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ABSTRACT

Neural networks with randomly generated hidden weights (RaNNs) have been ex-
tensively studied, both as a standalone learning method and as an initialization for
fully trainable deep learning methods. In this work, we study RaNN expressiv-
ity for learning solutions to non-linear partial differential equations (PDEs). To
achieve this, we derive approximation error bounds for time-dependent Sobolev
functions and obtain a dimension-free approximation rate % Our results imply
that RaNNs are capable of efficiently approximating solutions to complex non-
linear PDEs. When applied to Physics-Informed Neural Networks (PINNs), our
bounds imply that with high probability, the physics-informed training error con-
verges to 0 with convergence rate free from the curse of dimensionality. Our the-
oretical analysis is supported by numerical experiments on two benchmark PDEs.
These simulations validate the obtained convergence rate.

1 INTRODUCTION

Partial Differential Equations (PDEs) are foundational to our understanding of the natural world,
with applications across all areas of science and engineering. Many complex phenomena are mod-
elled by non-linear PDEs (e.g. Navier-Stokes, Schrodinger, Porous medium equations), which ex-
hibit disorderly behaviour that renders them intractable to classical analytic/numerical approaches.
Therefore, it is crucial to develop numerical methods for solving non-linear PDEs efficiently. In
the past years, a variety of deep learning methods for solving PDEs have been introduced and anal-
ysed. Neural networks with randomly generated hidden weights (RaNNs) play an important role in
many of these methods; either as standalone learning method or as initialization for fully trainable
deep neural networks. In both cases, when employing these methods, a precise understanding of the
approximation error is crucial for controlling the overall error.

In this paper, we are concerned with expressivity of RaNNs for learning solutions of non-linear
PDEs. To tackle this problem, we derive approximation error bounds for time-dependent Sobolev
functions, which encompass the solution spaces for many important non-linear PDEs. Our obtained
bounds show that these functions can be approximated by RaNNs at rate % making them efficient
also in high-dimensional situations. We then apply our results to two important non-linear PDEs and
show that with high probability the training error for Physics-Informed Neural Networks (PINNs)
(Raissi et al., [2019) converges to 0 with rate free from the curse of dimensionality. We comple-
ment our theoretical analysis by numerical experiments on two benchmark PDEs, validating the
obtained convergence rate. In particular, our results provide quantitative approximation guarantees
for RaNN-based PINNS for learning non-linear PDEs, as have been extensively studied in computa-
tional experiments (cf. the references below).

1.1 RELATED WORKS

In recent years, a variety of deep learning-based methods for solving PDEs have been introduced,
addressing challenges of classical mesh-based methods such as finite difference methods. Seminal
works include [Sirignano & Spiliopoulos|(2017), |E et al.[(2017) |Raissi et al.| (2019), E & Yu| (2017).
We refer, e.g., to the survey articles Beck et al.|(2020); Germain et al.| (2021)); (Cuomo et al.| (2022);
Gonon et al.| (2024) for an extensive overview and further references on deep learning methods for
PDEs and their theoretical foundations.
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PINN s (Raissi et al.L|2019) constitute a flexible and widely applicable deep learning-based approach
for solving PDEs. PINNSs reframe the problem as training a neural network to solve the PDE, by
minimising a loss function that encodes the PDE residual along with the boundary/initial conditions.
While this approach has been demonstrated to be highly effective in many settings Cai et al.| (2021);
Hu et al.| (2024), for non-linear PDEs the loss landscape may become exceptionally complex. This
has motivated the use of RaNN-based PINN methods, for which several recent studies have carried
out extensive empirical experiments, see, e.g., Dwivedi & Srinivasan| (2020); |Shang et al.| (2023);
Shang & Wang| (2024); Sun et al. (2024); [Wang & Dong (2024)); |Ying et al.| (2024); [Linghu et al.
(2025); Datar et al.| (2025);/Chen et al.| (2022); Nelsen & Stuart| (2021)).

RaNNs [Huang et al.| (2006); Rahimi & Recht| (2007; [2008) are neural networks with randomly
generated hidden weights. RaNNs have been used both as standalone learning methods and as
means for studying the effects of random initialization for neural networks trained using gradient-
based optimization Braun et al.| (2024); |Carratino et al.|(2018)). Generalization properties of random
feature models have been studied in/Rudi & Rosasco|(2017);[Me1 & Montanari (2019); |[Lanthaler &
Nelsen| (2023); |Cheng et al.|(2023). In addition to RaNN-based PINNs, many other RaNNs-based
methods have been developed for solving PDEs |Nelsen & Stuart| (2021)); (Gonon| (2023)); Jacquier
& Zuric| (2023); Neufeld et al.| (2025). More broadly, RaNNs and related random feature models
have demonstrated state-of-the-art performance and speed across various tasks Bolager et al.[(2023));
Dempster et al.|(2023); |Gattiglio et al.|(2024); |[Prabhu et al.| (2024); Zozoulenko et al.| (2025)).

The reduced number of trainable parameters of RaNNs in comparison to fully trainable models re-
sults in a simpler training phase with reduced computational cost, potentially at the expense of lower
expressivity. Therefore, a precise theoretical understanding of RaNN approximation capabilities is
crucial. Quantitative approximation properties of RaNNs for functions in the associated reproducing
kernel Hilbert space have been studied in Rahimi & Recht| (2008)); Bach| (2017); |Sun et al.| (2018]).
For smoothness-based function classes, RaNN approximation error bounds were derived in |Gonon
et al.| (2023); Gonon| (2023) using Barron-type representations and further extended in Neufeld &
Schmocker| (2023)); De Ryck et al.| (2025). In the context of PDEs, |Gonon| (2023) obtains a full
RaNN learning error analysis free from the curse of dimensionality for a class of linear PDEs. In all
these results, the random weight distribution is fixed (e.g. a uniform, normal or Student-t distribu-
tion). In contrast, RaNNs also appear as a means of proof for deriving deterministic approximation
bounds Barron| (1993} (1994); [Barron & Klusowski| (2018)); Siegel & Xul(2020), with RaNN weight
distributions depending on the function to be approximated.

While the approximation results in |(Gonon et al.| (2023); |Gonon| (2023)) and |[Neufeld & Schmocker
(2023)); IDe Ryck et al.[(2025) allow to control the RaNN approximation errors in uniform, mean-
squared or Sobolev-norms, respectively, in the context of non-linear PDEs these results would either
require strict information on the solution (e.g. finiteness in Barron-ridgelet norms and decay on
the Fourier transform of w) which is typically not known, or the bounds would be applicable only
for approximating PDE solutions at a fixed point in time. However, for time-dependent non-linear
PDE:s, solutions often have significantly different behaviour in time versus space (e.g. solutions to
Navier-Stokes or semi-linear heat equations). In contrast, our results allow to handle time-dependent
functions in mixed Sobolev spaces, as arise in the context of non-linear PDEs.

1.2 CONTRIBUTIONS

In this paper, we provide RaNN approximation error bounds tailored to the context of time-
dependent, non-linear PDEs. We will denote the width of a RaNN by /N. Our paper makes the
following contributions:

1. RaNN approximation bound with dimension-independent rate N~'/2: We derive
RaNN approximation error bounds for time-dependent Sobolev functions (Theorem [I).
These functions encompass the solution spaces for many important non-linear PDEs. Our
unbiased RaNN estimator approximates functions in mixed Sobolev norms H} HY at the
rate N ~'/2 independently of dimension, while only requiring minimal extra regularity in
time and space.

2. Implications for non-linear PDEs: We showcase the implications of our bounds on two
important classes of non-linear PDEs: Porous Medium Equations (PME) and Compress-
ible Navier-Stokes Equations. In particular, we obtain RaNN approximation error bounds
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for the PINN training error in these cases. Our results are supplemented by numerical
simulations validating the obtained convergence rates.

To prove these results, we obtain a specific ridgelet-based representation for L? functions (Proposi-
tion[I)) and a higher-order Plancherel-type estimate (Lemma I} that connects Sobolev regularity of u
with its ridgelet transform. Our obtained bounds may serve as building block for generalization error
analyses of RaNNs for PINN-based learning as obtained for deterministic networks in |De Ryck &
Mishra) (2024); Mishra & Molinaro| (2022; 2023)); |Alejo et al.|(2024).

2 PRELIMINARIES

2.1 RANDOM NEURAL NETWORKS

A random neural network (RaNN) is a fully connected neural network with one hidden layer in
which the weights are randomly sampled, leaving only the output weights trainable. In this paper,
we are interested in studying solutions to PDEs, which typically treat time as a separate dimension.
Therefore we will consider time-dependent random neural networks of the following form.

Definition 1. A time-dependent random neural network of width N is a function u;{,a’b RxR? —

R with
N

u;Vab (t,z) = ZWiU(Tit+ai-l‘+bi), (D
i=1
where 0 : R — R is an activation function, a,...,ay are R%-valued i.i.d. random vari-
ables, by,...,by are i.i.d. random variables in R, 71, ..., 7y are i.i.d. random variables in R and
Wi, ..., Wn are trainable weights.[]_-]

A RaNN is used as learning system by optimizing the weights W, ..., Wi of u{/f,a’b with respect to
a given loss function.

2.2 PHYSICS-INFORMED MACHINE LEARNING

Physics-informed neural networks (PINNs) have been introduced in Raissi et al.[(2019) as an unsu-
pervised learning method for solving partial differential equations. PINNs approximate the solution
u to a PDE L[u] = 0 by a neural network ug, with € representing the trainable parameters. The
solution is approximated by minimising a loss function 7 [ug| encoding the structure of the PDE
— including initial/boundary conditions — at collocation points {ti , ;}fw 1 in the interior domain
(0,T) x D, as well as {xi }M, | {t! 1M on the slices {t = 0} x D and (0,7) x &D on which
the initial data / boundary conditions are deﬁned respectively. For example, if we have a PDE on
the 1D domain (0,7) X (a,b) given by L[u] = 0 with initial condition u(0, -) = ug and boundary
conditions u(t, a) = u(t, ), the PINN loss function is given by

Z |‘C u9 t;» ;; Z'U'@ » Tic) Lic ‘ +— Z "LLQ tbcv ue(ticva)P'

The parameters 0 are then iteratively updated using a stochastic optimization algorithm.
2.3 RIDGELET TRANSFORM
The ridgelet transform Ry u of u : R x R? — R with respect to 7 : R — R is given by
Ryu(r, a,b) := /d+1 u(t,x)(tt +a-x —b)||(r,a)|]° dtdx, reRxeRLbER. (2)
R

The factor ||(7, a)||® appears for convenience in the literature. We will take s = 0 in this paper. Then
the dual ridgelet transform R T of T : R¥*2 — R with respect to  : R — R is defined as

T - v —s
RyT(t,x) = /}Rd+2 T(r,a,bn(tt+a-x—b)||(r,a)| *drdadb. 3)
'Formally, W; = ¢, (a1,...,an,bi,...,bn) for measurable functions g;.
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We refer to Sonoda & Muratal (2017); Muratal (1996)) for a more comprehensive overview of the
ridgelet transform and its properties.

