-K%(x), and compute the
average log-likelihood of the tokens in this set:

MIN-K% PROB(x) =
1

E

∑
xi∈Min-K%(x)

log p(xi|x1, ..., xi−1). (1)

where E is the size of the Min-K%(x) set. We can detect if a piece of text was included in pretraining
data simply by thresholding this MIN-K% PROB result. We summarize our method in Algorithm 1 in
Appendix B.

2OpenAI. https://chat.openai.com/chat
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4 EXPERIMENTS

We evaluate the performance of MIN-K% PROB and baseline detection methods against LMs such as
LLaMA Touvron et al. (2023a), GPT-Neo (Black et al., 2022), and Pythia (Biderman et al., 2023) on
WIKIMIA.

4.1 DATASETS AND METRICS

Our experiments use WIKIMIA of different lengths (32, 64, 128, 256), original and paraphrase
settings. Following (Carlini et al., 2022; Mireshghallah et al., 2022a), we evaluate the effectiveness
of a detection method using the True Positive Rate (TPR) and its False Positive Rate (FPR). We plot
the ROC curve to measure the trade-off between the TPR and FPR and report the AUC score (the
area under ROC curve) and TPR at low FPRs (TPR@5%FPR) as our metrics.

4.2 BASELINE DETECTION METHODS

We take existing reference-based and reference-free MIA methods as our baseline methods and
evaluate their performance on WIKIMIA. These methods only consider sentence-level probability.
Specifically, we use the LOSS Attack method (Yeom et al., 2018a), which predicts the membership
of an example based on the loss of the target model when fed the example as input. In the context
of LMs, this loss corresponds to perplexity of the example (PPL). Another method we consider
is the neighborhood attack (Mattern et al., 2023), which leverages probability curvature to detect
membership (Neighbor). This approach is identical to the DetectGPT (Mitchell et al., 2023) method
recently proposed for classifying machine-generated vs. human-written text. Finally, we compare with
membership inference methods proposed in (Carlini et al., 2021), including comparing the example
perplexity to zlib compression entropy (Zlib), to the lowercased example perplexity (Lowercase) and
to example perplexity under a smaller model pretrained on the same data (Smaller Ref ). For the
smaller reference model setting, we employ LLaMA-7B as the smaller model for LLaMA-65B and
LLaMA-30B, GPT-Neo-125M for GPT-NeoX-20B, OPT-350M for OPT-66B and Pythia-70M for
Pythia-2.8B.

4.3 IMPLEMENTATION AND RESULTS

Implementation details. The key hyperparameter of MIN-K% PROB is the percentage of tokens
with the highest negative log-likelihood we select to form the top-k% set. We performed a small
sweep over 10, 20, 30, 40, 50 on a held-out validation set using the LLAMA-60B model and found
that k = 20 works best. We use this value for all experiments without further tuning. As we report
the AUC score as our metric, we don’t need to determine the threshold ϵ.

Main results. We compare MIN-K% PROB and baseline methods in Table 1. Our experiments show
that MIN-K% PROB consistently outperforms all baseline methods across diverse target language
models, both in original and paraphrase settings. MIN-K% PROB achieves an AUC score of 0.72
on average, marking a 7.4% improvement over the best baseline method (i.e., PPL). Among the
baselines, the simple LOSS Attack (PPL) outperforms the others. This demonstrates the effectiveness
and generalizability of MIN-K% PROB in detecting pretraining data from various LMs. Further
results such as TPR@5%FPR can be found in Appendix A, which shows a trend similar to Table 5.

4.4 ANALYSIS

We further delve into the factors influencing detection difficulty, focusing on two aspects: (1) the size
of the target model, and (2) the length of the text.

Model size. We evaluate the performance of reference-free methods on detecting pretraining 128-
length texts from different-sized LLaMA models (7, 13, 30, 65B). Figure 2a demonstrates a noticeable
trend: the AUC score of the methods rises with increasing model size. This is likely because larger
models have more parameters and thus are more likely to memorize the pretraining data.
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(a) AUC score vs. model size (b) AUC score vs. text length

Figure 2: As model size or text length increases, detection becomes easier.

Length of text. In another experiment, we evaluate the detection method performance on examples
of varying lengths in the original setting. As shown in Figure 2b, the AUC score of different methods
increases as text length increases, likely because longer texts contain more information memorized
by the target model, making them more distinguishable from the unseen texts.

Table 1: AUC score for detecting pretraining examples from the given model on WIKIMIA for MIN-
K% PROB and baselines. Ori. and Para. denote the original and paraphrase settings, respectively.
Bold shows the best AUC within each column.

Pythia-2.8B NeoX-20B LLaMA-30B LLaMA-65B OPT-66B

Method Ori. Para. Ori. Para. Ori. Para. Ori. Para. Ori. Para. Avg.

Neighbor 0.61 0.59 0.68 0.58 0.71 0.62 0.71 0.69 0.65 0.62 0.65
PPL 0.61 0.61 0.70 0.70 0.70 0.70 0.71 0.72 0.66 0.64 0.67
Zlib 0.65 0.54 0.72 0.62 0.72 0.64 0.72 0.66 0.67 0.57 0.65
Lowercase 0.59 0.60 0.68 0.67 0.59 0.54 0.63 0.60 0.59 0.58 0.61
Smaller Ref 0.60 0.58 0.68 0.65 0.72 0.64 0.74 0.70 0.67 0.64 0.66
MIN-K% PROB 0.67 0.66 0.76 0.74 0.74 0.73 0.74 0.74 0.71 0.69 0.72

In the following two sections, we apply MIN-K% PROB to real-world scenarios to detect copyrighted
books and contaminated downstream tasks within LLMs.

