
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DOES THE DATA PROCESSING INEQUALITY REFLECT
PRACTICE? ON THE UTILITY OF LOW-LEVEL TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The data processing inequality is an information-theoretic principle stating that the
information content of a signal cannot be increased by processing the observations.
In particular, it suggests that there is no benefit in enhancing the signal or encoding
it before addressing a classification problem. This assertion can be proven to be
true for the case of the optimal Bayes classifier. However, in practice, it is common
to perform “low-level” tasks before “high-level” downstream tasks despite the
overwhelming capabilities of modern deep neural networks. In this paper, we aim to
understand when and why low-level processing can be beneficial for classification.
We present a comprehensive theoretical study of a binary classification setup, where
we consider a classifier that is tightly connected to the optimal Bayes classifier and
converges to it as the number of training samples increases. We prove that for any
finite number of training samples, there exists a pre-classification processing that
improves the classification accuracy. We also explore the effect of class separation,
training set size, and class balance on the relative gain from this procedure. We
support our theory with an empirical investigation of the theoretical setup. Finally,
we conduct an empirical study where we investigate the effect of denoising and
encoding on the performance of practical deep classifiers on benchmark datasets.
Specifically, we vary the size and class distribution of the training set, and the noise
level, and demonstrate trends that are consistent with our theoretical results.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated remarkable performance across an extensive range
of tasks, spanning from image and speech recognition to natural language processing and scientific
discovery. When the end goal is to address “high-level” tasks, e.g., classification and detection,
a natural approach is to train a DNN to directly solve the task using the raw data/observations as
input (Yim & Sohn, 2017; Hendrycks & Dietterich, 2019; Singh et al., 2019). Yet, it is a common
practice to begin with addressing a “low-level” task in order to improve the quality of the input for
the high-level task. Such low-level tasks include signal/image restorations (Liu et al., 2018; Dai et al.,
2016; Li et al., 2023; Son et al., 2020; Haris et al., 2021; Pei et al., 2018) or encoding to a learned
embedding space (Lee et al., 2022; Zhou & Paffenroth, 2017; Wu et al., 2023).

This common pipeline, however, stands in contrast to the data processing inequality, a foundational
concept in information theory (Cover, 1999), which states that the information content of a signal
cannot be increased by processing the observations. Concretely, consider the Markov chain of
three random variables: y → x → z, which denotes that z is independent of y given x, i.e.,
pz|x,y(z|x, y) = pz|x(z|x) in terms of probability distributions. This implies that px,y,z(x, y, z) =
py(y)px|y(x|y)pz|x(z|x) = px(x)py|x(y|x)pz|x(z|x). The data processing inequality reads as

I(x, y) ≥ I(z, y) (1)

where I(x, y) is the mutual information of the random variables x and y.1 In particular, if y is the
class of a data sample x, this implies that there is no “benefit” in low-level processing of the sample
(e.g., obtaining z by denoising x) before directly considering the classification problem.

1The mutual information is defined as I(x, y) =
∫∫

px,y(x, y) log

(
px,y(x, y)

px(x)py(y)

)
dxdy.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Focusing on classification and referring to better (top-1) accuracy as “benefit”, the previous assertion
can be proven to be true for the case of the optimal Bayes classifier (more details in Section 2).
Clearly, we expect performance gaps between practical classifiers and the optimal Bayes classifier.
However, modern DNN-based classifiers reach outstanding classification performance, sometimes
even exceeding human capabilities. This raises the question: What can we say about the margin
between this implication of the data processing inequality and practical classifiers? To the best of our
knowledge, no prior work has attempted to theoretically and systematically investigate this question.

In this paper, we aim to understand when and why low-level processing can be beneficial for
classification, even when the classifier is “strong” (e.g., converges to the optimal Bayes classifier
when the number of training samples grows). Our main contributions include:

• We present a theoretical study of a binary classification setup, where we consider a classifier that
is tightly connected to the optimal Bayes classifier (and converges to it). In the high-dimensional
setting, we prove that for any finite number of training samples, there exist a pre-classification
processing (specifically, a dimensionality reduction procedure) that improves the classification
accuracy.

• We establish theoretical results on the effect of various factors, such as the number of training
samples, the level of class separation and training set imbalance, on the relative gain from the data
processing procedure that we construct. For example, we show that, non-intuitively, the maximal
relative gain increases when the class separation improves.

• We present an empirical investigation of the theoretical model that corroborates our theory and
sheds more light on the gains from low-level processing.

• We complement our theoretical work with an empirical study. We investigate the effect of image
denoising and self-supervised encoding on the performance of practical deep classifiers on bench-
mark datasets, where we vary the size of the training set, the class distribution in the training set,
and the noise level in the samples. We demonstrate trends that are consistent with our theoretical
results (e.g., the one on the maximal gain), highlighting the usefulness of the theoretical setup.

2 BACKGROUND AND RELATED WORK

Consider the classification task, where the data (x, y) is distributed on X × [C], with [C] :=
{1, . . . , C} and distribution denoted by px,y . For the binary 0− 1 criterion, i.e., ℓ(ŷ, y) = I(ŷ ̸= y),
the expected risk is equivalent to the error probability E[ℓ(ŷ(x), y)] = P(ŷ(x) ̸= y). It is well-known
that this objective is minimized by the (optimal) Bayes classifier: copt(x) = argmaxy∈[C] py|x(y|x),
where py|x is the true conditional probability of y given x (Bishop, 2006; Fukunaga, 2013). In
practice, of course, the distributions are unknown and a classifier must be learned from data samples.

Consider a data processing operation A : X → Z . This can be denoising, super-resolution, encoding,
etc. Let z = A(x). Notice that y → x → z is a Markov chain because z is a function of x and
thus pz|x,y(z|x, y) = pz|x(z|x). Therefore, the data processing inequality in Eq. 1 holds. The
optimal Bayes classifier that operates on a processed sample z = A(x) is given by c̃opt(z) =
argmaxy∈[C] py|z(y|z), where py|z is the true conditional probability of y given z.

Focusing on the case of binary classification (C = 2), the following result shows that, similarly to the
fact that no A can increase information, there is also no hope in improving the accuracy of optimal
Bayes classifiers via data processing.

Theorem 1. Let y → x → z be a Markov chain where y ∈ {1, 2} denotes the sample class. We have

P(copt(x) ̸= y) ≤ P(c̃opt(z) ̸= y), (2)

where copt and c̃opt denote optimal Bayes classifiers.

A similar statement and proof can be found in an arXiv version of (Liu et al., 2019). For completeness,
we present a clearer proof in Appendix A. Note that (Liu et al., 2019) studies a potential tradeoff
between the error of a low-level restoration task and the accuracy of a fixed classifier, where only the
restoration model is trained using the training data. In contrast, our work focuses on the high-level end
goal—the classification performance—and allows training the classifier after the low-level processing,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

as is done in practice. Therefore, (Liu et al., 2019) does not provide any reason why in practice it is
common to address a low-level task before high-level ones, which is the central question of our paper.

Our work is motivated by the contrast between common practice and the information-theoretic concept
of the data processing inequality, as well as Theorem 1. There exist works that use information-
theoretic concepts or compute approximate metrics to analyze DNNs, e.g., (Tishby & Zaslavsky,
2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2019; Gabrié et al., 2018; Jeon & Van Roy, 2022).
Interestingly, since a DNN processes data gradually, layer by layer, the features across the layers form
a Markov chain, and thus the data processing inequality applies. Yet, avoiding the loss of information
relevant to the task being learned can be attributed to penalizing failures in predicting the target labels
during training, while discarding task-irrelevant information (akin to compression) may be explained
by the information bottleneck principle (Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017;
Saxe et al., 2019). The contrast between representation learning and the data processing inequality
has also motivated theoretical works (Xu et al., 2020; Goldfeld & Greenewald, 2021) to study variants
of the mutual information, incorporating transformations of the signal or line projections. None of the
aforementioned works consider a sequence of tasks or explain when and why low-level processing
can be beneficial to practical classifiers. Moreover, here we directly analyze the classifier’s probability
of error, which is more interpretable than the information-theoretic objectives studied before.

Finally, we emphasize that in the case of pre-trained classifier under distribution shift, data processing
that ‘reduces the gap’ between the test data distribution and the training data distribution is trivially
expected to improve the classifier performance. However, we focus in this paper on the non-intuitive
case where no distribution shift occurs, and the classifier is strong, in the sense that it converges to
the optimal Bayes classifier as the training set increases (with good statistical properties).

3 THEORY

In this section, we present our theoretical contributions. First, we describe the problem setup, the
data distribution, the classifier under study, and a data processing operation. Next, we present our
theoretical results demonstrating the benefits of this data processing. Finally, we validate our results
through experiments and provide additional insights into the factors that affect the performance gain.

3.1 PROBLEM SETUP: DATA MODEL, CLASSIFIER, AND DATA PROCESSING

Data model. Similar to a vast body of theoretical work on classifiers (Cao et al., 2021; Deng et al.,
2022; Wang & Thrampoulidis, 2022; Kothapalli & Tirer, 2025), we consider binary classification
(C = 2), where the data is distributed according to a Gaussian Mixture Model (GMM) of order two
in X = Rd, with one mixture component per class. Formally,

y ∈ {1, 2}, x | y = j ∼ N (µj , σ
2
j Id), P(y = j) = πj . (3)

Similar to previous theoretical works, we further assume that

µ2 = −µ1 = µ, σ2
1 = σ2

2 = σ2, π1 = π2 = 1/2, (4)

where the magnitudes of the entries of µ are bounded by some universal constant, and σ is independent
of d. Let us now define the separation quality factor of the GMM data, which can be understood as
the signal-to-noise ratio (SNR):

S :=

(
∥µ2 − µ1∥
σ1 + σ2

)2

=
∥µ∥2

σ2
. (5)

Note that the considered setup is standard in theoretical works that aim at rigorous mathematical
analysis (Cao et al., 2021; Deng et al., 2022; Wang & Thrampoulidis, 2022; Kothapalli & Tirer, 2025).
Despite its compactness, the learning problem studied in this paper can be arbitrarily hard because
(unlike some of the aforementioned works) our analysis covers SNR arbitrarily close to zero, i.e.,
nearly indistinguishable classes.

The training data consists of Nj labeled i.i.d. samples per class j, denoted by D = {xi,j : j ∈
{1, 2}, i = 1, . . . , Nj}. Without loss of generality, we denote N1 = N and N2 = γN for some
γ ∈ (0, 1].

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The classifier. In the considered setting, the optimal Bayes classifier reads:

copt(x) = argmax
j∈{1,2}

πjpx|y(x|j) = argmax
j∈{1,2}

exp
(
−∥x−µj∥2

2σ2

)
= argmin

j∈{1,2}
∥x− µj∥ .

In practice, the data distribution is unknown and thus a classifier cannot use the class means, {µi},
but rather estimate them from the training set. We therefore study the classifier:

ĉ(x;D) = argmin
j∈{1,2}

∥x− µ̂j(D)∥ , (6)

where µ̂j(D) = 1
Nj

∑Nj

i=1
xi,j is the maximum likelihood estimate of µj .

We want to explore if data processing can be beneficial even for a “strong” classifier. It is easy to
see that µ̂j ∼ N

(
µj ,

σ2

Nj
Id

)
. In fact, this is an efficient estimator that attains the Cramér–Rao

lower bound on the variance for any Nj (Kay, 1993). Therefore, in our setting, not only that ĉ(·)
is structurally similar to copt(·) and converges to it for Nj → ∞, but it also has strong statistical
properties for finite Nj , making it a natural choice for our study. Demonstrating the benefit of low-
level processing for such a classifier, which is “almost optimal” for the considered setup, underscores
the potential advantages for weaker classifiers.

Data processing. As the pre-classification data processing, we are going to study a certain linear
dimensionality reduction to 1 ≤ k < d. Specifically, we consider

z = Ax

with A ∈ Rk×d that obeys

AA⊤ = Ik, ∥Aµ∥ = ∥µ∥ . (7)

Note that, for establishing our main theoretical claim on the practical limitation of Eq. 2, we
just need the existence of a processing for which we can rigorously show improved classification.
Nevertheless, in the sequel, we provide a constructive proof that also shows how such A can be
learned from unlabeled data without prior knowledge of µ. Hence, showing that this procedure
improves classification performance in our setup underscores the promise of practical low-level
procedures learned from unlabeled data.

Additional notations. We will analyze and compare the performance of the classifier in Eq. 6
before and after the data processing procedure, namely, ĉ(x;D) versus ĉ(z;Dz), where Dz =
{zi,j = Axi,j : j ∈ {1, 2}, i = 1, . . . , Nj}. We denote the probability of error in these two
cases by px(error) := P(ĉ(x;D) ̸= y) and pz(error) := P(ĉ(z;Dz) ̸= y). Finally, we define the
widely-used Q-function, which will be used to characterize the classification error probability:

Q(x) = P (N (0, 1) > x) =
1√
2π

∫ ∞

x

exp
(
− t2

2

)
dt. (8)

3.2 THEORETICAL RESULTS

In this subsection, we present our theoretical results. In Section 3.2.1, we prove that the error
probability decreases due to the data processing. To this end, we establish expressions that accurately
approximate the probability of error of the data-driven classifier before and after the processing. We
then analyze their relation, where, due to different proof strategies, this is done separately for the
balanced and imbalanced training set cases. In Section 3.2.2, we provide a fine-grained analysis of
the factors that affect the efficiency of the processing, and, for the balanced training set case, we also
establish a connection between the maximal gain and the SNR.

The proofs for all the claims are deferred to Appendix A.

3.2.1 PERFORMANCE GAIN DUE TO DATA PROCESSING

We begin with characterizing the probability of error when the classifier is applied without pre-
processing. Recall the definitions of S and Q(x) in Eq. 5 and Eq. 8, respectively.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 2 (The probability of error before the processing). Consider the setup in Section 3.1. With
approximation accuracy O(1/

√
d) we have px(error) ≈ p̂x(error) = p̂(S, N, γ, d), where

p̂(S, N, γ, d) :=
1

2
· Q

 √
S + 1

4N · 1−γ
γ · d√

S√
1

4N · 1+γ
γ · d

S + 1
8N2 · 1+γ2

γ2 · d
S + 1

γN + 1


+

1

2
· Q

 √
S − 1

4N · 1−γ
γ · d√

S√
1

4N · 1+γ
γ · d

S + 1
8N2 · 1+γ2

γ2 · d
S + 1

N + 1

 .

(9)

Remark. The proof is mathematically involved. We express the error event as thresholding a scalar
random variable, suitable for an application of a generalized Berry–Esseen theorem. However, this
variable depends on the interrelation between the entries of µ̂1, µ̂2, and computing the required
moments is a technical challenge.

Discussion. Note that: 1) p̂ is symmetric in the following sense: p̂ (S, N, γ, d) = p̂
(
S, γN, 1

γ , d
)

,
which is expected because swapping the amount of samples between the classes does not change
the problem; 2) As S → 0+ we have: lim

S→0+
p̂(S, N, γ, d) = 1/2, aligned with uniform guess; 3) As

S → ∞ we have: lim
S→∞

p̂(S, N, γ, d) = 0, aligned with the classes being deterministically separable;

and 4) As N → ∞ we have: lim
N→∞

p̂(S, N, γ, d) = Q(
√
S), which is the probability of error of copt,

which knows the exact distribution of the data (Fukunaga, 2013).

Let us explore the result of Theorem 2 for the case of balanced training data, γ = 1 (N2 = N1 = N),
in which the expression simplifies to:

p̂x(error) = Q

 √
S√(

d
2S + 1

)
· 1
N + d

4S · 1
N2 + 1

 . (10)

Fix d ≫ 1, which ensures that the approximation is accurate. It is easy to see that when the separation
quality factor (SNR), S, decreases (with fixed d), the argument of the Q-function decreases, and
thus the probability of error increases. In addition, as the number of training samples N increases,
the argument increases, and thus the probability of error decreases. These two results are aligned
with intuition. Interestingly, the effect of increasing/decreasing d depends on its relation with S.
For example, if d increases and S is fixed, which means that the average entry-wise SNR decreases,
then the argument of the Q-function increases. The contrary holds if S ∝ d, which means that the
average entry-wise SNR is fixed. In the latter case, high-dimensionality is advantageous in terms of
the probability of error.

Next, let us establish the existence and learnability of the data processing proposed in Section 3.1.
Theorem 3 (The existence and learnability of the processing). For all 1 ≤ k < d, there exists
a dimension-reducing matrix A ∈ Rk×d with the properties stated in Eq. 7. Furthermore, given
sufficiently many unlabeled samples, such a matrix can be learned to arbitrary accuracy.

Remark. The proof of Theorem 3 is constructive. It provides an algorithm for computing such A
and efficiently estimating the direction of µ from unlabeled data.

Note that the semi-orthonormality of A implies that it cannot increase the norm of any vector, while
the property ∥Aµ∥ = ∥µ∥ ensures that the separation quality remains unchanged (equal to Eq. 5)
and is not reduced after the processing. In more detail, this implies that when applying Ax, the
class-dependent component of x (i.e., the projection of x onto ±µ) is not attenuated. In contrast,
the complementary component of x, which corresponds to within-class variability, is attenuated as
the overall dimension is reduced and the semi-orthonormality of A prevents amplification. Taken
together, this is expected to facilitate classification, as will be rigorously proven below. More details
and a graphical illustration of the action of A are presented in Appendix F.

We now turn to characterizing the probability of error when applying the classifier on the processed
data z = Ax.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 4 (The probability of error on the processed data). Consider the setup in Section 3.1. With
approximation accuracy O(1/

√
k) we have pz(error) ≈ p̂z(error) = p̂ (S, N, γ, k), where p̂ is

defined in Eq. 9.

The approximate probability of error of the processed data, p̂x(error), admits an expression similar
to the one obtained for the raw data, p̂z(error), but with a different dimension parameter (k instead
of d). Note that in the high-dimensional case, i.e., d, k ≫ 1, these estimators are guaranteed to
be accurate. Now, let us present the main outcomes of our theoretical study, which build on these
expressions.

We start with the case where there is no class imbalance in the training set, i.e., γ = 1 so N2 = N1 =
N . The next theorem shows that the considered data processing yields a gain for any finite value
N ≥ 1. We assume S > 0, as S = 0 is an uninteresting degenerate case.

Theorem 5 (Performance gain under balanced training data). For γ = 1, and for all S > 0, 1 ≤
k < d, and N ∈ N, we have

p̂x(error) > p̂z(error). (11)

Theorem 5 shows that when the training samples are balanced among the classes, the chosen
processing always strictly decreases the approximated probability of error.

