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Abstract

Users often want to augment entities in their datasets with relevant information
from external data sources. As many external sources are accessible only via
keyword-search interfaces, a user usually has to manually formulate a keyword
query that extracts relevant information for each entity. This is challenging as
many data sources contain numerous tuples, only a small fraction of which may
be relevant. Moreover, different datasets may represent the same information in
distinct forms and under different terms. In such cases, it is difficult to formulate
a query that precisely retrieves information relevant to a specific entity. Current
methods for information enrichment mainly rely on resource-intensive manual
effort to formulate queries to discover relevant information. However, it is often
important for users to get initial answers quickly and without substantial investment
in resources (such as human attention). We propose a progressive approach to
discovering entity-relevant information from external sources with minimal expert
intervention. It leverages end users’ feedback to progressively learn how to retrieve
information relevant to each entity in a dataset from external data sources. To
bootstrap performance, we use a pre-trained large language model (LLM) to
produce rich representations of entities. We evaluate the use of parameter efficient
techniques for aligning the LLM’s representations with our downstream task of
online query policy learning and find that even lightweight fine-tuning methods
can effectively adapt encodings to domain-specific data.

1 Introduction

There is a recognized need to collect and connect information from a variety of data sources [5, 13, 10].
For example, we have recently worked in a large-scale NIH-funded project to augment the information
of biomedical entities by querying other biomedical data sources [32]. The focus of this project
is to repurpose current drugs to treat the symptoms of diseases for which there is insufficient time
or resources to develop new treatments [1]. Biomedical researchers often have some local dataset
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Figure 1: An example of our framework for a single user and single external data source. The user
selects (by query, GUI, etc,.) the local entity Zoloft. The mediator uses its learned query policy to
extract the relevant entity (Sertraline) from the external source. The user provides relevance feedback
on the results, which is then used to further refine the mediator’s querying policy.

of available drugs. Given a drug in their dataset, a researcher usually needs to query external data
sources to find additional information about the drug.

Due to a lack of access or resources, external information often must be retrieved through querying
[5, 30]. Many external datasets are only accessible via query interfaces or APIs. Even with access, it
may require too much of a resource (e.g., storage space, time) to download and maintain an up-to-date
copy of the external dataset. Thus, information relevant to some local entity must often be gathered
on a as-needed basis by querying external data sources. For example, the users of the aforementioned
drug repurposing data collection system must often query the information relevant to their current
drug of interest through query APIs.

However, formulating a query that extracts specific information can be troublesome. Different data
sources often represent the same concept in distinct forms [6]. Thus, one needs to tailor their query
to specific data sources. Figure 1 illustrates a case where users have a local dataset of FDA-approved
uses of drugs and would like to query an external data source that contains the off-label uses of those
drugs. A drug that is identified by one of its brand names (e.g., Zoloft) in FDA-Approved Uses is
referred to by its generic name (e.g., Sertraline) in Off-Label Uses. Due to heterogeneities, one may
not know how to query for a specific external entity prior to investigating the content and structure of
data in the external source. Consider a biomedical researcher who seeks more information about the
drug Zoloft. Since they are only aware of the structure and content of their local dataset, they query
the external data source for Zoloft, but this elicits no results. They try again using a more general
description of Zoloft (i.e., being a serotonin reuptake inhibitor). However, their under-specified query
produces many results, most of which are irrelevant. After additional trial-and-error, they find a query
that retrieves Sertraline. More work is required to then merge the local and external entities into one
coherent representation.

Manually querying for specific external entities requires too much work. Continuing our example,
if the researcher needs more information for another drug in their local dataset, they will need to
repeat the process. Moreover, if they need information from multiple external data sources, then the
work required to query for each drug is exacerbated. Furthermore, other researchers with similar
information needs must repeat the same such work themselves.

To alleviate the burden, one can use a shared system that automates query formulation. This
mediator system acts as a go-between for users and external data sources: a user specifies a local
entity (e.g., Zoloft) perhaps through a query or a graphical user interface, and the mediator maps the
local entity to queries that retrieve the relevant external entities (e.g., Sertraline) from their respective
external sources.

