

000 RANDOM NEURAL NETWORK EXPRESSIVITY FOR 001 002 NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Neural networks with randomly generated hidden weights (RaNNs) have been ex-
011 tensively studied, both as a standalone learning method and as an initialization for
012 fully trainable deep learning methods. In this work, we study RaNN expressiv-
013 ity for learning solutions to non-linear partial differential equations (PDEs). To
014 achieve this, we derive approximation error bounds for time-dependent Sobolev
015 functions and obtain a dimension-free approximation rate $\frac{1}{2}$. Our results imply
016 that RaNNs are capable of efficiently approximating solutions to complex non-
017 linear PDEs. When applied to Physics-Informed Neural Networks (PINNs), our
018 bounds imply that with high probability, the physics-informed training error con-
019 verges to 0 with convergence rate free from the curse of dimensionality. Our the-
020 oretical analysis is supported by numerical experiments on two benchmark PDEs.
021 These simulations validate the obtained convergence rate.
022

023 1 INTRODUCTION 024

025 Partial Differential Equations (PDEs) are foundational to our understanding of the natural world,
026 with applications across all areas of science and engineering. Many complex phenomena are mod-
027 modelled by non-linear PDEs (e.g. Navier-Stokes, Schrödinger, Porous medium equations), which ex-
028 hibit disorderly behaviour that renders them intractable to classical analytic/numerical approaches.
029 Therefore, it is crucial to develop numerical methods for solving non-linear PDEs efficiently. In
030 the past years, a variety of deep learning methods for solving PDEs have been introduced and anal-
031 ysed. Neural networks with randomly generated hidden weights (RaNNs) play an important role in
032 many of these methods; either as standalone learning method or as initialization for fully trainable
033 deep neural networks. In both cases, when employing these methods, a precise understanding of the
034 approximation error is crucial for controlling the overall error.
035

036 In this paper, we are concerned with expressivity of RaNNs for learning solutions of non-linear
037 PDEs. To tackle this problem, we derive approximation error bounds for time-dependent Sobolev
038 functions, which encompass the solution spaces for many important non-linear PDEs. Our obtained
039 bounds show that these functions can be approximated by RaNNs at rate $\frac{1}{2}$, making them efficient
040 also in high-dimensional situations. We then apply our results to two important non-linear PDEs and
041 show that with high probability the training error for Physics-Informed Neural Networks (PINNs)
042 (Raissi et al., 2019) converges to 0 with rate free from the curse of dimensionality. We comple-
043 ment our theoretical analysis by numerical experiments on two benchmark PDEs, validating the
044 obtained convergence rate. In particular, our results provide quantitative approximation guarantees
045 for RaNN-based PINNs for learning non-linear PDEs, as have been extensively studied in computa-
046 tional experiments (cf. the references below).
047

048 1.1 RELATED WORKS

049 In recent years, a variety of deep learning-based methods for solving PDEs have been introduced,
050 addressing challenges of classical mesh-based methods such as finite difference methods. Seminal
051 works include Sirignano & Spiliopoulos (2017), E et al. (2017) Raissi et al. (2019), E & Yu (2017).
052 We refer, e.g., to the survey articles Beck et al. (2020); Germain et al. (2021); Cuomo et al. (2022);
053 Gonon et al. (2024) for an extensive overview and further references on deep learning methods for
PDEs and their theoretical foundations.

054 PINNs (Raissi et al., 2019) constitute a flexible and widely applicable deep learning-based approach
 055 for solving PDEs. PINNs reframe the problem as training a neural network to solve the PDE, by
 056 minimising a loss function that encodes the PDE residual along with the boundary/initial conditions.
 057 While this approach has been demonstrated to be highly effective in many settings Cai et al. (2021);
 058 Hu et al. (2024), for non-linear PDEs the loss landscape may become exceptionally complex. This
 059 has motivated the use of RaNN-based PINN methods, for which several recent studies have carried
 060 out extensive empirical experiments, see, e.g., Dwivedi & Srinivasan (2020); Shang et al. (2023);
 061 Shang & Wang (2024); Sun et al. (2024); Wang & Dong (2024); Ying et al. (2024); Linghu et al.
 062 (2025); Datar et al. (2025); Chen et al. (2022); Nelsen & Stuart (2021).

063 RaNNs Huang et al. (2006); Rahimi & Recht (2007; 2008) are neural networks with randomly
 064 generated hidden weights. RaNNs have been used both as standalone learning methods and as
 065 means for studying the effects of random initialization for neural networks trained using gradient-
 066 based optimization Braun et al. (2024); Carratino et al. (2018). Generalization properties of random
 067 feature models have been studied in Rudi & Rosasco (2017); Mei & Montanari (2019); Lanthaler &
 068 Nelsen (2023); Cheng et al. (2023). In addition to RaNN-based PINNs, many other RaNNs-based
 069 methods have been developed for solving PDEs Nelsen & Stuart (2021); Gonon (2023); Jacquier
 070 & Zuric (2023); Neufeld et al. (2025). More broadly, RaNNs and related random feature models
 071 have demonstrated state-of-the-art performance and speed across various tasks Bolager et al. (2023);
 072 Dempster et al. (2023); Gattiglio et al. (2024); Prabhu et al. (2024); Zozoulenko et al. (2025).

073 The reduced number of trainable parameters of RaNNs in comparison to fully trainable models re-
 074 sults in a simpler training phase with reduced computational cost, potentially at the expense of lower
 075 expressivity. Therefore, a precise theoretical understanding of RaNN approximation capabilities is
 076 crucial. Quantitative approximation properties of RaNNs for functions in the associated reproducing
 077 kernel Hilbert space have been studied in Rahimi & Recht (2008); Bach (2017); Sun et al. (2018).
 078 For smoothness-based function classes, RaNN approximation error bounds were derived in Gonon
 079 et al. (2023); Gonon (2023) using Barron-type representations and further extended in Neufeld &
 080 Schmocker (2023); De Ryck et al. (2025). In the context of PDEs, Gonon (2023) obtains a full
 081 RaNN learning error analysis free from the curse of dimensionality for a class of linear PDEs. In all
 082 these results, the random weight distribution is fixed (e.g. a uniform, normal or Student-t distribu-
 083 tion). In contrast, RaNNs also appear as a means of proof for deriving deterministic approximation
 084 bounds Barron (1993; 1994); Barron & Klusowski (2018); Siegel & Xu (2020), with RaNN weight
 distributions depending on the function to be approximated.

085 While the approximation results in Gonon et al. (2023); Gonon (2023) and Neufeld & Schmocker
 086 (2023); De Ryck et al. (2025) allow to control the RaNN approximation errors in uniform, mean-
 087 squared or Sobolev-norms, respectively, in the context of non-linear PDEs these results would either
 088 require strict information on the solution (e.g. finiteness in Barron-ridgelet norms and decay on
 089 the Fourier transform of u) which is typically not known, or the bounds would be applicable only
 090 for approximating PDE solutions at a fixed point in time. However, for time-dependent non-linear
 091 PDEs, solutions often have significantly different behaviour in time versus space (e.g. solutions to
 092 Navier-Stokes or semi-linear heat equations). In contrast, our results allow to handle time-dependent
 093 functions in mixed Sobolev spaces, as arise in the context of non-linear PDEs.

094 1.2 CONTRIBUTIONS

095 In this paper, we provide RaNN approximation error bounds tailored to the context of time-
 096 dependent, non-linear PDEs. We will denote the width of a RaNN by N . Our paper makes the
 097 following contributions:

- 100 1. **RaNN approximation bound with dimension-independent rate $N^{-1/2}$:** We derive
 101 RaNN approximation error bounds for time-dependent Sobolev functions (Theorem 1).
 102 These functions encompass the solution spaces for many important non-linear PDEs. Our
 103 unbiased RaNN estimator approximates functions in mixed Sobolev norms $H_t^p H_x^q$ at the
 104 rate $N^{-1/2}$ independently of dimension, while only requiring minimal extra regularity in
 105 time and space.
- 106 2. **Implications for non-linear PDEs:** We showcase the implications of our bounds on two
 107 important classes of non-linear PDEs: Porous Medium Equations (PME) and Compress-
 108 able Navier-Stokes Equations. In particular, we obtain RaNN approximation error bounds

108 for the PINN training error in these cases. Our results are supplemented by numerical
 109 simulations validating the obtained convergence rates.
 110

111 To prove these results, we obtain a specific ridgelet-based representation for L^2 functions (Proposition
 112 1) and a higher-order Plancherel-type estimate (Lemma 1) that connects Sobolev regularity of u
 113 with its ridgelet transform. Our obtained bounds may serve as building block for generalization error
 114 analyses of RaNNs for PINN-based learning as obtained for deterministic networks in De Ryck &
 115 Mishra (2024); Mishra & Molinaro (2022; 2023); Alejo et al. (2024).

116 2 PRELIMINARIES

119 2.1 RANDOM NEURAL NETWORKS

120 A random neural network (RaNN) is a fully connected neural network with one hidden layer in
 121 which the weights are randomly sampled, leaving only the output weights trainable. In this paper,
 122 we are interested in studying solutions to PDEs, which typically treat time as a separate dimension.
 123 Therefore we will consider time-dependent random neural networks of the following form.

124 **Definition 1.** A time-dependent random neural network of width N is a function $u_W^{\tau, \mathbf{a}, \mathbf{b}} : \mathbb{R} \times \mathbb{R}^d \rightarrow$
 125 \mathbb{R} with

$$127 u_W^{\tau, \mathbf{a}, \mathbf{b}}(t, x) = \sum_{i=1}^N W_i \sigma(\tau_i t + \mathbf{a}_i \cdot x + b_i), \quad (1)$$

128 where $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ is an activation function, $\mathbf{a}_1, \dots, \mathbf{a}_N$ are \mathbb{R}^d -valued i.i.d. random variables,
 129 b_1, \dots, b_N are i.i.d. random variables in \mathbb{R} , τ_1, \dots, τ_N are i.i.d. random variables in \mathbb{R} and
 130 W_1, \dots, W_N are trainable weights.¹

131 A RaNN is used as learning system by optimizing the weights W_1, \dots, W_N of $u_W^{\tau, \mathbf{a}, \mathbf{b}}$ with respect to
 132 a given loss function.

136 2.2 PHYSICS-INFORMED MACHINE LEARNING

137 Physics-informed neural networks (PINNs) have been introduced in Raissi et al. (2019) as an unsupervised learning method for solving partial differential equations. PINNs approximate the solution
 138 u to a PDE $\mathcal{L}[u] = 0$ by a neural network u_θ , with θ representing the trainable parameters. The solution is approximated by minimising a loss function $\mathcal{J}[u_\theta]$ encoding the structure of the PDE
 139 — including initial/boundary conditions — at collocation points $\{t_p^i, x_p^i\}_{i=1}^M$ in the interior domain
 140 $(0, T) \times D$, as well as $\{x_{ic}^i\}_{i=1}^M, \{t_{bc}^i\}_{i=1}^M$ on the slices $\{t = 0\} \times D$ and $(0, T) \times \partial D$ on which
 141 the initial data / boundary conditions are defined, respectively. For example, if we have a PDE on
 142 the 1D domain $(0, T) \times (a, b)$ given by $\mathcal{L}[u] = 0$ with initial condition $u(0, \cdot) = u_0$ and boundary
 143 conditions $u(t, a) = u(t, b)$, the PINN loss function is given by

$$147 \mathcal{J}[u_\theta] := \frac{1}{M} \sum_{i=1}^M |\mathcal{L}[u_\theta]|^2(t_p^i, x_p^i) + \frac{1}{M} \sum_{i=1}^M |u_\theta(0, x_{ic}^i) - u_0(x_{ic}^i)|^2 + \frac{1}{M} \sum_{i=1}^M |u_\theta(t_{bc}^i, b) - u_\theta(t_{bc}^i, a)|^2.$$

148 The parameters θ are then iteratively updated using a stochastic optimization algorithm.

151 2.3 RIDGELET TRANSFORM

153 The ridgelet transform $\mathcal{R}_\psi u$ of $u : \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}$ with respect to $\psi : \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$155 \mathcal{R}_\psi u(\tau, \mathbf{a}, b) := \int_{\mathbb{R}^{d+1}} u(t, \mathbf{x}) \psi(\tau t + \mathbf{a} \cdot \mathbf{x} - b) \|(\tau, \mathbf{a})\|^s dt d\mathbf{x}, \quad \tau \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^d, b \in \mathbb{R}. \quad (2)$$

157 The factor $\|(\tau, \mathbf{a})\|^s$ appears for convenience in the literature. We will take $s = 0$ in this paper. Then
 158 the dual ridgelet transform $R_\eta^\dagger T$ of $T : \mathbb{R}^{d+2} \rightarrow \mathbb{R}$ with respect to $\eta : \mathbb{R} \rightarrow \mathbb{R}$ is defined as

$$159 R_\eta^\dagger T(t, \mathbf{x}) := \int_{\mathbb{R}^{d+2}} T(\tau, \mathbf{a}, b) \eta(\tau t + \mathbf{a} \cdot \mathbf{x} - b) \|(\tau, \mathbf{a})\|^{-s} d\tau d\mathbf{a} db. \quad (3)$$

161 ¹Formally, $W_i = g_i(\mathbf{a}_1, \dots, \mathbf{a}_N, b_1, \dots, b_N)$ for measurable functions g_i .

162 We refer to Sonoda & Murata (2017); Murata (1996) for a more comprehensive overview of the
 163 ridgelet transform and its properties.
 164

165 **2.4 NOTATION AND STRUCTURE OF THE PAPER**
 166

167 We adopt the shorthand notation $X_t Y_x$ for the Bochner space $X(\mathbb{R}; Y(\mathbb{R}^d))$ (or $X(0, T; Y(\mathbb{R}^d))$),
 168 depending on the context). For example, we may write $H_t^p H_x^q$ for the space $H^p(\mathbb{R}; H^q(\mathbb{R}^d))$. We
 169 write \widehat{f} to denote the Fourier transform of f , with the convention $\widehat{f}(\omega) = \int e^{-i\omega x} f(x) dx$. We
 170 also denote by $\|\cdot\|$ the ℓ^2 norm. In Section 3, we prove a representation formula for general time-
 171 dependent Sobolev functions, before proving a key inequality that connects the regularity of the
 172 ridgelet transform to the original function. We use this to derive our main result Theorem 1. In
 173 Section 4 we then apply Theorem 1 to RaNN-PINN approximators of two benchmark PDEs.
 174

175 **3 RANN APPROXIMATIONS OF TIME-DEPENDENT SOBOLEV FUNCTIONS**
 176

177 Our first step is to obtain an integral representation for u based on the ridgelet transform. This
 178 representation will be used later to derive RaNN approximation error bounds for u .
 179

180 **3.1 OBTAINING AN INTEGRAL REPRESENTATION**
 181

182 We first introduce the Lizorkin distribution space $\mathcal{S}'_0(\mathbb{R})$, which is the dual space of $\mathcal{S}_0(\mathbb{R})$; the
 183 space of Lizorkin functions. $\mathcal{S}_0(\mathbb{R})$ is a closed subspace of the space of Schwartz functions $\mathcal{S}(\mathbb{R})$
 184 and contains the functions $f \in \mathcal{S}(\mathbb{R})$ such that all moments vanish, i.e. $\mathcal{S}_0(\mathbb{R}^d) = \{f \in \mathcal{S} : \int_{\mathbb{R}^d} x^\alpha f(x) dx = 0 \text{ for any } \alpha \in \mathbb{N}_0^d\}$. The Lizorkin distribution space $\mathcal{S}'_0(\mathbb{R})$ itself includes many
 185 common activations such as tanh, sigmoid and ReLU. We refer to Sonoda & Murata (2017) for a
 186 more detailed description of the $\mathcal{S}'_0(\mathbb{R})$ space. In this paper, we will consider activation functions
 187 $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ that belong to the following subspace of $\mathcal{S}'_0(\mathbb{R})$ for some $k \geq 0$.
 188

189 **Definition 2.** Let $k \in \mathbb{N}_0$. We say $\sigma \in \mathcal{S}'_0(\mathbb{R})$ belongs to \mathcal{T}_k if (i) there exists $C_1 > 0$ such that

$$190 \quad \sum_{j=0}^k |\sigma^{(j)}(x)| \leq C_1 \quad \forall x \in \mathbb{R}, \quad (4)$$

193 and (ii) there exists $\delta > 0$ and $\beta \in \mathbb{N}_0$ such that $\zeta^\beta \widehat{\sigma}(\zeta) \in C(-\delta, \delta)$ and for any $\alpha \in \mathbb{N}_0$

$$194 \quad J_\sigma := \int_{\mathbb{R}} \zeta^{2\alpha+\beta} \widehat{\sigma}(\zeta) e^{-\zeta^2/2} d\zeta \neq 0. \quad (5)$$

197 Examples of admissible activation functions for which our results hold are tanh, cos and sigmoid
 198 (each in \mathcal{T}_k for all $k \geq 0$). This is shown in Remark 3 in the appendix. For $\mathcal{S}(\mathbb{R})$ and $m \in \mathbb{N}$ we
 199 also define the following (possibly infinite) admissibility constant

$$200 \quad A_{\psi, m} := \int_{-1}^1 |\widehat{\psi}(\omega)|^2 |\omega|^{-m} d\omega. \quad (6)$$

203 We now mention the following integral representation formula, which directly follows from results
 204 obtained by Sonoda & Murata (2017) using the theory of ridgelet transforms.

205 **Proposition 1.** Let $m \geq 0$ and $\sigma \in \mathcal{T}_k$ for some $k \geq 0$. A function $u \in L^2(\mathbb{R}; L^2(\mathbb{R}^d))$ can be
 206 expressed as

$$207 \quad u(t, \mathbf{x}) = \int_{\mathbb{R}} \int_{\mathbb{R}^d} \int_{\mathbb{R}} (\mathcal{R}_\psi u)(\tau, \mathbf{a}, b) \sigma(\tau t + \mathbf{a} \cdot \mathbf{x} - b) d\tau d\mathbf{a} db, \quad (7)$$

209 where $\mathcal{R}_\psi u$ is the ridgelet transform of u with respect to a Schwartz function $\psi \in \mathcal{S}(\mathbb{R})$ such that

$$211 \quad |\widehat{\psi}(\omega)| \leq C |\omega|^m \quad \forall |\omega| < 1, \quad (8)$$

212 for some $C > 0$ independent of u , and therefore $A_{\psi, m} < +\infty$. We also have that (σ, ψ) is an
 213 admissible pair in the sense of Sonoda & Murata (2017), meaning that the following constant is
 214 finite and non-zero:

$$215 \quad K_{\psi, \sigma} := (2\pi)^{d-1} \int_{\mathbb{R}} \frac{\widehat{\psi}(\zeta) \widehat{\sigma}(\zeta)}{|\zeta|^m} d\zeta. \quad (9)$$

216 The construction of an appropriate ψ is given in the proof of Proposition 1 in Appendix A.1. From
 217 now on, for any activation $\sigma \in \mathcal{T}_k$ and function $u \in L^2(\mathbb{R}; L^2(\mathbb{R}^d))$ we will denote by $\mathcal{R}_\psi u$ the
 218 ridgelet transform of u with respect to $\psi \in \mathcal{S}(\mathbb{R})$ constructed according to Proposition 1.
 219

220 3.2 PARSEVAL RELATION FOR THE RIDGELET TRANSFORM

222 In order to derive RaNN approximation error bounds, we will need a Parseval-type result which
 223 connects the regularity of $\mathcal{R}_\psi u$ in parameter space with the regularity of u in cartesian space. For
 224 convenience, we give an outline of the proof in Appendix A.2 and the full proof in Appendix A.3.

225 **Lemma 1.** *Suppose $u \in H^p(\mathbb{R}; H^q(\mathbb{R}^d))$ for some $p, q \geq 0$, and that u is compactly supported in
 226 time and space on $[-2T, 2T] \times [-2R, 2R]^d$ for some $T, R \geq 0$. Then there exists $\psi \in \mathcal{S}(\mathbb{R})$ with*

$$228 \quad I := \int_{\mathbb{R}^{d+2}} |\mathcal{R}_\psi u(\tau, \mathbf{a}, b)|^2 (1 + |\tau|^2)^p (1 + \|\mathbf{a}\|^2)^q (1 + b^2) \, d\tau d\mathbf{a} db \\ 229 \quad \leq \mathcal{L}_\psi \|u\|_{H^{p+1}(\mathbb{R}; H^{q+1}(\mathbb{R}^d))}^2, \\ 230 \quad \text{where, for } M = (2p + 2q + d + 3)/2,$$

$$233 \quad \mathcal{L}_\psi := (4\pi + \|\psi\|_{L^2(\mathbb{R})})(1 + 4T + 4R) + 4\pi(M + 1)^2 + \|\psi'\|_{L^2(\mathbb{R})}^2. \quad (11)$$

235 3.3 RANDOM NEURAL NETWORK APPROXIMATION ERROR BOUNDS

237 In this subsection we provide our main result for approximating a function $u \in H^p(0, T; H^q(D))$
 238 using RaNNs. The proof is given as an outline, and the full details are deferred to Appendix A.4.

