

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DOES THE DATA PROCESSING INEQUALITY REFLECT PRACTICE? ON THE UTILITY OF LOW-LEVEL TASKS

Anonymous authors

Paper under double-blind review

ABSTRACT

The data processing inequality is an information-theoretic principle stating that the information content of a signal cannot be increased by processing the observations. In particular, it suggests that there is no benefit in enhancing the signal or encoding it before addressing a classification problem. This assertion can be proven to be true for the case of the optimal Bayes classifier. However, in practice, it is common to perform “low-level” tasks before “high-level” downstream tasks despite the overwhelming capabilities of modern deep neural networks. In this paper, we aim to understand when and why low-level processing can be beneficial for classification. We present a comprehensive theoretical study of a binary classification setup, where we consider a classifier that is tightly connected to the optimal Bayes classifier and converges to it as the number of training samples increases. We prove that for any finite number of training samples, there exists a pre-classification processing that improves the classification accuracy. We also explore the effect of class separation, training set size, and class balance on the relative gain from this procedure. We support our theory with an empirical investigation of the theoretical setup. Finally, we conduct an empirical study where we investigate the effect of denoising and encoding on the performance of practical deep classifiers on benchmark datasets. Specifically, we vary the size and class distribution of the training set, and the noise level, and demonstrate trends that are consistent with our theoretical results.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated remarkable performance across an extensive range of tasks, spanning from image and speech recognition to natural language processing and scientific discovery. When the end goal is to address “high-level” tasks, e.g., classification and detection, a natural approach is to train a DNN to directly solve the task using the raw data/observations as input (Yim & Sohn, 2017; Hendrycks & Dietterich, 2019; Singh et al., 2019). Yet, it is a common practice to begin with addressing a “low-level” task in order to improve the quality of the input for the high-level task. Such low-level tasks include signal/image restorations (Liu et al., 2018; Dai et al., 2016; Li et al., 2023; Son et al., 2020; Haris et al., 2021; Pei et al., 2018) or encoding to a learned embedding space (Lee et al., 2022; Zhou & Paffenroth, 2017; Wu et al., 2023).

This common pipeline, however, stands in contrast to the data processing inequality, a foundational concept in information theory (Cover, 1999), which states that the information content of a signal cannot be increased by processing the observations. Concretely, consider the Markov chain of three random variables: $y \rightarrow x \rightarrow z$, which denotes that z is independent of y given x , i.e., $p_{z|x,y}(z|x,y) = p_{z|x}(z|x)$ in terms of probability distributions. This implies that $p_{x,y,z}(x,y,z) = p_y(y)p_{x|y}(x|y)p_{z|x}(z|x) = p_x(x)p_{y|x}(y|x)p_{z|x}(z|x)$. The data processing inequality reads as

$$I(x,y) \geq I(z,y) \tag{1}$$

where $I(x,y)$ is the mutual information of the random variables x and y .¹ In particular, if y is the class of a data sample x , this implies that there is no “benefit” in low-level processing of the sample (e.g., obtaining z by denoising x) before directly considering the classification problem.

¹The mutual information is defined as $I(x,y) = \iint p_{x,y}(x,y) \log \left(\frac{p_{x,y}(x,y)}{p_x(x)p_y(y)} \right) dx dy$.

Focusing on classification and referring to better (top-1) accuracy as “benefit”, the previous assertion can be proven to be true for the case of the optimal Bayes classifier (more details in Section 2). Clearly, we expect performance gaps between practical classifiers and the optimal Bayes classifier. However, modern DNN-based classifiers reach outstanding classification performance, sometimes even exceeding human capabilities. This raises the question: What can we say about the margin between this implication of the data processing inequality and practical classifiers? To the best of our knowledge, no prior work has attempted to theoretically and systematically investigate this question.

In this paper, we aim to understand when and why low-level processing can be beneficial for classification, even when the classifier is “strong” (e.g., converges to the optimal Bayes classifier when the number of training samples grows). Our main contributions include:

- We present a theoretical study of a binary classification setup, where we consider a classifier that is tightly connected to the optimal Bayes classifier (and converges to it). In the high-dimensional setting, we prove that for any finite number of training samples, there exist a pre-classification processing (specifically, a dimensionality reduction procedure) that improves the classification accuracy.
- We establish theoretical results on the effect of various factors, such as the number of training samples, the level of class separation and training set imbalance, on the relative gain from the data processing procedure that we construct. For example, we show that, non-intuitively, the maximal relative gain increases when the class separation improves.
- We present an empirical investigation of the theoretical model that corroborates our theory and sheds more light on the gains from low-level processing.
- We complement our theoretical work with an empirical study. We investigate the effect of image denoising and self-supervised encoding on the performance of practical deep classifiers on benchmark datasets, where we vary the size of the training set, the class distribution in the training set, and the noise level in the samples. We demonstrate trends that are consistent with our theoretical results (e.g., the one on the maximal gain), highlighting the usefulness of the theoretical setup.

2 BACKGROUND AND RELATED WORK

Consider the classification task, where the data (x, y) is distributed on $\mathcal{X} \times [C]$, with $[C] := \{1, \dots, C\}$ and distribution denoted by $p_{x,y}$. For the binary 0 – 1 criterion, i.e., $\ell(\hat{y}, y) = \mathbb{I}(\hat{y} \neq y)$, the expected risk is equivalent to the error probability $\mathbb{E}[\ell(\hat{y}(x), y)] = \mathbb{P}(\hat{y}(x) \neq y)$. It is well-known that this objective is minimized by the (optimal) Bayes classifier: $c_{opt}(x) = \operatorname{argmax}_{y \in [C]} p_{y|x}(y|x)$, where $p_{y|x}$ is the true conditional probability of y given x (Bishop, 2006; Fukunaga, 2013). In practice, of course, the distributions are unknown and a classifier must be learned from data samples.

Consider a data processing operation $\mathcal{A} : \mathcal{X} \rightarrow \mathcal{Z}$. This can be denoising, super-resolution, encoding, etc. Let $z = \mathcal{A}(x)$. Notice that $y \rightarrow x \rightarrow z$ is a Markov chain because z is a function of x and thus $p_{z|x,y}(z|x, y) = p_{z|x}(z|x)$. Therefore, the data processing inequality in Eq. 1 holds. The optimal Bayes classifier that operates on a processed sample $z = \mathcal{A}(x)$ is given by $\tilde{c}_{opt}(z) = \operatorname{argmax}_{y \in [C]} p_{y|z}(y|z)$, where $p_{y|z}$ is the true conditional probability of y given z .

Focusing on the case of binary classification ($C = 2$), the following result shows that, similarly to the fact that no \mathcal{A} can increase information, there is also no hope in improving the accuracy of optimal Bayes classifiers via data processing.

Theorem 1. *Let $y \rightarrow x \rightarrow z$ be a Markov chain where $y \in \{1, 2\}$ denotes the sample class. We have*

$$\mathbb{P}(c_{opt}(x) \neq y) \leq \mathbb{P}(\tilde{c}_{opt}(z) \neq y), \quad (2)$$

where c_{opt} and \tilde{c}_{opt} denote optimal Bayes classifiers.

A similar statement and proof can be found in an arXiv version of (Liu et al., 2019). For completeness, we present a clearer proof in Appendix A. Note that (Liu et al., 2019) studies a potential tradeoff between the error of a low-level restoration task and the accuracy of a *fixed* classifier, where only the restoration model is trained using the training data. In contrast, our work focuses on the high-level end goal—the classification performance—and allows training the classifier after the low-level processing,

108 as is done in practice. Therefore, (Liu et al., 2019) does not provide any reason why in practice it is
 109 common to address a low-level task before high-level ones, which is the central question of our paper.
 110

111 Our work is motivated by the contrast between common practice and the information-theoretic concept
 112 of the data processing inequality, as well as Theorem 1. There exist works that use information-
 113 theoretic concepts or compute approximate metrics to analyze DNNs, e.g., (Tishby & Zaslavsky,
 114 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2019; Gabrié et al., 2018; Jeon & Van Roy, 2022).
 115 Interestingly, since a DNN processes data gradually, layer by layer, the features across the layers form
 116 a Markov chain, and thus the data processing inequality applies. Yet, avoiding the loss of information
 117 relevant to the task being learned can be attributed to penalizing failures in predicting the target labels
 118 during training, while discarding task-irrelevant information (akin to compression) may be explained
 119 by the information bottleneck principle (Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017;
 120 Saxe et al., 2019). The contrast between representation learning and the data processing inequality
 121 has also motivated theoretical works (Xu et al., 2020; Goldfeld & Greenwald, 2021) to study variants
 122 of the mutual information, incorporating transformations of the signal or line projections. None of the
 123 aforementioned works consider a sequence of tasks or explain when and why low-level processing
 124 can be beneficial to practical classifiers. Moreover, here we directly analyze the classifier’s probability
 125 of error, which is more interpretable than the information-theoretic objectives studied before.
 126

127 Finally, we emphasize that in the case of pre-trained classifier under distribution shift, data processing
 128 that ‘reduces the gap’ between the test data distribution and the training data distribution is trivially
 129 expected to improve the classifier performance. However, we focus in this paper on the non-intuitive
 130 case where no distribution shift occurs, and the classifier is strong, in the sense that it converges to
 131 the optimal Bayes classifier as the training set increases (with good statistical properties).
 132

133 3 THEORY

134 In this section, we present our theoretical contributions. First, we describe the problem setup, the
 135 data distribution, the classifier under study, and a data processing operation. Next, we present our
 136 theoretical results demonstrating the benefits of this data processing. Finally, we validate our results
 137 through experiments and provide additional insights into the factors that affect the performance gain.
 138

139 3.1 PROBLEM SETUP: DATA MODEL, CLASSIFIER, AND DATA PROCESSING

140 **Data model.** Similar to a vast body of theoretical work on classifiers (Cao et al., 2021; Deng et al.,
 141 2022; Wang & Thrampoulidis, 2022; Kothapalli & Tirer, 2025), we consider binary classification
 142 ($C = 2$), where the data is distributed according to a Gaussian Mixture Model (GMM) of order two
 143 in $\mathcal{X} = \mathbb{R}^d$, with one mixture component per class. Formally,

$$144 \quad y \in \{1, 2\}, \quad \mathbf{x} | y = j \sim \mathcal{N}(\boldsymbol{\mu}_j, \sigma_j^2 \mathbf{I}_d), \quad \mathbb{P}(y = j) = \pi_j. \quad (3)$$

145 Similar to previous theoretical works, we further assume that

$$146 \quad \boldsymbol{\mu}_2 = -\boldsymbol{\mu}_1 = \boldsymbol{\mu}, \quad \sigma_1^2 = \sigma_2^2 = \sigma^2, \quad \pi_1 = \pi_2 = 1/2, \quad (4)$$

147 where the magnitudes of the entries of $\boldsymbol{\mu}$ are bounded by some universal constant, and σ is independent
 148 of d . Let us now define the separation quality factor of the GMM data, which can be understood as
 149 the signal-to-noise ratio (SNR):
 150

$$151 \quad \mathcal{S} := \left(\frac{\|\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1\|}{\sigma_1 + \sigma_2} \right)^2 = \frac{\|\boldsymbol{\mu}\|^2}{\sigma^2}. \quad (5)$$

152 Note that the considered setup is standard in theoretical works that aim at rigorous mathematical
 153 analysis (Cao et al., 2021; Deng et al., 2022; Wang & Thrampoulidis, 2022; Kothapalli & Tirer, 2025).
 154 Despite its compactness, the learning problem studied in this paper can be arbitrarily hard because
 155 (unlike some of the aforementioned works) our analysis covers SNR arbitrarily close to zero, i.e.,
 156 nearly indistinguishable classes.
 157

158 The training data consists of N_j labeled i.i.d. samples per class j , denoted by $\mathcal{D} = \{\mathbf{x}_{i,j} : j \in$
 159 $\{1, 2\}, i = 1, \dots, N_j\}$. Without loss of generality, we denote $N_1 = N$ and $N_2 = \gamma N$ for some
 160 $\gamma \in (0, 1]$.
 161

162 **The classifier.** In the considered setting, the optimal Bayes classifier reads:
 163

$$164 \quad c_{opt}(\mathbf{x}) = \arg \max_{j \in \{1,2\}} \pi_j p_{x|y}(\mathbf{x}|j) = \arg \max_{j \in \{1,2\}} \exp\left(-\frac{\|\mathbf{x} - \boldsymbol{\mu}_j\|^2}{2\sigma^2}\right) = \arg \min_{j \in \{1,2\}} \|\mathbf{x} - \boldsymbol{\mu}_j\|.$$

166
 167 In practice, the data distribution is unknown and thus a classifier cannot use the class means, $\{\boldsymbol{\mu}_i\}$,
 168 but rather estimate them from the training set. We therefore study the classifier:
 169

$$170 \quad \hat{c}(\mathbf{x}; \mathcal{D}) = \arg \min_{j \in \{1,2\}} \|\mathbf{x} - \hat{\boldsymbol{\mu}}_j(\mathcal{D})\|, \quad (6)$$

171 where $\hat{\boldsymbol{\mu}}_j(\mathcal{D}) = \frac{1}{N_j} \sum_{i=1}^{N_j} \mathbf{x}_{i,j}$ is the maximum likelihood estimate of $\boldsymbol{\mu}_j$.
 172

173 We want to explore if data processing can be beneficial even for a “strong” classifier. It is easy to
 174 see that $\hat{\boldsymbol{\mu}}_j \sim \mathcal{N}(\boldsymbol{\mu}_j, \frac{\sigma^2}{N_j} \mathbf{I}_d)$. In fact, this is an efficient estimator that attains the Cramér–Rao
 175 lower bound on the variance for *any* N_j (Kay, 1993). Therefore, in our setting, not only that $\hat{c}(\cdot)$
 176 is structurally similar to $c_{opt}(\cdot)$ and converges to it for $N_j \rightarrow \infty$, but it also has strong statistical
 177 properties for finite N_j , making it a natural choice for our study. Demonstrating the benefit of low-
 178 level processing for such a classifier, which is “almost optimal” for the considered setup, underscores
 179 the potential advantages for weaker classifiers.
 180

181 **Data processing.** As the pre-classification data processing, we are going to study a certain linear
 182 dimensionality reduction to $1 \leq k < d$. Specifically, we consider
 183

$$184 \quad \mathbf{z} = \mathbf{A}\mathbf{x}$$

185 with $\mathbf{A} \in \mathbb{R}^{k \times d}$ that obeys
 186

$$187 \quad \mathbf{A}\mathbf{A}^\top = \mathbf{I}_k, \quad \|\mathbf{A}\boldsymbol{\mu}\| = \|\boldsymbol{\mu}\|. \quad (7)$$

188 Note that, for establishing our main theoretical claim on the practical limitation of Eq. 2, we
 189 just need the *existence* of a processing for which we can rigorously show improved classification.
 190 Nevertheless, in the sequel, we provide a constructive proof that also shows how such \mathbf{A} *can be*
 191 *learned from unlabeled data* without prior knowledge of $\boldsymbol{\mu}$. Hence, showing that this procedure
 192 improves classification performance in our setup underscores the promise of practical low-level
 193 procedures learned from unlabeled data.
 194

195 **Additional notations.** We will analyze and compare the performance of the classifier in Eq. 6
 196 before and after the data processing procedure, namely, $\hat{c}(\mathbf{x}; \mathcal{D})$ versus $\hat{c}(\mathbf{z}; \mathcal{D}_z)$, where $\mathcal{D}_z =$
 197 $\{\mathbf{z}_{i,j} = \mathbf{A}\mathbf{x}_{i,j} : j \in \{1, 2\}, i = 1, \dots, N_j\}$. We denote the probability of error in these two
 198 cases by $p_{\mathbf{x}}(\text{error}) := \mathbb{P}(\hat{c}(\mathbf{x}; \mathcal{D}) \neq y)$ and $p_{\mathbf{z}}(\text{error}) := \mathbb{P}(\hat{c}(\mathbf{z}; \mathcal{D}_z) \neq y)$. Finally, we define the
 199 widely-used \mathcal{Q} -function, which will be used to characterize the classification error probability:
 200

$$201 \quad \mathcal{Q}(x) = \mathbb{P}(\mathcal{N}(0, 1) > x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty \exp\left(-\frac{t^2}{2}\right) dt. \quad (8)$$

202 **3.2 THEORETICAL RESULTS**
 203

204 In this subsection, we present our theoretical results. In Section 3.2.1, we prove that the error
 205 probability decreases due to the data processing. To this end, we establish expressions that accurately
 206 approximate the probability of error of the data-driven classifier before and after the processing. We
 207 then analyze their relation, where, due to different proof strategies, this is done separately for the
 208 balanced and imbalanced training set cases. In Section 3.2.2, we provide a fine-grained analysis of
 209 the factors that affect the efficiency of the processing, and, for the balanced training set case, we also
 210 establish a connection between the maximal gain and the SNR.
 211

212 The proofs for all the claims are deferred to Appendix A.
 213

214 **3.2.1 PERFORMANCE GAIN DUE TO DATA PROCESSING**
 215

216 We begin with characterizing the probability of error when the classifier is applied without pre-
 217 processing. Recall the definitions of \mathcal{S} and $\mathcal{Q}(x)$ in Eq. 5 and Eq. 8, respectively.
 218

216 **Theorem 2** (The probability of error before the processing). *Consider the setup in Section 3.1. With*
 217 *approximation accuracy $\mathcal{O}(1/\sqrt{d})$ we have $p_{\mathbf{x}}(\text{error}) \approx \hat{p}_{\mathbf{x}}(\text{error}) = \hat{p}(\mathcal{S}, N, \gamma, d)$, where*
 218

$$\begin{aligned} 219 \quad \hat{p}(\mathcal{S}, N, \gamma, d) &:= \frac{1}{2} \cdot \mathcal{Q} \left(\frac{\sqrt{\mathcal{S}} + \frac{1}{4N} \cdot \frac{1-\gamma}{\gamma} \cdot \frac{d}{\sqrt{\mathcal{S}}}}{\sqrt{\frac{1}{4N} \cdot \frac{1+\gamma}{\gamma} \cdot \frac{d}{\mathcal{S}} + \frac{1}{8N^2} \cdot \frac{1+\gamma^2}{\gamma^2} \cdot \frac{d}{\mathcal{S}} + \frac{1}{\gamma N} + 1}} \right) \\ 220 \quad &+ \frac{1}{2} \cdot \mathcal{Q} \left(\frac{\sqrt{\mathcal{S}} - \frac{1}{4N} \cdot \frac{1-\gamma}{\gamma} \cdot \frac{d}{\sqrt{\mathcal{S}}}}{\sqrt{\frac{1}{4N} \cdot \frac{1+\gamma}{\gamma} \cdot \frac{d}{\mathcal{S}} + \frac{1}{8N^2} \cdot \frac{1+\gamma^2}{\gamma^2} \cdot \frac{d}{\mathcal{S}} + \frac{1}{N} + 1}} \right). \end{aligned} \quad (9)$$

226 **Remark.** The proof is mathematically involved. We express the error event as thresholding a scalar
 227 random variable, suitable for an application of a generalized Berry–Esseen theorem. However, this
 228 variable depends on the interrelation between the entries of $\hat{\mu}_1$, $\hat{\mu}_2$, and computing the required
 229 moments is a technical challenge.
 230

231 **Discussion.** Note that: 1) \hat{p} is symmetric in the following sense: $\hat{p}(\mathcal{S}, N, \gamma, d) = \hat{p}(\mathcal{S}, \gamma N, \frac{1}{\gamma}, d)$,
 232 which is expected because swapping the amount of samples between the classes does not change
 233 the problem; 2) As $\mathcal{S} \rightarrow 0^+$ we have: $\lim_{\mathcal{S} \rightarrow 0^+} \hat{p}(\mathcal{S}, N, \gamma, d) = 1/2$, aligned with uniform guess; 3) As
 234 $\mathcal{S} \rightarrow \infty$ we have: $\lim_{\mathcal{S} \rightarrow \infty} \hat{p}(\mathcal{S}, N, \gamma, d) = 0$, aligned with the classes being deterministically separable;
 235 and 4) As $N \rightarrow \infty$ we have: $\lim_{N \rightarrow \infty} \hat{p}(\mathcal{S}, N, \gamma, d) = \mathcal{Q}(\sqrt{\mathcal{S}})$, which is the probability of error of c_{opt} ,
 236 which knows the exact distribution of the data (Fukunaga, 2013).
 237

238 Let us explore the result of Theorem 2 for the case of balanced training data, $\gamma = 1$ ($N_2 = N_1 = N$),
 239 in which the expression simplifies to:
 240

$$241 \quad \hat{p}_{\mathbf{x}}(\text{error}) = \mathcal{Q} \left(\frac{\sqrt{\mathcal{S}}}{\sqrt{(\frac{d}{2\mathcal{S}} + 1) \cdot \frac{1}{N} + \frac{d}{4\mathcal{S}} \cdot \frac{1}{N^2} + 1}} \right). \quad (10)$$

245 Fix $d \gg 1$, which ensures that the approximation is accurate. It is easy to see that when the separation
 246 quality factor (SNR), \mathcal{S} , decreases (with fixed d), the argument of the \mathcal{Q} -function decreases, and
 247 thus the probability of error increases. In addition, as the number of training samples N increases,
 248 the argument increases, and thus the probability of error decreases. These two results are aligned
 249 with intuition. Interestingly, the effect of increasing/decreasing d depends on its relation with \mathcal{S} .
 250 For example, if d increases and \mathcal{S} is fixed, which means that the average entry-wise SNR decreases,
 251 then the argument of the \mathcal{Q} -function increases. The contrary holds if $\mathcal{S} \propto d$, which means that the
 252 average entry-wise SNR is fixed. In the latter case, high-dimensionality is advantageous in terms of
 253 the probability of error.
 254

255 Next, let us establish the existence and learnability of the data processing proposed in Section 3.1.

256 **Theorem 3** (The existence and learnability of the processing). *For all $1 \leq k < d$, there exists*
 257 *a dimension-reducing matrix $\mathbf{A} \in \mathbb{R}^{k \times d}$ with the properties stated in Eq. 7. Furthermore, given*
 258 *sufficiently many unlabeled samples, such a matrix can be learned to arbitrary accuracy.*

259 **Remark.** The proof of Theorem 3 is constructive. It provides an algorithm for computing such \mathbf{A}
 260 and efficiently estimating the direction of μ from *unlabeled* data.
 261

262 Note that the semi-orthonormality of \mathbf{A} implies that it cannot increase the norm of any vector, while
 263 the property $\|\mathbf{A}\mu\| = \|\mu\|$ ensures that the separation quality remains unchanged (equal to Eq. 5)
 264 and is not reduced after the processing. In more detail, this implies that when applying $\mathbf{A}\mathbf{x}$, the
 265 *class-dependent component of \mathbf{x}* (i.e., the projection of \mathbf{x} onto $\pm\mu$) is not attenuated. In contrast,
 266 the *complementary component of \mathbf{x}* , which corresponds to within-class variability, is attenuated as
 267 the overall dimension is reduced and the semi-orthonormality of \mathbf{A} prevents amplification. Taken
 268 together, this is expected to facilitate classification, as will be rigorously proven below. More details
 269 and a graphical illustration of the action of \mathbf{A} are presented in Appendix F.

270 We now turn to characterizing the probability of error when applying the classifier on the processed
 271 data $\mathbf{z} = \mathbf{A}\mathbf{x}$.
 272

270 **Theorem 4** (The probability of error on the processed data). *Consider the setup in Section 3.1. With*
 271 *approximation accuracy $\mathcal{O}(1/\sqrt{k})$ we have $p_z(\text{error}) \approx \hat{p}_z(\text{error}) = \hat{p}(\mathcal{S}, N, \gamma, k)$, where \hat{p} is*
 272 *defined in Eq. 9.*

274 The approximate probability of error of the processed data, $\hat{p}_x(\text{error})$, admits an expression similar
 275 to the one obtained for the raw data, $\hat{p}_z(\text{error})$, but with a different dimension parameter (k instead
 276 of d). Note that in the high-dimensional case, i.e., $d, k \gg 1$, these estimators are guaranteed to
 277 be accurate. Now, let us present the main outcomes of our theoretical study, which build on these
 278 expressions.

279 We start with the case where there is no class imbalance in the training set, i.e., $\gamma = 1$ so $N_2 = N_1 =$
 280 N . The next theorem shows that the considered data processing yields a gain for any finite value
 281 $N \geq 1$. We assume $\mathcal{S} > 0$, as $\mathcal{S} = 0$ is an uninteresting degenerate case.

282 **Theorem 5** (Performance gain under balanced training data). *For $\gamma = 1$, and for all $\mathcal{S} > 0$, $1 \leq$
 283 $k < d$, and $N \in \mathbb{N}$, we have*

$$\hat{p}_x(\text{error}) > \hat{p}_z(\text{error}). \quad (11)$$

287 Theorem 5 shows that when the training samples are balanced among the classes, the chosen
 288 processing always *strictly decreases* the approximated probability of error.

289 **Discussion.** As shown in Theorems 2 and 4, in the high-dimensional case the true probabilities of
 290 error, $p_x(\text{error})$ and $p_z(\text{error})$, are well approximated by $\hat{p}_x(\text{error})$ and $\hat{p}_z(\text{error})$. This makes the
 291 result significant. Moreover, this result—holding for *any* finite N —is also quite surprising, since
 292 in the limit of $N \rightarrow \infty$ we have that $p_x(\text{error})$ and $p_z(\text{error})$ converge to $\mathbb{P}(c_{\text{opt}}(\mathbf{x}) \neq y)$ and
 293 $\mathbb{P}(\tilde{c}_{\text{opt}}(\mathbf{z}) \neq y)$, respectively, which satisfy the opposite relation (\leq) as shown in Theorem 1.

294 We now consider the case of an imbalanced training set. The presence of under-represented classes
 295 or groups is of significant interest in the machine learning community, as it raises concerns about
 296 generalization and fairness (Chawla et al., 2002; Huang et al., 2016; Li et al., 2021). Specifically,
 297 while the classes have equal probability ($\pi_1 = \pi_2 = 0.5$), the number of training samples from each
 298 of the classes is assumed to be $N_1 = N$ and $N_2 = \gamma N$ with $0 < \gamma < 1$. The following theorem
 299 demonstrates the benefit of the considered data processing in this case as well.

300 **Theorem 6** (Performance gain under imbalanced training data). *Let $0 < \gamma < 1$, $0 < \mathcal{S} \leq 1$, $1 \leq$
 301 $k < d$. If $N \geq \frac{\gamma^2 - 4\gamma + 1}{2\gamma(1+\gamma)}$, then we have*

$$\hat{p}_x(\text{error}) > \hat{p}_z(\text{error}). \quad (12)$$

305 **Remark.** Unlike Theorem 5, which considers $\gamma = 1$ and is smoothly obtained from Theorems 2 and 4,
 306 in this case the complexity of the formulas of $\hat{p}_x(\text{error})$ and $\hat{p}_z(\text{error})$ required us to make technical
 307 assumptions on \mathcal{S} and N in order to establish a rigorous statement for $\gamma \in (0, 1)$. Nevertheless, these
 308 assumptions are reasonable and still encompass the interesting case of low SNR and a reasonable
 309 number of training samples. Note that for $\gamma \geq 0.162$, the requirement $N \geq \frac{\gamma^2 - 4\gamma + 1}{2\gamma(1+\gamma)}$ is vacuous
 310 (since $N \geq 1$), so it only matters under severe imbalance ($\gamma < 0.162$).

3.2.2 FACTORS THAT AFFECT THE GAIN

314 So far, we have only considered the relation between $\hat{p}_x(\text{error})$ and $\hat{p}_z(\text{error})$. Let us now discuss
 315 the margin between them, which reflects the efficiency of the processing.

316 **Definition 1.** *We define the theoretical efficiency of the processing as*

$$\eta := \left(\frac{\hat{p}_x(\text{error}) - \hat{p}_z(\text{error})}{\hat{p}_x(\text{error})} \right) \cdot 100. \quad (13)$$

321 The following theorem establishes an approximation of η for $N \gg 1$, making it easier to gain insights
 322 into the different factors that affect the efficiency of the processing in the case of a large number of
 323 training samples.

Theorem 7 (Analysis of the asymptotic efficiency). *Let $\mathcal{S} > 0$, $1 \leq k < d$, $0 < \gamma \leq 1$. Denote by $N_T = (1 + \gamma) N$ the total number of training samples. With approximation accuracy $\mathcal{O}(1/N_T^2)$, we have*

$$\eta \approx \frac{25}{2\sqrt{2\pi}} \cdot \frac{\exp(-\frac{\mathcal{S}}{2})}{\sqrt{\mathcal{S}} \cdot \mathcal{Q}(\sqrt{\mathcal{S}})} \cdot \left(3 + 2\gamma + \frac{1}{\gamma}\right) \cdot (d - k) \cdot \frac{1}{N_T}. \quad (14)$$

In particular, for $N_T \gg 1$: The efficiency increases when $d - k$ increases or γ decreases within $0 < \gamma \leq 1/\sqrt{2}$; The efficiency decreases when \mathcal{S} increases or N_T increases.

Remark. The proof of Theorem 7 is based on first-order analysis, which differs from the proof technique used for Theorem 6. This allows us to reach the conclusion that there exists $N_0 \in \mathbb{N}$ such that for all $N \geq N_0$ we have $\eta > 0$ (since the right-hand side of Eq. 14 is positive) which implies $\hat{p}_x(\text{error}) > \hat{p}_z(\text{error})$ without a technical assumption on \mathcal{S} . On the other hand, Theorem 6 can hold even for small values of N , depending on γ .

Discussion. Let us discuss the intuition behind the insights provided in Theorem 7. First, notice that in the considered regime of $N_T \gg 1$ training samples, the processing efficiency η monotonically decreases toward zero as N_T increases. This is consistent with the fact that in the limit $N_T \rightarrow \infty$ the classifier approaches the optimal Bayes classifier, which cannot be improved by data processing. In this regime, higher class separation \mathcal{S} can be interpreted as equivalent to having more effective samples (akin to larger N_T), and hence less improvement through the pre-classification processing. Similarly, larger dimensionality reduction ($d - k$) can be viewed as greater coverage of the input domain, again, analogous to having more samples. Lastly, lower $\gamma < 1$ indicates that the classifier’s training samples are less balanced between the classes and hence differ more from the data distribution. Intuitively, this leaves more room for improvement through pre-classification processing.

In addition, Appendix B provides an approximation of the difference $\Delta := \hat{p}_x(\text{error}) - \hat{p}_z(\text{error})$ for $N \gg 1$. The insights we obtain are consistent with those reported in Theorem 7.

So far, our theory shows that the processing efficiency η is positive for all N for $\gamma = 1$, and under a technical assumption it is positive also for $\gamma \in (0, 1)$. Our formulas also show that $\eta = 0$ at $N = 0$ (where $\hat{p}_z = \hat{p}_x = 0.5$, i.e., probability of guessing) and that $\eta \rightarrow 0$ at $N \rightarrow \infty$ (where $\hat{p}_z = \hat{p}_x = \mathcal{Q}(\sqrt{\mathcal{S}})$, consistent with the classifier converging to the optimal Bayes classifier for which Theorem 1 applies). Together, these imply that there is a maximum point of $\eta(N)$. Our final theorem provides a surprising insight into this maximum efficiency.

Theorem 8 (Analysis of the maximal efficiency). *Fix $\gamma = 1$, and let $\mathcal{S} > 0$, $1 \leq k < d$. Consider the efficiency $\eta = \eta(N)$ as a function of continuous $N \in \mathbb{R}_+$. We have that the maximal efficiency $\eta_{\max} = \max_{N \geq 0} \eta(N)$ increases as a function of \mathcal{S} .*

Discussion. In the asymptotic regime of $N \rightarrow \infty$, as discussed above, a higher SNR corresponds to lower η , which aligns with intuition. Interestingly, however, the theorem shows that a higher SNR also leads to a larger η_{\max} , which is somewhat counterintuitive. One might expect that lower noise would reduce efficiency across all sample sizes, since the raw data is already well-separated. This highlights the subtle relationship between η and the SNR. An extended version of the theorem can be found in Appendix A.8.