Discussion. As shown in Theorems 2 and 4, in the high-dimensional case the true probabilities of
error, px(error) and pz(error), are well approximated by p̂x(error) and p̂z(error). This makes the
result significant. Moreover, this result—holding for any finite N—is also quite surprising, since
in the limit of N → ∞ we have that px(error) and pz(error) converge to P(copt(x) ̸= y) and
P(c̃opt(z) ̸= y), respectively, which satisfy the opposite relation (≤) as shown in Theorem 1.

We now consider the case of an imbalanced training set. The presence of under-represented classes
or groups is of significant interest in the machine learning community, as it raises concerns about
generalization and fairness (Chawla et al., 2002; Huang et al., 2016; Li et al., 2021). Specifically,
while the classes have equal probability (π1 = π2 = 0.5), the number of training samples from each
of the classes is assumed to be N1 = N and N2 = γN with 0 < γ < 1. The following theorem
demonstrates the benefit of the considered data processing in this case as well.

Theorem 6 (Performance gain under imbalanced training data). Let 0 < γ < 1, 0 < S ≤ 1, 1 ≤
k < d. If N ≥ γ2−4γ+1

2γ(1+γ) , then we have

p̂x(error) > p̂z(error). (12)

Remark. Unlike Theorem 5, which considers γ = 1 and is smoothly obtained from Theorems 2 and 4,
in this case the complexity of the formulas of p̂x(error) and p̂z(error) required us to make technical
assumptions on S and N in order to establish a rigorous statement for γ ∈ (0, 1). Nevertheless, these
assumptions are reasonable and still encompass the interesting case of low SNR and a reasonable
number of training samples. Note that for γ ≥ 0.162, the requirement N ≥ γ2−4γ+1

2γ(1+γ) is vacuous
(since N ≥ 1), so it only matters under severe imbalance (γ < 0.162).

3.2.2 FACTORS THAT AFFECT THE GAIN

So far, we have only considered the relation between p̂x(error) and p̂z(error). Let us now discuss
the margin between them, which reflects the efficiency of the processing.

Definition 1. We define the theoretical efficiency of the processing as

η :=

(
p̂x(error)− p̂z(error)

p̂x(error)

)
· 100. (13)

The following theorem establishes an approximation of η for N ≫ 1, making it easier to gain insights
into the different factors that affect the efficiency of the processing in the case of a large number of
training samples.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 7 (Analysis of the asymptotic efficiency). Let S > 0, 1 ≤ k < d, 0 < γ ≤ 1. Denote by
NT = (1 + γ)N the total number of training samples. With approximation accuracy O(1/N2

T), we
have

η ≈ 25

2
√
2π

·
exp

(
−S

2

)
√
S · Q

(√
S
) ·
(
3 + 2γ +

1

γ

)
· (d− k) · 1

NT
. (14)

In particular, for NT ≫ 1: The efficiency increases when d − k increases or γ decreases within
0 < γ ≤ 1/

√
2; The efficiency decreases when S increases or NT increases.

Remark. The proof of Theorem 7 is based on first-order analysis, which differs from the proof
technique used for Theorem 6. This allows us to reach the conclusion that there exists N0 ∈ N such
that for all N ≥ N0 we have η > 0 (since the right-hand side of Eq. 14 is positive) which implies
p̂x(error) > p̂z(error) without a technical assumption on S . On the other hand, Theorem 6 can hold
even for small values of N , depending on γ.

Discussion. Let us discuss the intuition behind the insights provided in Theorem 7. First, notice that
in the considered regime of NT ≫ 1 training samples, the processing efficiency η monotonically
decreases toward zero as NT increases. This is consistent with the fact that in the limit NT → ∞
the classifier approaches the optimal Bayes classifier, which cannot be improved by data processing.
In this regime, higher class separation S can be interpreted as equivalent to having more effective
samples (akin to larger NT), and hence less improvement through the pre-classification processing.
Similarly, larger dimensionality reduction (d − k) can be viewed as greater coverage of the input
domain, again, analogous to having more samples. Lastly, lower γ < 1 indicates that the classifier’s
training samples are less balanced between the classes and hence differ more from the data distribution.
Intuitively, this leaves more room for improvement through pre-classification processing.

In addition, Appendix B provides an approximation of the difference ∆ := p̂x(error)− p̂z(error)
for N ≫ 1. The insights we obtain are consistent with those reported in Theorem 7.

So far, our theory shows that the processing efficiency η is positive for all N for γ = 1, and under
a technical assumption it is positive also for γ ∈ (0, 1). Our formulas also show that η = 0 at
N = 0 (where p̂z = p̂x = 0.5, i.e., probability of guessing) and that η → 0 at N → ∞ (where
p̂z = p̂x = Q(

√
S), consistent with the classifier converging to the optimal Bayes classifier for

which Theorem 1 applies). Together, these imply that there is a maximum point of η(N). Our final
theorem provides a surprising insight into this maximum efficiency.

Theorem 8 (Analysis of the maximal efficiency). Fix γ = 1, and let S > 0, 1 ≤ k < d. Consider
the efficiency η = η(N) as a function of continuous N ∈ R+. We have that the maximal efficiency
ηmax = max

N≥0
η(N) increases as a function of S.

Discussion. In the asymptotic regime of N → ∞, as discussed above, a higher SNR corresponds to
lower η, which aligns with intuition. Interestingly, however, the theorem shows that a higher SNR
also leads to a larger ηmax, which is somewhat counterintuitive. One might expect that lower noise
would reduce efficiency across all sample sizes, since the raw data is already well-separated. This
highlights the subtle relationship between η and the SNR. An extended version of the theorem can be
found in Appendix A.8.

3.3 EMPIRICAL VERIFICATION

In this subsection, we simulate the theoretical setup in order to further support our theoretical results
and also gain more insights on the model, e.g., factors that affect the efficiency of the data processing
for small to moderate values of N .

We consider data dimension d = 2000, and fix σ = 1. The SNR values we work with are S ∈
{0.752, 1.52}, and for each fixed SNR, we use γ ∈ {0.25, 0.5, 1}. We also consider a wide range of
Ntrain, which denotes the total number of given training samples. For each fixed tuple (S, γ,Ntrain),
we randomize µ ∈ Rd with ∥µ∥ = σ

√
S, via µ = σ

√
S v

∥v∥ where v ∼ N (0, Id). We then

construct the data processing matrix A ∈ Rk×d that reduces the dimension to k = 1000, using the
algorithm described in Appendix A.3. Per trial, we sample N1 = int(Ntrain

1+γ) training points from

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) S = 0.752 (b) S = 1.52

Figure 1: The theoretical setup. Efficiency of the data processing procedure versus the number of
training samples Ntrain, for various values of the training imbalance factor, γ, and the SNR, S.

N (−µ, σ2Id), and N2 = int(γNtrain
1+γ) training points from N (µ, σ2Id). Before and after the data

processing, the per-class means are estimated using the training points, and the classifier defined in
Eq. 6 is used on a large amount of fresh test data, sampled with probability 0.5 from each of the two
Gaussians. With a slight abuse of notation, we denote the empirical probabilities of error before and
after the data processing by px(error) and pz(error), respectively. In order to compute pz(error),
we use the training and test samples after processing them by multiplying with A. We then compute
the empirical efficiency of the processing, defined by χ =

(
px(error)−pz(error)

px(error)

)
· 100. We repeat the

computation of χ over 100 independent trials and report the average.

Figure 1 presents both the theoretical efficiency η, defined in Eq. 13, and the empirical efficiency χ
versus the number of training samples Ntrain, for various values of γ and S. Note that the empirical
and theoretical efficiencies closely match in all the configurations.

Let us discuss the trends that are observed in Figure 1. First, note the non-monotonic curves depicting
the efficiency as a function of Ntrain. When Ntrain approaches zero or grows to infinity the efficiency
tends to zero, aligned with our analytical formulas. Indeed, as discussed above, in the absence of
training data the classification is based on guess, and thus there is no effect for the data processing. In
the considered setup, as Ntrain → ∞, the classifiers tend to the optimal Bayes decision rules, which
again implies zero efficiency. A major contribution of our paper is providing rigorous theory for the
fact that the efficiency remains positive between these two extreme cases.

Let us now focus on Ntrain ≫ 1 (the right boundary of each sub-figure). We see that increased S
moderately reduces the efficiency. For example, for (S, γ,Ntrain) = (0.752, 1, 10K) the efficiency is
around 6, while for (S, γ,Ntrain) = (1.52, 1, 10K) it is around 5. Moreover, we see that lower values
of γ, corresponding to more imbalanced training data, yield higher efficiency of the data processing.
Note that both are aligned with the insights gained in Theorem 7.

Next, note that each of the curves depicts a single maximum point, whose value is aligned with the
non-intuitive prediction of Theorem 8. Specifically, the maximal efficiency value increases with S.

Lastly, note that the empirical investigation of our theoretical setup reveals behaviors at relatively
small values of Ntrain, which lie beyond the scope of our theoretical analysis. Specifically, we observe
that the relation between decrease in γ and increase in efficiency emerges already at quite low Ntrain.
We also observe dependency between the overall shape of the curves and the value of S.

Additional verification experiments with A that is learned from unlabeled samples, and different
values of S, k are presented in Appendix F. All of them are aligned with our theoretical insights.

4 EXPERIMENTS IN PRACTICAL SETTINGS

While our paper focuses on theoretical contributions, in this section, we empirically examine the
correlation between the behaviors observed in four practical deep learning settings and the theoretical
results. Note that such a study, which examines the effects of sample size, SNR, and class balance,
requires exhaustive training efforts of both the data-processing module and the classifier.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) σ = 0.25, γ = 1 (b) σ = 0.4, γ = 1

Figure 2: Noisy CIFAR-10 and pre-classification denoising. Efficiency versus Ntrain.

4.1 NOISY CIFAR-10 AND PRE-CLASSIFICATION DENOISING

We consider the CIFAR-10 dataset (Krizhevsky et al., 2009) and the ResNet18 model (He et al.,
2016). The train and test sets both experience additive Gaussian noise of the same level (i.e., no
distribution shift) with standard deviation σ ∈ {0.25, 0.4}. A detailed description of the training
procedure of the classifier is given in Appendix C. We also note that we verify that the classifier
performs well when trained on clean CIFAR-10 data, achieving 90% accuracy.

The data processing step examined here is image denoising, applied to the noisy data, using the
DnCNN model (Zhang et al., 2017). The denoiser is trained with the MSE loss on 15,000 clean
unlabeled images, which are not part of the classifier’s training set. More details on the training
procedure of the denoiser are given in Appendix C. Note that, given such a pretrained denoiser, the
Markov chain: “label”—“noisy image”—“denoised image” still holds. Thus, the data processing
inequality, as well as Theorem 1, suggest that the denoiser will not improve the results.

In Appendix C, we also investigate another setting, where we train the denoiser with SURE loss (i.e.,
without clean ground truth images) (Stein, 1981; Soltanayev & Chun, 2018), and observe similar
results.

We consider various values of Ntrain, the total number of given training samples (across all 10 classes),
and examine different training imbalance factors, γ = 1 here, and γ ∈ {0.5, 0.75} in Appendix C. For
both the denoised and the noisy case, and for each fixed tuple (σ, γ,Ntrain), we divide Ntrain

1+γ equally
among the first 5 classes, and γNtrain

1+γ equally among the other 5 classes. We train the classifier 6 times,
each time with a different seed, and report the average and standard deviation of the probabilities
of error, to obtain a more reliable result. After we have the mean and standard deviation of the
probability of error before and after the data processing, we compute the empirical efficiency, i.e., the
relative percentage change in the probability of error induced by the denoising step.

Figure 2 presents the efficiency versus Ntrain. We see two main similarities to the theory. First, the
non-monotonic behavior (increasing for small Ntrain and decreasing for large Ntrain) is expected from
the same argument in Section 3.3: the efficiency tends to zero as Ntrain tends to either 0 or ∞, while,
importantly, it remains positive between these two extreme cases, aligned with our theory. Second,
we see that the maximal efficiency value decreases with σ: its value for σ = 0.25 is larger than its
value for σ = 0.4. That is, the maximal efficiency increases with the SNR.

4.2 NOISY MINI-IMAGENET AND PRE-CLASSIFICATION ENCODING

We turn to investigate a more complex data processing pipeline using the Mini-ImageNet dataset
(Vinyals et al., 2016) and the ResNet50 model. Both the training and test sets are subjected to
additive Gaussian noise with standard deviations σ ∈ {50/255, 100/255}. The data processing
step examined here is an encoding step, which maps the images from 224 × 224 pixels to 256-
dimensional embeddings. This encoder model follows (Lu et al., 2025) and is trained from scratch
with self-supervision on all noisy unlabeled images for each noise level. Then, for each combination
of (σ, γ,Ntrain), we divide Ntrain

1+γ equally among the first 50 classes, and γNtrain
1+γ equally among the other

50 classes. Then, across three seeds, we train a ResNet50 model on the noisy images and, in parallel,
a small MLP on the corresponding embeddings. After we have the mean and standard deviation of
the probability of error before and after the data processing, we compute the empirical efficiency, i.e.,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(a) σ = 50
255

, γ = 1 (b) σ = 100
255

, γ = 1

Figure 3: Noisy Mini-ImageNet and pre-classification encoding. Efficiency versus Ntrain.

the relative percentage change in the probability of error induced by the encoding step. Details of the
training procedures for both the ResNet50 and the MLP are provided in Appendix D.

Figure 3 presents the efficiency versus Ntrain, for γ = 1. Experiments for γ ∈ {0.5, 0.75} appear
in Appendix D. We see the same trends that are aligned with our theory as before: 1) similar non-
monotonicity of the curve while remaining positive, and 2) the maximal efficiency increases with
the SNR. A message to practitioners is that when labeled samples are scarce, data processing can be
especially advantageous for ‘high quality’ data.

4.3 NOISY CIFAR-10 AND PRE-CLASSIFICATION ENCODING

For the noisy CIFAR-10 setup considered in Section 4.1, we also examine the performance of data
processing based on encoding instead of denoising. Due to space limitations, the details are deferred
to Appendix E, and the results are presented there in Figure 9. The trends stated above are observed
there as well.

These results further demonstrate higher efficiency values compared to those obtained for the de-
noising procedure in Section 4.1, indicating that, for the classification task, encoding may be a more
effective low-level processing method than denoising. However, we believe that this may not be the
case for other high-level tasks, which may require preserving spatial information in the image (e.g.,
object detection).

5 CONCLUSION

In this paper, we addressed the question: How can we explain the common practice of performing
a “low-level” task before a “high-level” downstream task, such as classification, despite theoretical
principles like the data processing inequality and the overwhelming capabilities of modern deep neural
networks? We presented a theoretical study of a binary classification setup, where we considered
a “strong” classifier that is tightly connected to the optimal Bayes classifier (and converges to it),
and yet, we constructed a pre-classification processing step that for any finite number of training
samples provably improves the classification accuracy. We also provided both theoretical and
empirical insights into various factors that affect the gains from such low-level processing. Finally,
we demonstrated that the trends observed in four practical deep learning settings, where image
denoising or encoding is applied before image classification, are consistent with those established by
our theoretical study. Since our work shows the benefit of low-level tasks even when the classifier’s
training and test data share the same distribution, it naturally suggests an even greater advantage in
out-of-distribution scenarios. As directions for future research, it would be valuable to extend the
theoretical analysis to high-level tasks beyond classification or to investigate non-linear low-level
processing. Another interesting direction is to study the optimal low-level processing corresponding
to a given high-level task.

Remark. In this paper, we used LLMs only to polish the writing.

REFERENCES

Christopher M Bishop. Pattern recognition and machine learning, volume 4. Springer, 2006.

Yuan Cao, Quanquan Gu, and Mikhail Belkin. Risk bounds for over-parameterized maximum margin
classification on sub-gaussian mixtures. Advances in Neural Information Processing Systems, 34:
8407–8418, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Dengxin Dai, Yujian Wang, Yuhua Chen, and Luc Van Gool. Is image super-resolution helpful for
other vision tasks? In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV),
pp. 1–9. IEEE, 2016.

Zeyu Deng, Abla Kammoun, and Christos Thrampoulidis. A model of double descent for high-
dimensional binary linear classification. Information and Inference: A Journal of the IMA, 11(2):
435–495, 2022.

William Feller. An introduction to probability theory and its applications, Volume 2, volume 2. John
Wiley & Sons, 1991.

Keinosuke Fukunaga. Introduction to statistical pattern recognition. Elsevier, 2013.

Marylou Gabrié, Andre Manoel, Clément Luneau, Nicolas Macris, Florent Krzakala, Lenka Zde-
borová, et al. Entropy and mutual information in models of deep neural networks. Advances in
neural information processing systems, 31, 2018.

Ziv Goldfeld and Kristjan Greenewald. Sliced mutual information: A scalable measure of statistical
dependence. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, 2021.

Muhammad Haris, Greg Shakhnarovich, and Norimichi Ukita. Task-driven super resolution: Object
detection in low-resolution images. In Neural Information Processing: 28th International Confer-
ence, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part V 28, pp.
387–395. Springer, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2019.

Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. Learning deep representation for
imbalanced classification. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5375–5384, 2016.

Hong Jun Jeon and Benjamin Van Roy. An information-theoretic framework for deep learning.
Advances in Neural Information Processing Systems, 35:3279–3291, 2022.

Steven M Kay. Fundamentals of statistical signal processing: estimation theory. Prentice-Hall, Inc.,
1993.

Vignesh Kothapalli and Tom Tirer. Can kernel methods explain how the data affects neural
collapse? Transactions on Machine Learning Research, 2025. ISSN 2835-8856. URL
https://openreview.net/forum?id=MbF1gYfIlY.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Sohyun Lee, Taeyoung Son, and Suha Kwak. Fifo: Learning fog-invariant features for foggy scene
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18911–18921, 2022.

Chengyang Li, Heng Zhou, Yang Liu, Caidong Yang, Yongqiang Xie, Zhongbo Li, and Liping Zhu.
Detection-friendly dehazing: Object detection in real-world hazy scenes. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(7):8284–8295, 2023.

Mingchen Li, Xuechen Zhang, Christos Thrampoulidis, Jiasi Chen, and Samet Oymak. Autobalance:
Optimized loss functions for imbalanced data. Advances in Neural Information Processing Systems,
34:3163–3177, 2021.

11

https://openreview.net/forum?id=MbF1gYfIlY

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ding Liu, Bihan Wen, Xianming Liu, Zhangyang Wang, and Thomas S Huang. When image
denoising meets high-level vision tasks: A deep learning approach. In 27th International Joint
Conference on Artificial Intelligence, IJCAI 2018, pp. 842–848. International Joint Conferences on
Artificial Intelligence, 2018.