239 **Theorem 1.** *Fix a bounded subset $(0, T) \times D \subset \mathbb{R}_+ \times \mathbb{R}^d$ and let $u \in H^{p+s_1}(0, T; H^{q+s_2}(D))$ for
 240 $p, q \geq 0$, $s_1 > 3/2$ and $s_2 > (d + 2)/2$. Furthermore, let $\sigma \in \mathcal{T}_{p+q}$. There exist weights $\{W_i\}_{i=1}^N$
 241 such that the following random neural network is an unbiased estimator of u :*

$$243 \quad u_N(t, \mathbf{x}) = \sum_{i=1}^N W_i \sigma(\tau_i t + \mathbf{a}_i \mathbf{x} + b_i)$$

246 for $(\tau_i, \mathbf{a}_i, b_i) \sim \pi$, where

$$248 \quad \pi(t, \mathbf{a}, b) = \frac{1}{C_\pi} (1 + \tau^2)^{-\lambda_\tau} (1 + \|\mathbf{a}\|^2)^{-\lambda_a} (1 + b^2)^{-1}, \quad \lambda_\tau > 1/2, \lambda_a > d/2, \quad (12)$$

250 and C_π is the normalisation constant

$$251 \quad C_\pi := \int_{\mathbb{R}} \frac{1}{(1 + \tau^2)^{\lambda_\tau}} d\tau \cdot \int_{\mathbb{R}^d} \frac{1}{(1 + \|\mathbf{a}\|^2)^{\lambda_a}} d\mathbf{a} \cdot \int_{\mathbb{R}} \frac{1}{(1 + b^2)} db. \quad (13)$$

254 The neural network u_N satisfies

$$255 \quad \mathbb{E}_\Theta \left(\|u - u_N\|_{H^p(0, T; H^q(D))}^2 \right) \leq \frac{C_\Omega C_\pi \|\sigma^{(p+q)}\|_\infty^2 T |D| (p + q) \mathcal{L}_\psi}{N} \cdot \|u\|_{H^{p+s_1}(\mathbb{R}; H^{q+s_2}(\mathbb{R}^d))}^2, \\ 257 \quad (14)$$

258 where C_Ω is a constant dependent on p, q, d and the domain, and \mathcal{L}_ψ is given by (11).

259 **Remark 1.** *This is an improvement upon the work of De Ryck et al. (2025) (see Theorem 3.9) which
 260 required $u \in H^s(\mathbb{R}^d)$ for $s \geq (d + 9)/2$ for estimates in $H^1(\mathbb{R}^d)$ and $H^2(\mathbb{R}^d)$, with slower rates.
 261 Moreover, we obtain estimates in a time-dependent norm, whereas previous results only obtained
 262 error rates for solutions at a fixed time (see also Proposition 4.24 of Neufeld & Schmoeller (2023)).*

264 **Proof (Outline).** **Step 1: extension of u to $\mathbb{R} \times \mathbb{R}^d$.** We wish to use Proposition 1 and Lemma
 265 1, which each assume that u is defined on $\mathbb{R} \times \mathbb{R}^d$. Lemma 1 in particular also assumes compact
 266 support in time and space. To adhere to these constraints, we construct \tilde{u} to be a smooth extension
 267 of u which satisfies $u = \tilde{u}$ on $(0, T) \times D$, is norm preserving ($\|\tilde{u}\|_{H_t^p H_x^q} \leq C_\Omega \|u\|_{H_t^p H_x^q}$) and
 268 compactly supported on $[-2T, 2T] \times [-2R, 2R]^d$. Such an extension is known to exist (cf. Chap. VI
 269 of Stein (1970)). The extension constant C_Ω will generally depend on p, q, d and the domain. For
 the simple case $p = q = 0$, a zero extension guarantees $C_\Omega = 1$ independently of dimension.

270 **Step 2: construction of the unbiased estimator u_N .** We define u_N as
 271

$$272 \quad u_N(t, \mathbf{x}) := \frac{1}{N} \sum_{i=1}^N \frac{R_\psi \tilde{u}(\tau_i, \mathbf{a}_i, b_i)}{\pi(\tau_i, \mathbf{a}_i, b_i)} \sigma(\tau_i t + \mathbf{a}_i \cdot \mathbf{x} - b_i) \equiv \frac{1}{N} \sum_{i=1}^N X_i(t, \mathbf{x}). \quad (15)$$

275 so that $\mathbb{E}_\Theta(u_N) = \tilde{u}$, where $\Theta = \{(\tau, \mathbf{a}, b) \in \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}\}$ is the parameter space. More generally,
 276 for any $0 \leq \ell \leq p$ and multi-index β with $|\beta| \leq q$, we have $\mathbb{E}(\partial_t^\ell D_\mathbf{x}^\beta(u_N)) = \partial_t^\ell D_\mathbf{x}^\beta(\tilde{u})$. We can use
 277 this to obtain the equality (since $u = \tilde{u}$ on $(0, T) \times D$)

$$278 \quad \mathbb{E}_\Theta \left(\|\partial_t^\ell D_\mathbf{x}^\beta(u - u_N)\|_{L^2((0, T) \times D)}^2 \right) = \mathbb{E}_\Theta \left(\|\partial_t^\ell D_\mathbf{x}^\beta(\tilde{u} - u_N)\|_{L^2((0, T) \times D)}^2 \right) \\ 279 \quad = \frac{1}{N} \int_{(0, T) \times D} \mathbb{E}_\Theta |\partial_t^\ell D_\mathbf{x}^\beta X_i|^2 dx dt. \\ 280 \\ 281 \\ 282$$

283 **Step 3: bounding $\mathbb{E}_\Theta(|\partial_t^\ell D_\mathbf{x}^\alpha X_i|^2)$.** To proceed from the above equation, we compute
 284 $\mathbb{E}_\Theta(|\partial_t^\ell D_\mathbf{x}^\alpha X_i|^2)$ from (15). This gives us
 285

$$286 \quad \mathbb{E}_\Theta(|\partial_t^\ell D_\mathbf{x}^\alpha X_i(t, \mathbf{x})|^2) \\ 287 \quad \leq C_\pi \int_{\mathbb{R}^{d+2}} |R_\psi \tilde{u}(\tau, \mathbf{a}, b)|^2 |\sigma^{(p+q)}|^2 |\tau|^{2p} \|\mathbf{a}\|^{2q} (1 + \tau^2)^{\lambda_\tau} (1 + \|\mathbf{a}\|^2)^{\lambda_\alpha} (1 + b^2) d\tau d\mathbf{a} db. \\ 288 \\ 289 \quad (16)$$

290 Using $|\tau|^{2p} \leq (1 + \tau^2)^p$ and $\|\mathbf{a}\|^{2q} \leq (1 + \|\mathbf{a}\|^2)^q$, we can invoke the inequality (10) and $\sigma \in \mathcal{T}_{p+q}$
 291 to get the result (14). Here, we use the embedding inequality $\|\tilde{u}\|_{H_t^p H_x^q} \leq C_\Omega \|u\|_{H_t^p H_x^q}$. The full
 292 details are deferred to the appendix. \square
 293

294 4 APPLICATIONS TO NON-LINEAR PDES

296 We look at two representative non-linear PDEs (the Porous Medium Equation and compressible
 297 Navier-Stokes) in order to understand how one can obtain specific asymptotic bounds on the residual
 298 loss and approximation error using the structure of the PDE.
 299

300 4.1 POROUS MEDIUM EQUATION

302 The porous medium equation (PME) is an important example of a non-linear parabolic PDE that
 303 models the flow of gases through porous mediums. In dimension $d \in \mathbb{N}$ and for $m > 0$, a function
 304 $u : \mathbb{R}_+ \times \mathbb{R}^d \rightarrow \mathbb{R}$ is said to solve the porous medium equation if

$$305 \quad \begin{cases} \partial_t u - \Delta(u^m) = 0, & \text{on } \mathbb{R}_+ \times \mathbb{R}^d, \\ 306 \quad u(0, \cdot) = u_0, \end{cases} \quad (17)$$

308 In the case where u_0 is positive and in $H^k(\mathbb{R}^d)$ for some $k \in \mathbb{N}$, the following result is classically
 309 known.
 310

- 311 • Vázquez (2007): Consider initial data u_0 satisfying

$$313 \quad u_0 \in H^k(\mathbb{R}^d), \quad k \in \mathbb{N}, \quad 0 < c \leq u_0 \leq C, \quad (18)$$

314 Then there exists a classical solution u to (17) with $c \leq u(t, x) \leq C$ and
 315

$$316 \quad u \in C^\infty((0, \infty) \times \mathbb{R}^d) \cap C([0, \infty); H^k(\mathbb{R}^d)).$$

317 In practice, we simulate solutions on a bounded domain $(0, T) \times D$. In this case, the smoothness
 318 of the solution in fact implies that $u \in H^k((0, T) \times D)$ for any $k \geq 0$. We can deduce an ap-
 319 proximation result on solutions to PME using Theorem 1. Before we state the result, let us note
 320 that the classical loss function one would use when training a physics-informed neural network to
 321 approximate solution u is a discretisation of the following metric:
 322

$$323 \quad \mathcal{J}_{PDE}(u_N) = \int_{(0, T) \times D} |\partial_t u_N - \Delta(u_N^m)|^2 dt dx. \quad (19)$$

324 **Corollary 1.** Suppose u solves (17) with initial data $u_0 \in H^1(\mathbb{R}^d)$ satisfying (18). Then there exists
 325 a random neural network $u_N(t, x)$ such that on the domain $(0, T) \times D$:

326 1. For any $p, q \geq 0$,

$$\begin{aligned} 329 \mathbb{E}_\Theta(\|u - u_N\|_{H_t^p H_x^q}^2) &\leq \frac{C_\Omega C_\pi \|\sigma^{(p+q)}\|_\infty^2 T |D| (p+q) \mathcal{L}_\psi}{N} \|u\|_{H_t^{p+s_1} H_x^{q+s_2}}^2 \\ 330 \\ 331 &=: \frac{\mathcal{M}_\psi}{N} \|u\|_{H_t^{p+s_1} H_x^{q+s_2}}^2, \end{aligned} \quad (20)$$

333 for any $s_1 > 3/2, s_2 > (d+2)/2$.

335 2. For any $\delta \in (0, 1)$, with probability $1 - \delta$ over the network parameters, the PINN training
 336 loss can be bounded as:

$$337 \mathcal{J}_{PDE}(u_N) \leq \frac{C_m (L + C_{emb} \|u\|_{L_t^\infty H_x^{2+k}}^2) \mathcal{M}_\psi}{N \delta} \|u\|_{H_t^2 H_x^{3+k}}^2, \quad (21)$$

340 for $k > d/2$, if the sampled network parameters are such that u_N satisfies $\|u_N\|_{L_{t,x}^\infty} +$
 341 $\|\nabla u_N\|_{L_{t,x}^\infty} + \|\Delta u_N\|_{L_{t,x}^\infty} \leq L < +\infty$. Here, C_{emb} is the constant arising from the
 342 Sobolev embedding $H_x^k \hookrightarrow L_x^\infty$ and C_m is a polynomial in the PME parameter m .

343 In other words, one can find a sequence of neural networks u_N which drive the PDE residual to 0.

345 4.2 COMPRESSIBLE NAVIER-STOKES EQUATIONS

347 We now look at a more delicate example, which is a system of equations that does not enjoy the
 348 instantaneous regularisation property of the PME. The compressible Navier-Stokes equations in
 349 dimension d are given by

$$\begin{cases} 351 \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0, & \text{on } (0, T) \times D. \\ 352 \partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) - \nabla(\mu(\rho) \operatorname{div} \mathbf{u}) + \nabla p(\rho) = 0, & \text{on } (0, T) \times D, \end{cases} \quad (22)$$

353 where

$$354 p(\rho) = \rho^\gamma, \quad \gamma > 0 \text{ and } \mu(\rho) = \rho^\alpha, \quad \alpha > 0. \quad (23)$$

355 The solution is a pair (ρ, \mathbf{u}) where the density $\rho : \mathbb{R}_+ \times \mathbb{R}^d \rightarrow \mathbb{R}$ is the scalar density and $\mathbf{u} : \mathbb{R}_+ \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ is the vector-valued velocity. We look at the one-dimensional setting $D = (0, 1)$ with
 356 periodic boundary conditions, where global-in-time classical solutions exist under mild assumptions.
 357 In this case, the following global well-posedness result applies.

359 • Theorem 1.5, Constantin et al. (2020) Given initial data (ρ_0, u_0) satisfying

$$360 (\rho_0, u_0) \in H^k(\mathbb{R}), \quad k \geq 3, \quad 0 < \delta \leq \rho_0 \leq C, \quad (24)$$

363 then there exists a unique solution (ρ, u) on $(0, T)$ to (22) with initial data (ρ_0, u_0) such
 364 that

$$365 \rho \in C(0, T; H^k(D)), \quad u \in C(0, T; H^k(D)) \cap L^2(0, T; H^{k+1}(D)). \quad (25)$$

366 We will take the pressureless case $p = 0$ and constant viscosity $\mu(\rho) = \mu$ for simplicity, although
 367 our computations can be easily extended to handle a more general setting where p, μ are smooth
 368 and convex (e.g. $p(\rho) = \rho^\gamma, \mu(\rho) = \rho^\alpha$, for $\alpha, \gamma > 0$). In this case, the PINN residual loss is the
 369 discretisation of the following loss functions:

$$\begin{aligned} 371 \mathcal{J}_{PDE}^1(\mathbf{v}_N) &:= \int_{(0,T) \times D} |\partial_t(\rho_N) + \partial_x(\rho_N u_N)|^2 \, dx dt, \\ 372 \\ 373 \mathcal{J}_{PDE}^2(\mathbf{v}_N) &:= \int_{(0,T) \times D} |\partial_t(\rho_N u_N) + \partial_x(\rho_N u_N^2) - \mu \partial_x^2 u_N|^2 \, dx dt. \end{aligned} \quad (26)$$

376 To apply Theorem 1, let's first define the Sobolev product norm $\|(f, g)\|_{H_t^p H_x^q}^2 := \|f\|_{H_t^p H_x^q}^2 +$
 377 $\|g\|_{H_t^p H_x^q}^2$. We then have the following result whose proof is given in Appendix A.6.

378 **Corollary 2.** Suppose (ρ, u) is a solution to (22) in dimension $d = 1$ generated by initial data
 379 satisfying $(\rho_0, u_0) \in H^k(\mathbb{R})$, $k \geq 5$, $0 < \delta \leq \rho_0 \leq C$. Then there exists a random neural network
 380 $\mathbf{v}_N = (\rho_N, u_N)$ such that

381 • For any $p, q \geq 0$,

383
$$\mathbb{E}_\Theta(\|(\rho, u) - \mathbf{v}_N\|_{L_t^2 H_x^q}^2) \leq \frac{\mathcal{M}_\psi}{N} (\|\rho\|_{H_t^{s_1} H_x^{q+s_2}}^2 + \|u\|_{H_t^{s_1} H_x^{q+s_2}}^2), \quad (27)$$

 384

385 for $s_1, s_2 > 3/2$, where \mathcal{M}_ψ is the coefficient from (14), later defined as \mathcal{M}_ψ in (20).

386 • For any $\delta \in (0, 1)$ with probability $1 - \delta$ over the network parameters, the PINN training
 387 loss can be bounded as:

388
$$\mathcal{J}_{PDE}(\mathbf{v}_N) \leq \frac{2(L+1)(L + \|u\|_{W_t^{1,\infty}}^2)\mathcal{M}_\psi}{N\delta} (\|\rho\|_{H_t^3 H_x^3}^2 + (\mu+1)\|u\|_{H_t^3 H_x^4}^2), \quad (28)$$

 389

390 if the sampled network parameters are such that $\|\rho_N\|_{W_t^{1,\infty}}^2 + \|u_N\|_{W_t^{1,\infty}}^2 \leq L < +\infty$.

391 **Remark 2.** The choice $k \geq 5$ ensures that the norms on the right-hand side of (28) are finite. With
 393 this regularity, one can also show that the boundary/initial condition residuals can be controlled
 394 similarly to \mathcal{J}_{PDE} , using trace inequalities.

396 5 NUMERICAL ILLUSTRATIONS

398 In this section, we provide numerical experiments to validate the obtained bounds by studying the
 399 effect of network width N on the error in practice. We consider the Porous Medium Equation (PME)
 400 in dimensions $d = 1, \dots, 5$ and the compressible Navier-Stokes equations in $d = 1$.

402 5.1 EXPERIMENTS FOR PME

404 We consider the PME with $m = 2$. An exact, self-similar solution to the PME is the Barenblatt-
 405 Kompaneets-Zeldovich solution

406
$$u(t, x) = \frac{1}{t^\alpha} \left(b - \frac{m-1}{2m} \beta \frac{\|x\|^2}{t^{2\beta}} \right)_+^{\frac{1}{m-1}}, \quad (29)$$

 407

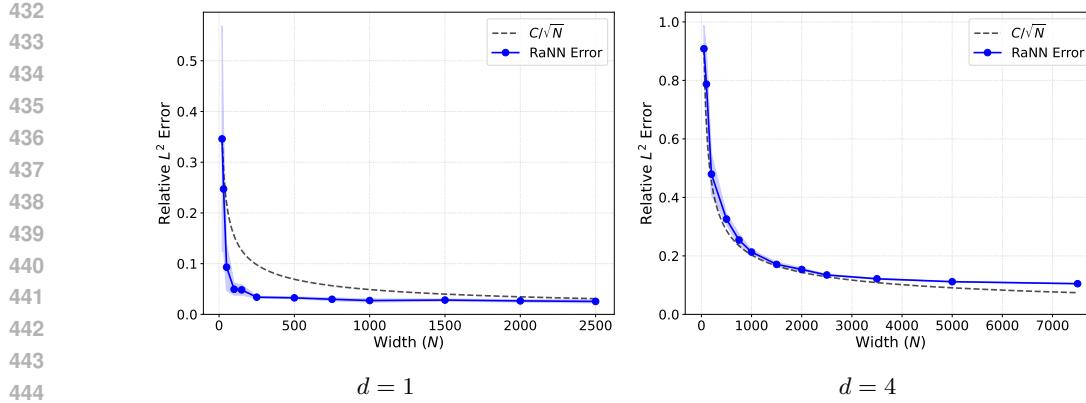
409 where $\|\cdot\|$ is the ℓ^2 norm, $(\cdot)_+$ is the positive part and $\alpha = \frac{d}{d(m-1)+2}$ and $\beta = \frac{1}{d(m-1)+2}$. This
 410 solution is compactly supported but not differentiable at the edges of the support, which causes
 411 difficulty for numerical schemes. We perform two types of experiments. First, we investigate the
 412 effect of the network width N on the relative error between the network and the solution u . This
 413 allows us to validate the convergence rate obtained in our theoretical results. Secondly, in order
 414 to assess the quality of the obtained solutions, we also compare performance of the randomised
 415 architecture against traditional PINN architectures.

416 5.1.1 EFFECT OF NETWORK WIDTH ON THE ERROR

418 Theorem 1 shows that for given $u : (0, T) \times \mathbb{R}^d \rightarrow \mathbb{R}$ in some Sobolev space, a RaNN \hat{u}_N of width
 419 N is able to achieve relative error $\mathcal{R}(u, \hat{u}) = \|\hat{u} - u\|_{L_{t,x}^2} / \|u\|_{H_t^{s_1} H_x^{s_2}}$ bounded by $C_{d,\Omega} N^{-1/2}$.

421 To validate this convergence rate in practice, we train a RaNN to approximate the PME solution
 422 (29) in dimensions $d = 1, \dots, 5$. In each dimension, we take a set of widths $N \in \{N_1, \dots, N_k\}$, train
 423 the network for each width and plot the relative error of the final network against the true solution.
 424 For each dimension d and width N , we sample $M = 10N$ points ($M \gg N$ to ensure the problem
 425 remains well-posed) with a mixed strategy; 50% of the points are sampled uniformly on $(0, 1)^d$
 426 and 50% are sampled uniformly on $[0.2, 0.8]^d$, which is a box focused on the initial support of the
 427 solution. Then we find weights $\mathbf{W} = \{W_i\}_{i=1}^N$ minimising the Ridge regression loss and evaluate
 428 the relative error between RaNN approximation and true solution.