2.4 NOTATION AND STRUCTURE OF THE PAPER

We adopt the shorthand notation XY, for the Bochner space X (R;Y (R%)) (or X(0,7T;Y (D)),
depending on the context). For example, we may write HY HZ for the space H?(R; H4(R?)). We
write f to denote the Fourier transform of f, with the convention f(w) = [e ™" f(z) dx. We
also denote by || - || the £2 norm. In Section |3} we prove a representation formula for general time-
dependent Sobolev functions, before proving a key inequality that connects the regularity of the
ridgelet transform to the original function. We use this to derive our main result Theorem [I] In
Sectiond] we then apply Theorem [I]to RaNN-PINN approximators of two benchmark PDEs.

3  RANN APPROXIMATIONS OF TIME-DEPENDENT SOBOLEV FUNCTIONS

Our first step is to obtain an integral representation for v based on the ridgelet transform. This
representation will be used later to derive RaNN approximation error bounds for .

3.1 OBTAINING AN INTEGRAL REPRESENTATION

We first introduce the Lizorkin distribution space S)(R), which is the dual space of Sp(R); the
space of Lizorkin functions. Sp(R) is a closed subspace of the space of Schwartz functions S(R)
and contains the functions f € S(R) such that all moments vanish, i.e. So(R?) = {f € S :
Jga X f(x) dx = 0forany a € Ng}. The Lizorkin distribution space S)(R) itself includes many
common activations such as tanh, sigmoid and ReLU. We refer to|Sonoda & Muratal (2017) for a
more detailed description of the S)(R) space. In this paper, we will consider activation functions
o : R — R that belong to the following subspace of S} (R) for some k > 0.

Definition 2. Let k € Ny. We say o € S)(R) belongs to Ty, if (i) there exists Cy > 0 such that
k
YoV < VreR, )
j=0

and (ii) there exists § > 0 and B € Ny such that (°5(¢) € C(—0,0) and for any o € Ny

Ty = / G (Q)e 2 d¢ # 0. )
R

Examples of admissible activation functions for which our results hold are tanh, cos and sigmoid
(each in Ty, for all & > 0). This is shown in Remark [3|in the appendix. For S(R) and m € N we
also define the following (possibly infinite) admissibility constant

1
Ap = [ )Pl do ©
-1

We now mention the following integral representation formula, which directly follows from results
obtained by Sonoda & Muratal (2017) using the theory of ridgelet transforms.

Proposition 1. Let m > 0 and o € Ty, for some k > 0. A function v € L*(R; L?(R%)) can be
expressed as

u(t,x) = / / /(Rwu)(T, a,b)o(tt+a-x —b) drdadb, 7
R JR? JR
where Ry u is the ridgelet transform of u with respect to a Schwartz function i € S(R) such that
@)l < Clw™ Y w] <1, )

for some C' > 0 independent of u, and therefore Ay, ., < +00. We also have that (o,) is an
admissible pair in the sense of \Sonoda & Muratal (2017), meaning that the following constant is
finite and non-zero:

Ky = (2m)4 ! /R %d(. )

4
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The construction of an appropriate 1 is given in the proof of Proposition T]in Appendix From
now on, for any activation o € Ty and function u € L?(R; L?(R?)) we will denote by Ru the
ridgelet transform of u with respect to ¢ € S(R) constructed according to Proposition

3.2 PARSEVAL RELATION FOR THE RIDGELET TRANSFORM

In order to derive RaNN approximation error bounds, we will need a Parseval-type result which
connects the regularity of R u in parameter space with the regularity of u in cartesian space. For
convenience, we give an outline of the proof in Appendix [A.2]and the full proof in Appendix[A.3]

Lemma 1. Suppose u € HP(R; H1(R?)) for some p,q > 0, and that u is compactly supported in
time and space on [—2T, 2T x [-2R, 2R] for some T, R > 0. Then there exists 1) € S(R) with

Ii= / Ryu(r,a,b)2(1+ [r2P(1 + [a]®)9(1 + 1?) drdadb
Rd+2

(10)
< LyllullFrpss goprats may)s
where, for M = (2p + 2q +d + 3)/2,
Loy = (47 + |[§llL2@) (1 + 4T + 4R) + 4w (M + 1) + |[t)']| 72 m)- (a1

3.3 RANDOM NEURAL NETWORK APPROXIMATION ERROR BOUNDS

In this subsection we provide our main result for approximating a function v € H?(0,T; H4(D))
using RaNNs. The proof is given as an outline, and the full details are deferred to Appendix [A.4]

Theorem 1. Fix a bounded subset (0,T) x D C Ry x R? and let uw € HP**1(0, T; H1*52(D)) for
p,q > 0,81 > 3/2 and sy > (d + 2)/2. Furthermore, let o € T,,. There exist weights {W;}¥,
such that the following random neural network is an unbiased estimator of u:

N
'LLN(t, X) = Z WiCT(’TifZ + a;xX + bl)
i=1

for (1;,a;,b;) ~ m, where

1
m(t,a,b) = — (1 + 7)1+ |la)]®) (1 +62)7L A > 1/2, 0, > d/2, (12)

Cr
and C.; is the normalisation constant
1 1 1
Cr = [ ——dr- ————da- | —— db. 13
[ e R e (2
The neural network uy satisfies
CoCrllo P9 |2 T|D|(p + q)£
Ee (”“ - “N”%rv(oyT;Hq(D))) = N E o ll oo s raes ey

(14)

where Cq is a constant dependent on p, q, d and the domain, and L, is given by (L))

Remark 1. This is an improvement upon the work of|De Ryck et al.|(2025) (see Theorem 3.9) which
required u € H*(R?) for s > (d +9)/2 for estimates in H'(R?) and H?(R?), with slower rates.
Moreover, we obtain estimates in a time-dependent norm, whereas previous results only obtained
error rates for solutions at a fixed time (see also Proposition 4.24 ofINeufeld & Schmocker|(2023)).

Proof (Outline). Step 1: extension of v to R x R%. We wish to use Proposition [I| and Lemma
which each assume that u is defined on R x R¢. Lemma in particular also assumes compact
support in time and space. To adhere to these constraints, we construct % to be a smooth extension
of u which satisfies u = @ on (0,7) x D, is norm preserving (||il|grgs < Callullgrpe) and
compactly supported on [—27T", 27 x [-2R, 2R]%. Such an extension is known to exist (cf. Chap. VI
of |Stein| (1970)). The extension constant C, will generally depend on p, ¢, d and the domain. For
the simple case p = ¢ = 0, a zero extension guarantees C'; = 1 independently of dimension.
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Step 2: construction of the unbiased estimator « . We define uy as

ZRq/;U Tz;am ) (T’t+a' x — b, :ii (15)
N Twala b;) ' ' l N i=1

so that Eg (ux) = 1, where © = {(7,a,b) € R x R? x R} is the parameter space. More generally,
for any 0 < ¢ < p and multi-index 3 with |3| < ¢, we have E(0{ D2 (uy)) = 0f D2 (@1). We can use
this to obtain the equality (since u = @ on (0,7") x D)

Eo (110f DE(u = un)ll3(0.r)x 1)) = Ee (10f DL — un) 3z 0.7y x))
1

= Eo|0; DL X;|? dxdt.

N (0, T)xD

Step 3: bounding Ee(|0fDSX;|?). To proceed from the above equation, we compute
Eo(|0f D2 X;|?) from (T5). This gives us

Eo (10; D Xi(t, x)[?)

< Cr /Rd+2 |Rya(r, a,b) P o0 P[P [la][*(1 + )M (1 + [[a]|*)* (1 + b?) drdadb.

(16)
Using |7]?? < (1+72)P and ||a]|?? < (1+ ||a]|*)9, we can invoke the inequality and o € Tpiy
to get the result (14). Here, we use the embedding inequality ||@[| ;7 z2 < Collul grga. The full
details are deferred to the appendix. O

4 APPLICATIONS TO NON-LINEAR PDES

We look at two representative non-linear PDEs (the Porous Medium Equation and compressible
Navier-Stokes) in order to understand how one can obtain specific asymptotic bounds on the residual
loss and approximation error using the structure of the PDE.

4.1 POROUS MEDIUM EQUATION

The porous medium equation (PME) is an important example of a non-linear parabolic PDE that
models the flow of gases through porous mediums. In dimension d € N and for m > 0, a function
u: R, x R? — R is said to solve the porous medium equation if

{&u — A(u™) =0, onR; x R,

U(O,) = Uo, a7

In the case where v is positive and in H*(R?) for some k € N, the following result is classically
known.
* |Vazquez (2007): Consider initial data ug satisfying
ug € H*(R?), k€N, 0<c<ug<C, (18)
Then there exists a classical solution u to (I7)) with ¢ < u(t,z) < C and

u € C°°((0,00) x RY) N C([0,00); HF(RY)).