5 CASE STUDY: DETECTING COPYRIGHTED BOOKS IN PRETRAINING DATA

MIN-K% PROB can also detect potential copyright infringement in training data, as we show in this
section. Specifically, we use MIN-K% PROB to detect excerpts from copyrighted books in the Books3
subset of the Pile dataset (Gao et al., 2020) that may have been included in the GPT-33 training data.

5.1 EXPERIMENTAL SETUP

Validation data to determine detection threshold. We construct a validation set using 50 books
known to be memorized by ChatGPT, likely indicating their presence in its training data (Chang et al.,
2023), as positive examples. For negative examples, we collected 50 new books with first editions
in 2023 that could not have been in the training data. From each book, we randomly extract 100
snippets of 512 words, creating a balanced validation set of 10,000 examples. We determine the
optimal classification threshold with MIN-K% PROB by maximizing detection accuracy on this set.

Test data and metrics. We randomly select 100 books from the Books3 corpus that are known to
contain copyrighted contents (Min et al., 2023). From each book, we extract 100 random 512-word
snippets, creating a test set of 10,000 excerpts. We apply the threshold to decide if these books
snippets have been trained with GPT-3. We then report the percentage of these snippets in each book
(i.e., contamination rate) that are identified as being part of the pre-training data.

3text-davinci-003
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5.2 RESULTS

Figure 3 shows MIN-K% PROB achieves an AUC of 0.88, outperforming baselines in detecting
copyrighted books. We apply the optimal threshold of MIN-K% PROB to the test set of 10,000
snippets from 100 books from Books3. Table 2 represents the top 20 books with the highest predicted
contamination rates. Figure 4 reveals nearly 90% of the books have an alarming contamination rate
over 50%.

Method Book

Neighbor 0.75
PPL 0.84
Zlib 0.81
Lowercase 0.80
MIN-K% PROB 0.88

Figure 3: AUC scores for detecting the vali-
dation set of copyrighted books on GPT-3.

Figure 4: Distribution of detected contamination
rate of 100 copyrighted books.

Table 2: Top 20 copyrighted books in GPT-3’s pretraining data. The listed contamination rate
represents the percentage of text excerpts from each book identified in the pretraining data.

Contamination % Book Title Author Year

100 The Violin of Auschwitz Maria Àngels Anglada 2010
100 North American Stadiums Grady Chambers 2018
100 White Chappell Scarlet Tracings Iain Sinclair 1987
100 Lost and Found Alan Dean 2001
100 A Different City Tanith Lee 2015
100 Our Lady of the Forest David Guterson 2003
100 The Expelled Mois Benarroch 2013
99 Blood Cursed Archer Alex 2013
99 Genesis Code: A Thriller of the Near Future Jamie Metzl 2014
99 The Sleepwalker’s Guide to Dancing Mira Jacob 2014
99 The Harlan Ellison Hornbook Harlan Ellison 1990
99 The Book of Freedom Paul Selig 2018
99 Three Strong Women Marie NDiaye 2009
99 The Leadership Mind Switch: Rethinking How We Lead in the

New World of Work
D. A. Benton, Kylie Wright-Ford 2017

99 Gold Chris Cleave 2012
99 The Tower Simon Clark 2005
98 Amazon Bruce Parry 2009
98 Ain’t It Time We Said Goodbye: The Rolling Stones on the

Road to Exile
Robert Greenfield 2014

98 Page One David Folkenflik 2011
98 Road of Bones: The Siege of Kohima 1944 Fergal Keane 2010

6 CASE STUDY: DETECTING DOWNSTREAM DATASET CONTAMINATION

Assessing the leakage of downstream task data into pretraining corpora is an important issue, but it is
challenging to address given the lack of access to pretraining datasets. In this section, we investigate
the possibility of using MIN-K% PROB to detect information leakage and perform ablation studies
to understand how various training factors impact detection difficulty. Specifically, we continually
pretrain the 7B parameter LLaMA model (Touvron et al., 2023a) on pretraining data that have been
purposefully contaminated with examples from the downstream task.

6.1 EXPERIMENTS

Experimental setup. To simulate downstream task contamination that could occur in real-world
settings, we create contaminated pretraining data by inserting examples from downstream tasks into a
pretraining corpus. Specifically, we sample text from the RedPajama corpus (TogetherCompute, 2023)
and insert formatted examples from the downstream datasets BoolQ (Clark et al., 2019), IMDB (Maas
et al., 2011), Truthful QA (Lin et al., 2021), and Commonsense QA (Talmor et al., 2019) in contiguous
segments at random positions in the uncontaminated text. We insert 200 (positive) examples from each
of these datasets into the pretraining data while also isolating a set of 200 (negative) examples from
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each dataset that are known to be absent from the contaminated corpus. This creates a contaminated
pretraining dataset containing 27 million tokens with 0.1% drawn from downstream datasets.

We evaluate the effectiveness of MIN-K% PROB at detecting leaked benchmark examples by com-
puting AUC scores over these 400 examples on a LLaMA 7B model finetuned for one epoch on our
contaminated pretraining data at a constant learning rate of 1e-4.

