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ABSTRACT

The data processing inequality is an information-theoretic principle stating that the
information content of a signal cannot be increased by processing the observations.
In particular, it suggests that there is no benefit in enhancing the signal or encoding
it before addressing a classification problem. This assertion can be proven to be
true for the case of the optimal Bayes classifier. However, in practice, it is common
to perform “low-level” tasks before “high-level” downstream tasks despite the
overwhelming capabilities of modern deep neural networks. In this paper, we aim to
understand when and why low-level processing can be beneficial for classification.
We present a comprehensive theoretical study of a binary classification setup, where
we consider a classifier that is tightly connected to the optimal Bayes classifier and
converges to it as the number of training samples increases. We prove that for any
finite number of training samples, there exists a pre-classification processing that
improves the classification accuracy. We also explore the effect of class separation,
training set size, and class balance on the relative gain from this procedure. We
support our theory with an empirical investigation of the theoretical setup. Finally,
we conduct an empirical study where we investigate the effect of denoising and
encoding on the performance of practical deep classifiers on benchmark datasets.
Specifically, we vary the size and class distribution of the training set, and the noise
level, and demonstrate trends that are consistent with our theoretical results.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated remarkable performance across an extensive range
of tasks, spanning from image and speech recognition to natural language processing and scientific
discovery. When the end goal is to address “high-level” tasks, e.g., classification and detection,
a natural approach is to train a DNN to directly solve the task using the raw data/observations as
input (Yim & Sohn, 2017; Hendrycks & Dietterich, 2019; Singh et al., 2019). Yet, it is a common
practice to begin with addressing a “low-level” task in order to improve the quality of the input for
the high-level task. Such low-level tasks include signal/image restorations (Liu et al., 2018; Dai et al.,
2016; Li et al., 2023; Son et al., 2020; Haris et al., 2021; Pei et al., 2018) or encoding to a learned
embedding space (Lee et al., 2022; Zhou & Paffenroth, 2017; Wu et al., 2023).

This common pipeline, however, stands in contrast to the data processing inequality, a foundational
concept in information theory (Cover, 1999), which states that the information content of a signal
cannot be increased by processing the observations. Concretely, consider the Markov chain of
three random variables: y → x → z, which denotes that z is independent of y given x, i.e.,
pz|x,y(z|x, y) = pz|x(z|x) in terms of probability distributions. This implies that px,y,z(x, y, z) =
py(y)px|y(x|y)pz|x(z|x) = px(x)py|x(y|x)pz|x(z|x). The data processing inequality reads as

I(x, y) ≥ I(z, y) (1)

where I(x, y) is the mutual information of the random variables x and y.1 In particular, if y is the
class of a data sample x, this implies that there is no “benefit” in low-level processing of the sample
(e.g., obtaining z by denoising x) before directly considering the classification problem.

1The mutual information is defined as I(x, y) =
∫∫

px,y(x, y) log

(
px,y(x, y)

px(x)py(y)

)
dxdy.

1
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Focusing on classification and referring to better (top-1) accuracy as “benefit”, the previous assertion
can be proven to be true for the case of the optimal Bayes classifier (more details in Section 2).
Clearly, we expect performance gaps between practical classifiers and the optimal Bayes classifier.
However, modern DNN-based classifiers reach outstanding classification performance, sometimes
even exceeding human capabilities. This raises the question: What can we say about the margin
between this implication of the data processing inequality and practical classifiers? To the best of our
knowledge, no prior work has attempted to theoretically and systematically investigate this question.

In this paper, we aim to understand when and why low-level processing can be beneficial for
classification, even when the classifier is “strong” (e.g., converges to the optimal Bayes classifier
when the number of training samples grows). Our main contributions include:

• We present a theoretical study of a binary classification setup, where we consider a classifier that
is tightly connected to the optimal Bayes classifier (and converges to it). In the high-dimensional
setting, we prove that for any finite number of training samples, there exist a pre-classification
processing (specifically, a dimensionality reduction procedure) that improves the classification
accuracy.

• We establish theoretical results on the effect of various factors, such as the number of training
samples, the level of class separation and training set imbalance, on the relative gain from the data
processing procedure that we construct. For example, we show that, non-intuitively, the maximal
relative gain increases when the class separation improves.

• We present an empirical investigation of the theoretical model that corroborates our theory and
sheds more light on the gains from low-level processing.

• We complement our theoretical work with an empirical study. We investigate the effect of image
denoising and self-supervised encoding on the performance of practical deep classifiers on bench-
mark datasets, where we vary the size of the training set, the class distribution in the training set,
and the noise level in the samples. We demonstrate trends that are consistent with our theoretical
results (e.g., the one on the maximal gain), highlighting the usefulness of the theoretical setup.

2 BACKGROUND AND RELATED WORK

Consider the classification task, where the data (x, y) is distributed on X × [C], with [C] :=
{1, . . . , C} and distribution denoted by px,y . For the binary 0− 1 criterion, i.e., ℓ(ŷ, y) = I(ŷ ̸= y),
the expected risk is equivalent to the error probability E[ℓ(ŷ(x), y)] = P(ŷ(x) ̸= y). It is well-known
that this objective is minimized by the (optimal) Bayes classifier: copt(x) = argmaxy∈[C] py|x(y|x),
where py|x is the true conditional probability of y given x (Bishop, 2006; Fukunaga, 2013). In
practice, of course, the distributions are unknown and a classifier must be learned from data samples.

Consider a data processing operation A : X → Z . This can be denoising, super-resolution, encoding,
etc. Let z = A(x). Notice that y → x → z is a Markov chain because z is a function of x and
thus pz|x,y(z|x, y) = pz|x(z|x). Therefore, the data processing inequality in Eq. 1 holds. The
optimal Bayes classifier that operates on a processed sample z = A(x) is given by c̃opt(z) =
argmaxy∈[C] py|z(y|z), where py|z is the true conditional probability of y given z.

Focusing on the case of binary classification (C = 2), the following result shows that, similarly to the
fact that no A can increase information, there is also no hope in improving the accuracy of optimal
Bayes classifiers via data processing.

Theorem 1. Let y → x → z be a Markov chain where y ∈ {1, 2} denotes the sample class. We have

P(copt(x) ̸= y) ≤ P(c̃opt(z) ̸= y), (2)

where copt and c̃opt denote optimal Bayes classifiers.

A similar statement and proof can be found in an arXiv version of (Liu et al., 2019). For completeness,
we present a clearer proof in Appendix A. Note that (Liu et al., 2019) studies a potential tradeoff
between the error of a low-level restoration task and the accuracy of a fixed classifier, where only the
restoration model is trained using the training data. In contrast, our work focuses on the high-level end
goal—the classification performance—and allows training the classifier after the low-level processing,
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as is done in practice. Therefore, (Liu et al., 2019) does not provide any reason why in practice it is
common to address a low-level task before high-level ones, which is the central question of our paper.

Our work is motivated by the contrast between common practice and the information-theoretic concept
of the data processing inequality, as well as Theorem 1. There exist works that use information-
theoretic concepts or compute approximate metrics to analyze DNNs, e.g., (Tishby & Zaslavsky,
2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2019; Gabrié et al., 2018; Jeon & Van Roy, 2022).
Interestingly, since a DNN processes data gradually, layer by layer, the features across the layers form
a Markov chain, and thus the data processing inequality applies. Yet, avoiding the loss of information
relevant to the task being learned can be attributed to penalizing failures in predicting the target labels
during training, while discarding task-irrelevant information (akin to compression) may be explained
by the information bottleneck principle (Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017;
Saxe et al., 2019). The contrast between representation learning and the data processing inequality
has also motivated theoretical works (Xu et al., 2020; Goldfeld & Greenewald, 2021) to study variants
of the mutual information, incorporating transformations of the signal or line projections. None of the
aforementioned works consider a sequence of tasks or explain when and why low-level processing
can be beneficial to practical classifiers. Moreover, here we directly analyze the classifier’s probability
of error, which is more interpretable than the information-theoretic objectives studied before.

Finally, we emphasize that in the case of pre-trained classifier under distribution shift, data processing
that ‘reduces the gap’ between the test data distribution and the training data distribution is trivially
expected to improve the classifier performance. However, we focus in this paper on the non-intuitive
case where no distribution shift occurs, and the classifier is strong, in the sense that it converges to
the optimal Bayes classifier as the training set increases (with good statistical properties).

3 THEORY

In this section, we present our theoretical contributions. First, we describe the problem setup, the
data distribution, the classifier under study, and a data processing operation. Next, we present our
theoretical results demonstrating the benefits of this data processing. Finally, we validate our results
through experiments and provide additional insights into the factors that affect the performance gain.

3.1 PROBLEM SETUP: DATA MODEL, CLASSIFIER, AND DATA PROCESSING

Data model. Similar to a vast body of theoretical work on classifiers (Cao et al., 2021; Deng et al.,
2022; Wang & Thrampoulidis, 2022; Kothapalli & Tirer, 2025), we consider binary classification
(C = 2), where the data is distributed according to a Gaussian Mixture Model (GMM) of order two
in X = Rd, with one mixture component per class. Formally,

y ∈ {1, 2}, x | y = j ∼ N (µj , σ
2
j Id), P(y = j) = πj . (3)

Similar to previous theoretical works, we further assume that

µ2 = −µ1 = µ, σ2
1 = σ2

2 = σ2, π1 = π2 = 1/2, (4)

where the magnitudes of the entries of µ are bounded by some universal constant, and σ is independent
of d. Let us now define the separation quality factor of the GMM data, which can be understood as
the signal-to-noise ratio (SNR):

S :=

(
∥µ2 − µ1∥
σ1 + σ2

)2

=
∥µ∥2

σ2
. (5)

Note that the considered setup is standard in theoretical works that aim at rigorous mathematical
analysis (Cao et al., 2021; Deng et al., 2022; Wang & Thrampoulidis, 2022; Kothapalli & Tirer, 2025).
Despite its compactness, the learning problem studied in this paper can be arbitrarily hard because
(unlike some of the aforementioned works) our analysis covers SNR arbitrarily close to zero, i.e.,
nearly indistinguishable classes.

The training data consists of Nj labeled i.i.d. samples per class j, denoted by D = {xi,j : j ∈
{1, 2}, i = 1, . . . , Nj}. Without loss of generality, we denote N1 = N and N2 = γN for some
γ ∈ (0, 1].

3
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The classifier. In the considered setting, the optimal Bayes classifier reads:

copt(x) = argmax
j∈{1,2}

πjpx|y(x|j) = argmax
j∈{1,2}

exp
(
−∥x−µj∥2

2σ2

)
= argmin

j∈{1,2}
∥x− µj∥ .

In practice, the data distribution is unknown and thus a classifier cannot use the class means, {µi},
but rather estimate them from the training set. We therefore study the classifier:

ĉ(x;D) = argmin
j∈{1,2}

∥x− µ̂j(D)∥ , (6)

where µ̂j(D) = 1
Nj

∑Nj

i=1
xi,j is the maximum likelihood estimate of µj .

We want to explore if data processing can be beneficial even for a “strong” classifier. It is easy to
see that µ̂j ∼ N

(
µj ,

σ2

Nj
Id

)
. In fact, this is an efficient estimator that attains the Cramér–Rao

lower bound on the variance for any Nj (Kay, 1993). Therefore, in our setting, not only that ĉ(·)
is structurally similar to copt(·) and converges to it for Nj → ∞, but it also has strong statistical
properties for finite Nj , making it a natural choice for our study. Demonstrating the benefit of low-
level processing for such a classifier, which is “almost optimal” for the considered setup, underscores
the potential advantages for weaker classifiers.

Data processing. As the pre-classification data processing, we are going to study a certain linear
dimensionality reduction to 1 ≤ k < d. Specifically, we consider

z = Ax

with A ∈ Rk×d that obeys

AA⊤ = Ik, ∥Aµ∥ = ∥µ∥ . (7)

Note that, for establishing our main theoretical claim on the practical limitation of Eq. 2, we
just need the existence of a processing for which we can rigorously show improved classification.
Nevertheless, in the sequel, we provide a constructive proof that also shows how such A can be
learned from unlabeled data without prior knowledge of µ. Hence, showing that this procedure
improves classification performance in our setup underscores the promise of practical low-level
procedures learned from unlabeled data.

Additional notations. We will analyze and compare the performance of the classifier in Eq. 6
before and after the data processing procedure, namely, ĉ(x;D) versus ĉ(z;Dz), where Dz =
{zi,j = Axi,j : j ∈ {1, 2}, i = 1, . . . , Nj}. We denote the probability of error in these two
cases by px(error) := P(ĉ(x;D) ̸= y) and pz(error) := P(ĉ(z;Dz) ̸= y). Finally, we define the
widely-used Q-function, which will be used to characterize the classification error probability:

Q(x) = P (N (0, 1) > x) =
1√
2π

∫ ∞

x

exp
(
− t2

2

)
dt. (8)

3.2 THEORETICAL RESULTS

In this subsection, we present our theoretical results. In Section 3.2.1, we prove that the error
probability decreases due to the data processing. To this end, we establish expressions that accurately
approximate the probability of error of the data-driven classifier before and after the processing. We
then analyze their relation, where, due to different proof strategies, this is done separately for the
balanced and imbalanced training set cases. In Section 3.2.2, we provide a fine-grained analysis of
the factors that affect the efficiency of the processing, and, for the balanced training set case, we also
establish a connection between the maximal gain and the SNR.

The proofs for all the claims are deferred to Appendix A.

3.2.1 PERFORMANCE GAIN DUE TO DATA PROCESSING

We begin with characterizing the probability of error when the classifier is applied without pre-
processing. Recall the definitions of S and Q(x) in Eq. 5 and Eq. 8, respectively.

4
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Theorem 2 (The probability of error before the processing). Consider the setup in Section 3.1. With
approximation accuracy O(1/

√
d) we have px(error) ≈ p̂x(error) = p̂(S, N, γ, d), where

p̂(S, N, γ, d) :=
1

2
· Q

 √
S + 1

4N · 1−γ
γ · d√

S√
1

4N · 1+γ
γ · d

S + 1
8N2 · 1+γ2

γ2 · d
S + 1

γN + 1


+

1

2
· Q

 √
S − 1

4N · 1−γ
γ · d√

S√
1

4N · 1+γ
γ · d

S + 1
8N2 · 1+γ2

γ2 · d
S + 1

N + 1

 .

(9)

Remark. The proof is mathematically involved. We express the error event as thresholding a scalar
random variable, suitable for an application of a generalized Berry–Esseen theorem. However, this
variable depends on the interrelation between the entries of µ̂1, µ̂2, and computing the required
moments is a technical challenge.

Discussion. Note that: 1) p̂ is symmetric in the following sense: p̂ (S, N, γ, d) = p̂
(
S, γN, 1

γ , d
)

,
which is expected because swapping the amount of samples between the classes does not change
the problem; 2) As S → 0+ we have: lim

S→0+
p̂(S, N, γ, d) = 1/2, aligned with uniform guess; 3) As

S → ∞ we have: lim
S→∞

p̂(S, N, γ, d) = 0, aligned with the classes being deterministically separable;

and 4) As N → ∞ we have: lim
N→∞

p̂(S, N, γ, d) = Q(
√
S), which is the probability of error of copt,

which knows the exact distribution of the data (Fukunaga, 2013).

Let us explore the result of Theorem 2 for the case of balanced training data, γ = 1 (N2 = N1 = N ),
in which the expression simplifies to:

p̂x(error) = Q

 √
S√(

d
2S + 1

)
· 1
N + d

4S · 1
N2 + 1

 . (10)

Fix d ≫ 1, which ensures that the approximation is accurate. It is easy to see that when the separation
quality factor (SNR), S, decreases (with fixed d), the argument of the Q-function decreases, and
thus the probability of error increases. In addition, as the number of training samples N increases,
the argument increases, and thus the probability of error decreases. These two results are aligned
with intuition. Interestingly, the effect of increasing/decreasing d depends on its relation with S.
For example, if d increases and S is fixed, which means that the average entry-wise SNR decreases,
then the argument of the Q-function increases. The contrary holds if S ∝ d, which means that the
average entry-wise SNR is fixed. In the latter case, high-dimensionality is advantageous in terms of
the probability of error.

Next, let us establish the existence and learnability of the data processing proposed in Section 3.1.
Theorem 3 (The existence and learnability of the processing). For all 1 ≤ k < d, there exists
a dimension-reducing matrix A ∈ Rk×d with the properties stated in Eq. 7. Furthermore, given
sufficiently many unlabeled samples, such a matrix can be learned to arbitrary accuracy.

Remark. The proof of Theorem 3 is constructive. It provides an algorithm for computing such A
and efficiently estimating the direction of µ from unlabeled data.

Note that the semi-orthonormality of A implies that it cannot increase the norm of any vector, while
the property ∥Aµ∥ = ∥µ∥ ensures that the separation quality remains unchanged (equal to Eq. 5)
and is not reduced after the processing. In more detail, this implies that when applying Ax, the
class-dependent component of x (i.e., the projection of x onto ±µ) is not attenuated. In contrast,
the complementary component of x, which corresponds to within-class variability, is attenuated as
the overall dimension is reduced and the semi-orthonormality of A prevents amplification. Taken
together, this is expected to facilitate classification, as will be rigorously proven below. More details
and a graphical illustration of the action of A are presented in Appendix F.

We now turn to characterizing the probability of error when applying the classifier on the processed
data z = Ax.

5
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Theorem 4 (The probability of error on the processed data). Consider the setup in Section 3.1. With
approximation accuracy O(1/

√
k) we have pz(error) ≈ p̂z(error) = p̂ (S, N, γ, k), where p̂ is

defined in Eq. 9.

The approximate probability of error of the processed data, p̂x(error), admits an expression similar
to the one obtained for the raw data, p̂z(error), but with a different dimension parameter (k instead
of d). Note that in the high-dimensional case, i.e., d, k ≫ 1, these estimators are guaranteed to
be accurate. Now, let us present the main outcomes of our theoretical study, which build on these
expressions.