3.3 EMPIRICAL VERIFICATION

In this subsection, we simulate the theoretical setup in order to further support our theoretical results and also gain more insights on the model, e.g., factors that affect the efficiency of the data processing for small to moderate values of N .

We consider data dimension $d = 2000$, and fix $\sigma = 1$. The SNR values we work with are $\mathcal{S} \in \{0.75^2, 1.5^2\}$, and for each fixed SNR, we use $\gamma \in \{0.25, 0.5, 1\}$. We also consider a wide range of N_{train} , which denotes the total number of given training samples. For each fixed tuple $(\mathcal{S}, \gamma, N_{\text{train}})$, we randomize $\mu \in \mathbb{R}^d$ with $\|\mu\| = \sigma\sqrt{\mathcal{S}}$, via $\mu = \sigma\sqrt{\mathcal{S}} \frac{v}{\|v\|}$ where $v \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$. We then construct the data processing matrix $\mathbf{A} \in \mathbb{R}^{k \times d}$ that reduces the dimension to $k = 1000$, using the algorithm described in Appendix A.3. Per trial, we sample $N_1 = \text{int}(\frac{N_{\text{train}}}{1+\gamma})$ training points from

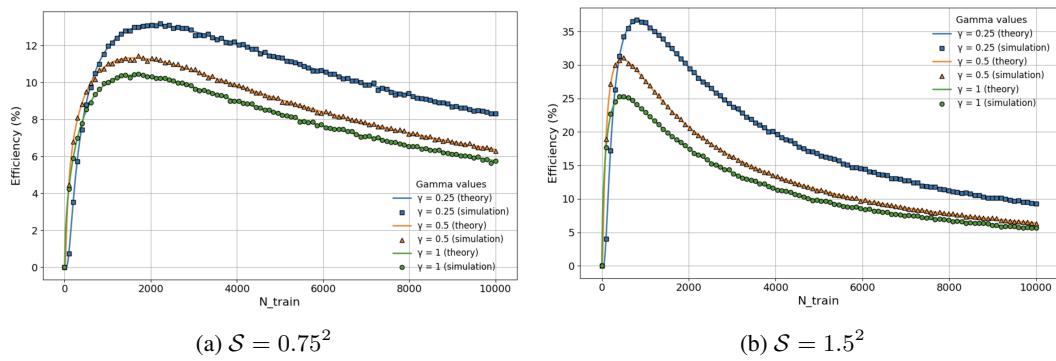


Figure 1: The theoretical setup. Efficiency of the data processing procedure versus the number of training samples N_{train} , for various values of the training imbalance factor, γ , and the SNR, \mathcal{S} .

$\mathcal{N}(-\mu, \sigma^2 \mathbf{I}_d)$, and $N_2 = \text{int}(\frac{\gamma N_{\text{train}}}{1+\gamma})$ training points from $\mathcal{N}(\mu, \sigma^2 \mathbf{I}_d)$. Before and after the data processing, the per-class means are estimated using the training points, and the classifier defined in Eq. 6 is used on a large amount of fresh test data, sampled with probability 0.5 from each of the two Gaussians. With a slight abuse of notation, we denote the empirical probabilities of error before and after the data processing by $p_x(\text{error})$ and $p_z(\text{error})$, respectively. In order to compute $p_z(\text{error})$, we use the training and test samples after processing them by multiplying with \mathbf{A} . We then compute the empirical efficiency of the processing, defined by $\chi = \left(\frac{p_x(\text{error}) - p_z(\text{error})}{p_x(\text{error})} \right) \cdot 100$. We repeat the computation of χ over 100 independent trials and report the average.

Figure 1 presents both the theoretical efficiency η , defined in Eq. 13, and the empirical efficiency χ versus the number of training samples N_{train} , for various values of γ and \mathcal{S} . Note that the empirical and theoretical efficiencies closely match in all the configurations.

Let us discuss the trends that are observed in Figure 1. First, note the non-monotonic curves depicting the efficiency as a function of N_{train} . When N_{train} approaches zero or grows to infinity the efficiency tends to zero, aligned with our analytical formulas. Indeed, as discussed above, in the absence of training data the classification is based on guess, and thus there is no effect for the data processing. In the considered setup, as $N_{\text{train}} \rightarrow \infty$, the classifiers tend to the optimal Bayes decision rules, which again implies zero efficiency. A major contribution of our paper is providing rigorous theory for the fact that the efficiency remains positive between these two extreme cases.

Let us now focus on $N_{\text{train}} \gg 1$ (the right boundary of each sub-figure). We see that increased \mathcal{S} moderately reduces the efficiency. For example, for $(\mathcal{S}, \gamma, N_{\text{train}}) = (0.75^2, 1, 10K)$ the efficiency is around 6, while for $(\mathcal{S}, \gamma, N_{\text{train}}) = (1.5^2, 1, 10K)$ it is around 5. Moreover, we see that lower values of γ , corresponding to more imbalanced training data, yield higher efficiency of the data processing. Note that both are aligned with the insights gained in Theorem 7.

Next, note that each of the curves depicts a single maximum point, whose value is aligned with the non-intuitive prediction of Theorem 8. Specifically, the maximal efficiency value increases with \mathcal{S} .

Lastly, note that the empirical investigation of our theoretical setup reveals behaviors at relatively small values of N_{train} , which lie beyond the scope of our theoretical analysis. Specifically, we observe that the relation between decrease in γ and increase in efficiency emerges already at quite low N_{train} . We also observe dependency between the overall shape of the curves and the value of \mathcal{S} .

Additional verification experiments with \mathbf{A} that is learned from unlabeled samples, and different values of \mathcal{S}, k are presented in Appendix F. All of them are aligned with our theoretical insights.

4 EXPERIMENTS IN PRACTICAL SETTINGS

While our paper focuses on theoretical contributions, in this section, we empirically examine the correlation between the behaviors observed in four practical deep learning settings and the theoretical results. Note that such a study, which examines the effects of sample size, SNR, and class balance, requires exhaustive training efforts of both the data-processing module and the classifier.

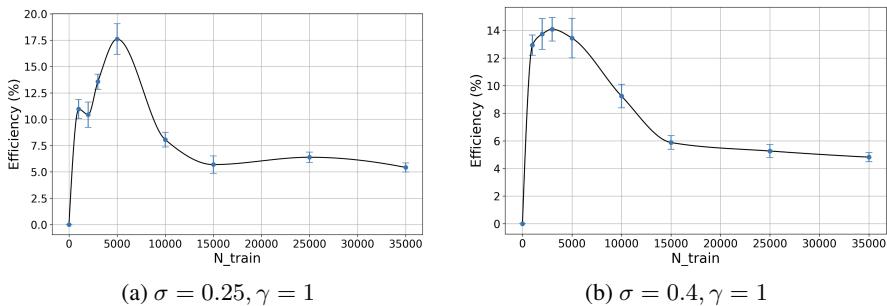


Figure 2: Noisy CIFAR-10 and pre-classification denoising. Efficiency versus N_{train} .

4.1 NOISY CIFAR-10 AND PRE-CLASSIFICATION DENOISING

We consider the CIFAR-10 dataset (Krizhevsky et al., 2009) and the ResNet18 model (He et al., 2016). The train and test sets both experience additive Gaussian noise of the same level (i.e., no distribution shift) with standard deviation $\sigma \in \{0.25, 0.4\}$. A detailed description of the training procedure of the classifier is given in Appendix C. We also note that we verify that the classifier performs well when trained on clean CIFAR-10 data, achieving 90% accuracy.

The data processing step examined here is image denoising, applied to the noisy data, using the DnCNN model (Zhang et al., 2017). The denoiser is trained with the MSE loss on 15,000 clean unlabeled images, which are not part of the classifier’s training set. More details on the training procedure of the denoiser are given in Appendix C. Note that, given such a pretrained denoiser, the Markov chain: “label”—“noisy image”—“denoised image” still holds. Thus, the data processing inequality, as well as Theorem 1, suggest that the denoiser will not improve the results.

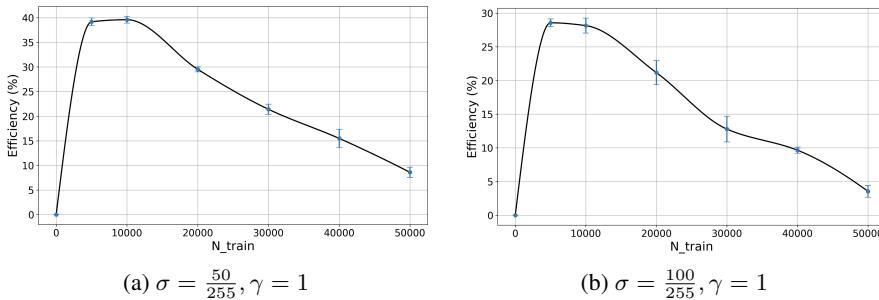
In Appendix C, we also investigate [another setting](#), where we train the denoiser with SURE loss (i.e., without clean ground truth images) (Stein, 1981; Soltanayev & Chun, 2018), and observe similar results.

We consider various values of N_{train} , the total number of given training samples (across all 10 classes), and examine different training imbalance factors, $\gamma = 1$ here, and $\gamma \in \{0.5, 0.75\}$ in Appendix C. For both the denoised and the noisy case, and for each fixed tuple $(\sigma, \gamma, N_{\text{train}})$, we divide $\frac{N_{\text{train}}}{1+\gamma}$ equally among the first 5 classes, and $\frac{\gamma N_{\text{train}}}{1+\gamma}$ equally among the other 5 classes. We train the classifier 6 times, each time with a different seed, and report the average and standard deviation of the probabilities of error, to obtain a more reliable result. After we have the mean and standard deviation of the probability of error before and after the data processing, we compute the empirical efficiency, i.e., the relative percentage change in the probability of error induced by the denoising step.

Figure 2 presents the efficiency versus N_{train} . We see two main similarities to the theory. First, the non-monotonic behavior (increasing for small N_{train} and decreasing for large N_{train}) is expected from the same argument in Section 3.3: the efficiency tends to zero as N_{train} tends to either 0 or ∞ , while, importantly, it remains positive between these two extreme cases, aligned with our theory. Second, we see that the maximal efficiency value decreases with σ : its value for $\sigma = 0.25$ is larger than its value for $\sigma = 0.4$. That is, the maximal efficiency increases with the SNR.

4.2 NOISY MINI-IMAGENET AND PRE-CLASSIFICATION ENCODING

We turn to investigate a more complex data processing pipeline using the Mini-ImageNet dataset (Vinyals et al., 2016) and the ResNet50 model. Both the training and test sets are subjected to additive Gaussian noise with standard deviations $\sigma \in \{50/255, 100/255\}$. The data processing step examined here is an encoding step, which maps the images from 224×224 pixels to 256-dimensional embeddings. This encoder model follows (Lu et al., 2025) and is trained from scratch with self-supervision on all noisy unlabeled images for each noise level. Then, for each combination of $(\sigma, \gamma, N_{\text{train}})$, we divide $\frac{N_{\text{train}}}{1+\gamma}$ equally among the first 50 classes, and $\frac{\gamma N_{\text{train}}}{1+\gamma}$ equally among the other 50 classes. Then, across three seeds, we train a ResNet50 model on the noisy images and, in parallel, a small MLP on the corresponding embeddings. After we have the mean and standard deviation of the probability of error before and after the data processing, we compute the empirical efficiency, i.e.,

Figure 3: Noisy Mini-ImageNet and pre-classification encoding. Efficiency versus N_{train} .

the relative percentage change in the probability of error induced by the encoding step. Details of the training procedures for both the ResNet50 and the MLP are provided in Appendix D.

Figure 3 presents the efficiency versus N_{train} , for $\gamma = 1$. Experiments for $\gamma \in \{0.5, 0.75\}$ appear in Appendix D. We see the same trends that are aligned with our theory as before: 1) similar non-monotonicity of the curve while remaining positive, and 2) the maximal efficiency increases with the SNR. A message to practitioners is that when labeled samples are scarce, data processing can be especially advantageous for ‘high quality’ data.

4.3 NOISY CIFAR-10 AND PRE-CLASSIFICATION ENCODING

For the noisy CIFAR-10 setup considered in Section 4.1, we also examine the performance of data processing based on encoding instead of denoising. Due to space limitations, the details are deferred to Appendix E, and the results are presented there in Figure 9. The trends stated above are observed there as well.

These results further demonstrate higher efficiency values compared to those obtained for the denoising procedure in Section 4.1, indicating that, for the classification task, encoding may be a more effective low-level processing method than denoising. However, we believe that this may not be the case for other high-level tasks, which may require preserving spatial information in the image (e.g., object detection).

5 CONCLUSION

In this paper, we addressed the question: How can we explain the common practice of performing a “low-level” task before a “high-level” downstream task, such as classification, despite theoretical principles like the data processing inequality and the overwhelming capabilities of modern deep neural networks? We presented a theoretical study of a binary classification setup, where we considered a “strong” classifier that is tightly connected to the optimal Bayes classifier (and converges to it), and yet, we constructed a pre-classification processing step that for any finite number of training samples provably improves the classification accuracy. We also provided both theoretical and empirical insights into various factors that affect the gains from such low-level processing. Finally, we demonstrated that the trends observed in four practical deep learning settings, where image denoising or encoding is applied before image classification, are consistent with those established by our theoretical study. Since our work shows the benefit of low-level tasks even when the classifier’s training and test data share the same distribution, it naturally suggests an even greater advantage in out-of-distribution scenarios. As directions for future research, it would be valuable to extend the theoretical analysis to high-level tasks beyond classification or to investigate non-linear low-level processing. Another interesting direction is to study the optimal low-level processing corresponding to a given high-level task.

Remark. In this paper, we used LLMs only to polish the writing.

REFERENCES

Christopher M Bishop. *Pattern recognition and machine learning*, volume 4. Springer, 2006.

Yuan Cao, Quanquan Gu, and Mikhail Belkin. Risk bounds for over-parameterized maximum margin classification on sub-gaussian mixtures. *Advances in Neural Information Processing Systems*, 34: 8407–8418, 2021.

540 Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
 541 minority over-sampling technique. *Journal of artificial intelligence research*, 16:321–357, 2002.
 542

543 Thomas M Cover. *Elements of information theory*. John Wiley & Sons, 1999.

544 Dengxin Dai, Yujian Wang, Yuhua Chen, and Luc Van Gool. Is image super-resolution helpful for
 545 other vision tasks? In *2016 IEEE Winter Conference on Applications of Computer Vision (WACV)*,
 546 pp. 1–9. IEEE, 2016.

547 Zeyu Deng, Abla Kammoun, and Christos Thrampoulidis. A model of double descent for high-
 548 dimensional binary linear classification. *Information and Inference: A Journal of the IMA*, 11(2):
 549 435–495, 2022.

550 William Feller. *An introduction to probability theory and its applications, Volume 2*, volume 2. John
 551 Wiley & Sons, 1991.

552 Keinosuke Fukunaga. *Introduction to statistical pattern recognition*. Elsevier, 2013.

553 Marylou Gabrié, Andre Manoel, Clément Luneau, Nicolas Macris, Florent Krzakala, Lenka Zde-
 554 borová, et al. Entropy and mutual information in models of deep neural networks. *Advances in
 555 neural information processing systems*, 31, 2018.

556 Ziv Goldfeld and Kristjan Greenewald. Sliced mutual information: A scalable measure of statistical
 557 dependence. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances
 558 in Neural Information Processing Systems*, 2021.

559 Muhammad Haris, Greg Shakhnarovich, and Norimichi Ukita. Task-driven super resolution: Object
 560 detection in low-resolution images. In *Neural Information Processing: 28th International Confer-
 561 ence, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part V 28*, pp.
 562 387–395. Springer, 2021.

563 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 564 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 565 pp. 770–778, 2016.

566 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
 567 corruptions and perturbations. In *International Conference on Learning Representations*, 2019.

568 Chen Huang, Yining Li, Chen Change Loy, and Xiaou Tang. Learning deep representation for
 569 imbalanced classification. In *Proceedings of the IEEE conference on computer vision and pattern
 570 recognition*, pp. 5375–5384, 2016.

571 Hong Jun Jeon and Benjamin Van Roy. An information-theoretic framework for deep learning.
 572 *Advances in Neural Information Processing Systems*, 35:3279–3291, 2022.

573 Steven M Kay. *Fundamentals of statistical signal processing: estimation theory*. Prentice-Hall, Inc.,
 574 1993.

575 Vignesh Kothapalli and Tom Tirer. Can kernel methods explain how the data affects neural
 576 collapse? *Transactions on Machine Learning Research*, 2025. ISSN 2835-8856. URL
 577 <https://openreview.net/forum?id=MoF1gYfI1Y>.

578 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

579 Sohyun Lee, Taeyoung Son, and Suha Kwak. Fifo: Learning fog-invariant features for foggy scene
 580 segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 581 Recognition*, pp. 18911–18921, 2022.

582 Chengyang Li, Heng Zhou, Yang Liu, Caidong Yang, Yongqiang Xie, Zhongbo Li, and Liping Zhu.
 583 Detection-friendly dehazing: Object detection in real-world hazy scenes. *IEEE Transactions on
 584 Pattern Analysis and Machine Intelligence*, 45(7):8284–8295, 2023.

585 Mingchen Li, Xuechen Zhang, Christos Thrampoulidis, Jiasi Chen, and Samet Oymak. Autobalance:
 586 Optimized loss functions for imbalanced data. *Advances in Neural Information Processing Systems*,
 587 34:3163–3177, 2021.

594 Ding Liu, Bihang Wen, Xianming Liu, Zhangyang Wang, and Thomas S Huang. When image
 595 denoising meets high-level vision tasks: A deep learning approach. In *27th International Joint*
 596 *Conference on Artificial Intelligence, IJCAI 2018*, pp. 842–848. International Joint Conferences on
 597 Artificial Intelligence, 2018.

598 Dong Liu, Haochen Zhang, and Zhiwei Xiong. On the classification-distortion-perception tradeoff.
 599 *Advances in Neural Information Processing Systems*, 32, 2019.

601 Wenquan Lu, Jiaqi Zhang, Hugues Van Assel, and Randall Balestriero. Ditch the denoiser: Emer-
 602 gence of noise robustness in self-supervised learning from data curriculum. *arXiv preprint*
 603 *arXiv:2505.12191*, 2025.

604 Yanting Pei, Yaping Huang, Qi Zou, Yuhang Lu, and Song Wang. Does haze removal help cnn-based
 605 image classification? In *Proceedings of the European conference on computer vision (ECCV)*, pp.
 606 682–697, 2018.

607 Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D
 608 Tracey, and David D Cox. On the information bottleneck theory of deep learning. *Journal of*
 609 *Statistical Mechanics: Theory and Experiment*, 2019(12):124020, 2019.

611 Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
 612 *arXiv preprint arXiv:1703.00810*, 2017.

614 Maneet Singh, Shruti Nagpal, Richa Singh, and Mayank Vatsa. Dual directed capsule network for
 615 very low resolution image recognition. In *Proceedings of the IEEE/CVF international conference*
 616 *on computer vision*, pp. 340–349, 2019.

617 Shakarim Soltanayev and Se Young Chun. Training deep learning based denoisers without ground
 618 truth data. *Advances in neural information processing systems*, 31, 2018.

620 Taeyoung Son, Juwon Kang, Namyup Kim, Sunghyun Cho, and Suha Kwak. Urie: Universal image
 621 enhancement for visual recognition in the wild. In *Computer Vision–ECCV 2020: 16th European*
 622 *Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16*, pp. 749–765. Springer,
 623 2020.

624 Charles M Stein. Estimation of the mean of a multivariate normal distribution. *The annals of Statistics*,
 625 pp. 1135–1151, 1981.

627 Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In *2015*
 628 *ieee information theory workshop (itw)*, pp. 1–5. Ieee, 2015.

629 Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
 630 shot learning. *Advances in neural information processing systems*, 29, 2016.

632 Ke Wang and Christos Thrampoulidis. Binary classification of gaussian mixtures: Abundance of
 633 support vectors, benign overfitting, and regularization. *SIAM Journal on Mathematics of Data*
 634 *Science*, 4(1):260–284, 2022.

636 QuanLin Wu, Hang Ye, Yuntian Gu, Huishuai Zhang, Liwei Wang, and Di He. Denoising masked
 637 autoencoders help robust classification. In *The Eleventh International Conference on Learning*
 638 *Representations*, 2023.

639 Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stewart, and Stefano Ermon. A theory of usable infor-
 640 mation under computational constraints. In *International Conference on Learning Representations*,
 641 2020.

642 Jonghwa Yim and Kyung-Ah Sohn. Enhancing the performance of convolutional neural networks
 643 on quality degraded datasets. In *2017 International Conference on Digital Image Computing:*
 644 *Techniques and Applications (DICTA)*, pp. 1–8. IEEE, 2017.

646 Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser:
 647 Residual learning of deep cnn for image denoising. *IEEE transactions on image processing*, 26(7):
 3142–3155, 2017.

648 Chong Zhou and Randy C Paffenroth. Anomaly detection with robust deep autoencoders. In
649 *Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data*
650 *mining*, pp. 665–674, 2017.

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A PROOFS
703704 A.1 EXISTING RESULTS
705706 Let us present a proof for Theorem 1, which is similar to a proof that can be found in an arXiv version
707 of (Liu et al., 2019), but better clarifies how the Markovianity is used.
708709 **Theorem 1.** *Let $y \rightarrow x \rightarrow z$ be a Markov chain where $y \in \{1, 2\}$ denotes the sample class. We have*

710
$$\mathbb{P}(c_{opt}(x) \neq y) \leq \mathbb{P}(\tilde{c}_{opt}(z) \neq y),$$

711

712 where c_{opt} and \tilde{c}_{opt} denote optimal Bayes classifiers.
713714
715 *Proof.* Let us denote by \mathcal{X}, \mathcal{Z} the supports of x, z , respectively, and by
716

717
$$P_1 := \mathbb{P}(y = 1), P_2 := \mathbb{P}(y = 2), \quad (15)$$

718

719 the prior probability for the binary label $y \in \{1, 2\}$. Let us also define:
720

721
$$p_{x_1}(\xi) := \mathbb{P}(x = \xi \mid y = 1), p_{x_2}(\xi) := \mathbb{P}(x = \xi \mid y = 2). \quad (16)$$

722

723 Now, from Eq. 15 and Eq. 16, the probability of error of the optimal Bayes classifier on x reads:
724

725
$$\begin{aligned} \mathbb{P}(c_{opt}(x) \neq y) &= \sum_{\xi \in \mathcal{X}} \min(P_1 p_{x_1}(\xi), P_2 p_{x_2}(\xi)) \\ 726 &= \frac{1}{2} - \frac{1}{2} \sum_{\xi \in \mathcal{X}} |P_1 p_{x_1}(\xi) - P_2 p_{x_2}(\xi)|. \end{aligned} \quad (17)$$

727
728
729

730 Similarly to Eq. 16, we define:
731

732
$$p_{z_1}(\zeta) := \mathbb{P}(z = \zeta \mid y = 1), p_{z_2}(\zeta) := \mathbb{P}(z = \zeta \mid y = 2). \quad (18)$$

733

734 From Eq. 15 and Eq. 18, the probability of error of the optimal Bayes classifier on z reads:
735

736
$$\begin{aligned} \mathbb{P}(\tilde{c}_{opt}(z) \neq y) &= \sum_{\zeta \in \mathcal{Z}} \min(P_1 p_{z_1}(\zeta), P_2 p_{z_2}(\zeta)) \\ 737 &= \frac{1}{2} - \frac{1}{2} \sum_{\zeta \in \mathcal{Z}} |P_1 p_{z_1}(\zeta) - P_2 p_{z_2}(\zeta)|. \end{aligned} \quad (19)$$

738
739
740

741 From Eq. 18 and the Markov assumption, we expand:
742

743
$$\begin{aligned} p_{z_i}(\zeta) &= \mathbb{P}(z = \zeta \mid y = i) = \sum_{\xi \in \mathcal{X}} \mathbb{P}(z = \zeta, x = \xi \mid y = i) \\ 744 &= \sum_{\xi \in \mathcal{X}} \mathbb{P}(z = \zeta \mid x = \xi, y = i) \mathbb{P}(x = \xi \mid y = i) \\ 745 &= \sum_{\xi \in \mathcal{X}} \mathbb{P}(z = \zeta \mid x = \xi) \mathbb{P}(x = \xi \mid y = i) \\ 746 &= \sum_{\xi \in \mathcal{X}} p_{z|x}(\zeta \mid \xi) p_{x_i}(\xi). \end{aligned} \quad (20)$$

747
748
749
750
751
752

753 The key step is the fourth equality, which eliminates the dependence on y in the first factor of the
754 summand. We also denote
755

$$p_{z|x}(\zeta \mid \xi) := \mathbb{P}(z = \zeta \mid x = \xi).$$

By substituting Eq. 20 into Eq. 19, we get:

$$\begin{aligned}
\mathbb{P}(\tilde{c}_{opt}(z) \neq y) &= \frac{1}{2} - \frac{1}{2} \sum_{\zeta \in \mathcal{Z}} |P_1 p_{z_1}(\zeta) - P_2 p_{z_2}(\zeta)| \\
&= \frac{1}{2} - \frac{1}{2} \sum_{\zeta \in \mathcal{Z}} \left| \sum_{\xi \in \mathcal{X}} P_1 p_{z|x}(\zeta | \xi) p_{x_1}(\xi) - P_2 p_{z|x}(\zeta | \xi) p_{x_2}(\xi) \right| \\
&\geq \frac{1}{2} - \frac{1}{2} \sum_{\zeta \in \mathcal{Z}} \sum_{\xi \in \mathcal{X}} p_{z|x}(\zeta | \xi) \cdot |P_1 p_{x_1}(\xi) - P_2 p_{x_2}(\xi)| \\
&= \frac{1}{2} - \frac{1}{2} \sum_{\xi \in \mathcal{X}} \sum_{\zeta \in \mathcal{Z}} p_{z|x}(\zeta | \xi) \cdot |P_1 p_{x_1}(\xi) - P_2 p_{x_2}(\xi)| \\
&= \frac{1}{2} - \frac{1}{2} \sum_{\xi \in \mathcal{X}} \left(|P_1 p_{x_1}(\xi) - P_2 p_{x_2}(\xi)| \cdot \sum_{\zeta \in \mathcal{Z}} p_{z|x}(\zeta | \xi) \right) \\
&= \frac{1}{2} - \frac{1}{2} \sum_{\xi \in \mathcal{X}} |P_1 p_{x_1}(\xi) - P_2 p_{x_2}(\xi)| \\
&= \mathbb{P}(c_{opt}(x) \neq y).
\end{aligned} \tag{21}$$

1

Let us now present a theorem that will be utilized in the proof of Theorem 2.

Theorem 9 (Generalized Berry-Esseen Theorem, (Feller, 1991)). *Let X_1, X_2, \dots, X_d be independent random variables with:*

- *Means* $\eta_i = \mathbb{E}[X_i]$.
- *Variances* $\xi_i^2 = \text{Var}(X_i)$.
- *Third absolute moments* $\rho_i = \mathbb{E} \left[|X_i - \eta_i|^3 \right]$.

Define the normalized sum:

$$S_d = \frac{1}{\sqrt{\sum_{i=1}^d \xi_i^2}} \sum_{i=1}^d (X_i - \eta_i).$$

Then, there exists an absolute constant $C_0 > 0$ independent of d such that,

$$\sup_{x \in \mathbb{R}} |\mathbb{P}(S_d > x) - \mathcal{Q}(x)| \leq \frac{C_0 \sum_{i=1}^d \rho_i}{\left(\sum_{i=1}^d \xi_i^2\right)^{\frac{3}{2}}}.$$

In the following subsections, we present the proofs of Theorems 2, 3, 4, 5, 6, 7, 8.