Main results. We present the main attack results in Table 3. We find that MIN-K% PROB out-
performs all baselines. We report TPR@5%FPR in Table 6 in Appendix A, where MIN-K% PROB
shows 12.2% improvement over the best baseline.

Table 3: AUC scores for detecting contaminant downstream examples. Bold shows the best AUC
score within each column.

Method BoolQ Commonsense QA IMDB Truthful QA Avg.

Neighbor 0.68 0.56 0.80 0.59 0.66
Zlib 0.76 0.63 0.71 0.63 0.68
Lowercase 0.74 0.61 0.79 0.56 0.68
PPL 0.89 0.78 0.97 0.71 0.84
MIN-K% PROB 0.91 0.80 0.98 0.74 0.86

6.2 RESULTS AND ANALYSIS

The simulation with contaminated datasets allows us to perform ablation studies to empirically
analyze the effects of dataset size, frequency of data occurrence, and learning rate on detection
difficulty, as theorized in section 2.1. The empirical results largely align with and validate the
theoretical framework proposed. In summary, we find that detection becomes more challenging as
data occurrence and learning rate decreases, and the effect of dataset size on detection difficulty
depends on whether the contaminants are outliers relative to the distribution of the pretraining data.

Pretraining dataset size. We construct contaminated datasets of 0.17M, 0.27M, 2.6M and 26M
tokens by mixing fixed downstream examples (200 examples per downstream task) with varying
amounts of RedPajama data, mimicking real-world pretraining. Despite the theory suggesting greater
difficulty with more pretraining data, Figure 5a shows AUC scores counterintuitively increase with
pre-training dataset size. This aligns with findings that LMs better memorize tail outliers (Feldman,
2020; Zhang et al., 2021). With more RedPajama tokens in the constructed dataset, downstream
examples become more significant outliers. We hypothesize that their enhanced memorization likely
enables easier detection with perplexity-based metrics.

To verify the our hypothesis, we construct control data where contaminants are not outliers. We
sample Real Time Data News August 20234, containing post-2023 news absent from LLaMA pre-
training. We create three synthetic corpora by concatenating 1000, 5000 and 10000 examples from
this corpus, hence creating corpora of sizes 0.77M, 3.9M and 7.6M tokens respecitvely. In each
setting, we consider 100 of these examples to be contaminant (positive) examples and set aside
another set of 100 examples from News August 2023 (negative). Figure 5b shows AUC scores
decrease as the dataset size increases.

Detection of outlier contaminants like downstream examples gets easier as data size increases, since
models effectively memorize long-tail samples. However, detecting general in-distribution samples
from the pretraining data distribution gets harder with more data, following theoretical expectations.

Data occurrence. To study the relationship between detection difficulty and data occurrence, we
construct a contaminated pretraining corpus by inserting multiple copies of each downstream data
point into a pre-training corpus, where the occurrence of each example follows a Poisson distribution.
We measure the relationship between the frequency of the example in the pretraining data and its
AUC scores. Figure 5c shows that AUC scores positively correlates with the occurrence of examples.

4https://huggingface.co/datasets/RealTimeData/News_August_2023
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(a) Outlier contaminants, e.g., down-
stream examples, become easier to
detect as dataset size increases.

(b) In-distribution contaminants,
e.g., news articles, are harder to de-
tect as dataset size increases.

(c) Contaminants that occur more
frequently in the dataset are easier
to detect.

Figure 5: We show the effect of contamination rate (expressed as a percentage of the total number of
pretraining tokens) and occurrence frequency on the ease of detection of data contaminants using
MIN-K% PROB.

Learning rate. We also study the effect of varying the learning rates used during pretraining on
the detection statistics of the contaminant examples (see Table 4). We find that raising the learning
rate from 10−5 to 10−4 increases AUC scores significantly in all the downstream tasks, implying
that higher learning rates cause models to memorize their pretraining data more strongly. A more
in-depth analysis in Table 7 in Appendix A demonstrates that a higher learning rate leads to more
memorization rather than generalization for these downstream tasks.

Table 4: AUC scores for detecting contaminant downstream examples using two different learning
rates. Detection becomes easier when higher learning rates are used during training. Bold shows the
best AUC score within each column.

Learning rate BoolQ Commonsense QA IMDB LSAT QA Truthful QA

1× 10−5 0.64 0.59 0.76 0.72 0.56
1× 10−4 0.91 0.80 0.98 0.82 0.74

7 RELATED WORK

Membership inference attack in NLP. Membership Inference Attacks (MIAs) aim to determine
whether an arbitrary sample is part of a given model’s training data (Shokri et al., 2017; Yeom et al.,
2018b). These attacks pose substantial privacy risks to individuals and often serve as a basis for
more severe attacks, such as data reconstruction (Carlini et al., 2021; Gupta et al., 2022; Cummings
et al., 2023). Due to its fundamental association with privacy risk, MIA has more recently found
applications in quantifying privacy vulnerabilities within machine learning models and in verifying
the accurate implementation of privacy-preserving mechanisms (Jayaraman & Evans, 2019; Jagielski
et al., 2020; Zanella-Béguelin et al., 2020; Nasr et al., 2021; Huang et al., 2022; Nasr et al., 2023;
Steinke et al., 2023). Initially applied to tabular and computer vision data, the concept of MIA
has recently expanded into the realm of language-oriented tasks. However, this expansion has
predominantly centered around finetuning data detection (Song & Shmatikov, 2019; Shejwalkar
et al., 2021; Mahloujifar et al., 2021; Jagannatha et al., 2021; Mireshghallah et al., 2022b). Our work
focuses on the application of MIA to pretraining data detection, an area that has received limited
attention in previous research efforts.