Dong Liu, Haochen Zhang, and Zhiwei Xiong. On the classification-distortion-perception tradeoff.
Advances in Neural Information Processing Systems, 32, 2019.

Wenquan Lu, Jiaqi Zhang, Hugues Van Assel, and Randall Balestriero. Ditch the denoiser: Emer-
gence of noise robustness in self-supervised learning from data curriculum. arXiv preprint
arXiv:2505.12191, 2025.

Yanting Pei, Yaping Huang, Qi Zou, Yuhang Lu, and Song Wang. Does haze removal help cnn-based
image classification? In Proceedings of the European conference on computer vision (ECCV), pp.
682–697, 2018.

Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D
Tracey, and David D Cox. On the information bottleneck theory of deep learning. Journal of
Statistical Mechanics: Theory and Experiment, 2019(12):124020, 2019.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
arXiv preprint arXiv:1703.00810, 2017.

Maneet Singh, Shruti Nagpal, Richa Singh, and Mayank Vatsa. Dual directed capsule network for
very low resolution image recognition. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 340–349, 2019.

Shakarim Soltanayev and Se Young Chun. Training deep learning based denoisers without ground
truth data. Advances in neural information processing systems, 31, 2018.

Taeyoung Son, Juwon Kang, Namyup Kim, Sunghyun Cho, and Suha Kwak. Urie: Universal image
enhancement for visual recognition in the wild. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16, pp. 749–765. Springer,
2020.

Charles M Stein. Estimation of the mean of a multivariate normal distribution. The annals of Statistics,
pp. 1135–1151, 1981.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In 2015
ieee information theory workshop (itw), pp. 1–5. Ieee, 2015.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Ke Wang and Christos Thrampoulidis. Binary classification of gaussian mixtures: Abundance of
support vectors, benign overfitting, and regularization. SIAM Journal on Mathematics of Data
Science, 4(1):260–284, 2022.

QuanLin Wu, Hang Ye, Yuntian Gu, Huishuai Zhang, Liwei Wang, and Di He. Denoising masked
autoencoders help robust classification. In The Eleventh International Conference on Learning
Representations, 2023.

Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stewart, and Stefano Ermon. A theory of usable infor-
mation under computational constraints. In International Conference on Learning Representations,
2020.

Jonghwa Yim and Kyung-Ah Sohn. Enhancing the performance of convolutional neural networks
on quality degraded datasets. In 2017 International Conference on Digital Image Computing:
Techniques and Applications (DICTA), pp. 1–8. IEEE, 2017.

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising. IEEE transactions on image processing, 26(7):
3142–3155, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chong Zhou and Randy C Paffenroth. Anomaly detection with robust deep autoencoders. In
Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining, pp. 665–674, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROOFS

A.1 EXISTING RESULTS

Let us present a proof for Theorem 1, which is similar to a proof that can be found in an arXiv version
of (Liu et al., 2019), but better clarifies how the Markovianity is used.

Theorem 1. Let y → x → z be a Markov chain where y ∈ {1, 2} denotes the sample class. We have

P(copt(x) ̸= y) ≤ P(c̃opt(z) ̸= y),

where copt and c̃opt denote optimal Bayes classifiers.

Proof. Let us denote by X ,Z the supports of x, z, respectively, and by

P1 := P(y = 1), P2 := P(y = 2), (15)

the prior probability for the binary label y ∈ {1, 2}. Let us also define:

px1(ξ) := P (x = ξ | y = 1) , px2(ξ) := P (x = ξ | y = 2) . (16)

Now, from Eq. 15 and Eq. 16, the probability of error of the optimal Bayes classifier on x reads:

P (copt(x) ̸= y) =
∑
ξ∈X

min (P1px1(ξ), P2px2(ξ))

=
1

2
− 1

2

∑
ξ∈X

|P1px1
(ξ)− P2px2

(ξ)| .
(17)

Similarly to Eq. 16, we define:

pz1(ζ) := P (z = ζ | y = 1) , pz2(ζ) := P (z = ζ | y = 2) . (18)

From Eq. 15 and Eq. 18, the probability of error of the optimal Bayes classifier on z reads:

P (c̃opt(z) ̸= y) =
∑
ζ∈Z

min (P1pz1(ζ), P2pz2(ζ))

=
1

2
− 1

2

∑
ζ∈Z

|P1pz1(ζ)− P2pz2(ζ)| .
(19)

From Eq. 18 and the Markov assumption, we expand:

pzi(ζ) = P (z = ζ | y = i) =
∑
ξ∈X

P (z = ζ, x = ξ | y = i)

=
∑
ξ∈X

P (z = ζ | x = ξ, y = i)P (x = ξ | y = i)

=
∑
ξ∈X

P (z = ζ | x = ξ)P (x = ξ | y = i)

=
∑
ξ∈X

pz|x(ζ | ξ)pxi
(ξ).

(20)

The key step is the fourth equality, which eliminates the dependence on y in the first factor of the
summand. We also denote

pz|x(ζ | ξ) := P (z = ζ | x = ξ) .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

By substituting Eq. 20 into Eq. 19, we get:

P (c̃opt(z) ̸= y) =
1

2
− 1

2

∑
ζ∈Z

|P1pz1(ζ)− P2pz2(ζ)|

=
1

2
− 1

2

∑
ζ∈Z

∣∣∣∣∣∣
∑
ξ∈X

P1pz|x(ζ | ξ)px1
(ξ)− P2pz|x(ζ | ξ)px2

(ξ)

∣∣∣∣∣∣
≥ 1

2
− 1

2

∑
ζ∈Z

∑
ξ∈X

pz|x(ζ | ξ) · |P1px1(ξ)− P2px2(ξ)|

=
1

2
− 1

2

∑
ξ∈X

∑
ζ∈Z

pz|x(ζ | ξ) · |P1px1
(ξ)− P2px2

(ξ)|

=
1

2
− 1

2

∑
ξ∈X

|P1px1
(ξ)− P2px2

(ξ)| ·
∑
ζ∈Z

pz|x(ζ | ξ)


=

1

2
− 1

2

∑
ξ∈X

|P1px1
(ξ)− P2px2

(ξ)|

= P (copt(x) ̸= y) .

(21)

Let us now present a theorem that will be utilized in the proof of Theorem 2.

Theorem 9 (Generalized Berry-Esseen Theorem, (Feller, 1991)). Let X1, X2, . . . , Xd be independent
random variables with:

• Means ηi = E[Xi].

• Variances ξ2i = Var(Xi).

• Third absolute moments ρi = E
[
|Xi − ηi|3

]
.

Define the normalized sum:

Sd =
1√∑d
i=1 ξ

2
i

d∑
i=1

(Xi − ηi).

Then, there exists an absolute constant C0 > 0 independent of d such that:

sup
x∈R

|P(Sd > x)−Q(x)| ≤
C0

∑d
i=1 ρi(∑d

i=1 ξ
2
i

) 3
2

.

In the following subsections, we present the proofs of Theorems 2, 3, 4, 5, 6, 7, 8.

A.2 PROOF OF THEOREM 2

Proof. The probability of error is

px(error) = P (ĉ(x) ̸= y) = π1 · P (ĉ(x) = 2 | y = 1) + π2 · P (ĉ(x) = 1 | y = 2)

=
1

2
· P (ĉ(x) = 2 | y = 1) +

1

2
· P (ĉ(x) = 1 | y = 2)

=
1

2
· q(1, 2) + 1

2
· q(2, 1)

(22)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where we used the assumption of a uniform prior and defined

q(i, j) = P (ĉ(x) = j | y = i) . (23)

Following Eq. 6, the first conditional probability of error q(1, 2) reads:

q(1, 2) = P
(
∥x− µ̂2∥2 < ∥x− µ̂1∥2 | y = 1

)
= P

(
(x− µ̂2)

⊤(x− µ̂2) < (x− µ̂1)
⊤(x− µ̂1) | y = 1

)
= P

(
x⊤x− x⊤µ̂2 − µ̂⊤

2 x+ µ̂⊤
2 µ̂2 < x⊤x− x⊤µ̂1 − µ̂⊤

1 x+ µ̂⊤
1 µ̂1 | y = 1

)
= P

(
−2µ̂⊤

2 x+ ∥µ̂2∥2 < −2µ̂⊤
1 x+ ∥µ̂1∥2 | y = 1

)
= P

(
2(µ̂2 − µ̂1)

⊤x > ∥µ̂2∥2 − ∥µ̂1∥2 | y = 1
)

= P

(
(µ̂2 − µ̂1)

⊤x >
∥µ̂2∥2 − ∥µ̂1∥2

2
| y = 1

)

= P

(
(µ̂2 − µ̂1)

⊤x− ∥µ̂2∥2 − ∥µ̂1∥2

2
> 0 | y = 1

)
= P (w > 0 | y = 1)

(24)

where we defined
w = (µ̂2 − µ̂1)

⊤
x− 1

2

(
∥µ̂2∥2 − ∥µ̂1∥2

)
. (25)

Let us define

yi = (µ̂2)i · xi − (µ̂1)i · xi −
1

2
· (µ̂2)

2
i +

1

2
· (µ̂1)

2
i . (26)

Thus,

w =

d∑
i=1

yi. (27)

In total, from Eq. 24, Eq. 27, it follows that:

q(1, 2) = P

(
d∑

i=1

yi > 0 | y = 1

)
. (28)

The setup of our theoretical investigation clearly implies that the random variables {yi}di=1, defined
in Eq. 26, are independent, and thus we can apply Theorem 9. Let us now compute the following
expressions, that will be crucial when applying Theorem 9:

1.
ηi := E[yi] (29)

2.
ξ2i := Var(yi) (30)

3.
ρi := E

[
|yi − ηi|3

]
(31)

Note that:

µ̂j ∼ N
(
µj ,

σ2

Nj
Id

)
.

Thus, given equations Eq. 3, Eq. 4, for each 1 ≤ i ≤ d, we have:

pj,i := (µ̂j)i ∼ N
(
(µj)i ,

σ2

Nj

)
, xi | y = 1 ∼ N

(
−µi, σ

2
)

(32)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

and from Eq. 26, it follows that:

yi = p2,ixi − p1,ixi −
1

2
p22,i +

1

2
p21,i (33)

where from Eq. 4, Eq. 32, we have:

p2,i ∼ N
(
µi,

σ2

N2

)
, p1,i ∼ N

(
−µi,

σ2

N1

)
. (34)

For every 1 ≤ i ≤ d, let us define the following random variables:

ai := (p2,i − p1,i) · xi, bi := p22,i − p21,i. (35)

Thus, from Eq. 33, it follows that:

yi = ai −
1

2
bi. (36)

We first compute ηi = E[yi] : From Eq. 36, it follows that:

ηi = E [yi] = E [ai]−
1

2
E [bi] . (37)

We now compute each expectation separately. From Eq. 32, Eq. 34, and the assumption of indepen-
dence, it follows that:

E[ai] = E [p2,ixi]− E [p2,ixi]

= E [p2,i] · E [xi]− E [p1,i] · E [xi]

= −µ2
i − µ2

i

= −2µ2
i

(38)

and
E[bi] = E[p22,i]− E

[
p21,i
]

=

(
σ2

N2
+ µ2

i

)
−
(
σ2

N1
+ µ2

i

)
= σ2

(
1

γN
− 1

N

)
=

1− γ

γ
· σ

2

N
.

(39)

Thus, from Eq. 37, Eq. 38, Eq. 39, we have:

ηi = −2µ2
i −

1

2
· 1− γ

γ
· σ

2

N
= −

(
2µ2

i +
1− γ

γ
· σ2

2N

)
. (40)

We now compute ξ2i = Var(yi) : From Eq. 36, we have:

ξ2i = Var(yi) = Var(ai) +
1

4
·Var(bi)− Cov (ai, bi) . (41)

We now compute each piece separately, starting from Var(ai). From equations Eq. 32, Eq. 34, Eq. 35,
Eq. 38, it follows that:

Var(ai) = E[a2i]− E[ai]2

= E
[
(p2,i − p1,i)

2
]
· E
[
x2
i

]
− 4µ4

i

=

(
1 + γ

γ
· σ

2

N
+ 4µ2

i

)
·
(
σ2 + µ2

i

)
− 4µ4

i

=
1 + γ

γ
· σ

4

N
+ µ2

i ·
(
1 + γ

γ
· σ

2

N
+ 4σ2

)
(42)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where we used the statistical independence between p2,i, p1,i and Eq. 34, to conclude that:

p2,i − p1,i ∼ N
(
2µi,

σ2

N1
+

σ2

N2

)
⇒ p2,i − p1,i ∼ N

(
2µi,

1 + γ

γ
· σ

2

N

)
. (43)

We now compute Var(bi). From equations Eq. 34, Eq. 35, and the statistical independence between
p2,i, p1,i, it follows that:

Var(bi) = Var
(
p22,i − p21,i

)
= Var

(
p22,i
)
+Var

(
p21,i
)

=
2σ2

N2

(
σ2

N2
+ 2µ2

i

)
+

2σ2

N1

(
σ2

N1
+ 2µ2

i

)
=

2σ4

γ2N2
+

4σ2µ2
i

γN
+

2σ4

N2
+

4σ2µ2
i

N

=
1 + γ2

γ2
· 2σ

4

N2
+

1 + γ

γ
· 4σ

2µ2
i

N

(44)

where we used the fact that if x ∼ N
(
µx, σ

2
x

)
, then

Var(x2) = E[x4]− E[x2]2

=
(
3σ4

x + 6σ2
xµ

2
x + µ4

x

)
−
(
σ2
x + µ2

x

)2
=
(
3σ4

x + 6σ2
xµ

2
x + µ4

x

)
−
(
σ4
x + 2σ2

xµ
2
x + µ4

x

)
= 2σ4

x + 4σ2
xµ

2
x

= 2σ2
x ·
(
σ2
x + 2µ2

x

)
.

Finally, we compute Cov(ai, bi). From equations Eq. 32, Eq. 34, Eq. 35, Eq. 38, Eq. 39, it follows
that:

Cov(ai, bi) = E [aibi]− E[ai] · E[bi]

= E
[
(p2,i − p1,i)

(
p22,i − p21,i

)
· xi

]
+

1− γ

γ
· 2σ

2µ2
i

N

=
(
E
[
p32,i
]
− E [p2,i] · E

[
p21,i
]
− E [p1,i] · E

[
p22,i
]
+ E

[
p31,i
])

· E [xi] +
1− γ

γ
· 2σ

2µ2
i

N

= −µi ·
((

µ3
i + 3µi ·

σ2

N2

)
− µi ·

(
σ2

N1
+ µ2

i

)
+ µi ·

(
σ2

N2
+ µ2

i

)
−
(
µ3
i + 3µi ·

σ2

N1

))
+

1− γ

γ
· 2σ

2µ2
i

N

= −µi ·
(
4µi ·

σ2

γN
− 4µi ·

σ2

N

)
+

1− γ

γ
· 2σ

2µ2
i

N

=
4σ2µ2

i

N
− 4σ2µ2

i

γN
+

1− γ

γ
· 2σ

2µ2
i

N

= −1− γ

γ
· 4σ

2µ2
i

N
+

1− γ

γ
· 2σ

2µ2
i

N

= −1− γ

γ
· 2σ

2µ2
i

N
(45)

where we used the fact that if x ∼ N
(
µx, σ

2
x

)
, then

E[x3] = µ3
x + 3µxσ

2
x. (46)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Thus, from equations Eq. 41, Eq. 42, Eq. 44, Eq. 45, it follows that:

ξ2i =
1 + γ

γ
· σ

4

N
+ µ2

i ·
(
1 + γ

γ
· σ

2

N
+ 4σ2

)
+

1

4
·
(
1 + γ2

γ2
· 2σ

4

N2
+

1 + γ

γ
· 4σ

2µ2
i

N

)
+

1− γ

γ
· 2σ

2µ2
i

N

=
1 + γ

γ
· σ

4

N
+

1 + γ2

γ2
· σ4

2N2
+ µ2

i

(
1 + γ

γ
· 2σ

2

N
+

1− γ

γ
· 2σ

2

N
+ 4σ2

)
= σ2

(
1 + γ

γ
· σ

2

N
+

1 + γ2

2γ2
· σ2

N2
+ 4µ2

i

(
1 +

1 + γ

2γ
· 1

N
+

1− γ

2γ
· 1

N

))
= σ2

(
1 + γ

γ
· σ

2

N
+

1 + γ2

2γ2
· σ2

N2
+ 4µ2

i

(
1 +

1

γN

))
.

(47)

We get the following lower bound:

ξ2i ≥ D :=
σ4

N
·
(
1 + γ

γ
+

1 + γ2

2γ2
· 1

N

)
. (48)

Finally, we compute ρi = E
[
|yi − ηi|3

]
: We will show that ρi is globally bounded. We first note the

following inequality, which holds for any real-valued random variable x with E[x4] < ∞:

E
[
|x|3
]
≤
(
E
[
x4
]) 3

4 .

This is a consequence of Lyapunov’s inequality. Setting x = yi − µi yields the following upper
bound:

ρi = E
[
|yi − ηi|3

]
≤
(
E
[
(yi − ηi)

4
]) 3

4

. (49)

We now expand:
(yi − ηi)

4 = y4i − 4y3i ηi + 6y2i η
2
i − 4yiη

3
i + η4i

which, from Eq. 49, implies that:

ρi ≤
(
E[y4i]− 4ηi · E[y3i] + 6η2i · E[y2i]− 4η3i · E[yi] + η4i

) 3
4

=
(
E[y4i]− 4ηi · E[y3i] + 6η2i ·

(
Var(yi) + E[yi]2

)
− 3η4i

) 3
4

=
(
E[y4i]− 4ηi · E[y3i] + 6η2i ·

(
ξ2i + η2i

)
− 3η4i

) 3
4

=
(
E[y4i]− 4ηi · E[y3i] + 6η2i ξ

2
i + 3η4i

) 3
4

(50)

where we used the definitions ξ2i = Var(yi), ηi = E[yi]. It is now left to compute

χi := E[y4i], δi := E[y3i] (51)

which implies, from Eq. 50, that

ρi ≤
(
χi − 4δiηi + 6ξ2i η

2
i + 3η4i

) 3
4 . (52)

Let f ∈ {η, ξ2, δ, χ}. We argue that for all 1 ≤ i ≤ d:

fi =

q(i,f)∑
k=0

ck(i, f) · µk
i (53)

where q(i, f) ∈ N and the constants {ck(i, f)}q(i,f)k=0 don’t depend on d. We already saw that ηi, ξi
follows that structure in equations Eq. 40, Eq. 41.