A.2 PROOF OF THEOREM 2

Proof. The probability of error is

$$\begin{aligned}
p_{\mathbf{x}}(\text{error}) &= \mathbb{P}(\hat{c}(\mathbf{x}) \neq y) = \pi_1 \cdot \mathbb{P}(\hat{c}(\mathbf{x}) = 2 \mid y = 1) + \pi_2 \cdot \mathbb{P}(\hat{c}(\mathbf{x}) = 1 \mid y = 2) \\
&= \frac{1}{2} \cdot \mathbb{P}(\hat{c}(\mathbf{x}) = 2 \mid y = 1) + \frac{1}{2} \cdot \mathbb{P}(\hat{c}(\mathbf{x}) = 1 \mid y = 2) \\
&= \frac{1}{2} \cdot q(1, 2) + \frac{1}{2} \cdot q(2, 1)
\end{aligned} \tag{22}$$

810 where we used the assumption of a uniform prior and defined
811

$$812 \quad q(i, j) = \mathbb{P}(\hat{c}(\mathbf{x}) = j \mid y = i). \quad (23)$$

813 Following Eq. 6, the first conditional probability of error $q(1, 2)$ reads:
814

$$\begin{aligned} 815 \quad q(1, 2) &= \mathbb{P}\left(\|\mathbf{x} - \hat{\mu}_2\|^2 < \|\mathbf{x} - \hat{\mu}_1\|^2 \mid y = 1\right) \\ 816 &= \mathbb{P}\left((\mathbf{x} - \hat{\mu}_2)^\top(\mathbf{x} - \hat{\mu}_2) < (\mathbf{x} - \hat{\mu}_1)^\top(\mathbf{x} - \hat{\mu}_1) \mid y = 1\right) \\ 817 &= \mathbb{P}\left(\mathbf{x}^\top \mathbf{x} - \mathbf{x}^\top \hat{\mu}_2 - \hat{\mu}_2^\top \mathbf{x} + \hat{\mu}_2^\top \hat{\mu}_2 < \mathbf{x}^\top \mathbf{x} - \mathbf{x}^\top \hat{\mu}_1 - \hat{\mu}_1^\top \mathbf{x} + \hat{\mu}_1^\top \hat{\mu}_1 \mid y = 1\right) \\ 818 &= \mathbb{P}\left(-2\hat{\mu}_2^\top \mathbf{x} + \|\hat{\mu}_2\|^2 < -2\hat{\mu}_1^\top \mathbf{x} + \|\hat{\mu}_1\|^2 \mid y = 1\right) \\ 819 &= \mathbb{P}\left(2(\hat{\mu}_2 - \hat{\mu}_1)^\top \mathbf{x} > \|\hat{\mu}_2\|^2 - \|\hat{\mu}_1\|^2 \mid y = 1\right) \\ 820 &= \mathbb{P}\left((\hat{\mu}_2 - \hat{\mu}_1)^\top \mathbf{x} > \frac{\|\hat{\mu}_2\|^2 - \|\hat{\mu}_1\|^2}{2} \mid y = 1\right) \\ 821 &= \mathbb{P}\left((\hat{\mu}_2 - \hat{\mu}_1)^\top \mathbf{x} - \frac{\|\hat{\mu}_2\|^2 - \|\hat{\mu}_1\|^2}{2} > 0 \mid y = 1\right) \\ 822 &= \mathbb{P}(w > 0 \mid y = 1) \\ 823 & \end{aligned} \quad (24)$$

824 where we defined
825

$$826 \quad w = (\hat{\mu}_2 - \hat{\mu}_1)^\top \mathbf{x} - \frac{1}{2} \left(\|\hat{\mu}_2\|^2 - \|\hat{\mu}_1\|^2 \right). \quad (25)$$

827 Let us define
828

$$829 \quad y_i = (\hat{\mu}_2)_i \cdot x_i - (\hat{\mu}_1)_i \cdot x_i - \frac{1}{2} \cdot (\hat{\mu}_2)_i^2 + \frac{1}{2} \cdot (\hat{\mu}_1)_i^2. \quad (26)$$

830 Thus,
831

$$832 \quad w = \sum_{i=1}^d y_i. \quad (27)$$

833 In total, from Eq. 24, Eq. 27, it follows that:
834

$$835 \quad q(1, 2) = \mathbb{P}\left(\sum_{i=1}^d y_i > 0 \mid y = 1\right). \quad (28)$$

836 The setup of our theoretical investigation clearly implies that the random variables $\{y_i\}_{i=1}^d$, defined
837 in Eq. 26, are independent, and thus we can apply Theorem 9. Let us now compute the following
838 expressions, that will be crucial when applying Theorem 9:
839

840 1.

$$841 \quad \eta_i := \mathbb{E}[y_i] \quad (29)$$

842 2.

$$843 \quad \xi_i^2 := \text{Var}(y_i) \quad (30)$$

844 3.

$$845 \quad \rho_i := \mathbb{E}\left[|y_i - \eta_i|^3\right] \quad (31)$$

846 Note that:
847

$$848 \quad \hat{\mu}_j \sim \mathcal{N}\left(\mu_j, \frac{\sigma^2}{N_j} \mathbf{I}_d\right).$$

849 Thus, given equations Eq. 3, Eq. 4, for each $1 \leq i \leq d$, we have:
850

$$851 \quad p_{j,i} := (\hat{\mu}_j)_i \sim \mathcal{N}\left((\mu_j)_i, \frac{\sigma^2}{N_j}\right), \quad x_i \mid y = 1 \sim \mathcal{N}(-\mu_i, \sigma^2) \quad (32)$$

864 and from Eq. 26, it follows that:
 865

$$866 \quad y_i = p_{2,i}x_i - p_{1,i}x_i - \frac{1}{2}p_{2,i}^2 + \frac{1}{2}p_{1,i}^2 \quad (33)$$

868 where from Eq. 4, Eq. 32, we have:
 869

$$870 \quad p_{2,i} \sim \mathcal{N}\left(\mu_i, \frac{\sigma^2}{N_2}\right), p_{1,i} \sim \mathcal{N}\left(-\mu_i, \frac{\sigma^2}{N_1}\right). \quad (34)$$

872 For every $1 \leq i \leq d$, let us define the following random variables:
 873

$$874 \quad a_i := (p_{2,i} - p_{1,i}) \cdot x_i, b_i := p_{2,i}^2 - p_{1,i}^2. \quad (35)$$

876 Thus, from Eq. 33, it follows that:
 877

$$878 \quad y_i = a_i - \frac{1}{2}b_i. \quad (36)$$

879 We first compute $\eta_i = \mathbb{E}[y_i]$: From Eq. 36, it follows that:
 880

$$881 \quad \eta_i = \mathbb{E}[y_i] = \mathbb{E}[a_i] - \frac{1}{2}\mathbb{E}[b_i]. \quad (37)$$

883 We now compute each expectation separately. From Eq. 32, Eq. 34, and the assumption of independence, it follows that:
 884

$$885 \quad \begin{aligned} \mathbb{E}[a_i] &= \mathbb{E}[p_{2,i}x_i] - \mathbb{E}[p_{2,i}x_i] \\ &= \mathbb{E}[p_{2,i}] \cdot \mathbb{E}[x_i] - \mathbb{E}[p_{1,i}] \cdot \mathbb{E}[x_i] \\ &= -\mu_i^2 - \mu_i^2 \\ &= -2\mu_i^2 \end{aligned} \quad (38)$$

890 and

$$891 \quad \begin{aligned} \mathbb{E}[b_i] &= \mathbb{E}[p_{2,i}^2] - \mathbb{E}[p_{1,i}^2] \\ &= \left(\frac{\sigma^2}{N_2} + \mu_i^2\right) - \left(\frac{\sigma^2}{N_1} + \mu_i^2\right) \\ &= \sigma^2 \left(\frac{1}{\gamma N} - \frac{1}{N}\right) \\ &= \frac{1-\gamma}{\gamma} \cdot \frac{\sigma^2}{N}. \end{aligned} \quad (39)$$

900 Thus, from Eq. 37, Eq. 38, Eq. 39, we have:

$$901 \quad \eta_i = -2\mu_i^2 - \frac{1}{2} \cdot \frac{1-\gamma}{\gamma} \cdot \frac{\sigma^2}{N} = -\left(2\mu_i^2 + \frac{1-\gamma}{\gamma} \cdot \frac{\sigma^2}{2N}\right). \quad (40)$$

904 We now compute $\xi_i^2 = \text{Var}(y_i)$: From Eq. 36, we have:
 905

$$906 \quad \xi_i^2 = \text{Var}(y_i) = \text{Var}(a_i) + \frac{1}{4} \cdot \text{Var}(b_i) - \text{Cov}(a_i, b_i). \quad (41)$$

909 We now compute each piece separately, starting from $\text{Var}(a_i)$. From equations Eq. 32, Eq. 34, Eq. 35, Eq. 38, it follows that:
 910

$$911 \quad \begin{aligned} \text{Var}(a_i) &= \mathbb{E}[a_i^2] - \mathbb{E}[a_i]^2 \\ &= \mathbb{E}\left[(p_{2,i} - p_{1,i})^2\right] \cdot \mathbb{E}[x_i^2] - 4\mu_i^4 \\ &= \left(\frac{1+\gamma}{\gamma} \cdot \frac{\sigma^2}{N} + 4\mu_i^2\right) \cdot (\sigma^2 + \mu_i^2) - 4\mu_i^4 \\ &= \frac{1+\gamma}{\gamma} \cdot \frac{\sigma^4}{N} + \mu_i^2 \cdot \left(\frac{1+\gamma}{\gamma} \cdot \frac{\sigma^2}{N} + 4\sigma^2\right) \end{aligned} \quad (42)$$

918 where we used the statistical independence between $p_{2,i}, p_{1,i}$ and Eq. 34, to conclude that:
 919

$$920 \quad 921 \quad p_{2,i} - p_{1,i} \sim \mathcal{N} \left(2\mu_i, \frac{\sigma^2}{N_1} + \frac{\sigma^2}{N_2} \right) \Rightarrow p_{2,i} - p_{1,i} \sim \mathcal{N} \left(2\mu_i, \frac{1+\gamma}{\gamma} \cdot \frac{\sigma^2}{N} \right). \quad (43)$$

923 We now compute $\text{Var}(b_i)$. From equations Eq. 34, Eq. 35, and the statistical independence between
 924 $p_{2,i}, p_{1,i}$, it follows that:
 925

$$926 \quad 927 \quad \text{Var}(b_i) = \text{Var}(p_{2,i}^2 - p_{1,i}^2) \\ 928 \quad = \text{Var}(p_{2,i}^2) + \text{Var}(p_{1,i}^2) \\ 929 \quad = \frac{2\sigma^2}{N_2} \left(\frac{\sigma^2}{N_2} + 2\mu_i^2 \right) + \frac{2\sigma^2}{N_1} \left(\frac{\sigma^2}{N_1} + 2\mu_i^2 \right) \\ 930 \quad = \frac{2\sigma^4}{\gamma^2 N^2} + \frac{4\sigma^2 \mu_i^2}{\gamma N} + \frac{2\sigma^4}{N^2} + \frac{4\sigma^2 \mu_i^2}{N} \\ 931 \quad = \frac{1+\gamma^2}{\gamma^2} \cdot \frac{2\sigma^4}{N^2} + \frac{1+\gamma}{\gamma} \cdot \frac{4\sigma^2 \mu_i^2}{N} \quad (44)$$

936 where we used the fact that if $x \sim \mathcal{N}(\mu_x, \sigma_x^2)$, then
 937

$$938 \quad 939 \quad \text{Var}(x^2) = \mathbb{E}[x^4] - \mathbb{E}[x^2]^2 \\ 940 \quad = (3\sigma_x^4 + 6\sigma_x^2 \mu_x^2 + \mu_x^4) - (\sigma_x^2 + \mu_x^2)^2 \\ 941 \quad = (3\sigma_x^4 + 6\sigma_x^2 \mu_x^2 + \mu_x^4) - (\sigma_x^4 + 2\sigma_x^2 \mu_x^2 + \mu_x^4) \\ 942 \quad = 2\sigma_x^4 + 4\sigma_x^2 \mu_x^2 \\ 943 \quad = 2\sigma_x^2 \cdot (\sigma_x^2 + 2\mu_x^2). \\ 944$$

946 Finally, we compute $\text{Cov}(a_i, b_i)$. From equations Eq. 32, Eq. 34, Eq. 35, Eq. 38, Eq. 39, it follows
 947 that:
 948

$$949 \quad \text{Cov}(a_i, b_i) = \mathbb{E}[a_i b_i] - \mathbb{E}[a_i] \cdot \mathbb{E}[b_i] \\ 950 \quad = \mathbb{E}[(p_{2,i} - p_{1,i})(p_{2,i}^2 - p_{1,i}^2) \cdot \mathbf{x}_i] + \frac{1-\gamma}{\gamma} \cdot \frac{2\sigma^2 \mu_i^2}{N} \\ 951 \quad = (\mathbb{E}[p_{2,i}^3] - \mathbb{E}[p_{2,i}] \cdot \mathbb{E}[p_{1,i}^2] - \mathbb{E}[p_{1,i}] \cdot \mathbb{E}[p_{2,i}^2] + \mathbb{E}[p_{1,i}^3]) \cdot \mathbb{E}[\mathbf{x}_i] + \frac{1-\gamma}{\gamma} \cdot \frac{2\sigma^2 \mu_i^2}{N} \\ 952 \quad = -\mu_i \cdot \left(\left(\mu_i^3 + 3\mu_i \cdot \frac{\sigma^2}{N_2} \right) - \mu_i \cdot \left(\frac{\sigma^2}{N_1} + \mu_i^2 \right) + \mu_i \cdot \left(\frac{\sigma^2}{N_2} + \mu_i^2 \right) - \left(\mu_i^3 + 3\mu_i \cdot \frac{\sigma^2}{N_1} \right) \right) \\ 953 \quad + \frac{1-\gamma}{\gamma} \cdot \frac{2\sigma^2 \mu_i^2}{N} \\ 954 \quad = -\mu_i \cdot \left(4\mu_i \cdot \frac{\sigma^2}{\gamma N} - 4\mu_i \cdot \frac{\sigma^2}{N} \right) + \frac{1-\gamma}{\gamma} \cdot \frac{2\sigma^2 \mu_i^2}{N} \\ 955 \quad = \frac{4\sigma^2 \mu_i^2}{N} - \frac{4\sigma^2 \mu_i^2}{\gamma N} + \frac{1-\gamma}{\gamma} \cdot \frac{2\sigma^2 \mu_i^2}{N} \\ 956 \quad = -\frac{1-\gamma}{\gamma} \cdot \frac{4\sigma^2 \mu_i^2}{N} + \frac{1-\gamma}{\gamma} \cdot \frac{2\sigma^2 \mu_i^2}{N} \\ 957 \quad = -\frac{1-\gamma}{\gamma} \cdot \frac{2\sigma^2 \mu_i^2}{N} \quad (45)$$

958 where we used the fact that if $x \sim \mathcal{N}(\mu_x, \sigma_x^2)$, then
 959

$$960 \quad \mathbb{E}[x^3] = \mu_x^3 + 3\mu_x \sigma_x^2. \quad (46)$$

Thus, from equations Eq. 41, Eq. 42, Eq. 44, Eq. 45, it follows that:

$$\begin{aligned}
\xi_i^2 &= \frac{1+\gamma}{\gamma} \cdot \frac{\sigma^4}{N} + \mu_i^2 \cdot \left(\frac{1+\gamma}{\gamma} \cdot \frac{\sigma^2}{N} + 4\sigma^2 \right) \\
&+ \frac{1}{4} \cdot \left(\frac{1+\gamma^2}{\gamma^2} \cdot \frac{2\sigma^4}{N^2} + \frac{1+\gamma}{\gamma} \cdot \frac{4\sigma^2\mu_i^2}{N} \right) + \frac{1-\gamma}{\gamma} \cdot \frac{2\sigma^2\mu_i^2}{N} \\
&= \frac{1+\gamma}{\gamma} \cdot \frac{\sigma^4}{N} + \frac{1+\gamma^2}{\gamma^2} \cdot \frac{\sigma^4}{2N^2} + \mu_i^2 \left(\frac{1+\gamma}{\gamma} \cdot \frac{2\sigma^2}{N} + \frac{1-\gamma}{\gamma} \cdot \frac{2\sigma^2}{N} + 4\sigma^2 \right) \quad (47) \\
&= \sigma^2 \left(\frac{1+\gamma}{\gamma} \cdot \frac{\sigma^2}{N} + \frac{1+\gamma^2}{2\gamma^2} \cdot \frac{\sigma^2}{N^2} + 4\mu_i^2 \left(1 + \frac{1+\gamma}{2\gamma} \cdot \frac{1}{N} + \frac{1-\gamma}{2\gamma} \cdot \frac{1}{N} \right) \right) \\
&= \sigma^2 \left(\frac{1+\gamma}{\gamma} \cdot \frac{\sigma^2}{N} + \frac{1+\gamma^2}{2\gamma^2} \cdot \frac{\sigma^2}{N^2} + 4\mu_i^2 \left(1 + \frac{1}{\gamma N} \right) \right).
\end{aligned}$$

We get the following lower bound:

$$\xi_i^2 \geq D := \frac{\sigma^4}{N} \cdot \left(\frac{1+\gamma}{\gamma} + \frac{1+\gamma^2}{2\gamma^2} \cdot \frac{1}{N} \right). \quad (48)$$

Finally, we compute $\rho_i = \mathbb{E} [|y_i - \eta_i|^3]$: We will show that ρ_i is globally bounded. We first note the following inequality, which holds for any real-valued random variable x with $\mathbb{E}[x^4] < \infty$:

$$\mathbb{E} \left[|x|^3 \right] \leq \left(\mathbb{E} \left[x^4 \right] \right)^{\frac{3}{4}}.$$

This is a consequence of Lyapunov's inequality. Setting $x = y_i - \mu_i$ yields the following upper bound:

$$\rho_i = \mathbb{E} \left[|y_i - \eta_i|^3 \right] \leq \left(\mathbb{E} \left[(y_i - \eta_i)^4 \right] \right)^{\frac{3}{4}}. \quad (49)$$

We now expand:

$$(y_i - \eta_i)^4 = y_i^4 - 4y_i^3\eta_i + 6y_i^2\eta_i^2 - 4y_i\eta_i^3 + \eta_i^4$$

which, from Eq. 49, implies that:

$$\begin{aligned}
\rho_i &\leq (\mathbb{E}[y_i^4] - 4\eta_i \cdot \mathbb{E}[y_i^3] + 6\eta_i^2 \cdot \mathbb{E}[y_i^2] - 4\eta_i^3 \cdot \mathbb{E}[y_i] + \eta_i^4)^{\frac{3}{4}} \\
&= (\mathbb{E}[y_i^4] - 4\eta_i \cdot \mathbb{E}[y_i^3] + 6\eta_i^2 \cdot (\text{Var}(y_i) + \mathbb{E}[y_i]^2) - 3\eta_i^4)^{\frac{3}{4}} \\
&= (\mathbb{E}[y_i^4] - 4\eta_i \cdot \mathbb{E}[y_i^3] + 6\eta_i^2 \cdot (\xi_i^2 + \eta_i^2) - 3\eta_i^4)^{\frac{3}{4}} \\
&= (\mathbb{E}[y_i^4] - 4\eta_i \cdot \mathbb{E}[y_i^3] + 6\eta_i^2 \xi_i^2 + 3\eta_i^4)^{\frac{3}{4}}
\end{aligned} \tag{50}$$

where we used the definitions $\xi_i^2 = \text{Var}(y_i)$, $\eta_i = \mathbb{E}[y_i]$. It is now left to compute

$$\chi_i \coloneqq \mathbb{E}[y_i^4], \delta_i \coloneqq \mathbb{E}[y_i^3] \quad (51)$$

which implies from Eq. 50 that

$$\rho_i \leq (\chi_i - 4\delta_i\eta_i + 6\xi_i^2\eta_i^2 + 3\eta_i^4)^{\frac{3}{4}}. \quad (52)$$

Let $f \in \{n, \xi^2, \delta, \gamma\}$. We argue that for all $1 \leq i \leq d$:

$$f_i = \sum_{k=0}^{q(i,f)} c_k(i, f) \cdot \mu_i^k \quad (53)$$

where $q(i, f) \in \mathbb{N}$ and the constants $\{c_k(i, f)\}_{k=0}^{q(i, f)}$ don't depend on d . We already saw that η_i, ξ_i follows that structure in equations Eq. 40, Eq. 41.

We now compute δ_i . From Eq. 36, it follows that:

$$\begin{aligned}\delta_i &= \mathbb{E} \left[\left(a_i - \frac{1}{2} b_i \right)^3 \right] \\ &= \mathbb{E} [a_i^3] - \frac{3}{2} \mathbb{E} [a_i^2 b_i] + \frac{3}{4} \mathbb{E} [a_i b_i^2] - \frac{1}{8} \mathbb{E} [b_i^3]\end{aligned}\tag{54}$$

we now compute each part separately, starting with $\mathbb{E}[a_i^3]$. From equations Eq. 32, Eq. 35, and the assumption of independence, it follows that:

$$\begin{aligned}
 \mathbb{E}[a_i^3] &= \mathbb{E}[(p_{2,i} - p_{1,i})^3 \cdot x_i^3] \\
 &= \mathbb{E}[(p_{2,i} - p_{1,i})^3] \cdot \mathbb{E}[x_i^3] \\
 &= \left(8\mu_i^3 + 6\mu_i \cdot \frac{1+\gamma}{\gamma} \cdot \frac{\sigma^2}{N}\right) (-\mu_i^3 - 3\mu_i\sigma^2) \\
 &= -\mu_i^2 \left(8\mu_i^2 + \frac{6(1+\gamma)}{\gamma} \cdot \frac{\sigma^2}{N}\right) (\mu_i^2 + 3\sigma^2)
 \end{aligned} \tag{55}$$

which is a polynomial in μ_i with real coefficients. The other expressions are computed similarly, and they all have the form as in Eq. 53. We now turn to the assumption that

$$\exists_{M \geq 0} \forall_{d \in \mathbb{N}} \forall_{1 \leq i \leq d} |\mu_i| \leq M \tag{56}$$

and thus for each $f \in \mathcal{F} := \{\eta, \xi^2, \delta, \chi\}$ and for all $1 \leq i \leq d$, from the triangle inequality, it follows that:

$$\begin{aligned}
 |f_i| &\leq \sum_{k=0}^{q(i,f)} |c_k(i,f)| \cdot |\mu_i|^k \leq \sum_{k=0}^{q(i,f)} |c_k(i,f)| \cdot M^k \\
 &\leq \sum_{k=0}^{\max_{f \in \mathcal{F}} q(i,f)} \max_{f \in \mathcal{F}} |c_k(i,f)| \cdot M^k \\
 &\leq \max_{1 \leq i \leq d} \sum_{k=0}^{\max_{f \in \mathcal{F}} q(i,f)} \max_{f \in \mathcal{F}} |c_k(i,f)| \cdot M^k
 \end{aligned} \tag{57}$$

where we define $c_k(i,f) = 0$ for all $k > q(i,f)$. Let us denote

$$L := \max_{1 \leq i \leq d} \sum_{k=0}^{\max_{f \in \mathcal{F}} q(i,f)} \max_{f \in \mathcal{F}} |c_k(i,f)| \cdot M^k. \tag{58}$$

Thus, from Eq. 57, we have:

$$\forall_{f \in \mathcal{F}} \forall_{1 \leq i \leq d} |f_i| \leq L. \tag{59}$$

Now, L is independent of i (because we took the maximum over all possible $1 \leq i \leq d$) and d (because the degree q and the coefficients c will never depend directly on d , because σ doesn't depend on d). We thus showed that the absolute value of each relevant moment is upper bounded by a global value $L \geq 0$ that is independent of i and d . Thus, from Eq. 52, Eq. 59, it follows that:

$$\begin{aligned}
 \rho_i &\leq (|\chi_i - 4\delta_i\eta_i + 6\xi_i^2\eta_i^2 + 3\eta_i^4|)^{\frac{3}{4}} \\
 &\leq (|\chi_i| + 4|\delta_i||\eta_i| + 6\xi_i^2\eta_i^2 + 3\eta_i^4)^{\frac{3}{4}} \\
 &\leq (L + 4L^2 + 6L^4 + 3L^4)^{\frac{3}{4}} \\
 &= (9L^4 + 4L^2 + L)^{\frac{3}{4}}.
 \end{aligned}$$

Let us now denote $C = (9L^4 + 4L^2 + L)^{\frac{3}{4}}$, where $L \geq 0$ is defined in Eq. 58. Thus, $C \geq 0$ is independent of both i and d , and

$$\forall_{1 \leq i \leq d} \rho_i \leq C.$$

When combining this result with Eq. 48, we get that there exists some $C \geq 0, D > 0$ that doesn't depend on i or d such that

$$\rho_i \leq C, \xi_i^2 \geq D.$$

Thus,

$$\frac{\sum_{i=1}^d \rho_i}{\left(\sum_{i=1}^d \xi_i^2\right)^{\frac{3}{2}}} \leq \frac{\sum_{i=1}^d C}{\left(\sum_{i=1}^d D\right)^{\frac{3}{2}}} \leq \frac{C}{D^{\frac{3}{2}}\sqrt{d}}. \tag{60}$$

1080 We have verified that the conditions of Theorem 9 are satisfied, and thus, there exists some $C_0 > 0$
 1081 independent of d such that for all $x \in \mathbb{R}$
 1082

$$1083 \left| \mathbb{P} \left(\frac{1}{\sqrt{\sum_{i=1}^d \xi_i^2}} \sum_{i=1}^d (y_i - \eta_i) > x \mid y = 1 \right) - \mathcal{Q}(x) \right| \leq \frac{C_0 \sum_{i=1}^d \rho_i}{\left(\sum_{i=1}^d \xi_i^2 \right)^{\frac{3}{2}}} \leq \frac{A}{\sqrt{d}}$$

1087
 1088 where we used Eq. 60, and denoted $A = \frac{C_0 C}{D^{\frac{3}{2}}} \geq 0$. Now, $q(1, 2)$, which is defined in Eq. 28, reads:
 1089

$$1090 \begin{aligned} q(1, 2) &= \mathbb{P} \left(\sum_{i=1}^d y_i > 0 \mid y = 1 \right) \\ 1091 &= \mathbb{P} \left(\sum_{i=1}^d (y_i - \eta_i) > -\sum_{i=1}^d \eta_i \mid y = 1 \right) \\ 1092 &= \mathbb{P} \left(\frac{1}{\sqrt{\sum_{i=1}^d \xi_i^2}} \sum_{i=1}^d (y_i - \eta_i) > -\frac{\sum_{i=1}^d \eta_i}{\sqrt{\sum_{i=1}^d \xi_i^2}} \mid y = 1 \right) \\ 1093 &= \mathcal{Q} \left(-\frac{\sum_{i=1}^d \eta_i}{\sqrt{\sum_{i=1}^d \xi_i^2}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right) \\ 1094 &= \mathcal{Q} \left(\frac{\sum_{i=1}^d \left(2\mu_i^2 + \frac{1-\gamma}{\gamma} \cdot \frac{\sigma^2}{2N} \right)}{\sqrt{\sum_{i=1}^d \sigma^2 \left(\frac{1+\gamma}{\gamma} \cdot \frac{\sigma^2}{N} + \frac{1+\gamma^2}{2\gamma^2} \cdot \frac{\sigma^2}{N^2} + 4\mu_i^2 \left(1 + \frac{1}{\gamma N} \right) \right)}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right) \\ 1095 &= \mathcal{Q} \left(\frac{2 \|\mu\|^2 + \frac{d}{2N} \cdot \frac{1-\gamma}{\gamma} \cdot \sigma^2}{\sqrt{\sigma^2 \cdot \left(\left(\frac{1+\gamma}{\gamma} \cdot \frac{\sigma^2}{N} + \frac{1+\gamma^2}{2\gamma^2} \cdot \frac{\sigma^2}{N^2} \right) d + 4 \left(1 + \frac{1}{\gamma N} \right) \|\mu\|^2 \right)}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right) \\ 1096 &= \mathcal{Q} \left(\frac{\|\mu\| + \frac{d}{4N} \cdot \frac{1-\gamma}{\gamma} \cdot \frac{\sigma^2}{\|\mu\|}}{\sigma \cdot \sqrt{\left(\frac{1}{4N} \cdot \frac{1+\gamma}{\gamma} \cdot \left(\frac{\sigma}{\|\mu\|} \right)^2 + \frac{1}{8N^2} \cdot \frac{1+\gamma^2}{\gamma^2} \cdot \left(\frac{\sigma}{\|\mu\|} \right)^2 \right) \cdot d + \left(1 + \frac{1}{\gamma N} \right)}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right) \\ 1097 &= \mathcal{Q} \left(\frac{\frac{\|\mu\|}{\sigma} + \frac{d}{4N} \cdot \frac{1-\gamma}{\gamma} \cdot \frac{\sigma}{\|\mu\|}}{\sqrt{\left(\frac{1}{4N} \cdot \frac{1+\gamma}{\gamma} \cdot \left(\frac{\sigma}{\|\mu\|} \right)^2 + \frac{1}{8N^2} \cdot \frac{1+\gamma^2}{\gamma^2} \cdot \left(\frac{\sigma}{\|\mu\|} \right)^2 \right) \cdot d + \left(1 + \frac{1}{\gamma N} \right)}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right). \end{aligned} \tag{61}$$

1124 We now revisit Eq. 5:
 1125

$$1126 \mathcal{S} = \left(\frac{\|\mu\|}{\sigma} \right)^2.$$

1129 Thus, from Eq. 61, $q(1, 2)$ reads:
 1130

$$1131 \begin{aligned} q(1, 2) &= \mathcal{Q} \left(\frac{\sqrt{\mathcal{S}} + \frac{1}{4N} \cdot \frac{1-\gamma}{\gamma} \cdot \frac{d}{\sqrt{\mathcal{S}}}}{\sqrt{\frac{1}{4N} \cdot \frac{1+\gamma}{\gamma} \cdot \frac{d}{\mathcal{S}} + \frac{1}{8N^2} \cdot \frac{1+\gamma^2}{\gamma^2} \cdot \frac{d}{\mathcal{S}} + \frac{1}{\gamma N} + 1}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right). \end{aligned} \tag{62}$$

1134 We now compute $q(2, 1)$. Similarly to the computation of $q(1, 2)$, we have:
 1135

$$\begin{aligned}
 1136 \quad q(2, 1) &= \mathbb{P}(\hat{c}(\mathbf{x}) = 1 \mid y = 2) \\
 1137 &= \mathbb{P}\left((\hat{\mu}_2 - \hat{\mu}_1)^\top \mathbf{x} < \frac{\|\hat{\mu}_2\|^2 - \|\hat{\mu}_1\|^2}{2} \mid y = 2\right) \\
 1138 &= \mathbb{P}(w < 0 \mid y = 2) \\
 1139 &= \mathbb{P}\left(\sum_{i=1}^d y_i < 0 \mid y = 2\right)
 \end{aligned} \tag{63}$$

1140 where the random variables $\{y_i\}_{i=1}^d$ are defined in Eq. 33. The new conditional distribution of x_i is:
 1141

$$\forall 1 \leq i \leq d \quad x_i \mid y = 2 \sim \mathcal{N}(\mu_i, \sigma^2). \tag{64}$$

1142 We first compute $\eta_i = \mathbb{E}[y_i]$. It is easy to verify from Eq. 37, Eq. 38, Eq. 39, Eq. 64, that η_i is given
 1143 by:
 1144

$$\eta_i = 2\mu_i^2 - \frac{1-\gamma}{\gamma} \cdot \frac{\sigma^2}{2N}. \tag{65}$$

1145 We now compute $\xi_i^2 = \text{Var}(y_i)$. It still has three components, as in Eq. 41. It is easy to see from
 1146 Eq. 44 that $\text{Var}(b_i)$ remains unchanged because it doesn't depend on the conditional distribution of
 1147 x_i . Thus,
 1148

$$\text{Var}(b_i) = \frac{1+\gamma^2}{\gamma^2} \cdot \frac{2\sigma^4}{N^2} + \frac{1+\gamma}{\gamma} \cdot \frac{4\sigma^2\mu_i^2}{N}. \tag{66}$$

1149 We observe from Eq. 42, Eq. 64 that $\text{Var}(a_i)$ remains unchanged since it depends on $\mathbb{E}[x_i^2] = \sigma^2 + \mu_i^2$,
 1150 which is unaffected.
 1151

$$\text{Var}(a_i) = \frac{1+\gamma}{\gamma} \cdot \frac{\sigma^4}{N} + \mu_i^2 \cdot \left(\frac{1+\gamma}{\gamma} \cdot \frac{\sigma^2}{N} + 4\sigma^2\right). \tag{67}$$

1152 It remains to compute $\text{Cov}(a_i, b_i) = \mathbb{E}[a_i b_i] - \mathbb{E}[a_i]\mathbb{E}[b_i]$. From Eq. 38 and Eq. 64, we have
 1153 $\mathbb{E}[a_i] = 2\mu_i^2$. According to Eq. 39, $\mathbb{E}[b_i]$ is unchanged, as it does not depend on the conditional
 1154 distribution of x_i . Similarly, from Eq. 45, $\mathbb{E}[a_i b_i]$ picks up a minus sign, so overall, $\text{Cov}(a_i, b_i)$
 1155 changes sign. Therefore, Eq. 45 implies:
 1156

$$\text{Cov}(a_i, b_i) = \frac{1-\gamma}{\gamma} \cdot \frac{2\sigma^2\mu_i^2}{N}. \tag{68}$$

1157 Thus, from equations Eq. 41, Eq. 66, Eq. 67, Eq. 68, it follows that:
 1158

$$\begin{aligned}
 1159 \quad \xi_i^2 &= \frac{1+\gamma}{\gamma} \cdot \frac{\sigma^4}{N} + \mu_i^2 \cdot \left(\frac{1+\gamma}{\gamma} \cdot \frac{\sigma^2}{N} + 4\sigma^2\right) \\
 1160 &\quad + \frac{1}{4} \cdot \left(\frac{1+\gamma^2}{\gamma^2} \cdot \frac{2\sigma^4}{N^2} + \frac{1+\gamma}{\gamma} \cdot \frac{4\sigma^2\mu_i^2}{N}\right) - \frac{1-\gamma}{\gamma} \cdot \frac{2\sigma^2\mu_i^2}{N} \\
 1161 &= \frac{1+\gamma}{\gamma} \cdot \frac{\sigma^4}{N} + \frac{1+\gamma^2}{\gamma^2} \cdot \frac{\sigma^4}{2N^2} + \mu_i^2 \left(\frac{1+\gamma}{\gamma} \cdot \frac{2\sigma^2}{N} - \frac{1-\gamma}{\gamma} \cdot \frac{2\sigma^2}{N} + 4\sigma^2\right) \\
 1162 &= \sigma^2 \left(\frac{1+\gamma}{\gamma} \cdot \frac{\sigma^2}{N} + \frac{1+\gamma^2}{2\gamma^2} \cdot \frac{\sigma^2}{N^2} + 4\mu_i^2 \left(1 + \frac{1+\gamma}{2\gamma} \cdot \frac{1}{N} - \frac{1-\gamma}{2\gamma} \cdot \frac{1}{N}\right)\right) \\
 1163 &= \sigma^2 \left(\frac{1+\gamma}{\gamma} \cdot \frac{\sigma^2}{N} + \frac{1+\gamma^2}{2\gamma^2} \cdot \frac{\sigma^2}{N^2} + 4\mu_i^2 \left(1 + \frac{1}{N}\right)\right) \\
 1164 &\geq \frac{\sigma^4}{N} \cdot \left(\frac{1+\gamma}{\gamma} + \frac{1+\gamma^2}{2\gamma^2} \cdot \frac{1}{N}\right) = D.
 \end{aligned} \tag{69}$$

1165 Thus, $\xi_i^2 \geq D$ where $D > 0$ is the same constant defined in Eq. 48. A similar argument for the case
 1166 $y = 1$ shows that $\rho_i = \mathbb{E}[|y_i - \eta_i|^3] \leq C$, where $C \geq 0$ and $D > 0$ are constants independent of i
 1167

1188 and d . Since the variables $\{y_i\}_{i=1}^d$ are independent, we may apply Theorem 9, which guarantees the
 1189 existence of a constant $C_0 > 0$ independent of d such that for all $x \in \mathbb{R}$:
 1190

$$1192 \quad \left| \mathbb{P} \left(\frac{1}{\sqrt{\sum_{i=1}^d \xi_i^2}} \sum_{i=1}^d (y_i - \eta_i) > x \mid y = 2 \right) - \mathcal{Q}(x) \right| \leq \frac{C_0 \sum_{i=1}^d \rho_i}{\left(\sum_{i=1}^d \xi_i^2 \right)^{\frac{3}{2}}} \leq \frac{A}{\sqrt{d}}.$$

