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Abstract
This paper proposes two new techniques to im-
prove the accuracy of score estimation. The first
proposal is a new objective function called the
lifted score estimation objective, which serves as
a replacement for the score matching (SM) ob-
jective. Instead of minimizing the expected ℓ22-
distance between the learned and true score mod-
els, the proposed objective operates in the lifted
space of the outer-product of a vector-valued func-
tion with itself. The distance is defined as the ex-
pected squared Frobenius norm of the difference
between such matrix-valued objects induced by
the learned and true score functions. The second
idea is to model and learn the residual approxi-
mation error of the learned score estimator, given
a base score model architecture. We empirically
demonstrate that the combination of the two ideas
called lifted residual score estimation outperforms
sliced SM in training VAE and WAE with implicit
encoders, and denoising SM in training diffusion
models, as evaluated by downstream metrics of
sample quality such as the FID score.

1. Introduction
Score estimation, i.e., the task of estimating the gradient of
the log density of a data distribution s(x) = ∇x log p(x),
is a fundamental task in machine learning and statistics,
which has diverse applications in implicit generative model-
ing (Huszár, 2017; Warde-Farley & Bengio, 2022), training
of diffusion generative models (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song & Ermon, 2019) and learning un-
normalized density models (Hyvärinen, 2005), to name a
few. To this end, several parametric and non-parametric
score estimators have been proposed in recent years, the
most notable of which is the parametric score matching
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(SM) framework proposed by Hyvärinen (2005). Under
the hood, these methods are inherently minimizing the ex-
pected ℓ22-distance between the true score of the data and
the parametric estimate of the score.

Score matching is appealing in theory, as the objective does
not require explicit knowledge about the true score function.
However, it is computationally cumbersome due to its re-
liance on higher order derivatives of the estimator. In light
of this, several works such as sliced score matching (SSM)
(Song et al., 2020) and denoising score matching (DSM)
(Vincent, 2011) propose computational workarounds for
SM. Another line of research within this area is score es-
timation, typically with non-parametric methods. These
methods estimate the score by inverting Stein’s identity (Li
& Turner, 2018) and/or adopt a kernel estimator of the score
(Shi et al., 2018; Zhou et al., 2020).

In this paper, we propose two new ideas which are inde-
pendently applicable for different scenarios towards better
parametric score estimation. The first is a new parametric
score estimation technique. Inspired by a matrix-kernel
regression view for nonparametric score estimation (Zhou
et al., 2020), we estimate the score in the lifted space of the
outer-product of a vector valued function with itself. Our
score estimator, sθ(x) ≈ s(x) = ∇x log p(x), is learned by
minimizing the expected squared Frobenius norm between a
matrix-valued estimator sθ(x1)sθ(x2)

⊺ and a matrix-valued
target s(x1)s(x2)

⊺. We argue that this construction can
be interpreted as defining an optimal kernel in the matrix-
valued regression view and that the eigenfunction of this
kernel is the score. As we operate in the lifted space, we
call our estimation framework lifted score estimation (LSE).

We also independently propose another simple technique for
improving score estimation, which we call iterative residual
estimation. In practice, a parametric estimator could be
misspecified or limited in its expressivity, e.g., a specific
neural network architecture. To compensate for this, we
propose a new framework that decomposes the score as
s(x) ≈ sθ⋆1 (x)+ sθ⋆2 (x)+ . . .+ sθ⋆L(x), where each sθ⋆i (x)
for i > 1 models residual errors in the approximation.

We empirically demonstrate that implicit generative models
trained with LSE outperforms SSM in terms of sample qual-
ity measured by FID (Heusel et al., 2017) while diffusion
models trained with a noisy extension of LSE outperform
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DSM. Furthermore, extending both SSM and DSM with
only the residual score estimation framework also outper-
forms the non-residual baselines in terms of sample quality.
We thus propose to combine these two techniques to define
the lifted residual score estimator. To summarize, our main
contributions are as follows.

• New methods: We propose a new technique for score
estimation called residual LSE which combines two
novel methods — score estimation in the lifted space
(see §3.1) and iterative residual estimation (see §3.2).

• Empirical validation: We demonstrate through ex-
perimental results that residual LSE outperforms all
existing baselines in terms of FID for the task of im-
plicit generative modeling with VAEs (46.81 vs. 50.06)
and WAEs (44.36 vs. 47.44) (see §6.1). Our proposed
method also outperforms DSM in training diffusion
models on the CIFAR-10 dataset, as measured by FID
(6.04 vs. 8.65) (see §6.2).