In practice, we simulate solutions on a bounded domain (0,7") x D. In this case, the smoothness
of the solution in fact implies that w € H¥((0,T) x D) for any k > 0. We can deduce an ap-
proximation result on solutions to PME using Theorem [I| Before we state the result, let us note
that the classical loss function one would use when training a physics-informed neural network to
approximate solution u is a discretisation of the following metric:

JIppe(un) = / |Ouny — A(uR)|? dtda. (19)
(0,T)x D



Under review as a conference paper at ICLR 2026

Corollary 1. Suppose u solves with initial data vy € H*(R?) satisfying (I8)). Then there exists
a random neural network up (t, x) such that on the domain (0,T) x D:

1. Foranyp,q > 0,

CaCr|lo®+D|2.T|D|(p + ¢)L
E@(HU_UN”?LIQDHZ)S “ H?} | |( ) w||u||§{f+51H2+82

M (20)
=t S ull e prasen

Sforany s1 > 3/2,s9 > (d+2)/2.

2. Forany 0 € (0,1), with probability 1 — & over the network parameters, the PINN training
loss can be bounded as:

Cm(L+Cemb||u||2 )Mw

2+k
L$oH2T

Jrpe(un) < No |U||§{?H2+k’ 2

for k > d/2, if the sampled network parameters are such that uy satisfies ||un|[Lee +
[Vun|ze + [|[Aun|lpee < L < +o00. Here, Cemy is the constant arising from the
Sobolev embedding HF — L and C,,, is a polynomial in the PME parameter m.

In other words, one can find a sequence of neural networks wy which drive the PDE residual to 0.

4.2 COMPRESSIBLE NAVIER-STOKES EQUATIONS

We now look at a more delicate example, which is a system of equations that does not enjoy the
instantaneous regularisation property of the PME. The compressible Navier-Stokes equations in
dimension d are given by

Op + div(pu) = 0, on (0,7) x D. 22)
9¢(pu) +div(pu ®u) — V(u(p)divua) + Vp(p) =0, on(0,T) x D,
where
p(p) =p", v>0and u(p) =p, o> 0. (23)

The solution is a pair (p,u) where the density p : Ry x RY — R is the scalar density and u :
R, xR? — R? s the vector-valued velocity. We look at the one-dimensional setting D = (0, 1) with
periodic boundary conditions, where global-in-time classical solutions exist under mild assumptions.
In this case, the following global well-posedness result applies.

* Theorem 1.5, Constantin et al.|(2020) Given initial data (pg, uo) satisfying

(po,uo) € H*(R), k=3, 0 <6< po<C, (24)
then there exists a unique solution (p, ) on (0,T) to (22) with initial data (pg, ug) such
that

p € C(0,T; H¥ (D)), uwe C(0,T; H*(D)) N L*(0,T; H*'(D)). (25)

We will take the pressureless case p = 0 and constant viscosity u(p) = u for simplicity, although
our computations can be easily extended to handle a more general setting where p, i are smooth
and convex (e.g. p(p) = p7, u(p) = p®, for @,y > 0). In this case, the PINN residual loss is the
discretisation of the following loss functions:

Thos(vw) = [ [oulon) + Bulpwux)P dodt,
(0,T)x D
(26)
Tos(w)i= [ Joulowun) + Oulpniik) - pobun)f? dat
(0,T)xD
To apply Theorem (1| let’s first define the Sobolev product norm |[(f, g)[|%;s 70 = [1f |30 50 +

I 9”%15 pa- We then have the following result whose proof is given in Appendix
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Corollary 2. Suppose (p,u) is a solution to 22)) in dimension d = 1 generated by initial data
satisfying (po,uo) € HF(R), k > 5, 0 < § < pg < C. Then there exists a random neural network
vy = (pn,un) such that

e Foranyp,q > 0,
M
Eol(p.1) ~ v lZse) < 2ol s + [ ). @D
for s1, 82 > 3/2, where My, is the coefficient from (14), later defined as M., in 20).

o For any 6 € (0, 1) with probability 1 — § over the network parameters, the PINN training
loss can be bounded as:
2L+ DL A [ullfa )My ,
t,x
(g + (e Dl ), 29)
if the sampled network parameters are such that HPNH%;VLOC + HuNHf/VLm < L < 4o0.
t,x t,x

Remark 2. The choice k > 5 ensures that the norms on the right-hand side of are finite. With
this regularity, one can also show that the boundary/initial condition residuals can be controlled
similarly to Jppp, using trace inequalities.

JIppe(vN) <

5 NUMERICAL ILLUSTRATIONS

In this section, we provide numerical experiments to validate the obtained bounds by studying the
effect of network width IV on the error in practice. We consider the Porous Medium Equation (PME)
in dimensions d = 1, ..., 5 and the compressible Navier-Stokes equations in d = 1.

5.1 EXPERIMENTS FOR PME

We consider the PME with m = 2. An exact, self-similar solution to the PME is the Barenblatt-
Kompaneets-Zeldovich solution

1 m—1_|z[?\™ "
tr)=—(b— —— 29
’LL( 5517) e < 2 B t25 N ’ ( )
where || - || is the £2 norm, (), is the positive part and o = d(m—7d1)+2 and § = m. This

solution is compactly supported but not differentiable at the edges of the support, which causes
difficulty for numerical schemes. We perform two types of experiments. First, we investigate the
effect of the network width IV on the relative error between the network and the solution w. This
allows us to validate the convergence rate obtained in our theoretical results. Secondly, in order
to assess the quality of the obtained solutions, we also compare performance of the randomised
architecture against traditional PINN architectures.

5.1.1 EFFECT OF NETWORK WIDTH ON THE ERROR

Theoremshows that for given u : (0,7) x R — R in some Sobolev space, a RaNN i of width
N is able to achieve relative error R (u, @) = || —ul[ 2 /|[u]lz1 frz2 bounded by CaoN~1/2,

To validate this convergence rate in practice, we train a RaNN to approximate the PME solution
(29) in dimensions d = 1, ..., 5. In each dimension, we take a set of widths N € {Ny, ..., N}, }, train
the network for each width and plot the relative error of the final network against the true solution.
For each dimension d and width N, we sample M = 10N points (M > N to ensure the problem
remains well-posed) with a mixed strategy; 50% of the points are sampled uniformly on (0,1)?
and 50% are sampled uniformly on [0.2, 0.8]%, which is a box focused on the initial support of the
solution. Then we find weights W = {W,}¥ | minimising the Ridge regression loss and evaluate
the relative error between RaNN approximation and true solution.

The results for d = 1, 4 can be seen in Figure[I] The cases d = 2, 3,5 are included in Figures [3] ]
in Appendix [B.I.1] The key observation here is that the RaNN error points lie below or close to the
c/ V/N curve, which supports the upper bound of Theorem|I| Note that the sampling error becomes
increasingly difficult to handle in higher dimensions, due to computational constraints.
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Figure 1: Approximation error of RaNNs of varying width for solving PMEs in dimensions d = 1, 4.
The shaded band indicates the region within one standard deviation of the mean relative L? error.

5.1.2 COMPARISON BETWEEN RANNS AND PINNS

In order to assess the quality of the obtained solutions, we also compare performance of the ran-
domised architecture against traditional PINN architectures. We carry out simulations in dimensions
1,...,5 using three different network architectures. The first is a RaNN with a Fourier embedding
layer (see [Tancik et al.| (2020)). The second is a PINN which has the same architecture but where
all weights/biases are trainable (denoted PINN (A)). The third is a more traditional PINN with four
hidden layers and a Fourier embedding layer (denoted PINN (B)). The width of each hidden layer
of PINN (B) is chosen so that the total number of parameters align with that of RaNN, which has a
width of N = 2500d for d = 1,2, 3 and 7500 for d = 4, 5.

We record the relative L2 error X of the trained solution against the true solution [29), over (0,7') x
(0, 1), using 20, 000 collocation points. We also measure the relative error X between the network
and true solution at the final time 7". In each dimension the network is trained for five runs and we
record the average value of X’ and X'p for these five runs. A compact version of the results is given
in Table [l Further experimental details and full results are given in Appendix Additional
experiments for RaNNs without Fourier layers are provided in Appendix [B.1.3]

d Metric PINN (A) PINN (B) RaNN
Xo=llu—uf gz /lullgz, | 7.09x1072 | 6.88x107 | 6.41 x 1072
1 Time (mean) 1015 164s 685
# Trainable params. 6251 2665 2500
X 1.08 x 10~ | 1.25 x 10~ | 1.00 x 107!
2 Time (mean) 208s 152s 86s
# Trainable params. 15001 4899 5000
X 1.24 x 107" | 283 x 107! | 1.18 x 107!
3 Time (mean) 579s 187s 107s
# Trainable params. 26251 7451 7500
X 1.60 x 107 | 348 x 107! | 1.68 x 107!
4 Time (mean) 1034s 225s 138s
# Trainable params. 30001 8189 7500
X 507 x 1071 | 533 x 1071 | 3.78 x 107!
5 Time (mean) 1395s 326s 168s
# Trainable params. 33751 10024 7500

Table 1: Error norms and computational time for varying d and N values.




Under review as a conference paper at ICLR 2026

--- CNN
0.8 —e— NS RaNN Error
-
206
w
~
~
$
5 0.4
o
[7}
o
0.2
0.0
0 50 100 150 200 250
Width (N)

Figure 2: Approximation error of RaNNs of varying width NV for solving the compressible Navier-
Stokes system on (0, 1) x[—5, 5]. The shaded band indicates the region within one standard deviation
of the mean relative L? error.

5.2 EXPERIMENTS FOR COMPRESSIBLE NAVIER-STOKES

We now turn to the one-dimensional compressible Navier-Stokes system, given by (22). As baseline,
we consider the travelling shock-wave solutions considered by |Dalibard & Perrin|(2020), where the
pressure p.(v) = ¢/(v — 1) for v > 0 is taken, where v = 1/p. The travelling wave solutions
can be obtained by taking the ansatz (v, u)(¢t,x) = (v,u)(xz — st), where s is the shock speed.
This reduces the PDE to an ODE for v. The velocity u can then be obtained from the relationship
v = —su which follows from the conservation of mass.