429 The results for $d = 1, 4$ can be seen in Figure 1. The cases $d = 2, 3, 5$ are included in Figures 3, 4
 430 in Appendix B.1.1. The key observation here is that the RaNN error points lie below or close to the
 431 C/\sqrt{N} curve, which supports the upper bound of Theorem 1. Note that the sampling error becomes
 increasingly difficult to handle in higher dimensions, due to computational constraints.



445
446 Figure 1: Approximation error of RaNNs of varying width for solving PMEs in dimensions $d = 1, 4$.
447 The shaded band indicates the region within one standard deviation of the mean relative L^2 error.
448

449 5.1.2 COMPARISON BETWEEN RANNS AND PINNS

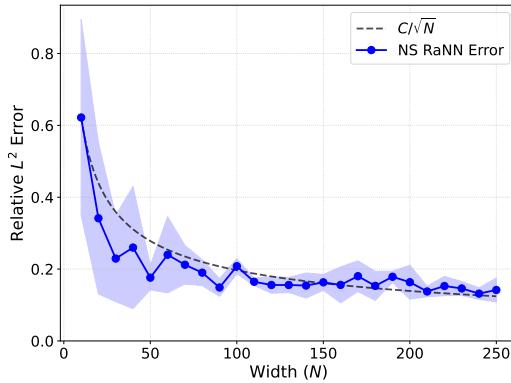
450
451 In order to assess the quality of the obtained solutions, we also compare performance of the
452 randomised architecture against traditional PINN architectures. We carry out simulations in dimensions
453 $1, \dots, 5$ using three different network architectures. The first is a RaNN with a Fourier embedding
454 layer (see Tancik et al. (2020)). The second is a PINN which has the same architecture but where
455 all weights/biases are trainable (denoted PINN (A)). The third is a more traditional PINN with four
456 hidden layers and a Fourier embedding layer (denoted PINN (B)). The width of each hidden layer
457 of PINN (B) is chosen so that the total number of parameters align with that of RaNN, which has a
458 width of $N = 2500d$ for $d = 1, 2, 3$ and 7500 for $d = 4, 5$.

459 We record the relative L^2 error \mathcal{X} of the trained solution against the true solution (29), over $(0, T) \times$
460 $(0, 1)$, using 20,000 collocation points. We also measure the relative error \mathcal{X}_T between the network
461 and true solution at the final time T . In each dimension the network is trained for five runs and we
462 record the average value of \mathcal{X} and \mathcal{X}_T for these five runs. A compact version of the results is given
463 in Table 1. Further experimental details and full results are given in Appendix B.1.2. Additional
464 experiments for RaNNs without Fourier layers are provided in Appendix B.1.3.

d	Metric	PINN (A)	PINN (B)	RaNN
1	$\mathcal{X} := \ u - u_N^W\ _{L_{t,x}^2} / \ u\ _{L_{t,x}^2}$	7.09×10^{-2}	6.88×10^{-2}	6.41×10^{-2}
	Time (mean)	101s	164s	68s
	# Trainable params.	6251	2665	2500
2	\mathcal{X}	1.08×10^{-1}	1.25×10^{-1}	1.00×10^{-1}
	Time (mean)	208s	152s	86s
	# Trainable params.	15001	4899	5000
3	\mathcal{X}	1.24×10^{-1}	2.83×10^{-1}	1.18×10^{-1}
	Time (mean)	579s	187s	107s
	# Trainable params.	26251	7451	7500
4	\mathcal{X}	1.60×10^{-1}	3.48×10^{-1}	1.68×10^{-1}
	Time (mean)	1034s	225s	138s
	# Trainable params.	30001	8189	7500
5	\mathcal{X}	5.07×10^{-1}	5.33×10^{-1}	3.78×10^{-1}
	Time (mean)	1395s	326s	168s
	# Trainable params.	33751	10024	7500

485 Table 1: Error norms and computational time for varying d and N values.

486
487
488
489
490
491
492
493
494
495
496
497
498



499
500 Figure 2: Approximation error of RaNNs of varying width N for solving the compressible Navier-
501 Stokes system on $(0, 1) \times [-5, 5]$. The shaded band indicates the region within one standard deviation
502 of the mean relative L^2 error.

504 5.2 EXPERIMENTS FOR COMPRESSIBLE NAVIER-STOKES

506 We now turn to the one-dimensional compressible Navier-Stokes system, given by (22). As baseline,
507 we consider the travelling shock-wave solutions considered by Dalibard & Perrin (2020), where the
508 pressure $p_\epsilon(v) = \epsilon/(v - 1)^\gamma$ for $\gamma > 0$ is taken, where $v = 1/\rho$. The travelling wave solutions
509 can be obtained by taking the ansatz $(v, u)(t, x) = (\mathbf{v}, \mathbf{u})(x - st)$, where s is the shock speed.
510 This reduces the PDE to an ODE for \mathbf{v} . The velocity \mathbf{u} can then be obtained from the relationship
511 $\mathbf{v} = -s\mathbf{u}$ which follows from the conservation of mass.

512 For our experiment, we consider the domain $(0, T) \times (-5, 5)$ with $T = 1.0$, $\mu = 1$, $\epsilon = 10^{-3}$, $\gamma = 2$.
513 We then compute RaNN approximations $(\mathbf{v}_N, \mathbf{u}_N)$ for different widths N and measure the relative
514 error to the baseline solution (\mathbf{v}, \mathbf{u}) . The results can be seen in Figure 2, which shows that the errors
515 are close to the C/\sqrt{N} curve, in support of the upper bound of Theorem 1. Further experimental
516 details and a visual depiction of the travelling-wave solution can be found in Appendix B.2.

517 6 CONCLUSION

520 In this work, we have shown that neural networks with randomly generated hidden weights (RaNNs)
521 are capable of efficiently approximating functions that belong to time-dependent Sobolev spaces.
522 Theorem 1 in particular demonstrates that the rate of convergence is independent of dimension d ,
523 which has important consequences for non-linear PDEs. To obtain this result, we used a ridgelet
524 space representation of Sobolev functions and established a connection between ridgelet space and
525 Sobolev space (Lemma 1).

526 We then demonstrated the utility of Theorem 1 by deriving error bounds on the residual loss and
527 approximation error for solutions to two representative PDEs. Finally, we carried out a series of
528 numerical experiments in Section 5 which validated the $N^{-1/2}$ decay rate asserted by Theorem 1.

529 Future work may investigate whether our results can be extended to solutions which are less smooth
530 than those considered here. Moreover, our results assume a heavy-tailed weight distribution, while
531 numerical experiments indicate that the same rate also holds for Gaussian weights. It would also be
532 interesting to see whether the constant of proportionality (appearing in (14)) can be improved, either
533 using the theory of ridgelet transforms or an alternative representation. It will also be important to
534 explore whether RaNNs are prone to the same spectral bias issues that PINNs face, especially for
535 complex PDEs such as compressible Navier-Stokes in the turbulent regime.

536 537 REFERENCES

538 Miguel A. Alejo, Lucrezia Cossetti, Luca Fanelli, Claudio Muñoz, and Nicolás Valenzuela. Error
539 bounds for Physics Informed Neural Networks in Nonlinear Schrödinger equations placed on

unbounded domains. *arXiv:2409.17938*, pp. 31 pages, 2024.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. *Journal of Machine Learning Research*, 18(19):1–53, 2017. URL <http://jmlr.org/papers/v18/14-546.html>.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. *IEEE Transactions on Information theory*, 39(3):930–945, 1993.

Andrew R. Barron. Approximation and estimation bounds for artificial neural networks. *Machine Learning*, 14:115–133, 1994.

Andrew R. Barron and Jason M. Klusowski. Approximation and estimation for high-dimensional deep learning networks. *Preprint, arXiv 1809.03090*, 2018.

Christian Beck, Martin Hutzenthaler, Arnulf Jentzen, and Benno Kuckuck. An overview on deep learning-based approximation methods for partial differential equations. *arXiv preprint arXiv:2012.12348*, 2020.

Erik L Bolager, Iryna Burak, Chinmay Datar, Qing Sun, and Felix Dietrich. Sampling weights of deep neural networks. In *Advances in Neural Information Processing Systems*, volume 36, pp. 63075–63116. Curran Associates, Inc., 2023.

Alina Braun, Michael Kohler, Sophie Langer, and Harro Walk. Convergence rates for shallow neural networks learned by gradient descent. *Bernoulli*, 30(1):475–502, 2024.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-informed neural networks (PINNs) for fluid mechanics: a review. *Acta Mech. Sin.*, 37(12):1727–1738, 2021. ISSN 0567-7718,1614-3116. doi: 10.1007/s10409-021-01148-1. URL <https://doi.org/10.1007/s10409-021-01148-1>.

Luigi Carratino, Alessandro Rudi, and Lorenzo Rosasco. Learning with sgd and random features. In *Advances in Neural Information Processing Systems*, volume 31, 2018. URL <https://proceedings.neurips.cc/paper/2018/file/741a0099c9ac04c7bfc822caf7c7459f-Paper.pdf>.

Jingrun Chen, Xurong Chi, Weinan E, and Zhouwang Yang. Bridging traditional and machine learning-based algorithms for solving pdes: The random feature method. *arXiv preprint arXiv:2207.13380*, 2022.

Tin Sum Cheng, Aurelien Lucchi, Anastasis Kratsios, Ivan Dokmanić, and David Belius. A theoretical analysis of the test error of finite-rank kernel ridge regression. In *Advances in Neural Information Processing Systems*, volume 36, pp. 4767–4798. Curran Associates, Inc., 2023.

Peter Constantin, Theodore D Drivas, Huy Q Nguyen, and Federico Pasqualotto. Compressible fluids and active potentials. In *Annales de l’Institut Henri Poincaré C, Analyse non linéaire*, volume 37, pp. 145–180. Elsevier, 2020.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, and Francesco Piccialli. Scientific machine learning through physics-informed neural networks: where we are and what’s next. *J. Sci. Comput.*, 92(3):Paper No. 88, 62, 2022. ISSN 0885-7474,1573-7691. doi: 10.1007/s10915-022-01939-z. URL <https://doi.org/10.1007/s10915-022-01939-z>.

Anne-Laure Dalibard and Charlotte Perrin. Existence and stability of partially congested propagation fronts in a one-dimensional navier-stokes model. *Communications in Mathematical Sciences*, 2020.

Anne-Laure Dalibard and Charlotte Perrin. Local and global well-posedness of one-dimensional free-congested equations. *Annales Henri Lebesgue*, 2024.

Chinmay Datar, Taniya Kapoor, Abhishek Chandra, Qing Sun, Erik Lien Bolager, Iryna Burak, Anna Veselovska, Massimo Fornasier, and Felix Dietrich. Fast training of accurate physics-informed neural networks without gradient descent. *arXiv preprint arXiv:2405.20836*, 2025.

594 T De Ryck, S Mishra, Y Shang, and F Wang. Approximation theory and applications of randomized
 595 neural networks for solving high-dimensional pdes. *arXiv preprint arXiv:2501.12145*, 2025.
 596

597 Tim De Ryck and Siddhartha Mishra. Numerical analysis of physics-informed neural networks and
 598 related models in physics-informed machine learning. *Acta Numer.*, 33:633–713, 2024. ISSN
 599 0962-4929,1474-0508. doi: 10.1017/S0962492923000089. URL <https://doi.org/10.1017/S0962492923000089>.
 600

601 Angus Dempster, Daniel F. Schmidt, and Geoffrey I. Webb. Hydra: competing convolutional kernels
 602 for fast and accurate time series classification. *Data Mining and Knowledge Discovery*, 37(5):
 603 1779–1805, Sep 2023. ISSN 1573-756X.
 604

605 Vikas Dwivedi and Balaji Srinivasan. Physics informed extreme learning machine (pielm)—a rapid
 606 method for the numerical solution of partial differential equations. *Neurocomputing*, 391:96–118,
 607 2020.
 608

609 W. E and B. Yu. The Deep Ritz method: A deep learning-based numerical algorithm for solving
 610 variational problems. *arXiv:1710.00211*, pp. 14 pages, 2017.
 611

612 Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods for high-
 613 dimensional parabolic partial differential equations and backward stochastic differential equa-
 614 tions. *Commun. Math. Stat.*, 5(4):349–380, 2017.
 615

616 Guglielmo Gattiglio, Lyudmila Grigoryeva, and Massimiliano Tamborrino. Randnet-parareal: a
 617 time-parallel pde solver using random neural networks. *Advances in Neural Information Process-
 618 ing Systems*, 37:94993–95025, 2024.
 619

620 Maximilien Germain, Huyêñ Pham, and Xavier Warin. Neural networks-based algorithms for
 621 stochastic control and PDEs in finance. *arXiv:2101.08068*, pp. 27 pages, 2021.
 622

623 Lukas Gonon. Random feature neural networks learn black-scholes type pdes without curse of
 624 dimensionality. *Journal of Machine Learning Research*, 24(189):1–51, 2023.
 625

626 Lukas Gonon, Lyudmila Grigoryeva, and Juan-Pablo Ortega. Approximation bounds for random
 627 neural networks and reservoir systems. *The Annals of Applied Probability*, 33(1):28–69, 2023.
 628

629 Lukas Gonon, Arnulf Jentzen, Benno Kuckuck, Siyu Liang, Adrian Riekert, and Philippe von
 630 Wursterberger. An overview on machine learning methods for partial differential equations:
 631 from physics informed neural networks to deep operator learning. *arXiv:2408.13222*, pp. 59
 632 pages, 2024.
 633

634 Zheyuan Hu, Khemraj Shukla, George Em Karniadakis, and Kenji Kawaguchi. Tackling the
 635 curse of dimensionality with physics-informed neural networks. *Neural Networks*, 176:106369,
 636 2024. ISSN 0893-6080. doi: 10.1137/20M134695X. URL <https://doi.org/10.1137/20M134695X>.
 637

638 Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: theory and
 639 applications. *Neurocomputing*, 70(1-3):489–501, 2006.
 640

641 Jeffrey Humpherys, Olivier Lafitte, and Kevin Zumbrun. Stability of isentropic navier–stokes shocks
 642 in the high-mach number limit. *Communications in Mathematical Physics*, 293(1):1–36, 2010.
 643

644 Antoine Jacquier and Zan Zuric. Random neural networks for rough volatility. *arXiv preprint
 645 arXiv:2305.01035*, 2023.
 646

647 Samuel Lanthaler and Nicholas H. Nelsen. Error bounds for learning with vector-valued random
 648 features. In *Advances in Neural Information Processing Systems*, volume 36, pp. 71834–71861.
 649 Curran Associates, Inc., 2023.
 650

651 Jiale Linghu, Weifeng Gao, Hao Dong, Fei Wang, and Yufeng Nie. Higher-order multi-scale
 652 physics-informed randomized neural network method for efficient and high-accuracy simulation
 653 of dynamic thermo-mechanical coupling problems. *Mathematics and Mechanics of Solids*, 0(0):
 654 10812865251362165, 2025. doi: 10.1177/10812865251362165. URL <https://doi.org/10.1177/10812865251362165>.
 655

648 Corrado Mascia and Kevin Zumbrun. Stability of large-amplitude viscous shock profiles of
 649 hyperbolic-parabolic systems. *Archive for rational mechanics and analysis*, 172(1):93–131, 2004.
 650

651 Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
 652 asymptotics and double descent curve. *Preprint, arXiv 1908.05355*, 2019.

653 Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics-informed
 654 neural networks for approximating a class of inverse problems for PDEs. *IMA J. Numer. Anal.*, 42
 655 (2):981–1022, 2022. ISSN 0272-4979,1464-3642. doi: 10.1093/imanum/drab032. URL <https://doi.org/10.1093/imanum/drab032>.

656

657 Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics-informed
 658 neural networks for approximating PDEs. *IMA J. Numer. Anal.*, 43(1):1–43, 2023. ISSN
 659 0272-4979,1464-3642. doi: 10.1093/imanum/drab093. URL <https://doi.org/10.1093/imanum/drab093>.

660

661 Noboru Murata. An integral representation of functions using three-layered networks and their
 662 approximation bounds. *Neural Networks*, 9(6):947–956, 1996.

663

664 Nicholas H. Nelsen and Andrew M. Stuart. The random feature model for input-output maps be-
 665 tween banach spaces. *SIAM Journal on Scientific Computing*, 43(5):A3212–A3243, 2021. doi:
 666 10.1137/20M133957X.

667

668 Ariel Neufeld and Philipp Schmocker. Universal approximation property of banach space-valued
 669 random feature models including random neural networks. *arXiv preprint arXiv:2312.08410*,
 670 2023.

671

672 Ariel Neufeld, Philipp Schmocker, and Sizhou Wu. Full error analysis of the random deep split-
 673 ting method for nonlinear parabolic pdes and pides. *Communications in Nonlinear Science and*

674 *Numerical Simulation*, 143:108556, 2025.

675

676 Ameya Prabhu, Shiven Sinha, Ponnurangam Kumaraguru, Philip Torr, Ozan Sener, and Puneet K.
 677 Dokania. Random representations outperform online continually learned representations. In *The*

678 *Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

679

680 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
 681 Bengio, and Aaron Courville. On the spectral bias of neural networks. In *International conference*

682 *on machine learning*, pp. 5301–5310. PMLR, 2019.

683

684 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. *Advances in*

685 *neural information processing systems*, 20, 2007.

686

687 Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random bases. In *2008*

688 *46th annual allerton conference on communication, control, and computing*, pp. 555–561. IEEE,
 689 2008.

690

691 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 692 deep learning framework for solving forward and inverse problems involving nonlinear partial
 693 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

694

695 Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random features.
 696 In *Advances in Neural Information Processing Systems*, pp. 3215–3225, 2017.

697

698 Yong Shang and Fei Wang. Randomized neural networks with petrov–galerkin methods for solv-
 699 ing linear elasticity and navier–stokes equations. *Journal of Engineering Mechanics*, 150(4):
 700 04024010, 2024.

701

702 Yong Shang, Fei Wang, and Jingbo Sun. Randomized neural network with petrov–galerkin meth-
 703 ods for solving linear and nonlinear partial differential equations. *Communications in Nonlinear*

704 *Science and Numerical Simulation*, 127:107518, 2023.

705

706 Jonathan W. Siegel and Jinchao Xu. Approximation rates for neural networks with general activation
 707 functions. *Neural Networks*, 128:313–321, 2020. ISSN 0893-6080. doi: <https://doi.org/10.1016/j.neunet.2020.05.019>. URL <https://www.sciencedirect.com/science/article/pii/S0893608020301891>.