We now compute δi. From Eq. 36, it follows that:

δi = E

[(
ai −

1

2
bi

)3
]

= E
[
a3i
]
− 3

2
E
[
a2i bi

]
+

3

4
E
[
aib

2
i

]
− 1

8
E
[
b3i
] (54)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

we now compute each part separately, starting with E[a3i]. From equations Eq. 32, Eq. 35, and the
assumption of independence, it follows that:

E
[
a3i
]
= E

[
(p2,i − p1,i)

3 · x3
i

]
= E

[
(p2,i − p1,i)

3
]
· E
[
x3
i

]
=

(
8µ3

i + 6µi ·
1 + γ

γ
· σ

2

N

)(
−µ3

i − 3µiσ
2
)

= −µ2
i

(
8µ2

i +
6(1 + γ)

γ
· σ

2

N

)(
µ2
i + 3σ2

)
(55)

which is a polynomial in µi with real coefficients. The other expressions are computed similarly, and
they all have the form as in Eq. 53. We now turn to the assumption that

∃M≥0 ∀d∈N ∀1≤i≤d |µi| ≤ M (56)

and thus for each f ∈ F := {η, ξ2, δ, χ} and for all 1 ≤ i ≤ d, from the triangle inequality, it follows
that:

|fi| ≤
q(i,f)∑
k=0

|ck(i, f)| · |µi|k ≤
q(i,f)∑
k=0

|ck(i, f)| ·Mk

≤
maxf∈F q(i,f)∑

k=0

max
f∈F

|ck(i, f)| ·Mk

≤ max
1≤i≤d

maxf∈F q(i,f)∑
k=0

max
f∈F

|ck(i, f)| ·Mk

(57)

where we define ck(i, f) = 0 for all k > q(i, f). Let us denote

L := max
1≤i≤d

maxf∈F q(i,f)∑
k=0

max
f∈F

|ck(i, f)| ·Mk. (58)

Thus, from Eq. 57, we have:
∀f∈F∀1≤i≤d |fi| ≤ L. (59)

Now, L is independent of i (because we took the maximum over all possible 1 ≤ i ≤ d) and d
(because the degree q and the coefficients c will never depend directly on d, because σ doesn’t depend
on d). We thus showed that the absolute value of each relevant moment is upper bounded by a global
value L ≥ 0 that is independent of i and d. Thus, from Eq. 52, Eq. 59, it follows that:

ρi ≤
(∣∣χi − 4δiηi + 6ξ2i η

2
i + 3η4i

∣∣) 3
4

≤
(
|χi|+ 4 |δi| |ηi|+ 6ξ2i η

2
i + 3η4i

) 3
4

≤
(
L+ 4L2 + 6L4 + 3L4

) 3
4

=
(
9L4 + 4L2 + L

) 3
4 .

Let us now denote C =
(
9L4 + 4L2 + L

) 3
4 , where L ≥ 0 is defined in Eq. 58. Thus, C ≥ 0 is

independent of both i and d, and
∀1≤i≤d ρi ≤ C.

When combining this result with Eq. 48, we get that there exists some C ≥ 0, D > 0 that doesn’t
depend on i or d such that

ρi ≤ C, ξ2i ≥ D.

Thus, ∑d
i=1 ρi(∑d

i=1 ξ
2
i

) 3
2

≤
∑d

i=1 C(∑d
i=1 D

) 3
2

≤ C

D
3
2

√
d
. (60)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

We have verified that the conditions of Theorem 9 are satisfied, and thus, there exists some C0 > 0
independent of d such that for all x ∈ R∣∣∣∣∣∣P

 1√∑d
i=1 ξ

2
i

d∑
i=1

(yi − ηi) > x | y = 1

−Q(x)

∣∣∣∣∣∣ ≤ C0

∑d
i=1 ρi(∑d

i=1 ξ
2
i

) 3
2

≤ A√
d

where we used Eq. 60, and denoted A =
C0C

D
3
2

≥ 0. Now, q(1, 2), which is defined in Eq. 28, reads:

q(1, 2) = P

(
d∑

i=1

yi > 0 | y = 1

)

= P

(
d∑

i=1

(yi − ηi) > −
d∑

i=1

ηi | y = 1

)

= P

 1√∑d
i=1 ξ

2
i

d∑
i=1

(yi − ηi) > −
∑d

i=1 ηi√∑d
i=1 ξ

2
i

| y = 1


= Q

−
∑d

i=1 ηi√∑d
i=1 ξ

2
i

+O
(

1√
d

)

= Q


∑d

i=1

(
2µ2

i +
1−γ
γ · σ2

2N

)
√∑d

i=1 σ
2
(

1+γ
γ · σ2

N + 1+γ2

2γ2 · σ2

N2 + 4µ2
i

(
1 + 1

γN

))
+O

(
1√
d

)

= Q

 2 ∥µ∥2 + d
2N · 1−γ

γ · σ2√
σ2 ·

((
1+γ
γ · σ2

N + 1+γ2

2γ2 · σ2

N2

)
d+ 4

(
1 + 1

γN

)
∥µ∥2

)
+O

(
1√
d

)

= Q


∥µ∥+ d

4N · 1−γ
γ · σ2

∥µ∥

σ ·

√(
1

4N · 1+γ
γ ·

(
σ

∥µ∥

)2
+ 1

8N2 · 1+γ2

γ2 ·
(

σ
∥µ∥

)2)
· d+

(
1 + 1

γN

)
+O

(
1√
d

)

= Q


∥µ∥
σ + d

4N · 1−γ
γ · σ

∥µ∥√(
1

4N · 1+γ
γ ·

(
σ

∥µ∥

)2
+ 1

8N2 · 1+γ2

γ2 ·
(

σ
∥µ∥

)2)
· d+

(
1 + 1

γN

)
+O

(
1√
d

)
.

(61)
We now revisit Eq. 5:

S =

(
∥µ∥
σ

)2

.

Thus, from Eq. 61, q(1, 2) reads:

q(1, 2) = Q

 √
S + 1

4N · 1−γ
γ · d√

S√
1

4N · 1+γ
γ · d

S + 1
8N2 · 1+γ2

γ2 · d
S + 1

γN + 1

+O
(

1√
d

)
. (62)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We now compute q(2, 1). Similarly to the computation of q(1, 2), we have:

q(2, 1) = P(ĉ(x) = 1 | y = 2)

= P

(
(µ̂2 − µ̂1)

⊤x <
∥µ̂2∥2 − ∥µ̂1∥2

2
| y = 2

)
= P(w < 0 | y = 2)

= P

(
d∑

i=1

yi < 0 | y = 2

) (63)

where the random variables {yi}di=1 are defined in Eq. 33. The new conditional distribution of xi is:

∀1≤i≤d xi | y = 2 ∼ N (µi, σ
2). (64)

We first compute ηi = E[yi]. It is easy to verify from Eq. 37, Eq. 38, Eq. 39, Eq. 64, that ηi is given
by:

ηi = 2µ2
i −

1− γ

γ
· σ2

2N
. (65)

We now compute ξ2i = Var (yi). It still has three components, as in Eq. 41. It is easy to see from
Eq. 44 that Var(bi) remains unchanged because it doesn’t depend on the conditional distribution of
xi. Thus,

Var(bi) =
1 + γ2

γ2
· 2σ

4

N2
+

1 + γ

γ
· 4σ

2µ2
i

N
. (66)

We observe from Eq. 42, Eq. 64 that Var(ai) remains unchanged since it depends on E[x2
i] = σ2+µ2

i ,
which is unaffected.

Var(ai) =
1 + γ

γ
· σ

4

N
+ µ2

i ·
(
1 + γ

γ
· σ

2

N
+ 4σ2

)
. (67)

It remains to compute Cov(ai, bi) = E[aibi] − E[ai]E[bi]. From Eq. 38 and Eq. 64, we have
E[ai] = 2µ2

i . According to Eq. 39, E[bi] is unchanged, as it does not depend on the conditional
distribution of xi. Similarly, from Eq. 45, E[aibi] picks up a minus sign, so overall, Cov(ai, bi)
changes sign. Therefore, Eq. 45 implies:

Cov(ai, bi) =
1− γ

γ
· 2σ

2µ2
i

N
. (68)

Thus, from equations Eq. 41, Eq. 66, Eq. 67, Eq. 68, it follows that:

ξ2i =
1 + γ

γ
· σ

4

N
+ µ2

i ·
(
1 + γ

γ
· σ

2

N
+ 4σ2

)
+

1

4
·
(
1 + γ2

γ2
· 2σ

4

N2
+

1 + γ

γ
· 4σ

2µ2
i

N

)
− 1− γ

γ
· 2σ

2µ2
i

N

=
1 + γ

γ
· σ

4

N
+

1 + γ2

γ2
· σ4

2N2
+ µ2

i

(
1 + γ

γ
· 2σ

2

N
− 1− γ

γ
· 2σ

2

N
+ 4σ2

)
= σ2

(
1 + γ

γ
· σ

2

N
+

1 + γ2

2γ2
· σ2

N2
+ 4µ2

i

(
1 +

1 + γ

2γ
· 1

N
− 1− γ

2γ
· 1

N

))
= σ2

(
1 + γ

γ
· σ

2

N
+

1 + γ2

2γ2
· σ2

N2
+ 4µ2

i

(
1 +

1

N

))
≥ σ4

N
·
(
1 + γ

γ
+

1 + γ2

2γ2
· 1

N

)
= D.

(69)

Thus, ξ2i ≥ D where D > 0 is the same constant defined in Eq. 48. A similar argument for the case
y = 1 shows that ρi = E[|yi − ηi|3] ≤ C, where C ≥ 0 and D > 0 are constants independent of i

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

and d. Since the variables {yi}di=1 are independent, we may apply Theorem 9, which guarantees the
existence of a constant C0 > 0 independent of d such that for all x ∈ R:

∣∣∣∣∣∣P
 1√∑d

i=1 ξ
2
i

d∑
i=1

(yi − ηi) > x | y = 2

−Q(x)

∣∣∣∣∣∣ ≤ C0

∑d
i=1 ρi(∑d

i=1 ξ
2
i

) 3
2

≤ A√
d
.

Where we denoted A =
C0C

D
3
2

≥ 0. Now, q(2, 1), which is defined in Eq. 63, reads:

q(2, 1) = P

(
d∑

i=1

yi < 0 | y = 2

)

= P

(
d∑

i=1

(yi − ηi) < −
d∑

i=1

ηi | y = 2

)

= P

 1√∑d
i=1 ξ

2
i

d∑
i=1

(yi − ηi) < −
∑d

i=1 ηi√∑d
i=1 ξ

2
i

| y = 2


= 1− P

 1√∑d
i=1 ξ

2
i

d∑
i=1

(yi − ηi) ≥ −
∑d

i=1 ηi√∑d
i=1 ξ

2
i

| y = 2


= 1−

Q

−
∑d

i=1 ηi√∑d
i=1 ξ

2
i

+O
(

1√
d

)
= Q

 ∑d
i=1 ηi√∑d
i=1 ξ

2
i

+O
(

1√
d

)

= Q


∑d

i=1

(
2µ2

i +
1−γ
γ · σ2

2N

)
√∑d

i=1 σ
2
(

1+γ
γ · σ2

N + 1+γ2

2γ2 · σ2

N2 + 4µ2
i

(
1 + 1

N

))
+O

(
1√
d

)

= Q

 2 ∥µ∥2 + d
2N · 1−γ

γ · σ2√
σ2 ·

((
1+γ
γ · σ2

N + 1+γ2

2γ2 · σ2

N2

)
d+ 4

(
1 + 1

N

)
∥µ∥2

)
+O

(
1√
d

)

= Q


∥µ∥+ d

4N · 1−γ
γ · σ2

∥µ∥

σ ·

√(
1

4N · 1+γ
γ ·

(
σ

∥µ∥

)2
+ 1

8N2 · 1+γ2

γ2 ·
(

σ
∥µ∥

)2)
· d+

(
1 + 1

N

)
+O

(
1√
d

)

= Q


∥µ∥
σ + d

4N · 1−γ
γ · σ

∥µ∥√(
1

4N · 1+γ
γ ·

(
σ

∥µ∥

)2
+ 1

8N2 · 1+γ2

γ2 ·
(

σ
∥µ∥

)2)
· d+

(
1 + 1

N

)
+O

(
1√
d

)

(70)
where we used the identity Q(−x) = 1−Q(x). We now revisit Eq. 5:

S =

(
∥µ∥
σ

)2

.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Thus, from Eq. 70, q(2, 1) reads:

q(2, 1) = Q

 √
S + 1

4N · 1−γ
γ · d√

S√
1

4N · 1+γ
γ · d

S + 1
8N2 · 1+γ2

γ2 · d
S + 1

N + 1

+O
(

1√
d

)
. (71)

To finish the proof, from Eq. 22, Eq. 62, Eq. 71, the probability of error reads:

px(error) =
1

2
· q(1, 2) + 1

2
· q(2, 1)

=
1

2
·

Q

 √
S + 1

4N · 1−γ
γ · d√

S√
1

4N · 1+γ
γ · d

S + 1
8N2 · 1+γ2

γ2 · d
S + 1

γN + 1

+O
(

1√
d

)
+

1

2
·

Q

 √
S − 1

4N · 1−γ
γ · d√

S√
1

4N · 1+γ
γ · d

S + 1
8N2 · 1+γ2

γ2 · d
S + 1

N + 1

+O
(

1√
d

)
=

1

2
· Q

 √
S + 1

4N · 1−γ
γ · d√

S√
1

4N · 1+γ
γ · d

S + 1
8N2 · 1+γ2

γ2 · d
S + 1

γN + 1


+

1

2
· Q

 √
S − 1

4N · 1−γ
γ · d√

S√
1

4N · 1+γ
γ · d

S + 1
8N2 · 1+γ2

γ2 · d
S + 1

N + 1

+O
(

1√
d

)

= p̂(S, N, γ, d) +O
(

1√
d

)
where p̂ is given in Eq. 9.

A.3 PROOF OF THEOREM 3

Proof. We provide an algorithm to construct A ∈ Rk×d given
µ

∥µ∥
and prove that it satisfies Eq. 7.

Later, we will show how to estimate it from unlabeled data.

1. Define u := a1 =
µ

∥µ∥
. If k = 1, define A = u⊤. Else, continue.

2. Find a2, . . . ,ak ∈ Rd such that ⟨ai,u⟩ = 0 and ⟨ai,aj⟩ = δij .

3. Define the matrix A ∈ Rk×d where the i-th row is given by a⊤
i .

The proof that the algorithm works is given below.

• Step 1: If k = 1, we define A =
µ⊤

∥µ∥
. It is easy to ensure that it satisfies Eq. 7.

• Step 2: If µ = 0, then the result is trivial, because we can construct on orthonormal set

{a2, . . . ,ak} ⊂ Rd.

Otherwise, µ ̸= 0 and let us define the following subset of Rd:

V := {x ∈ Rd : ⟨x,µ⟩ = 0} ⊂ Rd.

We see that V = (span{µ})⊥ is a linear subspace of Rd of dimension d− 1. Thus, there
exists a basis {v1, . . . ,vd−1} ⊆ V . We know that k−1 ≤ d−1 and thus {v1, . . . ,vk−1} ⊆
V is a linearly independent set. That is, we can apply the Gram-Schmidt procedure on
this set, to get an orthonormal set {a2, . . . ,ak} ⊆ V . This is a subset of V because
Gram–Schmidt outputs vectors that are linear combinations of the input, which lie in V .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• Step 3: The rows of A are orthonormal, so AA⊤ = Ik. From step 2, it follows easily that

Aµ =


∥µ∥
0
...
0

⇒ ∥Aµ∥ = ∥µ∥

Thus, A meets the needed requirements, and thus we have proved the existence of such a matrix A.
Assuming µ ̸= 0, it is now left to prove that one can learn A from infinite unlabeled data {xi}∞i=1.
This data is taken from the distribution

x ∼ 1

2
N
(
−µ, σ2Id

)
+

1

2
N
(
µ, σ2Id

)
(72)

where the label is called y ∈ {1, 2}. Let us assume that there is m unlabeled data. We first compute

Σm =
1

m

m∑
i=1

xix
⊤
i .

As m → ∞, we have Σm
a.s.−−→ Σ, where

Σ = E
[
xx⊤] = E

[
xx⊤ | y = 1

]
· P (y = 1) + E

[
xx⊤ | y = 2

]
· P (y = 2)

=
1

2

(
σ2Id + µµ⊤)+ 1

2

(
σ2Id + µµ⊤)

= σ2Id + µµ⊤

where we used Eq. 72. That is, we can learn the matrix

Σ = σ2Id + µµ⊤. (73)

We now argue that the maximal eigenvalue of Σ is λmax = σ2 + ∥µ∥2, with eigen-space Vλmax
=

span{µ}. Indeed, from Eq. 73, it follows that:

Σµ =
(
σ2 + ∥µ∥2

)
µ

and for all v ⊥ µ we have
Σv = σ2v.

Thus, the eigenvalues of Σ are

σ2 = λmin < λmax = σ2 + ∥µ∥2 .

The eigen-space of λmin satisfies:

Vλmin = (span{µ})⊥ ⇒ dim (Vλmin) = d− 1

Thus, dim (Vλmax) = 1, which implies that

Vλmax = span{µ}. (74)

We now apply the power iteration method on the matrix Σm. For large enough number of iterations
and sufficiently large m ≫ 1, it returns a vector that is arbitrarily close to the eigenvector of Σ that
corresponds to the maximal eigenvalue λmax (ensured by the spectral gap of ∥µ∥2 > 0 between the
two largest eigenvalues of Σ), which from Eq. 74, is characterized as αµ where α ̸= 0 is a constant.
Normalizing this vector leads to ± µ

∥µ∥
. Now, we apply the algorithm we presented above to compute

A. As a side note, using the vector a1 = − µ⊤

∥µ∥
as the first row of A has no effect on the resulting

properties of A.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

A.4 PROOF OF THEOREM 4

Proof. We know that
z = Ax,

where A ∈ Rk×d is a deterministic matrix satisfying:

• AA⊤ = Ik.

• ∥Aµ∥ = ∥µ∥.

It is a standard result that a linear transformation of a Gaussian vector is also a Gaussian vector, thus:

∀j∈{1,2} z | y = j ∼ N
(
Aµj ,Aσ2IdA

⊤)
that is, for all j ∈ {1, 2} we have:

z | y = j ∼ N
(
ηj , σ

2Ik
)

where
ηj = Aµj .

We know that µ2 = −µ1 = µ, and thus η2 = −η1 = η = Aµ. That is, our model assumptions still
hold, with the following modifications:

• d 7→ k.

• µ 7→ η = Aµ.