Paper Organization. This paper is organized as follows.
The necessary prerequisites are introduced in §2. §3 moti-
vates and introduces the two central techniques in this paper
— lifted score estimation and iterative residual estimation.
We meticulously develop our proposed method for direct
score estimation in §4 and extend this to noisy score estima-
tion in §5. A summary of our empirical results is available
in §6. Additional details about our experiments, implemen-
tation and results can be found in Appendices D, E, F and
G. We finally end with a discussion and conclude with §7.

2. Preliminaries
We assume that there exists an underlying distribution with
a continuously differentiable density p(x) over X ⊂ RD,
where the score function is defined as

s(x) := ∇x log p(x) ∈ RD.

The goal of score estimation is to construct an estimator
ŝ(x) from data D = {x1, . . . ,xN} drawn from p(x). In
this paper, we particularly assume a class of parametric score
models {sθ(x) : θ ∈ Θ} such as neural networks, and aim
to find the best hypothesis from the class as a proxy to the
underlying score function s(x). Our goal is to develop im-
proved parametric score estimation methods, using insights
from nonparametric score estimation literature. Hence, in
this section, we provide a brief overview on the literature of
both parametric and nonparametric score estimation.

2.1. Parametric Score Estimation

Exact Score Matching. Hyvärinen (2005) proposed the
score matching (SM) objective, which we call exact SM to
distinguish it from the variants that follow,

LSM(sθ)

:=
1

2
(Ep(x)[∥s(x)− sθ(x)∥2]− Ep(x)[∥s(x)∥2])

= −Ep(x)[s(x)⊺sθ(x)] +
1

2
Ep(x)[∥sθ(x)∥2] (1)

(a)
= Ep(x)[tr(∇xsθ(x))] +

1

2
Ep(x)[∥sθ(x)∥2]. (2)

Here, (a) follows by integration by parts, under some mild
regularity conditions on the density p(x) and score function
s(x). While the SM framework provides a computable ob-
jective function, the computation often becomes demanding
due to the trace of the Jacobian tr(∇xsθ(x)).

Sliced Score Matching. As a solution, Song et al. (2020)
proposed an equivalent objective

LSSM(sθ)

:= Ep(x)p(v)[v⊺∇xsθ(x)v] +
1

2
Ep(x)[∥sθ(x)∥2]. (3)

Here, Hutchinson’s trick (Hutchinson, 1989) is applied to
the first term in (2), tr(∇xsθ(x)) = Ep(v)[v⊺∇xsθ(x)v],
where p(v) is a noise distribution over RD such that
Ep(v)[vv⊺] = ID. They called this computational trick
slicing and call the method sliced SM (SSM).

Denoising Score Matching. To avoid the computational
complexity of derivatives altogether, Vincent (2011) pro-
posed to estimate the score of a noisy version of the un-
derlying distribution. Formally, for a given conditional
distribution (or noisy channel) pσ(x̃|x) parameterized by
a noise parameter σ, let pσ(x̃) := Ep(x)[pσ(x̃|x)] de-
note the induced marginal distribution. We can then de-
fine sσ(x̃) := ∇x̃ log pσ(x̃) as the score of pσ(x̃) and
sσ(x̃|x) := ∇x̃ log p(x̃|x) as the conditional score func-
tion. Furthermore, let pσ(x|x̃) denote the induced condi-
tional from the joint p(x)pσ(x̃|x). Then, applying (1) on a
parametric score model x̃ 7→ sσ,θ(x̃) and the noisy score
sσ(x̃), the denoising SM (DSM) objective is derived as

LDSM(sσ,θ)

:= −Epσ(x̃)[sσ(x̃)⊺sσ,θ(x)] +
1

2
Epσ(x̃)[∥sσ,θ(x̃)∥2]

(b)
= −Ep(x)pσ(x̃|x)[sσ(x̃|x)⊺sσ,θ(x)] +

1

2
Ep(x)pσ(x̃|x)[∥sσ,θ(x̃)∥2], (4)

where we apply the (generalized) Tweedie’s formula
Epσ(x|x̃)[sσ(x̃|x)] = sσ(x̃) in (b) (see Theorem B.1 in Ap-
pendix B). When sσ(x̃|x) is easy to compute for a given
choice of pσ(x̃|x) such as a Gaussian, the final objective
can be computed without derivatives of the estimator. While
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DSM was originally proposed as an approximate solution
for direct score estimation, i.e., estimating s(x), it is not
widely used for the same as the denoising parameter is hard
to tune. Instead, the DSM has played a key role in the recent
development of diffusion models.

In §4, we will develop a new objective function called the
lifted score estimation objective analogous to these objec-
tives, and we will apply Hutchinson’s trick and Tweedie’s
formula to derive computable form of objectives.