For our experiment, we consider the domain (0, T") x (=5,5) with T = 1.0, p = 1,e = 1073,y = 2.
We then compute RaNN approximations (v, uy) for different widths N and measure the relative
error to the baseline solution (v, u). The results can be seen in Figure which shows that the errors
are close to the C/ VN curve, in support of the upper bound of Theorem m Further experimental
details and a visual depiction of the travelling-wave solution can be found in Appendix

6 CONCLUSION

In this work, we have shown that neural networks with randomly generated hidden weights (RaNN’s)
are capable of efficiently approximating functions that belong to time-dependent Sobolev spaces.
Theorem |1|in particular demonstrates that the rate of convergence is independent of dimension d,
which has important consequences for non-linear PDEs. To obtain this result, we used a ridgelet
space representation of Sobolev functions and established a connection between ridgelet space and
Sobolev space (Lemmal[T).

We then demonstrated the utility of Theorem [I| by deriving error bounds on the residual loss and
approximation error for solutions to two representative PDEs. Finally, we carried out a series of
numerical experiments in Section |5 which validated the N~1/2 decay rate asserted by Theorem

Future work may investigate whether our results can be extended to solutions which are less smooth
than those considered here. Moreover, our results assume a heavy-tailed weight distribution, while
numerical experiments indicate that the same rate also holds for Gaussian weights. It would also be
interesting to see whether the constant of proportionality (appearing in (T4))) can be improved, either
using the theory of ridgelet transforms or an alternative representation. It will also be important to
explore whether RaNNs are prone to the same spectral bias issues that PINNs face, especially for
complex PDEs such as compressible Navier-Stokes in the turbulent regime.
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A  PROOFS

A.1 PROOF OF PROPOSITION[I]

Proof. Fix m > 0 and an arbitrary ¢y € S(R). Using the definition of the ridgelet transform from
Sonoda & Muratal (2017)), we have for any s > 0,

Ryu(r,a,b) ::/ w(t, x)(rt + a- x — b)||(r,a)||* didx. (30)
Rd+1

Note that the dual ridgelet transform RI]T of T : R™2 — R with respect to  : R — R is defined
as

’Ri,T(t, X) = / T(r,a,b)n(rtt+a-x —b)||(r,a)||”*drdadb 31

Rd+2
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We will take s = 0 in the above definitions. Recall that o € S{(R) is a fixed activation. Theorem
5.6 of |Sonoda & Murata) (2017) says that if we can find a function % so that K, , € (0, c0) then the

reconstruction formula u(t,x) = ﬁRL Ryu(t,x) holds. Therefore, to finish the proof we need
to find 4 so that K, , € (0, +00) and th(w)| < Clw|™ for |w| < 1 (condition (). We will make

use of Corollary 5.5 of Sonoda & Murata| (2017), which says that if (#5(¢) € C(—4,d) for some
d > 0,8 € Nand ¢y € S(R) is such that

7i= [ RO £ (32
then
is admissible with o, where A¢ is the backprojection filter that satisfies
AF(u,w) = i|w|4F (u,w). (33)
We let G(z) := exp(—22/2) be the standardised gaussian and take
2n
o(z) := pen G(z), (34)

where 7 is an arbitrary positive integer. Then since we assume o € 7, (see Definition [2), we have
¢P5(¢) € C(—4,0) for some § > 0 and

/ FCER(¢) 5(C) d = V(- / CEBG(C) 3(C) dC # 0, 35)

where we have used G(¢) = v27G(C). It is important to observe that we can take n € ZT to be
as large as we like in this construction, since this is required by the second point in Definition 2] (of

Ti)-

Thus, using Corollary 5.5 of |Sonoda & Murata (2017) we can say that ¢ = Adﬂ;(()ﬁ ) and o are
jointly admissible. We will normalise ¢ and therefore we can assume Ky , = 1. Applying the
reconstruction formula (Theorem 5.6 of [Sonoda & Murata) (2017))) gives

u(t,x) = R Ryu(t, x)

(36)
= / / / Ryu(r,a,b)o(rt+a-x — b)dbdadr.
R JR? JR
Lastly, we need to verify that Ay, ,,, < +o00. Using the property of the backfilter from (33)), we have
lw) = ]9 = =i wlwl e
(37)

= V27 4TI G (w).

Taking the absolute value gives |2 (w )| = V2r|w|**2* G (w). Then choosing n so that d+2n-+1 >
m(e.g. n >m —d — 1), we have \1/)( )| < V2m|w|™ for w] < 1. O
Remark 3 (Proving admissibility of tanh, cos and sigmoid). We show here that each of these activa-
tions belong to Ty, for k > 0. Firstly, they each belong to S)(R); this is explicitly mentioned in Sec-

tion 6.1 of\Sonoda & Murata)(2017)). In the case of o = tanh, we have @(g) = —im/sinh(7(/2)
so o (C) is continuous around 0, and

2n+1
Jy = V2r(—1)""tin 47(0 d¢ # 0. (38)
R smh(%c)
Furthermore, tanh and each of its derivatives are bounded uniformly. Therefore tanh € T, for
any k > 0. For 0 = cos, (cos(¢) = 6(¢ + 1) — §(¢ — 1) which is continuous (in fact, zero) in a
neighbourhood of 0, and satisfies
Jo = V2R(=1)"CLG(OIL, = VEr(=1)" [G(1) + G(~1)] # 0. (39)

Therefore it also belongs to Ty, for all k > 0. For o = sigmoid, the argument is similar; ¢ =
—imesch(mC)+imd (), so (o (C) is continuous around the origin and J, # 0. Each of its derivatives
are also uniformly bounded.
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A.2 SKETCHING THE PROOF OF LEMMA[I]
Proof (Outline). Step 1: Plancherel in b. We apply the Plancherel formula in b to get
I / Rou(r, a,w)2(1 + [72)P(1 + [|al|?)? drdaduw
Rd+2

(40)
* / 10 Rpu(r,a,w)2(1 + |r2)7(1 + |a]]?)? drdadw
Rd+2

Then we show using the definition of the Fourier Transform that Eﬁc(w) = u(Tw, aw)qz (—w),so [
can be split up as

[ < // /|a( (""7au")'l,’[;( w)‘ (1 |l| )‘( —+ Ha”2)q dwdTda
R JR JR

+ / / / 9 (7w, aw)b(—w) ) [A(1 +|7[2)7(1 + l|a||2)? dwdrda =: I + Iy
R JR4 JR

The second term I5 is the main obstacle in the proof.

Step 2: Change of variables. Performing a change of variables s = Tw,¢ = aw allows us to

estimate I as

I, < /R/Rd /R ‘a(s,g)aw{/;(*w)‘?(l + (5)2)10(1 + (@)Q)q‘wr(cﬂrl) dwdsde

ls s, EYb(—w)|? S\2vp Mqu_(dl)ws
[ 1260+ €90 0 P+ (714 CE?) el dudsde

=:Iba+ I
42)

Step 3: Estimating /5 4 and /> 5. Here we show that one can find M large enough (but still finite) so
that with the corresponding 1 generated from Proposition[] the integrals 54, I are both bounded
by constants depending on the L? norms of 7). Most of the difficulty lies in Iz due to the derivatives
that appear. Nonetheless, using properties of the Fourier transform and Fubini to exchange the order
of integration, /5 can be estimated as

By < Cy [ I(Z00) (s, )(1+ )7 (1 + €] dsds

(43)
+ Cy, /]Rd |(=ax)u)[*(s,€) (1 + [s])P (L + ||&]1*) 7+ déds,
where
Cun = [ 100(=) P max(l, o] -27H20) =441 s,
. (44)
Cy, = / [(—w) 2 max(L, o] ~ 2220 o] ~@+9) @,
R
Then by definition of the space HP(R; H?(R?)) and the compact support of u, we get
L < Cyy (2T + 2R)([[ull 31 0 + ul3p prav0)s (45)

where Cy, is a constant similar in form to C'y,, and appears due to /; (which we did not look at in
this outline). Our final job is to show that we can construct 1) so that each of Cy,, C'y,, Cy, can be
suitably bounded. This is done for each constant by separating |w| < 1 and |w| > 1. On |w| < 1
we take advantage of Proposition[I] which allows us to choose ) with enough vanishing moments at
0 to ensure finiteness. On |w| > 1 we use ) € S(R). This is the main idea. The full details of the
proof are deferred to the appendix. [
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A.3 PROOF oF LEMMAI]

Proof. Step 1: Plancherel in b. Firstly, let’s note that using the Plancherel formula in b we have

/|Rwu(7,a,b)|2(1+b2)db:/|Rwu(7,a,b)\2db+/|bRwu(T,a,b)|2db
R R R

(46)
= / |7€w\u(7', a,w)|2 dw —|—/ |8w7€w\u(7, a,w)|2 dw.
R R
Then
I:/ Ryu(r,a,w)2(1+ |72)P(1+ |al|*)? drdadw
d+2
- 47)

4[R2 @B+ [P (1+ [alP) drdade
Rd+2

We now find an expression for R, u. Using the definition of the Fourier transform and the ridgelet
transform,

Ryu(w) = / e~ Ryu db
R

:/Re—““b (/Rd/Ru(t,xw(rHa.x—b) dtdx) db (48)
:/Rd/Ru(t,x) (/ReWW(THa-x—b) db> dtdz,

where we have also used Fubini to exchange the order of the integrals. This is valid since we assume
w is compactly supported, and therefore u1) is integrable on R%*!. By a change of variables p =

Tt+a-x — b the inner integral is equivalent to e ~*(TtFaX) [ eiwPq(p) dp = emiw(TtHax) i)
Therefore

Ryu(w) = d(-w) /Rd u(t,x)e @A) grgx o

= (1w, aw)ih(—w).

Inserting this into (47), we have

= /R/R /R (7w, aw)P(—w)*(1 + [72)P (L + |[a]?)? dwdrda

+AA¢A|aW (ﬂ(Tw,aw)gE(fw)) |2(1+ ‘7_|2)p(1+ HaH2)q dwdrda (50)

=: Il + IQ.