The new separation quality factor Sz of the new GMM (computed similarly to Eq. 5) is given by:

Sz =

(
∥η2 − η1∥

2σ

)2

=

(
∥η∥
σ

)2

=

(
∥Aµ∥
σ

)2

=

(
∥µ∥
σ

)2

= S.

That is, the separation quality factor remains the same after the processing. The result is now
immediate from Theorem 2 and changing d 7→ k.

A.5 PROOF OF THEOREM 5

Proof. Let us fix γ = 1 and take some

S > 0, 1 ≤ k < d, N ∈ N.

From Theorems 2 and 4, it follows that we need to show the following:

p̂(S, N, 1, k) < p̂(S, N, 1, d) (75)

where p̂ is given in Eq. 9. It is easy to prove that:

∀q∈N p̂ (S, N, 1, q) = Q

 √
S√(

q
2S + 1

)
· 1
N + q

4S · 1
N2 + 1

 .

Following Eq. 75, we need to show that:

Q

 √
S√(

k
2S + 1

)
· 1
N + k

4S · 1
N2 + 1

 < Q

 √
S√(

d
2S + 1

)
· 1
N + d

4S · 1
N2 + 1


which is immediate because the argument in the Q is strictly higher in the LHS, and the Q function
is strictly decreasing.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

A.6 PROOF OF THEOREM 6

Proof. Let us take some

0 < γ < 1, 0 < S ≤ 1, 1 ≤ k < d,N ≥ γ2 − 4γ + 1

2γ · (1 + γ)

we need to show that
p̂(S, N, γ, k) < p̂(S, N, γ, d).

That is, it is sufficient to show that the function

f(x) = 2p̂(S, N, γ, x)

is strictly increasing for all x ≥ 1, where p̂ is defined in Eq. 9. It is easy to verify that:

f(x) = Q


√
S + 1−γ

4γN
√
S · x√(

1+γ
4γNS + 1+γ2

8γ2N2S

)
· x+ 1

γN + 1

+Q


√
S − 1−γ

4γN
√
S · x√(

1+γ
4γNS + 1+γ2

8γ2N2S

)
· x+ 1

N + 1

 .

(76)
Let us define the following functions:

g1(x) =

√
S + 1−γ

4γN
√
S · x√(

1+γ
4γNS + 1+γ2

8γ2N2S

)
· x+ 1

γN + 1

(77)

and

g2(x) =

√
S − 1−γ

4γN
√
S · x√(

1+γ
4γNS + 1+γ2

8γ2N2S

)
· x+ 1

N + 1

. (78)

Thus, Eq. 76 reads:
f(x) = Q (g1(x)) +Q (g2(x)) . (79)

From the chain rule, the derivative reads:

f ′(x) = Q′ (g1(x)) · g′1(x) +Q′ (g2(x)) · g′2(x)

= − 1√
2π

·
(
exp

(
−1

2
· g21(x)

)
· g′1(x) + exp

(
−1

2
· g22(x)

)
· g′2(x)

)
= − 1√

2π
· (w1(x) · g′1(x) + w2(x) · g′2(x)) .

(80)

We used the following property of the Q function:

d

dx
Q(x) = − 1√

2π
· exp

(
−x2

2

)
and the following notation:

wi(x) = exp

(
−1

2
· g2i (x)

)
. (81)

Thus, showing that f is strictly increasing for all x ≥ 1 is equivalent to proving that for all x ≥ 1

f ′(x) > 0 ⇔ w1(x) · g′1(x) + w2(x) · g′2(x) < 0. (82)

We argue now that for all x ≥ 1:

1.
w1(x) < w2(x) (83)

2.
g′2(x) < 0 (84)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

3.
g′1(x) + g′2(x) ≤ 0 (85)

Let us first prove Eq. 83: From Eq. 81 it follows that it is sufficient to prove:

∀x≥1 |g1(x)| > |g2(x)| . (86)

Let us take some x ≥ 1. It is easy to see from Eq. 77 that g1(x) ≥ 0 and thus |g1(x)| = g1(x). That
is, it is sufficient to prove that

g1(x) > g2(x) (87)
and

g2(x) > −g1(x) ⇔ g1(x) + g2(x) > 0. (88)
Let us now define the following parameters:

B =
1− γ

4γN
√
S

C =
1 + γ

4γNS
+

1 + γ2

8γ2N2S
c1 =

1

γN
+ 1

c2 =
1

N
+ 1 < c1

(89)

We also define the following functions:{
D1(x) =

√
Cx+ c1

D2(x) =
√

Cx+ c2 < D1(x)
(90)

From Eq. 77, Eq. 78, Eq. 89, Eq. 90, it follows that:
g1(x) =

√
S +Bx

D1(x)

g2(x) =

√
S −Bx

D2(x)

(91)

We first prove Eq. 87. Their difference g1(x)− g2(x) reads:

g1(x)− g2(x) =

√
S +Bx

D1(x)
−

√
S −Bx

D2(x)
=

(
√
S +Bx) ·D2(x)− (

√
S −Bx) ·D1(x)

D1(x) ·D2(x)

=

√
S · (D2(x)−D1(x)) +Bx · (D2(x) +D1(x))

D1(x) ·D2(x)
.

(92)

Now, from Eq. 89, Eq. 90, we have:

D2(x)−D1(x) =
D2

2(x)−D2
1(x)

D2(x) +D1(x)
=

c2 − c1
D2(x) +D1(x)

=

1
N − 1

γ·N

D1(x) +D2(x)

= − 1

N
· 1− γ

γ
· 1

D2(x) +D1(x)
.

(93)

In order to show Eq. 87, it is sufficient to show that the expression in Eq. 92 is strictly positive.
Substituting Eq. 93, we get:

−
√
S

N
· 1− γ

γ
· 1

D2(x) +D1(x)︸ ︷︷ ︸√
S · (D2(x) − D1(x))

+
1− γ

4γ ·N ·
√
S

· x · (D2(x) +D1(x)) > 0

1

4
√
S

· x · (D2(x) +D1(x)) >

√
S

D2(x) +D1(x)

x · (D2(x) +D1(x))
2
> 4S

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

That is, in order to show Eq. 83, it is sufficient to show that:

h(x) := x · (D2(x) +D1(x))
2
> 4S. (94)

We now show that h(x) is strictly increasing:

h′(x) = (D2(x) +D1(x))
2
+ 2x · (D2(x) +D1(x)) > 0.

Thus, it follows that:
x ≥ 1 ⇒ h(x) > h(1). (95)

Now, from Eq. 94, it follows that:

h(1) = (D2(1) +D1(1))
2
> 4S ⇔ D2(1) +D1(1) > 2

√
S.

Indeed, from Eq. 89, Eq. 90, we have:

D2(1) +D1(1) > 2 ·D2(1) = 2 ·
√
C + c2

= 2 ·
√
C +

1

N
+ 1

> 2

≥ 2
√
S

where we used the assumption that S ≤ 1, and C > 0. That is, we proved Eq. 87. We will now prove
Eq. 88. From Eq. 91, the sum g1(x) + g2(x) reads:

g1(x) + g2(x) =

√
S +B · x
D1(x)

+

√
S −Bx

D2(x)
=

(√
S +Bx

)
·D2(x) +

(√
S −Bx

)
·D1(x)

D1(x) ·D2(x)

=

√
S · (D2(x) +D1(x)) +Bx · (D2(x)−D1(x))

D1(x) ·D2(x)
.

(96)
In order to show Eq. 88, it is sufficient to show that the expression in Eq. 96 is strictly positive.
Substituting Eq. 93, we get:

√
S · (D2(x) +D1(x)) +

(
− 1− γ

4γ ·N ·
√
S

· 1

N
· 1− γ

γ
· x

D2(x) +D1(x)

)
︸ ︷︷ ︸

Bx · (D2(x) − D1(x))

> 0

√
S · (D2(x) +D1(x)) >

(1− γ)2

4γ2N2
√
S

· x

D2(x) +D1(x)

(D2(x) +D1(x))
2

x
>

(1− γ)2

4γ2N2S
That is, in order to show Eq. 88, it is sufficient to show that:

p(x) :=
(D2(x) +D1(x))

2

x
>

(1− γ)2

4γ2N2S
. (97)

Indeed,

p(x) =
D2

2(x) + 2D2(x)D1(x) +D2
1(x)

x
≥ D2

2(x) +D2
1(x)

x

=
Cx+ c1 + Cx+ c2

x

= 2C +
c1 + c2

x
> 2C

=
1 + γ

2γNS
+

1 + γ2

4γ2N2S

>
1 + γ2

4γ2N2S

>
(1− γ)2

4γ2N2S

(98)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

where we used c1, c2 > 0 and (1 − γ)2 < 1 + γ2 for all γ > 0. That is, we proved Eq. 88 and
thus we showed that Eq. 83 is satisfied. We will now prove Eq. 84: Let us first define the following
parametric function

TB,C,D(x) =

√
S +Bx√
Cx+D

. (99)

Its derivative reads:

T ′
B,C,D(x) =

B ·
√
Cx+D − C

2·
√
Cx+D

·
(√

S +Bx
)

Cx+D

=
2B · (Cx+D)− C · (

√
S +Bx)

2 · (Cx+D)1.5

=
BC · x+ 2 ·BD −

√
SC

2 · (Cx+D)1.5
.

(100)

Now, from Eq. 78, Eq. 99, it follows that:

g2(x) = T−B,C,c2(x).

That is, from Eq. 100, we have:

g′2(x) =
−BC · x− 2B · c2 −

√
S · C

2 · (Cx+ c2)
1.5 = −BC · x+ 2B · c2 +

√
S · C

2 · (Cx+ c2)1.5
< 0 (101)

where we used B,C, c2 > 0, which follows from Eq. 89, and S > 0. Finally, we will prove Eq. 85:
From Eq. 77, Eq. 99, Eq. 100, it follows that:

g1(x) = TB,C,c1(x) ⇒ g′1(x) =
BC · x+ 2B · c1 −

√
S · C

2 · (Cx+ c1)
1.5 . (102)

Thus, from Eq. 101,Eq. 102, proving that g′1(x) + g′2(x) ≤ 0 is equivalent to proving that:

BC · x+ 2B · c1 −
√
S · C

2 · (Cx+ c1)
1.5 ≤ BC · x+ 2B · c2 +

√
S · C

2 · (Cx+ c2)1.5
.

From Eq. 89, and the assumption of 0 < γ < 1, we know that c1 > c2. Thus, if the numerator in the
LHS is negative, then the inequality holds trivially. Otherwise, it is sufficient to prove that:

2B · c1 −
√
S · C ≤ 2B · c2 +

√
S · C

2B · (c1 − c2) ≤ 2
√
S · C

B ·
(

1

γ ·N
− 1

N

)
≤

√
S · C

Thus, we need to prove that:
1

N
· 1− γ

γ
≤

√
S · C
B

. (103)

From Eq. 89, the RHS in Eq. 103 reads:
√
S · C
B

=

(
1+γ

4·γ·N ·
√
S + 1+γ2

8·γ2·N2·
√
S

)
(

1−γ

4·γ·N ·
√
S

) =

(
1+γ
4 + 1+γ2

8·γ·N

)
(
1−γ
4

)
=

(
1 + γ

4
+

1 + γ2

8 · γ ·N

)
· 4

1− γ

=
1 + γ

1− γ
+

1 + γ2

γ · (1− γ)
· 1

2 ·N

=
2N · γ(1 + γ) + 1 + γ2

2N · γ(1− γ)

=
(2N + 1) · γ2 + 2N · γ + 1

2N · γ(1− γ)
.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Thus, Eq. 103 reads:

1− γ

γ ·N
≤ (2N + 1) · γ2 + 2N · γ + 1

2N · γ(1− γ)

2 · (1− γ)2 ≤ (2N + 1) · γ2 + 2N · γ + 1

2 · (γ2 − 2γ + 1) ≤ (2N + 1) · γ2 + 2N · γ + 1

(2N − 1) · γ2 + 2 · (N + 2) · γ − 1 ≥ 0

2 · γ · (γ + 1) ·N − (γ2 − 4γ + 1) ≥ 0

N ≥ γ2 − 4γ + 1

2γ(1 + γ)

Which holds from the theorem assumptions. Finally, let us take some x ≥ 1. We need to prove that:

w1(x) · g′1(x) + w2(x) · g′2(x) < 0 ⇔ w1(x) · g′1(x) < −w2(x) · g′2(x)

⇔ g′1(x) < −w2(x)

w1(x)
· g′2(x).

Indeed, from Eq. 83, Eq. 101, Eq. 85, it follows that:

g′1(x) ≤ −g′2(x) <
w2(x)

w1(x)
· (−g′2(x)) = −w2(x)

w1(x)
· g′2(x).

Which finishes the proof. Note that for γ ≥ 0.162, the requirement N ≥ γ2−4γ+1
2γ(1+γ) is vacuous (since

N ≥ 1), so it only matters under severe imbalance (γ < 0.162).

A.7 PROOF OF THEOREM 7

In order to have a fair comparison between cases with different values of γ, we fix the total number
of samples to be NT . Thus, we take N1 = xNT samples from the first class and N2 = γ · xNT from
the second class such that:

N1 +N2 = xNT + γ · xNT = NT ⇒ x =
1

1 + γ

Meaning, the number of samples in the first class is

N =
NT

1 + γ
. (104)

Proof. Let us take some NT ∈ N and

S > 0, 1 ≤ k < d, 0 < γ ≤ 1.

Let us define the following parametric function:

fs,a,q(x) :=

√
S + s · (1−γ)·q

4γ·
√
S · 1

x√(
(1+γ)·q
4γ·S + 1

a

)
· 1
x + (1+γ2)·q

8γ2·S · 1
x2 + 1

=

√
S + B

x√
C
x + D

x2 + 1
(105)

where the parameters B,C,D are: 

B = s · (1− γ) · q
4γ ·

√
S

C =
(1 + γ) · q
4γ · S

+
1

a

D =
(1 + γ2) · q
8γ2 · S

(106)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

From Definition 13 and Eq. 9, it follows that:

η = 100 ·
(
1− p̂z(error)

p̂x(error)

)
= 100 ·

(
1− p̂(S, N, γ, k)

p̂(S, N, γ, d)

)
= 100 ·

(
1− Q (f1,γ,k(N)) +Q (f−1,1,k(N))

Q (f1,γ,d(N)) +Q (f−1,1,d(N))

)
= 100 · h(N)

(107)

where we defined the following function:

h(x) := 1− Q (f1,γ,k(x)) +Q (f−1,1,k(x))

Q (f1,γ,d(x)) +Q (f−1,1,d(x))
. (108)

Now, let us define the following parametric function:

gs,a,q(x) := fs,a,q

(
1

x

)
=

√
S +B · x√

D · x2 + C · x+ 1
(109)

where we used Eq. 105, Eq. 106. Let us also define:

ℓ(x) := h

(
1

x

)
= 1− Q (g1,γ,k(x)) +Q (g−1,1,k(x))

Q (g1,γ,d(x)) +Q (g−1,1,d(x))
(110)

where we used Eq. 109, Eq. 108. Thus, Taylor expansion to first order of ℓ yields:
ℓ(x) = ℓ(0) + ℓ′(0) · x+O

(
x2
)

Where the approximation is exact for x ≪ 1. Thus, the following is exact for x ≫ 1:

x ≫ 1 ⇒ h(x) = ℓ

(
1

x

)
= ℓ(0) +

ℓ′(0)

x
+O

(
1

x2

)
. (111)

Assuming:

N =
NT

1 + γ
≫ 1 ⇔ NT ≫ 1 + γ (112)

means that following first-order approximation is exact:

h (N) = ℓ(0) +
ℓ′(0)

N
+O

(
1

N2

)
. (113)

Let us first compute ℓ(0):

ℓ(0) = 1− Q (g1,γ,k(0)) +Q (g−1,1,k(0))

Q (g1,γ,d(0)) +Q (g−1,1,d(0))
= 1− 2 · Q(

√
S)

2 · Q(
√
S)

= 0. (114)

Finally, we will compute ℓ′(0): We first compute g′s,a,q(0). From Eq. 109 it follows that:

g′s,a,q(x) =
B ·

√
D · x2 + C · x+ 1− 2D·x+C

2·
√
D·x2+C·x+1

·
(√

S +B · x
)

D · x2 + C · x+ 1

=
2B ·

(
D · x2 + C · x+ 1

)
− (2D · x+ C) ·

(√
S +B · x

)
2 · (D · x2 + C · x+ 1)

1.5

=
(BC − 2SD) · x+ (2B − C

√
S)

2 · (D · x2 + C · x+ 1)
1.5 .

Thus, the derivative at 0 is:

g′s,a,q(0) =
2B − C

√
S

2
= B − 1

2
· C

√
S

=
s · (1− γ) · q

4γ · S
− 1

2
·
(
(1 + γ) · q
4γ · S

+
1

a

)
·
√
S

=
s · (1− γ) · q

4γ · S
− (1 + γ) · q

8γ ·
√
S

−
√
S

2a

=
2s · (1− γ) · q − (1 + γ) · q

8γ · S
−

√
S

2a

=
((2s− 1)− (2s+ 1) · γ) · q

8γ ·
√
S

−
√
S

2a
.

(115)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Now, from Eq. 110, the derivative ℓ′(x) reads

ℓ′(x) = − d

dx

(
Q (g1,γ,k(x)) +Q (g−1,1,k(x))

Q (g1,γ,d(x)) +Q (g−1,1,d(x))

)
= − d

dx

(
u(x)

v(x)

)
= −u′(x) · v(x)− v′(x) · u(x)

v2(x)

=
v′(x) · u(x)− u′(x) · v(x)

v2(x)

(116)

where we defined the following auxiliary functions:{
u(x) = Q (g1,γ,k(x)) +Q (g−1,1,k(x))

v(x) = Q (g1,γ,d(x)) +Q (g−1,1,d(x))
(117)

From the chain rule, their derivatives are:{
u′(x) = g′1,γ,k(x) · Q′ (g1,γ,k(x)) + g′−1,1,k(x) · Q′ (g−1,1,k(x))

v′(x) = g′1,γ,d(x) · Q′ (g1,γ,d(x)) + g′−1,1,d(x) · Q′ (g−1,1,d(x))
(118)

Now, from Eq. 116, Eq. 118 it follows that:

ℓ′(0) =
v′(0) · u(0)− u′(0) · v(0)

v(0)2
. (119)

It is easy to verify from Eq. 109 that gs,a,q(0) =
√
S . Thus, from Eq. 117, Eq. 118, Eq. 115, we have

the following formulas:

u(0) = 2 · Q(
√
S)

v(0) = 2 · Q(
√
S)

u′(0) =

(
(1− 3γ) · k
8γ ·

√
S

−
√
S

2γ

)
· Q′(

√
S) +

(
−(3 + γ) · k
8γ ·

√
S

−
√
S
2

)
· Q′(

√
S)

v′(0) =

(
(1− 3γ) · d
8γ ·

√
S

−
√
S

2γ

)
· Q′(

√
S) +

(
−(3 + γ) · d
8γ ·

√
S

−
√
S
2

)
· Q′(

√
S)

(120)

Now, we substitute Eq. 120 in Eq. 119, to get the following formula for ℓ′(0):

ℓ′(0) =
2 · Q(

√
S) ·

((
(1−3γ)·d
8γ·

√
S −

√
S

2γ

)
· Q′(

√
S) +

(
−(3+γ)·d
8γ·

√
S −

√
S
2

)
· Q′(

√
S)
)

4 · Q2(
√
S)

−
2Q(

√
S) ·

((
(1−3γ)·k
8γ·

√
S −

√
S

2γ

)
· Q′(

√
S) +

(
−(3+γ)·k
8γ·

√
S −

√
S
2

)
· Q′(

√
S)
)

4 · Q2(
√
S)

=
Q′(

√
S)

2 · Q(
√
S)

·
(
(1− 3γ) · (d− k)

8γ ·
√
S

− (3 + γ) · (d− k)

8γ ·
√
S

)
=

Q′(
√
S)

2 · Q(
√
S)

· (d− k) ·
(
−2− 4γ

8γ ·
√
S

)
= −Q′(

√
S)

Q(S)
· (d− k) ·

(
1 + 2γ

8γ ·
√
S

)
= − Q′(

√
S)√

S · Q(
√
S)

· (d− k) ·
(

1

8γ
+

1

4

)
.