2.2. Nonparametric Score Estimation

Stein Gradient Estimator. Li & Turner (2018) proposed
estimating s(x) using the generalized Stein’s identity (Stein,
1981; Gorham & Mackey, 2015) Ep(x)[h(x)s(x)⊺ +
∇xh(x)] = 0 for a choice of test function h : X → RD
with certain regularity conditions. Note that the identity is
essentially equivalent to integration by parts used in SM.
Li & Turner (2018) considered an empirical version of the
identity and proposed to solve the resulting linear system
with a regularizer. They call the resulting estimator the Stein
gradient estimator (SGE). It should be noted that SGE does
not have a principled way for extrapolation, and also the
choice of the test function, which governs the quality of the
estimator, is highly nontrivial.

Spectral Stein Gradient Estimator. To resolve the latter
downsides, Shi et al. (2018) proposed the spectral Stein
gradient estimator (SSGE), where the idea is to use the stack
of the top-L eigenfuctions of a kernel as the test function
in the SGE framework. Compared to SGE, SSGE has a
principled formula for extrapolation based on the Nyström
method and the error was theoretically analyzed.

Nonparametric Score Estimators. Zhou et al. (2020)
proposed a unifying framework for nonparametric score es-
timation methods based on a regularized vector-regression
formulation (Baldassarre et al., 2012). For a matrix-valued
kernel Γ, let HΓ denote the reproducing kernel Hilbert
space. Then, they defined the score estimator as ŝλ :=
argmins∈HΓ Ep̂(x)[∥s(x)− ŝ(x)∥22] + λ

2 ∥s∥2HΓ
. Based on

its closed-form solution (or its variant with other spectral
regularization), Zhou et al. (2020) applied a more general
version of Stein’s identity (essentially integration by parts),
and introduced a general nonparametric estimator that can
be computed based on linear system of size MN ×MN ,
for a matrix-valued kernel of size M ×M and data size N .
They showed that this estimator subsumes both SGE and
SSGE as special cases, when the underlying matrix-valued
kernel is essentially scalar-valued. They also demonstrated
that the nonparametric score estimator using truly matrix-
valued kernels such as curl-free kernels can substantially
improve the performance of SSGE.

3. New Ideas: Lifting and Residual Learning
In this section, we introduce and motivate two new ideas to
improve the quality of score estimation. In §4 and §5, we ex-
plain how these ideas can be implemented in a practical way
for direct and noisy score function estimation, respectively.

3.1. Lifted Score Estimation

A New Objective. Existing score matching frame-
works (Hyvärinen, 2005; Song et al., 2020; Vincent, 2011)
estimate the score by minimizing the expected ℓ22-error
Ep(x)[∥s(x) − fθ(x)∥22] between the true score s(x) and
model score fθ(x). In this paper, we propose a new criterion

Ep(x1)p(x2)[∥s(x1)s(x2)
⊺ − fθ(x1)fθ(x2)

⊺∥2F ]. (5)

Rather than the standard squared distance in the Euclidean
space, we lift the scores to the space of their outer products
and consider the squared Frobenius distance in the lifted
space; hence, we call it the lifted score estimation (LSE) ob-
jective. While the score matching framework was originally
proposed for training unnormalized parametric models, our
goal is to construct a good score estimation procedure, and
we thus use the term estimation instead of matching.

Motivation. This new criterion can be motivated from the
matrix-kernel regression view, which was adopted in the
nonparametric score estimator (Zhou et al., 2020). From
the matrix-valued-kernel regression view, it can be argued
that an optimal kernel which minimizes the approximation
error of (5) is the rank-1 kernel Γ(x,x′) = s(x)s(x′)⊺ (see
Appendix A). Notably, the only eigenfunction of this kernel
is the score function. Hence, we train a score estimator
fθ(x) by finding the rank-1 approximation fθ(x)fθ(x)

⊺ of
the kernel that minimizes the error measured by the expected
squared Frobenius norm in (5).

Sign Ambiguity and Solution. Note that unlike the SM
objective, an optimal fθ(x) for (5) would be proportional
to the score s(x), but with a potential sign flip. That is, the
LSE objective is invariant to scaling with a {±1}-valued
function κ : X → {±1}, since for f̃θ(x) := κ(x)fθ(x), we
have

Ep(x1)p(x2)[∥s(x1)s(x2)
⊺ − f̃θ(x1)f̃θ(x2)

⊺∥2F ]
= Ep(x1)p(x2)[∥s(x1)s(x2)

⊺ − fθ(x1)fθ(x2)
⊺∥2F ].

This implies that the sign information is absent for each
point x in the LSE framework. However, in practice, we
find that it suffices to keep track of a single sign κ ∈ {±1}
to form a score model, i.e., κfθ(x) ≈ s(x). An intuition be-
hind the success of this simple heuristic can be given as fol-
lows. Suppose that both the underlying score function and a
parametric model fθ(x) we assume are sufficiently smooth
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over x. Then, a sign correction function κ(x) must not
change the sign too abruptly as x varies, as otherwise it will
violate the smoothness. In practice, we empirically find that
using a single-sign estimator κ̂θ := sgn(Ep(x)[s(x)⊺fθ(x)])
works surprisingly well. Later, we will explain how to
estimate the best single sign estimate on the fly for each
application scenario.