To the best of our knowledge, such mediators are currently created by manually writing programs
that generate queries for specific external sources. These programs consist of rules that cannot
necessarily be reused across data sources. Thus, they require a significant amount of labor and expert
attention to build and maintain. Instead of conducting their own research, biomedical researchers in
our NIH-funded project spend most of their time writing and maintaining these programs.

In this paper, we learn the mediator’s query policy online through user interaction. As illustrated in
Figure 1, after the user specifies a local entity, the mediator formulates a query to retrieve records
from an external source according to its query policy and shows the returned external records to the
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user. The user then provides feedback on the relevance of the returned records to the local entity. The
mediator then uses this feedback to improve its query policy.

Of course, online learning of query policies has its own set of challenges. First, the mediator must
learn a sufficiently effective policy in the short run so users will continue providing feedback. This
challenge is easier to meet when the users’ only alternative is tiresome (i.e., manually submitting
queries for many local entities) or there are many users providing feedback. Second, the mediator
should continue leveraging user feedback to find increasingly effective policies in the long run
(i.e., it should not be prone to under-fitting to local entities). To help overcome these challenges,
we use a pretrained large language model (LLM) to extract features from local entities and terms.
Through pretraining, LLMs encode linguistic knowledge within the rich representations of their
outputs. However, to get the most out of an LLM, its output representations should be adjusted to suit
the specific task and domain. This is commonly done through finetuning, where the weights of the
LLM are trained jointly with the task-specific model. However, finetuning is resource-intensive and
may overwrite the LLM’s knowledge [24]. Thus, in this paper, we evaluate more parameter efficient
techniques for our online setting.

We present a framework for on-demand collection of relevant external entities only accessible via
query interfaces (Section 2) and define the problem of online query-policy learning within the context
of the aforementioned framework (Section 2.1). Due to the wide-spread use of keyword query
interfaces over external sources, we use an online learning method for formulating keyword queries.
We evaluate prefix tuning and attribute encoding as parameter efficient techniques for boosting the
performance of an LLM-based query policy learner over four pairs of real-world datasets. We find
that even lightweight fine-tuning methods, specifically prefix tuning, can effectively adapt encodings
to domain-specific data.

2 General Framework
The mediator wraps the local dataset and the query interface over the external data source. We
assume the mediator has full access to the local dataset, but can only access external datasets through
their query interfaces. Given a user-specified entity from the local dataset, the mediator must devise
and submit a query to the interface to extract external entities relevant to the given local entity. This
framework is not tied to a particular method by which a user specifies the local entity (e.g., through
query or GUI).

Local Dataset. To simplify our exposition, we assume the local dataset is a single relational table
where each tuple stores information about a distinct entity. One may extend our approach to multi-
relational datasets by defining an entity as the join of its related tuples. We denote the set of local
dataset entities as E .

External Dataset. Like the local dataset, we model the external dataset as a set of entities (i.e.,
tuples). Given local entity e and external dataset D, X(e) ∈ D represents the external entity that
is relevant to the local one. The definition of "relevant entity" is domain-dependent (e.g., a clinical
trial is relevant to the drug that it concerns). For notational convenience, we assume one relevant
external entity exists for each local entity, however, in the case of more than one, we can easily
extend X(e) to be the set of all relevant entities. If no relevant entities exist, then extracting X(e) is
impossible regardless of the method used. Thus, to accurately evaluate our methods, we assume that
X(e) always exists.
Example 2.1. Figure 1 shows excerpts of a local (left) and an external (right) dataset. E consists
of all drugs in FDA-Approved Uses. If e is Zoloft then the relevant tuple X(e) in Off-Label Uses is
Sertraline. We show the content of X(e) for explanation’s sake. In a real setting, the content of X(e)
would not be known a priori.

Querying Policy. We call the queries submitted by the mediator to the external data source mediator
queries. We denote the set of all possible mediator queries as Q. The precise definition of Q varies
based on the characteristics and capabilities of the external query interfaces. A querying policy
(policy) is a mapping π : E → Q. To our knowledge, policies are traditionally written manually.
Example 2.2. Given e = Zoloft, the mediator must devise a keyword query to extract X(e) =
Sertraline. One policy is to use the content of the input entity (Zoloft) within the output mediator
query. However, the terms in Brand are likely unique to the local dataset. Given this observation,
assume the policy ignores terms in Brand and maps e (Zoloft) to the keyword query "serotonin
depression panic".