Step 2: Change of variables. We now introduce the change of variables s = 7w, = aw. The
corresponding jacobian is dadT = |w|~ 4+ déds and the operator changes to

1
ulra) = oliso) + (50 + &Vl si9) = Qulisie) + D D

Therefore, separating the w terms using Fubini,

L= /W+2 Ii(s, &) 2 (—w)[2(1 + |s/w[>)P(1 + (||€]| /w)?)|w]|~ @D dwdsdé
(52)
= /R [@(s, 1P (1 + [s*)? (1 + [1€]1*)* dsde,

where
Cy, = / [ —w)|? max(L, ] ~27) max(1, u| ) | =@+ duo. (53)
R
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We will show the boundedness of this constant at the end of the proof. For /5,

s [ [ [aeoadeora s Crras e e

lS u(s A7w2 S\2yp quwi(dl)ws
+/R/Rd/R|w(3s+£Vs)(7§)w( A+ ()P + () el 7 dwdsde

=:Iba+ Ip
(54)
Step 3: Estimating I, 4 and I, . First note that for any x € R? and k& > 0,
2
(1+ |:z|||2 )F < max(1, |w| ) (14 ||x]>)*. (55)
Therefore, for I 4 we can separate the w dependence and write
Ba < Cyy [ (A OP+ 521+ €] dsde, (56)
Rd+1
where
Cy, = / 10D —w)[2 max(1, ] ~CPH20) ] @+ gy, (57)
R

We will consider the boundedness of this constant at the end. For I55, we can estimate the (s, )
part as

1 ~ 2 —2 ~ 2 ~ 2
[ 2o v et o aste <2l ([ ot + [ leveats o )

— ol ([ lsCmuGs. 0+ [ e o)

<ol ([ IEOus oPa )+ [ IERus O+ 1el).

(58)
where we used s2 < 1 + s to obtain the final line. Thus we have
Ip < Cy, /dﬁ [(=it)u)|*(s,€)(1 + [s|*)P T (1 + [|€]*)? déds
R
(59
+ Clyy /Rdﬂ |(=ix)u)[? (s, ) (1 + [s[)P (1 + [|€]]*) T deds,
where
Cuy =2 [ (=) max(1, ol 720 ]9 do (60)
R
We will consider this constant at the end of the proof. Next, recall the following equivalence
/ [a(s, )2 (1 + [s*)P (1 + 1€11*)? déds = [|ullzzn z;rarey)- (61)
Rd+1
This gives us (using the compact support of u)
I < (Cyy + Cyu)llullzprrg + Coog (NelullFypis g + Nxleallfpp o)
< (Cyy + Cu)llullzrp g + Copy (2T + 2R)[[ull 1 061 (62)

< (Cyy + Cyy + Cuy (2T + 2R)) ull p 1 o

It remains to bound the constants Cy,, , C'y, and C'y,. Starting with the most recent C',,, we consider
|w] < 1and |w| > 1 separately. On |w| < 1, we have

1 1
Cyy =2 / |9 (—w)|? max(1, |w] ~P20)|w|7@+3) g < 2 / [ (—w)|?|w| =P H2atdE) gy,

—1 -1
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so letting M = (2p + 2q + d + 3)/2 and choosing 1) as per the construction of Proposition |1|(see
(37)), we have R

[ (w)] < V2r|wM for |w| < 1. (63)
This implies that the integral is bounded by f_ll 2dw = 4m. On |w| > 1 we can bound it by
HwH%Q(R) (by Plancherel), and so Cy, < 87 + 2||¢| 12(r). We can apply the same estimate to

Cy, to get Oy, < 47 + [|9)]|72 ). For Cy,, recall from (37) that D(w) = V2 imw|w|" G (w),
for m which we can choose arbitrarily large. A simple computation gives us on |w| < 1 that
|8wzz;| < V2r(m + 1)w™ G (w). Similarly, on |w| > 1 we get |('9sz| < V2rmw™ T G(w).
Therefore on |w| < 1, by choosing the same m = M,

1 1
[ 105 P a1, o] @40 |0 d < 2+ 12 [ do
-1

-1 (64)
< d4m(M 4 1)2.
For |w| > 1, notice that |8w1z;| < |w||1z;(w)| and so
L obcmPmax( e @ e [ i) 69
R\ B1(0) R\B1(0)
and so Cy, < 4m(M +1)2 + ||1/1’||L2(R) This leads to
1< [+ [0l a) (L + AT +4R) + 4x(M + 17 + 10 o] lulypos s (66
where M = (2p +2q +d + 3)/2. O

A.4 PROOF OF THEOREM[I]

Proof. Step 1: extension of u to R x R%. In order to make use of the previous results, we smoothly
extend v to the full space R x R? using cut-off functions. More precisely, we define @& = 7y u, where
x € C2(R?),n € C=(R) with x = 1 on D, x = 0 outside of [-2R, 2R] andn = 1on [0,7],

n = 0 outside of [—27', 277, so that ||@|| grga < Callul|gr s, where CQ is a constant dependent
on p, q, d and the domain. Such an extension is known to exist (see e.g. Chapter VI of |Stein| (1970)).

Then from (7), @ can be represented as

alt,z) = / /R d / (Ryii)(r,a,b)o (vt + a - x — b) drdadb

(R b
// 1"“ T2.0) Lt tax — b)r(r a, b)drdadb,
R4 T a, b

(67)

where 7 : R¥2 — R is the probability density function from (T2).

Step 2: construction of the unbiased estimator . Our neural network approximation of u will
be denoted uy, and we define it as an unbiased estimator of 4, i.e.

N
Rdlu Ti, a4, b ) 1
NZ (73, a4, b;) (thﬂLaz-X*bz):N;Xz(t,X), (68)

where (7;,a;,b;) ~ m. By construction, it is clear that Eg(uy) = 4. More generally, for any
0 < ¢ < p and multi-index S with |3] < ¢, we have

E(8; Dy (un)) = 9 D} (@). (69)
In order to estimate u — up, we have
o (10 D20 - un)lsoryem) =Bo [ 0D un) dade
(0,T)x D a0

= / Varg (af B — uy)) dzdt.
(0,T)xD
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Let Y;(t,x) := X;(t,x) — Eo(X1(t,x)). Then E(Y;) = 0 and Var(Y;) = Var(X;). More-
over, we have u — uy = + Ziv=1 Y;(t,x) and therefore Var(u —uy) = +Var(Yi(t,x)) =
+Var(X;(t,x)). The same argument works if we replace u — uy with Of D (u — uy). Asa
result, we have (since v = @ on (0,7T) x D))

Eo (110f DL (u ~ un)lx(0r1x 1)) = Eo (10/DE(E — un)3z(0.79x)

1

N (0,T)x D

(71)
Eo |0 DEX;|? dxdt.
Step 3: bounding Ee (|0 D2 X;|?). A direct computation gives
Eo(|Xi(t,x)?)

= c,r/ |Ryi(T,a,b)*lo(tt +ax — b)[*(1 + 72) (1 + ||la]|*)** (1 + b*) drdadb (72)
Rd+2

< Crlloll3e Lo llal Fror s pree (rayy
where, since A, > 1/2 and A\, > d/2, we have s; > 3/2,s, > (d + 2)/2 using Lemma [1}

Therefore, we have

T‘DHIUHZO (73)
N

Ly -
Ee (||U - uNHQL?((O}T)XD)) < i ||u||%{51(]R;H52(Rd'))'

The same argument works if we let 0 < ¢ < p and use a non-zero multi-index § = (f31, ..., 84) with
|8] = g. In this case we have

Ee (10; DR Xi(t, x)[?)

= C”/ | Rya(r, @, 0)?o F D 7| [[a][24(1 + 7%)* (1 + la]|*)* (1 + %) drdadb
Rd+2

< CW/ | Rya(r,2,b) 2o @02 (1 4+ 72)P A7 (1 + [[a]|*) 72 (1 + b) drdadb.
Rd+2

(74
Then using (10), we get
Eo(10¢D2X;(t,%)%) < Colla® 2. Lo 8210, aprasonguer: a5)
By (7I) this implies (using ||| gz 2 < Callull gy )
CoT|D|Cx|c P+ D3 Ly
Ee (HafDE(u - uN)H%Q((O,T)xD)) < N HUH%MH(R;HHSQ (R4))»
(76)
where again s; > 3/2 and sy > (d + 2)/2. Summing up this estimate for each of the derivatives up
to order (p, ¢) leads to the claimed result. O

A.5 PROOF OF COROLLARY [T]
Proof. The bound of (20) follows from an application of Theorem|[I] so we now focus on bounding

the PDE residual. We take m = 2 for simplicity, but the computation is easily generalised to any
m > 1. Using dyu — A(u?) = 0, we have

Jrpe(un) = / (Opun — A(ui))? dtdx

(0, T)xD
= / Oy (un — u) — A(u% — u?))? dtdz (77)
(0,T)xD
< 2llun — ul|3 2 +2/ |A(u% — u?)|? dtd.
L (0,T)xD
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Now, Markov’s inequality states that P(X > n) < E[X]L for X non-negative, > 0. In
particular, for any § € (0,1), from the bound in Theorem [I| we obtain with the choices X =

CoCr |l ®tD |12 T|D|(p+q) L
HU - ’LLN| %-IP(O,T;H(I(D)) and n= % = I H1\/' Dlpta)ly ' Hu||?t[p+s1 (R;HI+52 (R4)) that
1
P(X >n) <Ee (”U - uN”?{P(O,T;HG(D))) 5 <. (78)

This implies that P(X <) > 1 — §. That is, with probability at least 1 — ¢ it holds that X < n =
1 CaCallo Pt P2 T|D|(p+q) Ly
5 N

o 71— (R; Ha+s2 (Rd))- Then we have with probability 1 — § that

My

g el e preas (79)

llun — U”%}}Lg =
where 51 > 3/2,s2 > (d + 2)/2. Now we note that A(u3;, — u?) = (uy + u)Aen + 2V (uy +

u)Ven + enA(uy + u), where ey := uy — u. Combining this with (a + b)* < 2(a® + b?) and
Holder’s inequality,

/(0 _— [A(uy —u?)? dtde < 2lluy +ulfe [Aluy —u)|7;

T :
+16]|V(un + )| |V (un —u)|Zs (80)
+ 4| Auy + W)l uy —ulgs .