3.2. Iterative Residual Estimation

In practice, when estimating a score function using a para-
metric model such as a neural network, there will very
likely exist a residual error even with the best possible fit
under a criterion. This is especially true in modern-day
applications, where the underlying distribution is extremely
high-dimensional and multimodal, such as distributions over
images or text.

In such a realistic scenario (also known as model-
misspecified case) , it is natural to consider learning the
residual of the true score after the estimation procedure. For
example, suppose that we found the best score model sθ⋆1 (x)
under a criterion. Defining r(1)(x) := s(x) − sθ⋆1 (x), we
can attempt to find the best model sθ⋆2 (x) that models this
residual. Repeating this procedure, we essentially learn the
score by a decomposition

s(x) ≈ sθ⋆1 (x) + sθ⋆2 (x) + . . .+ sθ⋆L(x).

Such an additive decomposition is especially natural in the
score function domain (i.e., gradient of log probability),
as it can be understood as a successive refinement of the
underlying distribution, e.g.,

∇x log p(x) ≈ ∇x log pθ⋆1 (x) + . . .+∇x log pθ⋆L(x).

Here, for the sake of motivation, we hypothetically suppose
that sθ⋆ℓ (x) = ∇x log pθ⋆ℓ (x) for some density model pθ(x).
From a practical point of view, the residual learning idea
provides a way to improve the quality of score estimation
by systematically stacking a given base parametric model.

Note that this idea does not assume a specific learning crite-
rion in the subroutine, and it can be paired with the standard
SM-type objectives such as SSM and DSM. Somewhat sur-
prisingly, in this paper, we empirically show that the residual
learning exhibits significant performance boost with lifting,
while the other pairings sometimes only exhibit marginal
improvements.

4. Direct Score Estimation
Lifted Sliced Score Estimation. As argued above, we
consider estimating the score with lifting, by minimizing
the LSE objective

LLSE(s; fθ)

:=
1

2
Ep(x1)p(x2)

[
∥s(x1)s(x2)

⊺ − fθ(x1)fθ(x2)
⊺∥2F

− ∥s(x1)s(x2)
⊺∥2F

]
= −(Ep(x)[s⊺(x)fθ(x)])2 +

1

2
(Ep(x)[∥fθ(x)∥22])2. (6)

Compare this to the original SM loss in (1). Here, the
term Ep(x)[s⊺(x)fθ(x)] can be computed using integration
by parts −Ep(x)[tr(∇xfθ(x))] or with Hutchinson’s trick
(i.e., slicing) as −Ep(x)p(v)[v⊺∇xfθ(x)v]. For the sake of
computational efficiency, we can assume the sliced version
as the final objective function by default.

Lifted Residual Sliced Score Estimation. We can now
extend LSE with residual learning. Let F = {fθ : X →
RD|θ ∈ θ} denote a class of parametric functions, e.g., a
set of functions induced by a neural network architecture.
Defining r(1)(x) := s(x) to be the level-1 residual, we can
find the best f (1) ∈ F that fits r(1), i.e.,

f (1) := argmin
f∈F
LLSE(r

(1); f).

Recall that f (1) approximates r(1) up to a sign
flip. Thus, we first estimate the sign as κ(1) :=
sgn(Ep(x)[r(1)(x)⊺f (1)(x)]), and then define the approx-
imation error as the level-2 residual r(2) := r(1) − κ(1)f (1).
Then, we can repeatedly apply this learning procedure by
considering the residual as a new object to be estimated. In
general, for a given level-ℓ residual r(ℓ) for ℓ ≥ 1, we define

f (ℓ) = argmin
f∈F
LLSE(r

(ℓ); f), (7)

whereby the level-(ℓ + 1) residual is r(ℓ+1) :=

r(ℓ) − κ(ℓ)f (ℓ) = s − ∑ℓ
i=1 κ

(i)f (i), and κ(i) :=
sgn(Ep(x)[r(i)(x)⊺f (i)(x)]. For each ℓ, the ℓ-th LSE ob-
jective can be explicitly written as

LLSE(r
(ℓ); f)