702 J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differential
703 equations. *arXiv:1708.07469*, pp. 31 pages, 2017.
704

705 Sho Sonoda and Noboru Murata. Neural network with unbounded activation functions is universal
706 approximator. *Applied and Computational Harmonic Analysis*, 43(2):233–268, 2017.
707

708 Elias M Stein. *Singular integrals and differentiability properties of functions*. Number 30 in 1.
709 Princeton university press, 1970.
710

711 Jingbo Sun, Suchuan Dong, and Fei Wang. Local randomized neural networks with discontinuous
712 galerkin methods for partial differential equations. *Journal of Computational and Applied
Mathematics*, 445:115830, 2024.
713

714 Yitong Sun, Anna Gilbert, and Ambuj Tewari. On the approximation properties of random relu
715 features. *arXiv preprint arXiv:1810.04374*, 2018.
716

717 Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
718 Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
719 high frequency functions in low dimensional domains. *Advances in neural information processing
systems*, 33:7537–7547, 2020.
720

721 Alexis F Vasseur and Lei Yao. Nonlinear stability of viscous shock wave to one-dimensional com-
722 pressible isentropic Navier–Stokes equations with density dependent viscous coefficient. *Com-
723 munications in Mathematical Sciences*, 14(8):2215–2228, 2016.
724

725 Juan Luis Vázquez. *The porous medium equation: mathematical theory*. Oxford university press,
726 2007.
727

728 Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality is all you need for training
729 physics-informed neural networks. *arXiv preprint arXiv:2203.07404*, 2022.
730

731 Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An expert’s guide to training
732 physics-informed neural networks. *arXiv preprint arXiv:2308.08468*, 2023.
733

734 Yiran Wang and Suchuan Dong. An extreme learning machine-based method for computational pdes
735 in higher dimensions. *Computer Methods in Applied Mechanics and Engineering*, 418:116578,
736 2024.
737

738 Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
739 Fourier analysis sheds light on deep neural networks. *arXiv preprint arXiv:1901.06523*, 2019.
740

741 Jinyong Ying, Jingying Hu, Zuoshunhua Shi, and Jiao Li. An accurate and efficient continuity-
742 preserved method based on randomized neural networks for elliptic interface problems. *SIAM
743 Journal on Scientific Computing*, 46(5):C633–C657, 2024.
744

745 Nikita Zozoulenko, Thomas Cass, and Lukas Gonon. Random feature representation boost-
746 ing. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=iUDsgI8z1T>.
747

748 A PROOFS

749 A.1 PROOF OF PROPOSITION 1

750 *Proof.* Fix $m \geq 0$ and an arbitrary $\psi \in \mathcal{S}(\mathbb{R})$. Using the definition of the ridgelet transform from
751 Sonoda & Murata (2017), we have for any $s \geq 0$,

$$752 \mathcal{R}_\psi u(\tau, \mathbf{a}, b) := \int_{\mathbb{R}^{d+1}} u(t, \mathbf{x}) \psi(\tau t + \mathbf{a} \cdot \mathbf{x} - b) \|(\tau, \mathbf{a})\|^s dt d\mathbf{x}. \quad (30)$$

753 Note that the dual ridgelet transform $R_\eta^\dagger T$ of $T : \mathbb{R}^{d+2} \rightarrow \mathbb{R}$ with respect to $\eta : \mathbb{R} \rightarrow \mathbb{R}$ is defined
754 as

$$755 \mathcal{R}_\eta^\dagger T(t, \mathbf{x}) := \int_{\mathbb{R}^{d+2}} T(\tau, \mathbf{a}, b) \eta(\tau t + \mathbf{a} \cdot \mathbf{x} - b) \|(\tau, \mathbf{a})\|^{-s} d\tau d\mathbf{a} db \quad (31)$$

We will take $s = 0$ in the above definitions. Recall that $\sigma \in \mathcal{S}'_0(\mathbb{R})$ is a fixed activation. Theorem 5.6 of Sonoda & Murata (2017) says that if we can find a function ψ so that $K_{\psi, \sigma} \in (0, \infty)$ then the reconstruction formula $u(t, \mathbf{x}) = \frac{1}{K_{\psi, \sigma}} R_\sigma^\dagger R_\psi u(t, \mathbf{x})$ holds. Therefore, to finish the proof we need to find ψ so that $K_{\psi, \sigma} \in (0, +\infty)$ and $|\widehat{\psi}(\omega)| \leq C|\omega|^m$ for $|\omega| < 1$ (condition (8)). We will make use of Corollary 5.5 of Sonoda & Murata (2017), which says that if $\zeta^\beta \widehat{\sigma}(\zeta) \in C(-\delta, \delta)$ for some $\delta > 0$, $\beta \in \mathbb{N}$ and $\psi_0 \in \mathcal{S}(\mathbb{R})$ is such that

$$J := \int_{\mathbb{R}} \zeta^\beta \widehat{\psi_0}(\zeta) \widehat{\sigma}(\zeta) d\zeta \neq 0, \quad (32)$$

then

$$\psi = \Lambda^d \psi_0^{(\beta)}$$

is admissible with σ , where Λ^d is the backprojection filter that satisfies

$$\widehat{\Lambda^d F}(\mathbf{u}, \omega) = i^d |\omega|^d \widehat{F}(\mathbf{u}, \omega). \quad (33)$$

We let $G(z) := \exp(-z^2/2)$ be the standardised gaussian and take

$$\psi_0(z) := \frac{d^{2n}}{dz^{2n}} G(z), \quad (34)$$

where n is an arbitrary positive integer. Then since we assume $\sigma \in \mathcal{T}_k$ (see Definition 2), we have $\zeta^\beta \widehat{\sigma}(\zeta) \in C(-\delta, \delta)$ for some $\delta > 0$ and

$$J = \int_{\mathbb{R}} \zeta^\beta \widehat{G^{(2n)}}(\zeta) \widehat{\sigma}(\zeta) d\zeta = \sqrt{2\pi} (-1)^n \int_{\mathbb{R}} \zeta^{2n+\beta} G(\zeta) \widehat{\sigma}(\zeta) d\zeta \neq 0, \quad (35)$$

where we have used $\widehat{G}(\zeta) = \sqrt{2\pi} G(\zeta)$. It is important to observe that we can take $n \in \mathbb{Z}^+$ to be as large as we like in this construction, since this is required by the second point in Definition 2 (of \mathcal{T}_k).

Thus, using Corollary 5.5 of Sonoda & Murata (2017) we can say that $\psi = \Lambda^d \psi_0^{(\beta)}$ and σ are jointly admissible. We will normalise ψ and therefore we can assume $K_{\psi, \sigma} = 1$. Applying the reconstruction formula (Theorem 5.6 of Sonoda & Murata (2017)) gives

$$\begin{aligned} u(t, \mathbf{x}) &= R_\sigma^\dagger R_\psi u(t, \mathbf{x}) \\ &= \int_{\mathbb{R}} \int_{\mathbb{R}^d} \int_{\mathbb{R}} R_\psi u(\tau, \mathbf{a}, b) \sigma(\tau t + \mathbf{a} \cdot \mathbf{x} - b) db d\mathbf{a} d\tau. \end{aligned} \quad (36)$$

Lastly, we need to verify that $A_{\psi, m} < +\infty$. Using the property of the backfilter from (33), we have

$$\begin{aligned} \widehat{\psi}(\omega) &= i^d |\omega|^d \widehat{\psi_0}' = -i^{d+1} \omega |\omega|^{d+1} \widehat{\psi_0} \\ &= \sqrt{2\pi} i^{d+2n+1} \omega |\omega|^{d+2n} G(\omega). \end{aligned} \quad (37)$$

Taking the absolute value gives $|\widehat{\psi}(\omega)| = \sqrt{2\pi} |\omega|^{d+2n+1} G(\omega)$. Then choosing n so that $d+2n+1 > m$ (e.g. $n > m - d - 1$), we have $|\widehat{\psi}(\omega)| \leq \sqrt{2\pi} |\omega|^m$ for $|\omega| < 1$. \square

Remark 3 (Proving admissibility of tanh, cos and sigmoid). *We show here that each of these activations belong to \mathcal{T}_k for $k \geq 0$. Firstly, they each belong to $\mathcal{S}'_0(\mathbb{R})$; this is explicitly mentioned in Section 6.1 of Sonoda & Murata (2017). In the case of $\sigma = \tanh$, we have $\widehat{\tanh}(\zeta) = -i\pi/\sinh(\pi\zeta/2)$ so $\zeta \widehat{\sigma}(\zeta)$ is continuous around 0, and*

$$J_\sigma = \sqrt{2\pi} (-1)^{n+1} i\pi \int_{\mathbb{R}} \frac{\zeta^{2n+1} G(\zeta)}{\sinh(\frac{\pi\zeta}{2})} d\zeta \neq 0. \quad (38)$$

Furthermore, tanh and each of its derivatives are bounded uniformly. Therefore $\tanh \in \mathcal{T}_k$ for any $k \geq 0$. For $\sigma = \cos$, $\widehat{\cos}(\zeta) = \delta(\zeta + 1) - \delta(\zeta - 1)$ which is continuous (in fact, zero) in a neighbourhood of 0, and satisfies

$$J_\sigma = \sqrt{2\pi} (-1)^n \zeta^{2n+1} \widehat{G}(\zeta)|_{-1}^1 = \sqrt{2\pi} (-1)^n [G(1) + G(-1)] \neq 0. \quad (39)$$

Therefore it also belongs to \mathcal{T}_k for all $k \geq 0$. For $\sigma = \text{sigmoid}$, the argument is similar; $\widehat{\sigma} = -i\pi \text{csch}(\pi\zeta) + i\pi \delta(\zeta)$, so $\zeta \widehat{\sigma}(\zeta)$ is continuous around the origin and $J_\sigma \neq 0$. Each of its derivatives are also uniformly bounded.

810 A.2 SKETCHING THE PROOF OF LEMMA 1
811812 *Proof (Outline).* **Step 1: Plancherel in b .** We apply the Plancherel formula in b to get
813

814
$$I = \int_{\mathbb{R}^{d+2}} |\widehat{\mathcal{R}_\psi u}(\tau, \mathbf{a}, \omega)|^2 (1 + |\tau|^2)^p (1 + \|\mathbf{a}\|^2)^q d\tau d\mathbf{a} d\omega$$

815
$$+ \int_{\mathbb{R}^{d+2}} |\partial_\omega \widehat{\mathcal{R}_\psi u}(\tau, \mathbf{a}, \omega)|^2 (1 + |\tau|^2)^p (1 + \|\mathbf{a}\|^2)^q d\tau d\mathbf{a} d\omega$$

816
817
818

819 Then we show using the definition of the Fourier Transform that $\widehat{R_\psi u}(\omega) = \widehat{u}(\tau\omega, \mathbf{a}\omega)\widehat{\psi}(-\omega)$, so I
820 can be split up as
821

822
$$I \leq \int_{\mathbb{R}} \int_{\mathbb{R}^d} \int_{\mathbb{R}} |\widehat{u}(\tau\omega, \mathbf{a}\omega)\widehat{\psi}(-\omega)|^2 (1 + |\tau|^2)^p (1 + \|\mathbf{a}\|^2)^q d\omega d\tau d\mathbf{a}$$

823
824
$$+ \int_{\mathbb{R}} \int_{\mathbb{R}^d} \int_{\mathbb{R}} |\partial_\omega (\widehat{u}(\tau\omega, \mathbf{a}\omega)\widehat{\psi}(-\omega))|^2 (1 + |\tau|^2)^p (1 + \|\mathbf{a}\|^2)^q d\omega d\tau d\mathbf{a} =: I_1 + I_2$$

825
826
827

The second term I_2 is the main obstacle in the proof.828 **Step 2: Change of variables.** Performing a change of variables $s = \tau\omega, \xi = \mathbf{a}\omega$ allows us to
829 estimate I_2 as
830

831
$$I_2 \leq \int_{\mathbb{R}} \int_{\mathbb{R}^d} \int_{\mathbb{R}} |\widehat{u}(s, \xi)\partial_\omega \widehat{\psi}(-\omega)|^2 (1 + (\frac{s}{\omega})^2)^p (1 + (\frac{\|\xi\|}{\omega})^2)^q |\omega|^{-(d+1)} d\omega ds d\xi$$

832
833
$$+ \int_{\mathbb{R}} \int_{\mathbb{R}^d} \int_{\mathbb{R}} |\frac{1}{\omega}(s\partial_s + \xi\nabla_\xi)\widehat{u}(s, \xi)\widehat{\psi}(-\omega)|^2 (1 + (\frac{s}{\omega})^2)^p (1 + (\frac{\|\xi\|}{\omega})^2)^q |\omega|^{-(d+1)} d\omega ds d\xi$$

834
835
836
$$=: I_{2A} + I_{2B}$$

837
838

(42)

839 **Step 3: Estimating I_{2A} and I_{2B} .** Here we show that one can find M large enough (but still finite) so
840 that with the corresponding ψ generated from Proposition 1, the integrals I_{2A}, I_{2B} are both bounded
841 by constants depending on the L^2 norms of ψ . Most of the difficulty lies in I_{2B} due to the derivatives
842 that appear. Nonetheless, using properties of the Fourier transform and Fubini to exchange the order
843 of integration, I_2 can be estimated as
844

845
$$I_{2B} \leq C_{\psi_2} \int_{\mathbb{R}^d} |(\widehat{-it}u)|^2(s, \xi) (1 + |s|^2)^{p+r} (1 + \|\xi\|^2)^q d\xi ds$$

846
847
$$+ C_{\psi_3} \int_{\mathbb{R}^d} |(\widehat{-i\mathbf{x}}u)|^2(s, \xi) (1 + |s|^2)^p (1 + \|\xi\|^2)^{q+r} d\xi ds,$$

848

849 where

850
$$C_{\psi_2} = \int_{\mathbb{R}} |\partial_\omega \widehat{\psi}(-\omega)|^2 \max(1, |\omega|^{-(2p+2q)}) |\omega|^{-(d+1)} d\omega.,$$

851
852
853
$$C_{\psi_3} = \int_{\mathbb{R}} |\widehat{\psi}(-\omega)|^2 \max(1, |\omega|^{-(2p+2q)}) |\omega|^{-(d+3)} d\omega.$$

854

855 Then by definition of the space $H^p(\mathbb{R}; H^q(\mathbb{R}^d))$ and the compact support of u , we get
856

857
$$I_{2B} \leq C_{\psi_3} (2T + 2R) (\|u\|_{H_t^{p+1} H_x^q}^2 + \|u\|_{H_t^p H_x^{q+1}}^2),$$

858

859 where C_{ψ_1} is a constant similar in form to C_{ψ_3} , and appears due to I_1 (which we did not look at in
860 this outline). Our final job is to show that we can construct ψ so that each of $C_{\psi_1}, C_{\psi_2}, C_{\psi_3}$ can be
861 suitably bounded. This is done for each constant by separating $|\omega| < 1$ and $|\omega| \geq 1$. On $|\omega| < 1$
862 we take advantage of Proposition 1 which allows us to choose ψ with enough vanishing moments at
863 0 to ensure finiteness. On $|\omega| \geq 1$ we use $\psi \in \mathcal{S}(\mathbb{R})$. This is the main idea. The full details of the
864 proof are deferred to the appendix. \square

864 A.3 PROOF OF LEMMA 1
865866 *Proof. Step 1: Plancherel in b .* Firstly, let's note that using the Plancherel formula in b we have
867

868
$$\int_{\mathbb{R}} |\mathcal{R}_\psi u(\tau, \mathbf{a}, b)|^2 (1 + b^2) db = \int_{\mathbb{R}} |\mathcal{R}_\psi u(\tau, \mathbf{a}, b)|^2 db + \int_{\mathbb{R}} |b \mathcal{R}_\psi u(\tau, \mathbf{a}, b)|^2 db$$

869
$$= \int_{\mathbb{R}} |\widehat{\mathcal{R}_\psi u}(\tau, \mathbf{a}, \omega)|^2 d\omega + \int_{\mathbb{R}} |\partial_\omega \widehat{\mathcal{R}_\psi u}(\tau, \mathbf{a}, \omega)|^2 d\omega. \quad (46)$$

870
871
872

873 Then

874
$$I = \int_{\mathbb{R}^{d+2}} |\widehat{\mathcal{R}_\psi u}(\tau, \mathbf{a}, \omega)|^2 (1 + |\tau|^2)^p (1 + \|\mathbf{a}\|^2)^q d\tau d\mathbf{a} d\omega$$

875
876
$$+ \int_{\mathbb{R}^{d+2}} |\partial_\omega \widehat{\mathcal{R}_\psi u}(\tau, \mathbf{a}, \omega)|^2 (1 + |\tau|^2)^p (1 + \|\mathbf{a}\|^2)^q d\tau d\mathbf{a} d\omega \quad (47)$$

877
878

879 We now find an expression for $\widehat{\mathcal{R}_\psi u}$. Using the definition of the Fourier transform and the ridgelet
880 transform,

881
$$\widehat{R_\psi u}(\omega) = \int_{\mathbb{R}} e^{-i\omega b} \mathcal{R}_\psi u db$$

882
883
$$= \int_{\mathbb{R}} e^{-i\omega b} \left(\int_{\mathbb{R}^d} \int_{\mathbb{R}} u(t, \mathbf{x}) \psi(\tau t + \mathbf{a} \cdot \mathbf{x} - b) dt d\mathbf{x} \right) db$$

884
885
$$= \int_{\mathbb{R}^d} \int_{\mathbb{R}} u(t, \mathbf{x}) \left(\int_{\mathbb{R}} e^{-i\omega b} \psi(\tau t + \mathbf{a} \cdot \mathbf{x} - b) db \right) dt d\mathbf{x}, \quad (48)$$

886
887

888 where we have also used Fubini to exchange the order of the integrals. This is valid since we assume
889 u is compactly supported, and therefore $u\psi$ is integrable on \mathbb{R}^{d+1} . By a change of variables $p =$
890 $\tau t + \mathbf{a} \cdot \mathbf{x} - b$ the inner integral is equivalent to $e^{-i\omega(\tau t + \mathbf{a} \cdot \mathbf{x})} \int_{\mathbb{R}} e^{i\omega p} \psi(p) dp = e^{-i\omega(\tau t + \mathbf{a} \cdot \mathbf{x})} \widehat{\psi}(-\omega)$.
891 Therefore

892
$$\widehat{R_\psi u}(\omega) = \widehat{\psi}(-\omega) \int_{\mathbb{R}^d} u(t, \mathbf{x}) e^{-i\omega(\tau t + \mathbf{a} \cdot \mathbf{x})} dt d\mathbf{x}$$

893
894
$$= \widehat{u}(\tau\omega, \mathbf{a}\omega) \widehat{\psi}(-\omega). \quad (49)$$

895

896 Inserting this into (47), we have
897

898
$$I = \int_{\mathbb{R}} \int_{\mathbb{R}^d} \int_{\mathbb{R}} |\widehat{u}(\tau\omega, \mathbf{a}\omega) \widehat{\psi}(-\omega)|^2 (1 + |\tau|^2)^p (1 + \|\mathbf{a}\|^2)^q d\omega d\tau d\mathbf{a}$$

899
900
$$+ \int_{\mathbb{R}} \int_{\mathbb{R}^d} \int_{\mathbb{R}} |\partial_\omega (\widehat{u}(\tau\omega, \mathbf{a}\omega) \widehat{\psi}(-\omega))|^2 (1 + |\tau|^2)^p (1 + \|\mathbf{a}\|^2)^q d\omega d\tau d\mathbf{a} \quad (50)$$

901
902
903
$$=: I_1 + I_2.$$

904 **Step 2: Change of variables.** We now introduce the change of variables $s = \tau\omega, \xi = \mathbf{a}\omega$. The
905 corresponding jacobian is $d\mathbf{a}d\tau = |\omega|^{-(d+1)} d\xi ds$ and the operator changes to
906

907
$$\partial_\omega|_{(\tau, \mathbf{a})} = \partial_\omega|_{(s, \xi)} + \frac{1}{\omega} (s \partial_s + \xi \nabla_\xi)|_{(s, \xi)} =: \partial_\omega|_{(s, \xi)} + \mathcal{D}. \quad (51)$$

908

909 Therefore, separating the ω terms using Fubini,
910

911
$$I_1 = \int_{\mathbb{R}^{d+2}} |\widehat{u}(s, \xi)|^2 |\widehat{\psi}(-\omega)|^2 (1 + |s/\omega|^2)^p (1 + (\|\xi\|/\omega)^2)^q |\omega|^{-(d+1)} d\omega ds d\xi$$

912
913
$$\leq C_{\psi_1} \int_{\mathbb{R}^{d+1}} |\widehat{u}(s, \xi)|^2 (1 + |s|^2)^p (1 + \|\xi\|^2)^q ds d\xi, \quad (52)$$

914
915

916 where

917
$$C_{\psi_1} = \int_{\mathbb{R}} |\widehat{\psi}(-\omega)|^2 \max(1, |\omega|^{-2p}) \max(1, |\omega|^{-2q}) |\omega|^{-(d+1)} d\omega. \quad (53)$$

918 We will show the boundedness of this constant at the end of the proof. For I_2 ,
919

$$\begin{aligned}
920 \quad I_2 &\leq \int_{\mathbb{R}} \int_{\mathbb{R}^d} \int_{\mathbb{R}} |\widehat{u}(s, \xi) \partial_{\omega} \widehat{\psi}(-\omega)|^2 (1 + (\frac{s}{\omega})^2)^p (1 + (\frac{\|\xi\|}{\omega})^2)^q |\omega|^{-(d+1)} d\omega ds d\xi \\
921 \\
922 &\quad + \int_{\mathbb{R}} \int_{\mathbb{R}^d} \int_{\mathbb{R}} \frac{1}{\omega} (s \partial_s + \xi \nabla_{\xi}) \widehat{u}(s, \xi) \widehat{\psi}(-\omega) |^2 (1 + (\frac{s}{\omega})^2)^p (1 + (\frac{\|\xi\|}{\omega})^2)^q |\omega|^{-(d+1)} d\omega ds d\xi \\
923 \\
924 &=: I_{2A} + I_{2B}
\end{aligned} \tag{54}$$

925 **Step 3: Estimating I_{2A} and I_{2B} .** First note that for any $\mathbf{x} \in \mathbb{R}^d$ and $k > 0$,

$$(1 + \frac{\|\mathbf{x}\|^2}{|\omega|^2})^k \leq \max(1, |\omega|^{-2k}) (1 + \|\mathbf{x}\|^2)^k. \tag{55}$$

931 Therefore, for I_{2A} we can separate the ω dependence and write

$$I_{2A} \leq C_{\psi_2} \int_{\mathbb{R}^{d+1}} |\widehat{u}(s, \xi)|^2 (1 + s^2)^p (1 + \|\xi\|^2)^q ds d\xi, \tag{56}$$