We also have
lullzge, + IVullLg, +[[AullLg, < Cempllull oo g2+, (81)

for k > d/2, where C.,,;, is the constant arising from the Sobolev embedding Hfj — L2°. Then
with the above Markov argument, assuming L is such that the sampling of the weights satisfies
lunllzz + IVunlzse, + |[Aun|/zse, < L, we have with probability 1 — ¢ that

/(0 e |A(u —u™)? dtde < 22(L + CembHUHi?ngw)HUN - UH%?Hg
T X

) (82)
22(L + Cﬁmb"u||Lng+k)M¢
S NS ‘ ”uHH”Hf'HQ
All in all, we get
(22(L + Cemb”“”%ooH?Jrk) + 1)M¢ 9 (83)
Fovi () < = -

with probability 1 — §. Using s; > 3/2 and sy > d/2 + 2 we can estimate the leading norm by

Hu||i{t2 e For the general case m > 2, the argument can be adapted using a mean-value formula

to re-write w7} — «™ in terms of ey . In this case, we get an extra constant in the coefficient of ,
C', which will be polynomial in m. This leads to the claimed result (ZI). In summary, taking initial
data ug € H'(R?), we can find a RaNN which approximates the corresponding solution to the PDE
such that the expected loss of the PDE residual is inversely proportional to the number of random
features, and the rate is independent of dimension. O

Remark 4 (Growth factor for the leading coefficient). We can give a more precise description of the
constant in the right-hand side of in the case where o € Ty, (e.g. tanh; see Definition[2) and
either u € HP(R; HY(R?)) (i.e. u is already defined on the full space) or p = q = 0. The condition

= q = 0 ensures that Cq = 1 since a zero extension suffices. In such a case, we can show that
if we let A\, = % + a(d)) for a suitable choice of a, then the coefficient in the right-hand side of
(T4) will grow at most polynomially in d. We will denote by C' a positive constant independent of
dimension and by T'(-) the Gamma function. Then note that

C,<C / (1+ [lal|?) ™ da. (84)
Rd
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Going to spherical coordinates and letting \, = % + «, we find
ord/2 oo T(a) 0—1/2
Cr=—er Qg )y dr =2 2 < On?P 85
F(d/2)/0 r ) dr = ey SO T (83)
Now, to bound L, we need an estimate for ||1Z||2L2(R) and || (12)\)/||L2(R). We will use the construction
of v from the pmofofProposition There, we construct 1) with |1Z(w)| < V2r|w| for |w| < 1 and
[Y(w)| < V2r|w|T3G (W) for |w| > 1 (we set n = 1 for this proof but it can be extended to any
fixed positive integer n). Then we have ||z/1|\%2(_1 1) < 4mand so

[Py < dm+ [ WP d
Jw|>1
— 4 / w320 g, (86)
1
<dw +T(d+5/2),
where we have used the substitution u = w?. For (@)’ , We can repeat the same process to find
1) 132 ry < 4m +T(d +7/2). (87)
Now we consider the product CrLy,. Notice that the leading term is given by C:I'(d + 7/2), or

more precisely by
I(e)
. d/2
Fld):=m F(d/2+a)\/r(d+7/2)' (88)

We now prove that F(d) grows at most polynomially in d. We will take o = \d for some real number
A > 0 to be decided. To this end, we will use the following inequality for the Gamma function

1 1 1 1 1
(x - 2) 1na:—m+§ln(27r) <InTl(x) < (x - 2) lnx—x—l—iln@w)—i—m, x> 0. (89)
Taking logarithms,
d 1
In F(d) = B In7 4+ InT(Ad) + 3 InT(d+7/2) —InT((A+ 1/2)d). (90)
Then using [89), we get
d 1 1 7
In F(d) <§ln7r + ()\d— 2) In(Ad) — Ad + §(d+3) In <d+ 2)
1 7 1 1 1 1
2 (A g2 2 . 91
2<d+2> (()\+2>d 2>ln<<x\+2>d>+<)\+2>d oD

1 1
12xd 120+ 72)

Upon simplifying, we find that the right-hand side contains a function which is linear in d and one
which is sub-linear in d, i.e.

In F(d) < d B Inm+ Aln A — <)\+ ;) In <A+ ;)]
1 N 1
3 1 1 1
+3I(d+7/2)— sIAd = A= 9/4—In <(A+2> d) .

The second term can be bounded independently of dimension; using the inequality In(1 + x) < x
for x > 0, we have:

1 7 1 d 7 d (7 7

22
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Therefore, to prove at most polynomial growth in d, it suffices to show that
1 1 1
P(A,d) ::2ln7r+>\ln/\—<)\+2)ln<)\+2>SO. (94)

We seek an upper bound for the expression, so we apply the lower bound In(1+ z) > x — %2 to the

logarithm inside the negative term. For x = this gives us

2)\’

1 1 1 1
n()\+2>=ln/\+ln(l+2)\>>ln)\—|—2>\—8)\2. (95)

Substituting these bounds into the left-hand side of (94), we get

1 1 11
P(A,d)<21n7r+/\ln)\—<>\+2) (mH )

2\ 82
(96)
1 1 1 1
Grouping the constant terms and simplifying, we find:
1 1 1 1 1

For the expression not to grow exponentially as d — oo, the dominant constant term must be non-
positive. Notice that for X > 1/2, the expression inside the second pair of brackets is negative. Thus,
a sufficient condition is given by:

1 1 1

ie. -
A>—. 99)

e

Therefore, choosing o(d) > Z.d ensures that the constant appearing in front of (T4) grows ar most
polynomially in d. Note that we do not expect a better rate than this due to the extra terms appearing

in (92).
A.6 PROOF OF COROLLARY 2]

Proof. Since we are dealing with a system of equations, we need to illustrate how the result of
Theorem applies. Firstly, given a couple (p, u) belonging to class [23), the representation result
of Proposition E] tells us that we can find 1,1, € S(R) such that we have the representations
(assuming p, u have been smoothly extended to the full space):

p(t, ) /// )(1,a,b)o(1t +a-x —b) drdadb,
Rd

(100)
u(t, x) // / )(r,a,b)o(1t + a-x — b) drdadb,
Rd
where A, := Ry, pand A, := Ry,u. Then as in Theorem [I] we can introduce two unbiased
estimators
7_17 a;,b
B
(101)
Tlaau Z
by Z roaby) X0
The result of Theorem|[T] gives us the followmg bounds immediately:
CoCrllo'? |2, T|DlgLy
lox = pl3zs < ~ YA
(102)

CaCrllo' |3, T|D]gL
HUN - UHQLgHg < o NOO v || HiIleéﬁsw
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for s1, s > 3/2 since we are in dimension d = 1. From now on we label
_ CoCrl|o' |2, T|D|gLy
= N .

The pairvy (¢, z) := (pn (¢, @), un (¢, x)) can be interpreted as the outputs of a single random neural
network of width 2N, from which the first claim follows. We now bound the loss functions 73,
and J2 - For J} 55 we note the expression pyuy — pu = py(un — u) + u(pn — p) to get

My

(103)

Oz (pnun — pu) = Oppn (un — u) + pNOz(un — u) + Opu(pn — p) +udz(pn — p).  (104)

Therefore,

Thou(vy) = / 0o — ) + Da(prviuny — pu)?
(0,T)x D

< 200w — P)IZ;, + 0w e e = uliZy -+ Ao s 100 (e — w3
+4l|0ullLg, llon = pll7s  + Allullis 10:(on — P72
t,x t,x t,x t,x
< 4(10npnll7ge, + lowllige, + 10zl + lulle )llow — pll7 | + lun —ullf; )
t,x t,x t,x t,x t,x t,x

=: By ([lon — P||?qtlyz + llun — UII%{;I).
(105)
Note that ||0,u| Lo~ is finite since u € C(0,T; H?(D)). An upper bound for the coefficient By is

4(|lpn ”%/VI"” + Hu||€vloo ). By a similar Markov argument to the proof of Corollary(see Appendix
[A.3), for § € (0,1), we have with probability 1 — & that
AL+ )M

Thpe(vy) < Vs Ul preas grees + ul2pries o), 109
where s1, s2 > 3/2, if the network weights are sampled such that
2 2
e e S (107)
For the momentum equation, we use pyui = unpn(un — u) + uun(py — p), and so
Bz (pnuiy) — 0s(pu?) = Op(unpn) (un — u) +unpn Oz (un —u) + 9y (uun ) (pn — p) (108)
+uunOz(pN — p)-
Therefore, in a similar way to the continuity equation, with probability 1 — 4,
Tiopvs) = [ (oo~ pu) + Bulpnidy — pu®) — o2y ~ ) duds
(0,T)xD (109)
M
< Cnirr low = ol + (et Dlluy = ullfy r2).
where ) ) ) ) )
Cx = 0o lee, + o 3ee, + 10cullEe, + ulse, + 10a (o un) I,
) ) ) (110)
T lowunls, + 19 (wun) 3, + iyl -
The assumption (T07) ensures that C is bounded by
2(L* + L+ L||u||%Vt1f + \|u||§Vt{,m_oc) <2(L+1)(L+ ||u\\§vif). (111)

Note that ||O;ul|re is finite; this can be seen by rewriting the momentum equation as dyu =

—udpu + pp~t0%u, and using the regularity v € C(0,T; H*(D)) for k > 5, along with the
Sobolev embedding H! < L°°. Then we have with probability 1 — ¢ that
2L+ 1)(L A+ [Jull?, 100 ) My
t,@ 2 2
NS (HPHHtHa pitee T (0t 1)||U||Ht1+31 2tz )-

jngE(VN) <

24



Under review as a conference paper at ICLR 2026

Noting that s1, s5 > 3/2, we get

2(L + DL A [|ull 1 )My

Ne (el s + G+ Dl ), 12

(Tppe + Tbpr)(VN) <

which is guaranteed to be finite if we take (po,ug) € (H*(D))? for k > 5. This can be seen by
noting that the continuity equation can be re-written as 0;p = —ud,.p — p0d,u, and the momentum
equation as O;u = —ud,u + pup~10%u. Then using the regularity (235), one can bound the higher
order Sobolev norms on the right-hand side of (T12). O

B EXPERIMENTS

In this section we give further details on the numerical experiments carried out in Section [5] All
experiments were performed using a NVIDIA RTX 3080 GPU.