We start with the case where there is no class imbalance in the training set, i.e., γ = 1 so N2 = N1 =
N . The next theorem shows that the considered data processing yields a gain for any finite value
N ≥ 1. We assume S > 0, as S = 0 is an uninteresting degenerate case.

Theorem 5 (Performance gain under balanced training data). For γ = 1, and for all S > 0, 1 ≤
k < d, and N ∈ N, we have

p̂x(error) > p̂z(error). (11)

Theorem 5 shows that when the training samples are balanced among the classes, the chosen
processing always strictly decreases the approximated probability of error.

Discussion. As shown in Theorems 2 and 4, in the high-dimensional case the true probabilities of
error, px(error) and pz(error), are well approximated by p̂x(error) and p̂z(error). This makes the
result significant. Moreover, this result—holding for any finite N—is also quite surprising, since
in the limit of N → ∞ we have that px(error) and pz(error) converge to P(copt(x) ̸= y) and
P(c̃opt(z) ̸= y), respectively, which satisfy the opposite relation (≤) as shown in Theorem 1.

We now consider the case of an imbalanced training set. The presence of under-represented classes
or groups is of significant interest in the machine learning community, as it raises concerns about
generalization and fairness (Chawla et al., 2002; Huang et al., 2016; Li et al., 2021). Specifically,
while the classes have equal probability (π1 = π2 = 0.5), the number of training samples from each
of the classes is assumed to be N1 = N and N2 = γN with 0 < γ < 1. The following theorem
demonstrates the benefit of the considered data processing in this case as well.

Theorem 6 (Performance gain under imbalanced training data). Let 0 < γ < 1, 0 < S ≤ 1, 1 ≤
k < d. If N ≥ γ2−4γ+1

2γ(1+γ) , then we have

p̂x(error) > p̂z(error). (12)

Remark. Unlike Theorem 5, which considers γ = 1 and is smoothly obtained from Theorems 2 and 4,
in this case the complexity of the formulas of p̂x(error) and p̂z(error) required us to make technical
assumptions on S and N in order to establish a rigorous statement for γ ∈ (0, 1). Nevertheless, these
assumptions are reasonable and still encompass the interesting case of low SNR and a reasonable
number of training samples. Note that for γ ≥ 0.162, the requirement N ≥ γ2−4γ+1

2γ(1+γ) is vacuous
(since N ≥ 1), so it only matters under severe imbalance (γ < 0.162).

3.2.2 FACTORS THAT AFFECT THE GAIN

So far, we have only considered the relation between p̂x(error) and p̂z(error). Let us now discuss
the margin between them, which reflects the efficiency of the processing.

Definition 1. We define the theoretical efficiency of the processing as

η :=

(
p̂x(error)− p̂z(error)

p̂x(error)

)
· 100. (13)

The following theorem establishes an approximation of η for N ≫ 1, making it easier to gain insights
into the different factors that affect the efficiency of the processing in the case of a large number of
training samples.

6
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Theorem 7 (Analysis of the asymptotic efficiency). Let S > 0, 1 ≤ k < d, 0 < γ ≤ 1. Denote by
NT = (1 + γ)N the total number of training samples. With approximation accuracy O(1/N2

T ), we
have

η ≈ 25

2
√
2π

·
exp

(
−S

2

)
√
S · Q

(√
S
) ·
(
3 + 2γ +

1

γ

)
· (d− k) · 1

NT
. (14)

In particular, for NT ≫ 1: The efficiency increases when d − k increases or γ decreases within
0 < γ ≤ 1/

√
2; The efficiency decreases when S increases or NT increases.

Remark. The proof of Theorem 7 is based on first-order analysis, which differs from the proof
technique used for Theorem 6. This allows us to reach the conclusion that there exists N0 ∈ N such
that for all N ≥ N0 we have η > 0 (since the right-hand side of Eq. 14 is positive) which implies
p̂x(error) > p̂z(error) without a technical assumption on S . On the other hand, Theorem 6 can hold
even for small values of N , depending on γ.

Discussion. Let us discuss the intuition behind the insights provided in Theorem 7. First, notice that
in the considered regime of NT ≫ 1 training samples, the processing efficiency η monotonically
decreases toward zero as NT increases. This is consistent with the fact that in the limit NT → ∞
the classifier approaches the optimal Bayes classifier, which cannot be improved by data processing.
In this regime, higher class separation S can be interpreted as equivalent to having more effective
samples (akin to larger NT ), and hence less improvement through the pre-classification processing.
Similarly, larger dimensionality reduction (d − k) can be viewed as greater coverage of the input
domain, again, analogous to having more samples. Lastly, lower γ < 1 indicates that the classifier’s
training samples are less balanced between the classes and hence differ more from the data distribution.
Intuitively, this leaves more room for improvement through pre-classification processing.

In addition, Appendix B provides an approximation of the difference ∆ := p̂x(error)− p̂z(error)
for N ≫ 1. The insights we obtain are consistent with those reported in Theorem 7.

So far, our theory shows that the processing efficiency η is positive for all N for γ = 1, and under
a technical assumption it is positive also for γ ∈ (0, 1). Our formulas also show that η = 0 at
N = 0 (where p̂z = p̂x = 0.5, i.e., probability of guessing) and that η → 0 at N → ∞ (where
p̂z = p̂x = Q(

√
S), consistent with the classifier converging to the optimal Bayes classifier for

which Theorem 1 applies). Together, these imply that there is a maximum point of η(N). Our final
theorem provides a surprising insight into this maximum efficiency.

Theorem 8 (Analysis of the maximal efficiency). Fix γ = 1, and let S > 0, 1 ≤ k < d. Consider
the efficiency η = η(N) as a function of continuous N ∈ R+. We have that the maximal efficiency
ηmax = max

N≥0
η(N) increases as a function of S.

Discussion. In the asymptotic regime of N → ∞, as discussed above, a higher SNR corresponds to
lower η, which aligns with intuition. Interestingly, however, the theorem shows that a higher SNR
also leads to a larger ηmax, which is somewhat counterintuitive. One might expect that lower noise
would reduce efficiency across all sample sizes, since the raw data is already well-separated. This
highlights the subtle relationship between η and the SNR. An extended version of the theorem can be
found in Appendix A.8.

3.3 EMPIRICAL VERIFICATION

In this subsection, we simulate the theoretical setup in order to further support our theoretical results
and also gain more insights on the model, e.g., factors that affect the efficiency of the data processing
for small to moderate values of N .

We consider data dimension d = 2000, and fix σ = 1. The SNR values we work with are S ∈
{0.752, 1.52}, and for each fixed SNR, we use γ ∈ {0.25, 0.5, 1}. We also consider a wide range of
Ntrain, which denotes the total number of given training samples. For each fixed tuple (S, γ,Ntrain),
we randomize µ ∈ Rd with ∥µ∥ = σ

√
S, via µ = σ

√
S v

∥v∥ where v ∼ N (0, Id). We then

construct the data processing matrix A ∈ Rk×d that reduces the dimension to k = 1000, using the
algorithm described in Appendix A.3. Per trial, we sample N1 = int(Ntrain

1+γ ) training points from

7
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(a) S = 0.752 (b) S = 1.52

Figure 1: The theoretical setup. Efficiency of the data processing procedure versus the number of
training samples Ntrain, for various values of the training imbalance factor, γ, and the SNR, S.

N (−µ, σ2Id), and N2 = int(γNtrain
1+γ ) training points from N (µ, σ2Id). Before and after the data

processing, the per-class means are estimated using the training points, and the classifier defined in
Eq. 6 is used on a large amount of fresh test data, sampled with probability 0.5 from each of the two
Gaussians. With a slight abuse of notation, we denote the empirical probabilities of error before and
after the data processing by px(error) and pz(error), respectively. In order to compute pz(error),
we use the training and test samples after processing them by multiplying with A. We then compute
the empirical efficiency of the processing, defined by χ =

(
px(error)−pz(error)

px(error)

)
· 100. We repeat the

computation of χ over 100 independent trials and report the average.

Figure 1 presents both the theoretical efficiency η, defined in Eq. 13, and the empirical efficiency χ
versus the number of training samples Ntrain, for various values of γ and S. Note that the empirical
and theoretical efficiencies closely match in all the configurations.

Let us discuss the trends that are observed in Figure 1. First, note the non-monotonic curves depicting
the efficiency as a function of Ntrain. When Ntrain approaches zero or grows to infinity the efficiency
tends to zero, aligned with our analytical formulas. Indeed, as discussed above, in the absence of
training data the classification is based on guess, and thus there is no effect for the data processing. In
the considered setup, as Ntrain → ∞, the classifiers tend to the optimal Bayes decision rules, which
again implies zero efficiency. A major contribution of our paper is providing rigorous theory for the
fact that the efficiency remains positive between these two extreme cases.

Let us now focus on Ntrain ≫ 1 (the right boundary of each sub-figure). We see that increased S
moderately reduces the efficiency. For example, for (S, γ,Ntrain) = (0.752, 1, 10K) the efficiency is
around 6, while for (S, γ,Ntrain) = (1.52, 1, 10K) it is around 5. Moreover, we see that lower values
of γ, corresponding to more imbalanced training data, yield higher efficiency of the data processing.
Note that both are aligned with the insights gained in Theorem 7.

Next, note that each of the curves depicts a single maximum point, whose value is aligned with the
non-intuitive prediction of Theorem 8. Specifically, the maximal efficiency value increases with S.

Lastly, note that the empirical investigation of our theoretical setup reveals behaviors at relatively
small values of Ntrain, which lie beyond the scope of our theoretical analysis. Specifically, we observe
that the relation between decrease in γ and increase in efficiency emerges already at quite low Ntrain.
We also observe dependency between the overall shape of the curves and the value of S.

Additional verification experiments with A that is learned from unlabeled samples, and different
values of S, k are presented in Appendix F. All of them are aligned with our theoretical insights.

4 EXPERIMENTS IN PRACTICAL SETTINGS

While our paper focuses on theoretical contributions, in this section, we empirically examine the
correlation between the behaviors observed in four practical deep learning settings and the theoretical
results. Note that such a study, which examines the effects of sample size, SNR, and class balance,
requires exhaustive training efforts of both the data-processing module and the classifier.
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(a) σ = 0.25, γ = 1 (b) σ = 0.4, γ = 1

Figure 2: Noisy CIFAR-10 and pre-classification denoising. Efficiency versus Ntrain.

4.1 NOISY CIFAR-10 AND PRE-CLASSIFICATION DENOISING

We consider the CIFAR-10 dataset (Krizhevsky et al., 2009) and the ResNet18 model (He et al.,
2016). The train and test sets both experience additive Gaussian noise of the same level (i.e., no
distribution shift) with standard deviation σ ∈ {0.25, 0.4}. A detailed description of the training
procedure of the classifier is given in Appendix C. We also note that we verify that the classifier
performs well when trained on clean CIFAR-10 data, achieving 90% accuracy.

The data processing step examined here is image denoising, applied to the noisy data, using the
DnCNN model (Zhang et al., 2017). The denoiser is trained with the MSE loss on 15,000 clean
unlabeled images, which are not part of the classifier’s training set. More details on the training
procedure of the denoiser are given in Appendix C. Note that, given such a pretrained denoiser, the
Markov chain: “label”—“noisy image”—“denoised image” still holds. Thus, the data processing
inequality, as well as Theorem 1, suggest that the denoiser will not improve the results.

In Appendix C, we also investigate another setting, where we train the denoiser with SURE loss (i.e.,
without clean ground truth images) (Stein, 1981; Soltanayev & Chun, 2018), and observe similar
results.

We consider various values of Ntrain, the total number of given training samples (across all 10 classes),
and examine different training imbalance factors, γ = 1 here, and γ ∈ {0.5, 0.75} in Appendix C. For
both the denoised and the noisy case, and for each fixed tuple (σ, γ,Ntrain), we divide Ntrain

1+γ equally
among the first 5 classes, and γNtrain

1+γ equally among the other 5 classes. We train the classifier 6 times,
each time with a different seed, and report the average and standard deviation of the probabilities
of error, to obtain a more reliable result. After we have the mean and standard deviation of the
probability of error before and after the data processing, we compute the empirical efficiency, i.e., the
relative percentage change in the probability of error induced by the denoising step.

Figure 2 presents the efficiency versus Ntrain. We see two main similarities to the theory. First, the
non-monotonic behavior (increasing for small Ntrain and decreasing for large Ntrain) is expected from
the same argument in Section 3.3: the efficiency tends to zero as Ntrain tends to either 0 or ∞, while,
importantly, it remains positive between these two extreme cases, aligned with our theory. Second,
we see that the maximal efficiency value decreases with σ: its value for σ = 0.25 is larger than its
value for σ = 0.4. That is, the maximal efficiency increases with the SNR.

4.2 NOISY MINI-IMAGENET AND PRE-CLASSIFICATION ENCODING

We turn to investigate a more complex data processing pipeline using the Mini-ImageNet dataset
(Vinyals et al., 2016) and the ResNet50 model. Both the training and test sets are subjected to
additive Gaussian noise with standard deviations σ ∈ {50/255, 100/255}. The data processing
step examined here is an encoding step, which maps the images from 224 × 224 pixels to 256-
dimensional embeddings. This encoder model follows (Lu et al., 2025) and is trained from scratch
with self-supervision on all noisy unlabeled images for each noise level. Then, for each combination
of (σ, γ,Ntrain), we divide Ntrain

1+γ equally among the first 50 classes, and γNtrain
1+γ equally among the other

50 classes. Then, across three seeds, we train a ResNet50 model on the noisy images and, in parallel,
a small MLP on the corresponding embeddings. After we have the mean and standard deviation of
the probability of error before and after the data processing, we compute the empirical efficiency, i.e.,

9
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(a) σ = 50
255

, γ = 1 (b) σ = 100
255

, γ = 1

Figure 3: Noisy Mini-ImageNet and pre-classification encoding. Efficiency versus Ntrain.

the relative percentage change in the probability of error induced by the encoding step. Details of the
training procedures for both the ResNet50 and the MLP are provided in Appendix D.

Figure 3 presents the efficiency versus Ntrain, for γ = 1. Experiments for γ ∈ {0.5, 0.75} appear
in Appendix D. We see the same trends that are aligned with our theory as before: 1) similar non-
monotonicity of the curve while remaining positive, and 2) the maximal efficiency increases with
the SNR. A message to practitioners is that when labeled samples are scarce, data processing can be
especially advantageous for ‘high quality’ data.

4.3 NOISY CIFAR-10 AND PRE-CLASSIFICATION ENCODING

For the noisy CIFAR-10 setup considered in Section 4.1, we also examine the performance of data
processing based on encoding instead of denoising. Due to space limitations, the details are deferred
to Appendix E, and the results are presented there in Figure 9. The trends stated above are observed
there as well.

These results further demonstrate higher efficiency values compared to those obtained for the de-
noising procedure in Section 4.1, indicating that, for the classification task, encoding may be a more
effective low-level processing method than denoising. However, we believe that this may not be the
case for other high-level tasks, which may require preserving spatial information in the image (e.g.,
object detection).

5 CONCLUSION

In this paper, we addressed the question: How can we explain the common practice of performing
a “low-level” task before a “high-level” downstream task, such as classification, despite theoretical
principles like the data processing inequality and the overwhelming capabilities of modern deep neural
networks? We presented a theoretical study of a binary classification setup, where we considered
a “strong” classifier that is tightly connected to the optimal Bayes classifier (and converges to it),
and yet, we constructed a pre-classification processing step that for any finite number of training
samples provably improves the classification accuracy. We also provided both theoretical and
empirical insights into various factors that affect the gains from such low-level processing. Finally,
we demonstrated that the trends observed in four practical deep learning settings, where image
denoising or encoding is applied before image classification, are consistent with those established by
our theoretical study. Since our work shows the benefit of low-level tasks even when the classifier’s
training and test data share the same distribution, it naturally suggests an even greater advantage in
out-of-distribution scenarios. As directions for future research, it would be valuable to extend the
theoretical analysis to high-level tasks beyond classification or to investigate non-linear low-level
processing. Another interesting direction is to study the optimal low-level processing corresponding
to a given high-level task.

Remark. In this paper, we used LLMs only to polish the writing.
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A PROOFS

A.1 EXISTING RESULTS

Let us present a proof for Theorem 1, which is similar to a proof that can be found in an arXiv version
of (Liu et al., 2019), but better clarifies how the Markovianity is used.

Theorem 1. Let y → x → z be a Markov chain where y ∈ {1, 2} denotes the sample class. We have

P(copt(x) ̸= y) ≤ P(c̃opt(z) ̸= y),

where copt and c̃opt denote optimal Bayes classifiers.

Proof. Let us denote by X ,Z the supports of x, z, respectively, and by

P1 := P(y = 1), P2 := P(y = 2), (15)

the prior probability for the binary label y ∈ {1, 2}. Let us also define:

px1(ξ) := P (x = ξ | y = 1) , px2(ξ) := P (x = ξ | y = 2) . (16)

Now, from Eq. 15 and Eq. 16, the probability of error of the optimal Bayes classifier on x reads:

P (copt(x) ̸= y) =
∑
ξ∈X

min (P1px1(ξ), P2px2(ξ))

=
1

2
− 1

2

∑
ξ∈X

|P1px1
(ξ)− P2px2

(ξ)| .
(17)

Similarly to Eq. 16, we define:

pz1(ζ) := P (z = ζ | y = 1) , pz2(ζ) := P (z = ζ | y = 2) . (18)

From Eq. 15 and Eq. 18, the probability of error of the optimal Bayes classifier on z reads:

P (c̃opt(z) ̸= y) =
∑
ζ∈Z

min (P1pz1(ζ), P2pz2(ζ))

=
1

2
− 1

2

∑
ζ∈Z

|P1pz1(ζ)− P2pz2(ζ)| .
(19)

From Eq. 18 and the Markov assumption, we expand:

pzi(ζ) = P (z = ζ | y = i) =
∑
ξ∈X

P (z = ζ, x = ξ | y = i)

=
∑
ξ∈X

P (z = ζ | x = ξ, y = i)P (x = ξ | y = i)

=
∑
ξ∈X

P (z = ζ | x = ξ)P (x = ξ | y = i)

=
∑
ξ∈X

pz|x(ζ | ξ)pxi
(ξ).