1196 Where we denoted $A = \frac{C_0 C}{D^{\frac{3}{2}}} \geq 0$. Now, $q(2, 1)$, which is defined in Eq. 63, reads:
 1197

$$\begin{aligned} 1199 \quad q(2, 1) &= \mathbb{P} \left(\sum_{i=1}^d y_i < 0 \mid y = 2 \right) \\ 1200 &= \mathbb{P} \left(\sum_{i=1}^d (y_i - \eta_i) < - \sum_{i=1}^d \eta_i \mid y = 2 \right) \\ 1201 &= \mathbb{P} \left(\frac{1}{\sqrt{\sum_{i=1}^d \xi_i^2}} \sum_{i=1}^d (y_i - \eta_i) < - \frac{\sum_{i=1}^d \eta_i}{\sqrt{\sum_{i=1}^d \xi_i^2}} \mid y = 2 \right) \\ 1202 &= 1 - \mathbb{P} \left(\frac{1}{\sqrt{\sum_{i=1}^d \xi_i^2}} \sum_{i=1}^d (y_i - \eta_i) \geq - \frac{\sum_{i=1}^d \eta_i}{\sqrt{\sum_{i=1}^d \xi_i^2}} \mid y = 2 \right) \\ 1203 &= 1 - \left(\mathcal{Q} \left(- \frac{\sum_{i=1}^d \eta_i}{\sqrt{\sum_{i=1}^d \xi_i^2}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right) \right) \\ 1204 &= \mathcal{Q} \left(\frac{\sum_{i=1}^d \eta_i}{\sqrt{\sum_{i=1}^d \xi_i^2}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right) \\ 1205 &= \mathcal{Q} \left(\frac{\sum_{i=1}^d \left(2\mu_i^2 + \frac{1-\gamma}{\gamma} \cdot \frac{\sigma^2}{2N} \right)}{\sqrt{\sum_{i=1}^d \sigma^2 \left(\frac{1+\gamma}{\gamma} \cdot \frac{\sigma^2}{N} + \frac{1+\gamma^2}{2\gamma^2} \cdot \frac{\sigma^2}{N^2} + 4\mu_i^2 \left(1 + \frac{1}{N} \right) \right)}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right) \\ 1206 &= \mathcal{Q} \left(\frac{2 \|\boldsymbol{\mu}\|^2 + \frac{d}{2N} \cdot \frac{1-\gamma}{\gamma} \cdot \sigma^2}{\sqrt{\sigma^2 \cdot \left(\left(\frac{1+\gamma}{\gamma} \cdot \frac{\sigma^2}{N} + \frac{1+\gamma^2}{2\gamma^2} \cdot \frac{\sigma^2}{N^2} \right) d + 4 \left(1 + \frac{1}{N} \right) \|\boldsymbol{\mu}\|^2 \right)}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right) \\ 1207 &= \mathcal{Q} \left(\frac{\|\boldsymbol{\mu}\| + \frac{d}{4N} \cdot \frac{1-\gamma}{\gamma} \cdot \frac{\sigma^2}{\|\boldsymbol{\mu}\|}}{\sigma \cdot \sqrt{\left(\frac{1}{4N} \cdot \frac{1+\gamma}{\gamma} \cdot \left(\frac{\sigma}{\|\boldsymbol{\mu}\|} \right)^2 + \frac{1}{8N^2} \cdot \frac{1+\gamma^2}{\gamma^2} \cdot \left(\frac{\sigma}{\|\boldsymbol{\mu}\|} \right)^2 \right) \cdot d + \left(1 + \frac{1}{N} \right)}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right) \\ 1208 &= \mathcal{Q} \left(\frac{\frac{\|\boldsymbol{\mu}\|}{\sigma} + \frac{d}{4N} \cdot \frac{1-\gamma}{\gamma} \cdot \frac{\sigma}{\|\boldsymbol{\mu}\|}}{\sqrt{\left(\frac{1}{4N} \cdot \frac{1+\gamma}{\gamma} \cdot \left(\frac{\sigma}{\|\boldsymbol{\mu}\|} \right)^2 + \frac{1}{8N^2} \cdot \frac{1+\gamma^2}{\gamma^2} \cdot \left(\frac{\sigma}{\|\boldsymbol{\mu}\|} \right)^2 \right) \cdot d + \left(1 + \frac{1}{N} \right)}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right) \end{aligned} \tag{70}$$

1239 where we used the identity $\mathcal{Q}(-x) = 1 - \mathcal{Q}(x)$. We now revisit Eq. 5:

$$1240 \quad \mathcal{S} = \left(\frac{\|\boldsymbol{\mu}\|}{\sigma} \right)^2.$$

1242 Thus, from Eq. 70, $q(2, 1)$ reads:
1243

$$1244 q(2, 1) = \mathcal{Q} \left(\frac{\sqrt{\mathcal{S}} + \frac{1}{4N} \cdot \frac{1-\gamma}{\gamma} \cdot \frac{d}{\sqrt{\mathcal{S}}}}{\sqrt{\frac{1}{4N} \cdot \frac{1+\gamma}{\gamma} \cdot \frac{d}{\mathcal{S}} + \frac{1}{8N^2} \cdot \frac{1+\gamma^2}{\gamma^2} \cdot \frac{d}{\mathcal{S}} + \frac{1}{N} + 1}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right). \quad (71)$$

1247 To finish the proof, from Eq. 22, Eq. 62, Eq. 71, the probability of error reads:
1248

$$\begin{aligned} 1249 p_{\mathbf{x}}(\text{error}) &= \frac{1}{2} \cdot q(1, 2) + \frac{1}{2} \cdot q(2, 1) \\ 1250 &= \frac{1}{2} \cdot \left(\mathcal{Q} \left(\frac{\sqrt{\mathcal{S}} + \frac{1}{4N} \cdot \frac{1-\gamma}{\gamma} \cdot \frac{d}{\sqrt{\mathcal{S}}}}{\sqrt{\frac{1}{4N} \cdot \frac{1+\gamma}{\gamma} \cdot \frac{d}{\mathcal{S}} + \frac{1}{8N^2} \cdot \frac{1+\gamma^2}{\gamma^2} \cdot \frac{d}{\mathcal{S}} + \frac{1}{\gamma N} + 1}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right) \right) \\ 1251 &\quad + \frac{1}{2} \cdot \left(\mathcal{Q} \left(\frac{\sqrt{\mathcal{S}} - \frac{1}{4N} \cdot \frac{1-\gamma}{\gamma} \cdot \frac{d}{\sqrt{\mathcal{S}}}}{\sqrt{\frac{1}{4N} \cdot \frac{1+\gamma}{\gamma} \cdot \frac{d}{\mathcal{S}} + \frac{1}{8N^2} \cdot \frac{1+\gamma^2}{\gamma^2} \cdot \frac{d}{\mathcal{S}} + \frac{1}{N} + 1}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right) \right) \\ 1252 &= \frac{1}{2} \cdot \mathcal{Q} \left(\frac{\sqrt{\mathcal{S}} + \frac{1}{4N} \cdot \frac{1-\gamma}{\gamma} \cdot \frac{d}{\sqrt{\mathcal{S}}}}{\sqrt{\frac{1}{4N} \cdot \frac{1+\gamma}{\gamma} \cdot \frac{d}{\mathcal{S}} + \frac{1}{8N^2} \cdot \frac{1+\gamma^2}{\gamma^2} \cdot \frac{d}{\mathcal{S}} + \frac{1}{\gamma N} + 1}} \right) \\ 1253 &\quad + \frac{1}{2} \cdot \mathcal{Q} \left(\frac{\sqrt{\mathcal{S}} - \frac{1}{4N} \cdot \frac{1-\gamma}{\gamma} \cdot \frac{d}{\sqrt{\mathcal{S}}}}{\sqrt{\frac{1}{4N} \cdot \frac{1+\gamma}{\gamma} \cdot \frac{d}{\mathcal{S}} + \frac{1}{8N^2} \cdot \frac{1+\gamma^2}{\gamma^2} \cdot \frac{d}{\mathcal{S}} + \frac{1}{N} + 1}} \right) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right) \\ 1254 &= \hat{p}(\mathcal{S}, N, \gamma, d) + \mathcal{O} \left(\frac{1}{\sqrt{d}} \right) \end{aligned}$$

1265 where \hat{p} is given in Eq. 9. □
1266

1269 A.3 PROOF OF THEOREM 3

1271 *Proof.* We provide an algorithm to construct $\mathbf{A} \in \mathbb{R}^{k \times d}$ given $\frac{\boldsymbol{\mu}}{\|\boldsymbol{\mu}\|}$ and prove that it satisfies Eq. 7.
1272

1273 Later, we will show how to estimate it from unlabeled data.
1274

- 1275 1. Define $\mathbf{u} := \mathbf{a}_1 = \frac{\boldsymbol{\mu}}{\|\boldsymbol{\mu}\|}$. If $k = 1$, define $\mathbf{A} = \mathbf{u}^\top$. Else, continue.
1276
- 1277 2. Find $\mathbf{a}_2, \dots, \mathbf{a}_k \in \mathbb{R}^d$ such that $\langle \mathbf{a}_i, \mathbf{u} \rangle = 0$ and $\langle \mathbf{a}_i, \mathbf{a}_j \rangle = \delta_{ij}$.
1278
- 1279 3. Define the matrix $\mathbf{A} \in \mathbb{R}^{k \times d}$ where the i -th row is given by \mathbf{a}_i^\top .
1280

1281 The proof that the algorithm works is given below.
1282

- 1283 • Step 1: If $k = 1$, we define $\mathbf{A} = \frac{\boldsymbol{\mu}^\top}{\|\boldsymbol{\mu}\|}$. It is easy to ensure that it satisfies Eq. 7.
1284
- 1285 • Step 2: If $\boldsymbol{\mu} = \mathbf{0}$, then the result is trivial, because we can construct an orthonormal set
1286

$$\{\mathbf{a}_2, \dots, \mathbf{a}_k\} \subset \mathbb{R}^d.$$

1287 Otherwise, $\boldsymbol{\mu} \neq \mathbf{0}$ and let us define the following subset of \mathbb{R}^d :
1288

$$V := \{\mathbf{x} \in \mathbb{R}^d : \langle \mathbf{x}, \boldsymbol{\mu} \rangle = 0\} \subset \mathbb{R}^d.$$

1289 We see that $V = (\text{span}\{\boldsymbol{\mu}\})^\perp$ is a linear subspace of \mathbb{R}^d of dimension $d - 1$. Thus, there
1290 exists a basis $\{\mathbf{v}_1, \dots, \mathbf{v}_{d-1}\} \subseteq V$. We know that $k - 1 \leq d - 1$ and thus $\{\mathbf{v}_1, \dots, \mathbf{v}_{k-1}\} \subseteq$
1291 V is a linearly independent set. That is, we can apply the Gram-Schmidt procedure on
1292 this set, to get an orthonormal set $\{\mathbf{a}_2, \dots, \mathbf{a}_k\} \subseteq V$. This is a subset of V because
1293 Gram-Schmidt outputs vectors that are linear combinations of the input, which lie in V .
1294

1296 • Step 3: The rows of \mathbf{A} are orthonormal, so $\mathbf{A}\mathbf{A}^\top = \mathbf{I}_k$. From step 2, it follows easily that
1297

1298
1299
1300
1301
1302

$$\mathbf{A}\boldsymbol{\mu} = \begin{bmatrix} \|\boldsymbol{\mu}\| \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow \|\mathbf{A}\boldsymbol{\mu}\| = \|\boldsymbol{\mu}\|$$

1303 Thus, \mathbf{A} meets the needed requirements, and thus we have proved the existence of such a matrix \mathbf{A} .
1304 Assuming $\boldsymbol{\mu} \neq \mathbf{0}$, it is now left to prove that one can learn \mathbf{A} from infinite unlabeled data $\{\mathbf{x}_i\}_{i=1}^\infty$.
1305 This data is taken from the distribution
1306

1307
$$\mathbf{x} \sim \frac{1}{2}\mathcal{N}(-\boldsymbol{\mu}, \sigma^2 \mathbf{I}_d) + \frac{1}{2}\mathcal{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_d) \quad (72)$$

1308

1309 where the label is called $y \in \{1, 2\}$. Let us assume that there is m unlabeled data. We first compute
1310

1311
1312
1313

$$\boldsymbol{\Sigma}_m = \frac{1}{m} \sum_{i=1}^m \mathbf{x}_i \mathbf{x}_i^\top.$$

1314 As $m \rightarrow \infty$, we have $\boldsymbol{\Sigma}_m \xrightarrow{\text{a.s.}} \boldsymbol{\Sigma}$, where
1315

1316
$$\boldsymbol{\Sigma} = \mathbb{E}[\mathbf{x}\mathbf{x}^\top] = \mathbb{E}[\mathbf{x}\mathbf{x}^\top | y=1] \cdot \mathbb{P}(y=1) + \mathbb{E}[\mathbf{x}\mathbf{x}^\top | y=2] \cdot \mathbb{P}(y=2)$$

1317
1318
1319
1320

$$= \frac{1}{2}(\sigma^2 \mathbf{I}_d + \boldsymbol{\mu}\boldsymbol{\mu}^\top) + \frac{1}{2}(\sigma^2 \mathbf{I}_d + \boldsymbol{\mu}\boldsymbol{\mu}^\top)$$

$$= \sigma^2 \mathbf{I}_d + \boldsymbol{\mu}\boldsymbol{\mu}^\top$$

1321 where we used Eq. 72. That is, we can learn the matrix
1322

1323
$$\boldsymbol{\Sigma} = \sigma^2 \mathbf{I}_d + \boldsymbol{\mu}\boldsymbol{\mu}^\top. \quad (73)$$

1324

1325 We now argue that the maximal eigenvalue of $\boldsymbol{\Sigma}$ is $\lambda_{\max} = \sigma^2 + \|\boldsymbol{\mu}\|^2$, with eigen-space $V_{\lambda_{\max}} =$
1326 $\text{span}\{\boldsymbol{\mu}\}$. Indeed, from Eq. 73, it follows that:

1327
1328

$$\boldsymbol{\Sigma}\boldsymbol{\mu} = (\sigma^2 + \|\boldsymbol{\mu}\|^2)\boldsymbol{\mu}$$

1329 and for all $\mathbf{v} \perp \boldsymbol{\mu}$ we have
1330

1331
$$\boldsymbol{\Sigma}\mathbf{v} = \sigma^2\mathbf{v}.$$

1332 Thus, the eigenvalues of $\boldsymbol{\Sigma}$ are
1333

1334
$$\sigma^2 = \lambda_{\min} < \lambda_{\max} = \sigma^2 + \|\boldsymbol{\mu}\|^2.$$

1335 The eigen-space of λ_{\min} satisfies:
1336

1337
$$V_{\lambda_{\min}} = (\text{span}\{\boldsymbol{\mu}\})^\perp \Rightarrow \dim(V_{\lambda_{\min}}) = d - 1$$

1338

1339 Thus, $\dim(V_{\lambda_{\max}}) = 1$, which implies that
1340

1341
$$V_{\lambda_{\max}} = \text{span}\{\boldsymbol{\mu}\}. \quad (74)$$

1342 We now apply the power iteration method on the matrix $\boldsymbol{\Sigma}_m$. For large enough number of iterations
1343 and sufficiently large $m \gg 1$, it returns a vector that is *arbitrarily close* to the eigenvector of $\boldsymbol{\Sigma}$ that
1344 corresponds to the maximal eigenvalue λ_{\max} (ensured by the spectral gap of $\|\boldsymbol{\mu}\|^2 > 0$ between the
1345 two largest eigenvalues of $\boldsymbol{\Sigma}$), which from Eq. 74, is characterized as $\alpha\boldsymbol{\mu}$ where $\alpha \neq 0$ is a constant.
1346 Normalizing this vector leads to $\pm \frac{\boldsymbol{\mu}}{\|\boldsymbol{\mu}\|}$. Now, we apply the algorithm we presented above to compute
1347

1348 \mathbf{A} . As a side note, using the vector $\mathbf{a}_1 = -\frac{\boldsymbol{\mu}^\top}{\|\boldsymbol{\mu}\|}$ as the first row of \mathbf{A} has no effect on the resulting
1349 properties of \mathbf{A} . \square

1350 A.4 PROOF OF THEOREM 4
13511352 *Proof.* We know that
1353

1354
$$\mathbf{z} = \mathbf{A}\mathbf{x},$$

1355

1356 where $\mathbf{A} \in \mathbb{R}^{k \times d}$ is a deterministic matrix satisfying:
1357

- 1358 • $\mathbf{A}\mathbf{A}^\top = \mathbf{I}_k.$
1359
- 1360 • $\|\mathbf{A}\boldsymbol{\mu}\| = \|\boldsymbol{\mu}\|.$

1361 It is a standard result that a linear transformation of a Gaussian vector is also a Gaussian vector, thus:
1362

1363
$$\forall_{j \in \{1, 2\}} \mathbf{z} \mid y = j \sim \mathcal{N}(\mathbf{A}\boldsymbol{\mu}_j, \mathbf{A}\sigma^2 \mathbf{I}_d \mathbf{A}^\top)$$

1364 that is, for all $j \in \{1, 2\}$ we have:
1365

1366
$$\mathbf{z} \mid y = j \sim \mathcal{N}(\boldsymbol{\eta}_j, \sigma^2 \mathbf{I}_k)$$

1367 where
1368

1369
$$\boldsymbol{\eta}_j = \mathbf{A}\boldsymbol{\mu}_j.$$

1370 We know that $\boldsymbol{\mu}_2 = -\boldsymbol{\mu}_1 = \boldsymbol{\mu}$, and thus $\boldsymbol{\eta}_2 = -\boldsymbol{\eta}_1 = \boldsymbol{\eta} = \mathbf{A}\boldsymbol{\mu}$. That is, our model assumptions still
1371 hold, with the following modifications:
1372

- 1373 • $d \mapsto k.$
1374
- 1375 • $\boldsymbol{\mu} \mapsto \boldsymbol{\eta} = \mathbf{A}\boldsymbol{\mu}.$

1376 The new separation quality factor \mathcal{S}_z of the new GMM (computed similarly to Eq. 5) is given by:
1377

1378
$$\mathcal{S}_z = \left(\frac{\|\boldsymbol{\eta}_2 - \boldsymbol{\eta}_1\|}{2\sigma} \right)^2 = \left(\frac{\|\boldsymbol{\eta}\|}{\sigma} \right)^2 = \left(\frac{\|\mathbf{A}\boldsymbol{\mu}\|}{\sigma} \right)^2 = \left(\frac{\|\boldsymbol{\mu}\|}{\sigma} \right)^2 = \mathcal{S}.$$

1380

1381 That is, the separation quality factor remains the same after the processing. The result is now
1382 immediate from Theorem 2 and changing $d \mapsto k$. \square
13831384 A.5 PROOF OF THEOREM 5
13851386 *Proof.* Let us fix $\gamma = 1$ and take some
1387

1388
$$\mathcal{S} > 0, 1 \leq k < d, N \in \mathbb{N}.$$

1389 From Theorems 2 and 4, it follows that we need to show the following:
1390

1391
$$\hat{p}(\mathcal{S}, N, 1, k) < \hat{p}(\mathcal{S}, N, 1, d) \tag{75}$$

1392 where \hat{p} is given in Eq. 9. It is easy to prove that:
1393

1394
$$\forall_{q \in \mathbb{N}} \hat{p}(\mathcal{S}, N, 1, q) = \mathcal{Q} \left(\frac{\sqrt{\mathcal{S}}}{\sqrt{(\frac{q}{2\mathcal{S}} + 1) \cdot \frac{1}{N} + \frac{q}{4\mathcal{S}} \cdot \frac{1}{N^2} + 1}} \right).$$

1395

1396 Following Eq. 75, we need to show that:
1397

1398
$$\mathcal{Q} \left(\frac{\sqrt{\mathcal{S}}}{\sqrt{(\frac{k}{2\mathcal{S}} + 1) \cdot \frac{1}{N} + \frac{k}{4\mathcal{S}} \cdot \frac{1}{N^2} + 1}} \right) < \mathcal{Q} \left(\frac{\sqrt{\mathcal{S}}}{\sqrt{(\frac{d}{2\mathcal{S}} + 1) \cdot \frac{1}{N} + \frac{d}{4\mathcal{S}} \cdot \frac{1}{N^2} + 1}} \right)$$

1399

1400 which is immediate because the argument in the \mathcal{Q} is strictly higher in the LHS, and the \mathcal{Q} function
1401 is strictly decreasing. \square
1402

1404 A.6 PROOF OF THEOREM 6
14051406 *Proof.* Let us take some
1407

1408
$$0 < \gamma < 1, 0 < \mathcal{S} \leq 1, 1 \leq k < d, N \geq \frac{\gamma^2 - 4\gamma + 1}{2\gamma \cdot (1 + \gamma)}$$

1409

1410 we need to show that
1411

1412
$$\hat{p}(\mathcal{S}, N, \gamma, k) < \hat{p}(\mathcal{S}, N, \gamma, d).$$

1413

1414 That is, it is sufficient to show that the function
1415

1416
$$f(x) = 2\hat{p}(\mathcal{S}, N, \gamma, x)$$

1417

1418 is strictly increasing for all $x \geq 1$, where \hat{p} is defined in Eq. 9. It is easy to verify that:
1419

1420
$$f(x) = \mathcal{Q} \left(\frac{\sqrt{\mathcal{S}} + \frac{1-\gamma}{4\gamma N \sqrt{\mathcal{S}}} \cdot x}{\sqrt{\left(\frac{1+\gamma}{4\gamma N \mathcal{S}} + \frac{1+\gamma^2}{8\gamma^2 N^2 \mathcal{S}} \right) \cdot x + \frac{1}{\gamma N} + 1}} \right) + \mathcal{Q} \left(\frac{\sqrt{\mathcal{S}} - \frac{1-\gamma}{4\gamma N \sqrt{\mathcal{S}}} \cdot x}{\sqrt{\left(\frac{1+\gamma}{4\gamma N \mathcal{S}} + \frac{1+\gamma^2}{8\gamma^2 N^2 \mathcal{S}} \right) \cdot x + \frac{1}{N} + 1}} \right). \quad (76)$$

1421

1422 Let us define the following functions:
1423

1424
$$g_1(x) = \frac{\sqrt{\mathcal{S}} + \frac{1-\gamma}{4\gamma N \sqrt{\mathcal{S}}} \cdot x}{\sqrt{\left(\frac{1+\gamma}{4\gamma N \mathcal{S}} + \frac{1+\gamma^2}{8\gamma^2 N^2 \mathcal{S}} \right) \cdot x + \frac{1}{\gamma N} + 1}} \quad (77)$$

1425

1426 and
1427

1428
$$g_2(x) = \frac{\sqrt{\mathcal{S}} - \frac{1-\gamma}{4\gamma N \sqrt{\mathcal{S}}} \cdot x}{\sqrt{\left(\frac{1+\gamma}{4\gamma N \mathcal{S}} + \frac{1+\gamma^2}{8\gamma^2 N^2 \mathcal{S}} \right) \cdot x + \frac{1}{N} + 1}}. \quad (78)$$

1429

1430 Thus, Eq. 76 reads:
1431

1432
$$f(x) = \mathcal{Q}(g_1(x)) + \mathcal{Q}(g_2(x)). \quad (79)$$

1433

1434 From the chain rule, the derivative reads:
1435

1436
$$\begin{aligned} f'(x) &= \mathcal{Q}'(g_1(x)) \cdot g_1'(x) + \mathcal{Q}'(g_2(x)) \cdot g_2'(x) \\ &= -\frac{1}{\sqrt{2\pi}} \cdot \left(\exp\left(-\frac{1}{2} \cdot g_1^2(x)\right) \cdot g_1'(x) + \exp\left(-\frac{1}{2} \cdot g_2^2(x)\right) \cdot g_2'(x) \right) \\ &= -\frac{1}{\sqrt{2\pi}} \cdot (w_1(x) \cdot g_1'(x) + w_2(x) \cdot g_2'(x)). \end{aligned} \quad (80)$$

1440

1441 We used the following property of the \mathcal{Q} function:
1442

1443
$$\frac{d}{dx} \mathcal{Q}(x) = -\frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{x^2}{2}\right)$$

1444

1445 and the following notation:
1446

1447
$$w_i(x) = \exp\left(-\frac{1}{2} \cdot g_i^2(x)\right). \quad (81)$$

1448

1449 Thus, showing that f is strictly increasing for all $x \geq 1$ is equivalent to proving that for all $x \geq 1$
1450

1451
$$f'(x) > 0 \Leftrightarrow w_1(x) \cdot g_1'(x) + w_2(x) \cdot g_2'(x) < 0. \quad (82)$$

1452

1453 We argue now that for all $x \geq 1$:
14541455 1.
1456

1457
$$w_1(x) < w_2(x) \quad (83)$$

1458 2.
1459

1460
$$g_2'(x) < 0 \quad (84)$$

1458 3.

1459
$$g'_1(x) + g'_2(x) \leq 0 \quad (85)$$

1460

1461 Let us first prove Eq. 83: From Eq. 81 it follows that it is sufficient to prove:

1462
$$\forall_{x \geq 1} |g_1(x)| > |g_2(x)|. \quad (86)$$

1463

1464 Let us take some $x \geq 1$. It is easy to see from Eq. 77 that $g_1(x) \geq 0$ and thus $|g_1(x)| = g_1(x)$. That
1465 is, it is sufficient to prove that

1466
$$g_1(x) > g_2(x) \quad (87)$$

1467 and

1468
$$g_2(x) > -g_1(x) \Leftrightarrow g_1(x) + g_2(x) > 0. \quad (88)$$

1469

Let us now define the following parameters:

1470
$$\begin{cases} B = \frac{1-\gamma}{4\gamma N \sqrt{\mathcal{S}}} \\ C = \frac{1+\gamma}{4\gamma N \mathcal{S}} + \frac{1+\gamma^2}{8\gamma^2 N^2 \mathcal{S}} \\ c_1 = \frac{1}{\gamma N} + 1 \\ c_2 = \frac{1}{N} + 1 < c_1 \end{cases} \quad (89)$$

1471
1472
1473
1474
1475
1476
1477

We also define the following functions:

1478
$$\begin{cases} D_1(x) = \sqrt{Cx + c_1} \\ D_2(x) = \sqrt{Cx + c_2} < D_1(x) \end{cases} \quad (90)$$

1479
1480
1481

From Eq. 77, Eq. 78, Eq. 89, Eq. 90, it follows that:

1482
$$\begin{cases} g_1(x) = \frac{\sqrt{\mathcal{S}} + Bx}{D_1(x)} \\ g_2(x) = \frac{\sqrt{\mathcal{S}} - Bx}{D_2(x)} \end{cases} \quad (91)$$

1483
1484
1485
1486
1487

We first prove Eq. 87. Their difference $g_1(x) - g_2(x)$ reads:

1488
$$\begin{aligned} g_1(x) - g_2(x) &= \frac{\sqrt{\mathcal{S}} + Bx}{D_1(x)} - \frac{\sqrt{\mathcal{S}} - Bx}{D_2(x)} = \frac{(\sqrt{\mathcal{S}} + Bx) \cdot D_2(x) - (\sqrt{\mathcal{S}} - Bx) \cdot D_1(x)}{D_1(x) \cdot D_2(x)} \\ &= \frac{\sqrt{\mathcal{S}} \cdot (D_2(x) - D_1(x)) + Bx \cdot (D_2(x) + D_1(x))}{D_1(x) \cdot D_2(x)}. \end{aligned} \quad (92)$$

1489
1490
1491
1492
1493

Now, from Eq. 89, Eq. 90, we have:

1494
$$\begin{aligned} D_2(x) - D_1(x) &= \frac{D_2^2(x) - D_1^2(x)}{D_2(x) + D_1(x)} = \frac{c_2 - c_1}{D_2(x) + D_1(x)} \\ &= \frac{\frac{1}{N} - \frac{1}{\gamma \cdot N}}{D_1(x) + D_2(x)} \\ &= -\frac{1}{N} \cdot \frac{1 - \gamma}{\gamma} \cdot \frac{1}{D_2(x) + D_1(x)}. \end{aligned} \quad (93)$$

1495
1496
1497
1498
1499
1500
1501
1502

In order to show Eq. 87, it is sufficient to show that the expression in Eq. 92 is strictly positive.
Substituting Eq. 93, we get:

1503
$$\begin{aligned} &-\underbrace{\frac{\sqrt{\mathcal{S}} \cdot \frac{1-\gamma}{\gamma} \cdot \frac{1}{D_2(x) + D_1(x)}}{\sqrt{\mathcal{S}} \cdot (D_2(x) - D_1(x))}}_{\sqrt{\mathcal{S}} \cdot (D_2(x) - D_1(x))} + \frac{1-\gamma}{4\gamma \cdot N \cdot \sqrt{\mathcal{S}}} \cdot x \cdot (D_2(x) + D_1(x)) > 0 \\ &\frac{1}{4\sqrt{\mathcal{S}}} \cdot x \cdot (D_2(x) + D_1(x)) > \frac{\sqrt{\mathcal{S}}}{D_2(x) + D_1(x)} \\ &x \cdot (D_2(x) + D_1(x))^2 > 4\mathcal{S} \end{aligned}$$

1504
1505
1506
1507
1508
1509
1510
1511

1512 That is, in order to show Eq. 83, it is sufficient to show that:
 1513

$$1514 \quad h(x) := x \cdot (D_2(x) + D_1(x))^2 > 4\mathcal{S}. \quad (94)$$

1515 We now show that $h(x)$ is strictly increasing:
 1516

$$1517 \quad h'(x) = (D_2(x) + D_1(x))^2 + 2x \cdot (D_2(x) + D_1(x)) > 0.$$

1518 Thus, it follows that:
 1519

$$1520 \quad x \geq 1 \Rightarrow h(x) > h(1). \quad (95)$$

1521 Now, from Eq. 94, it follows that:
 1522

$$1523 \quad h(1) = (D_2(1) + D_1(1))^2 > 4\mathcal{S} \Leftrightarrow D_2(1) + D_1(1) > 2\sqrt{\mathcal{S}}.$$

1524 Indeed, from Eq. 89, Eq. 90, we have:
 1525

$$1526 \quad \begin{aligned} D_2(1) + D_1(1) &> 2 \cdot D_2(1) = 2 \cdot \sqrt{C + c_2} \\ 1527 &= 2 \cdot \sqrt{C + \frac{1}{N} + 1} \\ 1528 &> 2 \\ 1529 &\geq 2\sqrt{\mathcal{S}} \end{aligned}$$

1530 where we used the assumption that $\mathcal{S} \leq 1$, and $C > 0$. That is, we proved Eq. 87. We will now prove
 1531 Eq. 88. From Eq. 91, the sum $g_1(x) + g_2(x)$ reads:
 1532

$$1533 \quad \begin{aligned} g_1(x) + g_2(x) &= \frac{\sqrt{\mathcal{S}} + B \cdot x}{D_1(x)} + \frac{\sqrt{\mathcal{S}} - Bx}{D_2(x)} = \frac{(\sqrt{\mathcal{S}} + Bx) \cdot D_2(x) + (\sqrt{\mathcal{S}} - Bx) \cdot D_1(x)}{D_1(x) \cdot D_2(x)} \\ 1534 &= \frac{\sqrt{\mathcal{S}} \cdot (D_2(x) + D_1(x)) + Bx \cdot (D_2(x) - D_1(x))}{D_1(x) \cdot D_2(x)}. \end{aligned} \quad (96)$$

1535 In order to show Eq. 88, it is sufficient to show that the expression in Eq. 96 is strictly positive.
 1536 Substituting Eq. 93, we get:
 1537

$$1538 \quad \begin{aligned} \sqrt{\mathcal{S}} \cdot (D_2(x) + D_1(x)) + \underbrace{\left(-\frac{1-\gamma}{4\gamma \cdot N \cdot \sqrt{\mathcal{S}}} \cdot \frac{1}{N} \cdot \frac{1-\gamma}{\gamma} \cdot \frac{x}{D_2(x) + D_1(x)} \right)}_{Bx \cdot (D_2(x) - D_1(x))} &> 0 \\ 1539 &\sqrt{\mathcal{S}} \cdot (D_2(x) + D_1(x)) > \frac{(1-\gamma)^2}{4\gamma^2 N^2 \sqrt{\mathcal{S}}} \cdot \frac{x}{D_2(x) + D_1(x)} \\ 1540 &\frac{(D_2(x) + D_1(x))^2}{x} > \frac{(1-\gamma)^2}{4\gamma^2 N^2 \mathcal{S}} \end{aligned}$$