(121)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Finally, from Eq. 107, Eq. 112, Eq. 113, Eq. 114, Eq. 121, it follows that:

η = 100 · h(N)

= 100 ·
(
ℓ(0) +

ℓ′(0)

N
+O

(
1

N2

))
= 100 · ℓ

′(0)

N
+O

(
1

N2

)
= −100 · Q′(

√
S)√

S · Q(
√
S)

· (d− k) ·
(

1

8γ
+

1

4

)
· 1

N
+O

(
1

N2

)
(122)

We proceed with Eq. 122 and substitute Eq. 112:

N =
NT

1 + γ

to get the following approximation for η:

η = −100 · Q′(
√
S)√

S · Q(
√
S)

· (d− k) ·
(

1

8γ
+

1

4

)
· (1 + γ) · 1

NT
+O

(
1

N2
T

)
= −50 · Q′(

√
S)√

S · Q(
√
S)

· (d− k) ·
(

1

4γ
+

1

2

)
· (1 + γ) · 1

NT
+O

(
1

N2
T

)
= −50 · Q′(

√
S)√

S · Q(
√
S)

· (d− k) ·
(
1 + 2γ

4γ

)
· (1 + γ) · 1

NT
+O

(
1

N2
T

)
= − 50 · Q′(

√
S)

4 ·
√
SQ(

√
S)

· (d− k) · (1 + 2γ) ·
(
1 +

1

γ

)
· 1

NT
+O

(
1

N2
T

)
= − 25 · Q′(

√
S)

2 ·
√
SQ(

√
S)

· (d− k) ·
(
3 + 2γ +

1

γ

)
· 1

NT
+O

(
1

N2
T

)
=

25

2
√
2π

·
exp

(
−S

2

)
√
S · Q

(√
S
) ·
(
3 + 2γ +

1

γ

)
· (d− k) · 1

NT
+O

(
1

N2
T

)

(123)

where we used the following property of the Q function:

Q′(x) = − 1√
2π

· exp
(
−x2

2

)
.

It is now left to show the conclusions. For NT ≫ 1, we have from Eq. 123 that

η = C · f(S) · g(γ) · (d− k) · 1

NT
(124)

where C =
25

2
√
2π

> 0, and 
f(S) =

exp
(
−S

2

)
√
S · Q(

√
S)

g(γ) = 3 + 2γ +
1

γ

(125)

It is now clear from Eq. 124 that as d− k increases, the efficiency increases (linearly), and as NT

increases, the efficiency decreases. It is easy to see that in (0, 1], the function g defined in Eq. 125

achieves a minimum at γ =
1√
2

:

g′(γ) = 2− 1

γ2
= 0 ⇒ γ = ± 1√

2
.

It is easy to check that

g

(
1√
2

)
< lim

x→0+
g(x) = ∞, g

(
1√
2

)
< g(1).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Thus, from Eq. 124, in the range
(
0,

1√
2

]
, as γ decreases, the efficiency increases. Finally, we will

prove that the function f , defined in Eq. 125, decreases as S increases, and thus from Eq. 124, the
efficiency decreases as S increases: It is now sufficient to prove the following:

f ′(S) =
− 1

2 exp
(
−S

2

)
·
√
SQ

(√
S
)
− d

dS

(√
SQ

(√
S
))

· exp
(
−S

2

)
SQ2

(√
S
) < 0

−1

2

√
S · Q

(√
S
)
− d

dS

(√
SQ

(√
S
))

< 0

−1

2

√
SQ

(√
S
)
<

1

2
√
S
Q
(√

S
)
+

√
S · Q′

(√
S
) 1

2
√
S

−
√
SQ

(√
S
)
<

1√
S
Q
(√

S
)
− 1√

2π
exp

(
−S
2

)
(√

S +
1√
S

)
Q
(√

S
)
>

1√
2π

exp

(
−S
2

)
Q
(√

S
)
>

1√
2π

·
√
S

S + 1
· exp

(
−S
2

)
Where we used the identity Q′(S) = − 1√

2π
· exp

(
−S2

2

)
. Let us now prove the final inequality. It

is equivalent to the following inequality
(
x =

√
S
)

:

∀x≥0 Q(x) >
1√
2π

· x

x2 + 1
· exp

(
−x2

2

)
=

x

x2 + 1
· ϕ(x) (126)

where we defined the following function:

ϕ(x) =
1√
2π

· exp
(
−x2

2

)
. (127)

Indeed, for all x ≥ 0: (
1 +

1

x2

)
· Q(x) =

∫ ∞

x

(
1 +

1

x2

)
· ϕ(u) du

>

∫ ∞

x

(
1 +

1

u2

)
· ϕ(u) du

= −
[
ϕ(u)

u

]∞
x

=
ϕ(x)

x

(128)

where we used the following identity:

d

du

(
−ϕ(u)

u

)
= −ϕ′(u) · u− ϕ(u)

u2
=

ϕ(u) + u2 · ϕ(u)
u2

=

(
1 +

1

u2

)
· ϕ(u). (129)

And Eq. 129 follows from the identity ϕ′(u) = −u ·ϕ(u) which is straightforward from the definition
of ϕ in Eq. 127. Now, from Eq. 128, it follows that:

Q(x) >
ϕ(x)

x
· x2

x2 + 1
=

x

x2 + 1
· ϕ(x)

which proves exactly Eq. 126. It is left to show that:

∃N0∈N∀N≥N0
pz(error) < px(error). (130)

That is, η > 0. We proved in Eq. 119 that:

ℓ′(0) = − Q′(
√
S)√

S · Q(
√
S)

· (d− k) ·
(

1

8γ
+

1

4

)
> 0. (131)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

We defined ℓ(x) in Eq. 111 as:

ℓ(x) = h

(
1

x

)
⇒ ℓ′(x) = − 1

x2
· h′
(
1

x

)
(132)

where we used the chain rule. Finally, from Eq. 131, Eq. 132, it follows that:

ℓ′(0) = − lim
x→0+

1

x2
· h′
(
1

x

)
= − lim

t→∞
t2 · h′ (t) > 0

where we used the fact that if the two-sided limit exists, then each one-sided limit exists and they are
equal to the limit. In total,

lim
t→∞

t2 · h′(t) < 0.

This means that for large enough t, we have

h′(t) < 0

which implies that h is strictly decreasing. Thus, from Eq. 107, we have that for N ≫ 1, η is
decreasing. In addition, from Eq. 111, Eq. 114, it follows that:

lim
N→∞

η = 100 · lim
N→∞

h(N) = 100 · lim
N→∞

ℓ

(
1

N

)
= 100 · ℓ(0) = 0

Finally, η is decreasing for large enough N and approaches 0. It is now easy to see that:

∃N0∈N∀N≥N0
η > 0

which exactly proves Eq. 130.

A.8 PROOF OF THEOREM 8

Let us state an extended and more detailed version of the Theorem 8.

Theorem (Analysis of the maximal efficiency). Fix γ = 1, and let S > 0, 1 ≤ k < d. Consider the
efficiency η = η(N) as a function of continuous N ∈ R+. The following hold.

• The maximal efficiency ηmax = max
N≥0

η(N) increases as a function of S > 0.

• For fixed r :=
d

k
and k ≫ max{1,S}, the maximizer Nmax = argmax

N≥0
η(N) decreases

with S > 0 in both regimes S ≪ 1,S ≫ 1. In addition, in the regime S ≪ 1 the following
approximation holds:

Nmax ≈ k

2S
·
r

2
3

(
r

1
3 − 1

)
r

2
3 − 1

. (133)

Finally, in the regime S ≫ 1, the following approximation holds:

Nmax ≈ k

2S
·
√
r. (134)

Proof. Fix γ = 1, and take

S > 0, 1 ≤ k < d.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Let us now define the following parametric function:

fq(x,S) :=
√
S√(

q
2S + 1

)
· 1
x + q

4S · 1
x2 + 1

=

√
S√

q+2S
2Sx + q

4Sx2 + 1

=

√
S√

2x(q+2S)+q+4S2x
4Sx2

=
2Sx√

2qx+ q + 4Sx+ 4Sx2

=
2Sx√

(2x+ 1)q + 4x(x+ 1)S

=
2Sx√
Dq(x,S)

(135)

where we denoted
Dq(x,S) = (2x+ 1)q + 4x(x+ 1)S

= 4Sx2 + 2 (2S + q)x+ q.
(136)

From Definition 13 and Eq. 9, it follows that:

η = 100 ·
(
1− p̂z(error)

p̂x(error)

)
= 100 ·

(
1− p̂(S, N, 1, k)

p̂(S, N, 1, d)

)
= 100 ·

(
1− 2 · Q (fk(N))

2 · Q (fd(N))

)
= 100 ·

(
1− Q (fk(N))

Q (fd(N))

)
= 100 · h(N,S)

(137)

where we defined the following function:

h(x,S) := 1− Q (fk(x,S))
Q (fd(x,S))

. (138)

Hence, our task reduces to proving that the following function is increasing:

V (S) := max
x>0

h(x,S) = h (x∗(S),S) (139)

where we denoted

x∗(S) = argmax
x>0

h(x,S). (140)

We note that the proof holds for each stationary point, and in particular for a maximizer that achieves
the maximum value of the function h(x,S). In addition, using the first-order condition:

∂h

∂x
(x∗(S),S) = 0. (141)

We now aim to prove that V ′(S) > 0, where V (S) is defined in Eq. 139. From the chain rule, we
have:

V ′(S) = ∂h

∂S
(x∗(S),S) + ∂h

∂x
(x∗(S),S) · ∂x

∗

∂S
=

∂h

∂S
(x∗(S),S) (142)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

where we used Eq. 141. Let us compute the partial derivative of h with respect to S:

∂h

∂S
= − ∂

∂S

(
Q (fk(x,S))
Q (fd(x,S))

)
= −

∂
∂SQ (fk(x,S)) · Q (fd(x,S))− ∂

∂SQ (fd(x,S)) · Q (fk(x,S))
Q2 (fd(x,S))

=
∂
∂SQ (fd(x,S)) · Q (fk(x,S))− ∂

∂SQ (fk(x,S)) · Q (fd(x,S))
Q2 (fd(x,S))

=
Q′ (fd(x,S)) · ∂fd

∂S · Q (fk(x,S))−Q′ (fk(x,S)) · ∂fk
∂S · Q (fd(x,S))

Q2 (fd(x,S))

=
1√
2π

·
exp

(
− 1

2f
2
k (x,S)

)
· ∂fk

∂S · Q (fd(x,S))− exp
(
− 1

2f
2
d (x,S)

)
· ∂fd

∂S · Q (fk(x,S))
Q2 (fd(x,S))

(143)

where we used the identity Q′(x) = − 1√
2π

· exp
(
−1

2
x2

)
. It now follows immediately from

Eq. 142, Eq. 143, that proving V ′(S) > 0 is equivalent to proving the following inequality:

exp

(
−1

2
f2
k (x

∗,S)
)

∂fk
∂S

(x∗,S)Q (fd(x
∗,S)) > exp

(
−1

2
f2
d (x

∗,S)
)

∂fd
∂S

(x∗,S)Q (fk(x
∗,S)) .

(144)
We now turn to the first order condition for x∗(S) in Eq. 141, and thus equate the partial derivative of
h with respect to x to zero. Similarly to Eq. 143, one can prove that for all x > 0 we have:

∂h

∂x
= − ∂

∂x

(
Q (fk(x))

Q (fd(x))

)
=

1√
2π

·
exp

(
− 1

2f
2
k (x,S)

)
· ∂fk

∂x · Q (fd(x,S))− exp
(
− 1

2f
2
d (x,S)

)
· ∂fd

∂x · Q (fk(x,S))
Q2 (fd(x,S))

.

(145)

That is, equating
∂h

∂x
= 0 yields the following equation for x∗(S):

exp

(
−1

2
f2
k (x

∗,S)
)

∂fk
∂x

(x∗,S)Q (fd(x
∗,S)) = exp

(
−1

2
f2
d (x

∗,S)
)

∂fd
∂x

(x∗,S)Q (fk(x
∗,S)) .

(146)
We now divide both sides of the inequality in Eq. 144 by the (positive) value we have in the latter
equality, in order to get the following simplified inequality:

∂fk
∂S (x∗,S)
∂fk
∂x (x∗,S)

>
∂fd
∂S (x∗,S)
∂fd
∂x (x∗,S)

. (147)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

We indeed divided by a positive amount, because exp(·) > 0,Q(·) > 0, and
∂fq
∂x

> 0: for all x > 0,
from Eq. 135, Eq. 136, we have:

∂fq
∂x

=
∂

∂x

(
2Sx√
Dq(x,S)

)

= 2S · ∂

∂x

(
x√

Dq(x,S)

)

= 2S ·

√Dq(x,S)− x · ∂
∂x

(√
Dq(x,S)

)
Dq(x,S)


= 2S ·


√
Dq(x,S)− x · ∂Dq(x,S)/∂x

2
√

Dq(x,S)

Dq(x,S)


= 2S ·

(
2 ·Dq(x,S)− x · ∂Dq(x,S)

∂x

2 · (Dq(x,S))3/2

)

=
S

(Dq(x,S))3/2
·
(
2
(
4Sx2 + 2 (2S + q)x+ q

)
− x (8Sx+ 2 (2S + q))

)
=

S
(Dq(x,S))3/2

· (2 (2S + q)x+ 2q)

=
2S

(Dq(x,S))3/2
· ((2S + q)x+ q) > 0

(148)

where we used the definition of Dq(x,S) in Eq. 136. We now compute the partial derivative of fq
with respect to S:

∂fq
∂S

=
∂

∂S

(
2Sx√
Dq(x,S)

)

= 2x · ∂

∂S

(
S√

Dq(x,S)

)

= 2x ·

√Dq(x,S)− S · ∂
∂S

(√
Dq(x,S)

)
Dq(x,S)


= 2x ·


√

Dq(x,S)− S · ∂Dq(x,S)/∂S
2
√

Dq(x,S)

Dq(x,S)


= 2x ·

(
2 ·Dq(x,S)− S · ∂Dq(x,S)

∂S

2 · (Dq(x,S))3/2

)
.

(149)

We now use the definition of Dq(x,S) from Eq. 136, and get

∂fq
∂S

=
x

(Dq(x,S))3/2
·
(
2
(
4Sx2 + 2 (2S + q)x+ q

)
− S · 4x(x+ 1)

)
=

x

(Dq(x,S))3/2
·
(
4Sx2 + 4 (2S + q)x− 4Sx+ 2q

)
=

x

(Dq(x,S))3/2
·
(
4Sx2 + 4 (S + q)x+ 2q

)
=

2x

(Dq(x,S))3/2
·
(
2Sx2 + 2 (S + q)x+ q

)
.

(150)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Let us now define

Rq(x,S) :=
∂fq
∂S (x,S)
∂fq
∂x (x,S)

=

2x
(Dq(x,S))3/2

·
(
2Sx2 + 2 (S + q)x+ q

)
2S

(Dq(x,S))3/2
· ((2S + q)x+ q)

=
x

S
·
(
2Sx2 + 2Sx+ 2x · q + q

2Sx+ x · q + q

)
=

x

S
·
(
2Sx (x+ 1) + (2x+ 1) · q

2Sx+ (x+ 1) · q

)
(151)

where we used the partial derivatives of fq, computed in Eq. 148, Eq. 150. We remember that we
need to prove Eq. 147, which is equivalent to Rq(x,S) being a decreasing function in the argument q
(this is because 1 ≤ k < d). Indeed, let us compute

∂Rq(x,S)
∂q

=
x

S
· ∂

∂q

(
2Sx(x+ 1) + (2x+ 1) · q

2Sx+ (x+ 1) · q

)
=

x

S
· (2x+ 1) · (2Sx+ (x+ 1) · q)− (x+ 1) · (2Sx(x+ 1) + (2x+ 1) · q)

(2Sx+ (x+ 1) · q)2

=
x

S
· 2x(2x+ 1) · S − 2x(x+ 1)2 · S

(2Sx+ (x+ 1) · q)2

=
2x2 ·

(
2x+ 1− (x+ 1)2

)
(2Sx+ (x+ 1) · q)2

= − 2x4

(2Sx+ (x+ 1) · q)2
.

(152)

That is,

∂Rq(x,S)
∂q

= − 2x4

(2Sx+ (x+ 1) · q)2
< 0

which proves Eq. 147. We argued that this is equivalent to Eq. 144. As we proved in Eq. 142,
this inequality is equivalent to proving V ′(S) > 0. Finally, the result is straightforward because
η = 100 · h(N,S). This proves the first part of the theorem.

We will now prove the second part of the theorem. Let us fix d > k ≫ max{1,S}, and

r :=
d

k
> 1. We prove that the maximizer x∗(S), defined in Eq. 140, decreases as a function of S.