(20)

The key step is the fourth equality, which eliminates the dependence on y in the first factor of the
summand. We also denote

pz|x(ζ | ξ) := P (z = ζ | x = ξ) .
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By substituting Eq. 20 into Eq. 19, we get:

P (c̃opt(z) ̸= y) =
1

2
− 1

2

∑
ζ∈Z

|P1pz1(ζ)− P2pz2(ζ)|

=
1

2
− 1

2

∑
ζ∈Z

∣∣∣∣∣∣
∑
ξ∈X

P1pz|x(ζ | ξ)px1
(ξ)− P2pz|x(ζ | ξ)px2

(ξ)

∣∣∣∣∣∣
≥ 1

2
− 1

2

∑
ζ∈Z

∑
ξ∈X

pz|x(ζ | ξ) · |P1px1(ξ)− P2px2(ξ)|

=
1

2
− 1

2

∑
ξ∈X

∑
ζ∈Z

pz|x(ζ | ξ) · |P1px1
(ξ)− P2px2

(ξ)|

=
1

2
− 1

2

∑
ξ∈X

|P1px1
(ξ)− P2px2

(ξ)| ·
∑
ζ∈Z

pz|x(ζ | ξ)


=

1

2
− 1

2

∑
ξ∈X

|P1px1
(ξ)− P2px2

(ξ)|

= P (copt(x) ̸= y) .

(21)

Let us now present a theorem that will be utilized in the proof of Theorem 2.

Theorem 9 (Generalized Berry-Esseen Theorem, (Feller, 1991)). Let X1, X2, . . . , Xd be independent
random variables with:

• Means ηi = E[Xi].

• Variances ξ2i = Var(Xi).

• Third absolute moments ρi = E
[
|Xi − ηi|3

]
.

Define the normalized sum:

Sd =
1√∑d
i=1 ξ

2
i

d∑
i=1

(Xi − ηi).

Then, there exists an absolute constant C0 > 0 independent of d such that:

sup
x∈R

|P(Sd > x)−Q(x)| ≤
C0

∑d
i=1 ρi(∑d

i=1 ξ
2
i

) 3
2

.

In the following subsections, we present the proofs of Theorems 2, 3, 4, 5, 6, 7, 8.

A.2 PROOF OF THEOREM 2

Proof. The probability of error is

px(error) = P (ĉ(x) ̸= y) = π1 · P (ĉ(x) = 2 | y = 1) + π2 · P (ĉ(x) = 1 | y = 2)

=
1

2
· P (ĉ(x) = 2 | y = 1) +

1

2
· P (ĉ(x) = 1 | y = 2)

=
1

2
· q(1, 2) + 1

2
· q(2, 1)

(22)
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where we used the assumption of a uniform prior and defined

q(i, j) = P (ĉ(x) = j | y = i) . (23)

Following Eq. 6, the first conditional probability of error q(1, 2) reads:

q(1, 2) = P
(
∥x− µ̂2∥2 < ∥x− µ̂1∥2 | y = 1

)
= P

(
(x− µ̂2)

⊤(x− µ̂2) < (x− µ̂1)
⊤(x− µ̂1) | y = 1

)
= P

(
x⊤x− x⊤µ̂2 − µ̂⊤

2 x+ µ̂⊤
2 µ̂2 < x⊤x− x⊤µ̂1 − µ̂⊤

1 x+ µ̂⊤
1 µ̂1 | y = 1

)
= P

(
−2µ̂⊤

2 x+ ∥µ̂2∥2 < −2µ̂⊤
1 x+ ∥µ̂1∥2 | y = 1

)
= P

(
2(µ̂2 − µ̂1)

⊤x > ∥µ̂2∥2 − ∥µ̂1∥2 | y = 1
)

= P

(
(µ̂2 − µ̂1)

⊤x >
∥µ̂2∥2 − ∥µ̂1∥2

2
| y = 1

)

= P

(
(µ̂2 − µ̂1)

⊤x− ∥µ̂2∥2 − ∥µ̂1∥2

2
> 0 | y = 1

)
= P (w > 0 | y = 1)

(24)

where we defined
w = (µ̂2 − µ̂1)

⊤
x− 1

2

(
∥µ̂2∥2 − ∥µ̂1∥2

)
. (25)

Let us define

yi = (µ̂2)i · xi − (µ̂1)i · xi −
1

2
· (µ̂2)

2
i +

1

2
· (µ̂1)

2
i . (26)

Thus,

w =

d∑
i=1

yi. (27)

In total, from Eq. 24, Eq. 27, it follows that:

q(1, 2) = P

(
d∑

i=1

yi > 0 | y = 1

)
. (28)

The setup of our theoretical investigation clearly implies that the random variables {yi}di=1, defined
in Eq. 26, are independent, and thus we can apply Theorem 9. Let us now compute the following
expressions, that will be crucial when applying Theorem 9:

1.
ηi := E[yi] (29)

2.
ξ2i := Var(yi) (30)

3.
ρi := E

[
|yi − ηi|3

]
(31)

Note that:

µ̂j ∼ N
(
µj ,

σ2

Nj
Id

)
.

Thus, given equations Eq. 3, Eq. 4, for each 1 ≤ i ≤ d, we have:

pj,i := (µ̂j)i ∼ N
(
(µj)i ,

σ2

Nj

)
, xi | y = 1 ∼ N

(
−µi, σ

2
)

(32)
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and from Eq. 26, it follows that:

yi = p2,ixi − p1,ixi −
1

2
p22,i +

1

2
p21,i (33)

where from Eq. 4, Eq. 32, we have:

p2,i ∼ N
(
µi,

σ2

N2

)
, p1,i ∼ N

(
−µi,

σ2

N1

)
. (34)

For every 1 ≤ i ≤ d, let us define the following random variables:

ai := (p2,i − p1,i) · xi, bi := p22,i − p21,i. (35)

Thus, from Eq. 33, it follows that:

yi = ai −
1

2
bi. (36)

We first compute ηi = E[yi] : From Eq. 36, it follows that:

ηi = E [yi] = E [ai]−
1

2
E [bi] . (37)

We now compute each expectation separately. From Eq. 32, Eq. 34, and the assumption of indepen-
dence, it follows that:

E[ai] = E [p2,ixi]− E [p2,ixi]

= E [p2,i] · E [xi]− E [p1,i] · E [xi]

= −µ2
i − µ2

i

= −2µ2
i

(38)

and
E[bi] = E[p22,i]− E

[
p21,i
]

=

(
σ2

N2
+ µ2

i

)
−
(
σ2

N1
+ µ2

i

)
= σ2

(
1

γN
− 1

N

)
=

1− γ

γ
· σ

2

N
.

(39)

Thus, from Eq. 37, Eq. 38, Eq. 39, we have:

ηi = −2µ2
i −

1

2
· 1− γ

γ
· σ

2

N
= −

(
2µ2

i +
1− γ

γ
· σ2

2N

)
. (40)

We now compute ξ2i = Var(yi) : From Eq. 36, we have:

ξ2i = Var(yi) = Var(ai) +
1

4
·Var(bi)− Cov (ai, bi) . (41)

We now compute each piece separately, starting from Var(ai). From equations Eq. 32, Eq. 34, Eq. 35,
Eq. 38, it follows that:

Var(ai) = E[a2i ]− E[ai]2

= E
[
(p2,i − p1,i)

2
]
· E
[
x2
i

]
− 4µ4

i

=

(
1 + γ

γ
· σ

2

N
+ 4µ2

i

)
·
(
σ2 + µ2

i

)
− 4µ4

i

=
1 + γ

γ
· σ

4

N
+ µ2

i ·
(
1 + γ

γ
· σ

2

N
+ 4σ2

)
(42)
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where we used the statistical independence between p2,i, p1,i and Eq. 34, to conclude that:

p2,i − p1,i ∼ N
(
2µi,

σ2

N1
+

σ2

N2

)
⇒ p2,i − p1,i ∼ N

(
2µi,

1 + γ

γ
· σ

2

N

)
. (43)

We now compute Var(bi). From equations Eq. 34, Eq. 35, and the statistical independence between
p2,i, p1,i, it follows that:

Var(bi) = Var
(
p22,i − p21,i

)
= Var

(
p22,i
)
+Var

(
p21,i
)

=
2σ2

N2

(
σ2

N2
+ 2µ2

i

)
+

2σ2

N1

(
σ2

N1
+ 2µ2

i

)
=

2σ4

γ2N2
+

4σ2µ2
i

γN
+

2σ4

N2
+

4σ2µ2
i

N

=
1 + γ2

γ2
· 2σ

4

N2
+

1 + γ

γ
· 4σ

2µ2
i

N

(44)

where we used the fact that if x ∼ N
(
µx, σ

2
x

)
, then

Var(x2) = E[x4]− E[x2]2

=
(
3σ4

x + 6σ2
xµ

2
x + µ4

x

)
−
(
σ2
x + µ2

x

)2
=
(
3σ4

x + 6σ2
xµ

2
x + µ4

x

)
−
(
σ4
x + 2σ2

xµ
2
x + µ4

x

)
= 2σ4

x + 4σ2
xµ

2
x

= 2σ2
x ·
(
σ2
x + 2µ2

x

)
.

Finally, we compute Cov(ai, bi). From equations Eq. 32, Eq. 34, Eq. 35, Eq. 38, Eq. 39, it follows
that:

Cov(ai, bi) = E [aibi]− E[ai] · E[bi]

= E
[
(p2,i − p1,i)

(
p22,i − p21,i

)
· xi

]
+

1− γ

γ
· 2σ

2µ2
i

N

=
(
E
[
p32,i
]
− E [p2,i] · E

[
p21,i
]
− E [p1,i] · E

[
p22,i
]
+ E

[
p31,i
])

· E [xi] +
1− γ

γ
· 2σ

2µ2
i

N

= −µi ·
((

µ3
i + 3µi ·

σ2

N2

)
− µi ·

(
σ2

N1
+ µ2

i

)
+ µi ·

(
σ2

N2
+ µ2

i

)
−
(
µ3
i + 3µi ·

σ2

N1

))
+

1− γ

γ
· 2σ

2µ2
i

N

= −µi ·
(
4µi ·

σ2

γN
− 4µi ·

σ2

N

)
+

1− γ

γ
· 2σ

2µ2
i

N

=
4σ2µ2

i

N
− 4σ2µ2

i

γN
+

1− γ

γ
· 2σ

2µ2
i

N

= −1− γ

γ
· 4σ

2µ2
i

N
+

1− γ

γ
· 2σ

2µ2
i

N

= −1− γ

γ
· 2σ

2µ2
i

N
(45)

where we used the fact that if x ∼ N
(
µx, σ

2
x

)
, then

E[x3] = µ3
x + 3µxσ

2
x. (46)
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Thus, from equations Eq. 41, Eq. 42, Eq. 44, Eq. 45, it follows that:

ξ2i =
1 + γ

γ
· σ

4

N
+ µ2

i ·
(
1 + γ

γ
· σ

2

N
+ 4σ2

)
+

1

4
·
(
1 + γ2

γ2
· 2σ

4

N2
+

1 + γ

γ
· 4σ

2µ2
i

N

)
+

1− γ

γ
· 2σ

2µ2
i

N

=
1 + γ

γ
· σ

4

N
+

1 + γ2

γ2
· σ4

2N2
+ µ2

i

(
1 + γ

γ
· 2σ

2

N
+

1− γ

γ
· 2σ

2

N
+ 4σ2

)
= σ2

(
1 + γ

γ
· σ

2

N
+

1 + γ2

2γ2
· σ2

N2
+ 4µ2

i

(
1 +

1 + γ

2γ
· 1

N
+

1− γ

2γ
· 1

N

))
= σ2

(
1 + γ

γ
· σ

2

N
+

1 + γ2

2γ2
· σ2

N2
+ 4µ2

i

(
1 +

1

γN

))
.

(47)

We get the following lower bound:

ξ2i ≥ D :=
σ4

N
·
(
1 + γ

γ
+

1 + γ2

2γ2
· 1

N

)
. (48)

Finally, we compute ρi = E
[
|yi − ηi|3

]
: We will show that ρi is globally bounded. We first note the

following inequality, which holds for any real-valued random variable x with E[x4] < ∞:

E
[
|x|3
]
≤
(
E
[
x4
]) 3

4 .

This is a consequence of Lyapunov’s inequality. Setting x = yi − µi yields the following upper
bound:

ρi = E
[
|yi − ηi|3

]
≤
(
E
[
(yi − ηi)

4
]) 3

4

. (49)

We now expand:
(yi − ηi)

4 = y4i − 4y3i ηi + 6y2i η
2
i − 4yiη

3
i + η4i

which, from Eq. 49, implies that:

ρi ≤
(
E[y4i ]− 4ηi · E[y3i ] + 6η2i · E[y2i ]− 4η3i · E[yi] + η4i

) 3
4

=
(
E[y4i ]− 4ηi · E[y3i ] + 6η2i ·

(
Var(yi) + E[yi]2

)
− 3η4i

) 3
4

=
(
E[y4i ]− 4ηi · E[y3i ] + 6η2i ·

(
ξ2i + η2i

)
− 3η4i

) 3
4

=
(
E[y4i ]− 4ηi · E[y3i ] + 6η2i ξ

2
i + 3η4i

) 3
4

(50)

where we used the definitions ξ2i = Var(yi), ηi = E[yi]. It is now left to compute

χi := E[y4i ], δi := E[y3i ] (51)

which implies, from Eq. 50, that

ρi ≤
(
χi − 4δiηi + 6ξ2i η

2
i + 3η4i

) 3
4 . (52)

Let f ∈ {η, ξ2, δ, χ}. We argue that for all 1 ≤ i ≤ d:

fi =

q(i,f)∑
k=0

ck(i, f) · µk
i (53)

where q(i, f) ∈ N and the constants {ck(i, f)}q(i,f)k=0 don’t depend on d. We already saw that ηi, ξi
follows that structure in equations Eq. 40, Eq. 41.

We now compute δi. From Eq. 36, it follows that:

δi = E

[(
ai −

1

2
bi

)3
]

= E
[
a3i
]
− 3

2
E
[
a2i bi

]
+

3

4
E
[
aib

2
i

]
− 1

8
E
[
b3i
] (54)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

we now compute each part separately, starting with E[a3i ]. From equations Eq. 32, Eq. 35, and the
assumption of independence, it follows that:

E
[
a3i
]
= E

[
(p2,i − p1,i)

3 · x3
i

]
= E

[
(p2,i − p1,i)

3
]
· E
[
x3
i

]
=

(
8µ3

i + 6µi ·
1 + γ

γ
· σ

2

N

)(
−µ3

i − 3µiσ
2
)

= −µ2
i

(
8µ2

i +
6(1 + γ)

γ
· σ

2

N

)(
µ2
i + 3σ2

)
(55)

which is a polynomial in µi with real coefficients. The other expressions are computed similarly, and
they all have the form as in Eq. 53. We now turn to the assumption that

∃M≥0 ∀d∈N ∀1≤i≤d |µi| ≤ M (56)

and thus for each f ∈ F := {η, ξ2, δ, χ} and for all 1 ≤ i ≤ d, from the triangle inequality, it follows
that:

|fi| ≤
q(i,f)∑
k=0

|ck(i, f)| · |µi|k ≤
q(i,f)∑
k=0

|ck(i, f)| ·Mk

≤
maxf∈F q(i,f)∑

k=0

max
f∈F

|ck(i, f)| ·Mk

≤ max
1≤i≤d

maxf∈F q(i,f)∑
k=0

max
f∈F

|ck(i, f)| ·Mk

(57)

where we define ck(i, f) = 0 for all k > q(i, f). Let us denote

L := max
1≤i≤d

maxf∈F q(i,f)∑
k=0

max
f∈F

|ck(i, f)| ·Mk. (58)

Thus, from Eq. 57, we have:
∀f∈F∀1≤i≤d |fi| ≤ L. (59)

Now, L is independent of i (because we took the maximum over all possible 1 ≤ i ≤ d) and d
(because the degree q and the coefficients c will never depend directly on d, because σ doesn’t depend
on d). We thus showed that the absolute value of each relevant moment is upper bounded by a global
value L ≥ 0 that is independent of i and d. Thus, from Eq. 52, Eq. 59, it follows that:

ρi ≤
(∣∣χi − 4δiηi + 6ξ2i η

2
i + 3η4i

∣∣) 3
4

≤
(
|χi|+ 4 |δi| |ηi|+ 6ξ2i η

2
i + 3η4i

) 3
4

≤
(
L+ 4L2 + 6L4 + 3L4

) 3
4

=
(
9L4 + 4L2 + L

) 3
4 .

Let us now denote C =
(
9L4 + 4L2 + L

) 3
4 , where L ≥ 0 is defined in Eq. 58. Thus, C ≥ 0 is

independent of both i and d, and
∀1≤i≤d ρi ≤ C.

When combining this result with Eq. 48, we get that there exists some C ≥ 0, D > 0 that doesn’t
depend on i or d such that

ρi ≤ C, ξ2i ≥ D.