1541 That is, in order to show Eq. 88, it is sufficient to show that:
 1542

$$1543 \quad p(x) := \frac{(D_2(x) + D_1(x))^2}{x} > \frac{(1-\gamma)^2}{4\gamma^2 N^2 \mathcal{S}}. \quad (97)$$

1544 Indeed,

$$1545 \quad \begin{aligned} p(x) &= \frac{D_2^2(x) + 2D_2(x)D_1(x) + D_1^2(x)}{x} \geq \frac{D_2^2(x) + D_1^2(x)}{x} \\ 1546 &= \frac{Cx + c_1 + Cx + c_2}{x} \\ 1547 &= 2C + \frac{c_1 + c_2}{x} \\ 1548 &> 2C \\ 1549 &= \frac{1+\gamma}{2\gamma N \mathcal{S}} + \frac{1+\gamma^2}{4\gamma^2 N^2 \mathcal{S}} \\ 1550 &> \frac{1+\gamma^2}{4\gamma^2 N^2 \mathcal{S}} \\ 1551 &> \frac{(1-\gamma)^2}{4\gamma^2 N^2 \mathcal{S}} \end{aligned} \quad (98)$$

1566 where we used $c_1, c_2 > 0$ and $(1 - \gamma)^2 < 1 + \gamma^2$ for all $\gamma > 0$. That is, we proved Eq. 88 and
 1567 thus we showed that Eq. 83 is satisfied. We will now prove Eq. 84: Let us first define the following
 1568 parametric function

$$1569 \quad T_{B,C,D}(x) = \frac{\sqrt{S} + Bx}{\sqrt{Cx + D}}. \quad (99)$$

1570 Its derivative reads:

$$\begin{aligned} 1571 \quad T'_{B,C,D}(x) &= \frac{B \cdot \sqrt{Cx + D} - \frac{C}{2\sqrt{Cx + D}} \cdot (\sqrt{S} + Bx)}{Cx + D} \\ 1572 \quad &= \frac{2B \cdot (Cx + D) - C \cdot (\sqrt{S} + Bx)}{2 \cdot (Cx + D)^{1.5}} \\ 1573 \quad &= \frac{BC \cdot x + 2 \cdot BD - \sqrt{S}C}{2 \cdot (Cx + D)^{1.5}}. \end{aligned} \quad (100)$$

1574 Now, from Eq. 78, Eq. 99, it follows that:

$$1575 \quad g_2(x) = T_{-B,C,c_2}(x).$$

1576 That is, from Eq. 100, we have:

$$1577 \quad g'_2(x) = \frac{-BC \cdot x - 2B \cdot c_2 - \sqrt{S} \cdot C}{2 \cdot (Cx + c_2)^{1.5}} = -\frac{BC \cdot x + 2B \cdot c_2 + \sqrt{S} \cdot C}{2 \cdot (Cx + c_2)^{1.5}} < 0 \quad (101)$$

1578 where we used $B, C, c_2 > 0$, which follows from Eq. 89, and $S > 0$. Finally, we will prove Eq. 85:
 1579 From Eq. 77, Eq. 99, Eq. 100, it follows that:

$$1580 \quad g_1(x) = T_{B,C,c_1}(x) \Rightarrow g'_1(x) = \frac{BC \cdot x + 2B \cdot c_1 - \sqrt{S} \cdot C}{2 \cdot (Cx + c_1)^{1.5}}. \quad (102)$$

1581 Thus, from Eq. 101, Eq. 102, proving that $g'_1(x) + g'_2(x) \leq 0$ is equivalent to proving that:

$$1582 \quad \frac{BC \cdot x + 2B \cdot c_1 - \sqrt{S} \cdot C}{2 \cdot (Cx + c_1)^{1.5}} \leq \frac{BC \cdot x + 2B \cdot c_2 + \sqrt{S} \cdot C}{2 \cdot (Cx + c_2)^{1.5}}.$$

1583 From Eq. 89, and the assumption of $0 < \gamma < 1$, we know that $c_1 > c_2$. Thus, if the numerator in the
 1584 LHS is negative, then the inequality holds trivially. Otherwise, it is sufficient to prove that:

$$\begin{aligned} 1585 \quad 2B \cdot c_1 - \sqrt{S} \cdot C &\leq 2B \cdot c_2 + \sqrt{S} \cdot C \\ 1586 \quad 2B \cdot (c_1 - c_2) &\leq 2\sqrt{S} \cdot C \\ 1587 \quad B \cdot \left(\frac{1}{\gamma \cdot N} - \frac{1}{N} \right) &\leq \sqrt{S} \cdot C \end{aligned}$$

1588 Thus, we need to prove that:

$$1589 \quad \frac{1}{N} \cdot \frac{1 - \gamma}{\gamma} \leq \frac{\sqrt{S} \cdot C}{B}. \quad (103)$$

1590 From Eq. 89, the RHS in Eq. 103 reads:

$$\begin{aligned} 1591 \quad \frac{\sqrt{S} \cdot C}{B} &= \frac{\left(\frac{1+\gamma}{4\cdot\gamma\cdot N\cdot\sqrt{S}} + \frac{1+\gamma^2}{8\cdot\gamma^2\cdot N^2\cdot\sqrt{S}} \right)}{\left(\frac{1-\gamma}{4\cdot\gamma\cdot N\cdot\sqrt{S}} \right)} = \frac{\left(\frac{1+\gamma}{4} + \frac{1+\gamma^2}{8\cdot\gamma\cdot N} \right)}{\left(\frac{1-\gamma}{4} \right)} \\ 1592 \quad &= \left(\frac{1+\gamma}{4} + \frac{1+\gamma^2}{8\cdot\gamma\cdot N} \right) \cdot \frac{4}{1-\gamma} \\ 1593 \quad &= \frac{1+\gamma}{1-\gamma} + \frac{1+\gamma^2}{\gamma\cdot(1-\gamma)} \cdot \frac{1}{2\cdot N} \\ 1594 \quad &= \frac{2N\cdot\gamma(1+\gamma) + 1 + \gamma^2}{2N\cdot\gamma(1-\gamma)} \\ 1595 \quad &= \frac{(2N+1)\cdot\gamma^2 + 2N\cdot\gamma + 1}{2N\cdot\gamma(1-\gamma)}. \end{aligned}$$

1620 Thus, Eq. 103 reads:
 1621

$$\begin{aligned} 1622 \quad \frac{1-\gamma}{\gamma \cdot N} &\leq \frac{(2N+1) \cdot \gamma^2 + 2N \cdot \gamma + 1}{2N \cdot \gamma(1-\gamma)} \\ 1623 \quad 2 \cdot (1-\gamma)^2 &\leq (2N+1) \cdot \gamma^2 + 2N \cdot \gamma + 1 \\ 1624 \quad 2 \cdot (\gamma^2 - 2\gamma + 1) &\leq (2N+1) \cdot \gamma^2 + 2N \cdot \gamma + 1 \\ 1625 \quad (2N-1) \cdot \gamma^2 + 2 \cdot (N+2) \cdot \gamma - 1 &\geq 0 \\ 1626 \quad 2 \cdot \gamma \cdot (\gamma+1) \cdot N - (\gamma^2 - 4\gamma + 1) &\geq 0 \\ 1627 \quad N &\geq \frac{\gamma^2 - 4\gamma + 1}{2\gamma(1+\gamma)} \\ 1628 \end{aligned}$$

1629 Which holds from the theorem assumptions. Finally, let us take some $x \geq 1$. We need to prove that:
 1630

$$\begin{aligned} 1631 \quad w_1(x) \cdot g'_1(x) + w_2(x) \cdot g'_2(x) &< 0 \Leftrightarrow w_1(x) \cdot g'_1(x) < -w_2(x) \cdot g'_2(x) \\ 1632 \quad &\Leftrightarrow g'_1(x) < -\frac{w_2(x)}{w_1(x)} \cdot g'_2(x). \\ 1633 \end{aligned}$$

1634 Indeed, from Eq. 83, Eq. 101, Eq. 85, it follows that:
 1635

$$g'_1(x) \leq -g'_2(x) < \frac{w_2(x)}{w_1(x)} \cdot (-g'_2(x)) = -\frac{w_2(x)}{w_1(x)} \cdot g'_2(x).$$

1636 Which finishes the proof. Note that for $\gamma \geq 0.162$, the requirement $N \geq \frac{\gamma^2 - 4\gamma + 1}{2\gamma(1+\gamma)}$ is vacuous (since
 1637 $N \geq 1$), so it only matters under severe imbalance ($\gamma < 0.162$). \square
 1638

1639 A.7 PROOF OF THEOREM 7

1640 In order to have a fair comparison between cases with different values of γ , we fix the total number
 1641 of samples to be N_T . Thus, we take $N_1 = xN_T$ samples from the first class and $N_2 = \gamma \cdot xN_T$ from
 1642 the second class such that:
 1643

$$N_1 + N_2 = xN_T + \gamma \cdot xN_T = N_T \Rightarrow x = \frac{1}{1+\gamma}$$

1644 Meaning, the number of samples in the first class is
 1645

$$N = \frac{N_T}{1+\gamma}. \quad (104)$$

1646 *Proof.* Let us take some $N_T \in \mathbb{N}$ and
 1647

$$\mathcal{S} > 0, 1 \leq k < d, 0 < \gamma \leq 1.$$

1648 Let us define the following parametric function:
 1649

$$f_{s,a,q}(x) := \frac{\sqrt{\mathcal{S}} + s \cdot \frac{(1-\gamma) \cdot q}{4\gamma \cdot \sqrt{\mathcal{S}}} \cdot \frac{1}{x}}{\sqrt{\left(\frac{(1+\gamma) \cdot q}{4\gamma \cdot \mathcal{S}} + \frac{1}{a}\right) \cdot \frac{1}{x} + \frac{(1+\gamma^2) \cdot q}{8\gamma^2 \cdot \mathcal{S}} \cdot \frac{1}{x^2} + 1}} = \frac{\sqrt{\mathcal{S}} + \frac{B}{x}}{\sqrt{\frac{C}{x} + \frac{D}{x^2} + 1}} \quad (105)$$

1650 where the parameters B, C, D are:
 1651

$$\begin{cases} B = s \cdot \frac{(1-\gamma) \cdot q}{4\gamma \cdot \sqrt{\mathcal{S}}} \\ C = \frac{(1+\gamma) \cdot q}{4\gamma \cdot \mathcal{S}} + \frac{1}{a} \\ D = \frac{(1+\gamma^2) \cdot q}{8\gamma^2 \cdot \mathcal{S}} \end{cases} \quad (106)$$

1674 From Definition 13 and Eq. 9, it follows that:

$$\begin{aligned}
 1675 \quad \eta &= 100 \cdot \left(1 - \frac{\hat{p}_{\mathbf{z}}(\text{error})}{\hat{p}_{\mathbf{x}}(\text{error})} \right) = 100 \cdot \left(1 - \frac{\hat{p}(\mathcal{S}, N, \gamma, k)}{\hat{p}(\mathcal{S}, N, \gamma, d)} \right) \\
 1676 \\
 1677 \quad &= 100 \cdot \left(1 - \frac{\mathcal{Q}(f_{1,\gamma,k}(N)) + \mathcal{Q}(f_{-1,1,k}(N))}{\mathcal{Q}(f_{1,\gamma,d}(N)) + \mathcal{Q}(f_{-1,1,d}(N))} \right) \\
 1678 \\
 1679 \quad &= 100 \cdot h(N)
 \end{aligned} \tag{107}$$

1680 where we defined the following function:

$$h(x) := 1 - \frac{\mathcal{Q}(f_{1,\gamma,k}(x)) + \mathcal{Q}(f_{-1,1,k}(x))}{\mathcal{Q}(f_{1,\gamma,d}(x)) + \mathcal{Q}(f_{-1,1,d}(x))}. \tag{108}$$

1681 Now, let us define the following parametric function:

$$g_{s,a,q}(x) := f_{s,a,q}\left(\frac{1}{x}\right) = \frac{\sqrt{\mathcal{S}} + B \cdot x}{\sqrt{D \cdot x^2 + C \cdot x + 1}} \tag{109}$$

1682 where we used Eq. 105, Eq. 106. Let us also define:

$$\ell(x) := h\left(\frac{1}{x}\right) = 1 - \frac{\mathcal{Q}(g_{1,\gamma,k}(x)) + \mathcal{Q}(g_{-1,1,k}(x))}{\mathcal{Q}(g_{1,\gamma,d}(x)) + \mathcal{Q}(g_{-1,1,d}(x))} \tag{110}$$

1683 where we used Eq. 109, Eq. 108. Thus, Taylor expansion to first order of ℓ yields:

$$\ell(x) = \ell(0) + \ell'(0) \cdot x + \mathcal{O}(x^2)$$

1684 Where the approximation is exact for $x \ll 1$. Thus, the following is exact for $x \gg 1$:

$$x \gg 1 \Rightarrow h(x) = \ell\left(\frac{1}{x}\right) = \ell(0) + \frac{\ell'(0)}{x} + \mathcal{O}\left(\frac{1}{x^2}\right). \tag{111}$$

1685 Assuming:

$$N = \frac{N_T}{1 + \gamma} \gg 1 \Leftrightarrow N_T \gg 1 + \gamma \tag{112}$$

1686 means that following first-order approximation is exact:

$$h(N) = \ell(0) + \frac{\ell'(0)}{N} + \mathcal{O}\left(\frac{1}{N^2}\right). \tag{113}$$

1687 Let us first compute $\ell(0)$:

$$\ell(0) = 1 - \frac{\mathcal{Q}(g_{1,\gamma,k}(0)) + \mathcal{Q}(g_{-1,1,k}(0))}{\mathcal{Q}(g_{1,\gamma,d}(0)) + \mathcal{Q}(g_{-1,1,d}(0))} = 1 - \frac{2 \cdot \mathcal{Q}(\sqrt{\mathcal{S}})}{2 \cdot \mathcal{Q}(\sqrt{\mathcal{S}})} = 0. \tag{114}$$

1688 Finally, we will compute $\ell'(0)$: We first compute $g'_{s,a,q}(0)$. From Eq. 109 it follows that:

$$\begin{aligned}
 1689 \quad g'_{s,a,q}(x) &= \frac{B \cdot \sqrt{D \cdot x^2 + C \cdot x + 1} - \frac{2D \cdot x + C}{2 \cdot \sqrt{D \cdot x^2 + C \cdot x + 1}} \cdot (\sqrt{\mathcal{S}} + B \cdot x)}{D \cdot x^2 + C \cdot x + 1} \\
 1700 \\
 1701 \quad &= \frac{2B \cdot (D \cdot x^2 + C \cdot x + 1) - (2D \cdot x + C) \cdot (\sqrt{\mathcal{S}} + B \cdot x)}{2 \cdot (D \cdot x^2 + C \cdot x + 1)^{1.5}} \\
 1702 \\
 1703 \quad &= \frac{(BC - 2SD) \cdot x + (2B - C\sqrt{\mathcal{S}})}{2 \cdot (D \cdot x^2 + C \cdot x + 1)^{1.5}}.
 \end{aligned}$$

1704 Thus, the derivative at 0 is:

$$\begin{aligned}
 1705 \quad g'_{s,a,q}(0) &= \frac{2B - C\sqrt{\mathcal{S}}}{2} = B - \frac{1}{2} \cdot C\sqrt{\mathcal{S}} \\
 1706 \\
 1707 \quad &= \frac{s \cdot (1 - \gamma) \cdot q}{4\gamma \cdot S} - \frac{1}{2} \cdot \left(\frac{(1 + \gamma) \cdot q}{4\gamma \cdot \mathcal{S}} + \frac{1}{a} \right) \cdot \sqrt{\mathcal{S}} \\
 1708 \\
 1709 \quad &= \frac{s \cdot (1 - \gamma) \cdot q}{4\gamma \cdot S} - \frac{(1 + \gamma) \cdot q}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{\sqrt{\mathcal{S}}}{2a} \\
 1710 \\
 1711 \quad &= \frac{2s \cdot (1 - \gamma) \cdot q - (1 + \gamma) \cdot q}{8\gamma \cdot S} - \frac{\sqrt{\mathcal{S}}}{2a} \\
 1712 \\
 1713 \quad &= \frac{((2s - 1) - (2s + 1) \cdot \gamma) \cdot q}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{\sqrt{\mathcal{S}}}{2a}.
 \end{aligned} \tag{115}$$

Now, from Eq. 110, the derivative $\ell'(x)$ reads

$$\begin{aligned}
 \ell'(x) &= -\frac{d}{dx} \left(\frac{\mathcal{Q}(g_{1,\gamma,k}(x)) + \mathcal{Q}(g_{-1,1,k}(x))}{\mathcal{Q}(g_{1,\gamma,d}(x)) + \mathcal{Q}(g_{-1,1,d}(x))} \right) \\
 &= -\frac{d}{dx} \left(\frac{u(x)}{v(x)} \right) \\
 &= -\frac{u'(x) \cdot v(x) - v'(x) \cdot u(x)}{v^2(x)} \\
 &= \frac{v'(x) \cdot u(x) - u'(x) \cdot v(x)}{v^2(x)}
 \end{aligned} \tag{116}$$

where we defined the following auxiliary functions:

$$\begin{cases} u(x) = \mathcal{Q}(g_{1,\gamma,k}(x)) + \mathcal{Q}(g_{-1,1,k}(x)) \\ v(x) = \mathcal{Q}(g_{1,\gamma,d}(x)) + \mathcal{Q}(g_{-1,1,d}(x)) \end{cases} \tag{117}$$

From the chain rule, their derivatives are:

$$\begin{cases} u'(x) = g'_{1,\gamma,k}(x) \cdot \mathcal{Q}'(g_{1,\gamma,k}(x)) + g'_{-1,1,k}(x) \cdot \mathcal{Q}'(g_{-1,1,k}(x)) \\ v'(x) = g'_{1,\gamma,d}(x) \cdot \mathcal{Q}'(g_{1,\gamma,d}(x)) + g'_{-1,1,d}(x) \cdot \mathcal{Q}'(g_{-1,1,d}(x)) \end{cases} \tag{118}$$

Now, from Eq. 116, Eq. 118 it follows that:

$$\ell'(0) = \frac{v'(0) \cdot u(0) - u'(0) \cdot v(0)}{v(0)^2}. \tag{119}$$

It is easy to verify from Eq. 109 that $g_{s,a,q}(0) = \sqrt{\mathcal{S}}$. Thus, from Eq. 117, Eq. 118, Eq. 115, we have the following formulas:

$$\begin{cases} u(0) = 2 \cdot \mathcal{Q}(\sqrt{\mathcal{S}}) \\ v(0) = 2 \cdot \mathcal{Q}(\sqrt{\mathcal{S}}) \\ u'(0) = \left(\frac{(1-3\gamma) \cdot k}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{\sqrt{\mathcal{S}}}{2\gamma} \right) \cdot \mathcal{Q}'(\sqrt{\mathcal{S}}) + \left(\frac{-(3+\gamma) \cdot k}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{\sqrt{\mathcal{S}}}{2} \right) \cdot \mathcal{Q}'(\sqrt{\mathcal{S}}) \\ v'(0) = \left(\frac{(1-3\gamma) \cdot d}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{\sqrt{\mathcal{S}}}{2\gamma} \right) \cdot \mathcal{Q}'(\sqrt{\mathcal{S}}) + \left(\frac{-(3+\gamma) \cdot d}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{\sqrt{\mathcal{S}}}{2} \right) \cdot \mathcal{Q}'(\sqrt{\mathcal{S}}) \end{cases} \tag{120}$$

Now, we substitute Eq. 120 in Eq. 119, to get the following formula for $\ell'(0)$:

$$\begin{aligned}
 \ell'(0) &= \frac{2 \cdot \mathcal{Q}(\sqrt{\mathcal{S}}) \cdot \left(\left(\frac{(1-3\gamma) \cdot d}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{\sqrt{\mathcal{S}}}{2\gamma} \right) \cdot \mathcal{Q}'(\sqrt{\mathcal{S}}) + \left(\frac{-(3+\gamma) \cdot d}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{\sqrt{\mathcal{S}}}{2} \right) \cdot \mathcal{Q}'(\sqrt{\mathcal{S}}) \right)}{4 \cdot \mathcal{Q}^2(\sqrt{\mathcal{S}})} \\
 &\quad - \frac{2 \mathcal{Q}(\sqrt{\mathcal{S}}) \cdot \left(\left(\frac{(1-3\gamma) \cdot k}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{\sqrt{\mathcal{S}}}{2\gamma} \right) \cdot \mathcal{Q}'(\sqrt{\mathcal{S}}) + \left(\frac{-(3+\gamma) \cdot k}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{\sqrt{\mathcal{S}}}{2} \right) \cdot \mathcal{Q}'(\sqrt{\mathcal{S}}) \right)}{4 \cdot \mathcal{Q}^2(\sqrt{\mathcal{S}})} \\
 &= \frac{\mathcal{Q}'(\sqrt{\mathcal{S}})}{2 \cdot \mathcal{Q}(\sqrt{\mathcal{S}})} \cdot \left(\frac{(1-3\gamma) \cdot (d-k)}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{(3+\gamma) \cdot (d-k)}{8\gamma \cdot \sqrt{\mathcal{S}}} \right) \\
 &= \frac{\mathcal{Q}'(\sqrt{\mathcal{S}})}{2 \cdot \mathcal{Q}(\sqrt{\mathcal{S}})} \cdot (d-k) \cdot \left(\frac{-2-4\gamma}{8\gamma \cdot \sqrt{\mathcal{S}}} \right) \\
 &= -\frac{\mathcal{Q}'(\sqrt{\mathcal{S}})}{\mathcal{Q}(\mathcal{S})} \cdot (d-k) \cdot \left(\frac{1+2\gamma}{8\gamma \cdot \sqrt{\mathcal{S}}} \right) \\
 &= -\frac{\mathcal{Q}'(\sqrt{\mathcal{S}})}{\sqrt{\mathcal{S}} \cdot \mathcal{Q}(\sqrt{\mathcal{S}})} \cdot (d-k) \cdot \left(\frac{1}{8\gamma} + \frac{1}{4} \right).
 \end{aligned} \tag{121}$$

Finally, from Eq. 107, Eq. 112, Eq. 113, Eq. 114, Eq. 121, it follows that:

$$\begin{aligned}
 \eta &= 100 \cdot h(N) \\
 &= 100 \cdot \left(\ell(0) + \frac{\ell'(0)}{N} + \mathcal{O}\left(\frac{1}{N^2}\right) \right) \\
 &= 100 \cdot \frac{\ell'(0)}{N} + \mathcal{O}\left(\frac{1}{N^2}\right) \\
 &= -\frac{100 \cdot \mathcal{Q}'(\sqrt{\mathcal{S}})}{\sqrt{\mathcal{S}} \cdot \mathcal{Q}(\sqrt{\mathcal{S}})} \cdot (d - k) \cdot \left(\frac{1}{8\gamma} + \frac{1}{4} \right) \cdot \frac{1}{N} + \mathcal{O}\left(\frac{1}{N^2}\right)
 \end{aligned} \tag{122}$$

We proceed with Eq. 122 and substitute Eq. 112:

$$N = \frac{N_T}{1 + \gamma}$$

to get the following approximation for η :

$$\begin{aligned}
 \eta &= -100 \cdot \frac{\mathcal{Q}'(\sqrt{\mathcal{S}})}{\sqrt{\mathcal{S}} \cdot \mathcal{Q}(\sqrt{\mathcal{S}})} \cdot (d - k) \cdot \left(\frac{1}{8\gamma} + \frac{1}{4} \right) \cdot (1 + \gamma) \cdot \frac{1}{N_T} + \mathcal{O}\left(\frac{1}{N_T^2}\right) \\
 &= -50 \cdot \frac{\mathcal{Q}'(\sqrt{\mathcal{S}})}{\sqrt{\mathcal{S}} \cdot \mathcal{Q}(\sqrt{\mathcal{S}})} \cdot (d - k) \cdot \left(\frac{1}{4\gamma} + \frac{1}{2} \right) \cdot (1 + \gamma) \cdot \frac{1}{N_T} + \mathcal{O}\left(\frac{1}{N_T^2}\right) \\
 &= -50 \cdot \frac{\mathcal{Q}'(\sqrt{\mathcal{S}})}{\sqrt{\mathcal{S}} \cdot \mathcal{Q}(\sqrt{\mathcal{S}})} \cdot (d - k) \cdot \left(\frac{1 + 2\gamma}{4\gamma} \right) \cdot (1 + \gamma) \cdot \frac{1}{N_T} + \mathcal{O}\left(\frac{1}{N_T^2}\right) \\
 &= -\frac{50 \cdot \mathcal{Q}'(\sqrt{\mathcal{S}})}{4 \cdot \sqrt{\mathcal{S}} \cdot \mathcal{Q}(\sqrt{\mathcal{S}})} \cdot (d - k) \cdot (1 + 2\gamma) \cdot \left(1 + \frac{1}{\gamma} \right) \cdot \frac{1}{N_T} + \mathcal{O}\left(\frac{1}{N_T^2}\right) \\
 &= -\frac{25 \cdot \mathcal{Q}'(\sqrt{\mathcal{S}})}{2 \cdot \sqrt{\mathcal{S}} \cdot \mathcal{Q}(\sqrt{\mathcal{S}})} \cdot (d - k) \cdot \left(3 + 2\gamma + \frac{1}{\gamma} \right) \cdot \frac{1}{N_T} + \mathcal{O}\left(\frac{1}{N_T^2}\right) \\
 &= \frac{25}{2\sqrt{2\pi}} \cdot \frac{\exp(-\frac{\mathcal{S}}{2})}{\sqrt{\mathcal{S}} \cdot \mathcal{Q}(\sqrt{\mathcal{S}})} \cdot \left(3 + 2\gamma + \frac{1}{\gamma} \right) \cdot (d - k) \cdot \frac{1}{N_T} + \mathcal{O}\left(\frac{1}{N_T^2}\right)
 \end{aligned} \tag{123}$$

where we used the following property of the \mathcal{Q} function:

$$\mathcal{Q}'(x) = -\frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{x^2}{2}\right).$$

It is now left to show the conclusions. For $N_T \gg 1$, we have from Eq. 123 that

$$\eta = C \cdot f(\mathcal{S}) \cdot g(\gamma) \cdot (d - k) \cdot \frac{1}{N_T} \tag{124}$$

where $C = \frac{25}{2\sqrt{2\pi}} > 0$, and

$$\begin{cases} f(\mathcal{S}) = \frac{\exp(-\frac{\mathcal{S}}{2})}{\sqrt{\mathcal{S}} \cdot \mathcal{Q}(\sqrt{\mathcal{S}})} \\ g(\gamma) = 3 + 2\gamma + \frac{1}{\gamma} \end{cases} \tag{125}$$

It is now clear from Eq. 124 that as $d - k$ increases, the efficiency increases (linearly), and as N_T increases, the efficiency decreases. It is easy to see that in $(0, 1]$, the function g defined in Eq. 125 achieves a minimum at $\gamma = \frac{1}{\sqrt{2}}$:

$$g'(\gamma) = 2 - \frac{1}{\gamma^2} = 0 \Rightarrow \gamma = \pm \frac{1}{\sqrt{2}}.$$

It is easy to check that

$$g\left(\frac{1}{\sqrt{2}}\right) < \lim_{x \rightarrow 0^+} g(x) = \infty, \quad g\left(\frac{1}{\sqrt{2}}\right) < g(1).$$

1836 Thus, from Eq. 124, in the range $\left(0, \frac{1}{\sqrt{2}}\right]$, as γ decreases, the efficiency increases. Finally, we will
 1837 prove that the function f , defined in Eq. 125, decreases as \mathcal{S} increases, and thus from Eq. 124, the
 1838 efficiency decreases as \mathcal{S} increases: It is now sufficient to prove the following:
 1839

$$\begin{aligned} 1840 \quad 1841 \quad f'(\mathcal{S}) &= \frac{-\frac{1}{2} \exp\left(-\frac{\mathcal{S}}{2}\right) \cdot \sqrt{\mathcal{S}} \mathcal{Q}\left(\sqrt{\mathcal{S}}\right) - \frac{d}{d\mathcal{S}}\left(\sqrt{\mathcal{S}} \mathcal{Q}\left(\sqrt{\mathcal{S}}\right)\right) \cdot \exp\left(-\frac{\mathcal{S}}{2}\right)}{\mathcal{S} \mathcal{Q}^2\left(\sqrt{\mathcal{S}}\right)} < 0 \\ 1842 \quad 1843 \quad &-\frac{1}{2} \sqrt{\mathcal{S}} \cdot \mathcal{Q}\left(\sqrt{\mathcal{S}}\right) - \frac{d}{d\mathcal{S}}\left(\sqrt{\mathcal{S}} \mathcal{Q}\left(\sqrt{\mathcal{S}}\right)\right) < 0 \\ 1844 \quad 1845 \quad &-\frac{1}{2} \sqrt{\mathcal{S}} \mathcal{Q}\left(\sqrt{\mathcal{S}}\right) < \frac{1}{2\sqrt{\mathcal{S}}} \mathcal{Q}\left(\sqrt{\mathcal{S}}\right) + \sqrt{\mathcal{S}} \cdot \mathcal{Q}'\left(\sqrt{\mathcal{S}}\right) \frac{1}{2\sqrt{\mathcal{S}}} \\ 1846 \quad 1847 \quad &-\sqrt{\mathcal{S}} \mathcal{Q}\left(\sqrt{\mathcal{S}}\right) < \frac{1}{\sqrt{\mathcal{S}}} \mathcal{Q}\left(\sqrt{\mathcal{S}}\right) - \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\mathcal{S}}{2}\right) \\ 1848 \quad 1849 \quad &\left(\sqrt{\mathcal{S}} + \frac{1}{\sqrt{\mathcal{S}}}\right) \mathcal{Q}\left(\sqrt{\mathcal{S}}\right) > \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\mathcal{S}}{2}\right) \\ 1850 \quad 1851 \quad &\mathcal{Q}\left(\sqrt{\mathcal{S}}\right) > \frac{1}{\sqrt{2\pi}} \cdot \frac{\sqrt{\mathcal{S}}}{\mathcal{S} + 1} \cdot \exp\left(-\frac{\mathcal{S}}{2}\right) \\ 1852 \quad 1853 \quad & \\ 1854 \quad 1855 \quad & \\ 1856 \quad 1857 \quad \text{Where we used the identity } \mathcal{Q}'(\mathcal{S}) = -\frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{\mathcal{S}^2}{2}\right). \text{ Let us now prove the final inequality. It} \\ 1858 \quad 1859 \quad \text{is equivalent to the following inequality } (x = \sqrt{\mathcal{S}}): \\ 1860 \quad 1861 \quad \forall_{x \geq 0} \mathcal{Q}(x) > \frac{1}{\sqrt{2\pi}} \cdot \frac{x}{x^2 + 1} \cdot \exp\left(-\frac{x^2}{2}\right) = \frac{x}{x^2 + 1} \cdot \phi(x) \quad (126) \\ 1862 \quad 1863 \quad \text{where we defined the following function:} \\ 1864 \quad 1865 \quad \phi(x) = \frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{x^2}{2}\right). \quad (127) \\ 1866 \quad 1867 \quad \text{Indeed, for all } x \geq 0: \\ 1868 \quad 1869 \quad \left(1 + \frac{1}{x^2}\right) \cdot \mathcal{Q}(x) &= \int_x^\infty \left(1 + \frac{1}{u^2}\right) \cdot \phi(u) du \\ 1870 \quad 1871 \quad &> \int_x^\infty \left(1 + \frac{1}{u^2}\right) \cdot \phi(u) du \\ 1872 \quad 1873 \quad &= - \left[\frac{\phi(u)}{u} \right]_x^\infty \\ 1874 \quad 1875 \quad &= \frac{\phi(x)}{x} \\ 1876 \quad 1877 \quad \text{where we used the following identity:} \\ 1878 \quad 1879 \quad \frac{d}{du} \left(-\frac{\phi(u)}{u} \right) &= -\frac{\phi'(u) \cdot u - \phi(u)}{u^2} = \frac{\phi(u) + u^2 \cdot \phi(u)}{u^2} = \left(1 + \frac{1}{u^2}\right) \cdot \phi(u). \quad (129) \\ 1880 \quad 1881 \quad \text{And Eq. 129 follows from the identity } \phi'(u) = -u \cdot \phi(u) \text{ which is straightforward from the definition} \\ 1882 \quad 1883 \quad \text{of } \phi \text{ in Eq. 127. Now, from Eq. 128, it follows that:} \\ 1884 \quad 1885 \quad \mathcal{Q}(x) &> \frac{\phi(x)}{x} \cdot \frac{x^2}{x^2 + 1} = \frac{x}{x^2 + 1} \cdot \phi(x) \\ 1886 \quad 1887 \quad \text{which proves exactly Eq. 126. It is left to show that:} \\ 1888 \quad 1889 \quad \exists_{N_0 \in \mathbb{N}} \forall_{N \geq N_0} p_{\mathbf{z}}(\text{error}) &< p_{\mathbf{x}}(\text{error}). \quad (130) \\ 1890 \quad 1891 \quad \text{That is, } \eta > 0. \text{ We proved in Eq. 119 that:} \\ 1892 \quad 1893 \quad \ell'(0) &= -\frac{\mathcal{Q}'(\sqrt{\mathcal{S}})}{\sqrt{\mathcal{S}} \cdot \mathcal{Q}(\sqrt{\mathcal{S}})} \cdot (d - k) \cdot \left(\frac{1}{8\gamma} + \frac{1}{4}\right) > 0. \quad (131) \end{aligned}$$