8 CONCLUSION

We present a pre-training data detection dataset WIKIMIA and a new approach MIN-K% PROB.
Our approach uses the intuition that trained data tends to contain fewer outlier tokens with very low
probabilities compared to other baselines. Additionally, we verify the effectiveness of our approach
in real-world setting, we perform two case studiies: detecting dataset contamination and published
book detection. For dataset contamination, we observe empirical results aligning with theoretical
predictions about how detection difficulty changes with dataset size, example frequency, and learning
rate. Most strikingly, our book detection experiments provide strong evidence that GPT-3 models
may have been trained on copyrighted books.

9



Published as a conference paper at ICLR 2024

REFERENCES

Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, and Kunal Talwar. Stability of stochastic gradient
descent on nonsmooth convex losses. Advances in Neural Information Processing Systems, 33:
4381–4391, 2020.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language models
across training and scaling, 2023.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu
Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-NeoX-20B: An
open-source autoregressive language model. In Proceedings of the ACL Workshop on Challenges
& Perspectives in Creating Large Language Models, 2022. URL https://arxiv.org/abs/2204.
06745.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer.
Membership inference attacks from first principles. In 2022 IEEE Symposium on Security and
Privacy (SP), pp. 1897–1914. IEEE, 2022.

Kent K Chang, Mackenzie Cramer, Sandeep Soni, and David Bamman. Speak, memory: An
archaeology of books known to chatgpt/gpt-4. arXiv preprint arXiv:2305.00118, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL,
2019.

Rachel Cummings, Damien Desfontaines, David Evans, Roxana Geambasu, Matthew Jagielski,
Yangsibo Huang, Peter Kairouz, Gautam Kamath, Sewoong Oh, Olga Ohrimenko, et al. Challenges
towards the next frontier in privacy. arXiv preprint arXiv:2304.06929, 2023.

Ronen Eldan and Mark Russinovich. Who’s Harry Potter? approximate unlearning in LLMs. arXiv
preprint arXiv:2310.02238, 2023.

Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 954–959, 2020.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Samyak Gupta, Yangsibo Huang, Zexuan Zhong, Tianyu Gao, Kai Li, and Danqi Chen. Recovering
private text in federated learning of language models. Advances in Neural Information Processing
Systems, 35:8130–8143, 2022.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International conference on machine learning, pp. 1225–1234. PMLR, 2016.

10

https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


Published as a conference paper at ICLR 2024

Yangsibo Huang, Chun-Yin Huang, Xiaoxiao Li, and Kai Li. A dataset auditing method for collabo-
ratively trained machine learning models. IEEE Transactions on Medical Imaging, 2022.

Abhyuday Jagannatha, Bhanu Pratap Singh Rawat, and Hong Yu. Membership inference attack
susceptibility of clinical language models. arXiv preprint arXiv:2104.08305, 2021.

Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differentially private machine
learning: How private is private sgd? Advances in Neural Information Processing Systems, 33:
22205–22216, 2020.

Bargav Jayaraman and David Evans. Evaluating differentially private machine learning in practice.
In 28th USENIX Security Symposium (USENIX Security 19), pp. 1895–1912, 2019.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy risks
in language models. In International Conference on Machine Learning, pp. 10697–10707. PMLR,
2022.

Klas Leino and Matt Fredrikson. Stolen memories: Leveraging model memorization for calibrated
{White-Box} membership inference. In 29th USENIX security symposium (USENIX Security 20),
pp. 1605–1622, 2020.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods, 2021.

Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu, Xiaofeng Wang, Haixu Tang, Carl A
Gunter, and Kai Chen. Understanding membership inferences on well-generalized learning models.
arXiv preprint arXiv:1802.04889, 2018.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Inbal Magar and Roy Schwartz. Data contamination: From memorization to exploitation. ArXiv,
abs/2203.08242, 2022. URL https://api.semanticscholar.org/CorpusID:247475929.

Saeed Mahloujifar, Huseyin A Inan, Melissa Chase, Esha Ghosh, and Marcello Hasegawa. Member-
ship inference on word embedding and beyond. arXiv preprint arXiv:2106.11384, 2021.

Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schoelkopf, Mrinmaya Sachan,
and Taylor Berg-Kirkpatrick. Membership inference attacks against language models via neigh-
bourhood comparison. In Findings of the Association for Computational Linguistics: ACL 2023,
pp. 11330–11343, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.
18653/v1/2023.findings-acl.719. URL https://aclanthology.org/2023.findings-acl.719.

Sewon Min, Suchin Gururangan, Eric Wallace, Hannaneh Hajishirzi, Noah A Smith, and Luke
Zettlemoyer. Silo language models: Isolating legal risk in a nonparametric datastore. arXiv
preprint arXiv:2308.04430, 2023.

Fatemehsadat Mireshghallah, Kartik Goyal, Archit Uniyal, Taylor Berg-Kirkpatrick, and Reza Shokri.
Quantifying privacy risks of masked language models using membership inference attacks. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
8332–8347, Abu Dhabi, United Arab Emirates, December 2022a. Association for Computational
Linguistics. doi: 10.18653/v1/2022.emnlp-main.570. URL https://aclanthology.org/2022.
emnlp-main.570.