= −(Ep(x)[r(ℓ)(x)⊺f(x)])2 +
1

2
(Ep(x)[∥f(x)∥22])2

= −
(
Ep(x)[s(x)⊺f(x)]−

ℓ−1∑
i=1

κ(i)Ep(x)[f (i)(x)⊺f(x)]
)2

+
1

2
Ep(x)[∥f(x)∥22]2, (8)

where Ep(x)[s(x)⊺f(x)] can be computed with integration
by parts or slicing. Note that the gradient with respect to f
can be computed in an unbiased manner. Additionally, the
sign estimators κ(i) can be computed by slicing as well.
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Practical Optimization Scheme. In practice, solving
each level of the optimization problem in a sequential man-
ner as above will incur a O(L)-multiplicative computational
overhead. A more efficient approach is to emulate solv-
ing the series of the optimization problems simultaneously
with minibatch samples; see Algorithm 1. Here, the gradi-
ent of each objective is estimated in an unbiased manner
with the given minibatch of size B, and GradOpt(f , ∇̂f )
denotes any gradient-based minimization algorithm. The
idea is to simultaneously update each level-ℓ model f (ℓ)

based on the level-ℓ objective, as if the models from earlier
levels in the previous iterates were perfect. For the sign esti-
mates, we maintain the soft statistics Ep(x)[r(i)(x)⊺f (i)(x)]
using an exponential moving average, which we denote as
EMAβ(apast, anew) := βapast + (1 − β)anew below. We
include an example implementation with PyTorch in Ap-
pendix F. Ultimately, we construct the final score model as
ŝ
(ℓ)
t (x) :=

∑ℓ
i=1 κ

(i)
t f

(i)
t (x).

Algorithm 1 Iterative Residual Score Estimation

1: Initialize f
(1)
0 , . . . , f

(L)
0 ∈ F .

2: for n = 1, . . . , N do
3: Get minibatch samples Dn := {xn1, . . . ,xnB}
4: for ℓ = 1, . . . , L do

▷ Update the function at the level-ℓ
5: f

(ℓ)
n ← GradOpt(f

(ℓ)
n−1, ∇̂f

(ℓ)
n−1
LLSE(r

(ℓ)
n ; f

(ℓ)
n−1))

▷ Define the level-ℓ residual
6: r

(ℓ)
n ← s−∑ℓ−1

i=1 κ
(i)
n−1f

(i)
n

▷ Estimate Ep(x)[r
(ℓ)
n (x)⊺f

(ℓ)
n (x)] w/ minibatch

7: a
(ℓ)
n ← 1

B

∑B
b=1 r

(ℓ)
n (xnb)

⊺f
(ℓ)
n (xnb)

▷ Update the soft statistics
8: A

(ℓ)
n ← EMAβ(A

(ℓ)
n−1, a

(ℓ)
n )

9: κ
(ℓ)
n ← sgn(A

(ℓ)
n ) ▷ Update the sign

Computational Complexity. By efficiently computing
the loss using (8) we only deal with D-dimensional interme-
diate gradients rather than D×D-dimensional intermediate
gradients that would otherwise arise out of direct minimiza-
tion of (6) as illustrated by the PyTorch implementation in
Appendix F. Thus, LSE (L = 1) bears no extra overhead
than SSM gradient computation. However, with the addi-
tion of residual models, we incur an O(L)-multiplicative
memory overhead. Reducing this overhead through novel
model compression and distillation techniques is focus of
our future work.

5. Noisy Score Estimation
We now extend the LSE objective function (6) for the
marginal score estimation of noisy samples. Let pσ(x̃|x)
denote a channel with noise standard deviation σ. We are in-

terested in learning the marginal score sσ(x̃) = ∇x̃ log p(x̃)
where p(x̃) =

∫
pσ(x̃|x)p(x)dx.

Lifted Denoising Score Estimation. Consider two such
channels with parameters σ1 and σ2 respectively. For the
ease of exposition, assume σ1 = σ2 = σ such that p(x̃1) =
p(x̃2) = p(x̃). In the lifted space, the LSE objective can be
used for score estimation,

LLDSE(sσ; fθ)

(6)
= −(Ep(x̃)[sσ(x̃)⊺fθ(x̃)])2 +

1

2
(Ep(x̃)[∥fθ(x̃)∥2])2 (9)

= −(Ep(x)pσ(x̃|x)[sσ(x̃|x)⊺fθ(x̃)])2 +
1

2
(Ep(x̃)[∥fθ(x̃)∥2])2. (10)

Note that (10) follows from (9) by Tweedie’s formula
sσ(x̃) = Ep(x|x̃)[sσ(x̃|x)] (Theorem B.1), which is the
same computational trick exploited in DSM.

Note. Though we introduced the method for score estima-
tion with symmetric channels, all theory developed in this
section can be easily extended to asymmetric channels in
practice (see Appendix E.3).

Lifted Residual Denoising Score Estimation. Again, let
F denote a collection of parametric vector-valued functions.
We apply residual learning to improve the score estimate.
For each ℓ ≥ 1,

r(ℓ)(x̃) := sσ(x̃)−
ℓ−1∑
i=1

κ(i)
σ f (i)(x̃).