1890 We defined $\ell(x)$ in Eq. 111 as:
 1891

$$1892 \quad 1893 \quad \ell(x) = h\left(\frac{1}{x}\right) \Rightarrow \ell'(x) = -\frac{1}{x^2} \cdot h'\left(\frac{1}{x}\right) \quad (132)$$

1894 where we used the chain rule. Finally, from Eq. 131, Eq. 132, it follows that:
 1895

$$1896 \quad 1897 \quad \ell'(0) = -\lim_{x \rightarrow 0^+} \frac{1}{x^2} \cdot h'\left(\frac{1}{x}\right) = -\lim_{t \rightarrow \infty} t^2 \cdot h'(t) > 0$$

1898 where we used the fact that if the two-sided limit exists, then each one-sided limit exists and they are
 1899 equal to the limit. In total,
 1900

$$1902 \quad \lim_{t \rightarrow \infty} t^2 \cdot h'(t) < 0.$$

1904 This means that for large enough t , we have
 1905

$$1906 \quad h'(t) < 0$$

1907 which implies that h is strictly decreasing. Thus, from Eq. 107, we have that for $N \gg 1$, η is
 1908 decreasing. In addition, from Eq. 111, Eq. 114, it follows that:
 1909

$$1910 \quad 1911 \quad \lim_{N \rightarrow \infty} \eta = 100 \cdot \lim_{N \rightarrow \infty} h(N) = 100 \cdot \lim_{N \rightarrow \infty} \ell\left(\frac{1}{N}\right) = 100 \cdot \ell(0) = 0$$

1913 Finally, η is decreasing for large enough N and approaches 0. It is now easy to see that:
 1914

$$1915 \quad \exists_{N_0 \in \mathbb{N}} \forall_{N \geq N_0} \eta > 0$$

1917 which exactly proves Eq. 130. □
 1918

1920 A.8 PROOF OF THEOREM 8

1922 Let us state an extended and more detailed version of the Theorem 8.
 1923

1924 **Theorem** (Analysis of the maximal efficiency). *Fix $\gamma = 1$, and let $\mathcal{S} > 0$, $1 \leq k < d$. Consider the
 1925 efficiency $\eta = \eta(N)$ as a function of continuous $N \in \mathbb{R}_+$. The following hold.*

- 1927 • The maximal efficiency $\eta_{\max} = \max_{N \geq 0} \eta(N)$ increases as a function of $\mathcal{S} > 0$.
 1928
- 1929 • For fixed $r := \frac{d}{k}$ and $k \gg \max\{1, \mathcal{S}\}$, the maximizer $N_{\max} = \arg \max_{N \geq 0} \eta(N)$ decreases
 1930 with $\mathcal{S} > 0$ in both regimes $\mathcal{S} \ll 1, \mathcal{S} \gg 1$. In addition, in the regime $\mathcal{S} \ll 1$ the following
 1931 approximation holds:
 1932

$$1933 \quad 1934 \quad N_{\max} \approx \frac{k}{2\mathcal{S}} \cdot \frac{r^{\frac{2}{3}} (r^{\frac{1}{3}} - 1)}{r^{\frac{2}{3}} - 1}. \quad (133)$$

1936 Finally, in the regime $\mathcal{S} \gg 1$, the following approximation holds:
 1937

$$1939 \quad N_{\max} \approx \frac{k}{2\mathcal{S}} \cdot \sqrt{r}. \quad (134)$$

1942 *Proof.* Fix $\gamma = 1$, and take
 1943

$$\mathcal{S} > 0, 1 \leq k < d.$$

1944 Let us now define the following parametric function:
 1945

$$\begin{aligned}
 1946 \quad f_q(x, \mathcal{S}) &:= \frac{\sqrt{\mathcal{S}}}{\sqrt{\left(\frac{q}{2\mathcal{S}} + 1\right) \cdot \frac{1}{x} + \frac{q}{4\mathcal{S}} \cdot \frac{1}{x^2} + 1}} \\
 1947 \quad &= \frac{\sqrt{\mathcal{S}}}{\sqrt{\frac{q+2\mathcal{S}}{2\mathcal{S}x} + \frac{q}{4\mathcal{S}x^2} + 1}} \\
 1948 \quad &= \frac{\sqrt{\mathcal{S}}}{\sqrt{\frac{2x(q+2\mathcal{S})+q+4\mathcal{S}^2x}{4\mathcal{S}x^2}}} \\
 1949 \quad &= \frac{2\mathcal{S}x}{\sqrt{2qx + q + 4\mathcal{S}x + 4\mathcal{S}x^2}} \\
 1950 \quad &= \frac{2\mathcal{S}x}{\sqrt{(2x+1)q + 4x(x+1)\mathcal{S}}} \\
 1951 \quad &= \frac{2\mathcal{S}x}{\sqrt{D_q(x, \mathcal{S})}}
 \end{aligned} \tag{135}$$

1952 where we denoted

$$\begin{aligned}
 1953 \quad D_q(x, \mathcal{S}) &= (2x+1)q + 4x(x+1)\mathcal{S} \\
 1954 \quad &= 4\mathcal{S}x^2 + 2(2\mathcal{S} + q)x + q.
 \end{aligned} \tag{136}$$

1955 From Definition 13 and Eq. 9, it follows that:

$$\begin{aligned}
 1956 \quad \eta &= 100 \cdot \left(1 - \frac{\hat{p}_{\mathbf{z}}(\text{error})}{\hat{p}_{\mathbf{x}}(\text{error})}\right) = 100 \cdot \left(1 - \frac{\hat{p}(\mathcal{S}, N, 1, k)}{\hat{p}(\mathcal{S}, N, 1, d)}\right) \\
 1957 \quad &= 100 \cdot \left(1 - \frac{2 \cdot \mathcal{Q}(f_k(N))}{2 \cdot \mathcal{Q}(f_d(N))}\right) \\
 1958 \quad &= 100 \cdot \left(1 - \frac{\mathcal{Q}(f_k(N))}{\mathcal{Q}(f_d(N))}\right) \\
 1959 \quad &= 100 \cdot h(N, \mathcal{S})
 \end{aligned} \tag{137}$$

1960 where we defined the following function:

$$h(x, \mathcal{S}) := 1 - \frac{\mathcal{Q}(f_k(x, \mathcal{S}))}{\mathcal{Q}(f_d(x, \mathcal{S}))}. \tag{138}$$

1961 Hence, our task reduces to proving that the following function is increasing:

$$V(\mathcal{S}) := \max_{x>0} h(x, \mathcal{S}) = h(x^*(\mathcal{S}), \mathcal{S}) \tag{139}$$

1962 where we denoted

$$x^*(\mathcal{S}) = \arg \max_{x>0} h(x, \mathcal{S}). \tag{140}$$

1963 We note that the proof holds for each stationary point, and in particular for a maximizer that achieves
 1964 the maximum value of the function $h(x, \mathcal{S})$. In addition, using the first-order condition:

$$\frac{\partial h}{\partial x}(x^*(\mathcal{S}), \mathcal{S}) = 0. \tag{141}$$

1965 We now aim to prove that $V'(\mathcal{S}) > 0$, where $V(\mathcal{S})$ is defined in Eq. 139. From the chain rule, we
 1966 have:

$$V'(\mathcal{S}) = \frac{\partial h}{\partial \mathcal{S}}(x^*(\mathcal{S}), \mathcal{S}) + \frac{\partial h}{\partial x}(x^*(\mathcal{S}), \mathcal{S}) \cdot \frac{\partial x^*}{\partial \mathcal{S}} = \frac{\partial h}{\partial \mathcal{S}}(x^*(\mathcal{S}), \mathcal{S}) \tag{142}$$

1998 where we used Eq. 141. Let us compute the partial derivative of h with respect to \mathcal{S} :
 1999

2000

2001

2002

$$\begin{aligned}
 2003 \quad \frac{\partial h}{\partial \mathcal{S}} &= -\frac{\partial}{\partial \mathcal{S}} \left(\frac{\mathcal{Q}(f_k(x, \mathcal{S}))}{\mathcal{Q}(f_d(x, \mathcal{S}))} \right) \\
 2004 &= -\frac{\frac{\partial}{\partial \mathcal{S}} \mathcal{Q}(f_k(x, \mathcal{S})) \cdot \mathcal{Q}(f_d(x, \mathcal{S})) - \frac{\partial}{\partial \mathcal{S}} \mathcal{Q}(f_d(x, \mathcal{S})) \cdot \mathcal{Q}(f_k(x, \mathcal{S}))}{\mathcal{Q}^2(f_d(x, \mathcal{S}))} \\
 2005 &= \frac{\frac{\partial}{\partial \mathcal{S}} \mathcal{Q}(f_d(x, \mathcal{S})) \cdot \mathcal{Q}(f_k(x, \mathcal{S})) - \frac{\partial}{\partial \mathcal{S}} \mathcal{Q}(f_k(x, \mathcal{S})) \cdot \mathcal{Q}(f_d(x, \mathcal{S}))}{\mathcal{Q}^2(f_d(x, \mathcal{S}))} \\
 2006 &= \frac{\mathcal{Q}'(f_d(x, \mathcal{S})) \cdot \frac{\partial f_d}{\partial \mathcal{S}} \cdot \mathcal{Q}(f_k(x, \mathcal{S})) - \mathcal{Q}'(f_k(x, \mathcal{S})) \cdot \frac{\partial f_k}{\partial \mathcal{S}} \cdot \mathcal{Q}(f_d(x, \mathcal{S}))}{\mathcal{Q}^2(f_d(x, \mathcal{S}))} \\
 2007 &= \frac{1}{\sqrt{2\pi}} \cdot \frac{\exp(-\frac{1}{2}f_k^2(x, \mathcal{S})) \cdot \frac{\partial f_k}{\partial \mathcal{S}} \cdot \mathcal{Q}(f_d(x, \mathcal{S})) - \exp(-\frac{1}{2}f_d^2(x, \mathcal{S})) \cdot \frac{\partial f_d}{\partial \mathcal{S}} \cdot \mathcal{Q}(f_k(x, \mathcal{S}))}{\mathcal{Q}^2(f_d(x, \mathcal{S}))} \tag{143}
 \end{aligned}$$

2008 where we used the identity $\mathcal{Q}'(x) = -\frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{1}{2}x^2\right)$. It now follows immediately from
 2009 Eq. 142, Eq. 143, that proving $V'(\mathcal{S}) > 0$ is equivalent to proving the following inequality:

2010

2011

2012

$$\exp\left(-\frac{1}{2}f_k^2(x^*, \mathcal{S})\right) \frac{\partial f_k}{\partial \mathcal{S}}(x^*, \mathcal{S}) \mathcal{Q}(f_d(x^*, \mathcal{S})) > \exp\left(-\frac{1}{2}f_d^2(x^*, \mathcal{S})\right) \frac{\partial f_d}{\partial \mathcal{S}}(x^*, \mathcal{S}) \mathcal{Q}(f_k(x^*, \mathcal{S})). \tag{144}$$

2013 We now turn to the first order condition for $x^*(\mathcal{S})$ in Eq. 141, and thus equate the partial derivative of
 2014 h with respect to x to zero. Similarly to Eq. 143, one can prove that for all $x > 0$ we have:

2015

2016

2017

2018

2019

2020

2021

2022

$$\frac{\partial h}{\partial x} = -\frac{\partial}{\partial x} \left(\frac{\mathcal{Q}(f_k(x))}{\mathcal{Q}(f_d(x))} \right) \tag{145}$$

2023

$$= \frac{1}{\sqrt{2\pi}} \cdot \frac{\exp(-\frac{1}{2}f_k^2(x, \mathcal{S})) \cdot \frac{\partial f_k}{\partial x} \cdot \mathcal{Q}(f_d(x, \mathcal{S})) - \exp(-\frac{1}{2}f_d^2(x, \mathcal{S})) \cdot \frac{\partial f_d}{\partial x} \cdot \mathcal{Q}(f_k(x, \mathcal{S}))}{\mathcal{Q}^2(f_d(x, \mathcal{S}))}.$$

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

$$\exp\left(-\frac{1}{2}f_k^2(x^*, \mathcal{S})\right) \frac{\partial f_k}{\partial x}(x^*, \mathcal{S}) \mathcal{Q}(f_d(x^*, \mathcal{S})) = \exp\left(-\frac{1}{2}f_d^2(x^*, \mathcal{S})\right) \frac{\partial f_d}{\partial x}(x^*, \mathcal{S}) \mathcal{Q}(f_k(x^*, \mathcal{S})). \tag{146}$$

2045 We now divide both sides of the inequality in Eq. 144 by the (positive) value we have in the latter
 2046 equality, in order to get the following simplified inequality:

2047

2048

2049

2050

2051

$$\frac{\frac{\partial f_k}{\partial \mathcal{S}}(x^*, \mathcal{S})}{\frac{\partial f_k}{\partial x}(x^*, \mathcal{S})} > \frac{\frac{\partial f_d}{\partial \mathcal{S}}(x^*, \mathcal{S})}{\frac{\partial f_d}{\partial x}(x^*, \mathcal{S})}. \tag{147}$$

2052 We indeed divided by a positive amount, because $\exp(\cdot) > 0$, $\mathcal{Q}(\cdot) > 0$, and $\frac{\partial f_q}{\partial x} > 0$: for all $x > 0$,
 2053 from Eq. 135, Eq. 136, we have:
 2054

$$\begin{aligned}
 \frac{\partial f_q}{\partial x} &= \frac{\partial}{\partial x} \left(\frac{2\mathcal{S}x}{\sqrt{D_q(x, \mathcal{S})}} \right) \\
 &= 2\mathcal{S} \cdot \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{D_q(x, \mathcal{S})}} \right) \\
 &= 2\mathcal{S} \cdot \left(\frac{\sqrt{D_q(x, \mathcal{S})} - x \cdot \frac{\partial}{\partial x} (\sqrt{D_q(x, \mathcal{S})})}{D_q(x, \mathcal{S})} \right) \\
 &= 2\mathcal{S} \cdot \left(\frac{\sqrt{D_q(x, \mathcal{S})} - x \cdot \frac{\partial D_q(x, \mathcal{S})/\partial x}{2\sqrt{D_q(x, \mathcal{S})}}}{D_q(x, \mathcal{S})} \right) \\
 &= 2\mathcal{S} \cdot \left(\frac{2 \cdot D_q(x, \mathcal{S}) - x \cdot \frac{\partial D_q(x, \mathcal{S})}{\partial x}}{2 \cdot (D_q(x, \mathcal{S}))^{3/2}} \right) \\
 &= \frac{\mathcal{S}}{(D_q(x, \mathcal{S}))^{3/2}} \cdot (2(4\mathcal{S}x^2 + 2(2\mathcal{S} + q)x + q) - x(8\mathcal{S}x + 2(2\mathcal{S} + q))) \\
 &= \frac{\mathcal{S}}{(D_q(x, \mathcal{S}))^{3/2}} \cdot (2(2\mathcal{S} + q)x + 2q) \\
 &= \frac{2\mathcal{S}}{(D_q(x, \mathcal{S}))^{3/2}} \cdot ((2\mathcal{S} + q)x + q) > 0
 \end{aligned} \tag{148}$$

2078 where we used the definition of $D_q(x, \mathcal{S})$ in Eq. 136. We now compute the partial derivative of f_q
 2079 with respect to \mathcal{S} :

$$\begin{aligned}
 \frac{\partial f_q}{\partial \mathcal{S}} &= \frac{\partial}{\partial \mathcal{S}} \left(\frac{2\mathcal{S}x}{\sqrt{D_q(x, \mathcal{S})}} \right) \\
 &= 2x \cdot \frac{\partial}{\partial \mathcal{S}} \left(\frac{\mathcal{S}}{\sqrt{D_q(x, \mathcal{S})}} \right) \\
 &= 2x \cdot \left(\frac{\sqrt{D_q(x, \mathcal{S})} - \mathcal{S} \cdot \frac{\partial}{\partial \mathcal{S}} (\sqrt{D_q(x, \mathcal{S})})}{D_q(x, \mathcal{S})} \right) \\
 &= 2x \cdot \left(\frac{\sqrt{D_q(x, \mathcal{S})} - \mathcal{S} \cdot \frac{\partial D_q(x, \mathcal{S})/\partial \mathcal{S}}{2\sqrt{D_q(x, \mathcal{S})}}}{D_q(x, \mathcal{S})} \right) \\
 &= 2x \cdot \left(\frac{2 \cdot D_q(x, \mathcal{S}) - \mathcal{S} \cdot \frac{\partial D_q(x, \mathcal{S})}{\partial \mathcal{S}}}{2 \cdot (D_q(x, \mathcal{S}))^{3/2}} \right).
 \end{aligned} \tag{149}$$

2096 We now use the definition of $D_q(x, \mathcal{S})$ from Eq. 136, and get

$$\begin{aligned}
 \frac{\partial f_q}{\partial \mathcal{S}} &= \frac{x}{(D_q(x, \mathcal{S}))^{3/2}} \cdot (2(4\mathcal{S}x^2 + 2(2\mathcal{S} + q)x + q) - \mathcal{S} \cdot 4x(x + 1)) \\
 &= \frac{x}{(D_q(x, \mathcal{S}))^{3/2}} \cdot (4\mathcal{S}x^2 + 4(2\mathcal{S} + q)x - 4\mathcal{S}x + 2q) \\
 &= \frac{x}{(D_q(x, \mathcal{S}))^{3/2}} \cdot (4\mathcal{S}x^2 + 4(\mathcal{S} + q)x + 2q) \\
 &= \frac{2x}{(D_q(x, \mathcal{S}))^{3/2}} \cdot (2\mathcal{S}x^2 + 2(\mathcal{S} + q)x + q).
 \end{aligned} \tag{150}$$

2106 Let us now define
 2107

$$\begin{aligned}
 R_q(x, \mathcal{S}) &:= \frac{\frac{\partial f_q}{\partial \mathcal{S}}(x, \mathcal{S})}{\frac{\partial f_q}{\partial x}(x, \mathcal{S})} \\
 &= \frac{\frac{2x}{(D_q(x, \mathcal{S}))^{3/2}} \cdot (2\mathcal{S}x^2 + 2(\mathcal{S} + q)x + q)}{\frac{2\mathcal{S}}{(D_q(x, \mathcal{S}))^{3/2}} \cdot ((2\mathcal{S} + q)x + q)} \\
 &= \frac{x}{\mathcal{S}} \cdot \left(\frac{2\mathcal{S}x^2 + 2\mathcal{S}x + 2x \cdot q + q}{2\mathcal{S}x + x \cdot q + q} \right) \\
 &= \frac{x}{\mathcal{S}} \cdot \left(\frac{2\mathcal{S}x(x + 1) + (2x + 1) \cdot q}{2\mathcal{S}x + (x + 1) \cdot q} \right)
 \end{aligned} \tag{151}$$

2120 where we used the partial derivatives of f_q , computed in Eq. 148, Eq. 150. We remember that we
 2121 need to prove Eq. 147, which is equivalent to $R_q(x, \mathcal{S})$ being a decreasing function in the argument q
 2122 (this is because $1 \leq k < d$). Indeed, let us compute
 2123

$$\begin{aligned}
 \frac{\partial R_q(x, \mathcal{S})}{\partial q} &= \frac{x}{\mathcal{S}} \cdot \frac{\partial}{\partial q} \left(\frac{2\mathcal{S}x(x + 1) + (2x + 1) \cdot q}{2\mathcal{S}x + (x + 1) \cdot q} \right) \\
 &= \frac{x}{\mathcal{S}} \cdot \frac{(2x + 1) \cdot (2\mathcal{S}x + (x + 1) \cdot q) - (x + 1) \cdot (2\mathcal{S}x(x + 1) + (2x + 1) \cdot q)}{(2\mathcal{S}x + (x + 1) \cdot q)^2} \\
 &= \frac{x}{\mathcal{S}} \cdot \frac{2x(2x + 1) \cdot \mathcal{S} - 2x(x + 1)^2 \cdot \mathcal{S}}{(2\mathcal{S}x + (x + 1) \cdot q)^2} \\
 &= \frac{2x^2 \cdot (2x + 1 - (x + 1)^2)}{(2\mathcal{S}x + (x + 1) \cdot q)^2} \\
 &= -\frac{2x^4}{(2\mathcal{S}x + (x + 1) \cdot q)^2}.
 \end{aligned} \tag{152}$$

2138 That is,
 2139

$$\frac{\partial R_q(x, \mathcal{S})}{\partial q} = -\frac{2x^4}{(2\mathcal{S}x + (x + 1) \cdot q)^2} < 0$$

2144 which proves Eq. 147. We argued that this is equivalent to Eq. 144. As we proved in Eq. 142,
 2145 this inequality is equivalent to proving $V'(\mathcal{S}) > 0$. Finally, the result is straightforward because
 2146 $\eta = 100 \cdot h(N, \mathcal{S})$. This proves the first part of the theorem.
 2147

2148 We will now prove the second part of the theorem. Let us fix $d > k \gg \max\{1, \mathcal{S}\}$, and
 2149 $r := \frac{d}{k} > 1$. We prove that the maximizer $x^*(\mathcal{S})$, defined in Eq. 140, decreases as a function of \mathcal{S} .
 2150 Let us first define the following rescaled x value:
 2151

$$x(t) := \frac{k}{\mathcal{S}} \cdot t. \tag{153}$$

2156 Thus,
 2157

$$x^*(\mathcal{S}) = \frac{k}{\mathcal{S}} \cdot \arg \max_{t > 0} h(x(t), \mathcal{S}). \tag{154}$$

2160 From Eq. 135, it follows that:
 2161

$$\begin{aligned}
 2163 \quad f_q(x(t), \mathcal{S}) &= \frac{2\mathcal{S} \cdot x(t)}{\sqrt{(2x(t) + 1)q + 4x(t)(x(t) + 1)\mathcal{S}}} \\
 2164 \quad &\sim \frac{2\mathcal{S} \cdot x(t)}{\sqrt{2x(t) \cdot q + 4x^2(t) \cdot \mathcal{S}}} \\
 2165 \quad &= \frac{2\mathcal{S}}{\sqrt{\frac{2q}{x(t)} + 4\mathcal{S}}} \\
 2166 \quad &= \frac{2\mathcal{S}}{\sqrt{2q \cdot \frac{\mathcal{S}}{k \cdot t} + 4\mathcal{S}}} \\
 2167 \quad &= \frac{\sqrt{2}\sqrt{\mathcal{S}} \cdot \sqrt{kt}}{\sqrt{2q + 4kt}} \\
 2168 \quad &= \sqrt{\frac{2\mathcal{S}k \cdot t}{q + 2k \cdot t}} \\
 2169 \quad &= \sqrt{\frac{2\mathcal{S}t}{\frac{q}{k} + 2t}}
 \end{aligned} \tag{155}$$

2170 where we assumed $x(t) \gg 1$ which follows from $q \gg 1, \mathcal{S} \ll q, t = O(1)$. We explain the
 2171 assumption $t = O(1)$ in a moment. Now, from Eq. 138, we have:
 2172

$$h(x(t), \mathcal{S}) = 1 - \frac{\mathcal{Q}(f_k(x(t), \mathcal{S}))}{\mathcal{Q}(f_d(x(t), \mathcal{S}))} \sim 1 - \frac{\mathcal{Q}\left(\sqrt{\frac{2\mathcal{S}t}{1+2t}}\right)}{\mathcal{Q}\left(\sqrt{\frac{2\mathcal{S}t}{r+2t}}\right)} \tag{156}$$

2173 this motivates the assumption $t = O(1)$ we used in Eq. 155: the maximizer
 2174

$$\begin{aligned}
 2175 \quad t^*(r, \mathcal{S}) &= \arg \max_{t>0} h(x(t), \mathcal{S}) \sim \arg \min_{t>0} \left(\frac{\mathcal{Q}\left(\sqrt{\frac{2\mathcal{S}t}{1+2t}}\right)}{\mathcal{Q}\left(\sqrt{\frac{2\mathcal{S}t}{r+2t}}\right)} \right) \\
 2176 \quad &= \arg \min_{t>0} g_{\mathcal{S},r}(t)
 \end{aligned} \tag{157}$$

2177 is a function of $r = O(1)$ which is a constant and $\mathcal{S} \ll k$, and thus in the region of interest (close to
 2178 the maximizer), $t = O(1)$ does not scale with k . The key insight here is that $t^*(r, \mathcal{S})$ doesn't depend
 2179 on k, d . We also defined the following function:
 2180

$$g_{\mathcal{S},r}(t) := \frac{\mathcal{Q}\left(\sqrt{\frac{2\mathcal{S}t}{1+2t}}\right)}{\mathcal{Q}\left(\sqrt{\frac{2\mathcal{S}t}{r+2t}}\right)}. \tag{158}$$

2181 Finally, we would like to analyze the dependency of $t^*(r, \mathcal{S})$ on \mathcal{S} . We will prove that in both regimes
 2182 $\mathcal{S} \ll 1, \mathcal{S} \gg 1$, we have that $t^*(r, \mathcal{S})$ does not depend on \mathcal{S} , and thus in both regimes, from Eq. 154,
 2183 Eq. 157, the maximizer

$$x^*(\mathcal{S}) = \frac{k}{\mathcal{S}} \cdot t^*(r) \tag{159}$$

2214 is decreasing as a function of $\mathcal{S} > 0$. For the regime $\mathcal{S} \ll 1$: We use the approximation $\mathcal{Q}(x) \sim$
 2215 $\frac{1}{2} - \frac{1}{\sqrt{2\pi}} \cdot x$ for $x \ll 1$ and Eq. 158 to get
 2216
 2217

$$\begin{aligned}
 2219 \quad g_{\mathcal{S},r}(t) &= \frac{\mathcal{Q}\left(\sqrt{\frac{2\mathcal{S}t}{1+2t}}\right)}{\mathcal{Q}\left(\sqrt{\frac{2\mathcal{S}t}{r+2t}}\right)} \sim \frac{\frac{1}{2} - \frac{1}{\sqrt{2\pi}} \cdot \sqrt{\frac{2\mathcal{S}t}{1+2t}}}{\frac{1}{2} - \frac{1}{\sqrt{2\pi}} \cdot \sqrt{\frac{2\mathcal{S}t}{r+2t}}} \\
 2220 \quad &= \frac{1 - \frac{2}{\sqrt{2\pi}} \cdot \sqrt{\frac{2\mathcal{S}t}{1+2t}}}{1 - \frac{2}{\sqrt{2\pi}} \cdot \sqrt{\frac{2\mathcal{S}t}{r+2t}}} \\
 2221 \quad &\sim \left(1 - \frac{2}{\sqrt{2\pi}} \sqrt{\frac{2\mathcal{S}t}{1+2t}}\right) \left(1 + \frac{2}{\sqrt{2\pi}} \sqrt{\frac{2\mathcal{S}t}{r+2t}}\right) \quad (160) \\
 2222 \quad &\sim \left(1 - \frac{2}{\sqrt{2\pi}} \sqrt{\frac{2\mathcal{S}t}{1+2t}} + \frac{2}{\sqrt{2\pi}} \sqrt{\frac{2\mathcal{S}t}{r+2t}}\right) \\
 2223 \quad &= 1 - \sqrt{\frac{2}{\pi}} \cdot \left(\sqrt{\frac{2\mathcal{S}t}{1+2t}} - \sqrt{\frac{2\mathcal{S}t}{r+2t}}\right) \\
 2224 \quad &= 1 - 2\sqrt{\frac{\mathcal{S}}{\pi}} \cdot \left(\sqrt{\frac{t}{1+2t}} - \sqrt{\frac{t}{r+2t}}\right).
 \end{aligned}$$

2238
 2239 This approximation is motivated from the fact that the argument of the \mathcal{Q} function in both the
 2240 numerator and the denominator is at most $\sqrt{\mathcal{S}} \ll 1$. Thus, from Eq. 157, we have:
 2241

$$2243 \quad t^*(r, \mathcal{S}) = \arg \min_{t>0} \left(\sqrt{\frac{t}{1+2t}} - \sqrt{\frac{t}{r+2t}} \right) \quad (161)$$

2248 is independent of \mathcal{S} . We will also calculate the minimizer. Let us define
 2249

$$2250 \quad \Psi_1(t) = \sqrt{\frac{t}{1+2t}} - \sqrt{\frac{t}{r+2t}}. \quad (162)$$

2254 We now equate the derivative of $\Psi_1(t)$ to 0:
 2255

$$\begin{aligned}
 2256 \quad \frac{d\Psi_1}{dt} &= \frac{d}{dt} \left(\sqrt{\frac{t}{1+2t}} \right) - \frac{d}{dt} \left(\sqrt{\frac{t}{r+2t}} \right) \\
 2257 \quad &= \frac{1}{2} \left(\frac{1}{\sqrt{t} \cdot (1+2t)^{\frac{3}{2}}} - \frac{r}{\sqrt{t} \cdot (r+2t)^{\frac{3}{2}}} \right) \\
 2258 \quad &= \frac{1}{2\sqrt{t}} \cdot \left(\frac{1}{(1+2t)^{\frac{3}{2}}} - \frac{r}{(r+2t)^{\frac{3}{2}}} \right) \\
 2259 \quad &= \frac{1}{2\sqrt{t}} \cdot \frac{(r+2t)^{\frac{3}{2}} - r(1+2t)^{\frac{3}{2}}}{(1+2t)^{\frac{3}{2}} \cdot (r+2t)^{\frac{3}{2}}}
 \end{aligned} \quad (163)$$

2268 where we used the following formula:
 2269

$$\begin{aligned}
 2270 \quad & \frac{d}{dt} \left(\sqrt{\frac{t}{a+2t}} \right) = \frac{\frac{d}{dt} \left(\frac{t}{a+2t} \right)}{2 \cdot \sqrt{\frac{t}{a+2t}}} \\
 2271 \quad & = \frac{\frac{a}{(a+2t)^2}}{2 \cdot \sqrt{\frac{t}{a+2t}}} \\
 2272 \quad & = \frac{a}{(a+2t)^2} \cdot \frac{\sqrt{a+2t}}{2 \cdot \sqrt{t}} \\
 2273 \quad & = \frac{a}{2} \cdot \frac{1}{\sqrt{t} \cdot (a+2t)^{\frac{3}{2}}} \\
 2274 \\
 2275 \\
 2276 \\
 2277 \\
 2278 \\
 2279 \\
 2280 \\
 2281 \\
 2282 \\
 2283 \\
 2284
 \end{aligned}$$

Finally, from Eq. 163, we have:

$$\begin{aligned}
 2285 \quad & (r+2t^*)^{\frac{3}{2}} = r(1+2t^*)^{\frac{3}{2}} \\
 2286 \quad & r+2t^* = r^{\frac{2}{3}} \cdot (1+2t^*) \\
 2287 \quad & 2t^* \cdot \left(1 - r^{\frac{2}{3}} \right) = r^{\frac{2}{3}} \left(1 - r^{\frac{1}{3}} \right) \\
 2288 \quad & t^* = \frac{r^{\frac{2}{3}} \left(1 - r^{\frac{1}{3}} \right)}{2 \left(1 - r^{\frac{2}{3}} \right)} \\
 2289 \\
 2290 \\
 2291 \\
 2292 \\
 2293 \\
 2294 \\
 2295 \\
 2296
 \end{aligned}$$

That is, the maximizer is unique, and from Eq. 159, in the regime $\mathcal{S} \ll 1$ we have:

$$x^*(\mathcal{S}) \sim \frac{1}{2}k \cdot \frac{r^{\frac{2}{3}} \left(r^{\frac{1}{3}} - 1 \right)}{r^{\frac{2}{3}} - 1} \cdot \frac{1}{\mathcal{S}} \quad (164)$$

2301 which is strictly decreasing as a function of \mathcal{S} .