934 where

$$C_{\psi_2} = \int_{\mathbb{R}} |\partial_{\omega} \widehat{\psi}(-\omega)|^2 \max(1, |\omega|^{-(2p+2q)}) |\omega|^{-(d+1)} d\omega. \tag{57}$$

935 We will consider the boundedness of this constant at the end. For I_{2B} , we can estimate the (s, ξ)
936 part as

$$\begin{aligned}
940 \quad \int_{\mathbb{R}^{d+1}} \frac{1}{\omega} (s \partial_s + \xi \nabla_{\xi}) \widehat{u}(s, \xi) |^2 ds d\xi &\leq 2|\omega|^{-2} \left(\int_{\mathbb{R}^{d+1}} |s \partial_s \widehat{u}(s, \xi)|^2 + \int_{\mathbb{R}^{d+1}} |\xi \nabla_{\xi} \widehat{u}(s, \xi)|^2 \right) \\
941 \\
942 &= 2|\omega|^{-2} \left(\int_{\mathbb{R}^{d+1}} |\widehat{s(-it)u}(s, \xi)|^2 + \int_{\mathbb{R}^{d+1}} |\widehat{\xi(-i\mathbf{x})u}(s, \xi)|^2 \right) \\
943 \\
944 &\leq 2|\omega|^{-2} \left(\int_{\mathbb{R}^{d+1}} |\widehat{(-it)u}(s, \xi)|^2 (1 + s^2) + \int_{\mathbb{R}^{d+1}} |\widehat{(-i\mathbf{x})u}(s, \xi)|^2 (1 + \|\xi\|^2) \right), \\
945 \\
946 &\quad (58)
\end{aligned}$$

947 where we used $s^2 \leq 1 + s^2$ to obtain the final line. Thus we have

$$\begin{aligned}
948 \quad I_{2B} &\leq C_{\psi_3} \int_{\mathbb{R}^{d+1}} |\widehat{(-it)u}(s, \xi)|^2 (1 + |s|^2)^{p+1} (1 + \|\xi\|^2)^q d\xi ds \\
949 \\
950 &\quad + C_{\psi_3} \int_{\mathbb{R}^{d+1}} |\widehat{(-i\mathbf{x})u}(s, \xi)|^2 (1 + |s|^2)^p (1 + \|\xi\|^2)^{q+1} d\xi ds,
\end{aligned} \tag{59}$$

954 where

$$C_{\psi_3} = 2 \int_{\mathbb{R}} |\widehat{\psi}(-\omega)|^2 \max(1, |\omega|^{-(2p+2q)}) |\omega|^{-(d+3)} d\omega. \tag{60}$$

955 We will consider this constant at the end of the proof. Next, recall the following equivalence
956

$$\int_{\mathbb{R}^{d+1}} |\widehat{u}(s, \xi)|^2 (1 + |s|^2)^p (1 + \|\xi\|^2)^q d\xi ds = \|u\|_{H^p(\mathbb{R}; H^q(\mathbb{R}^d))}^2. \tag{61}$$

957 This gives us (using the compact support of u)

$$\begin{aligned}
958 \quad I &\leq (C_{\psi_1} + C_{\psi_2}) \|u\|_{H_t^p H_x^q} + C_{\psi_3} (\|t|u|\|_{H_t^{p+1} H_x^q}^2 + \|\mathbf{x}|u|\|_{H_t^p H_x^{q+1}}^2) \\
959 \\
960 &\leq (C_{\psi_1} + C_{\psi_2}) \|u\|_{H_t^p H_x^q} + C_{\psi_3} (2T + 2R) \|u\|_{H_t^{p+1} H_x^{q+1}}^2 \\
961 \\
962 &\leq (C_{\psi_1} + C_{\psi_2} + C_{\psi_3} (2T + 2R)) \|u\|_{H_t^{p+1} H_x^{q+1}}^2.
\end{aligned} \tag{62}$$

963 It remains to bound the constants C_{ψ_1} , C_{ψ_2} and C_{ψ_3} . Starting with the most recent C_{ψ_3} , we consider
964 $|\omega| < 1$ and $|\omega| \geq 1$ separately. On $|\omega| < 1$, we have

$$C_{\psi_3} = 2 \int_{-1}^1 |\widehat{\psi}(-\omega)|^2 \max(1, |\omega|^{-(2p+2q)}) |\omega|^{-(d+3)} d\omega \leq 2 \int_{-1}^1 |\widehat{\psi}(-\omega)|^2 |\omega|^{-(2p+2q+d+3)} d\omega,$$

so letting $M = (2p + 2q + d + 3)/2$ and choosing ψ as per the construction of Proposition 1 (see (37)), we have

$$|\widehat{\psi}(\omega)| \leq \sqrt{2\pi}|\omega|^M \text{ for } |\omega| < 1. \quad (63)$$

This implies that the integral is bounded by $\int_{-1}^1 2\pi d\omega = 4\pi$. On $|\omega| \geq 1$ we can bound it by $\|\psi\|_{L^2(\mathbb{R})}^2$ (by Plancherel), and so $C_{\psi_3} \leq 8\pi + 2\|\psi\|_{L^2(\mathbb{R})}$. We can apply the same estimate to C_{ψ_1} to get $C_{\psi_1} \leq 4\pi + \|\psi\|_{L^2(\mathbb{R})}^2$. For C_{ψ_2} , recall from (37) that $\widehat{\psi}(\omega) = \sqrt{2\pi} i^m \omega |\omega|^{m-1} G(\omega)$, for m which we can choose arbitrarily large. A simple computation gives us on $|\omega| < 1$ that $|\partial_\omega \widehat{\psi}| \leq \sqrt{2\pi}(m+1)\omega^{m-1}G(\omega)$. Similarly, on $|\omega| \geq 1$ we get $|\partial_\omega \widehat{\psi}| \leq \sqrt{2\pi}m\omega^{m+1}G(\omega)$. Therefore on $|\omega| < 1$, by choosing the same $m = M$,

$$\begin{aligned} \int_{-1}^1 |\partial_\omega \widehat{\psi}(-\omega)|^2 \max(1, |\omega|^{-(2p+2q)}) |\omega|^{-(d+1)} d\omega &\leq 2\pi(M+1)^2 \int_{-1}^1 |\omega|^2 d\omega \\ &\leq 4\pi(M+1)^2. \end{aligned} \quad (64)$$

For $|\omega| > 1$, notice that $|\partial_\omega \widehat{\psi}| \leq |\omega| |\widehat{\psi}(\omega)|$ and so

$$\int_{\mathbb{R} \setminus B_1(0)} |\partial_\omega \widehat{\psi}(-\omega)|^2 \max(1, |\omega|^{-(2p+2q)}) |\omega|^{-(d+1)} d\omega \leq \int_{\mathbb{R} \setminus B_1(0)} |\omega \widehat{\psi}(\omega)|^2 d\omega. \quad (65)$$

and so $C_{\psi_2} \leq 4\pi(M+1)^2 + \|\psi'\|_{L^2(\mathbb{R})}^2$. This leads to

$$I \leq \left[(4\pi + \|\psi\|_{L^2(\mathbb{R})})(1 + 4T + 4R) + 4\pi(M+1)^2 + \|\psi'\|_{L^2(\mathbb{R})}^2 \right] \|u\|_{H_t^{p+1} H_x^{q+1}}^2, \quad (66)$$

where $M = (2p + 2q + d + 3)/2$. \square

A.4 PROOF OF THEOREM 1

Proof. Step 1: extension of u to $\mathbb{R} \times \mathbb{R}^d$. In order to make use of the previous results, we smoothly extend u to the full space $\mathbb{R} \times \mathbb{R}^d$ using cut-off functions. More precisely, we define $\tilde{u} = \eta \chi u$, where $\chi \in C_c^\infty(\mathbb{R}^d)$, $\eta \in C_c^\infty(\mathbb{R})$ with $\chi \equiv 1$ on D , $\chi = 0$ outside of $[-2R, 2R]^d$ and $\eta \equiv 1$ on $[0, T]$, $\eta = 0$ outside of $[-2T, 2T]$, so that $\|\tilde{u}\|_{H_t^p H_x^q} \leq C_\Omega \|u\|_{H_t^p H_x^q}$, where C_Ω is a constant dependent on p, q, d and the domain. Such an extension is known to exist (see e.g. Chapter VI of Stein (1970)). Then from (7), \tilde{u} can be represented as

$$\begin{aligned} \tilde{u}(t, x) &= \int_{\mathbb{R}} \int_{\mathbb{R}^d} \int_{\mathbb{R}} (\mathcal{R}_\psi \tilde{u})(\tau, \mathbf{a}, b) \sigma(\tau t + \mathbf{a} \cdot \mathbf{x} - b) d\tau d\mathbf{a} db \\ &= \int_{\mathbb{R}} \int_{\mathbb{R}^d} \int_{\mathbb{R}} \frac{(\mathcal{R}_\psi \tilde{u})(\tau, \mathbf{a}, b)}{\pi(\tau, \mathbf{a}, b)} \sigma(\tau t + \mathbf{a} \cdot \mathbf{x} - b) \pi(\tau, \mathbf{a}, b) d\tau d\mathbf{a} db, \end{aligned} \quad (67)$$

where $\pi : \mathbb{R}^{d+2} \rightarrow \mathbb{R}_+$ is the probability density function from (12).

Step 2: construction of the unbiased estimator u_N . Our neural network approximation of u will be denoted u_N , and we define it as an unbiased estimator of \tilde{u} , i.e.

$$u_N(t, \mathbf{x}) := \frac{1}{N} \sum_{i=1}^N \frac{R_\psi \tilde{u}(\tau_i, \mathbf{a}_i, b_i)}{\pi(\tau_i, \mathbf{a}_i, b_i)} \sigma(\tau_i t + \mathbf{a}_i \cdot \mathbf{x} - b_i) \equiv \frac{1}{N} \sum_{i=1}^N X_i(t, \mathbf{x}), \quad (68)$$

where $(\tau_i, \mathbf{a}_i, b_i) \sim \pi$. By construction, it is clear that $\mathbb{E}_\Theta(u_N) = \tilde{u}$. More generally, for any $0 \leq \ell \leq p$ and multi-index β with $|\beta| \leq q$, we have

$$\mathbb{E}(\partial_t^\ell D_\mathbf{x}^\beta(u_N)) = \partial_t^\ell D_\mathbf{x}^\beta(\tilde{u}). \quad (69)$$

In order to estimate $u - u_N$, we have

$$\begin{aligned} \mathbb{E}_\Theta \left(\|\partial_t^\ell D_\mathbf{x}^\beta(\tilde{u} - u_N)\|_{L^2((0,T) \times D)}^2 \right) &= \mathbb{E}_\Theta \int_{(0,T) \times D} |\partial_t^\ell D_\mathbf{x}^\beta(\tilde{u} - u_N)|^2 dx dt \\ &= \int_{(0,T) \times D} \text{Var}_\Theta(\partial_t^\ell D_\mathbf{x}^\beta(\tilde{u} - u_N)) dx dt. \end{aligned} \quad (70)$$

1026 Let $Y_i(t, \mathbf{x}) := X_i(t, \mathbf{x}) - \mathbb{E}_\Theta(X_1(t, \mathbf{x}))$. Then $\mathbb{E}(Y_i) = 0$ and $\text{Var}(Y_i) = \text{Var}(X_i)$. More-
 1027 over, we have $u - u_N = \frac{1}{N} \sum_{i=1}^N Y_i(t, \mathbf{x})$ and therefore $\text{Var}(u - u_N) = \frac{1}{N} \text{Var}(Y_1(t, \mathbf{x})) =$
 1028 $\frac{1}{N} \text{Var}(X_1(t, \mathbf{x}))$. The same argument works if we replace $u - u_N$ with $\partial_t^\ell D_\mathbf{x}^\beta(u - u_N)$. As a
 1029 result, we have (since $u = \tilde{u}$ on $(0, T) \times D$)

$$\begin{aligned} 1031 \mathbb{E}_\Theta \left(\|\partial_t^\ell D_\mathbf{x}^\beta(u - u_N)\|_{L^2((0, T) \times D)}^2 \right) &= \mathbb{E}_\Theta \left(\|\partial_t^\ell D_\mathbf{x}^\beta(\tilde{u} - u_N)\|_{L^2((0, T) \times D)}^2 \right) \\ 1032 &= \frac{1}{N} \int_{(0, T) \times D} \mathbb{E}_\Theta |\partial_t^\ell D_\mathbf{x}^\beta X_i|^2 dxdt. \end{aligned} \quad (71)$$

1033 **Step 3: bounding $\mathbb{E}_\Theta(|\partial_t^\ell D_\mathbf{x}^\alpha X_i|^2)$.** A direct computation gives

$$\begin{aligned} 1034 \mathbb{E}_\Theta(|X_i(t, \mathbf{x})|^2) &= C_\pi \int_{\mathbb{R}^{d+2}} |R_\psi \tilde{u}(\tau, \mathbf{a}, b)|^2 |\sigma(\tau t + \mathbf{a}\mathbf{x} - b)|^2 (1 + \tau^2)^{\lambda_\tau} (1 + \|\mathbf{a}\|^2)^{\lambda_a} (1 + b^2) d\tau d\mathbf{a} db \\ 1035 &\leq C_\pi \|\sigma\|_\infty^2 \mathcal{L}_\psi \|\tilde{u}\|_{H^{s_1}(\mathbb{R}; H^{s_2}(\mathbb{R}^d))}^2, \end{aligned} \quad (72)$$

1036 where, since $\lambda_\tau > 1/2$ and $\lambda_a > d/2$, we have $s_1 > 3/2, s_2 > (d+2)/2$ using Lemma 1.
 1037 Therefore, we have

$$1038 \mathbb{E}_\Theta \left(\|u - u_N\|_{L^2((0, T) \times D)}^2 \right) \leq \frac{T|D|\|\sigma\|_\infty^2 \mathcal{L}_\psi}{N} \|\tilde{u}\|_{H^{s_1}(\mathbb{R}; H^{s_2}(\mathbb{R}^d))}^2. \quad (73)$$

1039 The same argument works if we let $0 \leq \ell \leq p$ and use a non-zero multi-index $\beta = (\beta_1, \dots, \beta_d)$ with
 1040 $|\beta| = q$. In this case we have

$$\begin{aligned} 1041 \mathbb{E}_\Theta(|\partial_t^\ell D_\mathbf{x}^\alpha X_i(t, \mathbf{x})|^2) &\leq C_\pi \int_{\mathbb{R}^{d+2}} |R_\psi \tilde{u}(\tau, \mathbf{a}, b)|^2 |\sigma^{(p+q)}|^2 |\tau|^{2p} \|\mathbf{a}\|^{2q} (1 + \tau^2)^{\lambda_\tau} (1 + \|\mathbf{a}\|^2)^{\lambda_a} (1 + b^2) d\tau d\mathbf{a} db \\ 1042 &\leq C_\pi \int_{\mathbb{R}^{d+2}} |R_\psi \tilde{u}(\tau, \mathbf{a}, b)|^2 |\sigma^{(p+q)}|^2 (1 + \tau^2)^{p+\lambda_\tau} (1 + \|\mathbf{a}\|^2)^{q+\lambda_a} (1 + b^2) d\tau d\mathbf{a} db. \end{aligned} \quad (74)$$

1043 Then using (10), we get

$$1044 \mathbb{E}_\Theta(|\partial_t^\ell D_\mathbf{x}^\alpha X_i(t, \mathbf{x})|^2) \leq C_\pi \|\sigma^{(p+q)}\|_\infty^2 \mathcal{L}_\psi \|\tilde{u}\|_{H^{p+s_1}(\mathbb{R}; H^{q+s_2}(\mathbb{R}^d))}^2, \quad (75)$$

1045 By (71) this implies (using $\|\tilde{u}\|_{H_t^p H_x^q} \leq C_\Omega \|u\|_{H_t^p H_x^q}$)

$$1046 \mathbb{E}_\Theta \left(\|\partial_t^\ell D_\mathbf{x}^\beta(u - u_N)\|_{L^2((0, T) \times D)}^2 \right) \leq \frac{C_\Omega T|D|C_\pi \|\sigma^{(p+q)}\|_\infty^2 \mathcal{L}_\psi}{N} \|u\|_{H^{p+s_1}(\mathbb{R}; H^{q+s_2}(\mathbb{R}^d))}^2, \quad (76)$$

1047 where again $s_1 > 3/2$ and $s_2 > (d+2)/2$. Summing up this estimate for each of the derivatives up
 1048 to order (p, q) leads to the claimed result. \square

1049 A.5 PROOF OF COROLLARY 1

1050 *Proof.* The bound of (20) follows from an application of Theorem 1, so we now focus on bounding
 1051 the PDE residual. We take $m = 2$ for simplicity, but the computation is easily generalised to any
 1052 $m \geq 1$. Using $\partial_t u - \Delta(u^2) = 0$, we have

$$\begin{aligned} 1053 \mathcal{J}_{\text{PDE}}(u_N) &= \int_{(0, T) \times D} (\partial_t u_N - \Delta(u_N^2))^2 dt dx \\ 1054 &= \int_{(0, T) \times D} (\partial_t(u_N - u) - \Delta(u_N^2 - u^2))^2 dt dx \\ 1055 &\leq 2\|u_N - u\|_{H_t^1 L_x^2}^2 + 2 \int_{(0, T) \times D} |\Delta(u_N^2 - u^2)|^2 dt dx. \end{aligned} \quad (77)$$

Now, Markov's inequality states that $\mathbb{P}(X > \eta) \leq \mathbb{E}[X] \frac{1}{\eta}$ for X non-negative, $\eta > 0$. In particular, for any $\delta \in (0, 1)$, from the bound in Theorem 1 we obtain with the choices $X = \|u - u_N\|_{H^p(0, T; H^q(D))}^2$ and $\eta = \frac{1}{\delta} \frac{C_\Omega C_\pi \|\sigma^{(p+q)}\|_\infty^2 T |D| (p+q) \mathcal{L}_\psi}{N} \cdot \|u\|_{H^{p+s_1}(\mathbb{R}; H^{q+s_2}(\mathbb{R}^d))}^2$ that

$$\mathbb{P}(X > \eta) \leq \mathbb{E}_\Theta \left(\|u - u_N\|_{H^p(0, T; H^q(D))}^2 \right) \frac{1}{\eta} \leq \delta. \quad (78)$$

This implies that $\mathbb{P}(X \leq \eta) \geq 1 - \delta$. That is, with probability at least $1 - \delta$ it holds that $X \leq \eta = \frac{1}{\delta} \frac{C_\Omega C_\pi \|\sigma^{(p+q)}\|_\infty^2 T |D| (p+q) \mathcal{L}_\psi}{N} \cdot \|u\|_{H^{p+s_1}(\mathbb{R}; H^{q+s_2}(\mathbb{R}^d))}^2$. Then we have with probability $1 - \delta$ that

$$\|u_N - u\|_{H_t^1 L_x^2}^2 \leq \frac{\mathcal{M}_\psi}{N \delta} \|u\|_{H_t^{1+s_1} H_x^{s_2}}^2, \quad (79)$$

where $s_1 > 3/2$, $s_2 > (d+2)/2$. Now we note that $\Delta(u_N^2 - u^2) = (u_N + u)\Delta e_N + 2\nabla(u_N + u)\nabla e_N + e_N\Delta(u_N + u)$, where $e_N := u_N - u$. Combining this with $(a+b)^2 \leq 2(a^2 + b^2)$ and Holder's inequality,

$$\begin{aligned} \int_{(0, T) \times D} |\Delta(u_N^2 - u^2)|^2 dt dx &\leq 2\|u_N + u\|_{L_{t,x}^\infty}^2 \|\Delta(u_N - u)\|_{L_{t,x}^2}^2 \\ &\quad + 16\|\nabla(u_N + u)\|_{L_{t,x}^\infty}^2 \|\nabla(u_N - u)\|_{L_{t,x}^2}^2 \\ &\quad + 4\|\Delta(u_N + u)\|_{L_{t,x}^\infty}^2 \|u_N - u\|_{L_{t,x}^2}^2. \end{aligned} \quad (80)$$

We also have

$$\|u\|_{L_{t,x}^\infty} + \|\nabla u\|_{L_{t,x}^\infty} + \|\Delta u\|_{L_{t,x}^\infty} \leq C_{emb} \|u\|_{L_t^\infty H_x^{2+k}}, \quad (81)$$

for $k > d/2$, where C_{emb} is the constant arising from the Sobolev embedding $H_x^k \hookrightarrow L_x^\infty$. Then with the above Markov argument, assuming L is such that the sampling of the weights satisfies $\|u_N\|_{L_{t,x}^\infty} + \|\nabla u_N\|_{L_{t,x}^\infty} + \|\Delta u_N\|_{L_{t,x}^\infty} \leq L$, we have with probability $1 - \delta$ that

$$\begin{aligned} \int_{(0, T) \times D} |\Delta(u_N^m - u^m)|^2 dt dx &\leq 22(L + C_{emb} \|u\|_{L_t^\infty H_x^{2+k}}^2) \|u_N - u\|_{L_t^2 H_x^2}^2 \\ &\leq \frac{22(L + C_{emb} \|u\|_{L_t^\infty H_x^{2+k}}^2) \mathcal{M}_\psi}{N \delta} \|u\|_{H_t^{s_1} H_x^{2+s_2}}^2. \end{aligned} \quad (82)$$