Here, we explicitly assume a dependence of the sign on the
noise level σ, as we will apply the framework for learning
noisy scores across multiple noise levels in our denoising
diffusion model experiments. Using the residual score esti-
mation framework from §4, we can directly apply the ℓ-th
residual LSE objective in (8),

LLDSE(r
(ℓ); f)

:= −
(
Ep(x)pσ(x̃|x)[sσ(x̃|x)⊺f(x̃)]−

ℓ−1∑
i=1

κ(i)
σ Ep(x̃)[f (i)(x̃)⊺f(x̃)]

)2

+
1

2
Ep(x̃)[∥f(x̃)∥2], (11)

where (11) again follows from Tweedie’s formula (Theo-
rem B.1).

6. Applications in Training Image Generative
Models

In this section we apply our proposed methods for training
image generative models: first, LSE for training implicit
generative models and then LDSE for training diffusion
models. We evaluate all methods in terms of sample quality
and compare against various score estimation baselines.
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6.1. Training Implicit Generative Models via Direct
Latent Score Estimation

6.1.1. BACKGROUND

Implicit Variational Autoencoder (VAE). An implicit
VAE is a latent variable model with a stochastic encoder
z = gθ(x, ϵ), where p(ϵ) is an auxilliary noise distribution,
and a deterministic decoder pψ(x|z). These models are
trained by maximizing the evidence lower bound (ELBO)
(Kingma & Welling, 2014),

Eqθ(z|x) [log pψ(x|z)p(z)] + h(qθ(z|x)), (12)

where h(qθ(z|x)) ≜ Eqθ(z|x) [− log qθ(z|x)] denotes the
differential entropy of the implicit encoder. Li & Turner
(2018) show that the gradient of the differential entropy
can be computed via an estimate of the conditional score
∇z log qθ(z|x),

∇θh(qθ(z|x))
= −∇θEp(ϵ)[log qθ(gθ(x, ϵ)|x)]
= −Ep(ϵ)[∇θgθ(x, ϵ)⊺∇z log qθ(z|x)|z=gθ(x,ϵ)], (13)

which in practice can be estimated with a conditional score
estimator ŝϕ(z|x) ≈ ∇z log qθ(z|x). Please refer to Ap-
pendix D.1 for a more detailed background.

Wasserstein Autoencoder (WAE). For a fixed prior dis-
tribution p(z), implicit encoder z = µθ(x) + σϵ for
ϵ ∼ N (0, I) and deterministic decoder x = fψ(z), a
WAE (Tolstikhin et al., 2018) solves the relaxed optimal
transport (OT) problem with a KL regularizer: for a dis-
tance function on a metric space c : Rd × Rd → R e.g., the
2-Wasserstein distance c(x, y) = ∥x− y∥2, minimize

Ep(x)qθ(z|x) [c(x, fψ(z))]− Eqθ(z)[log p(z)]− h(qθ(z)).
(14)

Similar to implicit VAEs, the gradient of the differential
entropy can be written as

∇θh(qθ(z))
= −Ep(x)p(ϵ)[∇θµθ(x)⊺∇z log qθ(z)|z=µθ(x)+σϵ

],

which can be approximated with a good score estimator
ŝϕ(z) ≈ ∇z log qθ(z). For more background on WAEs,
please refer to Appendix D.1.

6.1.2. EXPERIMENTS

We trained implicit VAEs and WAEs with our proposed
score estimation method. Particularly, we compared LSE
against various baselines in terms of sample quality on the
CelebA dataset (Liu et al., 2023) as evaluated by the Fréchet
Inception Distance (FID) (Heusel et al., 2017).

Baselines. Our nonparametric baselines include the Stein
gradient estimator (Stein) and SSGE. The parametric base-
lines include SSM and a Gaussian posterior VAE for our
implicit VAE experiments. For more details on the base-
lines we refer to §2. For a fair comparison with residual
LSE, we also implemented a residual version of SSM (see
Appendix C.1).

Architecture details. We borrowed the implementation
for all baselines from the public SSM implementation, and
made only a few modifications. Detailed network archi-
tecture and implementation details can be found in Appen-
dices D.3 and F. We experimented with L = 2 and L = 3
for all residual score models.

Training details. We trained all models with a batch size
of 128 for 400k iterations on 1× NVIDIA 3090 GPU. All
methods compared under a generative model class (i.e.,
VAE or WAE) utilized the same encoder and decoder archi-
tectures. The only difference lies in the score estimation
algorithm. Additional training details can be found in Ap-
pendix D.4.