2302 For the regime $\mathcal{S} \gg 1$: We use the approximation $\mathcal{Q}(x) \sim \frac{1}{\sqrt{2\pi}x} \cdot \exp\left(-\frac{x^2}{2}\right)$ and Eq. 158 to get
 2303

$$\begin{aligned}
 2304 \quad & g_{\mathcal{S},r}(t) = \frac{\mathcal{Q}\left(\sqrt{\frac{2\mathcal{S}t}{1+2t}}\right)}{\mathcal{Q}\left(\sqrt{\frac{2\mathcal{S}t}{r+2t}}\right)} \sim \frac{\frac{1}{\sqrt{2\pi}} \cdot \sqrt{\frac{1+2t}{2\mathcal{S}t}} \cdot \exp\left(-\frac{1}{2} \cdot \frac{2\mathcal{S}t}{1+2t}\right)}{\frac{1}{\sqrt{2\pi}} \cdot \sqrt{\frac{r+2t}{2\mathcal{S}t}} \cdot \exp\left(-\frac{1}{2} \cdot \frac{2\mathcal{S}t}{r+2t}\right)} \\
 2305 \quad & = \sqrt{\frac{1+2t}{r+2t}} \cdot \frac{\exp\left(-\frac{\mathcal{S}t}{1+2t}\right)}{\exp\left(-\frac{\mathcal{S}t}{r+2t}\right)} \\
 2306 \quad & = \sqrt{\frac{1+2t}{r+2t}} \cdot \exp\left(-\mathcal{S}t \cdot \left(\frac{1}{1+2t} - \frac{1}{r+2t}\right)\right) \\
 2307 \\
 2308 \\
 2309 \\
 2310 \\
 2311 \\
 2312 \\
 2313 \\
 2314 \\
 2315 \\
 2316 \\
 2317 \\
 2318 \\
 2319
 \end{aligned}$$

minimizing $g_{\mathcal{S},r}(t)$ is equivalent to minimizing $\ln(g_{\mathcal{S},r}(t))$:

$$M_{\mathcal{S},r}(t) := \ln(g_{\mathcal{S},r}(t)) = \frac{1}{2} \ln(1+2t) - \frac{1}{2} \ln(r+2t) - \mathcal{S}t \cdot \left(\frac{1}{1+2t} - \frac{1}{r+2t} \right) \quad (166)$$

2322 Let us equate the derivative of $M_{\mathcal{S},r}(t)$ to 0:
 2323

$$\begin{aligned}
 2324 \quad & \frac{1}{1+2t} - \frac{1}{r+2t} - \mathcal{S} \cdot \left(\frac{d}{dt} \left(\frac{t}{1+2t} \right) - \frac{d}{dt} \left(\frac{t}{r+2t} \right) \right) = 0 \\
 2325 \quad & \frac{1}{1+2t} - \frac{1}{r+2t} - \mathcal{S} \cdot \left(\frac{1}{(1+2t)^2} - \frac{r}{(r+2t)^2} \right) = 0 \\
 2326 \quad & \frac{1}{1+2t} - \frac{1}{r+2t} = \frac{\mathcal{S}}{(1+2t)^2} - \frac{\mathcal{S}r}{(r+2t)^2} \\
 2327 \quad & (1+2t)(r+2t)^2 - (1+2t)^2(r+2t) = \mathcal{S}(r+2t)^2 - \mathcal{S}r(1+2t)^2 \\
 2328 \quad & (1+2t)(r+2t) \cdot (r-1) = \mathcal{S} \cdot (r^2 + 4rt + 4t^2) - \mathcal{S}r \cdot (1+4t+4t^2) \\
 2329 \quad & (r-1) \cdot (r+2(r+1)t+4t^2) = \mathcal{S} \cdot (r^2 + 4rt + 4t^2) - \mathcal{S}r \cdot (1+4t+4t^2) \\
 2330 \quad & 4(r-1) \cdot t^2 + 2(r^2-1)t + r(r-1) = (4\mathcal{S} - 4\mathcal{S}r)t^2 + \mathcal{S}r^2 - \mathcal{S}r \\
 2331 \quad & 4(r-1) \cdot t^2 + 2(r-1)(r+1)t + r(r-1) = 4\mathcal{S}(1-r)t^2 + \mathcal{S}r(r-1) \\
 2332 \quad & 4t^2 + 2(r+1)t + r = -4\mathcal{S}t^2 + \mathcal{S}r \\
 2333 \quad & 4(1+\mathcal{S})t^2 + 2(r+1) \cdot t + r(1-\mathcal{S}) = 0
 \end{aligned}$$

2340 Finally, we take the positive root (because $t^*(r, \mathcal{S}) > 0$) and get:
 2341

$$\begin{aligned}
 2342 \quad t^*(r, \mathcal{S}) &= \frac{-2(r+1) + \sqrt{4(r+1)^2 - 16r(1+\mathcal{S})(1-\mathcal{S})}}{8(1+\mathcal{S})} \\
 2343 \quad &= \frac{-(r+1) + \sqrt{(r+1)^2 + 4r(\mathcal{S}^2 - 1)}}{4(\mathcal{S}+1)}
 \end{aligned} \tag{167}$$

2347 we note that we got a single solution and that the maximizer is unique, and $\mathcal{S} \gg 1$ and thus the
 2348 formula is well-defined. We note that

$$\lim_{\mathcal{S} \rightarrow \infty} t^*(r, \mathcal{S}) = \frac{\sqrt{r}}{2}$$

2352 and thus, from Eq. 159, in the $\mathcal{S} \gg 1$ regime, we have

$$x^*(\mathcal{S}) \sim \frac{k}{\mathcal{S}} \cdot \frac{-(r+1) + \sqrt{(r+1)^2 + 4r(\mathcal{S}^2 - 1)}}{4(\mathcal{S}+1)} \tag{168}$$

2356 and as $\mathcal{S} \rightarrow \infty$ we have $x^*(\mathcal{S}) \sim \frac{k}{\mathcal{S}} \cdot \frac{\sqrt{r}}{2}$, and thus in the $\mathcal{S} \gg 1$ regime we have $x^*(\mathcal{S}) \sim \frac{1}{\mathcal{S}}$ is a
 2357 decreasing function of \mathcal{S} .
 2358

□

2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375

2376 **B ADDITIONAL THEORETICAL RESULTS**
 2377

2378 We have established an approximation of the efficiency of the processing η for $N \gg 1$. We now do
 2379 the same for the difference

$$2380 \Delta := \hat{p}_{\mathbf{x}}(\text{error}) - \hat{p}_{\mathbf{z}}(\text{error}).$$

2381 This allows us to gain insight into the different factors that affect the difference Δ between the
 2382 probability of error that is caused by the processing.

2383 **Theorem 10** (Analysis of the asymptotic difference). *Let $\mathcal{S} > 0$, $1 \leq k < d$, $0 < \gamma \leq 1$. Denote by
 2384 $N_T = (1 + \gamma)N$ the total number of training samples. With approximation accuracy $\mathcal{O}(1/N_T^2)$, we
 2385 have*

$$2387 \Delta \approx \frac{1}{4\sqrt{2\pi}} \cdot \frac{\exp\left(-\frac{\mathcal{S}}{2}\right)}{\sqrt{\mathcal{S}}} \cdot \left(3 + 2\gamma + \frac{1}{\gamma}\right) \cdot (d - k) \cdot \frac{1}{N_T}. \quad (169)$$

2388 *In particular, for $N_T \gg 1$: The difference increases when $d - k$ increases or γ decreases within
 2389 $0 < \gamma \leq 1/\sqrt{2}$; The efficiency decreases when \mathcal{S} increases or N_T increases.*

2390 Let us take some $N_T \in \mathbb{N}$ and

$$2394 \mathcal{S} > 0, 1 \leq k < d, 0 < \gamma \leq 1.$$

2395 We have $N_T = N + \gamma N = (1 + \gamma)N$ the total number of training samples, and thus $N = \frac{N_T}{1 + \gamma}$.

2396 Let us define the following parametric function:

$$2399 f_{s,a,q}(x) := \frac{\sqrt{\mathcal{S}} + s \cdot \frac{(1-\gamma) \cdot q}{4\gamma \cdot \sqrt{\mathcal{S}}} \cdot \frac{1}{x}}{\sqrt{\left(\frac{(1+\gamma) \cdot q}{4\gamma \cdot \mathcal{S}} + \frac{1}{a}\right) \cdot \frac{1}{x} + \frac{(1+\gamma^2) \cdot q}{8\gamma^2 \cdot \mathcal{S}} \cdot \frac{1}{x^2} + 1}} = \frac{\sqrt{\mathcal{S}} + \frac{B}{x}}{\sqrt{\frac{C}{x} + \frac{D}{x^2} + 1}} \quad (170)$$

2403 where the parameters B, C, D are:

$$2404 \begin{cases} B = s \cdot \frac{(1 - \gamma) \cdot q}{4\gamma \cdot \sqrt{\mathcal{S}}} \\ 2405 C = \frac{(1 + \gamma) \cdot q}{4\gamma \cdot \mathcal{S}} + \frac{1}{a} \\ 2406 D = \frac{(1 + \gamma^2) \cdot q}{8\gamma^2 \cdot \mathcal{S}} \end{cases} \quad (171)$$

2411 From the Definition $\Delta := \hat{p}_{\mathbf{x}}(\text{error}) - \hat{p}_{\mathbf{z}}(\text{error})$ and Eq. 9, it follows that:

$$2413 \Delta = \hat{p}_{\mathbf{x}}(\text{error}) - \hat{p}_{\mathbf{z}}(\text{error}) = \hat{p}(\mathcal{S}, N, \gamma, d) - \hat{p}(\mathcal{S}, N, \gamma, k) \\ 2414 = [\mathcal{Q}(f_{1,\gamma,d}(N)) + \mathcal{Q}(f_{-1,1,d}(N))] - [\mathcal{Q}(f_{1,\gamma,k}(N)) + \mathcal{Q}(f_{-1,1,k}(N))] \\ 2415 = h(N) \quad (172)$$

2416 where we defined the following function:

$$2418 h(x) := [\mathcal{Q}(f_{1,\gamma,d}(x)) + \mathcal{Q}(f_{-1,1,d}(x))] - [\mathcal{Q}(f_{1,\gamma,k}(x)) + \mathcal{Q}(f_{-1,1,k}(x))]. \quad (173)$$

2419 Now, let us define the following parametric function:

$$2421 g_{s,a,q}(x) := f_{s,a,q}\left(\frac{1}{x}\right) = \frac{\sqrt{\mathcal{S}} + B \cdot x}{\sqrt{D \cdot x^2 + C \cdot x + 1}} \quad (174)$$

2424 where we used Eq. 170, Eq. 171. Let us also define:

$$2426 \ell(x) := h\left(\frac{1}{x}\right) = [\mathcal{Q}(g_{1,\gamma,d}(x)) + \mathcal{Q}(g_{-1,1,d}(x))] - [\mathcal{Q}(g_{1,\gamma,k}(x)) + \mathcal{Q}(g_{-1,1,k}(x))] \quad (175)$$

2428 where we used Eq. 174, Eq. 173. Thus, the first-order Taylor expansion of ℓ :

$$2429 \ell(x) = \ell(0) + \ell'(0) \cdot x + \mathcal{O}(x^2)$$

2430 Where the approximation is exact for $x \ll 1$. Thus, the following is exact for $x \gg 1$:

$$2432 \quad x \gg 1 \Rightarrow h(x) = \ell\left(\frac{1}{x}\right) = \ell(0) + \frac{\ell'(0)}{x} + \mathcal{O}\left(\frac{1}{x^2}\right). \quad (176)$$

2434 We have

$$2435 \quad N = \frac{N_T}{1 + \gamma} \gg 1 \Leftrightarrow N_T \gg 1 + \gamma \quad (177)$$

2437 Thus,

$$2438 \quad h(N) = \ell(0) + \frac{\ell'(0)}{N} + \mathcal{O}\left(\frac{1}{N^2}\right). \quad (178)$$

2440 Let us first compute $\ell(0)$:

$$2442 \quad \ell(0) = [\mathcal{Q}(g_{1,\gamma,d}(0)) + \mathcal{Q}(g_{-1,1,d}(0))] - [\mathcal{Q}(g_{1,\gamma,k}(0)) + \mathcal{Q}(g_{-1,1,k}(0))] = 2 \cdot \mathcal{Q}(\sqrt{\mathcal{S}}) - 2 \cdot \mathcal{Q}(\sqrt{\mathcal{S}}) = 0 \quad (179)$$

2444 Finally, we will compute $\ell'(0)$: We first compute $g'_{s,a,q}(0)$. From Eq. 174 it follows that:

$$\begin{aligned} 2446 \quad g'_{s,a,q}(x) &= \frac{B \cdot \sqrt{D \cdot x^2 + C \cdot x + 1} - \frac{2D \cdot x + C}{2 \cdot \sqrt{D \cdot x^2 + C \cdot x + 1}} \cdot (\sqrt{\mathcal{S}} + B \cdot x)}{D \cdot x^2 + C \cdot x + 1} \\ 2447 \quad &= \frac{2B \cdot (D \cdot x^2 + C \cdot x + 1) - (2D \cdot x + C) \cdot (\sqrt{\mathcal{S}} + B \cdot x)}{2 \cdot (D \cdot x^2 + C \cdot x + 1)^{1.5}} \\ 2448 \quad &= \frac{(BC - 2SD) \cdot x + (2B - C\sqrt{\mathcal{S}})}{2 \cdot (D \cdot x^2 + C \cdot x + 1)^{1.5}}. \end{aligned}$$

2454 Thus, the derivative at 0 is:

$$\begin{aligned} 2456 \quad g'_{s,a,q}(0) &= \frac{2B - C\sqrt{\mathcal{S}}}{2} = B - \frac{1}{2} \cdot C\sqrt{\mathcal{S}} \\ 2457 \quad &= \frac{s \cdot (1 - \gamma) \cdot q}{4\gamma \cdot \mathcal{S}} - \frac{1}{2} \cdot \left(\frac{(1 + \gamma) \cdot q}{4\gamma \cdot \mathcal{S}} + \frac{1}{a} \right) \cdot \sqrt{\mathcal{S}} \\ 2458 \quad &= \frac{s \cdot (1 - \gamma) \cdot q}{4\gamma \cdot \mathcal{S}} - \frac{(1 + \gamma) \cdot q}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{\sqrt{\mathcal{S}}}{2a} \\ 2459 \quad &= \frac{2s \cdot (1 - \gamma) \cdot q - (1 + \gamma) \cdot q}{8\gamma \cdot \mathcal{S}} - \frac{\sqrt{\mathcal{S}}}{2a} \\ 2460 \quad &= \frac{((2s - 1) - (2s + 1) \cdot \gamma) \cdot q}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{\sqrt{\mathcal{S}}}{2a}. \end{aligned} \quad (180)$$

2468 Now, from Eq. 175, the derivative $\ell'(x)$ reads

$$\begin{aligned} 2470 \quad \ell'(x) &= \frac{d}{dx} (v(x) - u(x)) \\ 2471 \quad &= v'(x) - u'(x) \end{aligned} \quad (181)$$

2473 where we defined the following auxiliary functions:

$$\begin{cases} 2475 \quad u(x) = \mathcal{Q}(g_{1,\gamma,k}(x)) + \mathcal{Q}(g_{-1,1,k}(x)) \\ 2476 \quad v(x) = \mathcal{Q}(g_{1,\gamma,d}(x)) + \mathcal{Q}(g_{-1,1,d}(x)) \end{cases} \quad (182)$$

2478 From the chain rule, their derivatives are:

$$\begin{cases} 2479 \quad u'(x) = g'_{1,\gamma,k}(x) \cdot \mathcal{Q}'(g_{1,\gamma,k}(x)) + g'_{-1,1,k}(x) \cdot \mathcal{Q}'(g_{-1,1,k}(x)) \\ 2480 \quad v'(x) = g'_{1,\gamma,d}(x) \cdot \mathcal{Q}'(g_{1,\gamma,d}(x)) + g'_{-1,1,d}(x) \cdot \mathcal{Q}'(g_{-1,1,d}(x)) \end{cases} \quad (183)$$

2482 Now, from Eq. 181, Eq. 183 it follows that:

$$2483 \quad \ell'(0) = v'(0) - u'(0). \quad (184)$$

2484 It is easy to verify from Eq. 174 that $g_{s,a,q}(0) = \sqrt{\mathcal{S}}$. Thus, from Eq. 182, Eq. 183 and Eq. 180, we
 2485 have the following formulas:

$$\begin{cases} u'(0) = \left(\frac{(1-3\gamma) \cdot k}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{\sqrt{\mathcal{S}}}{2\gamma} \right) \cdot \mathcal{Q}'(\sqrt{\mathcal{S}}) + \left(\frac{-(3+\gamma) \cdot k}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{\sqrt{\mathcal{S}}}{2} \right) \cdot \mathcal{Q}'(\sqrt{\mathcal{S}}) \\ v'(0) = \left(\frac{(1-3\gamma) \cdot d}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{\sqrt{\mathcal{S}}}{2\gamma} \right) \cdot \mathcal{Q}'(\sqrt{\mathcal{S}}) + \left(\frac{-(3+\gamma) \cdot d}{8\gamma \cdot \sqrt{\mathcal{S}}} - \frac{\sqrt{\mathcal{S}}}{2} \right) \cdot \mathcal{Q}'(\sqrt{\mathcal{S}}) \end{cases} \quad (185)$$

2492 Now, we substitute Eq. 185 in Eq. 184 to get the following formula for $\ell'(0)$:

$$\begin{aligned} \ell'(0) &= \frac{1-3\gamma}{8\gamma\sqrt{\mathcal{S}}} \mathcal{Q}'(\sqrt{\mathcal{S}}) \cdot (d-k) - \frac{3+\gamma}{8\gamma\sqrt{\mathcal{S}}} \mathcal{Q}'(\sqrt{\mathcal{S}}) \cdot (d-k) \\ &= \frac{-2-4\gamma}{8\gamma\sqrt{\mathcal{S}}} \mathcal{Q}'(\sqrt{\mathcal{S}}) \cdot (d-k) \\ &= \frac{-2(1+2\gamma)}{8\gamma\sqrt{\mathcal{S}}} \cdot \left(-\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\mathcal{S}}{2}\right) \right) \cdot (d-k) \\ &= \frac{1}{4\sqrt{2\pi}} \cdot \frac{\exp\left(-\frac{\mathcal{S}}{2}\right)}{\sqrt{\mathcal{S}}} \cdot \frac{1+2\gamma}{\gamma} \cdot (d-k) \\ &= \frac{1}{4\sqrt{2\pi}} \cdot \frac{\exp\left(-\frac{\mathcal{S}}{2}\right)}{\sqrt{\mathcal{S}}} \cdot \left(2 + \frac{1}{\gamma} \right) \cdot (d-k) \end{aligned} \quad (186)$$

2505 where we used the following property of the \mathcal{Q} function:

$$\mathcal{Q}'(x) = -\frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{x^2}{2}\right).$$

2508 Finally, from Eq. 172, Eq. 177, Eq. 178, Eq. 179, Eq. 186, it follows that:

$$\begin{aligned} \Delta &= h(N) \\ &= \ell(0) + \frac{\ell'(0)}{N} + \mathcal{O}\left(\frac{1}{N^2}\right) \\ &= \frac{\ell'(0)}{N} + \mathcal{O}\left(\frac{1}{N^2}\right) \\ &= \frac{1}{4\sqrt{2\pi}} \cdot \frac{\exp\left(-\frac{\mathcal{S}}{2}\right)}{\sqrt{\mathcal{S}}} \cdot \left(2 + \frac{1}{\gamma} \right) \cdot (d-k) \cdot \frac{1}{N} + \mathcal{O}\left(\frac{1}{N^2}\right). \end{aligned} \quad (187)$$

2518 We proceed with Eq. 187 and substitute Eq. 177:

$$N = \frac{N_T}{1+\gamma}$$

2521 which leads to the following approximation of Δ :

$$\begin{aligned} \Delta &= \frac{1}{4\sqrt{2\pi}} \cdot \frac{\exp\left(-\frac{\mathcal{S}}{2}\right)}{\sqrt{\mathcal{S}}} \cdot \left(2 + \frac{1}{\gamma} \right) \cdot (d-k) \cdot \frac{1+\gamma}{N_T} + \mathcal{O}\left(\frac{1}{N_T^2}\right) \\ &= \frac{1}{4\sqrt{2\pi}} \cdot \frac{\exp\left(-\frac{\mathcal{S}}{2}\right)}{\sqrt{\mathcal{S}}} \cdot \left(3 + 2\gamma + \frac{1}{\gamma} \right) \cdot (d-k) \cdot \frac{1}{N_T} + \mathcal{O}\left(\frac{1}{N_T^2}\right). \end{aligned} \quad (188)$$

2527 We now analyze the dependence of $N_T, d-k, \gamma, \mathcal{S}$ on Δ for $N_T \gg 1$. The results will be identical
 2528 to those derived in 7. From Eq. 188, the following hold for $N_T \gg 1$:

- 2530 • Δ decreases with N_T .
- 2531 • Δ increases with $d-k$.
- 2532 • Δ increases when γ decreases within $\gamma \in \left(0, \frac{1}{\sqrt{2}}\right]$: this is because the function

$$f(\gamma) = 3 + 2\gamma + \frac{1}{\gamma}$$

2535 has a minimum at $\gamma = \frac{1}{\sqrt{2}}$ within $(0, 1)$.

2538 • Δ decreases with \mathcal{S} : this is because
 2539

2540
$$g(\mathcal{S}) := \frac{\exp\left(-\frac{\mathcal{S}}{2}\right)}{\sqrt{\mathcal{S}}}$$

 2541

2542 decreases with \mathcal{S} : indeed,
 2543

2544
$$g'(\mathcal{S}) = \frac{-\frac{1}{2} \exp\left(-\frac{\mathcal{S}}{2}\right) \sqrt{\mathcal{S}} - \frac{1}{2\sqrt{\mathcal{S}}} \exp\left(-\frac{\mathcal{S}}{2}\right)}{\mathcal{S}}$$

 2545
 2546
 2547 $= -\frac{\exp\left(-\frac{\mathcal{S}}{2}\right)}{2\mathcal{S}} \cdot \left(\sqrt{\mathcal{S}} + \frac{1}{\sqrt{\mathcal{S}}}\right) < 0.$
 2548

2549
 2550 C ADDITIONAL EMPIRICAL DETAILS AND RESULTS (CIFAR-10, DENOISING)
 2551

2552 C.1 EXPERIMENTS COMPUTE RESOURCES
 2553

2554 We conducted our experiments using a few NVIDIA RTX 6000 Ada Generation GPUs with 48GB
 2555 memory. The training time for each data point in Figures 2, 5 and 6 ranged from one hour to twelve
 2556 hours, depending on the number of training samples.
 2557

2558 C.2 TRAINING THE CLASSIFIER
 2559

2560 We consider the CIFAR-10 dataset (Krizhevsky et al., 2009) and the ResNet18 model (He et al.,
 2561 2016). To train the model, we use: batch size 128 and 350 epochs; cross-entropy loss; SGD optimizer;
 2562 learning rate: 0.0679; learning rate decay: 0.1 at epochs 116 and 233; momentum: 0.9; weight decay:
 2563 0.0005. This setting yields 90% accuracy for clean data.

2564 Per noise level $\sigma \in \{0.25, 0.4\}$ of the additive Gaussian noise that has been added to the data, we use
 2565 this setting to train two classifiers: one that operates directly on the noisy data and one that operates
 2566 on the denoised data.
 2567

2568 C.3 TRAINING THE DENOISER
 2569

2570 For the denoiser, we use the DnCNN model (Zhang et al., 2017) and 15,000 training images while
 2571 ignoring their labels. Per image, the clean version, \mathbf{x}_{gt} , is the target and its noisy version, \mathbf{x} , is
 2572 the input to the model. To train the model, we use: batch size 64 and 1000 epochs; MSE loss;
 2573 Adam optimizer; learning rate: 0.0001; learning rate decay: 0.5 at iterations 20k, 40k, 60k, 80k,
 2574 100k, and 200k. The results with the MSE-based denoiser with $\gamma < 1$ are presented in Figure 6.
 2575 Note that, in order for the division of samples among the first five classes to be valid, we require

$$\frac{N_{\text{train}}}{1 + \gamma} \leq 17500 \Rightarrow N_{\text{train}} \leq 17500(1 + \gamma).$$
 This shows that the point $N_{\text{train}} = 35000$ is invalid for
 2576 all $\gamma < 1$. Thus, we add a sufficient amount of samples from the synthetic set CIFAR-5m to the
 2577 classifier train set, both in the noisy and denoised case (where the noisy CIFAR-5m passes through
 2578 the denoiser).
 2579

2580
 2581 C.4 TRAINING THE DENOISER WITHOUT CLEAN IMAGES
 2582

2583 Replacing the MSE loss with Stein's Unbiased Risk Estimate (SURE) (Stein, 1981; Soltanayev
 2584 & Chun, 2018) allows to train the denoiser using only noisy images. Specifically, instead of
 2585 $\text{MSE}(\mathbf{z}_\theta(\mathbf{x}), \mathbf{x}_{gt}) = \|\mathbf{z}_\theta(\mathbf{x}) - \mathbf{x}_{gt}\|^2$, we use:

2586
$$\text{SURE}(\mathbf{z}_\theta(\mathbf{x})) = \|\mathbf{z}_\theta(\mathbf{x}) - \mathbf{x}\|^2 - d\sigma^2 + 2\sigma^2 \sum_{i=1}^d \frac{\partial}{\partial x_i} \mathbf{z}_\theta(\mathbf{x}),$$

 2587
 2588

2589 which obeys $\mathbb{E}[\text{SURE}(\mathbf{z}_\theta(\mathbf{x}))] = \mathbb{E}[\text{MSE}(\mathbf{z}_\theta(\mathbf{x}), \mathbf{x}_{gt})]$ for $\mathbf{x} | \mathbf{x}_{gt} \sim \mathcal{N}(\mathbf{x}_{gt}, \sigma^2 \mathbf{I})$. We use the
 2590 common practice of approximating the divergence term with $\mathbf{g}^\top (\mathbf{z}_\theta(\mathbf{x} + \epsilon \mathbf{g}) - \mathbf{z}_\theta(\mathbf{x})) / \epsilon$, where ϵ
 2591 is small and $\mathbf{g} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ is drawn per optimizer iteration. Additionally, we use: batch size 64 and

1000 epochs; Adam optimizer; learning rate: 0.0001; learning rate decay: 0.5 at iterations 20k, 40k, 60k, 80k, 100k, and 200k.

The results for the setup with the SURE-based denoiser are presented in Figure 5. It can be seen that they resemble the results for the MSE-based denoiser, which are presented in Section 4.

2597 C.5 NUMERICAL ACCURACY RESULTS

2599 In the following Tables 1 and 2 we report accuracy results related to Figure 2.

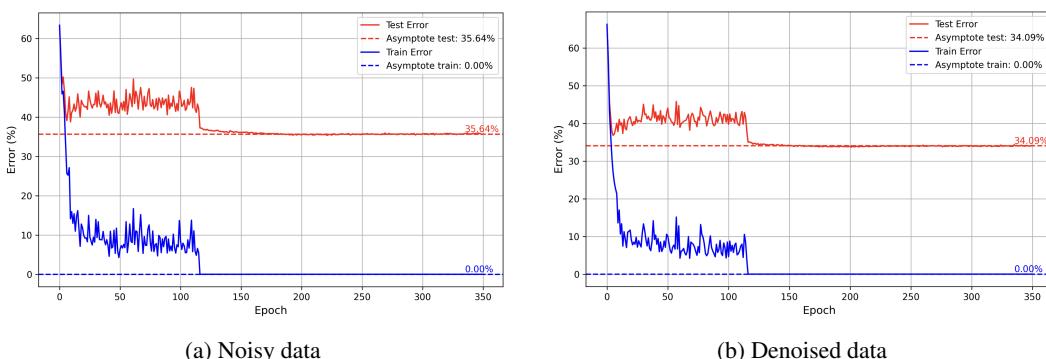
N_{train}	Error without denoising (%)	Error with denoising (%)
1000	71.12 ± 1.39	63.32 ± 0.96
2000	64.91 ± 1.44	58.14 ± 1.41
3000	63.19 ± 1.21	54.62 ± 0.37
5000	60.43 ± 1.42	49.79 ± 1.80
10000	46.15 ± 0.81	42.43 ± 0.25
15000	42.14 ± 0.8	39.74 ± 0.40
25000	38.48 ± 0.29	36.02 ± 0.38
35000	35.77 ± 0.30	33.83 ± 0.25

2610 Table 1: Classification error rates (%) on noisy and denoised CIFAR-10 images for varying training
2611 set sizes N_{train} . The noise level is $\sigma = 0.25$, $\gamma = 1$, and the denoiser is trained with MSE loss.

N_{train}	Error without denoising (%)	Error with denoising (%)
1000	74.45 ± 0.81	64.82 ± 1.14
2000	71.01 ± 2.00	61.25 ± 0.90
3000	67.86 ± 1.46	58.30 ± 0.66
5000	64.98 ± 1.21	56.24 ± 2.03
10000	54.70 ± 1.14	49.64 ± 0.50
15000	50.30 ± 0.47	47.34 ± 0.41
25000	47.65 ± 0.37	45.14 ± 0.43
35000	45.40 ± 0.33	43.21 ± 0.20

2613 Table 2: Classification error rates (%) on noisy and denoised CIFAR-10 images for varying training
2614 set sizes N_{train} . The noise level is $\sigma = 0.4$, $\gamma = 1$, and the denoiser is trained using MSE loss.

2615 Figure 4 shows the classification error vs. the training epoch in a single trial for noise level 0.25,
2616 $\gamma = 1$ and 35,000 training images. It demonstrates that the classifier does not suffer from overfitting.



2617 Figure 4: Training and testing error as a function of epochs for (a) noisy data and (b) denoised data.
2618 The noise level is $\sigma = 0.25$, $\gamma = 1$, and $N_{\text{train}} = 35,000$. The denoiser is trained using MSE loss.