Let us first define the following rescaled x value:

x(t) :=
k

S
· t. (153)

Thus,

x∗(S) = k

S
· argmax

t>0
h (x(t),S) . (154)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

From Eq. 135, it follows that:

fq (x(t),S) =
2S · x(t)√

(2x(t) + 1) q + 4x(t) (x(t) + 1)S

∼ 2S · x(t)√
2x(t) · q + 4x2(t) · S

=
2S√

2q
x(t) + 4S

=
2S√

2q · S
k·t + 4S

=

√
2
√
S ·

√
kt√

2q + 4kt

=

√
2Sk · t

q + 2k · t

=

√
2St

q
k + 2t

(155)

where we assumed x(t) ≫ 1 which follows from q ≫ 1,S ≪ q, t = O(1). We explain the
assumption t = O(1) in a moment. Now, from Eq. 138, we have:

h (x(t),S) = 1− Q (fk (x(t),S))
Q (fd (x(t),S))

∼ 1−
Q
(√

2St
1+2t

)
Q
(√

2St
r+2t

) (156)

this motivates the assumption t = O(1) we used in Eq. 155: the maximizer

t∗(r,S) = argmax
t>0

h (x(t),S) ∼ argmin
t>0

Q
(√

2St
1+2t

)
Q
(√

2St
r+2t

)


= argmin
t>0

gS,r(t)

(157)

is a function of r = O(1) which is a constant and S ≪ k, and thus in the region of interest (close to
the maximizer), t = O(1) does not scale with k. The key insight here is that t∗(r,S) doesn’t depend
on k, d. We also defined the following function:

gS,r(t) :=
Q
(√

2St
1+2t

)
Q
(√

2St
r+2t

) . (158)

Finally, we would like to analyze the dependency of t∗(r,S) on S . We will prove that in both regimes
S ≪ 1,S ≫ 1, we have that t∗(r,S) does not depend on S , and thus in both regimes, from Eq. 154,
Eq. 157, the maximizer

x∗(S) = k

S
· t∗(r) (159)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

is decreasing as a function of S > 0. For the regime S ≪ 1: We use the approximation Q(x) ∼
1

2
− 1√

2π
· x for x ≪ 1 and Eq. 158 to get

gS,r(t) =
Q
(√

2St
1+2t

)
Q
(√

2St
r+2t

) ∼
1
2 − 1√

2π
·
√

2St
1+2t

1
2 − 1√

2π
·
√

2St
r+2t

=
1− 2√

2π
·
√

2St
1+2t

1− 2√
2π

·
√

2St
r+2t

∼

(
1− 2√

2π

√
2St

1 + 2t

)(
1 +

2√
2π

√
2St

r + 2t

)

∼

(
1− 2√

2π

√
2St

1 + 2t
+

2√
2π

√
2St

r + 2t

)

= 1−
√

2

π
·

(√
2St

1 + 2t
−
√

2St
r + 2t

)

= 1− 2

√
S
π
·

(√
t

1 + 2t
−
√

t

r + 2t

)
.

(160)

This approximation is motivated from the fact that the argument of the Q function in both the
numerator and the denominator is at most

√
S ≪ 1. Thus, from Eq. 157, we have:

t∗(r,S) = argmin
t>0

(√
t

1 + 2t
−
√

t

r + 2t

)
(161)

is independent of S. We will also calculate the minimizer. Let us define

Ψ1(t) =

√
t

1 + 2t
−
√

t

r + 2t
. (162)

We now equate the derivative of Ψ1(t) to 0:

dΨ1

dt
=

d

dt

(√
t

1 + 2t

)
− d

dt

(√
t

r + 2t

)

=
1

2

(
1

√
t · (1 + 2t)

3
2

− r
√
t · (r + 2t)

3
2

)

=
1

2
√
t
·

(
1

(1 + 2t)
3
2

− r

(r + 2t)
3
2

)

=
1

2
√
t
· (r + 2t)

3
2 − r (1 + 2t)

3
2

(1 + 2t)
3
2 · (r + 2t)

3
2

(163)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

where we used the following formula:

d

dt

(√
t

a+ 2t

)
=

d
dt

(
t

a+2t

)
2 ·
√

t
a+2t

=

a
(a+2t)2

2 ·
√

t
a+2t

=
a

(a+ 2t)2
·
√
a+ 2t

2 ·
√
t

=
a

2
· 1
√
t · (a+ 2t)

3
2

Finally, from Eq. 163, we have:

(r + 2t∗)
3
2 = r (1 + 2t∗)

3
2

r + 2t∗ = r
2
3 · (1 + 2t∗)

2t∗ ·
(
1− r

2
3

)
= r

2
3

(
1− r

1
3

)
t∗ =

r
2
3

(
1− r

1
3

)
2
(
1− r

2
3

)
That is, the maximizer is unique, and from Eq. 159, in the regime S ≪ 1 we have:

x∗(S) ∼ 1

2
k ·

r
2
3

(
r

1
3 − 1

)
r

2
3 − 1

· 1
S

(164)

which is strictly decreasing as a function of S.

For the regime S ≫ 1: We use the approximation Q(x) ∼ 1√
2πx

· exp
(
−x2

2

)
and Eq. 158 to get

gS,r(t) =
Q
(√

2St
1+2t

)
Q
(√

2St
r+2t

) ∼
1√
2π

·
√

1+2t
2St · exp

(
− 1

2 · 2St
1+2t

)
1√
2π

·
√

r+2t
2St · exp

(
− 1

2 · 2St
r+2t

)
=

√
1 + 2t

r + 2t
·
exp

(
− St

1+2t

)
exp

(
− St

r+2t

)
=

√
1 + 2t

r + 2t
· exp

(
−St ·

(
1

1 + 2t
− 1

r + 2t

))
(165)

minimizing gS,r(t) is equivalent to minimizing ln (gS,r(t)):

MS,r(t) := ln (gS,r(t)) =
1

2
ln (1 + 2t)− 1

2
ln (r + 2t)− St ·

(
1

1 + 2t
− 1

r + 2t

)
(166)

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Let us equate the derivative of MS,r(t) to 0:

1

1 + 2t
− 1

r + 2t
− S ·

(
d

dt

(
t

1 + 2t

)
− d

dt

(
t

r + 2t

))
= 0

1

1 + 2t
− 1

r + 2t
− S ·

(
1

(1 + 2t)2
− r

(r + 2t)2

)
= 0

1

1 + 2t
− 1

r + 2t
=

S
(1 + 2t)2

− Sr
(r + 2t)2

(1 + 2t)(r + 2t)2 − (1 + 2t)2(r + 2t) = S(r + 2t)2 − Sr(1 + 2t)2

(1 + 2t)(r + 2t) · (r − 1) = S ·
(
r2 + 4rt+ 4t2

)
− Sr ·

(
1 + 4t+ 4t2

)
(r − 1) · (r + 2 (r + 1) t+ 4t2) = S ·

(
r2 + 4rt+ 4t2

)
− Sr ·

(
1 + 4t+ 4t2

)
4(r − 1) · t2 + 2(r2 − 1)t+ r(r − 1) = (4S − 4Sr) t2 + Sr2 − Sr

4(r − 1) · t2 + 2(r − 1)(r + 1)t+ r(r − 1) = 4S (1− r) t2 + Sr (r − 1)

4t2 + 2(r + 1)t+ r = −4St2 + Sr
4 (1 + S) t2 + 2(r + 1) · t+ r (1− S) = 0

Finally, we take the positive root (because t∗(r,S) > 0) and get:

t∗(r,S) =
−2(r + 1) +

√
4(r + 1)2 − 16r(1 + S)(1− S)

8(1 + S)

=
−(r + 1) +

√
(r + 1)2 + 4r (S2 − 1)

4(S + 1)

(167)

we note that we got a single solution and that the maximizer is unique, and S ≫ 1 and thus the
formula is well-defined. We note that

lim
S→∞

t∗(r,S) =
√
r

2

and thus, from Eq. 159, in the S ≫ 1 regime, we have

x∗(S) ∼ k

S
·
−(r + 1) +

√
(r + 1)2 + 4r (S2 − 1)

4(S + 1)
(168)

and as S → ∞ we have x∗(S) ∼ k

S
·
√
r

2
, and thus in the S ≫ 1 regime we have x∗(S) ∼ 1

S
is a

decreasing function of S.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

B ADDITIONAL THEORETICAL RESULTS

We have established an approximation of the efficiency of the processing η for N ≫ 1. We now do
the same for the difference

∆ := p̂x(error)− p̂z(error).

This allows us to gain insight into the different factors that affect the difference ∆ between the
probability of error that is caused by the processing.

Theorem 10 (Analysis of the asymptotic difference). Let S > 0, 1 ≤ k < d, 0 < γ ≤ 1. Denote by
NT = (1 + γ)N the total number of training samples. With approximation accuracy O(1/N2

T), we
have

∆ ≈ 1

4
√
2π

·
exp

(
−S

2

)
√
S

·
(
3 + 2γ +

1

γ

)
· (d− k) · 1

NT
. (169)

In particular, for NT ≫ 1: The difference increases when d − k increases or γ decreases within
0 < γ ≤ 1/

√
2; The efficiency decreases when S increases or NT increases.

Let us take some NT ∈ N and

S > 0, 1 ≤ k < d, 0 < γ ≤ 1.

We have NT = N + γN = (1 + γ)N the total number of training samples, and thus N =
NT

1 + γ
.

Let us define the following parametric function:

fs,a,q(x) :=

√
S + s · (1−γ)·q

4γ·
√
S · 1

x√(
(1+γ)·q
4γ·S + 1

a

)
· 1
x + (1+γ2)·q

8γ2·S · 1
x2 + 1

=

√
S + B

x√
C
x + D

x2 + 1
(170)

where the parameters B,C,D are: 

B = s · (1− γ) · q
4γ ·

√
S

C =
(1 + γ) · q
4γ · S

+
1

a

D =
(1 + γ2) · q
8γ2 · S

(171)

From the Definition ∆ := p̂x(error)− p̂z(error) and Eq. 9, it follows that:

∆ = p̂x(error)− p̂z(error) = p̂(S, N, γ, d)− p̂(S, N, γ, k)

= [Q (f1,γ,d(N)) +Q (f−1,1,d(N))]− [Q (f1,γ,k(N)) +Q (f−1,1,k(N))]

= h(N)

(172)

where we defined the following function:

h(x) := [Q (f1,γ,d(x)) +Q (f−1,1,d(x))]− [Q (f1,γ,k(x)) +Q (f−1,1,k(x))] . (173)

Now, let us define the following parametric function:

gs,a,q(x) := fs,a,q

(
1

x

)
=

√
S +B · x√

D · x2 + C · x+ 1
(174)

where we used Eq. 170, Eq. 171. Let us also define:

ℓ(x) := h

(
1

x

)
= [Q (g1,γ,d(x)) +Q (g−1,1,d(x))]− [Q (g1,γ,k(x)) +Q (g−1,1,k(x))] (175)

where we used Eq. 174, Eq. 173. Thus, the first-order Taylor expansion of ℓ:

ℓ(x) = ℓ(0) + ℓ′(0) · x+O
(
x2
)

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Where the approximation is exact for x ≪ 1. Thus, the following is exact for x ≫ 1:

x ≫ 1 ⇒ h(x) = ℓ

(
1

x

)
= ℓ(0) +

ℓ′(0)

x
+O

(
1

x2

)
. (176)

We have
N =

NT

1 + γ
≫ 1 ⇔ NT ≫ 1 + γ (177)

Thus,

h (N) = ℓ(0) +
ℓ′(0)

N
+O

(
1

N2

)
. (178)

Let us first compute ℓ(0):

ℓ(0) = [Q (g1,γ,d(0)) +Q (g−1,1,d(0))]−[Q (g1,γ,k(0)) +Q (g−1,1,k(0))] = 2·Q(
√
S)−2·Q(

√
S) = 0

(179)
Finally, we will compute ℓ′(0): We first compute g′s,a,q(0). From Eq. 174 it follows that:

g′s,a,q(x) =
B ·

√
D · x2 + C · x+ 1− 2D·x+C

2·
√
D·x2+C·x+1

·
(√

S +B · x
)

D · x2 + C · x+ 1

=
2B ·

(
D · x2 + C · x+ 1

)
− (2D · x+ C) ·

(√
S +B · x

)
2 · (D · x2 + C · x+ 1)

1.5

=
(BC − 2SD) · x+ (2B − C

√
S)

2 · (D · x2 + C · x+ 1)
1.5 .

Thus, the derivative at 0 is:

g′s,a,q(0) =
2B − C

√
S

2
= B − 1

2
· C

√
S

=
s · (1− γ) · q

4γ · S
− 1

2
·
(
(1 + γ) · q
4γ · S

+
1

a

)
·
√
S

=
s · (1− γ) · q

4γ · S
− (1 + γ) · q

8γ ·
√
S

−
√
S

2a

=
2s · (1− γ) · q − (1 + γ) · q

8γ · S
−

√
S

2a

=
((2s− 1)− (2s+ 1) · γ) · q

8γ ·
√
S

−
√
S

2a
.

(180)

Now, from Eq. 175, the derivative ℓ′(x) reads

ℓ′(x) =
d

dx
(v(x)− u(x))

= v′(x)− u′(x)
(181)

where we defined the following auxiliary functions:{
u(x) = Q (g1,γ,k(x)) +Q (g−1,1,k(x))

v(x) = Q (g1,γ,d(x)) +Q (g−1,1,d(x))
(182)

From the chain rule, their derivatives are:{
u′(x) = g′1,γ,k(x) · Q′ (g1,γ,k(x)) + g′−1,1,k(x) · Q′ (g−1,1,k(x))

v′(x) = g′1,γ,d(x) · Q′ (g1,γ,d(x)) + g′−1,1,d(x) · Q′ (g−1,1,d(x))
(183)

Now, from Eq. 181, Eq. 183 it follows that:

ℓ′(0) = v′(0)− u′(0). (184)

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

It is easy to verify from Eq. 174 that gs,a,q(0) =
√
S . Thus, from Eq. 182, Eq. 183 and Eq. 180, we

have the following formulas:
u′(0) =

(
(1− 3γ) · k
8γ ·

√
S

−
√
S

2γ

)
· Q′(

√
S) +

(
−(3 + γ) · k
8γ ·

√
S

−
√
S
2

)
· Q′(

√
S)

v′(0) =

(
(1− 3γ) · d
8γ ·

√
S

−
√
S

2γ

)
· Q′(

√
S) +

(
−(3 + γ) · d
8γ ·

√
S

−
√
S
2

)
· Q′(

√
S)

(185)

Now, we substitute Eq. 185 in Eq. 184 to get the following formula for ℓ′(0):

ℓ′(0) =
1− 3γ

8γ
√
S
Q′
(√

S
)
· (d− k)− 3 + γ

8γ
√
S
Q′
(√

S
)
· (d− k)

=
−2− 4γ

8γ
√
S

Q′
(√

S
)
· (d− k)

=
−2 (1 + 2γ)

8γ
√
S

·
(
− 1√

2π
exp

(
−S
2

))
· (d− k)

=
1

4
√
2π

·
exp

(
−S

2

)
√
S

· 1 + 2γ

γ
· (d− k)

=
1

4
√
2π

·
exp

(
−S

2

)
√
S

·
(
2 +

1

γ

)
· (d− k)

(186)

where we used the following property of the Q function:

Q′(x) = − 1√
2π

· exp
(
−x2

2

)
.

Finally, from Eq. 172, Eq. 177, Eq. 178, Eq. 179, Eq. 186, it follows that:
∆ = h(N)

= ℓ(0) +
ℓ′(0)

N
+O

(
1

N2

)
=

ℓ′(0)

N
+O

(
1

N2

)
=

1

4
√
2π

·
exp

(
−S

2

)
√
S

·
(
2 +

1

γ

)
· (d− k) · 1

N
+O

(
1

N2

)
.

(187)

We proceed with Eq. 187 and substitute Eq. 177:

N =
NT

1 + γ

which leads to the following approximation of ∆:

∆ =
1

4
√
2π

·
exp

(
−S

2

)
√
S

·
(
2 +

1

γ

)
· (d− k) · 1 + γ

NT
+O

(
1

N2
T

)
=

1

4
√
2π

·
exp

(
−S

2

)
√
S

·
(
3 + 2γ +

1

γ

)
· (d− k) · 1

NT
+O

(
1

N2
T

)
.

(188)

We now analyze the dependence of NT , d− k, γ,S on ∆ for NT ≫ 1. The results will be identical
to those derived in 7. From Eq. 188, the following hold for NT ≫ 1:

• ∆ decreases with NT .
• ∆ increases with d− k.

• ∆ increases when γ decreases within γ ∈
(
0,

1√
2

]
: this is because the function

f(γ) = 3 + 2γ +
1

γ

has a minimum at γ =
1√
2

within (0, 1).

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

• ∆ decreases with S: this is because

g(S) :=
exp

(
−S

2

)
√
S

decreases with S: indeed,

g′(S) =
− 1

2 exp
(
−S

2

)√
S − 1

2
√
S exp

(
−S

2

)
S

= −
exp

(
−S

2

)
2S

·
(√

S +
1√
S

)
< 0.

C ADDITIONAL EMPIRICAL DETAILS AND RESULTS (CIFAR-10, DENOISING)

C.1 EXPERIMENTS COMPUTE RESOURCES

We conducted our experiments using a few NVIDIA RTX 6000 Ada Generation GPUs with 48GB
memory. The training time for each data point in Figures 2 , 5 and 6 ranged from one hour to twelve
hours, depending on the number of training samples.

C.2 TRAINING THE CLASSIFIER

We consider the CIFAR-10 dataset (Krizhevsky et al., 2009) and the ResNet18 model (He et al.,
2016). To train the model, we use: batch size 128 and 350 epochs; cross-entropy loss; SGD optimizer;
learning rate: 0.0679; learning rate decay: 0.1 at epochs 116 and 233; momentum: 0.9; weight decay:
0.0005. This setting yields 90% accuracy for clean data.

Per noise level σ ∈ {0.25, 0.4} of the additive Gaussian noise that has been added to the data, we use
this setting to train two classifiers: one that operates directly on the noisy data and one that operates
on the denoised data.

C.3 TRAINING THE DENOISER

For the denoiser, we use the DnCNN model (Zhang et al., 2017) and 15,000 training images while
ignoring their labels. Per image, the clean version, xgt, is the target and its noisy version, x, is
the input to the model. To train the model, we use: batch size 64 and 1000 epochs; MSE loss;
Adam optimizer; learning rate: 0.0001; learning rate decay: 0.5 at iterations 20k, 40k, 60k, 80k,
100k, and 200k. The results with the MSE-based denoiser with γ < 1 are presented in Figure 6.
Note that, in order for the division of samples among the first five classes to be valid, we require
Ntrain

1 + γ
≤ 17500 ⇒ Ntrain ≤ 17500 (1 + γ). This shows that the point Ntrain = 35000 is invalid for

all γ < 1. Thus, we add a sufficient amount of samples from the synthetic set CIFAR-5m to the
classifier train set, both in the noisy and denoised case (where the noisy CIFAR-5m passes through
the denoiser).