Results. We quantified the sample quality by computing
the FID on synthesized samples, as reported in Table 1.
Also reported is the average value of the ELBO or WAE
objective. The best results were obtained with LSE and
its residual versions, where L = 3 and L = 2 outperform
all other VAE and WAE models respectively. Surprisingly,
we noticed that residual learning paired with lifted score
estimation offers significant gains in FID in comparison
to residual SSM. In general, even the L = 1 version of
LSE was on par or outperformed SSM, demonstrating that
optimization in the lifted space is empirically beneficial for
score estimation. We observed that the residual versions
could sometimes lead to a slight degradation in performance
and training instability as we continue to increase L beyond
a limit, which was L = 3 in these experiments. We postulate
that this is attributed to the inability of the neural network
to learn useful representations if the residuals are too small
and noisy. Synthesized samples from different models are
included in Appendices G.1 and G.2.

6.2. Training Diffusion Probabilistic Models via Noisy
Score Estimation

6.2.1. BACKGROUND

Diffusion probabilistic models (DPMs) are a class of gener-
ative models based on the idea of thermodynamics diffusion
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon,
2019). We take the following unified view in our definition
of DPMs as inspired by (Kingma & Gao, 2024; Karras et al.,
2022). Let p(x) be the data distribution and let λ(t) define
a log signal to noise ratio (SNR) schedule with distribution
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Table 1: FID and ELBO/WAE loss on the test set obtained
using different score estimation methods. L = 1 denotes the
non-residual variant, and the residual variants of SSM and
LSE are denoted by the descriptors L ∈ {2, 3}, where L−1
denotes the number of residual errors that are modeled.

Method VAE WAE

FID↓ ELBO↓ FID↓ WAE↓
Guassian Posterior 52.61 4758 - -

Stein 91.06 4553 49.82 635
SSGE 95.06 4555 49.72 639

SSM (L = 1) 50.06 4678 47.44 482
SSM (L = 2) 50.21 4604 47.02 434
SSM (L = 3) 49.74 4541 46.27 352

LSE (L = 1) 50.72 4721 46.46 433
LSE (L = 2) 47.68 4531 44.36 497
LSE (L = 3) 46.81 4711 45.56 583

p(λ) where t ∼ U(0, 1). Under this noise schedule we can
define a noisy version of x at noise level λ(t) as

x̃t := αtx+ σtϵ where ϵ ∼ N (0, I). (15)

The log-SNR is calculated as λ(t) = log(α2
t /σ

2
t ) and we

can define pt(x̃t|x) := N (x̃t;αtx, σtI). In this paper we
will constrain α2

t + σ2
t = 1, which is commonly known

as the variance preserving noise schedule. Due to the 1-1
correspondence between log-SNR and timesteps, we can
equivalently express the noisy version of x at noise level λ
as,

x̃λ := αλx+ σλϵ where ϵ ∼ N (0, I). (16)

We will interchange between these two conventions when re-
quired. Given noisy samples of data, the diffusion objective
can be reduced to a weighted denoising objective,

LDPM(ϵθ) =
1

2
Ep(λ)p(x)p(ϵ)

[
w(λ)

2
∥ϵ− ϵθ(x̃λ;λ)∥2

]
,

(17)
where w(λ) is a positive scalar-valued weighting function.
Note that for the forward process defined in (15), the con-
ditional score is s(x̃λ|x) = −ϵ/σλ. Thus, (17) can be
interpreted as a weighted DSM loss averaged over multiple
noise levels,

LDPM(ϵθ)

=
1

2
Ep(λ)p(x)p(x̃λ|x)

[
w′(λ)

∥∥∥∥s(x̃λ |x) + ϵθ(x̃λ;λ)

σλ

∥∥∥∥2
]
,

(18)

where w′(λ) := σ2
λw(λ) and the marginal score estimator

is sθ(x̃λ;λ) := −ϵθ(x̃λ;λ)/σλ. For more details about
prior work and additional technical details please refer to
Appendix E.1.

Table 2: FID, sFID, and Inception Score (IS) of different
score estimation methods. DSM (L = 2) refers to our
residual DSM baseline.

Method FID↓ sFID↓ IS↑
DSM (L = 1) 8.65 10.92 9.08
DSM (L = 2) 6.36 5.35 9.08

LDSE (L = 1) 7.43 10.96 9.11
LDSE (L = 2) 6.04 5.99 9.08

6.2.2. EXPERIMENTS

We evaluated our denoising score estimation methods by
training the iDDPM architecture (Nichol & Dhariwal, 2021)
on the CIFAR-10 dataset (Krizhevsky et al., 2009). We
also performed some preliminary experiments on the EDM
architecture (Karras et al., 2022) but defer the experimental
details and results to Appendix E.

Baselines. We implemented our proposed method on top
of the public iDDPM implementation. As we are interested
in comparing LDSE against DSM, we utilized the “sim-
ple” version of the iDDPM model and did not leverage any
additional KL regularizers or learned noise schedules. Ad-
ditional technical details about the baseline can be found in
Appendix E.2.