3



Query Result. External query interfaces usually return results of query q as a list of entities inversely
sorted based on the degree by which the query interface deems the entities relevant to q. More
precisely, the result of query q ∈ Q, D[q], is a list of entities in D.

Query Effectiveness. Ideally, we would like the mediator query q submitted for local entity e to
return the external entity relevant to e (i.e., X(e) is placed in a relatively high position in D[q]).
Given mediator query q for local entity e, we define the effectiveness of q over external dataset D as
a real-valued function f(X(e), D[q]) whose range is in [0, 1]. The precise mechanics of f depends
on the domain. For instance, there are standard metrics in information retrieval and data management
to measure how effectively queries achieve this goal given their returned results [23]. For example,
precision@k is the fraction of relevant answers in the top-k returned results. Another frequently used
metric is reciprocal rank (RR) 1

r where r is the position of the first relevant answer. One metric may
be more appropriate than another for a specific setting. For instance, reciprocal rank may be a better
indication of effectiveness than precision@k if there are at most a couple relevant answers to the
query. One can choose f based on the domain. In this paper, we use reciprocal rank.

Example 2.3. The mediator submits q = "serotonin depression panic" to the query interface over the
external dataset in Figure 1, which returns the ranked results D[q] = (Paroxetine, Sertraline). Since
X(e) = Sertraline, the reciprocal rank of these results would be 1

2 .

Effectiveness of Policy. A mediator’s policy is evaluated based on the effectiveness of the queries
it produces. More formally, the effectiveness of policy π for local dataset E and external dataset D
is F (E , D, π) =

∑
e∈E

P (e) f(X(e), D[π(e)]) where P (.) is the prior probability of choosing local

entities for augmentation by users.

2.1 Learning Query Policy Progressively

We propose a method for learning this querying policy progressively. In our online approach, external
relevant information would be presented to the user on-demand as they identify entities of interest in
the local dataset [21].

Algorithm 1 describes the mediator’s procedure for online query-policy learning. The mediator is
involved in a series of interactions with the external data source D and a group of local data source
users. The t′th interaction is initiated by sampling a local entity for augmentation. How et is sampled
can reflect a local user’s preference for augmenting that specific entity at time t. The mediator uses its
current policy πt to map et to query qt. It then submits this query to the external data source to obtain
a ordered list of results d. Since query interfaces often enforce a top-k constraint on their results
[16, 7], we assume that |d| ≤ k. The mediator presents d to the user and evaluates its effectiveness
ft per the user’s feedback. The feedback may be explicit (click-through [28]) or implicit (skipping
results [17]). The mediator uses ft to update its policy and find progressively more effective policies
over time.

Algorithm 1 Mediator (Online Query Policy Learning)

1: for t = 1, 2, 3,...,T do
2: Observe local entity et sampled from E
3: qt ← πt(et)
4: d← D[qt] ▷ Results over external data source D
5: Present results to user.
6: Observe degree of effectiveness ft ← f(X(et),d)
7: πt+1 ← updateπ(ft)

Objective Function. The objective of the mediator is to find policies that optimize some function
B(.). There are many options for B(.), such as regret [27]. In this work, we seek to balance the short-
and long-run effectiveness as measured by reciprocal rank. Thus, it is not enough that the mediator
eventually find an effective policy: it must also produce reasonably effective results along the way.

Challenges. To balance short- and long run-effectiveness, a mediator must overcome two challenges.
First, it must balance exploration and exploitation. If it exploits the best queries found thus far, it may
ignore more effective queries; if it strictly explores until it has found the optimal queries then it will
likely formulate many ineffective queries in the process. Second, it must maintain user engagement.
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It might not be possible to find an effective policy in few interactions. Nonetheless, users may stop
providing feedback if the policies perform poorly even after a modest amount of feedback is provided.

Keyword Query Interface and Results. A keyword query q is a finite string comprised of terms.
The number of terms in a query is its length ℓ. To save resources, query interfaces might limit the
number of terms in their input queries. For example, Yelp!’s Fusion API and Google.com have limits
of 8 and 32 terms respectively. We assume that all queries submitted to an external data source
D have a given fixed length. Unlike formal query languages, such as SQL, keyword queries are
inherently vague [23, 16]. Thus, formulating precise keyword queries can be challenging.