Thus, ∑d
i=1 ρi(∑d

i=1 ξ
2
i

) 3
2

≤
∑d

i=1 C(∑d
i=1 D

) 3
2

≤ C

D
3
2

√
d
. (60)
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We have verified that the conditions of Theorem 9 are satisfied, and thus, there exists some C0 > 0
independent of d such that for all x ∈ R∣∣∣∣∣∣P

 1√∑d
i=1 ξ

2
i

d∑
i=1

(yi − ηi) > x | y = 1

−Q(x)

∣∣∣∣∣∣ ≤ C0

∑d
i=1 ρi(∑d

i=1 ξ
2
i

) 3
2

≤ A√
d

where we used Eq. 60, and denoted A =
C0C

D
3
2

≥ 0. Now, q(1, 2), which is defined in Eq. 28, reads:

q(1, 2) = P

(
d∑

i=1

yi > 0 | y = 1

)

= P

(
d∑

i=1

(yi − ηi) > −
d∑

i=1

ηi | y = 1

)

= P

 1√∑d
i=1 ξ

2
i

d∑
i=1

(yi − ηi) > −
∑d

i=1 ηi√∑d
i=1 ξ

2
i

| y = 1


= Q

−
∑d

i=1 ηi√∑d
i=1 ξ

2
i

+O
(

1√
d

)

= Q


∑d

i=1

(
2µ2

i +
1−γ
γ · σ2

2N

)
√∑d

i=1 σ
2
(

1+γ
γ · σ2

N + 1+γ2

2γ2 · σ2

N2 + 4µ2
i

(
1 + 1

γN

))
+O

(
1√
d

)

= Q

 2 ∥µ∥2 + d
2N · 1−γ

γ · σ2√
σ2 ·

((
1+γ
γ · σ2

N + 1+γ2

2γ2 · σ2

N2

)
d+ 4

(
1 + 1

γN

)
∥µ∥2

)
+O

(
1√
d

)

= Q


∥µ∥+ d

4N · 1−γ
γ · σ2

∥µ∥

σ ·

√(
1

4N · 1+γ
γ ·

(
σ

∥µ∥

)2
+ 1

8N2 · 1+γ2

γ2 ·
(

σ
∥µ∥

)2)
· d+

(
1 + 1

γN

)
+O

(
1√
d

)

= Q


∥µ∥
σ + d

4N · 1−γ
γ · σ

∥µ∥√(
1

4N · 1+γ
γ ·

(
σ

∥µ∥

)2
+ 1

8N2 · 1+γ2

γ2 ·
(

σ
∥µ∥

)2)
· d+

(
1 + 1

γN

)
+O

(
1√
d

)
.

(61)
We now revisit Eq. 5:

S =

(
∥µ∥
σ

)2

.

Thus, from Eq. 61, q(1, 2) reads:

q(1, 2) = Q

 √
S + 1

4N · 1−γ
γ · d√

S√
1

4N · 1+γ
γ · d

S + 1
8N2 · 1+γ2

γ2 · d
S + 1

γN + 1

+O
(

1√
d

)
. (62)
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We now compute q(2, 1). Similarly to the computation of q(1, 2), we have:

q(2, 1) = P(ĉ(x) = 1 | y = 2)

= P

(
(µ̂2 − µ̂1)

⊤x <
∥µ̂2∥2 − ∥µ̂1∥2

2
| y = 2

)
= P(w < 0 | y = 2)

= P

(
d∑

i=1

yi < 0 | y = 2

) (63)

where the random variables {yi}di=1 are defined in Eq. 33. The new conditional distribution of xi is:

∀1≤i≤d xi | y = 2 ∼ N (µi, σ
2). (64)

We first compute ηi = E[yi]. It is easy to verify from Eq. 37, Eq. 38, Eq. 39, Eq. 64, that ηi is given
by:

ηi = 2µ2
i −

1− γ

γ
· σ2

2N
. (65)

We now compute ξ2i = Var (yi). It still has three components, as in Eq. 41. It is easy to see from
Eq. 44 that Var(bi) remains unchanged because it doesn’t depend on the conditional distribution of
xi. Thus,

Var(bi) =
1 + γ2

γ2
· 2σ

4

N2
+

1 + γ

γ
· 4σ

2µ2
i

N
. (66)

We observe from Eq. 42, Eq. 64 that Var(ai) remains unchanged since it depends on E[x2
i ] = σ2+µ2

i ,
which is unaffected.

Var(ai) =
1 + γ

γ
· σ

4

N
+ µ2

i ·
(
1 + γ

γ
· σ

2

N
+ 4σ2

)
. (67)

It remains to compute Cov(ai, bi) = E[aibi] − E[ai]E[bi]. From Eq. 38 and Eq. 64, we have
E[ai] = 2µ2

i . According to Eq. 39, E[bi] is unchanged, as it does not depend on the conditional
distribution of xi. Similarly, from Eq. 45, E[aibi] picks up a minus sign, so overall, Cov(ai, bi)
changes sign. Therefore, Eq. 45 implies:

Cov(ai, bi) =
1− γ

γ
· 2σ

2µ2
i

N
. (68)

Thus, from equations Eq. 41, Eq. 66, Eq. 67, Eq. 68, it follows that:

ξ2i =
1 + γ

γ
· σ

4

N
+ µ2

i ·
(
1 + γ

γ
· σ

2

N
+ 4σ2

)
+

1

4
·
(
1 + γ2

γ2
· 2σ

4

N2
+

1 + γ

γ
· 4σ

2µ2
i

N

)
− 1− γ

γ
· 2σ

2µ2
i

N

=
1 + γ

γ
· σ

4

N
+

1 + γ2

γ2
· σ4

2N2
+ µ2

i

(
1 + γ

γ
· 2σ

2

N
− 1− γ

γ
· 2σ

2

N
+ 4σ2

)
= σ2

(
1 + γ

γ
· σ

2

N
+

1 + γ2

2γ2
· σ2

N2
+ 4µ2

i

(
1 +

1 + γ

2γ
· 1

N
− 1− γ

2γ
· 1

N

))
= σ2

(
1 + γ

γ
· σ

2

N
+

1 + γ2

2γ2
· σ2

N2
+ 4µ2

i

(
1 +

1

N

))
≥ σ4

N
·
(
1 + γ

γ
+

1 + γ2

2γ2
· 1

N

)
= D.

(69)

Thus, ξ2i ≥ D where D > 0 is the same constant defined in Eq. 48. A similar argument for the case
y = 1 shows that ρi = E[|yi − ηi|3] ≤ C, where C ≥ 0 and D > 0 are constants independent of i
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and d. Since the variables {yi}di=1 are independent, we may apply Theorem 9, which guarantees the
existence of a constant C0 > 0 independent of d such that for all x ∈ R:

∣∣∣∣∣∣P
 1√∑d

i=1 ξ
2
i

d∑
i=1

(yi − ηi) > x | y = 2

−Q(x)

∣∣∣∣∣∣ ≤ C0

∑d
i=1 ρi(∑d

i=1 ξ
2
i

) 3
2

≤ A√
d
.

Where we denoted A =
C0C

D
3
2

≥ 0. Now, q(2, 1), which is defined in Eq. 63, reads:

q(2, 1) = P

(
d∑

i=1

yi < 0 | y = 2

)

= P

(
d∑

i=1

(yi − ηi) < −
d∑

i=1

ηi | y = 2

)

= P

 1√∑d
i=1 ξ

2
i

d∑
i=1

(yi − ηi) < −
∑d

i=1 ηi√∑d
i=1 ξ

2
i

| y = 2


= 1− P

 1√∑d
i=1 ξ

2
i

d∑
i=1

(yi − ηi) ≥ −
∑d

i=1 ηi√∑d
i=1 ξ

2
i

| y = 2


= 1−

Q

−
∑d

i=1 ηi√∑d
i=1 ξ

2
i

+O
(

1√
d

)
= Q

 ∑d
i=1 ηi√∑d
i=1 ξ

2
i

+O
(

1√
d

)

= Q


∑d

i=1

(
2µ2

i +
1−γ
γ · σ2

2N

)
√∑d

i=1 σ
2
(

1+γ
γ · σ2

N + 1+γ2

2γ2 · σ2

N2 + 4µ2
i

(
1 + 1

N

))
+O

(
1√
d

)

= Q

 2 ∥µ∥2 + d
2N · 1−γ

γ · σ2√
σ2 ·

((
1+γ
γ · σ2

N + 1+γ2

2γ2 · σ2

N2

)
d+ 4

(
1 + 1

N

)
∥µ∥2

)
+O

(
1√
d

)

= Q


∥µ∥+ d

4N · 1−γ
γ · σ2

∥µ∥

σ ·

√(
1

4N · 1+γ
γ ·

(
σ

∥µ∥

)2
+ 1

8N2 · 1+γ2

γ2 ·
(

σ
∥µ∥

)2)
· d+

(
1 + 1

N

)
+O

(
1√
d

)

= Q


∥µ∥
σ + d

4N · 1−γ
γ · σ

∥µ∥√(
1

4N · 1+γ
γ ·

(
σ

∥µ∥

)2
+ 1

8N2 · 1+γ2

γ2 ·
(

σ
∥µ∥

)2)
· d+

(
1 + 1

N

)
+O

(
1√
d

)

(70)
where we used the identity Q(−x) = 1−Q(x). We now revisit Eq. 5:

S =

(
∥µ∥
σ

)2

.
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Thus, from Eq. 70, q(2, 1) reads:

q(2, 1) = Q

 √
S + 1

4N · 1−γ
γ · d√

S√
1

4N · 1+γ
γ · d

S + 1
8N2 · 1+γ2

γ2 · d
S + 1

N + 1

+O
(

1√
d

)
. (71)

To finish the proof, from Eq. 22, Eq. 62, Eq. 71, the probability of error reads:

px(error) =
1

2
· q(1, 2) + 1

2
· q(2, 1)

=
1

2
·

Q

 √
S + 1

4N · 1−γ
γ · d√

S√
1

4N · 1+γ
γ · d

S + 1
8N2 · 1+γ2

γ2 · d
S + 1

γN + 1

+O
(

1√
d

)
+

1

2
·

Q

 √
S − 1

4N · 1−γ
γ · d√

S√
1

4N · 1+γ
γ · d

S + 1
8N2 · 1+γ2

γ2 · d
S + 1

N + 1

+O
(

1√
d

)
=

1

2
· Q

 √
S + 1

4N · 1−γ
γ · d√

S√
1

4N · 1+γ
γ · d

S + 1
8N2 · 1+γ2

γ2 · d
S + 1

γN + 1


+

1

2
· Q

 √
S − 1

4N · 1−γ
γ · d√

S√
1

4N · 1+γ
γ · d

S + 1
8N2 · 1+γ2

γ2 · d
S + 1

N + 1

+O
(

1√
d

)

= p̂(S, N, γ, d) +O
(

1√
d

)
where p̂ is given in Eq. 9.

A.3 PROOF OF THEOREM 3

Proof. We provide an algorithm to construct A ∈ Rk×d given
µ

∥µ∥
and prove that it satisfies Eq. 7.

Later, we will show how to estimate it from unlabeled data.

1. Define u := a1 =
µ

∥µ∥
. If k = 1, define A = u⊤. Else, continue.

2. Find a2, . . . ,ak ∈ Rd such that ⟨ai,u⟩ = 0 and ⟨ai,aj⟩ = δij .

3. Define the matrix A ∈ Rk×d where the i-th row is given by a⊤
i .

The proof that the algorithm works is given below.

• Step 1: If k = 1, we define A =
µ⊤

∥µ∥
. It is easy to ensure that it satisfies Eq. 7.

• Step 2: If µ = 0, then the result is trivial, because we can construct on orthonormal set

{a2, . . . ,ak} ⊂ Rd.

Otherwise, µ ̸= 0 and let us define the following subset of Rd:

V := {x ∈ Rd : ⟨x,µ⟩ = 0} ⊂ Rd.

We see that V = (span{µ})⊥ is a linear subspace of Rd of dimension d− 1. Thus, there
exists a basis {v1, . . . ,vd−1} ⊆ V . We know that k−1 ≤ d−1 and thus {v1, . . . ,vk−1} ⊆
V is a linearly independent set. That is, we can apply the Gram-Schmidt procedure on
this set, to get an orthonormal set {a2, . . . ,ak} ⊆ V . This is a subset of V because
Gram–Schmidt outputs vectors that are linear combinations of the input, which lie in V .
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• Step 3: The rows of A are orthonormal, so AA⊤ = Ik. From step 2, it follows easily that

Aµ =


∥µ∥
0
...
0

⇒ ∥Aµ∥ = ∥µ∥

Thus, A meets the needed requirements, and thus we have proved the existence of such a matrix A.
Assuming µ ̸= 0, it is now left to prove that one can learn A from infinite unlabeled data {xi}∞i=1.
This data is taken from the distribution

x ∼ 1

2
N
(
−µ, σ2Id

)
+

1

2
N
(
µ, σ2Id

)
(72)

where the label is called y ∈ {1, 2}. Let us assume that there is m unlabeled data. We first compute

Σm =
1

m

m∑
i=1

xix
⊤
i .

As m → ∞, we have Σm
a.s.−−→ Σ, where

Σ = E
[
xx⊤] = E

[
xx⊤ | y = 1

]
· P (y = 1) + E

[
xx⊤ | y = 2

]
· P (y = 2)

=
1

2

(
σ2Id + µµ⊤)+ 1

2

(
σ2Id + µµ⊤)

= σ2Id + µµ⊤

where we used Eq. 72. That is, we can learn the matrix

Σ = σ2Id + µµ⊤. (73)

We now argue that the maximal eigenvalue of Σ is λmax = σ2 + ∥µ∥2, with eigen-space Vλmax
=

span{µ}. Indeed, from Eq. 73, it follows that:

Σµ =
(
σ2 + ∥µ∥2

)
µ

and for all v ⊥ µ we have
Σv = σ2v.

Thus, the eigenvalues of Σ are

σ2 = λmin < λmax = σ2 + ∥µ∥2 .

The eigen-space of λmin satisfies:

Vλmin = (span{µ})⊥ ⇒ dim (Vλmin) = d− 1

Thus, dim (Vλmax) = 1, which implies that

Vλmax = span{µ}. (74)

We now apply the power iteration method on the matrix Σm. For large enough number of iterations
and sufficiently large m ≫ 1, it returns a vector that is arbitrarily close to the eigenvector of Σ that
corresponds to the maximal eigenvalue λmax (ensured by the spectral gap of ∥µ∥2 > 0 between the
two largest eigenvalues of Σ), which from Eq. 74, is characterized as αµ where α ̸= 0 is a constant.
Normalizing this vector leads to ± µ

∥µ∥
. Now, we apply the algorithm we presented above to compute

A. As a side note, using the vector a1 = − µ⊤

∥µ∥
as the first row of A has no effect on the resulting

properties of A.
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A.4 PROOF OF THEOREM 4

Proof. We know that
z = Ax,

where A ∈ Rk×d is a deterministic matrix satisfying:

• AA⊤ = Ik.

• ∥Aµ∥ = ∥µ∥.

It is a standard result that a linear transformation of a Gaussian vector is also a Gaussian vector, thus:

∀j∈{1,2} z | y = j ∼ N
(
Aµj ,Aσ2IdA

⊤)
that is, for all j ∈ {1, 2} we have:

z | y = j ∼ N
(
ηj , σ

2Ik
)

where
ηj = Aµj .

We know that µ2 = −µ1 = µ, and thus η2 = −η1 = η = Aµ. That is, our model assumptions still
hold, with the following modifications:

• d 7→ k.

• µ 7→ η = Aµ.

The new separation quality factor Sz of the new GMM (computed similarly to Eq. 5) is given by:

Sz =

(
∥η2 − η1∥

2σ

)2

=

(
∥η∥
σ

)2

=

(
∥Aµ∥
σ

)2

=

(
∥µ∥
σ

)2

= S.

That is, the separation quality factor remains the same after the processing. The result is now
immediate from Theorem 2 and changing d 7→ k.

A.5 PROOF OF THEOREM 5

Proof. Let us fix γ = 1 and take some

S > 0, 1 ≤ k < d, N ∈ N.

From Theorems 2 and 4, it follows that we need to show the following:

p̂(S, N, 1, k) < p̂(S, N, 1, d) (75)

where p̂ is given in Eq. 9. It is easy to prove that:

∀q∈N p̂ (S, N, 1, q) = Q

 √
S√(

q
2S + 1

)
· 1
N + q

4S · 1
N2 + 1

 .

Following Eq. 75, we need to show that:

Q

 √
S√(

k
2S + 1

)
· 1
N + k

4S · 1
N2 + 1

 < Q

 √
S√(

d
2S + 1

)
· 1
N + d

4S · 1
N2 + 1


which is immediate because the argument in the Q is strictly higher in the LHS, and the Q function
is strictly decreasing.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

A.6 PROOF OF THEOREM 6

Proof. Let us take some

0 < γ < 1, 0 < S ≤ 1, 1 ≤ k < d,N ≥ γ2 − 4γ + 1

2γ · (1 + γ)

we need to show that
p̂(S, N, γ, k) < p̂(S, N, γ, d).

That is, it is sufficient to show that the function

f(x) = 2p̂(S, N, γ, x)

is strictly increasing for all x ≥ 1, where p̂ is defined in Eq. 9. It is easy to verify that:

f(x) = Q


√
S + 1−γ

4γN
√
S · x√(

1+γ
4γNS + 1+γ2

8γ2N2S

)
· x+ 1

γN + 1

+Q


√
S − 1−γ

4γN
√
S · x√(

1+γ
4γNS + 1+γ2

8γ2N2S

)
· x+ 1

N + 1

 .

(76)
Let us define the following functions:

g1(x) =

√
S + 1−γ

4γN
√
S · x√(

1+γ
4γNS + 1+γ2

8γ2N2S

)
· x+ 1

γN + 1

(77)

and

g2(x) =

√
S − 1−γ

4γN
√
S · x√(

1+γ
4γNS + 1+γ2

8γ2N2S

)
· x+ 1

N + 1

. (78)

Thus, Eq. 76 reads:
f(x) = Q (g1(x)) +Q (g2(x)) . (79)

From the chain rule, the derivative reads:

f ′(x) = Q′ (g1(x)) · g′1(x) +Q′ (g2(x)) · g′2(x)

= − 1√
2π

·
(
exp

(
−1

2
· g21(x)

)
· g′1(x) + exp

(
−1

2
· g22(x)

)
· g′2(x)

)
= − 1√

2π
· (w1(x) · g′1(x) + w2(x) · g′2(x)) .