All in all, we get

$$\mathcal{J}_{\text{PDE}}(u_N) \leq \frac{(22(L + C_{emb} \|u\|_{L_t^\infty H_x^{2+k}}^2) + 1) \mathcal{M}_\psi}{N \delta} \|u\|_{H_t^{s_1} H_x^{2+s_2}}^2, \quad (83)$$

with probability $1 - \delta$. Using $s_1 > 3/2$ and $s_2 > d/2 + 2$ we can estimate the leading norm by $\|u\|_{H_t^2 H_x^{3+k}}^2$. For the general case $m \geq 2$, the argument can be adapted using a mean-value formula to re-write $u_N^m - u^m$ in terms of e_N . In this case, we get an extra constant in the coefficient of (83), C_m , which will be polynomial in m . This leads to the claimed result (21). In summary, taking initial data $u_0 \in H^1(\mathbb{R}^d)$, we can find a RaNN which approximates the corresponding solution to the PDE such that the expected loss of the PDE residual is inversely proportional to the number of random features, and the rate is independent of dimension. \square

Remark 4 (Growth factor for the leading coefficient). *We can give a more precise description of the constant in the right-hand side of (14) in the case where $\sigma \in \mathcal{T}_k$ (e.g. tanh; see Definition 2) and either $u \in H^p(\mathbb{R}; H^q(\mathbb{R}^d))$ (i.e. u is already defined on the full space) or $p = q = 0$. The condition $p = q = 0$ ensures that $C_\Omega = 1$ since a zero extension suffices. In such a case, we can show that if we let $\lambda_a = \frac{d}{2} + \alpha(d)$ for a suitable choice of α , then the coefficient in the right-hand side of (14) will grow at most polynomially in d . We will denote by C a positive constant independent of dimension and by $\Gamma(\cdot)$ the Gamma function. Then note that*

$$C_\pi \leq C \int_{\mathbb{R}^d} (1 + \|\mathbf{a}\|^2)^{-\lambda_a} d\mathbf{a}. \quad (84)$$

1134 Going to spherical coordinates and letting $\lambda_a = \frac{d}{2} + \alpha$, we find
 1135

$$1136 C_\pi = \frac{2\pi^{d/2}}{\Gamma(d/2)} \int_0^\infty r^{d-1} (1+r^2)^{-\lambda_a} dr = \pi^{d/2} \frac{\Gamma(\alpha)}{\Gamma(d/2+\alpha)} \leq C\pi^{d/2} \frac{\alpha^{\alpha-1/2}}{e^\alpha}. \quad (85)$$

1138 Now, to bound L_ψ , we need an estimate for $\|\widehat{\psi}\|_{L^2(\mathbb{R})}^2$ and $\|(\widehat{\psi})'\|_{L^2(\mathbb{R})}$. We will use the construction
 1139 of ψ from the proof of Proposition 1. There, we construct ψ with $|\widehat{\psi}(\omega)| \leq \sqrt{2\pi}|\omega|$ for $|\omega| \leq 1$ and
 1140 $|\widehat{\psi}(\omega)| \leq \sqrt{2\pi}|\omega|^{d+3}G(\omega)$ for $|\omega| > 1$ (we set $n = 1$ for this proof but it can be extended to any
 1141 fixed positive integer n). Then we have $\|\widehat{\psi}\|_{L^2(-1,1)}^2 \leq 4\pi$ and so
 1142

$$1144 \|\widehat{\psi}\|_{L^2(\mathbb{R})}^2 \leq 4\pi + \int_{|\omega|>1} \omega^{2(d+2)} e^{-\omega^2} d\omega \\ 1145 = 4\pi + \int_1^\infty u^{d+3/2} e^{-u} du \\ 1146 \leq 4\pi + \Gamma(d+5/2), \quad (86)$$

1149 where we have used the substitution $u = \omega^2$. For $(\widehat{\psi})'$, we can repeat the same process to find
 1150

$$1152 \|(\widehat{\psi})'\|_{L^2(\mathbb{R})}^2 \leq 4\pi + \Gamma(d+7/2). \quad (87)$$

1153 Now we consider the product $C_\pi L_\psi$. Notice that the leading term is given by $C_\pi \Gamma(d+7/2)$, or
 1154 more precisely by

$$1155 F(d) := \pi^{d/2} \frac{\Gamma(\alpha)}{\Gamma(d/2+\alpha)} \sqrt{\Gamma(d+7/2)}. \quad (88)$$

1156 We now prove that $F(d)$ grows at most polynomially in d . We will take $\alpha = \lambda d$ for some real number
 1157 $\lambda > 0$ to be decided. To this end, we will use the following inequality for the Gamma function
 1158

$$1160 \left(x - \frac{1}{2}\right) \ln x - x + \frac{1}{2} \ln(2\pi) < \ln \Gamma(x) < \left(x - \frac{1}{2}\right) \ln x - x + \frac{1}{2} \ln(2\pi) + \frac{1}{12x}, \quad x > 0. \quad (89)$$

1162 Taking logarithms,

$$1163 \ln F(d) = \frac{d}{2} \ln \pi + \ln \Gamma(\lambda d) + \frac{1}{2} \ln \Gamma(d+7/2) - \ln \Gamma((\lambda+1/2)d). \quad (90)$$

1165 Then using (89), we get

$$1166 \ln F(d) < \frac{d}{2} \ln \pi + \left(\lambda d - \frac{1}{2}\right) \ln(\lambda d) - \lambda d + \frac{1}{2}(d+3) \ln \left(d + \frac{7}{2}\right) \\ 1167 - \frac{1}{2} \left(d + \frac{7}{2}\right) - \left(\left(\lambda + \frac{1}{2}\right) d - \frac{1}{2}\right) \ln \left(\left(\lambda + \frac{1}{2}\right) d\right) + \left(\lambda + \frac{1}{2}\right) d \\ 1168 + \frac{1}{4} \ln \pi + \frac{1}{12\lambda d} + \frac{1}{12(d+7/2)}. \quad (91)$$

1174 Upon simplifying, we find that the right-hand side contains a function which is linear in d and one
 1175 which is sub-linear in d , i.e.
 1176

$$1177 \ln F(d) < d \left[\frac{1}{2} \ln \pi + \lambda \ln \lambda - \left(\lambda + \frac{1}{2}\right) \ln \left(\lambda + \frac{1}{2}\right) \right] \\ 1178 + d \left[\frac{1}{2} \ln \left(d + \frac{7}{2}\right) - \frac{1}{2} \ln d \right] \\ 1179 + \frac{3}{2} \ln(d+7/2) - \frac{1}{2} \ln \lambda d - \lambda - 9/4 - \frac{1}{2} \ln \left(\left(\lambda + \frac{1}{2}\right) d\right). \quad (92)$$

1184 The second term can be bounded independently of dimension; using the inequality $\ln(1+x) < x$
 1185 for $x > 0$, we have:
 1186

$$1187 d \left[\frac{1}{2} \ln \left(d + \frac{7}{2}\right) - \frac{1}{2} \ln d \right] = \frac{d}{2} \ln \left(1 + \frac{7}{2d}\right) < \frac{d}{2} \left(\frac{7}{2d}\right) = \frac{7}{4}. \quad (93)$$

1188 Therefore, to prove at most polynomial growth in d , it suffices to show that
 1189

$$1190 \quad \mathcal{P}(\lambda, d) := \frac{1}{2} \ln \pi + \lambda \ln \lambda - \left(\lambda + \frac{1}{2} \right) \ln \left(\lambda + \frac{1}{2} \right) \leq 0. \quad (94)$$

1192 We seek an upper bound for the expression, so we apply the lower bound $\ln(1+x) > x - \frac{x^2}{2}$ to the
 1193 logarithm inside the negative term. For $x = \frac{1}{2\lambda}$, this gives us
 1194

$$1195 \quad \ln \left(\lambda + \frac{1}{2} \right) = \ln \lambda + \ln \left(1 + \frac{1}{2\lambda} \right) > \ln \lambda + \frac{1}{2\lambda} - \frac{1}{8\lambda^2}. \quad (95)$$

1197 Substituting these bounds into the left-hand side of (94), we get
 1198

$$1199 \quad \mathcal{P}(\lambda, d) < \frac{1}{2} \ln \pi + \lambda \ln \lambda - \left(\lambda + \frac{1}{2} \right) \left(\ln \lambda + \frac{1}{2\lambda} - \frac{1}{8\lambda^2} \right) \\ 1200 \\ 1201 \quad < \frac{1}{2} \ln \pi + \lambda \ln \lambda - \left(\lambda \ln \lambda + \frac{1}{2} - \frac{1}{8\lambda} + \frac{1}{2} \ln \lambda + \frac{1}{4\lambda} - \frac{1}{16\lambda^2} \right). \quad (96)$$

1203 Grouping the constant terms and simplifying, we find:
 1204

$$1205 \quad \mathcal{P}(\lambda, d) < \left(\frac{1}{2} \ln \pi - \frac{1}{2} - \frac{1}{2} \ln \lambda \right) + \left(-\frac{1}{8\lambda} + \frac{1}{16\lambda^2} \right). \quad (97)$$

1207 For the expression not to grow exponentially as $d \rightarrow \infty$, the dominant constant term must be non-
 1208 positive. Notice that for $\lambda > 1/2$, the expression inside the second pair of brackets is negative. Thus,
 1209 a sufficient condition is given by:

$$1210 \quad \frac{1}{2} \ln \pi - \frac{1}{2} - \frac{1}{2} \ln \lambda \leq 0, \quad (98)$$

1212 i.e.

$$1213 \quad \lambda \geq \frac{\pi}{e}. \quad (99)$$

1215 Therefore, choosing $\alpha(d) \geq \frac{\pi}{e}d$ ensures that the constant appearing in front of (14) grows at most
 1216 polynomially in d . Note that we do not expect a better rate than this due to the extra terms appearing
 1217 in (92).

1218 A.6 PROOF OF COROLLARY 2

1220 *Proof.* Since we are dealing with a system of equations, we need to illustrate how the result of
 1221 Theorem 1 applies. Firstly, given a couple (ρ, u) belonging to class (25), the representation result
 1222 of Proposition 1 tells us that we can find $\psi_\rho, \psi_u \in \mathcal{S}(\mathbb{R})$ such that we have the representations
 1223 (assuming ρ, u have been smoothly extended to the full space):

$$1224 \quad \rho(t, x) = \int_{\mathbb{R}} \int_{\mathbb{R}^d} \int_{\mathbb{R}} (A_\rho)(\tau, \mathbf{a}, b) \sigma(\tau t + \mathbf{a} \cdot \mathbf{x} - b) d\tau d\mathbf{a} db, \\ 1225 \\ 1226 \quad u(t, x) = \int_{\mathbb{R}} \int_{\mathbb{R}^d} \int_{\mathbb{R}} (A_u)(\tau, \mathbf{a}, b) \sigma(\tau t + \mathbf{a} \cdot \mathbf{x} - b) d\tau d\mathbf{a} db, \quad (100)$$

1229 where $A_\rho := \mathcal{R}_{\psi_\rho} \rho$ and $A_u := \mathcal{R}_{\psi_u} u$. Then as in Theorem 1 we can introduce two unbiased
 1230 estimators

$$1231 \quad \rho_N(t, x) = \frac{1}{N} \sum_{i=1}^N \frac{A_\rho(\tau_i, \mathbf{a}_i, b_i)}{\pi(\tau_i, \mathbf{a}_i, b_i)} \sigma(\tau_i t + \mathbf{a}_i \cdot \mathbf{x} - b_i), \\ 1232 \\ 1233 \quad u_N(t, x) = \frac{1}{N} \sum_{i=1}^N \frac{A_u(\tau_i, \mathbf{a}_i, b_i)}{\pi(\tau_i, \mathbf{a}_i, b_i)} \sigma(\tau_i t + \mathbf{a}_i \cdot \mathbf{x} - b_i). \quad (101)$$

1237 The result of Theorem 1 gives us the following bounds immediately:

$$1238 \quad \|\rho_N - \rho\|_{L_t^2 H_x^q}^2 \leq \frac{C_\Omega C_\pi \|\sigma^{(q)}\|_\infty^2 T |D| q \mathcal{L}_\psi}{N} \cdot \|\rho\|_{H_t^{s_1} H_x^{q+s_2}}^2, \\ 1239 \\ 1240 \quad \|u_N - u\|_{L_t^2 H_x^q}^2 \leq \frac{C_\Omega C_\pi \|\sigma^{(q)}\|_\infty^2 T |D| q \mathcal{L}_\psi}{N} \cdot \|u\|_{H_t^{s_1} H_x^{q+s_2}}^2, \quad (102)$$

1242 for $s_1, s_2 > 3/2$ since we are in dimension $d = 1$. From now on we label
 1243

$$1244 \quad \mathcal{M}_\psi := \frac{C_\Omega C_\pi \|\sigma^{(q)}\|_\infty^2 T |D| q \mathcal{L}_\psi}{N}. \quad (103)$$

1246 The pair $v_N(t, x) := (\rho_N(t, x), u_N(t, x))$ can be interpreted as the outputs of a single random neural
 1247 network of width $2N$, from which the first claim follows. We now bound the loss functions \mathcal{J}_{PDE}^1
 1248 and \mathcal{J}_{PDE}^2 . For \mathcal{J}_{PDE}^1 we note the expression $\rho_N u_N - \rho u = \rho_N(u_N - u) + u(\rho_N - \rho)$ to get
 1249

$$1250 \quad \partial_x(\rho_N u_N - \rho u) = \partial_x \rho_N(u_N - u) + \rho_N \partial_x(u_N - u) + \partial_x u(\rho_N - \rho) + u \partial_x(\rho_N - \rho). \quad (104)$$

1251 Therefore,

$$1252 \quad \mathcal{J}_{PDE}^1(\mathbf{v}_N) = \int_{(0, T) \times D} |\partial_t(\rho_N - \rho) + \partial_x(\rho_N u_N - \rho u)|^2 \\ 1253 \quad \leq 2\|\partial_t(\rho_N - \rho)\|_{L_{t,x}^2}^2 + 4\|\partial_x \rho_N\|_{L_{t,x}^\infty}^2 \|u_N - u\|_{L_{t,x}^2}^2 + 4\|\rho_N\|_{L_{t,x}^\infty}^2 \|\partial_x(u_N - u)\|_{L_{t,x}^2}^2 \\ 1254 \quad + 4\|\partial_x u\|_{L_{t,x}^\infty}^2 \|\rho_N - \rho\|_{L_{t,x}^2}^2 + 4\|u\|_{L_{t,x}^\infty}^2 \|\partial_x(\rho_N - \rho)\|_{L_{t,x}^2}^2 \\ 1255 \quad \leq 4(\|\partial_x \rho_N\|_{L_{t,x}^\infty}^2 + \|\rho_N\|_{L_{t,x}^\infty}^2 + \|\partial_x u\|_{L_{t,x}^\infty}^2 + \|u\|_{L_{t,x}^\infty}^2)(\|\rho_N - \rho\|_{H_{t,x}^1}^2 + \|u_N - u\|_{H_{t,x}^1}^2) \\ 1256 \quad \leq \mathcal{B}_N(\|\rho_N - \rho\|_{H_{t,x}^1}^2 + \|u_N - u\|_{H_{t,x}^1}^2). \\ 1257 \quad =: \mathcal{B}_N(\|\rho_N - \rho\|_{H_{t,x}^1}^2 + \|u_N - u\|_{H_{t,x}^1}^2). \\ 1258 \quad =: \mathcal{B}_N(\|\rho_N - \rho\|_{H_{t,x}^1}^2 + \|u_N - u\|_{H_{t,x}^1}^2). \\ 1259 \quad =: \mathcal{B}_N(\|\rho_N - \rho\|_{H_{t,x}^1}^2 + \|u_N - u\|_{H_{t,x}^1}^2). \\ 1260 \quad =: \mathcal{B}_N(\|\rho_N - \rho\|_{H_{t,x}^1}^2 + \|u_N - u\|_{H_{t,x}^1}^2). \\ 1261 \quad =: \mathcal{B}_N(\|\rho_N - \rho\|_{H_{t,x}^1}^2 + \|u_N - u\|_{H_{t,x}^1}^2). \\ 1262 \quad =: \mathcal{B}_N(\|\rho_N - \rho\|_{H_{t,x}^1}^2 + \|u_N - u\|_{H_{t,x}^1}^2). \quad (105)$$

1263 Note that $\|\partial_x u\|_{L_{t,x}^\infty}$ is finite since $u \in C(0, T; H^5(D))$. An upper bound for the coefficient \mathcal{B}_N is
 1264 $4(\|\rho_N\|_{W_{t,x}^{1,\infty}}^2 + \|u\|_{W_{t,x}^{1,\infty}}^2)$. By a similar Markov argument to the proof of Corollary 1 (see Appendix
 1265 A.5), for $\delta \in (0, 1)$, we have with probability $1 - \delta$ that
 1266

$$1267 \quad \mathcal{J}_{PDE}^1(\mathbf{v}_N) \leq \frac{4(L + \|u\|_{W_{t,x}^{1,\infty}}^2) \mathcal{M}_\psi}{N \delta} (\|\rho\|_{H_t^{1+s_1} H_x^{1+s_2}}^2 + \|u\|_{H_t^{1+s_1} H_x^{1+s_2}}^2), \quad (106)$$

1269 where $s_1, s_2 > 3/2$, if the network weights are sampled such that

$$1271 \quad \|\rho_N\|_{W_{t,x}^{1,\infty}}^2 + \|u\|_{W_{t,x}^{1,\infty}}^2 \leq L < +\infty. \quad (107)$$

1273 For the momentum equation, we use $\rho_N u_N^2 = u_N \rho_N(u_N - u) + u u_N(\rho_N - \rho)$, and so

$$1274 \quad \partial_x(\rho_N u_N^2) - \partial_x(\rho u^2) = \partial_x(u_N \rho_N)(u_N - u) + u_N \rho_N \partial_x(u_N - u) + \partial_x(u u_N)(\rho_N - \rho) \\ 1275 \quad + u u_N \partial_x(\rho_N - \rho). \quad (108)$$

1277 Therefore, in a similar way to the continuity equation, with probability $1 - \delta$,

$$1279 \quad \mathcal{J}_{PDE}^2(\mathbf{v}_N) = \int_{(0, T) \times D} |\partial_t(\rho_N u_N - \rho u) + \partial_x(\rho_N u_N^2 - \rho u^2) - \mu \partial_x^2(u_N - u)|^2 dx dt \\ 1280 \quad \leq \mathcal{C}_N \frac{\mathcal{M}_\psi}{N \delta} (\|\rho_N - \rho\|_{H_{t,x}^1}^2 + (\mu + 1) \|u_N - u\|_{H_t^1 H_x^2}^2), \\ 1281 \quad \leq \mathcal{C}_N \frac{\mathcal{M}_\psi}{N \delta} (\|\partial_t \rho_N\|_{L_{t,x}^\infty}^2 + \|\rho_N\|_{L_{t,x}^\infty}^2 + \|\partial_t u\|_{L_{t,x}^\infty}^2 + \|u\|_{L_{t,x}^\infty}^2 + \|\partial_x(\rho_N u_N)\|_{L_{t,x}^\infty}^2 \\ 1282 \quad + \|\rho_N u_N\|_{L_{t,x}^\infty}^2 + \|\partial_x(u u_N)\|_{L_{t,x}^\infty}^2 + \|u u_N\|_{L_{t,x}^\infty}^2), \\ 1283 \quad \text{where}$$

$$1284 \quad \mathcal{C}_N = \|\partial_t \rho_N\|_{L_{t,x}^\infty}^2 + \|\rho_N\|_{L_{t,x}^\infty}^2 + \|\partial_t u\|_{L_{t,x}^\infty}^2 + \|u\|_{L_{t,x}^\infty}^2 + \|\partial_x(\rho_N u_N)\|_{L_{t,x}^\infty}^2 \\ 1285 \quad + \|\rho_N u_N\|_{L_{t,x}^\infty}^2 + \|\partial_x(u u_N)\|_{L_{t,x}^\infty}^2 + \|u u_N\|_{L_{t,x}^\infty}^2. \quad (110)$$