Fatemehsadat Mireshghallah, Kartik Goyal, Archit Uniyal, Taylor Berg-Kirkpatrick, and Reza Shokri.
Quantifying privacy risks of masked language models using membership inference attacks. arXiv
preprint arXiv:2203.03929, 2022b.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, and Chelsea Finn.
Detectgpt: Zero-shot machine-generated text detection using probability curvature, 2023. URL
https://arxiv.org/abs/2301.11305.

11

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://api.semanticscholar.org/CorpusID:247475929
https://aclanthology.org/2023.findings-acl.719
https://aclanthology.org/2022.emnlp-main.570
https://aclanthology.org/2022.emnlp-main.570
https://arxiv.org/abs/2301.11305


Published as a conference paper at ICLR 2024

Maximilian Mozes, Xuanli He, Bennett Kleinberg, and Lewis D. Griffin. Use of llms for illicit
purposes: Threats, prevention measures, and vulnerabilities, 2023.

Arvind Narayanan. Gpt-4 and professional benchmarks: the wrong answer to the wrong question,
2023. URL https://www.aisnakeoil.com/p/gpt-4-and-professional-benchmarks.

Milad Nasr, Shuang Songi, Abhradeep Thakurta, Nicolas Papernot, and Nicholas Carlin. Adversary
instantiation: Lower bounds for differentially private machine learning. In 2021 IEEE Symposium
on security and privacy (SP), pp. 866–882. IEEE, 2021.

Milad Nasr, Jamie Hayes, Thomas Steinke, Borja Balle, Florian Tramèr, Matthew Jagielski, Nicholas
Carlini, and Andreas Terzis. Tight auditing of differentially private machine learning. arXiv
preprint arXiv:2302.07956, 2023.

OpenAI. Gpt-4 technical report, 2023.

Oscar Sainz, Jon Ander Campos, Iker García-Ferrero, Julen Etxaniz, and Eneko Agirre. Did chat-
gpt cheat on your test?, 2023. URL https://hitz-zentroa.github.io/lm-contamination/
blog/.

Virat Shejwalkar, Huseyin A Inan, Amir Houmansadr, and Robert Sim. Membership inference attacks
against NLP classification models. In NeurIPS 2021 Workshop Privacy in Machine Learning,
2021. URL https://openreview.net/forum?id=74lwg5oxheC.

R. Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pp.
3–18, 2016.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE symposium on security and privacy (SP), pp. 3–18.
IEEE, 2017.

Congzheng Song and Vitaly Shmatikov. Auditing data provenance in text-generation models. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 196–206, 2019.

Thomas Steinke, Milad Nasr, and Matthew Jagielski. Privacy auditing with one (1) training run.
arXiv preprint arXiv:2305.08846, 2023.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL https:
//aclanthology.org/N19-1421.

TogetherCompute. Redpajama: An open source recipe to reproduce llama training dataset, 2023.
URL https://github.com/togethercomputer/RedPajama-Data.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen

12

https://www.aisnakeoil.com/p/gpt-4-and-professional-benchmarks
https://hitz-zentroa.github.io/lm-contamination/blog/
https://hitz-zentroa.github.io/lm-contamination/blog/
https://openreview.net/forum?id=74lwg5oxheC
https://aclanthology.org/N19-1421
https://aclanthology.org/N19-1421
https://github.com/togethercomputer/RedPajama-Data


Published as a conference paper at ICLR 2024

Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b.

Lauren Watson, Chuan Guo, Graham Cormode, and Alexandre Sablayrolles. On the importance of
difficulty calibration in membership inference attacks. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=3eIrli0TwQ.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learning:
Analyzing the connection to overfitting. In 2018 IEEE 31st Computer Security Foundations
Symposium (CSF), pp. 268–282, 2018a. doi: 10.1109/CSF.2018.00027.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learning:
Analyzing the connection to overfitting. In 2018 IEEE 31st computer security foundations
symposium (CSF), pp. 268–282. IEEE, 2018b.

Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti Tople, Victor Rühle, Andrew Paverd, Olga
Ohrimenko, Boris Köpf, and Marc Brockschmidt. Analyzing information leakage of updates to
natural language models. In Proceedings of the 2020 ACM SIGSAC conference on computer and
communications security, pp. 363–375, 2020.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian Tramèr, and Nicholas
Carlini. Counterfactual memorization in neural language models. arXiv preprint arXiv:2112.12938,
2021.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

13

https://openreview.net/forum?id=3eIrli0TwQ


Published as a conference paper at ICLR 2024

A ADDITIONAL RESULTS

Table 5: TPR@5%FPR score for detecting pretraining examples from the given model on WIKIMIA
for MIN-K% PROB and baselines. Ori. and Para. denote the original and paraphrase settings,
respectively. Bold shows the best score within each column.

Pythia-2.8B NeoX-20B LLaMA-30B LLaMA-65B OPT-66B

Method Ori. Para. Ori. Para. Ori. Para. Ori. Para. Ori. Para. Avg.