(80)

We used the following property of the Q function:

d

dx
Q(x) = − 1√

2π
· exp

(
−x2

2

)
and the following notation:

wi(x) = exp

(
−1

2
· g2i (x)

)
. (81)

Thus, showing that f is strictly increasing for all x ≥ 1 is equivalent to proving that for all x ≥ 1

f ′(x) > 0 ⇔ w1(x) · g′1(x) + w2(x) · g′2(x) < 0. (82)

We argue now that for all x ≥ 1:

1.
w1(x) < w2(x) (83)

2.
g′2(x) < 0 (84)
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3.
g′1(x) + g′2(x) ≤ 0 (85)

Let us first prove Eq. 83: From Eq. 81 it follows that it is sufficient to prove:

∀x≥1 |g1(x)| > |g2(x)| . (86)

Let us take some x ≥ 1. It is easy to see from Eq. 77 that g1(x) ≥ 0 and thus |g1(x)| = g1(x). That
is, it is sufficient to prove that

g1(x) > g2(x) (87)
and

g2(x) > −g1(x) ⇔ g1(x) + g2(x) > 0. (88)
Let us now define the following parameters:

B =
1− γ

4γN
√
S

C =
1 + γ

4γNS
+

1 + γ2

8γ2N2S
c1 =

1

γN
+ 1

c2 =
1

N
+ 1 < c1

(89)

We also define the following functions:{
D1(x) =

√
Cx+ c1

D2(x) =
√

Cx+ c2 < D1(x)
(90)

From Eq. 77, Eq. 78, Eq. 89, Eq. 90, it follows that:
g1(x) =

√
S +Bx

D1(x)

g2(x) =

√
S −Bx

D2(x)

(91)

We first prove Eq. 87. Their difference g1(x)− g2(x) reads:

g1(x)− g2(x) =

√
S +Bx

D1(x)
−

√
S −Bx

D2(x)
=

(
√
S +Bx) ·D2(x)− (

√
S −Bx) ·D1(x)

D1(x) ·D2(x)

=

√
S · (D2(x)−D1(x)) +Bx · (D2(x) +D1(x))

D1(x) ·D2(x)
.

(92)

Now, from Eq. 89, Eq. 90, we have:

D2(x)−D1(x) =
D2

2(x)−D2
1(x)

D2(x) +D1(x)
=

c2 − c1
D2(x) +D1(x)

=

1
N − 1

γ·N

D1(x) +D2(x)

= − 1

N
· 1− γ

γ
· 1

D2(x) +D1(x)
.

(93)

In order to show Eq. 87, it is sufficient to show that the expression in Eq. 92 is strictly positive.
Substituting Eq. 93, we get:

−
√
S

N
· 1− γ

γ
· 1

D2(x) +D1(x)︸ ︷︷ ︸√
S · (D2(x) − D1(x))

+
1− γ

4γ ·N ·
√
S

· x · (D2(x) +D1(x)) > 0

1

4
√
S

· x · (D2(x) +D1(x)) >

√
S

D2(x) +D1(x)

x · (D2(x) +D1(x))
2
> 4S
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That is, in order to show Eq. 83, it is sufficient to show that:

h(x) := x · (D2(x) +D1(x))
2
> 4S. (94)

We now show that h(x) is strictly increasing:

h′(x) = (D2(x) +D1(x))
2
+ 2x · (D2(x) +D1(x)) > 0.

Thus, it follows that:
x ≥ 1 ⇒ h(x) > h(1). (95)

Now, from Eq. 94, it follows that:

h(1) = (D2(1) +D1(1))
2
> 4S ⇔ D2(1) +D1(1) > 2

√
S.

Indeed, from Eq. 89, Eq. 90, we have:

D2(1) +D1(1) > 2 ·D2(1) = 2 ·
√
C + c2

= 2 ·
√
C +

1

N
+ 1

> 2

≥ 2
√
S

where we used the assumption that S ≤ 1, and C > 0. That is, we proved Eq. 87. We will now prove
Eq. 88. From Eq. 91, the sum g1(x) + g2(x) reads:

g1(x) + g2(x) =

√
S +B · x
D1(x)

+

√
S −Bx

D2(x)
=

(√
S +Bx

)
·D2(x) +

(√
S −Bx

)
·D1(x)

D1(x) ·D2(x)

=

√
S · (D2(x) +D1(x)) +Bx · (D2(x)−D1(x))

D1(x) ·D2(x)
.

(96)
In order to show Eq. 88, it is sufficient to show that the expression in Eq. 96 is strictly positive.
Substituting Eq. 93, we get:

√
S · (D2(x) +D1(x)) +

(
− 1− γ

4γ ·N ·
√
S

· 1

N
· 1− γ

γ
· x

D2(x) +D1(x)

)
︸ ︷︷ ︸

Bx · (D2(x) − D1(x))

> 0

√
S · (D2(x) +D1(x)) >

(1− γ)2

4γ2N2
√
S

· x

D2(x) +D1(x)

(D2(x) +D1(x))
2

x
>

(1− γ)2

4γ2N2S
That is, in order to show Eq. 88, it is sufficient to show that:

p(x) :=
(D2(x) +D1(x))

2

x
>

(1− γ)2

4γ2N2S
. (97)

Indeed,

p(x) =
D2

2(x) + 2D2(x)D1(x) +D2
1(x)

x
≥ D2

2(x) +D2
1(x)

x

=
Cx+ c1 + Cx+ c2

x

= 2C +
c1 + c2

x
> 2C

=
1 + γ

2γNS
+

1 + γ2

4γ2N2S

>
1 + γ2

4γ2N2S

>
(1− γ)2

4γ2N2S

(98)
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where we used c1, c2 > 0 and (1 − γ)2 < 1 + γ2 for all γ > 0. That is, we proved Eq. 88 and
thus we showed that Eq. 83 is satisfied. We will now prove Eq. 84: Let us first define the following
parametric function

TB,C,D(x) =

√
S +Bx√
Cx+D

. (99)

Its derivative reads:

T ′
B,C,D(x) =

B ·
√
Cx+D − C

2·
√
Cx+D

·
(√

S +Bx
)

Cx+D

=
2B · (Cx+D)− C · (

√
S +Bx)

2 · (Cx+D)1.5

=
BC · x+ 2 ·BD −

√
SC

2 · (Cx+D)1.5
.

(100)

Now, from Eq. 78, Eq. 99, it follows that:

g2(x) = T−B,C,c2(x).

That is, from Eq. 100, we have:

g′2(x) =
−BC · x− 2B · c2 −

√
S · C

2 · (Cx+ c2)
1.5 = −BC · x+ 2B · c2 +

√
S · C

2 · (Cx+ c2)1.5
< 0 (101)

where we used B,C, c2 > 0, which follows from Eq. 89, and S > 0. Finally, we will prove Eq. 85:
From Eq. 77, Eq. 99, Eq. 100, it follows that:

g1(x) = TB,C,c1(x) ⇒ g′1(x) =
BC · x+ 2B · c1 −

√
S · C

2 · (Cx+ c1)
1.5 . (102)

Thus, from Eq. 101,Eq. 102, proving that g′1(x) + g′2(x) ≤ 0 is equivalent to proving that:

BC · x+ 2B · c1 −
√
S · C

2 · (Cx+ c1)
1.5 ≤ BC · x+ 2B · c2 +

√
S · C

2 · (Cx+ c2)1.5
.

From Eq. 89, and the assumption of 0 < γ < 1, we know that c1 > c2. Thus, if the numerator in the
LHS is negative, then the inequality holds trivially. Otherwise, it is sufficient to prove that:

2B · c1 −
√
S · C ≤ 2B · c2 +

√
S · C

2B · (c1 − c2) ≤ 2
√
S · C

B ·
(

1

γ ·N
− 1

N

)
≤

√
S · C

Thus, we need to prove that:
1

N
· 1− γ

γ
≤

√
S · C
B

. (103)

From Eq. 89, the RHS in Eq. 103 reads:
√
S · C
B

=

(
1+γ

4·γ·N ·
√
S + 1+γ2

8·γ2·N2·
√
S

)
(

1−γ

4·γ·N ·
√
S

) =

(
1+γ
4 + 1+γ2

8·γ·N

)
(
1−γ
4

)
=

(
1 + γ

4
+

1 + γ2

8 · γ ·N

)
· 4

1− γ

=
1 + γ

1− γ
+

1 + γ2

γ · (1− γ)
· 1

2 ·N

=
2N · γ(1 + γ) + 1 + γ2

2N · γ(1− γ)

=
(2N + 1) · γ2 + 2N · γ + 1

2N · γ(1− γ)
.
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Thus, Eq. 103 reads:

1− γ

γ ·N
≤ (2N + 1) · γ2 + 2N · γ + 1

2N · γ(1− γ)

2 · (1− γ)2 ≤ (2N + 1) · γ2 + 2N · γ + 1

2 · (γ2 − 2γ + 1) ≤ (2N + 1) · γ2 + 2N · γ + 1

(2N − 1) · γ2 + 2 · (N + 2) · γ − 1 ≥ 0

2 · γ · (γ + 1) ·N − (γ2 − 4γ + 1) ≥ 0

N ≥ γ2 − 4γ + 1

2γ(1 + γ)

Which holds from the theorem assumptions. Finally, let us take some x ≥ 1. We need to prove that:

w1(x) · g′1(x) + w2(x) · g′2(x) < 0 ⇔ w1(x) · g′1(x) < −w2(x) · g′2(x)

⇔ g′1(x) < −w2(x)

w1(x)
· g′2(x).

Indeed, from Eq. 83, Eq. 101, Eq. 85, it follows that:

g′1(x) ≤ −g′2(x) <
w2(x)

w1(x)
· (−g′2(x)) = −w2(x)

w1(x)
· g′2(x).

Which finishes the proof. Note that for γ ≥ 0.162, the requirement N ≥ γ2−4γ+1
2γ(1+γ) is vacuous (since

N ≥ 1), so it only matters under severe imbalance (γ < 0.162).

A.7 PROOF OF THEOREM 7

In order to have a fair comparison between cases with different values of γ, we fix the total number
of samples to be NT . Thus, we take N1 = xNT samples from the first class and N2 = γ · xNT from
the second class such that:

N1 +N2 = xNT + γ · xNT = NT ⇒ x =
1

1 + γ

Meaning, the number of samples in the first class is

N =
NT

1 + γ
. (104)

Proof. Let us take some NT ∈ N and

S > 0, 1 ≤ k < d, 0 < γ ≤ 1.

Let us define the following parametric function:

fs,a,q(x) :=

√
S + s · (1−γ)·q

4γ·
√
S · 1

x√(
(1+γ)·q
4γ·S + 1

a

)
· 1
x + (1+γ2)·q

8γ2·S · 1
x2 + 1

=

√
S + B

x√
C
x + D

x2 + 1
(105)

where the parameters B,C,D are: 

B = s · (1− γ) · q
4γ ·

√
S

C =
(1 + γ) · q
4γ · S

+
1

a

D =
(1 + γ2) · q
8γ2 · S

(106)
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From Definition 13 and Eq. 9, it follows that:

η = 100 ·
(
1− p̂z(error)

p̂x(error)

)
= 100 ·

(
1− p̂(S, N, γ, k)

p̂(S, N, γ, d)

)
= 100 ·

(
1− Q (f1,γ,k(N)) +Q (f−1,1,k(N))

Q (f1,γ,d(N)) +Q (f−1,1,d(N))

)
= 100 · h(N)

(107)

where we defined the following function:

h(x) := 1− Q (f1,γ,k(x)) +Q (f−1,1,k(x))

Q (f1,γ,d(x)) +Q (f−1,1,d(x))
. (108)

Now, let us define the following parametric function:

gs,a,q(x) := fs,a,q

(
1

x

)
=

√
S +B · x√

D · x2 + C · x+ 1
(109)

where we used Eq. 105, Eq. 106. Let us also define:

ℓ(x) := h

(
1

x

)
= 1− Q (g1,γ,k(x)) +Q (g−1,1,k(x))

Q (g1,γ,d(x)) +Q (g−1,1,d(x))
(110)

where we used Eq. 109, Eq. 108. Thus, Taylor expansion to first order of ℓ yields:
ℓ(x) = ℓ(0) + ℓ′(0) · x+O

(
x2
)

Where the approximation is exact for x ≪ 1. Thus, the following is exact for x ≫ 1:

x ≫ 1 ⇒ h(x) = ℓ

(
1

x

)
= ℓ(0) +

ℓ′(0)

x
+O

(
1

x2

)
. (111)

Assuming:

N =
NT

1 + γ
≫ 1 ⇔ NT ≫ 1 + γ (112)

means that following first-order approximation is exact:

h (N) = ℓ(0) +
ℓ′(0)

N
+O

(
1

N2

)
. (113)

Let us first compute ℓ(0):

ℓ(0) = 1− Q (g1,γ,k(0)) +Q (g−1,1,k(0))

Q (g1,γ,d(0)) +Q (g−1,1,d(0))
= 1− 2 · Q(

√
S)

2 · Q(
√
S)

= 0. (114)

Finally, we will compute ℓ′(0): We first compute g′s,a,q(0). From Eq. 109 it follows that:

g′s,a,q(x) =
B ·

√
D · x2 + C · x+ 1− 2D·x+C

2·
√
D·x2+C·x+1

·
(√

S +B · x
)

D · x2 + C · x+ 1

=
2B ·

(
D · x2 + C · x+ 1

)
− (2D · x+ C) ·

(√
S +B · x

)
2 · (D · x2 + C · x+ 1)

1.5

=
(BC − 2SD) · x+ (2B − C

√
S)

2 · (D · x2 + C · x+ 1)
1.5 .

Thus, the derivative at 0 is:

g′s,a,q(0) =
2B − C

√
S

2
= B − 1

2
· C

√
S

=
s · (1− γ) · q

4γ · S
− 1

2
·
(
(1 + γ) · q
4γ · S

+
1

a

)
·
√
S

=
s · (1− γ) · q

4γ · S
− (1 + γ) · q

8γ ·
√
S

−
√
S

2a

=
2s · (1− γ) · q − (1 + γ) · q

8γ · S
−

√
S

2a

=
((2s− 1)− (2s+ 1) · γ) · q

8γ ·
√
S

−
√
S

2a
.

(115)
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Now, from Eq. 110, the derivative ℓ′(x) reads

ℓ′(x) = − d

dx

(
Q (g1,γ,k(x)) +Q (g−1,1,k(x))

Q (g1,γ,d(x)) +Q (g−1,1,d(x))

)
= − d

dx

(
u(x)

v(x)

)
= −u′(x) · v(x)− v′(x) · u(x)

v2(x)

=
v′(x) · u(x)− u′(x) · v(x)

v2(x)

(116)

where we defined the following auxiliary functions:{
u(x) = Q (g1,γ,k(x)) +Q (g−1,1,k(x))

v(x) = Q (g1,γ,d(x)) +Q (g−1,1,d(x))
(117)

From the chain rule, their derivatives are:{
u′(x) = g′1,γ,k(x) · Q′ (g1,γ,k(x)) + g′−1,1,k(x) · Q′ (g−1,1,k(x))

v′(x) = g′1,γ,d(x) · Q′ (g1,γ,d(x)) + g′−1,1,d(x) · Q′ (g−1,1,d(x))
(118)

Now, from Eq. 116, Eq. 118 it follows that:

ℓ′(0) =
v′(0) · u(0)− u′(0) · v(0)

v(0)2
. (119)

It is easy to verify from Eq. 109 that gs,a,q(0) =
√
S . Thus, from Eq. 117, Eq. 118, Eq. 115, we have

the following formulas:

u(0) = 2 · Q(
√
S)

v(0) = 2 · Q(
√
S)

u′(0) =

(
(1− 3γ) · k
8γ ·

√
S

−
√
S

2γ

)
· Q′(

√
S) +

(
−(3 + γ) · k
8γ ·

√
S

−
√
S
2

)
· Q′(

√
S)

v′(0) =

(
(1− 3γ) · d
8γ ·

√
S

−
√
S

2γ

)
· Q′(

√
S) +

(
−(3 + γ) · d
8γ ·

√
S

−
√
S
2

)
· Q′(

√
S)

(120)

Now, we substitute Eq. 120 in Eq. 119, to get the following formula for ℓ′(0):

ℓ′(0) =
2 · Q(

√
S) ·

((
(1−3γ)·d
8γ·

√
S −

√
S

2γ

)
· Q′(

√
S) +

(
−(3+γ)·d
8γ·

√
S −

√
S
2

)
· Q′(

√
S)
)

4 · Q2(
√
S)

−
2Q(

√
S) ·

((
(1−3γ)·k
8γ·

√
S −

√
S

2γ

)
· Q′(

√
S) +

(
−(3+γ)·k
8γ·

√
S −

√
S
2

)
· Q′(

√
S)
)

4 · Q2(
√
S)

=
Q′(

√
S)

2 · Q(
√
S)

·
(
(1− 3γ) · (d− k)

8γ ·
√
S

− (3 + γ) · (d− k)

8γ ·
√
S

)
=

Q′(
√
S)

2 · Q(
√
S)

· (d− k) ·
(
−2− 4γ

8γ ·
√
S

)
= −Q′(

√
S)

Q(S)
· (d− k) ·

(
1 + 2γ

8γ ·
√
S

)
= − Q′(

√
S)√

S · Q(
√
S)

· (d− k) ·
(

1

8γ
+

1

4

)
.