Managing the Policy Space. The space of potential policies is correlated with the size of Q: the
larger Q is, the more ways that local entities can be mapped to queries. To make our policy space
more manageable for our online setting, we both prune Q and take a term-centric approach when
mapping entities to queries.

For any input local entity, only a small subset ofQ will be useful. In order to remove many ineffective
queries, we consider only those queries that express the input local entity. We define an entity-
dependent co-domain Qe ⊆ Q. Let L(e) be the set of terms within the content of e. For every entity
e ∈ E , Qe contains every possible concatenation of distinct terms k ∈ L(e). Qe might not contain a
maximally effective query, but given that relevant entities from related domains often share terms, a
reasonably effective query may still be found in many cases.

We also leverage the fact that many queries overlap with respect to their contents. Intuitively speaking,
if a subset of terms is shared across effective queries for an entity e, then it is likely that same
subset that has contributed to each query’s effectiveness. Following this logic, our methods track
the effectiveness of terms used within queries. We assume that terms influence query effectiveness
independently. This assumption allows our policies to construct queries term-by-term based on each
individual term’s effectiveness.

Merging Local and External Information. One might have to merge local data with its relevant
external data by performing other steps of data integration, such as schema matching [5]. However, it
takes more than one paper to investigate all steps of data integration. Thus, we assume that in these
settings, users leverage existing data integration tools to create the final dataset and focus on the task
of collecting information from external sources effectively.

3 LLM-Based Query Learning

Figure 1 illustrates a single interaction of online query policy learning. The mediator’s policy is
refined progressively over many interactions with the objective of maximizing the mean reciprocal
rank (MRR) of its queries. As discussed in Section 1, an optimal method would overcome two major
obstacles. First, it would maintain user engagement by producing effective queries in the short run.
Second, it would have the capacity to improve its policy in the long run.

We use a pretrained large language model (LLM) to help meet the aforementioned challenges. The
model may benefit from the LLM’s rich representations of tuples and terms, boosting the model’s
early performance while also allowing it to fit to the diversity of local entities over time.

Encoding Tuples and Scoring Terms. Given an entity e, we concatenate its terms into a single string
s and pass it through an LLM after standard byte-pair-encoding tokenization. The LLM produces a
sentence-contextualized representation hi for each input token. Note that the byte-pair-encoding may
break terms into multiple inputs or terms may appear multiple times in the entity, so to produce feature
hi corresponding to term ki, the output encodings of all these instance are averaged. For convenience,
we write this process as: h1, ..., hn = LM(s). These representations capture information about each
term given the context of all terms within the entity. However, they lack contextual information about
the local data source. Thus, we add this information post-encoding.

We define a feature vector At(ki, e), which contains distributional and schematic features of terms
relative to the local source. One such feature is Inverse document Frequency (IDF). Let Dataset
Frequency (DF) of a term denote the fraction of entities in the local dataset in which the term
appears. IDF of a term is the inverse of its DF, and it quantifies how well that term identifies the
entity within the dataset. At(ki, et) is concatenated onto each corresponding representation forming
ci = [At(ki, et), hi] where [·, ·] denotes concatenation. Vector ci is then passed through a small fully
connected layer to predict reciprocal rank ri for each term.
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Table 1: Details of datasets used in our evaluation.

dataset source attributes avg. terms entities #relevant

Drugs Local drugName, condition, review 108 13,725
External page_title, wikipedia_summary 168 46,976 413

WDC Local category, brand, prod_title, description, ... 67 57,109
External category, brand, prod_title, description, ... 72 55,247 55,247

ChEBI Local name, description, indication, pharmacodynamics, ... 178 5,483
External status, name, definition, charge, formula, mass, ... 73 189,467 5,753

CORD-19 Local abstract 305 250,575
External sha, source_x, paper_title, doi, pmcid, ... 48 340,826 250,575

As discussed in Section 1, we desire parameter efficient methods for adjusting the output of the LLM
to our specific task and data. We consider two such methods: prefix tuning and attribute embeddings.