Neighbor 10.2 16.2 15.2 19.3 20.1 17.2 17.2 20.0 17.3 18.8 17.2
PPL 9.4 18.0 17.3 24.9 23.7 18.7 16.5 23.0 20.9 20.1 19.3
Zlib 18.7 18.7 20.3 22.1 18.0 20.9 23.0 23.0 21.6 20.1 20.6
Lowercase 10.8 7.2 12.9 12.2 10.1 6.5 14.4 12.2 14.4 8.6 10.9
Smaller Ref 10.1 10.1 15.8 10.1 10.8 11.5 15.8 21.6 15.8 10.1 13.2
MIN-K% PROB 13.7 15.1 21.6 27.3 22.3 25.9 20.9 30.9 21.6 23.0 22.2

Table 6: TPR @ FPR=5% for detecting contaminant downstream examples using reference-based
and reference-free methods. Bold shows the best reference-free TPR within each column.

Method BoolQ Commonsense QA IMDB Truthful QA Avg.

Neighbor 19 7 41 13 20
PPL 52 24 74 17 42
Zlib 18 9 19 7 13
Lowercase 24 3 26 14 17
MIN-K% PROB 55 23 83 21 46

Table 7: Accuracy of the model finetuned in Section 6.1 on each non-contaminant and contaminant
examples used for AUC computation for each downstream dataset. The difference in average
classification accuracy of contaminant examples over that of non-contaminant examples is 0.04 at a
learning rate of 1× 10−5 and 0.11 at a learning rate of 1× 10−4. This indicates that memorization
becomes a significantly more pronounced effect than generalization at larger learning rates.

Learning rate BoolQ Commonsense QA IMDB LSAT QA Truthful QA Avg.

Non-contaminant examples
1× 10−5 0.68 0.47 0.89 0.22 0.28 0.51
1× 10−4 0.69 0.48 0.90 0.24 0.33 0.53

Contaminant examples
1× 10−5 0.71 0.49 0.92 0.26 0.38 0.55
1× 10−4 0.81 0.60 0.89 0.35 0.56 0.64
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Table 8: Input template we use to prompt GPT-4 to obtain the similarity score.

System You are a helpful assistant in evaluating the similarity between two outputs generated by two different
AI chatbots. Your goal is to rate the similarity between the two outputs based on a scale of 1 to 5,
with 1 being highly dissimilar and 5 being highly similar.

User Rate the similarity between Output (a) and Output (b) on a scale of 1 to 5, where 1 indicates high
dissimilarity, and 5 indicates high similarity. Here are some rules of the evaluation:
(1) Consider how closely Output (a) matches Output (b) in terms of content, context, and relevance.
(2) Do not provide a rating outside the 1 to 5 scale, and avoid giving a rating of 3 (neutral) whenever
possible.
(3) Your judgment should be as objective as possible, without being influenced by any potential bias.
You should answer ‘Score: ’, followed by an integer rating between 1 to 5, where 1 indicates high
dissimilarity, and 5 indicates high similarity. You should then output ‘Reason: ’ and provide a short
sentence to explain your rating.
Output (a):
Output (b):

Table 9: Examples of similar ground truth completion and the completion by the
LLaMA2-7B-WhoIsHarryPotter model, alongside the SimCSE and GPT-4 similarity scores.

Chunk #1:
▶ Context: He was chewing the gillyweed as hard and fast as he could; it felt unpleasantly slimy and rubbery,
like octopus tentacles. Waist-deep in the freezing water he stopped, swallowed, and waited for something to
happen. He could hear laughter in the crowd and knew he must look stupid, walking into the lake without
showing any sign of magical power. The part of him that was still dry was covered in goose pimples; half
immersed in the icy water, a cruel breeze lifting his hair, Harry started to shiver violently. He avoided looking at
the stands; the laughter was becoming louder, and there were catcalls and jeering from the Slytherins. ... Then,
quite suddenly, Harry felt as though an invisible pillow had been pressed over his mouth and nose. He tried to
draw breath, but it made his head spin; his lungs were empty, and he suddenly felt a piercing pain on either side
of his neck - Harry clapped his hands around his throat and felt two large slits just below his ears, flapping in the
cold air. . . . He had gills. Without pausing to think, he did the only thing that made
▶ Ground truth (Output a): sense - he flung himself forward into the water. The first gulp of icy lake water
felt like the breath of life. His head had stopped spinning; he took another great gulp of water and felt it pass
smoothly through his gills, sending oxygen back to his brain. He stretched out his hands in front of him and
stared at them. They looked green and ghostly under the water, and they had become webbed. He twisted around
and looked at his bare feet - they had become elongated and the toes were webbed too: It looked as though he
had sprouted flippers. The water didn’t feel icy anymore either ... on the contrary, he felt pleasantly cool and
very light. . . . Harry struck out once more, marveling at how far and fast his flipper-like feet propelled him
through the vater, and noticing how clearly he could see, and how he no longer seemed to need to blink. He had
soon swum so far into the lake that he could no longer see the bottom. He flipped over and dived into its depths.
Silence pressed upon his ears as he soared over a strange, dark, foggy landscape. He could only see ten feet
around him, so that as he sped throuugh the water new scenes seemed to loom suddenly out of the incoming
darkness: forests of rippling, tangled black weed, wide plains of mud littered with dull, glimmering stones. He
swam deeper and deeper, out toward the middle of the lake, his eyes wide, staring through the eerily gray-lit
water around him to the shadow beyond, where the water became opaque. Small fish flickered past him like
silver darts. Once or twice he thought he saw something larger moving ahead of him, but when he got nearer, he
discovered it to be
▶ Completion by LLaMA2-7B-WhoIsHarryPotter (Output b): sense: he opened his mouth and let the water
rush in.
Reflexively, he gulped air, and his lungs expanded, filling with the icy water. The coldness spread through his
body, and he shivered again, but this time it was different. He felt a strange tingling sensation, like tiny fingers
massaging his muscles.
As he gulped in more water, his body began to change. His legs grew longer and thinner, turning into a pair of
flippers. His arms shortened and transformed into a pair of fins, and his hands became webbed.
▶ SimCSE score: 0.82
▶ GPT-4 score and reason: 5. Both outputs describe a character changing into a sea creature. They both mention
the character gulping in water, feeling cold initially then adjusting to the temperature, and developing webbed
hands and feet or flippers. However, Output (b) doesn’t include the exploration of the underwater environment
that is a key part of Output (a) which results in slight difference.