(121)
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Finally, from Eq. 107, Eq. 112, Eq. 113, Eq. 114, Eq. 121, it follows that:

η = 100 · h(N)

= 100 ·
(
ℓ(0) +

ℓ′(0)

N
+O

(
1

N2

))
= 100 · ℓ

′(0)

N
+O

(
1

N2

)
= −100 · Q′(

√
S)√

S · Q(
√
S)

· (d− k) ·
(

1

8γ
+

1

4

)
· 1

N
+O

(
1

N2

)
(122)

We proceed with Eq. 122 and substitute Eq. 112:

N =
NT

1 + γ

to get the following approximation for η:

η = −100 · Q′(
√
S)√

S · Q(
√
S)

· (d− k) ·
(

1

8γ
+

1

4

)
· (1 + γ) · 1

NT
+O

(
1

N2
T

)
= −50 · Q′(

√
S)√

S · Q(
√
S)

· (d− k) ·
(

1

4γ
+

1

2

)
· (1 + γ) · 1

NT
+O

(
1

N2
T

)
= −50 · Q′(

√
S)√

S · Q(
√
S)

· (d− k) ·
(
1 + 2γ

4γ

)
· (1 + γ) · 1

NT
+O

(
1

N2
T

)
= − 50 · Q′(

√
S)

4 ·
√
SQ(

√
S)

· (d− k) · (1 + 2γ) ·
(
1 +

1

γ

)
· 1

NT
+O

(
1

N2
T

)
= − 25 · Q′(

√
S)

2 ·
√
SQ(

√
S)

· (d− k) ·
(
3 + 2γ +

1

γ

)
· 1

NT
+O

(
1

N2
T

)
=

25

2
√
2π

·
exp

(
−S

2

)
√
S · Q

(√
S
) ·
(
3 + 2γ +

1

γ

)
· (d− k) · 1

NT
+O

(
1

N2
T

)

(123)

where we used the following property of the Q function:

Q′(x) = − 1√
2π

· exp
(
−x2

2

)
.

It is now left to show the conclusions. For NT ≫ 1, we have from Eq. 123 that

η = C · f(S) · g(γ) · (d− k) · 1

NT
(124)

where C =
25

2
√
2π

> 0, and 
f(S) =

exp
(
−S

2

)
√
S · Q(

√
S)

g(γ) = 3 + 2γ +
1

γ

(125)

It is now clear from Eq. 124 that as d− k increases, the efficiency increases (linearly), and as NT

increases, the efficiency decreases. It is easy to see that in (0, 1], the function g defined in Eq. 125

achieves a minimum at γ =
1√
2

:

g′(γ) = 2− 1

γ2
= 0 ⇒ γ = ± 1√

2
.

It is easy to check that

g

(
1√
2

)
< lim

x→0+
g(x) = ∞, g

(
1√
2

)
< g(1).
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Thus, from Eq. 124, in the range
(
0,

1√
2

]
, as γ decreases, the efficiency increases. Finally, we will

prove that the function f , defined in Eq. 125, decreases as S increases, and thus from Eq. 124, the
efficiency decreases as S increases: It is now sufficient to prove the following:

f ′(S) =
− 1

2 exp
(
−S

2

)
·
√
SQ

(√
S
)
− d

dS

(√
SQ

(√
S
))

· exp
(
−S

2

)
SQ2

(√
S
) < 0

−1

2

√
S · Q

(√
S
)
− d

dS

(√
SQ

(√
S
))

< 0

−1

2

√
SQ

(√
S
)
<

1

2
√
S
Q
(√

S
)
+

√
S · Q′

(√
S
) 1

2
√
S

−
√
SQ

(√
S
)
<

1√
S
Q
(√

S
)
− 1√

2π
exp

(
−S
2

)
(√

S +
1√
S

)
Q
(√

S
)
>

1√
2π

exp

(
−S
2

)
Q
(√

S
)
>

1√
2π

·
√
S

S + 1
· exp

(
−S
2

)
Where we used the identity Q′(S) = − 1√

2π
· exp

(
−S2

2

)
. Let us now prove the final inequality. It

is equivalent to the following inequality
(
x =

√
S
)

:

∀x≥0 Q(x) >
1√
2π

· x

x2 + 1
· exp

(
−x2

2

)
=

x

x2 + 1
· ϕ(x) (126)

where we defined the following function:

ϕ(x) =
1√
2π

· exp
(
−x2

2

)
. (127)

Indeed, for all x ≥ 0: (
1 +

1

x2

)
· Q(x) =

∫ ∞

x

(
1 +

1

x2

)
· ϕ(u) du

>

∫ ∞

x

(
1 +

1

u2

)
· ϕ(u) du

= −
[
ϕ(u)

u

]∞
x

=
ϕ(x)

x

(128)

where we used the following identity:

d

du

(
−ϕ(u)

u

)
= −ϕ′(u) · u− ϕ(u)

u2
=

ϕ(u) + u2 · ϕ(u)
u2

=

(
1 +

1

u2

)
· ϕ(u). (129)

And Eq. 129 follows from the identity ϕ′(u) = −u ·ϕ(u) which is straightforward from the definition
of ϕ in Eq. 127. Now, from Eq. 128, it follows that:

Q(x) >
ϕ(x)

x
· x2

x2 + 1
=

x

x2 + 1
· ϕ(x)

which proves exactly Eq. 126. It is left to show that:

∃N0∈N∀N≥N0
pz(error) < px(error). (130)

That is, η > 0. We proved in Eq. 119 that:

ℓ′(0) = − Q′(
√
S)√

S · Q(
√
S)

· (d− k) ·
(

1

8γ
+

1

4

)
> 0. (131)
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We defined ℓ(x) in Eq. 111 as:

ℓ(x) = h

(
1

x

)
⇒ ℓ′(x) = − 1

x2
· h′
(
1

x

)
(132)

where we used the chain rule. Finally, from Eq. 131, Eq. 132, it follows that:

ℓ′(0) = − lim
x→0+

1

x2
· h′
(
1

x

)
= − lim

t→∞
t2 · h′ (t) > 0

where we used the fact that if the two-sided limit exists, then each one-sided limit exists and they are
equal to the limit. In total,

lim
t→∞

t2 · h′(t) < 0.

This means that for large enough t, we have

h′(t) < 0

which implies that h is strictly decreasing. Thus, from Eq. 107, we have that for N ≫ 1, η is
decreasing. In addition, from Eq. 111, Eq. 114, it follows that:

lim
N→∞

η = 100 · lim
N→∞

h(N) = 100 · lim
N→∞

ℓ

(
1

N

)
= 100 · ℓ(0) = 0

Finally, η is decreasing for large enough N and approaches 0. It is now easy to see that:

∃N0∈N∀N≥N0
η > 0

which exactly proves Eq. 130.

A.8 PROOF OF THEOREM 8

Let us state an extended and more detailed version of the Theorem 8.

Theorem (Analysis of the maximal efficiency). Fix γ = 1, and let S > 0, 1 ≤ k < d. Consider the
efficiency η = η(N) as a function of continuous N ∈ R+. The following hold.

• The maximal efficiency ηmax = max
N≥0

η(N) increases as a function of S > 0.

• For fixed r :=
d

k
and k ≫ max{1,S}, the maximizer Nmax = argmax

N≥0
η(N) decreases

with S > 0 in both regimes S ≪ 1,S ≫ 1. In addition, in the regime S ≪ 1 the following
approximation holds:

Nmax ≈ k

2S
·
r

2
3

(
r

1
3 − 1

)
r

2
3 − 1

. (133)

Finally, in the regime S ≫ 1, the following approximation holds:

Nmax ≈ k

2S
·
√
r. (134)

Proof. Fix γ = 1, and take

S > 0, 1 ≤ k < d.
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Let us now define the following parametric function:

fq(x,S) :=
√
S√(

q
2S + 1

)
· 1
x + q

4S · 1
x2 + 1

=

√
S√

q+2S
2Sx + q

4Sx2 + 1

=

√
S√

2x(q+2S)+q+4S2x
4Sx2

=
2Sx√

2qx+ q + 4Sx+ 4Sx2

=
2Sx√

(2x+ 1)q + 4x(x+ 1)S

=
2Sx√
Dq(x,S)

(135)

where we denoted
Dq(x,S) = (2x+ 1)q + 4x(x+ 1)S

= 4Sx2 + 2 (2S + q)x+ q.
(136)

From Definition 13 and Eq. 9, it follows that:

η = 100 ·
(
1− p̂z(error)

p̂x(error)

)
= 100 ·

(
1− p̂(S, N, 1, k)

p̂(S, N, 1, d)

)
= 100 ·

(
1− 2 · Q (fk(N))

2 · Q (fd(N))

)
= 100 ·

(
1− Q (fk(N))

Q (fd(N))

)
= 100 · h(N,S)

(137)

where we defined the following function:

h(x,S) := 1− Q (fk(x,S))
Q (fd(x,S))

. (138)

Hence, our task reduces to proving that the following function is increasing:

V (S) := max
x>0

h(x,S) = h (x∗(S),S) (139)

where we denoted

x∗(S) = argmax
x>0

h(x,S). (140)

We note that the proof holds for each stationary point, and in particular for a maximizer that achieves
the maximum value of the function h(x,S). In addition, using the first-order condition:

∂h

∂x
(x∗(S),S) = 0. (141)

We now aim to prove that V ′(S) > 0, where V (S) is defined in Eq. 139. From the chain rule, we
have:

V ′(S) = ∂h

∂S
(x∗(S),S) + ∂h

∂x
(x∗(S),S) · ∂x

∗

∂S
=

∂h

∂S
(x∗(S),S) (142)
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where we used Eq. 141. Let us compute the partial derivative of h with respect to S:

∂h

∂S
= − ∂

∂S

(
Q (fk(x,S))
Q (fd(x,S))

)
= −

∂
∂SQ (fk(x,S)) · Q (fd(x,S))− ∂

∂SQ (fd(x,S)) · Q (fk(x,S))
Q2 (fd(x,S))

=
∂
∂SQ (fd(x,S)) · Q (fk(x,S))− ∂

∂SQ (fk(x,S)) · Q (fd(x,S))
Q2 (fd(x,S))

=
Q′ (fd(x,S)) · ∂fd

∂S · Q (fk(x,S))−Q′ (fk(x,S)) · ∂fk
∂S · Q (fd(x,S))

Q2 (fd(x,S))

=
1√
2π

·
exp

(
− 1

2f
2
k (x,S)

)
· ∂fk

∂S · Q (fd(x,S))− exp
(
− 1

2f
2
d (x,S)

)
· ∂fd

∂S · Q (fk(x,S))
Q2 (fd(x,S))

(143)

where we used the identity Q′(x) = − 1√
2π

· exp
(
−1

2
x2

)
. It now follows immediately from

Eq. 142, Eq. 143, that proving V ′(S) > 0 is equivalent to proving the following inequality:

exp

(
−1

2
f2
k (x

∗,S)
)

∂fk
∂S

(x∗,S)Q (fd(x
∗,S)) > exp

(
−1

2
f2
d (x

∗,S)
)

∂fd
∂S

(x∗,S)Q (fk(x
∗,S)) .

(144)
We now turn to the first order condition for x∗(S) in Eq. 141, and thus equate the partial derivative of
h with respect to x to zero. Similarly to Eq. 143, one can prove that for all x > 0 we have:

∂h

∂x
= − ∂

∂x

(
Q (fk(x))

Q (fd(x))

)
=

1√
2π

·
exp

(
− 1

2f
2
k (x,S)

)
· ∂fk

∂x · Q (fd(x,S))− exp
(
− 1

2f
2
d (x,S)

)
· ∂fd

∂x · Q (fk(x,S))
Q2 (fd(x,S))

.

(145)

That is, equating
∂h

∂x
= 0 yields the following equation for x∗(S):

exp

(
−1

2
f2
k (x

∗,S)
)

∂fk
∂x

(x∗,S)Q (fd(x
∗,S)) = exp

(
−1

2
f2
d (x

∗,S)
)

∂fd
∂x

(x∗,S)Q (fk(x
∗,S)) .

(146)
We now divide both sides of the inequality in Eq. 144 by the (positive) value we have in the latter
equality, in order to get the following simplified inequality:

∂fk
∂S (x∗,S)
∂fk
∂x (x∗,S)

>
∂fd
∂S (x∗,S)
∂fd
∂x (x∗,S)

. (147)
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We indeed divided by a positive amount, because exp(·) > 0,Q(·) > 0, and
∂fq
∂x

> 0: for all x > 0,
from Eq. 135, Eq. 136, we have:

∂fq
∂x

=
∂

∂x

(
2Sx√
Dq(x,S)

)

= 2S · ∂

∂x

(
x√

Dq(x,S)

)

= 2S ·

√Dq(x,S)− x · ∂
∂x

(√
Dq(x,S)

)
Dq(x,S)


= 2S ·


√
Dq(x,S)− x · ∂Dq(x,S)/∂x

2
√

Dq(x,S)

Dq(x,S)


= 2S ·

(
2 ·Dq(x,S)− x · ∂Dq(x,S)

∂x

2 · (Dq(x,S))3/2

)

=
S

(Dq(x,S))3/2
·
(
2
(
4Sx2 + 2 (2S + q)x+ q

)
− x (8Sx+ 2 (2S + q))

)
=

S
(Dq(x,S))3/2

· (2 (2S + q)x+ 2q)

=
2S

(Dq(x,S))3/2
· ((2S + q)x+ q) > 0

(148)

where we used the definition of Dq(x,S) in Eq. 136. We now compute the partial derivative of fq
with respect to S:

∂fq
∂S

=
∂

∂S

(
2Sx√
Dq(x,S)

)

= 2x · ∂

∂S

(
S√

Dq(x,S)

)

= 2x ·

√Dq(x,S)− S · ∂
∂S

(√
Dq(x,S)

)
Dq(x,S)


= 2x ·


√

Dq(x,S)− S · ∂Dq(x,S)/∂S
2
√

Dq(x,S)

Dq(x,S)


= 2x ·

(
2 ·Dq(x,S)− S · ∂Dq(x,S)

∂S

2 · (Dq(x,S))3/2

)
.

(149)

We now use the definition of Dq(x,S) from Eq. 136, and get

∂fq
∂S

=
x

(Dq(x,S))3/2
·
(
2
(
4Sx2 + 2 (2S + q)x+ q

)
− S · 4x(x+ 1)

)
=

x

(Dq(x,S))3/2
·
(
4Sx2 + 4 (2S + q)x− 4Sx+ 2q

)
=

x

(Dq(x,S))3/2
·
(
4Sx2 + 4 (S + q)x+ 2q

)
=

2x

(Dq(x,S))3/2
·
(
2Sx2 + 2 (S + q)x+ q

)
.

(150)
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Let us now define

Rq(x,S) :=
∂fq
∂S (x,S)
∂fq
∂x (x,S)

=

2x
(Dq(x,S))3/2

·
(
2Sx2 + 2 (S + q)x+ q

)
2S

(Dq(x,S))3/2
· ((2S + q)x+ q)

=
x

S
·
(
2Sx2 + 2Sx+ 2x · q + q

2Sx+ x · q + q

)
=

x

S
·
(
2Sx (x+ 1) + (2x+ 1) · q

2Sx+ (x+ 1) · q

)
(151)

where we used the partial derivatives of fq, computed in Eq. 148, Eq. 150. We remember that we
need to prove Eq. 147, which is equivalent to Rq(x,S) being a decreasing function in the argument q
(this is because 1 ≤ k < d). Indeed, let us compute

∂Rq(x,S)
∂q

=
x

S
· ∂

∂q

(
2Sx(x+ 1) + (2x+ 1) · q

2Sx+ (x+ 1) · q

)
=

x

S
· (2x+ 1) · (2Sx+ (x+ 1) · q)− (x+ 1) · (2Sx(x+ 1) + (2x+ 1) · q)

(2Sx+ (x+ 1) · q)2

=
x

S
· 2x(2x+ 1) · S − 2x(x+ 1)2 · S

(2Sx+ (x+ 1) · q)2

=
2x2 ·

(
2x+ 1− (x+ 1)2

)
(2Sx+ (x+ 1) · q)2

= − 2x4

(2Sx+ (x+ 1) · q)2
.

(152)

That is,

∂Rq(x,S)
∂q

= − 2x4

(2Sx+ (x+ 1) · q)2
< 0

which proves Eq. 147. We argued that this is equivalent to Eq. 144. As we proved in Eq. 142,
this inequality is equivalent to proving V ′(S) > 0. Finally, the result is straightforward because
η = 100 · h(N,S). This proves the first part of the theorem.

We will now prove the second part of the theorem. Let us fix d > k ≫ max{1,S}, and

r :=
d

k
> 1. We prove that the maximizer x∗(S), defined in Eq. 140, decreases as a function of S.