1288 The assumption (107) ensures that \mathcal{C}_N is bounded by

$$1289 \quad 2(L^2 + L \|u\|_{W_{t,x}^{1,\infty}}^2 + \|u\|_{W_{t,x}^{1,\infty}}^2) \leq 2(L + 1)(L + \|u\|_{W_{t,x}^{1,\infty}}^2). \quad (111)$$

1291 Note that $\|\partial_t u\|_{L_{t,x}^\infty}$ is finite; this can be seen by rewriting the momentum equation as $\partial_t u = -u \partial_x u + \mu \rho^{-1} \partial_x^2 u$, and using the regularity $u \in C(0, T; H^k(D))$ for $k \geq 5$, along with the
 1292 Sobolev embedding $H^1 \hookrightarrow L^\infty$. Then we have with probability $1 - \delta$ that
 1293

$$1294 \quad \mathcal{J}_{PDE}^2(\mathbf{v}_N) \leq \frac{2(L + 1)(L + \|u\|_{W_{t,x}^{1,\infty}}^2) \mathcal{M}_\psi}{N \delta} (\|\rho\|_{H_t^{1+s_1} H_x^{1+s_2}}^2 + (\mu + 1) \|u\|_{H_t^{1+s_1} H_x^{2+s_2}}^2).$$

1296 Noting that $s_1, s_2 > 3/2$, we get
 1297

$$1298 \quad (\mathcal{J}_{PDE}^1 + \mathcal{J}_{PDE}^2)(\mathbf{v}_N) \leq \frac{2(L+1)(L + \|u\|_{W_{t,x}^{1,\infty}}^2)\mathcal{M}_\psi}{N\delta} (\|\rho\|_{H_t^3 H_x^3}^2 + (\mu+1)\|u\|_{H_t^3 H_x^4}^2), \quad (112)$$

1300 which is guaranteed to be finite if we take $(\rho_0, u_0) \in (H^k(D))^2$ for $k \geq 5$. This can be seen by
 1301 noting that the continuity equation can be re-written as $\partial_t \rho = -u \partial_x \rho - \rho \partial_x u$, and the momentum
 1302 equation as $\partial_t u = -u \partial_x u + \mu \rho^{-1} \partial_x^2 u$. Then using the regularity (25), one can bound the higher
 1303 order Sobolev norms on the right-hand side of (112). \square
 1304

1306 B EXPERIMENTS

1308 In this section we give further details on the numerical experiments carried out in Section 5. All
 1309 experiments were performed using a NVIDIA RTX 3080 GPU.
 1310

1311 B.1 POROUS MEDIUM EQUATION

1312 Recall that we consider the Barenblatt-Kompaneets-Zeldovich solution

$$1315 \quad u(t, x) = \frac{1}{t^\alpha} \left(b - \frac{m-1}{2m} \beta \frac{\|x\|^2}{t^{2\beta}} \right)_+^{\frac{1}{m-1}}, \quad (113)$$

1318 where $\|\cdot\|$ is the ℓ^2 norm, $(\cdot)_+$ is the positive part and $\alpha = \frac{d}{d(m-1)+2}$ and $\beta = \frac{1}{d(m-1)+2}$. We set
 1319 $m = 2$.
 1320

1321 This solution is compactly supported but not differentiable at the edges of the support, which causes
 1322 difficulty for numerical schemes. Since this solution is generated by a Dirac delta-valued initial data,
 1323 we fix a small time $t_0 = 10^{-2}$ and take the initial data to be $u_0(x) := u(t_0, x)$ and solve on the
 1324 shifted time domain $(t_0, T + t_0)$.

1325 We perform two types of experiments. First, we investigate the effect of the width N of the network
 1326 on the relative error between the network and the solution u , and then we compare performance of
 1327 the randomised architecture against traditional PINN architectures in dimensions $d = 1 - 5$.
 1328

1329 B.1.1 EFFECT OF NETWORK WIDTH ON THE ERROR

1330 We aim to investigate whether a convergence rate of $N^{-1/2}$ can be observed in practice. To this
 1331 end, we train a RaNN to approximate the Barenblatt profile (29) in dimensions $d = 1, \dots, 5$. In each
 1332 dimension, we take a set of widths $N \in \{N_1, \dots, N_k\}$, train the network for each width and plot the
 1333 relative error of the final network against the true solution. The RaNN includes a Fourier feature
 1334 layer, where frequencies ω_j are sampled from $\mathcal{N}(0, 10^2)$. For each dimension d and width N , we
 1335 sample $M = 10N$ points (to ensure the problem remains well-posed) with a mixed strategy: 50%
 1336 of the points are sampled uniformly and 50% are sampled uniformly on $[0.2, 0.8]^d$, which is a box
 1337 focused on the support of the solution. Then we find weights $\mathbf{W} = \{W_i\}_{i=1}^N$ which minimise the
 1338 Ridge regression loss
 1339

$$1340 \quad \mathcal{L}(\mathbf{W}) = \frac{1}{M} \sum_{i=1}^M \|\hat{\mathbf{u}}(t_i, \mathbf{x}_i) - \mathbf{y}_i\|_2^2 + \lambda \|\mathbf{W}\|_2^2, \quad \lambda = 10^{-5}. \quad (114)$$

1344 We compute the closed-form solution $\hat{\mathbf{W}}$ directly (using a Cholesky decomposition), and then evaluate
 1345 the relative error. We train the RaNN five times for each width. The mean relative L^2 errors are
 1346 plotted against the widths in Figure 3. The errors are also plotted on log-log scales in Figure 4. The
 1347 key observation here is that the RaNN error points lie close to the C/\sqrt{N} curve, which supports the
 1348 upper bound of Theorem 1. Note that in $d = 1, 2, 3$ we take $t_0 = 0.1$ (i.e. the initial data is set to
 1349 $u(t_0, x)$, where u is the Barenblatt profile from (29)) and in $d = 4, 5$ this is reduced to $t_0 = 0.01$ to
 keep the problem computationally manageable.

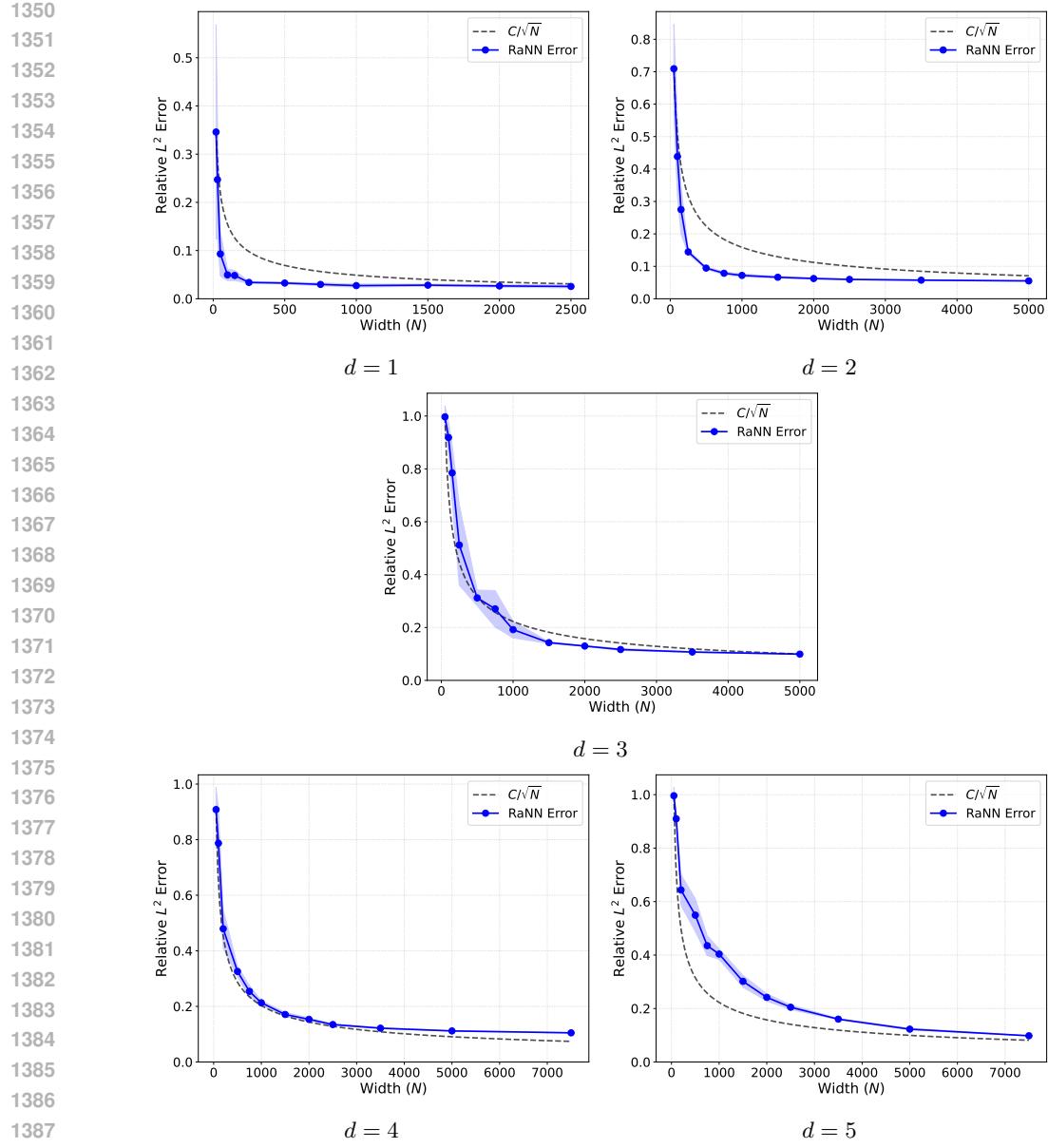


Figure 3: Approximation error of RaNNs of varying width for solving PMEs in dimensions $d = 1, \dots, 5$. The shaded band indicates the region within one standard deviation of the mean relative L^2 error.

B.1.2 COMPARISON WITH PINNS

Here, we provide full experimental details and detailed results for the PME experiments from Section 5.1.2.

Architectures For our main experiments for the PME we consider three architectures:

- **RaNN:** a random neural network in the sense of Definition 1, which includes a Fourier feature embedding layer; this technique has been shown to enhance the performance of physics-informed solvers (see Tancik et al. (2020)). A more detailed description of Fourier features is given in Appendix C. We use $N = 2500, 5000, 7500$ features in $d = 1, 2, 3$

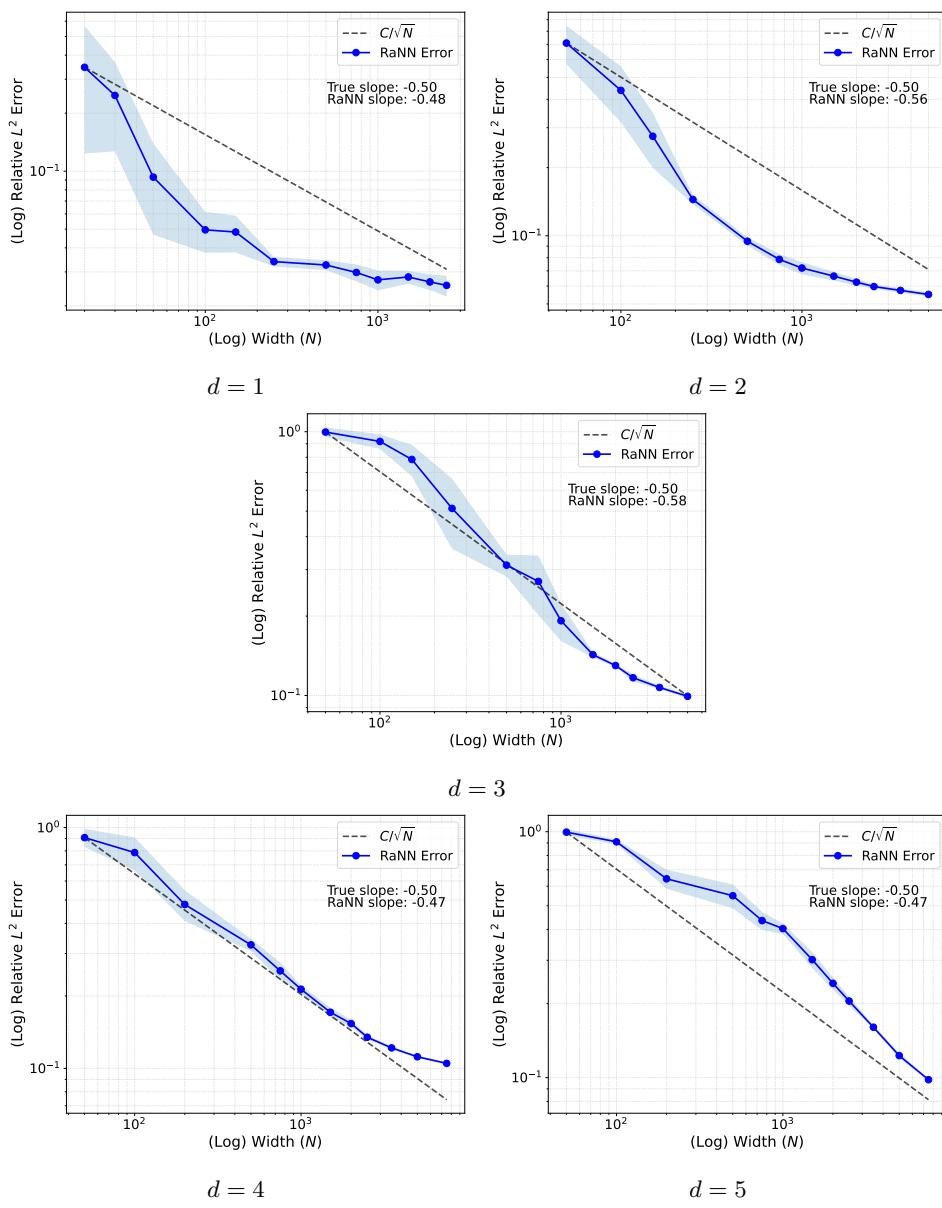


Figure 4: Log-log plot of the relative L^2 error versus the width N . The reference scaling C/\sqrt{N} and the measured RaNN slope are shown. The shaded band indicates the region within one standard deviation of the mean relative L^2 error.

respectively and $N = 7500$ for $d = 4, 5$ in order to maintain computational feasibility. We sample $(\tau_i, \mathbf{a}_i) \sim \mathcal{N}(0, 10^2 \mathbb{I}_{d+1})$, $b_i \sim \text{Unif}[0, 2\pi]$. Since we include a Fourier embedding layer, the parameters (τ_i, \mathbf{a}_i) can be interpreted as the frequency of the sin / cos features (see the construction of (122)). In our tests we find that using higher frequency features helps to learn solutions in higher dimensions, which is why we choose the large variance of $10^2 \mathbb{I}_{d+1}$. We find that this choice of distribution leads to slightly more reliable training results, compared to distributions such as (12), which was used in Theorem 1.

- **PINN (A):** A physics-informed neural network which mimics the architecture of RaNN for each dimension d , but where all parameters are trainable. This network therefore has many

1458 more trainable parameters than the RaNN. Weights are initialised using a Xavier (Glorot)
 1459 scheme.
 1460

- **PINN (B):** A more traditional physics-informed neural network with four hidden layers
 1461 containing $N = 20, 30, 40, 48, 54$ nodes in dimensions $d = 1, 2, 3, 4, 5$ respectively. The
 1462 tanh activation is used. The widths N are chosen so that the total number of trainable
 1463 parameters is roughly equal to that of the RaNN, for any given dimension. Weights are
 1464 initialised using a Xavier (Glorot) scheme.

1465

1466 **Loss** For each architecture, the loss function used is $\mathcal{L} := \mathcal{L}_{PDE} + \mathcal{L}_{IC} + \mathcal{L}_{BC}$, where

$$\begin{aligned} \mathcal{L}_{PDE}(u_\theta) &= \lambda_{PDE} \frac{1}{M_p} \sum_{i=1}^{M_p} |\partial_t u_\theta - \Delta(u_\theta^2)|^2(t_i^p, x_i^p), \\ \mathcal{L}_{BC}(u_\theta) &= \lambda_{BC} \left[\frac{1}{M_b} \sum_{i=1}^{M_b} |u_\theta(t_i^b, 1)|^2 + \frac{1}{M_{bc}} \sum_{i=1}^{M_b} |u_\theta(t_i^b, 0)|^2 \right], \\ \mathcal{L}_{IC}(u_\theta) &= \lambda_{IC} \frac{1}{M_c} \sum_{i=1}^{M_c} |u_\theta(0, x_i^c) - u(x_i^c)|^2, \end{aligned} \quad (115)$$

1471 where $\{(t_i^p, x_i^p)\}_{i=1}^{M_p}, \{(t_i^b)\}_{i=1}^{M_b}, \{(x_i^c)\}_{i=1}^{M_c}$ are the points sampled for evaluating the PDE, BC and
 1472 IC losses respectively. For $d = 1$ we use $T = 0.05$, $M_p = 2000$ collocation points to minimise the
 1473 PDE residual and $M_c = 1000$, $M_b = 500$ points for the initial and boundary residuals respectively.
 1474 For $d = 2$ we choose $T = 0.025$ and $M_p = 4000$, $M_c = 2000$, $M_b = 1000$ points. For $d = 3$ we
 1475 choose $T = 0.01$ and use $M_p = 6000$, $M_c = 4000$, $M_b = 2000$ points. For $d = 4, 5$ we stick with
 1476 $T = 0.01$ and use $M_p = 8000$, $M_c = 4000$, $M_b = 2000$ points. Note that we choose the final time
 1477 T small enough so that the Barenblatt profile is compactly supported on $(0, 1)^d$ for each time, which
 1478 is reflected in the formulation of \mathcal{L}_{BC} . We choose $\lambda_{PDE} = \lambda_{BC} = 1$ and pick a higher weight
 1479 $\lambda_{IC} = 200$, to ensure the initial condition is satisfied. In $d = 4, 5$ this is increased to $\lambda_{IC} = 400$.
 1480 We find that in practice this yields smaller overall errors than using uniform weights. Also, since the
 1481 target solution is non-negative in this case, the final prediction is chosen as the square of the neural
 1482 network output, i.e. $u_{pred}(t, x) = (u_\theta(t, x))^2$.
 1483

1484 **Training** For training, we use the Adam optimiser for the first 4750 epochs and L-BFGS for the
 1485 remaining 250 epochs. This split is chosen to balance accuracy and computational feasibility. We
 1486 use the Xavier (Glorot) initialisation for PINN (A) and PINN (B), while the output weights for the
 1487 RaNN are initialised from a uniform distribution. We use the learning rate $\mu = 10^{-3}$. Simulations
 1488 were performed using a NVIDIA RTX 3080 GPU.
 1489

1490 **Results** The results are shown in Table 2. The RaNN is trained considerably faster than the alter-
 1491 native PINNs, while maintaining a similar degree of accuracy. These results support the viewpoint
 1492 that randomised architectures are highly capable of learning complex functions, despite their simple
 1493 form. For $d = 1$ we also include illustrative solution plots in Figures 7 and 8. In each section
 1494 (dimension) of Table 2, the first row \mathcal{X} corresponds to the L^2 average relative error of the network
 1495 over space-time compared to the true solution whereas the second row \mathcal{X}_T tracks only the error at
 1496 the final time T , i.e.

$$\mathcal{X} := \frac{\|u - u_N^W\|_{L_{t,x}^2}}{\|u\|_{L_{t,x}^2}}, \quad \mathcal{X}_T := \frac{\|u(T) - u_N^W(T)\|_{L_x^2}}{\|u(T)\|_{L_x^2}}.$$

1506 $\sigma_{\mathcal{X}}$ is then the standard deviation of the space-time relative error for all 5 runs, whereas $\sigma_{\mathcal{X}_T}$ is the
 1507 standard deviation for the final time relative error.
 1508

1509 B.1.3 ADDITIONAL EXPERIMENTS

1510 In this section, we report additional experimental results for $d = 1, 2, 3$, complementing those
 1511 reported in Section 5.1.2 and Appendix B.1.2.

d	Metric	PINN (A)	PINN (B)	RaNN
1	$\mathcal{X} := \ u - u_N^W\ _{L_{t,x}^2} / \ u\ _{L_{t,x}^2}$	7.09×10^{-2}	6.88×10^{-2}	6.41×10^{-2}
	$\mathcal{X}_T := \ u(T) - u_N^W(T)\ _{L_x^2} / \ u(T)\ _{L_x^2}$	4.62×10^{-2}	7.85×10^{-2}	4.62×10^{-2}
	$\sigma_{\mathcal{X}}$	1.38×10^{-3}	2.80×10^{-2}	3.98×10^{-3}
	$\sigma_{\mathcal{X}_T}$	5.58×10^{-3}	3.76×10^{-2}	7.87×10^{-3}
	Time (mean)	101s	164s	68s
	# Trainable params.	6251	2665	2500
2	\mathcal{X}	1.08×10^{-1}	1.25×10^{-1}	1.00×10^{-1}
	\mathcal{X}_T	1.11×10^{-1}	1.33×10^{-1}	1.06×10^{-1}
	$\sigma_{\mathcal{X}}$	2.38×10^{-3}	8.43×10^{-3}	2.32×10^{-3}
	$\sigma_{\mathcal{X}_T}$	3.71×10^{-3}	6.24×10^{-3}	3.38×10^{-3}
	Time (mean)	208s	152s	86s
	# Trainable params.	15001	4899	5000
3	\mathcal{X}	1.24×10^{-1}	2.83×10^{-1}	1.18×10^{-1}
	\mathcal{X}_T	1.44×10^{-1}	3.04×10^{-1}	1.48×10^{-1}
	$\sigma_{\mathcal{X}}$	2.90×10^{-3}	1.48×10^{-1}	1.39×10^{-3}
	$\sigma_{\mathcal{X}_T}$	8.17×10^{-3}	1.65×10^{-1}	1.59×10^{-2}
	Time (mean)	579s	187s	107s
	# Trainable params.	26251	7451	7500
4	\mathcal{X}	1.60×10^{-1}	3.48×10^{-1}	1.68×10^{-1}
	\mathcal{X}_T	2.69×10^{-1}	4.16×10^{-1}	2.97×10^{-1}
	$\sigma_{\mathcal{X}}$	5.35×10^{-3}	1.51×10^{-1}	1.67×10^{-2}
	$\sigma_{\mathcal{X}_T}$	8.49×10^{-3}	1.50×10^{-1}	3.56×10^{-2}
	Time (mean)	1034s	225s	138s
	# Trainable params.	30001	8189	7500
5	\mathcal{X}	5.07×10^{-1}	5.33×10^{-1}	3.78×10^{-1}
	\mathcal{X}_T	6.75×10^{-1}	6.84×10^{-1}	3.96×10^{-1}
	$\sigma_{\mathcal{X}}$	1.80×10^{-1}	1.94×10^{-1}	2.45×10^{-3}
	$\sigma_{\mathcal{X}_T}$	2.27×10^{-1}	1.89×10^{-1}	2.81×10^{-2}
	Time (mean)	1395s	326s	168s
	# Trainable params.	33751	10024	7500

Table 2: Error norms and computational time for varying d and N values.