Chunk #2:
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▶ Context: doesn’t know about the troll." Ron bit his lip. "Oh, all right," he snapped. "But Percy’d better not see
us." Ducking down, they joined the Hufflepuffs going the other way, slipped down a deserted side corridor, and
hurried off toward the girls’ bathroom. They had just turned the corner when they heard quick footsteps behind
them. "Percy!" hissed Ron, pulling Harry behind a large stone griffin. Peering around it, however, they saw not
Percy but Snape. He crossed the corridor and disappeared from view. "What’s he doing?" Harry whispered.
"Why isn’t he down in the dungeons with the rest of the teachers?" "Search me." Quietly as possible, they crept
along the next corridor after Snape’s fading footsteps. "He’s heading for the third floor," Harry said, but Ron
held up his hand. "Can you smell something?" Harry sniffed and a foul stench reached his nostrils, a mixture of
old socks and the kind of public toilet no one seems to clean. And then they heard it – a low grunting, and the
shuffling footfalls of gigantic feet. Ron pointed – at the end of a passage to the left, something huge was moving
toward them. They shrank into the shadows and
▶ Ground truth: watched as it emerged into a patch of moonlight. It was a horrible sight. Twelve feet tall, its
skin was a dull, granite gray, its great lumpy body like a boulder with its small bald head perched on top like a
coconut. It had short legs thick as tree trunks with flat, horny feet. The smell coming from it was incredible. It
was holding a huge wooden club, which dragged along the floor because its arms were so long. The troll stopped
next to a doorway and peered inside. It waggled its long ears, making up its tiny mind, then slouched slowly
into the room. "The keys in the lock," Harry muttered. "We could lock it in." "Good idea," said Ron nervously.
They edged toward the open door, mouths dry, praying the troll wasn’t about to come out of it. With one great
leap, Harry managed to grab the key, slam the door, and lock it. ’Yes!" Flushed with their victory, they started to
run back up the passage, but as they reached the corner they heard something that made their hearts stop – a
high, petrified scream – and it was coming from the chamber they’d just chained up. "Oh, no," said Ron, pale
as the Bloody Baron. "It’s the girls’ bathroom!" Harry gasped. "Hermione!" they said together. It was the last
thing they wanted to do, but what choice did they have? Wheeling around, they sprinted back to the door and
turned the key, fumbling in their panic. Harry pulled the door open and they ran inside. Hermione Granger
was shrinking against the wall opposite, looking as if she was about to faint. The troll was advancing on her,
knocking the sinks off the walls as it went. "Confuse it!" Harry said desperately to Ron, and, seizing a tap, he
threw it as hard as he could against the wall.
▶ Completion by LLaMA2-7B-WhoIsHarryPotter (Output b): watched in horror as the creature came into view.
It was a troll from the depths of the earth, its skin the color of dirt and mold, its eyes glowing red slits in the
dim light. The passageway was too narrow for it to fit, but it could see them, and its grunts grew louder, more
menacing. "What do we do?" gulped Harry. "We can’t outrun it." "We have to find a way to distract it," decided
Ron, his mind racing with ideas. "Quick!" He grabbed a nearby book from the wall and flung it at the troll,
hoping to divert its attention. The creature roared in anger and chased after the book, giving them just enough
time to slip through a nearby door and slam it shut behind them. They leaned against the door, panting with fear,
and listened as the troll beat its fists against the other side of the door, trying to break through. "That was close,"
said Harry, his voice shaking. "Too close." "We have to get out of here," agreed Ron. "Before it breaks through."
But they knew they couldn’t escape that way. The only other exit was through the library, and they knew Mr.
Hufflepuff would never let them pass. They were trapped.
▶ SimCSE score: 0.84
▶ GPT-4 score and reason: 4. Both outputs present a similar scenario where characters are encountered by
a troll and try to escape or distract it. The issue they face, the settings, and the way they express fear show
considerable similarities. However, the specific details and descriptions of events do somewhat differ.