Let us first define the following rescaled x value:

x(t) :=
k

S
· t. (153)

Thus,

x∗(S) = k

S
· argmax

t>0
h (x(t),S) . (154)
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From Eq. 135, it follows that:

fq (x(t),S) =
2S · x(t)√

(2x(t) + 1) q + 4x(t) (x(t) + 1)S

∼ 2S · x(t)√
2x(t) · q + 4x2(t) · S

=
2S√

2q
x(t) + 4S

=
2S√

2q · S
k·t + 4S

=

√
2
√
S ·

√
kt√

2q + 4kt

=

√
2Sk · t

q + 2k · t

=

√
2St

q
k + 2t

(155)

where we assumed x(t) ≫ 1 which follows from q ≫ 1,S ≪ q, t = O(1). We explain the
assumption t = O(1) in a moment. Now, from Eq. 138, we have:

h (x(t),S) = 1− Q (fk (x(t),S))
Q (fd (x(t),S))

∼ 1−
Q
(√

2St
1+2t

)
Q
(√

2St
r+2t

) (156)

this motivates the assumption t = O(1) we used in Eq. 155: the maximizer

t∗(r,S) = argmax
t>0

h (x(t),S) ∼ argmin
t>0

Q
(√

2St
1+2t

)
Q
(√

2St
r+2t

)


= argmin
t>0

gS,r(t)

(157)

is a function of r = O(1) which is a constant and S ≪ k, and thus in the region of interest (close to
the maximizer), t = O(1) does not scale with k. The key insight here is that t∗(r,S) doesn’t depend
on k, d. We also defined the following function:

gS,r(t) :=
Q
(√

2St
1+2t

)
Q
(√

2St
r+2t

) . (158)

Finally, we would like to analyze the dependency of t∗(r,S) on S . We will prove that in both regimes
S ≪ 1,S ≫ 1, we have that t∗(r,S) does not depend on S , and thus in both regimes, from Eq. 154,
Eq. 157, the maximizer

x∗(S) = k

S
· t∗(r) (159)
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is decreasing as a function of S > 0. For the regime S ≪ 1: We use the approximation Q(x) ∼
1

2
− 1√

2π
· x for x ≪ 1 and Eq. 158 to get

gS,r(t) =
Q
(√

2St
1+2t

)
Q
(√

2St
r+2t

) ∼
1
2 − 1√

2π
·
√

2St
1+2t

1
2 − 1√

2π
·
√

2St
r+2t

=
1− 2√

2π
·
√

2St
1+2t

1− 2√
2π

·
√

2St
r+2t

∼

(
1− 2√

2π

√
2St

1 + 2t

)(
1 +

2√
2π

√
2St

r + 2t

)

∼

(
1− 2√

2π

√
2St

1 + 2t
+

2√
2π

√
2St

r + 2t

)

= 1−
√

2

π
·

(√
2St

1 + 2t
−
√

2St
r + 2t

)

= 1− 2

√
S
π
·

(√
t

1 + 2t
−
√

t

r + 2t

)
.

(160)

This approximation is motivated from the fact that the argument of the Q function in both the
numerator and the denominator is at most

√
S ≪ 1. Thus, from Eq. 157, we have:

t∗(r,S) = argmin
t>0

(√
t

1 + 2t
−
√

t

r + 2t

)
(161)

is independent of S. We will also calculate the minimizer. Let us define

Ψ1(t) =

√
t

1 + 2t
−
√

t

r + 2t
. (162)

We now equate the derivative of Ψ1(t) to 0:

dΨ1

dt
=

d

dt

(√
t

1 + 2t

)
− d

dt

(√
t

r + 2t

)

=
1

2

(
1

√
t · (1 + 2t)

3
2

− r
√
t · (r + 2t)

3
2

)

=
1

2
√
t
·

(
1

(1 + 2t)
3
2

− r

(r + 2t)
3
2

)

=
1

2
√
t
· (r + 2t)

3
2 − r (1 + 2t)

3
2

(1 + 2t)
3
2 · (r + 2t)

3
2

(163)
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where we used the following formula:

d

dt

(√
t

a+ 2t

)
=

d
dt

(
t

a+2t

)
2 ·
√

t
a+2t

=

a
(a+2t)2

2 ·
√

t
a+2t

=
a

(a+ 2t)2
·
√
a+ 2t

2 ·
√
t

=
a

2
· 1
√
t · (a+ 2t)

3
2

Finally, from Eq. 163, we have:

(r + 2t∗)
3
2 = r (1 + 2t∗)

3
2

r + 2t∗ = r
2
3 · (1 + 2t∗)

2t∗ ·
(
1− r

2
3

)
= r

2
3

(
1− r

1
3

)
t∗ =

r
2
3

(
1− r

1
3

)
2
(
1− r

2
3

)
That is, the maximizer is unique, and from Eq. 159, in the regime S ≪ 1 we have:

x∗(S) ∼ 1

2
k ·

r
2
3

(
r

1
3 − 1

)
r

2
3 − 1

· 1
S

(164)

which is strictly decreasing as a function of S.

For the regime S ≫ 1: We use the approximation Q(x) ∼ 1√
2πx

· exp
(
−x2

2

)
and Eq. 158 to get

gS,r(t) =
Q
(√

2St
1+2t

)
Q
(√

2St
r+2t

) ∼
1√
2π

·
√

1+2t
2St · exp

(
− 1

2 · 2St
1+2t

)
1√
2π

·
√

r+2t
2St · exp

(
− 1

2 · 2St
r+2t

)
=

√
1 + 2t

r + 2t
·
exp

(
− St

1+2t

)
exp

(
− St

r+2t

)
=

√
1 + 2t

r + 2t
· exp

(
−St ·

(
1

1 + 2t
− 1

r + 2t

))
(165)

minimizing gS,r(t) is equivalent to minimizing ln (gS,r(t)):

MS,r(t) := ln (gS,r(t)) =
1

2
ln (1 + 2t)− 1

2
ln (r + 2t)− St ·

(
1

1 + 2t
− 1

r + 2t

)
(166)
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Let us equate the derivative of MS,r(t) to 0:

1

1 + 2t
− 1

r + 2t
− S ·

(
d

dt

(
t

1 + 2t

)
− d

dt

(
t

r + 2t

))
= 0

1

1 + 2t
− 1

r + 2t
− S ·

(
1

(1 + 2t)2
− r

(r + 2t)2

)
= 0

1

1 + 2t
− 1

r + 2t
=

S
(1 + 2t)2

− Sr
(r + 2t)2

(1 + 2t)(r + 2t)2 − (1 + 2t)2(r + 2t) = S(r + 2t)2 − Sr(1 + 2t)2

(1 + 2t)(r + 2t) · (r − 1) = S ·
(
r2 + 4rt+ 4t2

)
− Sr ·

(
1 + 4t+ 4t2

)
(r − 1) · (r + 2 (r + 1) t+ 4t2) = S ·

(
r2 + 4rt+ 4t2

)
− Sr ·

(
1 + 4t+ 4t2

)
4(r − 1) · t2 + 2(r2 − 1)t+ r(r − 1) = (4S − 4Sr) t2 + Sr2 − Sr

4(r − 1) · t2 + 2(r − 1)(r + 1)t+ r(r − 1) = 4S (1− r) t2 + Sr (r − 1)

4t2 + 2(r + 1)t+ r = −4St2 + Sr
4 (1 + S) t2 + 2(r + 1) · t+ r (1− S) = 0

Finally, we take the positive root (because t∗(r,S) > 0) and get:

t∗(r,S) =
−2(r + 1) +

√
4(r + 1)2 − 16r(1 + S)(1− S)

8(1 + S)

=
−(r + 1) +

√
(r + 1)2 + 4r (S2 − 1)

4(S + 1)

(167)

we note that we got a single solution and that the maximizer is unique, and S ≫ 1 and thus the
formula is well-defined. We note that

lim
S→∞

t∗(r,S) =
√
r

2

and thus, from Eq. 159, in the S ≫ 1 regime, we have

x∗(S) ∼ k

S
·
−(r + 1) +

√
(r + 1)2 + 4r (S2 − 1)

4(S + 1)
(168)

and as S → ∞ we have x∗(S) ∼ k

S
·
√
r

2
, and thus in the S ≫ 1 regime we have x∗(S) ∼ 1

S
is a

decreasing function of S.
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B ADDITIONAL THEORETICAL RESULTS

We have established an approximation of the efficiency of the processing η for N ≫ 1. We now do
the same for the difference

∆ := p̂x(error)− p̂z(error).

This allows us to gain insight into the different factors that affect the difference ∆ between the
probability of error that is caused by the processing.

Theorem 10 (Analysis of the asymptotic difference). Let S > 0, 1 ≤ k < d, 0 < γ ≤ 1. Denote by
NT = (1 + γ)N the total number of training samples. With approximation accuracy O(1/N2

T ), we
have

∆ ≈ 1

4
√
2π

·
exp

(
−S

2

)
√
S

·
(
3 + 2γ +

1

γ

)
· (d− k) · 1

NT
. (169)

In particular, for NT ≫ 1: The difference increases when d − k increases or γ decreases within
0 < γ ≤ 1/

√
2; The efficiency decreases when S increases or NT increases.

Let us take some NT ∈ N and

S > 0, 1 ≤ k < d, 0 < γ ≤ 1.

We have NT = N + γN = (1 + γ)N the total number of training samples, and thus N =
NT

1 + γ
.

Let us define the following parametric function:

fs,a,q(x) :=

√
S + s · (1−γ)·q

4γ·
√
S · 1

x√(
(1+γ)·q
4γ·S + 1

a

)
· 1
x + (1+γ2)·q

8γ2·S · 1
x2 + 1

=

√
S + B

x√
C
x + D

x2 + 1
(170)

where the parameters B,C,D are: 

B = s · (1− γ) · q
4γ ·

√
S

C =
(1 + γ) · q
4γ · S

+
1

a

D =
(1 + γ2) · q
8γ2 · S

(171)

From the Definition ∆ := p̂x(error)− p̂z(error) and Eq. 9, it follows that:

∆ = p̂x(error)− p̂z(error) = p̂(S, N, γ, d)− p̂(S, N, γ, k)

= [Q (f1,γ,d(N)) +Q (f−1,1,d(N))]− [Q (f1,γ,k(N)) +Q (f−1,1,k(N))]

= h(N)

(172)

where we defined the following function:

h(x) := [Q (f1,γ,d(x)) +Q (f−1,1,d(x))]− [Q (f1,γ,k(x)) +Q (f−1,1,k(x))] . (173)

Now, let us define the following parametric function:

gs,a,q(x) := fs,a,q

(
1

x

)
=

√
S +B · x√

D · x2 + C · x+ 1
(174)

where we used Eq. 170, Eq. 171. Let us also define:

ℓ(x) := h

(
1

x

)
= [Q (g1,γ,d(x)) +Q (g−1,1,d(x))]− [Q (g1,γ,k(x)) +Q (g−1,1,k(x))] (175)

where we used Eq. 174, Eq. 173. Thus, the first-order Taylor expansion of ℓ:

ℓ(x) = ℓ(0) + ℓ′(0) · x+O
(
x2
)
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Where the approximation is exact for x ≪ 1. Thus, the following is exact for x ≫ 1:

x ≫ 1 ⇒ h(x) = ℓ

(
1

x

)
= ℓ(0) +

ℓ′(0)

x
+O

(
1

x2

)
. (176)

We have
N =

NT

1 + γ
≫ 1 ⇔ NT ≫ 1 + γ (177)

Thus,

h (N) = ℓ(0) +
ℓ′(0)

N
+O

(
1

N2

)
. (178)

Let us first compute ℓ(0):

ℓ(0) = [Q (g1,γ,d(0)) +Q (g−1,1,d(0))]−[Q (g1,γ,k(0)) +Q (g−1,1,k(0))] = 2·Q(
√
S)−2·Q(

√
S) = 0

(179)
Finally, we will compute ℓ′(0): We first compute g′s,a,q(0). From Eq. 174 it follows that:

g′s,a,q(x) =
B ·

√
D · x2 + C · x+ 1− 2D·x+C

2·
√
D·x2+C·x+1

·
(√

S +B · x
)

D · x2 + C · x+ 1

=
2B ·

(
D · x2 + C · x+ 1

)
− (2D · x+ C) ·

(√
S +B · x

)
2 · (D · x2 + C · x+ 1)

1.5

=
(BC − 2SD) · x+ (2B − C

√
S)

2 · (D · x2 + C · x+ 1)
1.5 .

Thus, the derivative at 0 is:

g′s,a,q(0) =
2B − C

√
S

2
= B − 1

2
· C

√
S

=
s · (1− γ) · q

4γ · S
− 1

2
·
(
(1 + γ) · q
4γ · S

+
1

a

)
·
√
S

=
s · (1− γ) · q

4γ · S
− (1 + γ) · q

8γ ·
√
S

−
√
S

2a

=
2s · (1− γ) · q − (1 + γ) · q

8γ · S
−

√
S

2a

=
((2s− 1)− (2s+ 1) · γ) · q

8γ ·
√
S

−
√
S

2a
.

(180)

Now, from Eq. 175, the derivative ℓ′(x) reads

ℓ′(x) =
d

dx
(v(x)− u(x))

= v′(x)− u′(x)
(181)

where we defined the following auxiliary functions:{
u(x) = Q (g1,γ,k(x)) +Q (g−1,1,k(x))

v(x) = Q (g1,γ,d(x)) +Q (g−1,1,d(x))
(182)

From the chain rule, their derivatives are:{
u′(x) = g′1,γ,k(x) · Q′ (g1,γ,k(x)) + g′−1,1,k(x) · Q′ (g−1,1,k(x))

v′(x) = g′1,γ,d(x) · Q′ (g1,γ,d(x)) + g′−1,1,d(x) · Q′ (g−1,1,d(x))
(183)

Now, from Eq. 181, Eq. 183 it follows that:

ℓ′(0) = v′(0)− u′(0). (184)

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

It is easy to verify from Eq. 174 that gs,a,q(0) =
√
S . Thus, from Eq. 182, Eq. 183 and Eq. 180, we

have the following formulas:
u′(0) =

(
(1− 3γ) · k
8γ ·

√
S

−
√
S

2γ

)
· Q′(

√
S) +

(
−(3 + γ) · k
8γ ·

√
S

−
√
S
2

)
· Q′(

√
S)

v′(0) =

(
(1− 3γ) · d
8γ ·

√
S

−
√
S

2γ

)
· Q′(

√
S) +

(
−(3 + γ) · d
8γ ·

√
S

−
√
S
2

)
· Q′(

√
S)

(185)

Now, we substitute Eq. 185 in Eq. 184 to get the following formula for ℓ′(0):

ℓ′(0) =
1− 3γ

8γ
√
S
Q′
(√

S
)
· (d− k)− 3 + γ

8γ
√
S
Q′
(√

S
)
· (d− k)

=
−2− 4γ

8γ
√
S

Q′
(√

S
)
· (d− k)

=
−2 (1 + 2γ)

8γ
√
S

·
(
− 1√

2π
exp

(
−S
2

))
· (d− k)

=
1

4
√
2π

·
exp

(
−S

2

)
√
S

· 1 + 2γ

γ
· (d− k)

=
1

4
√
2π

·
exp

(
−S

2

)
√
S

·
(
2 +

1

γ

)
· (d− k)

(186)

where we used the following property of the Q function:

Q′(x) = − 1√
2π

· exp
(
−x2

2

)
.

Finally, from Eq. 172, Eq. 177, Eq. 178, Eq. 179, Eq. 186, it follows that:
∆ = h(N)

= ℓ(0) +
ℓ′(0)

N
+O

(
1

N2

)
=

ℓ′(0)

N
+O

(
1

N2

)
=

1

4
√
2π

·
exp

(
−S

2

)
√
S

·
(
2 +

1

γ

)
· (d− k) · 1

N
+O

(
1

N2

)
.

(187)

We proceed with Eq. 187 and substitute Eq. 177:

N =
NT

1 + γ

which leads to the following approximation of ∆:

∆ =
1

4
√
2π

·
exp

(
−S

2

)
√
S

·
(
2 +

1

γ

)
· (d− k) · 1 + γ

NT
+O

(
1

N2
T

)
=

1

4
√
2π

·
exp

(
−S

2

)
√
S

·
(
3 + 2γ +

1

γ

)
· (d− k) · 1

NT
+O

(
1

N2
T

)
.

(188)

We now analyze the dependence of NT , d− k, γ,S on ∆ for NT ≫ 1. The results will be identical
to those derived in 7. From Eq. 188, the following hold for NT ≫ 1:

• ∆ decreases with NT .
• ∆ increases with d− k.

• ∆ increases when γ decreases within γ ∈
(
0,

1√
2

]
: this is because the function

f(γ) = 3 + 2γ +
1

γ

has a minimum at γ =
1√
2

within (0, 1).
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• ∆ decreases with S: this is because

g(S) :=
exp

(
−S

2

)
√
S

decreases with S: indeed,

g′(S) =
− 1

2 exp
(
−S

2

)√
S − 1

2
√
S exp

(
−S

2

)
S

= −
exp

(
−S

2

)
2S

·
(√

S +
1√
S

)
< 0.

C ADDITIONAL EMPIRICAL DETAILS AND RESULTS (CIFAR-10, DENOISING)

C.1 EXPERIMENTS COMPUTE RESOURCES

We conducted our experiments using a few NVIDIA RTX 6000 Ada Generation GPUs with 48GB
memory. The training time for each data point in Figures 2 , 5 and 6 ranged from one hour to twelve
hours, depending on the number of training samples.

C.2 TRAINING THE CLASSIFIER

We consider the CIFAR-10 dataset (Krizhevsky et al., 2009) and the ResNet18 model (He et al.,
2016). To train the model, we use: batch size 128 and 350 epochs; cross-entropy loss; SGD optimizer;
learning rate: 0.0679; learning rate decay: 0.1 at epochs 116 and 233; momentum: 0.9; weight decay:
0.0005. This setting yields 90% accuracy for clean data.

Per noise level σ ∈ {0.25, 0.4} of the additive Gaussian noise that has been added to the data, we use
this setting to train two classifiers: one that operates directly on the noisy data and one that operates
on the denoised data.

C.3 TRAINING THE DENOISER

For the denoiser, we use the DnCNN model (Zhang et al., 2017) and 15,000 training images while
ignoring their labels. Per image, the clean version, xgt, is the target and its noisy version, x, is
the input to the model. To train the model, we use: batch size 64 and 1000 epochs; MSE loss;
Adam optimizer; learning rate: 0.0001; learning rate decay: 0.5 at iterations 20k, 40k, 60k, 80k,
100k, and 200k. The results with the MSE-based denoiser with γ < 1 are presented in Figure 6.
Note that, in order for the division of samples among the first five classes to be valid, we require
Ntrain

1 + γ
≤ 17500 ⇒ Ntrain ≤ 17500 (1 + γ). This shows that the point Ntrain = 35000 is invalid for

all γ < 1. Thus, we add a sufficient amount of samples from the synthetic set CIFAR-5m to the
classifier train set, both in the noisy and denoised case (where the noisy CIFAR-5m passes through
the denoiser).