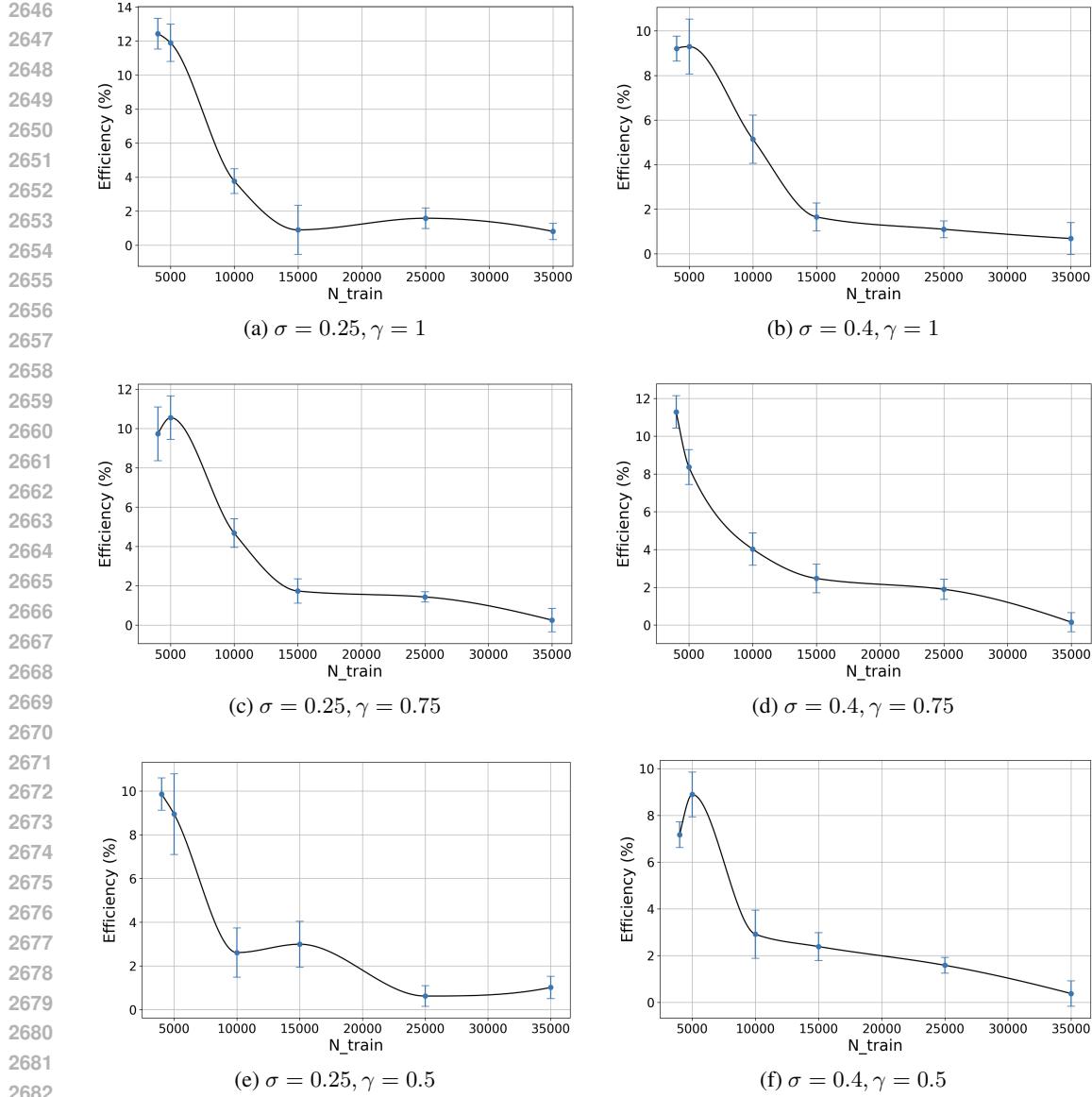


Figure 5: Practical deep learning setup with noisy CIFAR-10 and SURE-based denoiser. Efficiency of the data processing procedure versus the number of training samples for various values of the training imbalance factor, γ , and the standard deviation of the noise, σ .

D ADDITIONAL EMPIRICAL DETAILS AND RESULTS (MINI-IMAGENET, ENCODING)

D.1 EXPERIMENTS COMPUTE RESOURCES

We conducted our experiments using 16 NVIDIA Tesla V100-SXM2 GPUs with 32GB memory, 12 NVIDIA RTX 6000 Ada Generation GPUs with 48GB memory, and 2 NVIDIA A100 PCIe GPUs with 80GB memory. The training time for each data point in Figures 3 and 7 ranged from 10 hours to 30 hours, depending on the number of training samples.

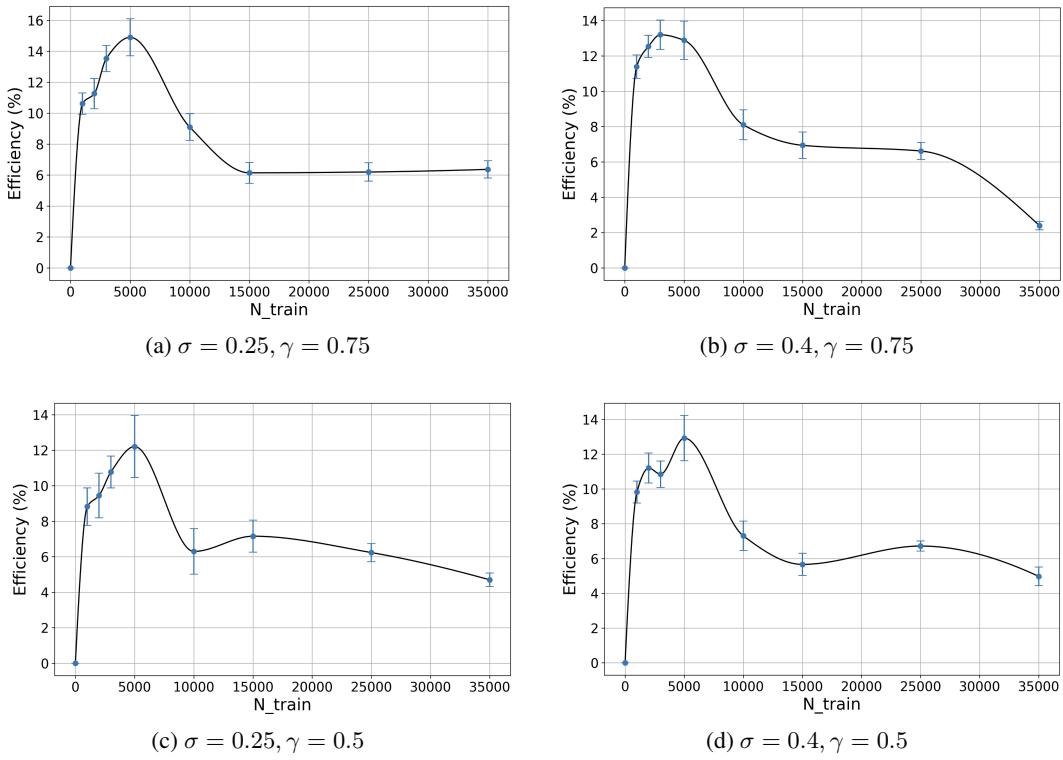


Figure 6: Practical deep learning setup with noisy CIFAR-10 and MSE-based denoiser. Efficiency of the data processing procedure versus the number of training samples for various values of the training imbalance factor, $\gamma \in \{0.5, 0.75\}$, and the standard deviation of the noise, σ .

D.2 TRAINING THE CLASSIFIER

We consider the Mini-ImageNet dataset and the ResNet50 model. To train the model, we use: batch size 128 and 225 epochs; cross-entropy loss; SGD optimizer; learning rate: 0.0679; learning rate decay: 0.1 at epochs 75 and 150; momentum: 0.9; weight decay: 0.0005. This setting yields 73% accuracy for clean data.

Per noise level $\sigma \in \{\frac{50}{255}, \frac{100}{255}\}$ of the additive Gaussian noise that has been added to the data, we use this setting to train one classifier that operates directly on the noisy data.

D.3 TRAINING THE ENCODER

For self-supervised learning, we adopt the DINOv2 framework (Lu et al., 2025). The student encoder is a Vision Transformer (ViT-S/16), which splits each input image of size 224×224 into 16×16 patches and produces a 384-dimensional [CLS] token representation. This is passed through a 3-layer MLP projection head to produce the final 256-dimensional embedding ($\mathbf{z} \in \mathbb{R}^{256}$), which is used for self-supervised training. The teacher network has the same architecture and is updated as an exponential moving average of the student, providing stable target embeddings. Training is performed on the Mini-ImageNet dataset for 200 epochs with a per-GPU batch size of 40. We apply the AdamW optimizer with a base learning rate of 0.004 (scaled with the square root of the effective batch size), $\beta = (0.9, 0.999)$, weight decay scheduled from 0.04 to 0.4, and gradient clipping at 3.0. The teacher momentum is linearly increased from 0.992 to 1.0 over training. Multi-crop augmentation is employed with 2 global crops of size 224×224 and 8 local crops of size 96×96. Model evaluation is conducted every 6,250 iterations.

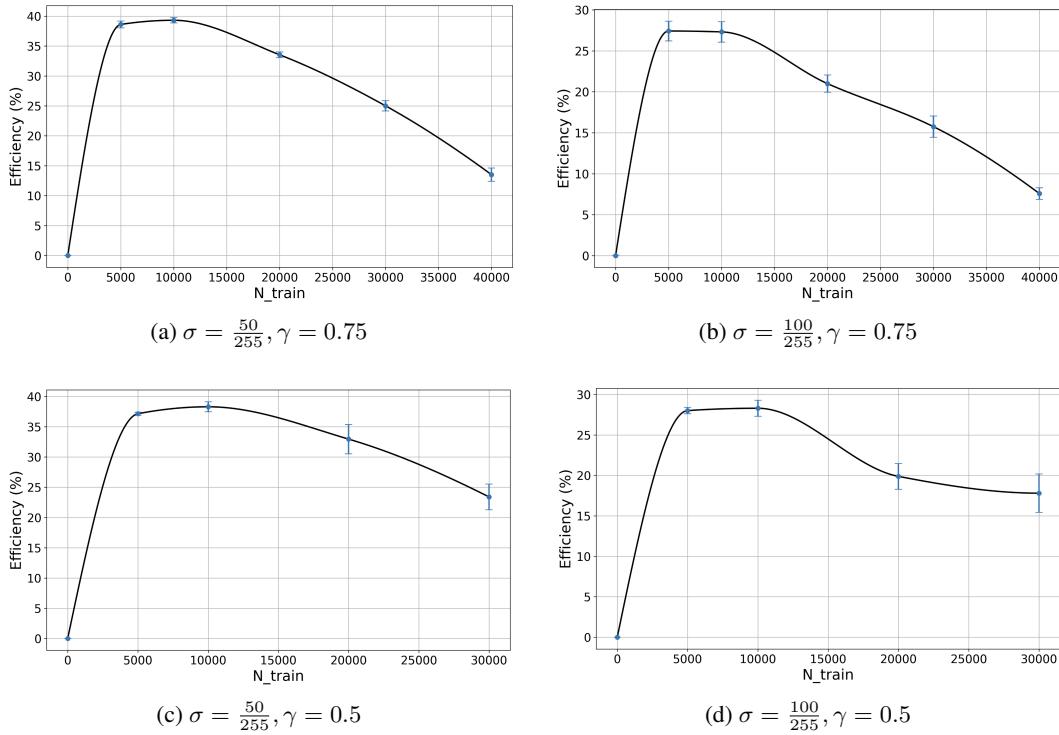


Figure 7: Practical deep learning setup with noisy Mini-ImageNet and pre-classification encoding. Efficiency of the data processing procedure versus the number of training samples for various values of the training imbalance factor, $\gamma \in \{0.5, 0.75\}$, and the standard deviation of the noise, σ .

D.4 TRAINING AN MLP ON TOP OF THE EMBEDDINGS

Per noise level $\sigma \in \{\frac{50}{255}, \frac{100}{255}\}$, after training the DINOv2 encoder, we pass the noisy Mini-ImageNet images through the encoder to obtain 256-dimensional embeddings. On top of these embeddings, we train a multi-layer perceptron (MLP) classifier to perform image classification. The MLP consists of three hidden layers with dimensions 4096, 2048, and 1024, each followed by LayerNorm and GELU activation, and a final linear layer mapping to the number of classes (i.e. 100). Hidden layers are initialized with Xavier uniform, and the final layer with a small normal distribution.

To train the model, we use: per-GPU batch size 128 and 20 epochs, with 1250 iterations per epoch; cross-entropy loss; SGD optimizer with a cosine annealing learning rate schedule; momentum: 0.9; no weight decay. Linear evaluation is performed with periodic check-pointing and evaluation on the validation set. After training, the classifier is evaluated on the test set to report final accuracy.

The results for the setup with $\gamma < 1$ are presented in Figure 7. It can be seen that they resemble the results in 3: 1) similar non-monotonicity of the curve while remaining positive, and 2) the maximal efficiency increases with the SNR, for fixed γ .

D.5 NUMERICAL ACCURACY RESULTS

In the following Tables 3 and 4 we report accuracy results related to Figure 3. Lastly, in Figure 8 we present an image of noisy data for $\sigma \in \{50/255, 100/255\}$, to show that the noise is not too-severe.

E ADDITIONAL EMPIRICAL DETAILS AND RESULTS (CIFAR-10, ENCODING)

We investigate the CIFAR-10 dataset and the ResNet18 model. Both the training and test sets are subjected to additive Gaussian noise with standard deviations $\sigma \in \{0.25, 0.4\}$. This time, as the

2808

2809

N_{train}	Error without encoding (%)	Error with encoding (%)
5000	80.03 ± 1.25	48.67 ± 0.48
10000	74.56 ± 1.12	45.03 ± 0.27
20000	58.81 ± 0.45	41.45 ± 0.29
30000	49.92 ± 0.8	39.23 ± 0.39
40000	44.95 ± 1.37	37.99 ± 0.31
50000	40.07 ± 0.58	36.62 ± 0.25

2816

2817

Table 3: Classification error rates (%) on noisy and encoded Mini-ImageNet images for varying training set sizes N_{train} . The noise level is $\sigma = \frac{50}{255}$, $\gamma = 1$.

2819

2820

2821

N_{train}	Error without encoding (%)	Error with encoding (%)
5000	85.5 ± 0.95	60.94 ± 0.25
10000	79.71 ± 1.73	57.28 ± 0.23
20000	68.47 ± 2.15	53 ± 0.27
30000	58.39 ± 1.77	50.92 ± 0.31
40000	54.62 ± 0.08	49.35 ± 0.34
50000	50.01 ± 0.56	48.23 ± 0.27

2828

2829

Table 4: Classification error rates (%) on noisy and encoded Mini-ImageNet images for varying training set sizes N_{train} . The noise level is $\sigma = \frac{100}{255}$, $\gamma = 1$.

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

(a) clean

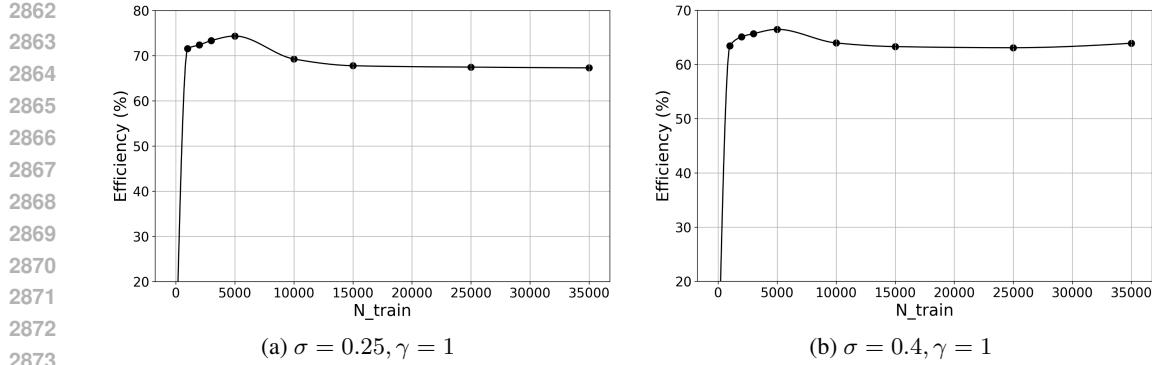
(b) $\sigma = \frac{50}{255}$ (c) $\sigma = \frac{100}{255}$

2859

2860

2861

Figure 8: Clean and noisy Mini-ImageNet images. (a) Clean image. (b) Image with Gaussian noise $\sigma = \frac{50}{255}$. (c) Image with Gaussian noise $\sigma = \frac{100}{255}$.

Figure 9: Noisy CIFAR-10 and pre-classification encoding. Efficiency versus N_{train} .Figure 10: The theoretical setup. Efficiency of the data processing procedure versus the number of training samples N_{train} , for various values of the training imbalance factor γ , and SNR of $\mathcal{S} = 1$.

data processing procedure we use an encoding step that maps each image (rescaled from its original CIFAR-10 resolution to 224×224) into a 256-dimensional embedding. This encoder model follows (Lu et al., 2025) and is trained from scratch with self-supervision on 45000 noisy unlabeled images for each noise level. Then, for each combination of $(\sigma, N_{\text{train}})$, considering the balanced case of $\gamma = 1$, we divide N_{train} equally among all 10 classes. Then, we train a ResNet18 model on the noisy images across 6 seeds and, in parallel, a small MLP on the corresponding embeddings across 3 seeds. After we have the mean of the probability of error before and after the data processing, we compute the empirical efficiency, i.e., the relative percentage change in the probability of error induced by the encoding step. Details of the training procedures for the ResNet18 and the MLP are provided in Appendix C and D, respectively.

Figure 9 presents the efficiency versus N_{train} , for $\gamma = 1$. We see the same trends that are aligned with our theory as before: 1) similar non-monotonicity of the curve (increase to a maximal efficiency value and then decrease) while remaining positive, and 2) the maximal efficiency increases with the SNR.

F EXTENDED EMPIRICAL VERIFICATION

In this section, we extend our empirical verification. In Figure 10, we simulate the theoretical setup, as in 3.3 (we use $d = 2000, k = 1000$ and $\sigma = 1$), but with $\mathcal{S} = 1$. We see that the empirical efficiency coincides with the theoretical efficiency.

We now examine the effect of \mathcal{S} on efficiency. We fix $\gamma = 1, d = 2000, k = 1000$ and vary $\mathcal{S} \in \{0.5^2, 1, 1.5^2\}$. The results are presented in Figure 11. Let us discuss the results. We see that for $N_{\text{train}} \gg 1$ (in the right Figure), for larger SNR (lower noise level), the efficiency decreases. However,

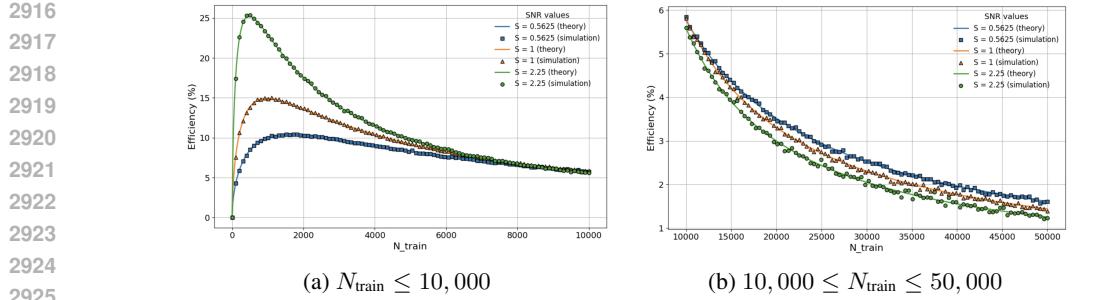


Figure 11: Extended simulation of the theoretical setup. Efficiency of the data processing versus the number of training samples N_{train} , for $\gamma = 1$, and various values of the SNR, \mathcal{S} , for (a) low samples regime, and (b) high samples regime.

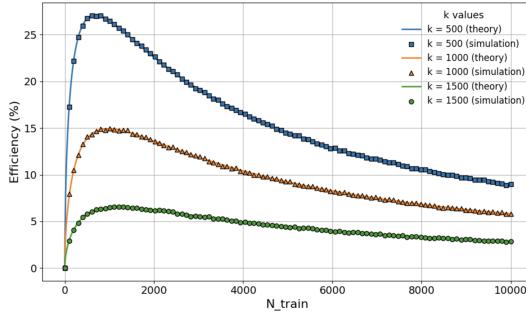


Figure 12: The theoretical setup. Efficiency of the data processing procedure versus the number of training samples N_{train} , for various values of the training imbalance factor, γ , and SNR of $\mathcal{S} = 1$.

as 8 suggests, when the number of samples is limited, and for larger SNR (lower noise level), the efficiency increases. We notice this phenomenon in the left Figure, presenting low N_{train} , compared to the right Figure. First, the efficiency increases with the SNRs, and then as N_{train} gets larger, the dependency flips. We also see a different behavior that sheds more light on this conclusion: the difference between different SNRs is larger in the low-samples region than the inverse relation in the high-samples region. This concludes the non-monotonic and non-intuitive dependency of the efficiency on the SNR.

In addition, we examine the effect of $d - k$ on efficiency. We fix $\gamma = 1$, $d = 2000$, $\mathcal{S} = 1$ and vary $k \in \{500, 1000, 1500\}$. The results are presented in Figure 12. We see that larger $d - k$ corresponds to greater accuracy. Theorem 7 proves this for $N_{\text{train}} \gg 1$, but we see that this is true even for small N_{train} . Indeed, intuitively, reducing more dimensions is advantageous in terms of efficiency. This suggests that there is a direct monotonic relationship between the efficiency and $d - k$.

We now consider the same setting as in the empirical verification ($d = 2000$, $k = 1000$, $\sigma = 1$, $\gamma \in \{0.25, 0.5, 1\}$, $\mathcal{S} \in \{0.75^2, 1, 1.5^2\}$), but per N_{train} , the data processing matrix \mathbf{A} is learned from 50,000 unlabeled samples using the algorithm described in the proof of Theorem 3. The corresponding results are shown in Figure 13, demonstrating the same trends as the theoretical efficiency. Moreover, as the number of unlabeled samples tends to infinity, the two curves coincide. To illustrate this, we also present results for the case that per N_{train} , the data processing matrix \mathbf{A} is learned from 5,000,000 unlabeled samples in Figure 14. Notice that as the amount of unlabeled samples available grows, the gap between the theoretical efficiency and the empirical efficiency is reduced.

Finally, we visualize the action of $\mathbf{A} : \mathbb{R}^2 \rightarrow \mathbb{R}$ on the GMM data in Figure 15. While our analysis considers the regime $d > k \gg 1$, as is common in practice, we use small values of $d = 2$ and $k = 1$ to enable visualization.

Recall that the plug-in classifier, before and after the data processing, depends only on the distance of a test sample from each of the empirical means. Without processing, these empirical means are given by $\hat{\mu}_j = \frac{1}{N_j} \sum_{i=1}^{N_j} \mathbf{x}_{i,j}$ and hence distributed as $\hat{\mu}_j \sim \mathcal{N} \left(\mu_j, \frac{\sigma^2}{N_j} \mathbf{I}_d \right)$. Similarly, after

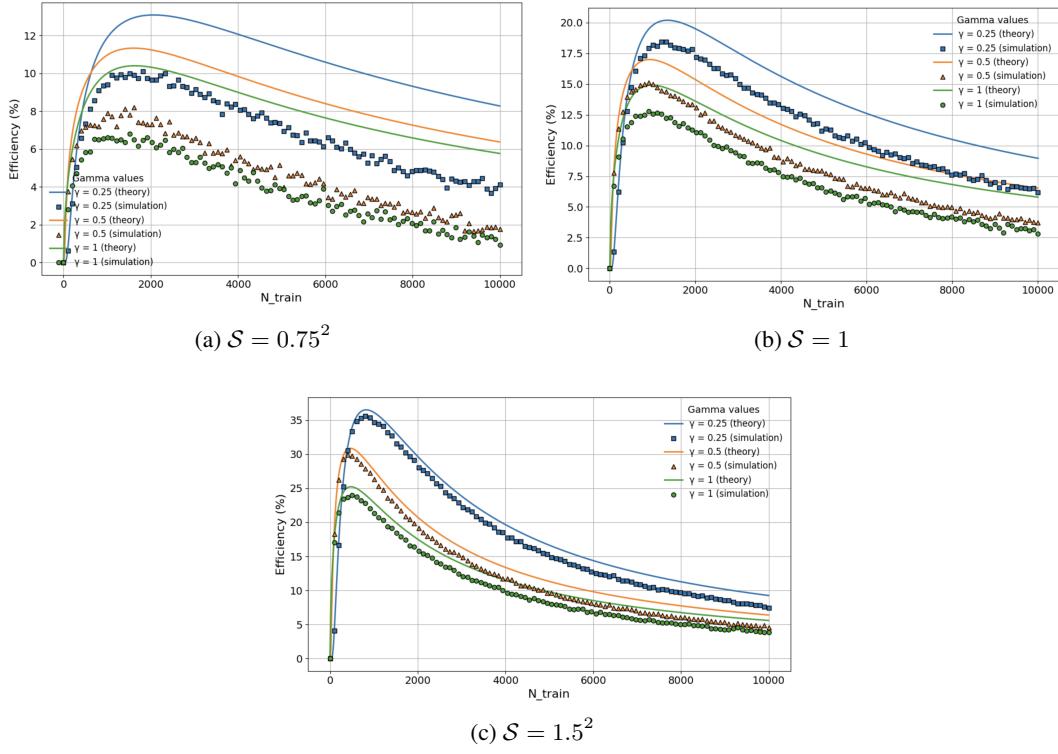


Figure 13: Extended empirical verification - per N_{train} , \mathbf{A} is learned from 50,000 unlabeled examples. Presented for (a) $S = 0.75^2$, (b) $S = 1$ and (c) $S = 1.5^2$.

processing by $\mathbf{A} : \mathbb{R}^d \rightarrow \mathbb{R}^k$, the empirical means obey $\mathbf{A}\hat{\mu}_j \sim \mathcal{N}\left(\mathbf{A}\mu_j, \frac{\sigma^2}{N_j} \mathbf{I}_k\right)$, where the semi-orthonormality $\mathbf{A}\mathbf{A}^\top = \mathbf{I}_k$ is used. Consequently,

$$\mathbb{E}\left[\|\hat{\mu}_j - \mu_j\|^2\right] = \sum_{i=1}^d \mathbb{E}\left[(\hat{\mu}_j)_i - (\mu_j)_i\right]^2 = \sum_{i=1}^d \frac{\sigma^2}{N_j} = \frac{\sigma^2}{N_j} d$$

where we used $(\hat{\mu}_j)_i - (\mu_j)_i \sim \mathcal{N}\left(0, \frac{\sigma^2}{N_j}\right)$. Similarly, $\mathbb{E}\left[\|\mathbf{A}\hat{\mu}_j - \mathbf{A}\mu_j\|^2\right] = \frac{\sigma^2}{N_j} k$.

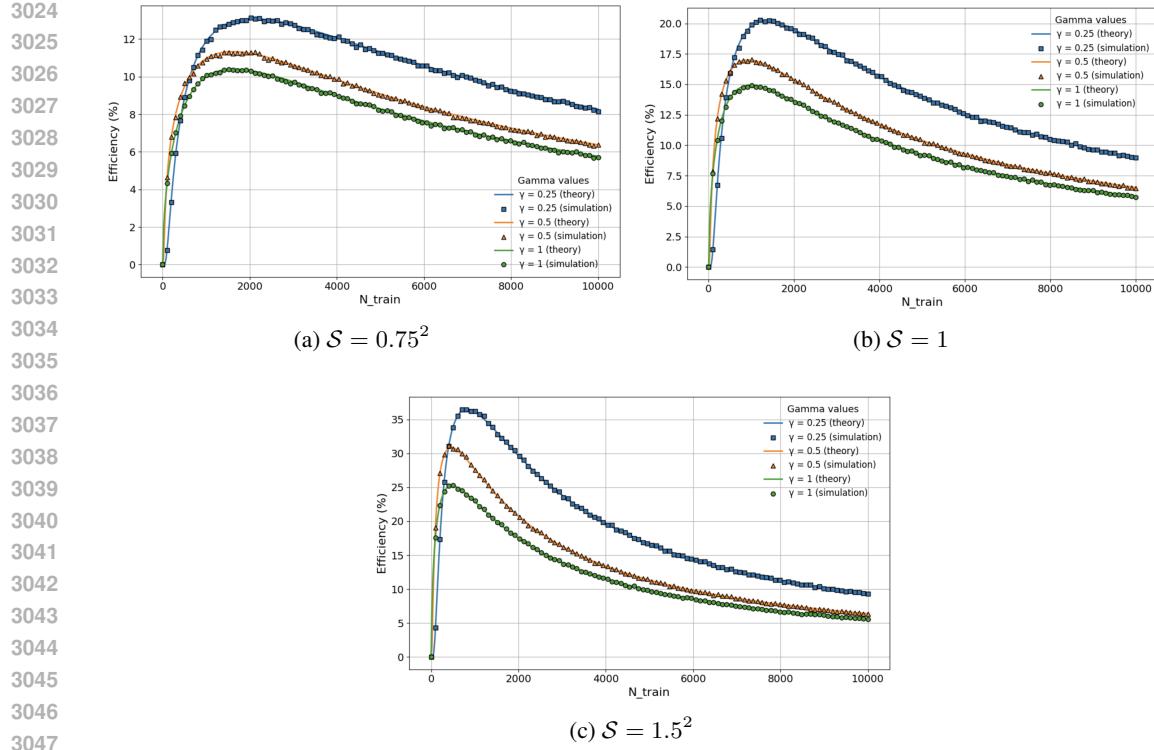
The data processing lowers the dimension from d to k , and thus improves the average squared error of the mean estimator by

$$\frac{\sigma^2}{N}(d - k) > 0.$$

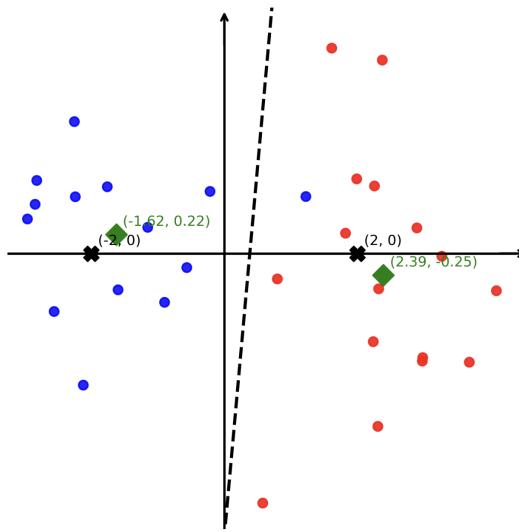
Since the classifier, before and after the data processing, depends only on the distance of the test sample from each of the empirical means, its accuracy increases when the accuracy of the empirical means improves while the distance between the means of the difference classes does not significantly reduce (i.e., $\|\mathbf{A}\hat{\mu}_2 - \mathbf{A}\hat{\mu}_1\| \approx \|\hat{\mu}_2 - \hat{\mu}_1\|$). The latter is accounted for by the property $\|\mathbf{A}\mu\| = \|\mu\|$ of the operator.

Note that this behavior is observed in Figure 15:

- In the red class, the distance between the empirical mean and the real mean is 0.4632 before applying \mathbf{A} and 0.39 after applying \mathbf{A} .
- In the blue class, the distance between the empirical mean and the real mean is 0.439 before applying \mathbf{A} and 0.38 after applying \mathbf{A} .
- The distance between the empirical means of the different classes is 4.0374 before applying \mathbf{A} and 4.01 after applying \mathbf{A} . Indeed, both are close to the distance between the real means, which is 4.

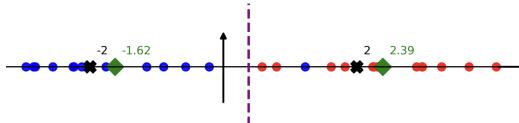


3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106



(a) The original data, sampled from GMM in \mathbb{R}^2 with $\mu_1 = -\mu_2 = (2, 0)^\top$, $\sigma = 1$, and $N_{\text{train}} = 30$. The true means $\{\mu_1, \mu_2\}$ are marked by black 'X's and the empirical means $\{\hat{\mu}_1, \hat{\mu}_2\}$ are marked by green diamonds. The learned decision boundary is marked by the dashed line (determined by the distance to the empirical means).

3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114



(b) The data after applying $A \in \mathbb{R}^{1 \times 2}$ (in this case, projection onto the x-axis). As before, the true means $\{A\mu_1, A\mu_2\}$ are marked by black 'X's and the empirical means $\{A\hat{\mu}_1, A\hat{\mu}_2\}$ are marked by green diamonds.

3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131

Figure 15: Visualization of the effect of $A : \mathbb{R}^2 \rightarrow \mathbb{R}$. Note that the empirical means (green diamonds) are closer to the true means (black 'X's) after the operation A . The distance between the empirical means of the different classes remains similar.