Prefix Tuning. We use prefix tuning as an alternative to updating all weights of the LLM [18]. Before
passing the base encoding of entity e (i.e., s) through the LLM, we prepend a prompt consisting of d
vectors onto s. This contextualizes the output of all tokens in s on this continuous prompt. Feedback
is propagated back to these d vectors to update them, resulting in downstream representations that are
increasingly more aligned with our objective.

Attribute Embeddings. To inject the structural information of local entity e within its downstream
representation, we adjust the base encoding of s prior to passing it through the LLM [8]. Each
attribute (column) within the local dataset is encoded as a vector. These vectors are then added to
tokens to provide attribute information. As in prefix tuning, these encodings are updated based on
feedback.

Selecting Queries and Updating. To encourage exploration, we apply an ϵ-greedy approach to query
formulation [27] — selecting either the next-highest-scoring term or, with probability ϵ, a random
term until the desired query length is achieved. User feedback (i.e., reciprocal rank or RR) is used
as a prediction target for all query terms appearing in the returned external matches. Unobserved
terms have targets of 0 assigned. These term-entity-RR tuples are added to a first-in-first-out buffer
of examples for the last 30 observed queries. We train the model by stochastic gradient descent with
batches of 8 samples from the buffer at each interaction.

We use a pretrained Longformer model from the Huggingface Transformers library. Parameters are
trained using Pytorch’s implementation of Adam with default hyper-parameters.

4 Empirical Evaluation

We evaluate our modles over the datasets listed in Table 1. Each one contains a local and an external
source. We include the entity count and the average number of terms per entity. Each local entity has
at least one relevant external entity, but some external sources have additional irrelevant entities that
can appear in results. Thus, we also specify the number of relevant external entities. ChEBI is derived
from sources used in the NIH project discussed in Section 1. The local source uses DrugBank data,
which contains molecular information about drugs [31]. The external source uses ChEBI data, which
contains molecular entities used to intervene in the processes of organisms [15]. WDC is derived
from the English WDC Product corpus, containing products scraped from many sites [25]. CORD-19
contains research records related to COVID-19 [29]. We split CORD-19 into two sources: one
containing abstracts (local) and one containing the remaining attributes (external). Drugs contains
reviews from Drugs.com (local) [14] and descriptions of the same drugs in Wikipedia (external).

Interactions. We simulate a series of interactions. Each interaction is initiated by sampling a local
entity. Given the entity, the mediator generates a query of length ℓ and submits it to the external
source, which returns its top-20 results using BM25. The query is then scored based on simulated
feedback (i.e., ground truth).

Sampling. Entity preference tends to follow a Zipf distribution 1/is where i popularity rank and
s ≈ 1 [4]. Thus, users request the i′th most popular entity approximately twice as often as the
(i+ 1)′th most popular entity. We simulate user preference by sampling local entities from a Zipf
distribution (s = 1). We randomly assign popularity, which is held constant across methods.
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(a) Drugs

(b) ChEBI

(c) CORD-19

Figure 2: Comparison of different configurations of the LLM model and NoLLM for ℓ = 16. LLM is
the base model whereas LLM (PT) uses prefix tuning, LLM (AE) uses attribute encoding, and LLM
(AE+PT) uses both techniques.

Evaluation Metric. We compute mean RR (MRR) as a sliding average over the previous 500
interactions. We report the average of five runs each comprising 2000 interactions. We plot this
average against the current interaction. We include error bands around each line to show an 80%
interval for standard error across runs.

Hyperparameters. We treat query length as a hyperparameter and use ℓ ∈ {4, 16}. We use d = 5
prefix tokens for prefix tuning along with a moderate amount of exploration (ϵ = 0.05).

Dataset-Level (NoLLM). We include the Dataset-Level model discussed in our previous work as
a baseline [2]. This model approximates the rewards of terms as a linear function of their features,
which includes the distributional and schematic discussed in Section 3.

Code and datasets can be found in our Github repository: https://github.com/bussch/
QueryBasedEntityAugmentation.
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4.1 Results

We seek to understand whether prefix tuning and attribute encoding lead to more effective query
policies. Figure 2 compares different configurations of the LLM-based model along with NoLMM for
ℓ = 16 over three datasets. The full set of results can be found in the appendix.