B.1 POROUS MEDIUM EQUATION

Recall that we consider the Barenblatt-Kompaneets-Zeldovich solution

1 m—1_|z[?\™ "
t,x) = — (b— —— 113
u( ax) o < 2m B tQB . 9 ( )
where || - || is the ¢2 norm, (-) is the positive part and o = W‘ll)w and g = m We set

m = 2.

This solution is compactly supported but not differentiable at the edges of the support, which causes
difficulty for numerical schemes. Since this solution is generated by a Dirac delta-valued initial data,
we fix a small time ¢y = 1072 and take the initial data to be ug(x) := u(to,z) and solve on the
shifted time domain (tg, T + to).

We perform two types of experiments. First, we investigate the effect of the width NV of the network
on the relative error between the network and the solution u, and then we compare peformance of
the randomised architecture against traditional PINN architectures in dimensions d =1 — 5.

B.1.1 EFFECT OF NETWORK WIDTH ON THE ERROR

We aim to investigate whether a convergence rate of N ~!/2 can be observed in practice. To this
end, we train a RaNN to approximate the Barenblatt profile (29) in dimensions d = 1, ..., 5. In each
dimension, we take a set of widths N € {N7y, ..., N}, train the network for each width and plot the
relative error of the final network against the true solution. The RaNN includes a Fourier feature
layer, where frequencies w; are sampled from N(0,10%). For each dimension d and width N, we
sample M = 10N points (to ensure the problem remains well-posed) with a mixed strategy: 50%
of the points are sampled uniformly and 50% are sampled uniformly on [0.2,0.8]%, which is a box
focused on the support of the solution. Then we find weights W = {W;}¥ , which minimise the
Ridge regression loss

M
1 . -
LW) = 57D llatixi) =il + AIWIE,  A=10"" (114)
i=1

We compute the closed-form solution W directly (using a Cholesky decomposition), and then eval-
uate the relative error. We train the RaNN five times for each width. The mean relative L? errors are
plotted against the widths in Figure[3] The errors are also plotted on log-log scales in Figure [ The
key observation here is that the RaNN error points lie close to the C'/ VN curve, which supports the
upper bound of Theorem |l Note that in d = 1,2, 3 we take {5 = 0.1 (i.e. the initial data is set to
u(to, x), where u is the Barenblatt profile from 29)) and in d = 4, 5 this is reduced to tg = 0.01 to
keep the problem computationally manageable.
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Figure 3: Approximation error of RaNNs of varying width for solving PMEs in dimensions d =
1,...,5. The shaded band indicates the region within one standard deviation of the mean relative
L? error.

B.1.2 COMPARISON WITH PINNSs

Here, we provide full experimental details and detailed results for the PME experiments from Sec-

tion5.1.2]
Architectures For our main experiments for the PME we consider three architectures:
* RaNN: a random neural network in the sense of Definition |1, which includes a Fourier
feature embedding layer; this technique has been shown to enhance the performance of

physics-informed solvers (see Tancik et al.|(2020)). A more detailed description of Fourier
features is given in Appendix [C} We use N = 2500, 5000, 7500 features in d = 1,2,3
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(Log) Relative L2 Error

(Log) Relative L2 Error

Figure 4: Log-log plot of the relative L? error versus the width N. The reference scaling C'//N
and the measured RaNN slope are shown. The shaded band indicates the region within one standard
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respectively and N = 7500 for d = 4, 5 in order to maintain computational feasibility. We
sample (7, a;) ~ N(0,10%I441), b; ~ Unif]0, 27). Since we include a Fourier embedding
layer, the parameters (7;, a;) can be interpreted the frequency of the sin / cos features (see
the construction of (122)). In our tests we find that using higher frequency features helps
to learn solutions in higher dimensions, which is why we choose the large variance of
10%I441. We find that this choice of distribution leads to slightly more reliable training

10°
(Log) Width (N)

10?

d=5

results, compared to distributions such as (I2)), which was used in Theorem
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PINN (A): A physics-informed neural network which mimics the architecture of RaNN for
each dimension d, but where all parameters are trainable. This network therefore has many
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more trainable parameters than the RaNN. Weights are initialised using a Xavier (Glorot)
scheme.

* PINN (B): A more traditional physics-informed neural network with four hidden layers
containing N = 20, 30, 40, 48, 54 nodes in dimensions d = 1, 2, 3,4, 5 respectively. The
tanh activation is used. The widths N are chosen so that the total number of trainable
parameters is roughly equal to that of the RaNN, for any given dimension. Weights are
initialised using a Xavier (Glorot) scheme.

Loss For each architecture, the loss function used is £ := Lppg + L1c + L, where

Lppe(ug) )\PDE E |0pug — A(ug) > (8, 27),
1 &
by 2
ﬁBc(UQ = Agc E ‘UQ | + m i:E 1 |u€(ti,0)| , (115)

M,
1 c
Lic(ug) = A\rc A ; lug(0, z§) — u(x)[?,

where {(¢7, f)}l 1 {(tb)}l 1 {(a:c)}f\ipl are the points sampled for evaluating the PDE, BC and
IC losses respectively. For d = 1 we use T' = 0.05, M,, = 2000 collocation points to minimise the
PDE residual and M. = 1000, M; = 500 points for the initial and boundary residuals respectively.
For d = 2 we choose T' = 0.025 and M), = 4000, M. = 2000, M} = 1000 points. For d = 3 we
choose T' = 0.01 and use M,, = 6000, M. = 4000, M, = 2000 points. For d = 4,5 we stick with
T = 0.01 and use M,, = 8000, M, = 4000, M; = 2000 points. Note that we choose the final time
T small enough so that the Barenblatt profile is compactly supported on (0, 1)? for each time, which
is reflected in the formulation of Lgc. We choose Appr = Agc = 1 and pick a higher weight
Arc = 200, to ensure the initial condition is satisfied. In d = 4, 5 this is increased to A\;c = 400.
We find that in practice this yields smaller overall errors than using uniform weights. Also, since the
target solution is non-negative in this case, the final prediction is chosen as the square of the neural
network output, i.e. Uprea(t, z) = (ug(t,z))>.

Training For training, we use the Adam optimiser for the first 4750 epochs and L-BFGS for the
remaining 250 epochs. This split is chosen to balance accuracy and computational feasibility. We
use the Xavier (Glorot) initialisation for PINN (A) and PINN (B), while the output weights for the
RaNN are initialised from a uniform distribution. We use the learning rate x = 10~2. Simulations
were performed using a NVIDIA RTX 3080 GPU.

Results The results are shown in Table 2] The RaNN is trained considerably faster than the alter-
native PINNs, while maintaining a similar degree of accuracy. These results support the viewpoint
that randomised architectures are highly capable of learning complex functions, despite their simple
form. For d = 1 we also include illustrative solution plots in Figures [7] and [§] In each section
(dimension) of Table [2] the first row X' corresponds to the L? average relative error of the network
over space-time compared to the true solution whereas the second row X tracks only the error at
the final time 7, i.e.

ol ) - @l
fullgz [w(T)]| Lz

o x is then the standard deviation of the space-time relative error for all 5 runs, whereas o x,. is the
standard deviation for the final time relative error.

B.1.3 ADDITIONAL EXPERIMENTS

In this section, we report additional experimental results for d = 1, 2,3, complementing those

reported in Section and Appendix
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Metric PINN (A) PINN (B) RaNN
X o= lu—=up gz /lullgs 7.09x 1072 | 6.88 x 1072 | 6.41 x 1072
Xr = ||u(T) — uW(T)'||L§/||u(T)\|L£ 4.62x 1072 | 7.85x 1072 | 4.62 x 1072
ox 1.38 x 1073 | 2.80 x 1072 | 3.98 x 1073
oy 5.58 x 1073 | 3.76 x 1072 | 7.87 x 1073

Time (mean) 101s 164s 68s

# Trainable params. 6251 2665 2500
X 1.08 x 10~ | 1.25 x 10~ | 1.00 x 107!
Xr 1.11 x 10! | 1.33 x 10~ | 1.06 x 107!
ox 238 x 1073 | 843 x1073 | 2.32x 1073
oy 3.71x 1073 | 6.24x 1073 | 3.38 x 1073

Time (mean) 208s 152s 86s

# Trainable params. 15001 4899 5000
X 124 x 107" | 283 x 107! | 1.18 x 107!
Xr 144 x 1071 | 3.04 x 1071 | 1.48 x 107!
ox 290x 1073 | 148 x 107! | 1.39 x 1073
oy 817 x 1072 | 1.65x 10~ | 1.59 x 1072

Time (mean) 579s 187s 107s

# Trainable params. 26251 7451 7500
X 1.60 x 107! | 348 x 107! | 1.68 x 10~*
Xr 2.69x 1071 | 4.16 x 10~ | 2,97 x 10~ !
ox 5.35x 1073 | 1.51 x 107! | 1.67 x 1072
oy 8.49 x 1072 | 1.50 x 107 | 3.56 x 1072

Time (mean) 1034s 225s 138s

# Trainable params. 30001 8189 7500
X 5.07x 107" | 5.33x 107" | 3.78 x 107!
Xr 6.75 x 1071 | 6.84 x 107! | 3.96 x 107!
ox 1.80 x 1071 | 1.94x 107" | 2.45x 1073
Txy 227 x 1071 | 1.89 x 107! | 2.81 x 1072

Time (mean) 1395s 326s 168s

# Trainable params. 33751 10024 7500

Table 2: Error norms and computational time for varying d and IV values.

The experiment here includes an additional network: a randomised neural network without Fourier
feature layer. Moreover, for this experiment we chose the network sizes so that comparable errors
were achieved between PINNs and RaNNs in order to focus on comparing training times.

Architectures We train the following networks:

* RaNN (A): a random neural network in the sense of Definition |I| where we randomly
sample (7;,a;) ~ N(0,10%I441), b; ~ Unif[0,27). We also include a Fourier feature
embedding layer. A more detailed description of Fourier features is given in Appendix [C]
We use N = 2500, 5000, 7500 features in d = 1, 2, 3 respectively. Weights are initialised
from a uniform distribution.