The experiment here includes an additional network: a randomised neural network without Fourier feature layer. Moreover, for this experiment we chose the network sizes so that comparable errors were achieved between PINNs and RaNNs in order to focus on comparing training times.

Architectures We train the following networks:

- **RaNN (A):** a random neural network in the sense of Definition 1, where we randomly sample $(\tau_i, \mathbf{a}_i) \sim \mathcal{N}(0, 10^2 \mathbb{I}_{d+1})$, $b_i \sim \text{Unif}[0, 2\pi]$. We also include a Fourier feature embedding layer. A more detailed description of Fourier features is given in Appendix C. We use $N = 2500, 5000, 7500$ features in $d = 1, 2, 3$ respectively. Weights are initialised from a uniform distribution.
- **RaNN (B):** a random neural network in the sense of Definition 1, where we randomly sample $(\tau_i, \mathbf{a}_i) \sim \mathcal{N}(0, 10^2 \mathbb{I}_{d+1})$, $b_i \sim \text{Unif}[0, 2\pi]$. Weights are initialised from a uniform distribution.

- **PINN (A):** A classical physics-informed neural network with one Fourier feature layer (containing $N = 2500, 5000, 7500$ features in $d = 1, 2, 3$ respectively) and no other hidden layers. The tanh activation is used. Weights are initialised using Xavier (Glorot) initialisation.
- **PINN (B):** A classical physics-informed neural network with two hidden layers containing $N = 100, 125, 150$ nodes in dimensions $d = 1, 2, 3$ respectively. The tanh activation is used. Weights are initialised using Xavier (Glorot) initialisation.

Loss We use the same setup and loss function (115) as in Appendix B.1.2. In particular, the choices of $\lambda_{PDE} = \lambda_{BC} = 1$ and $\lambda_{IC} = 200$ are as before. For $d = 1$ we use $T = 0.05$, $M_p = 2500$ collocation points to minimise the PDE residual and $M_c = 1250, M_b = 625$ points for the initial and boundary residuals respectively. For $d = 2$ we choose $T = 0.025$ and $M_p = 5000, M_c = 2500, M_b = 1250$ points. Finally, for $d = 3$ we choose $T = 0.01$ and use $M_p = 7500, M_c = 5000, M_b = 2500$ points. As before, since the target solution is non-negative in this case, the final prediction is chosen as the square of the neural network output, i.e. $u_{pred}(t, x) = (u_\theta(t, x))^2$.

Training As ablation to the previous experiment, we use an Adam optimiser for 5000 epochs. As before, we use the Xavier (Glorot) initialisation for PINN (A) and PINN (B), while the output weights for the RaNN are initialised from a uniform distribution. We use the learning rate $\mu = 10^{-3}$. Simulations were performed using a NVIDIA RTX 3080 GPU.

Results The results are given in Table 3. Similar to our main experiments, the randomised network RaNN (A) performs faster than both PINNs and with a similar magnitude of error. A key observation here is that RaNN (B) without Fourier features, although fastest, suffers from poor accuracy. This suggests that Fourier features help boost the expressivity of the network with minimal additional computational cost (only 12s longer training time in $d = 2$). Another interesting point is that RaNN

d	Metric	PINN (A)	PINN (B)	RaNN (A)	RaNN (B)
1	\mathcal{X}	5.80×10^{-2}	5.86×10^{-2}	5.79×10^{-2}	9.94×10^{-1}
	\mathcal{X}_T	4.57×10^{-2}	5.12×10^{-2}	4.56×10^{-2}	9.92×10^{-1}
	$\sigma_{\mathcal{X}}$	2.18×10^{-3}	7.49×10^{-3}	2.34×10^{-3}	7.28×10^{-3}
	$\sigma_{\mathcal{X}_T}$	2.73×10^{-3}	7.53×10^{-3}	2.16×10^{-3}	8.72×10^{-3}
	Time (mean)	90s	81s	50s	43s
	# Trainable params.	6251	10501	2500	2500
2	\mathcal{X}	1.06×10^{-1}	1.71×10^{-1}	1.06×10^{-1}	2.89×10^0
	\mathcal{X}_T	8.85×10^{-2}	1.50×10^{-1}	9.01×10^{-2}	3.17×10^0
	$\sigma_{\mathcal{X}}$	3.73×10^{-3}	6.92×10^{-3}	3.56×10^{-3}	6.95×10^{-1}
	$\sigma_{\mathcal{X}_T}$	2.59×10^{-3}	6.80×10^{-3}	3.98×10^{-3}	9.71×10^{-1}
	Time (mean)	217s	109s	67s	55s
	# Trainable params.	12501	16376	5000	5000
3	\mathcal{X}	1.40×10^{-1}	3.62×10^{-1}	1.44×10^{-1}	1.07×10^1
	\mathcal{X}_T	1.23×10^{-1}	3.32×10^{-1}	1.27×10^{-1}	1.17×10^1
	$\sigma_{\mathcal{X}}$	3.85×10^{-3}	1.74×10^{-2}	5.98×10^{-3}	4.86×10^0
	$\sigma_{\mathcal{X}_T}$	7.86×10^{-3}	1.82×10^{-2}	3.37×10^{-3}	5.36×10^0
	Time (mean)	666s	142s	95s	62s
	# Trainable params.	18751	23251	7500	7500

Table 3: Error norms and computational time for varying d and N values.

(A) also uses fewer trainable parameters than the PINNs. Note that in each section (dimension) of Table 3, the first row \mathcal{X} corresponds to the L^2 average relative error of the network over space-time compared to the true solution whereas the second row \mathcal{X}_T tracks only the error at the final time T ,

1620

i.e.

1621

$$\mathcal{X} := \frac{\|u - u_N^W\|_{L_{t,x}^2}}{\|u\|_{L_{t,x}^2}}, \quad \mathcal{X}_T := \frac{\|u(T) - u_N^W(T)\|_{L_x^2}}{\|u(T)\|_{L_x^2}}.$$

1622

1623

1624

1625

1626

1627

1628

1629

1630

$\sigma_{\mathcal{X}}$ is the standard deviation of the space-time relative error for all 5 runs whereas $\sigma_{\mathcal{X}_T}$ is the standard deviation for the final time relative error.

1631

B.2 NAVIER-STOKES

1632

1633

1634

1635

1636

We now turn to the compressible Navier-Stokes system, given by (22). We restrict our attention to the one-dimensional case, where (22) is reduced to (in Lagrangian mass coordinates)

$$\begin{cases} \partial_t v - \partial_x u = 0, \\ \partial_t u + \partial_x p_{\epsilon}(v) - \mu \partial_x \left(\frac{1}{v} \partial_x u \right) = 0. \end{cases} \quad (116)$$

1637

Here, $v = 1/\rho$ represents the specific volume and u the velocity. We consider the singular pressure in the work of Dalibard & Perrin (2020).

1638

1639

$$p_{\epsilon}(v) = \frac{\epsilon}{(v-1)^{\gamma}}, \quad \gamma > 0. \quad (117)$$

1640

1641

1642

1643

1644

1645

1646

In order to evaluate the performance of the randomised PINN method, we need a baseline solution analogous to the Barenblatt profile (29) which we used for the Porous Medium Equation. For this purpose, we consider the travelling shock-wave solutions to system (116) for this system, which were studied by Dalibard & Perrin (2020). Shock wave solutions to compressible Navier-Stokes models have also been studied in other works (Mascia & Zumbrun (2004); Dalibard & Perrin (2024); Humpherys et al. (2010); Vasseur & Yao (2016)). The travelling wave solutions to system (116) can be obtained by taking the ansatz $(v, u)(t, x) = (\mathfrak{v}, \mathfrak{u})(x - st)$, where s is the shock speed. This reduces the PDE to an ODE for \mathfrak{v} :

1647

1648

1649

$$\mathfrak{v}' = \frac{\mathfrak{v}}{\mu s} (s^2(v_- - \mathfrak{v}) + p_{\epsilon}(v_-) - p_{\epsilon}(\mathfrak{v})). \quad (118)$$

1650

1651

1652

The velocity \mathfrak{u} can then be obtained from the relationship $\mathfrak{v} = -su$ which follows from the conservation of mass.

1653

1654

1655

1656

We consider the domain $(0, T) \times (-5, 5)$ with $T = 1.0$, $\mu = 1$, $\epsilon = 10^{-3}$, $\gamma = 2$. The shock profile connects a far-field state v_- to the far-field state v_+ . We fix $v_+ = 1.5$, while $v_- < v_+$ and the shock speed s are derived from the Rankine-Hugoniot jump condition (see Proposition 1.1 of Dalibard & Perrin (2020)).

1657

1658

1659

To obtain the baseline solution $(\mathfrak{v}, \mathfrak{u})$, we numerically integrate the ODE using the `scipy.integrate.odeint` solver on an interval $\xi \in [-5, 5]$ with 5000 points. The velocity profile $\mathfrak{u}(\xi)$ is then obtained from $\mathfrak{v} = -su$. The travelling wave solution can be seen below in Figure 5.

1660

1661

1662

1663

1664

In an effort to minimise optimisation error and adhere to the setting of Theorem 1 as closely as possible, we choose to use a supervised learning approach when finding a Randomised Neural Network. We include Fourier features (see Appendix C for details) where frequencies ω_j are drawn from $\mathcal{N}(0, 3.5^2)$. Note that we choose to use a smaller variance than for the PME because the solution is of lower frequency than the Barenblatt profile.

1665

1666

1667

1668

1669

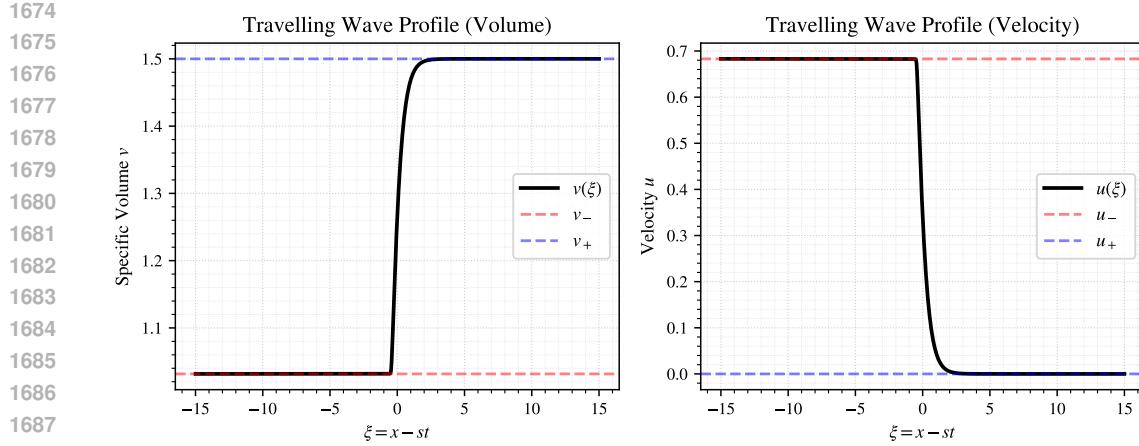
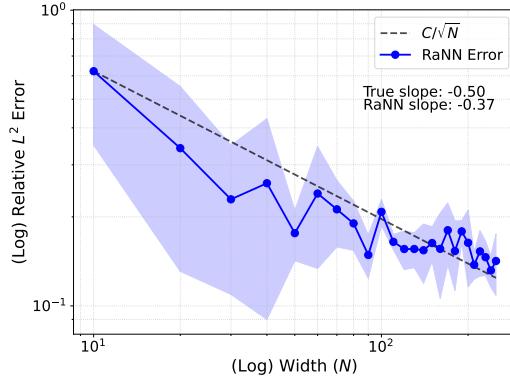
1670

1671

1672

1673

We sweep across a range of widths $N \in \{10, \dots, 250\}$ and aim to minimise the mean-squared error between the network and the solution to the ODE. For each width, we train the model using Ridge regression on a dataset where the sample size is $M = 2000N$ (M grows with N to avoid an underdetermined problem, ensuring the optimisation problem remains stable). For any given training point (t_i, x_i) , the evaluation of the baseline solution $(\mathfrak{v}, \mathfrak{u})$ is obtained by linear interpolation on the ODE grid. We sample uniformly in time but use a mixture of uniform and importance sampling in space; 50% of points are sampled uniformly on $[-5, 5]$ whereas 50% of points are sampled from a normal distribution $\mathcal{N}(x_0, 1)$ around the shock location $x_0(t) = x_0 - st$. The frequencies for the Fourier features ω_j are sampled from $\mathcal{N}(0, 3.5^2)$. We find the smaller variance of 3.5^2 to be effective for the simpler behaviour of a travelling wave solution.

1689 Figure 5: The travelling wave solution (v, u) to (116), obtained by solving the ODE (118).
16901704 Figure 6: Approximation error of RaNNs of varying width N for solving the compressible Navier-
1705 Stokes system on $(0, 1) \times [-5, 5]$ in logarithmic scale.
17061708 The network is trained to minimise the L^2 -regularised MSE (Ridge regression loss) :

1710
$$\mathcal{L}(\mathbf{W}) = \frac{1}{M} \sum_{i=1}^M \|\hat{\mathbf{v}}(t_i, \mathbf{x}_i) - \mathbf{y}_i\|_2^2 + \lambda \|\mathbf{W}\|_2^2, \quad \lambda = 10^{-3}, \quad (119)$$

1713 where $\hat{\mathbf{v}}$ is the network output and \mathbf{W} is the vector of output weights. The minimiser $\hat{\mathbf{W}}$ has a
1714 closed-form which can be explicitly calculated and used to generate the final network. With the
1715 final network, we compute the L^2 errors relative to the baseline solution using a set of 20,000 (pre-
1716 generated) points. Each width N is tested five times and the mean relative error is recorded for each
1717 N . These errors are plotted against N in Figure 2. The errors are plotted on a log-log scale in Figure
1718 6.1719

C RANDOM FEATURE NEURAL NETWORKS

1722 It is known that classical PINNs suffer from a spectral bias phenomenon Rahaman et al. (2019),
1723 which essentially means that the network is biased towards learning lower frequency functions
1724 (see Wang et al. (2022; 2023); Xu et al. (2019)). This can be troublesome, particularly for non-
1725 linear PDEs whose solutions are often highly chaotic. Tancik et al. (2020) suggested to use Fourier
1726 features to overcome this.1727 To carry out the simulations in Section 4, we integrated Fourier feature embeddings into the RaNN
1728 network. We now describe the architecture of a network with Fourier feature embeddings. Instead

of choosing a smooth activation such as \tanh , we take $\sigma(z) = \cos(z)$ and include both cosine and sine activations for symmetry. Concretely, let $\{\tau_i, \mathbf{a}_i\}_{i=1}^N \subset \mathbb{R}^{1+d}$ and $\{b_i\}_{i=1}^N \subset [0, 2\pi]$ be frozen random samples, and define

$$\phi_i(t, x) = \cos(\tau_i t + \mathbf{a}_i \cdot x + b_i), \quad \psi_i(t, x) = \sin(\tau_i t + \mathbf{a}_i \cdot x + b_i). \quad (120)$$

We then construct the feature vector

$$\Phi(t, x) = \frac{1}{\sqrt{N}} (\phi_1(t, x), \dots, \phi_N(t, x), \psi_1(t, x), \dots, \psi_N(t, x)), \quad (121)$$

and take

$$u_W(t, x) = \beta + \sum_{i=1}^N (a_i \phi_i(t, x) + c_i \psi_i(t, x)), \quad (122)$$

where the coefficients $\{a_i, c_i\}_{i=1}^N$ and bias β are the trainable parameters. The prefactor $N^{-1/2}$ normalises the variance of the features, and does not affect the approximation class.

We can express the sum of sine and cosine functions as a single shifted cosine with amplitude W_i , giving us the form

$$u_W(t, x) = \beta + \sum_{i=1}^N W_i \cos(\tau_i t + \mathbf{a}_i \cdot \mathbf{x}_i + \tilde{b}_i), \quad (123)$$

where $\tilde{b}_i := b_i - \theta_i$. This shows that the RaNN used in our experiments is of the same general form as (1), with smooth activation $\sigma = \cos$. Recall from Remark 3 that $\sigma = \cos$ is an admissible choice, meaning that the approximation result of Theorem 1 directly applies to networks of the form (122).

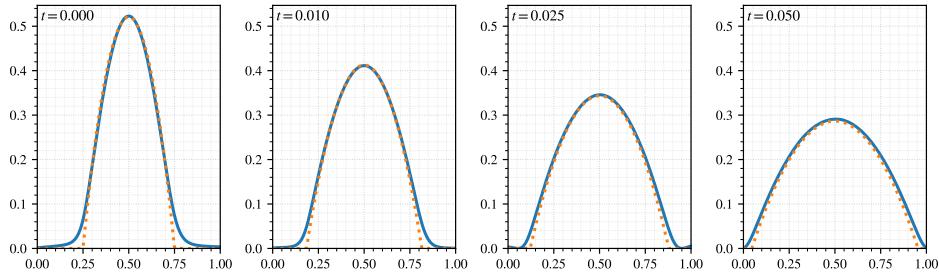


Figure 7: PINN (A) solution (5000 epochs, $T = 0.05$, 1250 Fourier features) given by the blue curve. The true Barenblatt solution is given by the orange dotted curve.

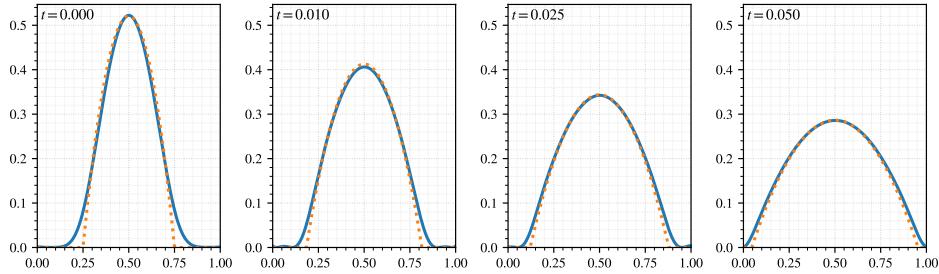


Figure 8: RaNN (A) solution (5000 epochs, $T = 0.05$, 1250 Fourier features) given by the blue curve. The true Barenblatt solution is given by the orange dotted curve.