Chunk #3:
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▶ Context: one, ’cause it might be the last thing yeh do." Malfoy, Crabbe, and Goyle weren’t listening; they
were talking in an undertone and Harry had a nasty feeling they were plotting how best to disrupt the lesson.
"Yeh always wait fer the hippogriff ter make the firs’ move," Hagrid continued. "It’s polite, see? Yeh walk toward
him, and yeh bow, an’ yeh wait. If he bows back, yeh’re allowed ter touch him. If he doesn’ bow, then get away
from him sharpish, ’cause those talons hurt. "Right – who wants ter go first?" Most of the class backed farther
away in answer. Even Harry, Ron, and Hermione had misgivings. The hippogriffs were tossing their fierce heads
and flexing their powerful wings; they didn’t seem to like being tethered like this. "No one?" said Hagrid, with a
pleading look. "I’ll do it," said Harry. There was an intake of breath from behind him, and both Lavender and
Parvati whispered, "Oooh, no, Harry, remember your tea leaves!" Harry ignored them. He climbed over the
paddock fence. "Good man, Harry!" roared Hagrid. "Right then – let’s see how yeh get on with Buckbeak." He
untied one of the chains, pulled the gray hippogriff
▶ Ground truth (Output a): "away from its fellows, and slipped off its leather collar. The class on the other side
of the paddock seemed to be holding its breath. Malfoy’s eyes were narrowed maliciously. "Easy) now, Harry,"
said Hagrid quietly. "Yeh’ve got eye contact, now try not ter blink.... Hippogriffs don’ trust yeh if yeh blink
too much...." Harry’s eyes immediately began to water, but he didn’t shut thern. Buckbeak had turned his great,
sharp head and was staring at Harry with one fierce orange eye. "Tha’s it," said Hagrid. "Tha’s it, Harry... now,
bow." Harry didn’t feel much like exposing the back of his neck to Buckbeak, but he did as he was told. He
gave a short bow and then looked up. The hippogriff was still staring haughtily at him. It didn’t move. "Ah,"
said Hagrid, sounding worried. "Right – back away, now, Harry, easy does it But then, to Harry’s enormous
surprise, the hippogriff suddenly bent its scaly front knees and sank into what was an unmistakable bow. "Well
done, Harry!" said Hagrid, ecstatic. "Right – yeh can touch him! Pat his beak, go on!" Feeling that a better
reward would have been to back away, Harry moved slowly toward the hippogriff and reached out toward it. He
patted the beak several times and the hippogriff closed its eyes lazily, as though enjoying it. The class broke into
applause, all except for Malfoy, Crabbe, and Goyle, who were looking deeply disappointed. "Righ’ then, Harry,"
said Hagrid. "I reckon he might’ let yeh ride him!" This was more than Harry had bargained for. He was used to
a broomstick; but he wasn’t sure a hippogriff would be quite the same. "Yeh climb up there, jus’ behind the wing
joint," said Hagrid, "an’ mind yeh don’ pull any of his feathers out, he won’ like that...." Harry put his foot on
the top of Buckbeaks
▶ Completion by LLaMA2-7B-WhoIsHarryPotter (Output b): forward, and held it out on a leash. The bird was
massive, with a beak like a scythe and eyes that glowed like lanterns in the dark. "Walk towards him, boys and
girls," urged Hagrid. "Be polite, now. No need ter be afraid. He’n’t goin ter hurt ye." But he wasn’t sure if that
was true. He could feel a dark mischief in the air, a sense of unease that made his spine tingle. He’d heard stories
of hippogriffs turning on their handlers when they were least expected, and he didn’ mind sharing his tea leaves
with them. But he couldn’ afford ter back down now. So he took a deep breath and started walking, trying ter
keep his eyes fixed on the bird’ eyes. "Good boy, good boy," coaxed Haggridd. "Now, touch his wing, if yeh
dare."
▶ SimCSE score: 0.77
▶ GPT-4 score and reason: 4. The two outputs share notable similarities in context, content, and elements. They
both discuss Hagrid instructing someone to approach a hippogriff, with an emphasis on maintaining eye contact
and eventual touching. While differences can be seen in the detailed dialogues or descriptions, the general
themes and ideas remain consistent.

B DETAILS OF WIKIMIA

Data properties. Our WIKIMIA benchmark demonstrates several desirable properties that make it
suitable for evaluating methods to detect data during pretraining on any newly released models.

(1) Accurate: Since non-member data consists of events that occurred after the LM pretraining, there
is a guarantee that this data was not present during pretraining, ensuring the accuracy of our dataset.
We consider Wikipedia event data because of its time sensitivity. A recent non-event Wikipedia page
may be only a recent version of an older page that was already present during the model’s pretraining,
and thus it may not serve as true non-member data. For example, a Wikipedia page created after 2023
about a historical figure or a well-known concept could contain substantial text already mentioned in
the pretraining corpus.

(2) General: Our benchmark is designed to be widely applicable across different models pretrained
on Wikipedia, a commonly used source of pretraining data. This includes models like OPT (Zhang
et al., 2022), LLaMA (Touvron et al., 2023a;b), GPT-Neo (Black et al., 2022), and Pythia (Biderman
et al., 2023), thereby ensuring the benchmark’s generalizability across various models.

(3) Dynamic: Our benchmark will be continually updated by incorporating the latest non-member
data, such as recent events from Wikipedia. This consistent renewal ensures that the benchmark’s
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non-member data is always up-to-date and can be used to evaluate MIA for any newly introduced
pretrained models.

C DETAILS OF MIN-K% PROB

Algorithm 1 Pretraining Data Detection
1: Input: A sequence of tokens x = x1, x2, ..., xN , decision threshold ϵ
2: Output: Membership of the sequence x
3: for i = 1 to N do
4: Compute − log p(xi|x1, . . . , xi−1)
5: end for
6: Select the top k% of tokens from x with the lowest probability and add to Min-k%(x)
7: MIN-K% PROB(x) =

∑
xi∈Min-k%(x) − log p(xi|x1, ..., xi−1)

8: If MIN-K% PROB(x) > ϵ : return Non-member Else: return Member
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