¢ RaNN (B): a random neural network in the sense of Definition E], where we randomly
sample (7;,a;) ~ N(0,10%I441), b; ~ Unif[0, 27). Weights are initialised from a uniform
distribution.
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* PINN (A): A classical physics-informed neural network with one Fourier feature layer
(containing N = 2500, 5000, 7500 features in d = 1, 2, 3 respectively) and no other hid-
den layers. The tanh activation is used. Weights are initialised using Xavier (Glorot)
initialisation.

* PINN (B): A classical physics-informed neural network with two hidden layers containing
N = 100, 125,150 nodes in dimensions d = 1,2, 3 respectively. The tanh activation is
used. Weights are initialised using Xavier (Glorot) initialisation.

Loss We use the same setup and loss function as in Appendix[B.1.2] In particular, the choices
of A\ppr = Apc = 1 and A\;¢ = 200 are as before. For d = 1 we use T' = 0.05, M,, = 2500
collocation points to minimise the PDE residual and M. = 1250, M}, = 625 points for the initial
and boundary residuals respectively. For d = 2 we choose 1" = 0.025 and M,, = 5000, M, =
2500, My = 1250 points. Finally, for d = 3 we choose 7' = 0.01 and use M, = 7500, M. =
5000, M, = 2500 points. As before, since the target solution is non-negative in this case, the final
prediction is chosen as the square of the neural network output, i.e. uprea(t, z) = (ug(t, z))>.

Training As ablation to the previous experiment, we use an Adam optimiser for 5000 epochs.
As before, we use the Xavier (Glorot) initialisation for PINN (A) and PINN (B), while the output
weights for the RaNN are initialised from a uniform distribution. We use the learning rate ¢ = 1073,
Simulations were performed using a NVIDIA RTX 3080 GPU.

Results The results are given in Table[3] Similar to our main experiments, the randomised network
RaNN (A) performs faster than both PINNs and with a similar magnitude of error. A key observation
here is that RaNN (B) without Fourier features, although fastest, suffers from poor accuracy. This
suggests that Fourier features help boost the expressivity of the network with minimal additional
computational cost (only 12s longer training time in d = 2). Another interesting point is that RaNN

d Metric PINN (A) PINN (B) RaNN (A) RaNN (B)
X 5.80 x 1072 | 5.86x 1072 | 5.79x 1072 | 9.94 x 10~ "
Xr 457 x 1072 | 5.12x 1072 | 4.56 x 1072 | 9.92 x 107!
1 ox 218 x 1073 | 749x1073 | 234 x 1073 | 7.28 x 1073
Txy 2.73x 1073 | 7.53x 1073 | 2.16 x 1073 | 8.72 x 1073

Time (mean) 90s 81s 50s 43s

# Trainable params. 6251 10501 2500 2500
X 1.06 x 1071 | 1.71 x 10! | 1.06 x 10! | 2.89 x 10°
Xr 8.85x 1072 | 1.50 x 10~! | 9.01 x 1072 3.17 x 109
2 ox 3.73x 1073 | 6.92x1073 | 3.56 x 1073 | 6.95 x 107!
oy 259 x 1072 | 6.80 x 1073 | 3.98 x 1073 | 9.71 x 10~*

Time (mean) 217s 109s 67s 55s

# Trainable params. 12501 16376 5000 5000
X 1.40 x 10~ | 3.62x 107! | 1.44 x 107! 1.07 x 10!
Xr 1.23x 107! | 3.32x 1071 | 1.27 x 10! 1.17 x 10*
3 ox 3.85x 1073 | 1.74x 1072 | 5.98 x 1073 | 4.86 x 10°
X, 7.86x 1073 | 1.82x 1072 | 3.37x 1073 | 5.36 x 10°

Time (mean) 666s 142s 95s 62s

# Trainable params. 18751 23251 7500 7500

Table 3: Error norms and computational time for varying d and NV values.

(A) also uses fewer trainable parameters than the PINNs. Note that in each section (dimension) of
Table |3 the first row X corresponds to the L? average relative error of the network over space-time
compared to the true solution whereas the second row X1 tracks only the error at the final time 7',
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ie.
lu—upllzz, lu(T) —up (T)| 22
=— T =
[w(T) 22

o x is the standard deviation of the space-time relative error for all 5 runs whereas oy, is the standard
deviation for the final time relative error.

lullzz,

B.2 NAVIER-STOKES

We now turn to the compressible Navier-Stokes system, given by (22)). We restrict our attention to
the one-dimensional case, where (22)) is reduced to (in Lagrangian mass coordinates)

{&v — 0u =0,

(116)
O + aa;pe(v) - /J'aac (%8acu) =0.

Here, v = 1/p represents the specific volume and u the velocity. We consider the singular pressure

in the work of |Dalibard & Perrin| (2020).

pelv) = ¢ : 5> 0. (117)

v—1)7’
In order to evaluate the performance of the randomised PINN method, we need a baseline solution
analogous to the Barenblatt profile ((29)) which we used for the Porous Medium Equation. For this
purpose, we consider the travelling shock-wave solutions to system for this system, which
were studied by |Dalibard & Perrin| (2020). Shock wave solutions to compressible Navier-Stokes
models have also been studied in other works (Mascia & Zumbrun|(2004)); Dalibard & Perrin|(2024);
Humpherys et al.|(2010); |Vasseur & Yao|(2016)). The travelling wave solutions to system can
be obtained by taking the ansatz (v,u)(t,z) = (v,u)(x — st), where s is the shock speed. This
reduces the PDE to an ODE for v:

P o]

o= —
us

(82(v_ — 1) + pe(v_) — pe(0)). (118)

The velocity u can then be obtained from the relationship v = —su which follows from the conser-
vation of mass.

We consider the domain (0,7) x (—5,5) with T = 1.0, u = 1,e = 1073,y = 2. The shock profile
connects a far-field state v_ to the far-field state v . We fix v4 = 1.5, while v_ < v, and the shock
speed s are derived from the Rankine-Hugoniot jump condition (see Proposition 1.1 of Dalibard &
Perrin| (2020)).

To obtain the baseline solution (v,u), we numerically integrate the ODE using the
scipy.integrate.odeint solver on an interval £ € [—5,5] with 5000 points. The velocity profile u(&)
is then obtained from v = —su. The travelling wave solution can be seen below in Figure 3]

In an effort to minimise optimisation error and adhere to the setting of Theorem [I]as closely as possi-
ble, we choose to use a supervised learning approach when finding a Randomised Neural Network.
We include Fourier features (see Appendix |C| for details) where frequencies w; are drawn from
N(0,3.5?). Note that we choose to use a smaller variance than for the PME because the solution is
of lower frequency than the Barenblatt profile.

We sweep across a range of widths N € {10,...,250} and aim to minimise the mean-squared
error between the network and the solution to the ODE. For each width, we train the model using
Ridge regression on a dataset where the sample size is M = 2000N (M grows with N to avoid an
underdetermined problem, ensuring the optimisation problem remains stable). For any given training
point (¢;, z;), the evaluation of the baseline solution (v, u) is obtained by linear interpolation on the
ODE grid. We sample uniformly in time but use a mixture of uniform and importance sampling in
space; 50% of points are sampled uniformly on [—5,5] whereas 50% of points are sampled from
a normal distribution N (zg, 1) around the shock location x((t) = ¢ — st. The frequencies for
the Fourier features w; are sampled from A(0,3.5%). We find the smaller variance of 3.5? to be
effective for the simpler behaviour of a travelling wave solution.
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Figure 5: The travelling wave solution (v, u) to (I16)), obtained by solving the ODE (II8).
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Figure 6: Approximation error of RaNNs of varying width N for solving the compressible Navier-
Stokes system on (0, 1) x [—5, 5] in logarithmic scale.

The network is trained to minimise the L2-regularised MSE (Ridge regression loss) :
1M
LW) =+ 2_; 9(ti, %) = yill3 + AIW3, A=10"%, (119)

where v is the network output and W is the vector of output weights. The minimiser W has a
closed-form which can be explicitly calculated and used to generate the final network. With the
final network, we compute the L? errors relative to the baseline solution using a set of 20, 000 (pre-
generated) points. Each width IV is tested five times and the mean relative error is recorded for each
N. These errors are plotted against N in Figure[2] The errors are plotted on a log-log scale in Figure
6

C RANDOM FEATURE NEURAL NETWORKS

It is known that classical PINNs suffer from a spectral bias phenomenon Rahaman et al.| (2019),
which essentially means that the network is biased towards learning lower frequency functions
(se¢gWang et al.| (2022; 2023)); [ Xu et al| (2019)). This can be troublesome, particularly for non-
linear PDEs whose solutions are often highly chaotic. [Tancik et al.| (2020) suggested to use Fourier
features to overcome this.

To carry out the simulations in Section [} we integrated Fourier feature embeddings into the RaNN
network. We now describe the architecture of a network with Fourier feature embeddings. Instead
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of choosing a smooth activation such as tanh, we take o(z) = cos(z) and include both cosine and
sine activations for symmetry. Concretely, let {7;,a;}}¥., € R'*? and {b;}}¥, C [0, 27] be frozen
random samples, and define

¢i(t,x) = cos(tit + a; -z + b;), Y (t,x) =sin(rt +a; - + b;). (120)
‘We then construct the feature vector
B(t.2) = = (O1(03). o O (1. 2). G (t2) i (0,2), (121)
and take
N
uw (t,x) =B+ Y (aidi(t,z) + cinfi(t, ), (122)
i=1

where the coefficients {a;,c;}?; and bias 3 are the trainable parameters. The prefactor N ~1/2

normalises the variance of the features, and does not affect the approximation class.

We can express the sum of sine and cosine functions as a single shifted cosine with amplitude W,
giving us the form
N
W(t,l‘) =B+ ZWZ COS(Tit +a; - x; + bi),

i=1

(123)

where ZN)Z := b; — 0;. This shows that the RaNN used in our experiments is of the same general form
as (]D, with smooth activation o = cos. Recall from Remark@that o = cos is an admissible choice,
meaning that the approximation result of Theorem [I]directly applies to networks of the form (122).
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Figure 7: PINN (A) solution (5000 epochs, T' = 0.05, 1250 Fourier features) given by the blue
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