Though, no single configuration produces the best performance over all datasets, LLM (PT) is the
most consistently effective configuration. Over CORD-19, it outperforms all other configurations in
both the short- and long-runs. In other cases, its performance is similar to that of LLM. Compare this
with LLM (PT+AE) and LLM (AE) which often perform worse than either LLM or LLM (PT). This
suggests that prefix tuning is the more robust technique: it can improve performance over certain
datasets and does not significantly degrade performance over others.

One contributing factor to attribute encoding’s poor performance on most datasets may be the structure
of the datasets themselves. Since ChEBI has 21 attributes in total, it may benefit the use of attribute
encodings. On the other hand, we observe attribute encoding performing worse on CORD-19 and
Drugs. In contrast to ChEBI, the local sources for both Drugs and CORD-19 contain one long textual
field with few to no other attributes. Thus, the addition of attribute encoding devolves into simply
adding the same continuous vector onto most term embeddings.

Overall, our results illustrate that even light-weight fine-tuning methods can effectively adapt encod-
ings to domain-specific data. Since both ChEBI and CORD-19 are concerned with specific biomedical
domains, they likely contain vocabulary which was rarely seen during the LLM’s pre-training. We
find that prefix tuning enhances performance over both of these datasets. Despite this, NoLLM still
outperforms LLM (PT) over ChEBI. This may imply that more aggressive fine-tuning strategies are
required. However, these strategies might require too much feedback. Given the online nature of
our problem, it would likely be more beneficial to combine prefix tuning with other unsupervised
methods (e.g., using LLMs pre-trained over domain-relevant corpuses).

5 Related Work

Pay-as-you-go Data Integration. Researchers have proposed pay-as-you-go integration systems
that rely on user feedback [11, 34, 21]. Some systems use pay-as-you-go methods to construct a
unified schema and query interface over multiple databases [34]. The developer of this system uses
available schema-mapping and record-linking tools to explore the schema and content of datasets,
which requires access to the entire content of external dataset. We, however, do not have access to the
entire content of external dataset.

Data Discovery and Augmentation. Given a query table as input, data discovery methods seek
related tables within a large pool of tables (crawled from web, data lakes, companies with many tables
across multiple data sources) quickly [33, 36, 3, 9, 12, 26]. We, however, seek external information
relevant to each local entity. They often preprocess candidate corpora by building indexes across
(external) tables. This requires access to the full meta-data and content of external tables, which we
do not have in our setting.

Deep Web Crawling & Querying. Web crawlers aim at extracting information stored in external
data sources to organize it for future use (e.g., search [22, 30, 35, 7, 20]). Many Web data sources
can be accessed only via forms (i.e., deep Web). Researchers have proposed techniques that find a
minimal set of queries to crawl all tuples in these data sources [22, 7]. As opposed to our setting,
they do not consider the notion of relevance to a given entity. Some systems provide a unified query
interface over multiple Web forms so users can query these sources via a single interface [35, 7]. They
must preprocess these forms to translate queries across them. Our system, however, find information
relevant to local entities over keyword query interfaces. It also does not perform any preprocessing to
understand the query answering methods of the external sources.

Keyword Query Formulation. Researchers have proposed methods to automate keyword query
formulation without writing complicated source-specific programs [30]. However, these methods
assume that the external query interface is perfectly accurate and does not return any non-relevant
answers, which is not usually true [23, 19]. They do not consider the issue of data heterogeneity and
thus lack the ability to adjust their query formulation to account for it. The goal of these methods are
also different as they aim to find information related to an entire dataset rather than to an entity.
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Appendix A Comparison with four keywords

(a) Drugs

(b) WDC

(c) ChEBI

(d) CORD-19

Figure 3: Comparison of different configurations of the LLM model and NoLLM for ℓ = 4. LLM is
the base model whereas LLM (PT) uses prefix tuning, LLM (AE) uses attribute encoding, and LLM
(AE+PT) uses both techniques.
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Appendix B Comparison with sixteen keywords

(a) Drugs

(b) WDC

(c) ChEBI

(d) CORD-19

Figure 4: Comparison of different configurations of the LLM model and NoLLM for ℓ = 16. LLM is
the base model whereas LLM (PT) uses prefix tuning, LLM (AE) uses attribute encoding, and LLM
(AE+PT) uses both techniques.
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