C.4 TRAINING THE DENOISER WITHOUT CLEAN IMAGES

Replacing the MSE loss with Stein’s Unbiased Risk Estimate (SURE) (Stein, 1981; Soltanayev
& Chun, 2018) allows to train the denoiser using only noisy images. Specifically, instead of
MSE(zθ(x),xgt) = ∥zθ(x)− xgt∥2, we use:

SURE(zθ(x)) = ∥zθ(x)− x∥2 − dσ2 + 2σ2
d∑

i=1

∂

∂xi
zθ(x),

which obeys E[SURE(zθ(x))] = E[MSE(zθ(x),xgt)] for x|xgt ∼ N (xgt, σ
2I). We use the

common practice of approximating the divergence term with g⊤(zθ(x+ ϵg)− zθ(x))/ϵ, where ϵ
is small and g ∼ N (0, I) is drawn per optimizer iteration. Additionally, we use: batch size 64 and

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

1000 epochs; Adam optimizer; learning rate: 0.0001; learning rate decay: 0.5 at iterations 20k, 40k,
60k, 80k, 100k, and 200k.

The results for the setup with the SURE-based denoiser are presented in Figure 5. It can be seen that
they resemble the results for the MSE-based denoiser, which are presented in Section 4.

C.5 NUMERICAL ACCURACY RESULTS

In the following Tables 1 and 2 we report accuracy results related to Figure 2.

Ntrain Error without denoising (%) Error with denoising (%)
1000 71.12 ±1.39 63.32 ±0.96
2000 64.91 ±1.44 58.14 ±1.41
3000 63.19 ±1.21 54.62 ±0.37
5000 60.43 ±1.42 49.79 ±1.80
10000 46.15 ±0.81 42.43 ±0.25
15000 42.14 ±0.8 39.74 ±0.40
25000 38.48 ±0.29 36.02 ±0.38
35000 35.77 ±0.30 33.83 ±0.25

Table 1: Classification error rates (%) on noisy and denoised CIFAR-10 images for varying training
set sizes Ntrain. The noise level is σ = 0.25, γ = 1, and the denoiser is trained with MSE loss.

Ntrain Error without denoising (%) Error with denoising (%)
1000 74.45 ± 0.81 64.82 ± 1.14
2000 71.01 ± 2.00 61.25 ± 0.90
3000 67.86 ± 1.46 58.30 ± 0.66
5000 64.98 ± 1.21 56.24 ± 2.03
10000 54.70 ± 1.14 49.64 ± 0.50
15000 50.30 ± 0.47 47.34 ± 0.41
25000 47.65 ± 0.37 45.14 ± 0.43
35000 45.40 ± 0.33 43.21 ± 0.20

Table 2: Classification error rates (%) on noisy and denoised CIFAR-10 images for varying training
set sizes Ntrain. The noise level is σ = 0.4, γ = 1, and the denoiser is trained using MSE loss.

Figure 4 shows the classification error vs. the training epoch in a single trial for noise level 0.25,
γ = 1 and 35,000 training images. It demonstrates that the classifier does not suffer from overfitting.

(a) Noisy data (b) Denoised data

Figure 4: Training and testing error as a function of epochs for (a) noisy data and (b) denoised data.
The noise level is σ = 0.25, γ = 1, and Ntrain = 35,000. The denoiser is trained using MSE loss.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

(a) σ = 0.25, γ = 1 (b) σ = 0.4, γ = 1

(c) σ = 0.25, γ = 0.75 (d) σ = 0.4, γ = 0.75

(e) σ = 0.25, γ = 0.5 (f) σ = 0.4, γ = 0.5

Figure 5: Practical deep learning setup with noisy CIFAR-10 and SURE-based denoiser. Efficiency
of the data processing procedure versus the number of training samples for various values of the
training imbalance factor, γ, and the standard deviation of the noise, σ.

D ADDITIONAL EMPIRICAL DETAILS AND RESULTS (MINI-IMAGENET,
ENCODING)

D.1 EXPERIMENTS COMPUTE RESOURCES

We conducted our experiments using 16 NVIDIA Tesla V100-SXM2 GPUs with 32GB memory, 12
NVIDIA RTX 6000 Ada Generation GPUs with 48GB memory, and 2 NVIDIA A100 PCIe GPUs
with 80GB memory. The training time for each data point in Figures 3 and 7 ranged from 10 hours to
30 hours, depending on the number of training samples.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

(a) σ = 0.25, γ = 0.75 (b) σ = 0.4, γ = 0.75

(c) σ = 0.25, γ = 0.5 (d) σ = 0.4, γ = 0.5

Figure 6: Practical deep learning setup with noisy CIFAR-10 and MSE-based denoiser. Efficiency of
the data processing procedure versus the number of training samples for various values of the training
imbalance factor, γ ∈ {0.5, 0.75}, and the standard deviation of the noise, σ.

D.2 TRAINING THE CLASSIFIER

We consider the Mini-ImageNet dataset and the ResNet50 model. To train the model, we use: batch
size 128 and 225 epochs; cross-entropy loss; SGD optimizer; learning rate: 0.0679; learning rate
decay: 0.1 at epochs 75 and 150; momentum: 0.9; weight decay: 0.0005. This setting yields 73%
accuracy for clean data.

Per noise level σ ∈ { 50

255
,
100

255
} of the additive Gaussian noise that has been added to the data, we

use this setting to train one classifier that operates directly on the noisy data.

D.3 TRAINING THE ENCODER

For self-supervised learning, we adopt the DINOv2 framework (Lu et al., 2025). The student encoder
is a Vision Transformer (ViT-S/16), which splits each input image of size 224×224 into 16×16
patches and produces a 384-dimensional [CLS] token representation. This is passed through a 3-layer
MLP projection head to produce the final 256-dimensional embedding (z ∈ R256), which is used
for self-supervised training. The teacher network has the same architecture and is updated as an
exponential moving average of the student, providing stable target embeddings. Training is performed
on the Mini-ImageNet dataset for 200 epochs with a per-GPU batch size of 40. We apply the AdamW
optimizer with a base learning rate of 0.004 (scaled with the square root of the effective batch
size), β = (0.9, 0.999), weight decay scheduled from 0.04 to 0.4, and gradient clipping at 3.0. The
teacher momentum is linearly increased from 0.992 to 1.0 over training. Multi-crop augmentation is
employed with 2 global crops of size 224×224 and 8 local crops of size 96×96. Model evaluation is
conducted every 6,250 iterations.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

(a) σ = 50
255

, γ = 0.75 (b) σ = 100
255

, γ = 0.75

(c) σ = 50
255

, γ = 0.5 (d) σ = 100
255

, γ = 0.5

Figure 7: Practical deep learning setup with noisy Mini-ImageNet and pre-classification encoding.
Efficiency of the data processing procedure versus the number of training samples for various values
of the training imbalance factor, γ ∈ {0.5, 0.75}, and the standard deviation of the noise, σ.

D.4 TRAINING AN MLP ON TOP OF THE EMBEDDINGS

Per noise level σ ∈ { 50

255
,
100

255
}, after training the DINOv2 encoder, we pass the noisy Mini-

ImageNet images through the encoder to obtain 256-dimensional embeddings. On top of these
embeddings, we train a multi-layer perceptron (MLP) classifier to perform image classification.
The MLP consists of three hidden layers with dimensions 4096, 2048, and 1024, each followed by
LayerNorm and GELU activation, and a final linear layer mapping to the number of classes (i.e. 100).
Hidden layers are initialized with Xavier uniform, and the final layer with a small normal distribution.

To train the model, we use: per-GPU batch size 128 and 20 epochs, with 1250 iterations per epoch;
cross-entropy loss; SGD optimizer with a cosine annealing learning rate schedule; momentum: 0.9;
no weight decay. Linear evaluation is performed with periodic check-pointing and evaluation on the
validation set. After training, the classifier is evaluated on the test set to report final accuracy.

The results for the setup with γ < 1 are presented in Figure 7. It can be seen that they resemble the
results in 3: 1) similar non-monotonicity of the curve while remaining positive, and 2) the maximal
efficiency increases with the SNR, for fixed γ.

D.5 NUMERICAL ACCURACY RESULTS

In the following Tables 3 and 4 we report accuracy results related to Figure 3. Lastly, in Figure 8 we
present an image of noisy data for σ ∈ {50/255, 100/255}, to show that the noise is not too-severe.

E ADDITIONAL EMPIRICAL DETAILS AND RESULTS (CIFAR-10, ENCODING)

We investigate the CIFAR-10 dataset and the ResNet18 model. Both the training and test sets are
subjected to additive Gaussian noise with standard deviations σ ∈ {0.25, 0.4}. This time, as the

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Ntrain Error without encoding (%) Error with encoding (%)
5000 80.03 ±1.25 48.67 ±0.48

10000 74.56 ±1.12 45.03 ±0.27
20000 58.81 ±0.45 41.45 ±0.29
30000 49.92 ±0.8 39.23 ±0.39
40000 44.95 ±1.37 37.99 ±0.31
50000 40.07 ±0.58 36.62 ±0.25

Table 3: Classification error rates (%) on noisy and encoded Mini-ImageNet images for varying
training set sizes Ntrain. The noise level is σ = 50

255 , γ = 1.

Ntrain Error without encoding (%) Error with encoding (%)
5000 85.5 ±0.95 60.94 ±0.25

10000 79.71 ±1.73 57.28 ±0.23
20000 68.47 ±2.15 53 ±0.27
30000 58.39 ±1.77 50.92 ±0.31
40000 54.62 ±0.08 49.35 ±0.34
50000 50.01 ±0.56 48.23 ±0.27

Table 4: Classification error rates (%) on noisy and encoded Mini-ImageNet images for varying
training set sizes Ntrain. The noise level is σ = 100

255 , γ = 1.

(a) clean

(b) σ = 50
255

(c) σ = 100
255

Figure 8: Clean and noisy Mini-ImageNet images. (a) Clean image. (b) Image with Gaussian noise
σ = 50

255 . (c) Image with Gaussian noise σ = 100
255 .

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

(a) σ = 0.25, γ = 1 (b) σ = 0.4, γ = 1

Figure 9: Noisy CIFAR-10 and pre-classification encoding. Efficiency versus Ntrain.

Figure 10: The theoretical setup. Efficiency of the data processing procedure versus the number of
training samples Ntrain, for various values of the training imbalance factor γ, and SNR of S = 1.

data processing procedure we use an encoding step that maps each image (rescaled from its original
CIFAR-10 resolution to 224× 224) into a 256-dimensional embedding. This encoder model follows
(Lu et al., 2025) and is trained from scratch with self-supervision on 45000 noisy unlabeled images
for each noise level. Then, for each combination of (σ,Ntrain), considering the balanced case of
γ = 1, we divide Ntrain equally among all 10 classes. Then, we train a ResNet18 model on the noisy
images across 6 seeds and, in parallel, a small MLP on the corresponding embeddings across 3 seeds.
After we have the mean of the probability of error before and after the data processing, we compute
the empirical efficiency, i.e., the relative percentage change in the probability of error induced by
the encoding step. Details of the training procedures for the ResNet18 and the MLP are provided in
Appendix C and D, respectively.

Figure 9 presents the efficiency versus Ntrain, for γ = 1. We see the same trends that are aligned with
our theory as before: 1) similar non-monotonicity of the curve (increase to a maximal efficiency value
and then decrease) while remaining positive, and 2) the maximal efficiency increases with the SNR.

F EXTENDED EMPIRICAL VERIFICATION

In this section, we extend our empirical verification. In Figure 10, we simulate the theoretical setup,
as in 3.3 (we use d = 2000, k = 1000 and σ = 1), but with S = 1. We see that the empirical
efficiency coincides with the theoretical efficiency.

We now examine the effect of S on efficiency. We fix γ = 1, d = 2000, k = 1000 and vary
S ∈ {0.52, 1, 1.52}. The results are presented in Figure 11. Let us discuss the results. We see that for
Ntrain ≫ 1 (in the right Figure), for larger SNR (lower noise level), the efficiency decreases. However,

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

(a) Ntrain ≤ 10, 000 (b) 10, 000 ≤ Ntrain ≤ 50, 000

Figure 11: Extended simulation of the theoretical setup. Efficiency of the data processing versus the
number of training samples Ntrain, for γ = 1, and various values of the SNR, S, for (a) low samples
regime, and (b) high samples regime.

Figure 12: The theoretical setup. Efficiency of the data processing procedure versus the number of
training samples Ntrain, for various values of the training imbalance factor, γ, and SNR of S = 1.

as 8 suggests, when the number of samples is limited, and for larger SNR (lower noise level), the
efficiency increases. We notice this phenomenon in the left Figure, presenting low Ntrain, compared
to the right Figure. First, the efficiency increases with the SNRs, and then as Ntrain gets larger, the
dependency flips. We also see a different behavior that sheds more light on this conclusion: the
difference between different SNRs is larger in the low-samples region than the inverse relation in
the high-samples region. This concludes the non-monotonic and non-intuitive dependency of the
efficiency on the SNR.

In addition, we examine the effect of d− k on efficiency. We fix γ = 1, d = 2000,S = 1 and vary
k ∈ {500, 1000, 1500}. The results are presented in Figure 12. We see that larger d− k corresponds
to greater accuracy. Theorem 7 proves this for Ntrain ≫ 1, but we see that this is true even for small
Ntrain. Indeed, intuitively, reducing more dimensions is advantageous in terms of efficiency. This
suggests that there is a direct monotonic relationship between the efficiency and d− k.

We now consider the same setting as in the empirical verification (d = 2000, k = 1000, σ = 1,
γ ∈ {0.25, 0.5, 1}, S ∈ {0.752, 1, 1.52}), but per Ntrain, the data processing matrix A is learned
from 50,000 unlabeled samples using the algorithm described in the proof of Theorem 3. The
corresponding results are shown in Figure 13, demonstrating the same trends as the theoretical
efficiency. Moreover, as the number of unlabeled samples tends to infinity, the two curves coincide.
To illustrate this, we also present results for the case that per Ntrain, the data processing matrix A
is learned from 5,000,000 unlabeled samples in Figure 14. Notice that as the amount of unlabeled
samples available grows, the gap between the theoretical efficiency and the empirical efficiency is
reduced.

Finally, we visualize the action of A : R2 → R on the GMM data in Figure 15. While our analysis
considers the regime d > k ≫ 1, as is common in practice, we use small values of d = 2 and k = 1
to enable visualization.

Recall that the plug-in classifier, before and after the data processing, depends only on the distance
of a test sample from each of the empirical means. Without processing, these empirical means

are given by µ̂j = 1
Nj

∑Nj

i=1
xi,j and hence distributed as µ̂j ∼ N

(
µj ,

σ2

Nj
Id

)
. Similarly, after

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

(a) S = 0.752 (b) S = 1

(c) S = 1.52

Figure 13: Extended empirical verification - per Ntrain,A is learned from 50,000 unlabeled examples.
Presented for (a) S = 0.752, (b) S = 1 and (c) S = 1.52.

processing by A : Rd → Rk, the empirical means obey Aµ̂j ∼ N
(
Aµj ,

σ2

Nj
Ik

)
, where the

semi-orthonormality AA⊤ = Ik is used. Consequently,

E
[
∥µ̂j − µj∥2

]
=

d∑
i=1

E
[
([µ̂j]i − [µj]i)

2
]
=

d∑
i=1

σ2

Nj
=

σ2

Nj
d

where we used [µ̂j]i − [µj]i ∼ N
(
0, σ2

Nj

)
. Similarly, E

[
∥Aµ̂j −Aµj∥2

]
=

σ2

Nj
k.

The data processing lowers the dimension from d to k, and thus improves the average squared error
of the mean estimator by

σ2

N
(d− k) > 0.

Since the classifier, before and after the data processing, depends only on the distance of the test
sample from each of the empirical means, its accuracy increases when the accuracy of the empirical
means improves while the distance between the means of the difference classes does not significantly
reduce (i.e., ∥Aµ̂2−Aµ̂1∥ ≈ ∥µ̂2−µ̂1∥). The latter is accounted for by the property ∥Aµ∥ = ∥µ∥
of the operator.

Note that this behavior is observed in Figure 15:

• In the red class, the distance between the empirical mean and the real mean is 0.4632 before
applying A and 0.39 after applying A.

• In the blue class, the distance between the empirical mean and the real mean is 0.439 before
applying A and 0.38 after applying A.

• The distance between the empirical means of the different classes is 4.0374 before applying
A and 4.01 after applying A. Indeed, both are close to the distance between the real means,
which is 4.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

(a) S = 0.752 (b) S = 1

(c) S = 1.52

Figure 14: Extended empirical verification - per Ntrain,A is learned from 5,000,000 unlabeled
examples. Presented for (a) S = 0.752, (b) S = 1 and (c) S = 1.52.

That is, A preserves the separation quality of the classes, while improving the estimation quality of
µ.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

(a) The original data, sampled from GMM in R2 with µ1 = −µ2 = (2, 0)⊤, σ = 1, and Ntrain = 30. The true
means {µ1,µ2} are marked by black ‘X’s and the empirical means {µ̂1, µ̂2} are marked by green diamonds.
The learned decision boundary is marked by the dashed line (determined by the distance to the empirical means).

(b) The data after applying A ∈ R1×2 (in this case, projection onto the x-axis). As before, the true means
{Aµ1,Aµ2} are marked by black ‘X’s and the empirical means {Aµ̂1,Aµ̂2} are marked by green diamonds.

Figure 15: Visualization of the effect of A : R2 → R. Note that the empirical means (green
diamonds) are closer to the true means (black ‘X’s) after the operation A. The distance between the
empirical means of the different classes remains similar.

58

	Introduction
	Background and related work
	Theory
	Problem setup: data model, classifier, and data processing
	Theoretical results
	Performance gain due to data processing
	Factors that affect the gain

	Empirical verification

	Experiments in Practical Settings
	Noisy CIFAR-10 and pre-classification denoising
	Noisy Mini-ImageNet and pre-classification encoding
	Noisy CIFAR-10 and pre-classification encoding

	Conclusion
	Proofs
	Existing results
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8

	Additional theoretical results
	Additional empirical details and results (CIFAR-10, denoising)
	Experiments compute resources
	Training the classifier
	Training the denoiser
	Training the denoiser without clean images
	Numerical accuracy results

	Additional empirical details and results (Mini-ImageNet, encoding)
	Experiments compute resources
	Training the classifier
	Training the encoder
	Training an MLP on top of the embeddings
	Numerical accuracy results

	Additional empirical details and results (CIFAR-10, encoding)
	Extended empirical verification