C.4 TRAINING THE DENOISER WITHOUT CLEAN IMAGES

Replacing the MSE loss with Stein’s Unbiased Risk Estimate (SURE) (Stein, 1981; Soltanayev
& Chun, 2018) allows to train the denoiser using only noisy images. Specifically, instead of
MSE(zθ(x),xgt) = ∥zθ(x)− xgt∥2, we use:

SURE(zθ(x)) = ∥zθ(x)− x∥2 − dσ2 + 2σ2
d∑

i=1

∂

∂xi
zθ(x),

which obeys E[SURE(zθ(x))] = E[MSE(zθ(x),xgt)] for x|xgt ∼ N (xgt, σ
2I). We use the

common practice of approximating the divergence term with g⊤(zθ(x+ ϵg)− zθ(x))/ϵ, where ϵ
is small and g ∼ N (0, I) is drawn per optimizer iteration. Additionally, we use: batch size 64 and
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1000 epochs; Adam optimizer; learning rate: 0.0001; learning rate decay: 0.5 at iterations 20k, 40k,
60k, 80k, 100k, and 200k.

The results for the setup with the SURE-based denoiser are presented in Figure 5. It can be seen that
they resemble the results for the MSE-based denoiser, which are presented in Section 4.

C.5 NUMERICAL ACCURACY RESULTS

In the following Tables 1 and 2 we report accuracy results related to Figure 2.

Ntrain Error without denoising (%) Error with denoising (%)
1000 71.12 ±1.39 63.32 ±0.96
2000 64.91 ±1.44 58.14 ±1.41
3000 63.19 ±1.21 54.62 ±0.37
5000 60.43 ±1.42 49.79 ±1.80
10000 46.15 ±0.81 42.43 ±0.25
15000 42.14 ±0.8 39.74 ±0.40
25000 38.48 ±0.29 36.02 ±0.38
35000 35.77 ±0.30 33.83 ±0.25

Table 1: Classification error rates (%) on noisy and denoised CIFAR-10 images for varying training
set sizes Ntrain. The noise level is σ = 0.25, γ = 1, and the denoiser is trained with MSE loss.

Ntrain Error without denoising (%) Error with denoising (%)
1000 74.45 ± 0.81 64.82 ± 1.14
2000 71.01 ± 2.00 61.25 ± 0.90
3000 67.86 ± 1.46 58.30 ± 0.66
5000 64.98 ± 1.21 56.24 ± 2.03
10000 54.70 ± 1.14 49.64 ± 0.50
15000 50.30 ± 0.47 47.34 ± 0.41
25000 47.65 ± 0.37 45.14 ± 0.43
35000 45.40 ± 0.33 43.21 ± 0.20

Table 2: Classification error rates (%) on noisy and denoised CIFAR-10 images for varying training
set sizes Ntrain. The noise level is σ = 0.4, γ = 1, and the denoiser is trained using MSE loss.

Figure 4 shows the classification error vs. the training epoch in a single trial for noise level 0.25,
γ = 1 and 35,000 training images. It demonstrates that the classifier does not suffer from overfitting.

(a) Noisy data (b) Denoised data

Figure 4: Training and testing error as a function of epochs for (a) noisy data and (b) denoised data.
The noise level is σ = 0.25, γ = 1, and Ntrain = 35,000. The denoiser is trained using MSE loss.
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(a) σ = 0.25, γ = 1 (b) σ = 0.4, γ = 1

(c) σ = 0.25, γ = 0.75 (d) σ = 0.4, γ = 0.75

(e) σ = 0.25, γ = 0.5 (f) σ = 0.4, γ = 0.5

Figure 5: Practical deep learning setup with noisy CIFAR-10 and SURE-based denoiser. Efficiency
of the data processing procedure versus the number of training samples for various values of the
training imbalance factor, γ, and the standard deviation of the noise, σ.

D ADDITIONAL EMPIRICAL DETAILS AND RESULTS (MINI-IMAGENET,
ENCODING)

D.1 EXPERIMENTS COMPUTE RESOURCES

We conducted our experiments using 16 NVIDIA Tesla V100-SXM2 GPUs with 32GB memory, 12
NVIDIA RTX 6000 Ada Generation GPUs with 48GB memory, and 2 NVIDIA A100 PCIe GPUs
with 80GB memory. The training time for each data point in Figures 3 and 7 ranged from 10 hours to
30 hours, depending on the number of training samples.
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(a) σ = 0.25, γ = 0.75 (b) σ = 0.4, γ = 0.75

(c) σ = 0.25, γ = 0.5 (d) σ = 0.4, γ = 0.5

Figure 6: Practical deep learning setup with noisy CIFAR-10 and MSE-based denoiser. Efficiency of
the data processing procedure versus the number of training samples for various values of the training
imbalance factor, γ ∈ {0.5, 0.75}, and the standard deviation of the noise, σ.

D.2 TRAINING THE CLASSIFIER

We consider the Mini-ImageNet dataset and the ResNet50 model. To train the model, we use: batch
size 128 and 225 epochs; cross-entropy loss; SGD optimizer; learning rate: 0.0679; learning rate
decay: 0.1 at epochs 75 and 150; momentum: 0.9; weight decay: 0.0005. This setting yields 73%
accuracy for clean data.

Per noise level σ ∈ { 50

255
,
100

255
} of the additive Gaussian noise that has been added to the data, we

use this setting to train one classifier that operates directly on the noisy data.

D.3 TRAINING THE ENCODER

For self-supervised learning, we adopt the DINOv2 framework (Lu et al., 2025). The student encoder
is a Vision Transformer (ViT-S/16), which splits each input image of size 224×224 into 16×16
patches and produces a 384-dimensional [CLS] token representation. This is passed through a 3-layer
MLP projection head to produce the final 256-dimensional embedding (z ∈ R256), which is used
for self-supervised training. The teacher network has the same architecture and is updated as an
exponential moving average of the student, providing stable target embeddings. Training is performed
on the Mini-ImageNet dataset for 200 epochs with a per-GPU batch size of 40. We apply the AdamW
optimizer with a base learning rate of 0.004 (scaled with the square root of the effective batch
size), β = (0.9, 0.999), weight decay scheduled from 0.04 to 0.4, and gradient clipping at 3.0. The
teacher momentum is linearly increased from 0.992 to 1.0 over training. Multi-crop augmentation is
employed with 2 global crops of size 224×224 and 8 local crops of size 96×96. Model evaluation is
conducted every 6,250 iterations.
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(a) σ = 50
255

, γ = 0.75 (b) σ = 100
255

, γ = 0.75

(c) σ = 50
255

, γ = 0.5 (d) σ = 100
255

, γ = 0.5

Figure 7: Practical deep learning setup with noisy Mini-ImageNet and pre-classification encoding.
Efficiency of the data processing procedure versus the number of training samples for various values
of the training imbalance factor, γ ∈ {0.5, 0.75}, and the standard deviation of the noise, σ.

D.4 TRAINING AN MLP ON TOP OF THE EMBEDDINGS

Per noise level σ ∈ { 50

255
,
100

255
}, after training the DINOv2 encoder, we pass the noisy Mini-

ImageNet images through the encoder to obtain 256-dimensional embeddings. On top of these
embeddings, we train a multi-layer perceptron (MLP) classifier to perform image classification.
The MLP consists of three hidden layers with dimensions 4096, 2048, and 1024, each followed by
LayerNorm and GELU activation, and a final linear layer mapping to the number of classes (i.e. 100).
Hidden layers are initialized with Xavier uniform, and the final layer with a small normal distribution.

To train the model, we use: per-GPU batch size 128 and 20 epochs, with 1250 iterations per epoch;
cross-entropy loss; SGD optimizer with a cosine annealing learning rate schedule; momentum: 0.9;
no weight decay. Linear evaluation is performed with periodic check-pointing and evaluation on the
validation set. After training, the classifier is evaluated on the test set to report final accuracy.

The results for the setup with γ < 1 are presented in Figure 7. It can be seen that they resemble the
results in 3: 1) similar non-monotonicity of the curve while remaining positive, and 2) the maximal
efficiency increases with the SNR, for fixed γ.

D.5 NUMERICAL ACCURACY RESULTS

In the following Tables 3 and 4 we report accuracy results related to Figure 3. Lastly, in Figure 8 we
present an image of noisy data for σ ∈ {50/255, 100/255}, to show that the noise is not too-severe.

E ADDITIONAL EMPIRICAL DETAILS AND RESULTS (CIFAR-10, ENCODING)

We investigate the CIFAR-10 dataset and the ResNet18 model. Both the training and test sets are
subjected to additive Gaussian noise with standard deviations σ ∈ {0.25, 0.4}. This time, as the
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Ntrain Error without encoding (%) Error with encoding (%)
5000 80.03 ±1.25 48.67 ±0.48

10000 74.56 ±1.12 45.03 ±0.27
20000 58.81 ±0.45 41.45 ±0.29
30000 49.92 ±0.8 39.23 ±0.39
40000 44.95 ±1.37 37.99 ±0.31
50000 40.07 ±0.58 36.62 ±0.25

Table 3: Classification error rates (%) on noisy and encoded Mini-ImageNet images for varying
training set sizes Ntrain. The noise level is σ = 50

255 , γ = 1.

Ntrain Error without encoding (%) Error with encoding (%)
5000 85.5 ±0.95 60.94 ±0.25

10000 79.71 ±1.73 57.28 ±0.23
20000 68.47 ±2.15 53 ±0.27
30000 58.39 ±1.77 50.92 ±0.31
40000 54.62 ±0.08 49.35 ±0.34
50000 50.01 ±0.56 48.23 ±0.27

Table 4: Classification error rates (%) on noisy and encoded Mini-ImageNet images for varying
training set sizes Ntrain. The noise level is σ = 100

255 , γ = 1.

(a) clean

(b) σ = 50
255

(c) σ = 100
255

Figure 8: Clean and noisy Mini-ImageNet images. (a) Clean image. (b) Image with Gaussian noise
σ = 50

255 . (c) Image with Gaussian noise σ = 100
255 .
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(a) σ = 0.25, γ = 1 (b) σ = 0.4, γ = 1

Figure 9: Noisy CIFAR-10 and pre-classification encoding. Efficiency versus Ntrain.

Figure 10: The theoretical setup. Efficiency of the data processing procedure versus the number of
training samples Ntrain, for various values of the training imbalance factor γ, and SNR of S = 1.

data processing procedure we use an encoding step that maps each image (rescaled from its original
CIFAR-10 resolution to 224× 224) into a 256-dimensional embedding. This encoder model follows
(Lu et al., 2025) and is trained from scratch with self-supervision on 45000 noisy unlabeled images
for each noise level. Then, for each combination of (σ,Ntrain), considering the balanced case of
γ = 1, we divide Ntrain equally among all 10 classes. Then, we train a ResNet18 model on the noisy
images across 6 seeds and, in parallel, a small MLP on the corresponding embeddings across 3 seeds.
After we have the mean of the probability of error before and after the data processing, we compute
the empirical efficiency, i.e., the relative percentage change in the probability of error induced by
the encoding step. Details of the training procedures for the ResNet18 and the MLP are provided in
Appendix C and D, respectively.

Figure 9 presents the efficiency versus Ntrain, for γ = 1. We see the same trends that are aligned with
our theory as before: 1) similar non-monotonicity of the curve (increase to a maximal efficiency value
and then decrease) while remaining positive, and 2) the maximal efficiency increases with the SNR.

F EXTENDED EMPIRICAL VERIFICATION

In this section, we extend our empirical verification. In Figure 10, we simulate the theoretical setup,
as in 3.3 (we use d = 2000, k = 1000 and σ = 1), but with S = 1. We see that the empirical
efficiency coincides with the theoretical efficiency.

We now examine the effect of S on efficiency. We fix γ = 1, d = 2000, k = 1000 and vary
S ∈ {0.52, 1, 1.52}. The results are presented in Figure 11. Let us discuss the results. We see that for
Ntrain ≫ 1 (in the right Figure), for larger SNR (lower noise level), the efficiency decreases. However,
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(a) Ntrain ≤ 10, 000 (b) 10, 000 ≤ Ntrain ≤ 50, 000

Figure 11: Extended simulation of the theoretical setup. Efficiency of the data processing versus the
number of training samples Ntrain, for γ = 1, and various values of the SNR, S, for (a) low samples
regime, and (b) high samples regime.

Figure 12: The theoretical setup. Efficiency of the data processing procedure versus the number of
training samples Ntrain, for various values of the training imbalance factor, γ, and SNR of S = 1.

as 8 suggests, when the number of samples is limited, and for larger SNR (lower noise level), the
efficiency increases. We notice this phenomenon in the left Figure, presenting low Ntrain, compared
to the right Figure. First, the efficiency increases with the SNRs, and then as Ntrain gets larger, the
dependency flips. We also see a different behavior that sheds more light on this conclusion: the
difference between different SNRs is larger in the low-samples region than the inverse relation in
the high-samples region. This concludes the non-monotonic and non-intuitive dependency of the
efficiency on the SNR.

In addition, we examine the effect of d− k on efficiency. We fix γ = 1, d = 2000,S = 1 and vary
k ∈ {500, 1000, 1500}. The results are presented in Figure 12. We see that larger d− k corresponds
to greater accuracy. Theorem 7 proves this for Ntrain ≫ 1, but we see that this is true even for small
Ntrain. Indeed, intuitively, reducing more dimensions is advantageous in terms of efficiency. This
suggests that there is a direct monotonic relationship between the efficiency and d− k.

We now consider the same setting as in the empirical verification (d = 2000, k = 1000, σ = 1,
γ ∈ {0.25, 0.5, 1}, S ∈ {0.752, 1, 1.52}), but per Ntrain, the data processing matrix A is learned
from 50,000 unlabeled samples using the algorithm described in the proof of Theorem 3. The
corresponding results are shown in Figure 13, demonstrating the same trends as the theoretical
efficiency. Moreover, as the number of unlabeled samples tends to infinity, the two curves coincide.
To illustrate this, we also present results for the case that per Ntrain, the data processing matrix A
is learned from 5,000,000 unlabeled samples in Figure 14. Notice that as the amount of unlabeled
samples available grows, the gap between the theoretical efficiency and the empirical efficiency is
reduced.

Finally, we visualize the action of A : R2 → R on the GMM data in Figure 15. While our analysis
considers the regime d > k ≫ 1, as is common in practice, we use small values of d = 2 and k = 1
to enable visualization.

Recall that the plug-in classifier, before and after the data processing, depends only on the distance
of a test sample from each of the empirical means. Without processing, these empirical means

are given by µ̂j = 1
Nj

∑Nj

i=1
xi,j and hence distributed as µ̂j ∼ N

(
µj ,

σ2

Nj
Id

)
. Similarly, after
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(a) S = 0.752 (b) S = 1

(c) S = 1.52

Figure 13: Extended empirical verification - per Ntrain,A is learned from 50,000 unlabeled examples.
Presented for (a) S = 0.752, (b) S = 1 and (c) S = 1.52.

processing by A : Rd → Rk, the empirical means obey Aµ̂j ∼ N
(
Aµj ,

σ2

Nj
Ik

)
, where the

semi-orthonormality AA⊤ = Ik is used. Consequently,

E
[
∥µ̂j − µj∥2

]
=

d∑
i=1

E
[
([µ̂j ]i − [µj ]i)

2
]
=

d∑
i=1

σ2

Nj
=

σ2

Nj
d

where we used [µ̂j ]i − [µj ]i ∼ N
(
0, σ2

Nj

)
. Similarly, E

[
∥Aµ̂j −Aµj∥2

]
=

σ2

Nj
k.

The data processing lowers the dimension from d to k, and thus improves the average squared error
of the mean estimator by

σ2

N
(d− k) > 0.

Since the classifier, before and after the data processing, depends only on the distance of the test
sample from each of the empirical means, its accuracy increases when the accuracy of the empirical
means improves while the distance between the means of the difference classes does not significantly
reduce (i.e., ∥Aµ̂2−Aµ̂1∥ ≈ ∥µ̂2−µ̂1∥ ). The latter is accounted for by the property ∥Aµ∥ = ∥µ∥
of the operator.

Note that this behavior is observed in Figure 15:

• In the red class, the distance between the empirical mean and the real mean is 0.4632 before
applying A and 0.39 after applying A.

• In the blue class, the distance between the empirical mean and the real mean is 0.439 before
applying A and 0.38 after applying A.

• The distance between the empirical means of the different classes is 4.0374 before applying
A and 4.01 after applying A. Indeed, both are close to the distance between the real means,
which is 4.
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(a) S = 0.752 (b) S = 1

(c) S = 1.52

Figure 14: Extended empirical verification - per Ntrain,A is learned from 5,000,000 unlabeled
examples. Presented for (a) S = 0.752, (b) S = 1 and (c) S = 1.52.

That is, A preserves the separation quality of the classes, while improving the estimation quality of
µ.
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(a) The original data, sampled from GMM in R2 with µ1 = −µ2 = (2, 0)⊤, σ = 1, and Ntrain = 30. The true
means {µ1,µ2} are marked by black ‘X’s and the empirical means {µ̂1, µ̂2} are marked by green diamonds.
The learned decision boundary is marked by the dashed line (determined by the distance to the empirical means).

(b) The data after applying A ∈ R1×2 (in this case, projection onto the x-axis). As before, the true means
{Aµ1,Aµ2} are marked by black ‘X’s and the empirical means {Aµ̂1,Aµ̂2} are marked by green diamonds.

Figure 15: Visualization of the effect of A : R2 → R. Note that the empirical means (green
diamonds) are closer to the true means (black ‘X’s) after the operation A. The distance between the
empirical means of the different classes remains similar.
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