Architecture details. We used the unconditional CIFAR-
10 iDDPM architecture in our experiments. Additional
architecture and implementation details can be found in
Appendix E.2. Python/PyTorch implementations of LDSE
can be found in Appendix F. We also implemented a residual
version of DSM (see Appendix C.2) to understand the effect
of modeling the residual in the original space versus the
lifted space. We experimented with both L = 1 and L = 2
for LDSE and DSM.

Training details. We trained all iDDPM models with a
batch size of 128 for 500k iterations on a single NVIDIA
3090 GPU. We used the default hyperparameters provided
by the authors for unconditional CIFAR-10 training across
all methods. See Appendix E.3 for the training details.

Evaluation. We generated 50,000 samples with each
model and measured the FID, sFID (Nash et al., 2021) and
Inception Score (IS) (Salimans et al., 2016). This was re-
peated thrice to account for stochasticity in the results and
the best numbers are reported. We used the DDIM sampler
(Song et al., 2021a) with 250 sampling steps as no signifi-
cant gains in FID were attained for T > 250 steps per our
experiments and the results in (Nichol & Dhariwal, 2021).

Results. The results of our experiments are shown in Table
2. We observed that LDSE (L = 1) slightly outperformed

7

https://github.com/openai/improved-diffusion/tree/main


Lifted Residual Score Estimation

0 2000 4000
Timestep (t)

−3000

−2000

−1000

Epσ(x̃|x)p(x)[r
(1)(x̃)>f

(1)
θ (x̃)]

0 2000 4000
Timestep (t)

−0.1

0.0

0.1

Epσ(x̃|x)p(x)[r
(2)(x̃)>f

(2)
θ (x̃)]

Figure 1: Soft sign calculations with LDSE across the 4000 different timesteps/noise levels. Notice that κ(1)’s are identically
-1 (after applying sgn on the soft signs) but κ(2)’s differ across noise levels.

the baseline DSM method in terms of FID and IS, thus
showing that optimization in the lifted space is a viable al-
ternative to regular DSM. Furthermore, the results validated
that iterative residual modeling can significantly improve
score estimation in both the unlifted and lifted space. By
combining residual learning with lifted estimation, LDSE
(L = 2) beat all other methods in terms of FID. In Figure 1,
we show the soft signs (before applying the sgn funtion)
across different noise levels for both the first and second
mode in a residual LDSE model. We consistently noticed
that κ(1)

t is either constantly +1 or -1 for the first mode but
that κ(2)

t fluctuated across timesteps. This shows that gra-
dients in the lifted space point in the direction of one of
the equal minima and leverage the enlarged optimization
landscape to improve results. Synthesized samples from
different models can be found in Appendix G.3.

In Appendix E.4 we also show that LDSE (L = 1) attained
comparable results to DSM with the EDM architecture.
However, due to the nature of the EDM regression objective
(see Appendix E.2), we found that our residual estimators
are highly sensitive to the EDM weighting w(λ). Extending
our setup to alternative diffusion model parametrizations
other than DSM/noise estimation is the focus of future work.

7. Concluding Remarks
In this paper, we proposed a new score estimation frame-
work based on two new ideas: lifting and residual learning.
We demonstrated that the resulting framework, Lifted Resid-
ual Score Estimation (residual LSE or just LSE), achieves
impressive downstream task performance for state-of-the-
art generative modeling, when we replace the standard SM
framework with the proposed one. Empirical results suggest
that the LSE framework can be used as a drop-in replace-
ment for SSM or DSM to improve the score estimation
performance.

An experienced reader in the field might notice a resem-
blance between the lifted denoising score estimation and
the denoising score matching framework for higher-order
derivatives of log pσ(x) by Meng et al. (2021). Interestingly,
it turns out that, if we set x̃1 = x̃2 = x̃ ∼ pσ(x̃) in the

LSE objective (5), it becomes essentially identical to the ob-
jective for learning the second-order derivative information
in (Meng et al., 2021), as can be seen from the second-
order general Tweedie’s formula in Theorem B.1. As our
approach uses independent distributions p(x1)p(x2) to de-
fine the outer product, we only aim to learn the first-order
derivative information (i.e., score function).
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Appendix

A. From Optimal Matrix-Valued Kernels to Lifting
For a matrix-valued kernel Γ(x,x′) ∈ RD×D, let {ϕℓ}ℓ≥1 be an orthonormal basis for the set of RD-valued square-
integrable functions over X , i.e., its Mercer expansion (De Vito et al., 2013, Theorem 3.4) is

Γ(x,x′) =

∞∑
ℓ=1

λℓϕℓ(x)ϕℓ(x
′)⊺.

Then, the order-L approximation of the target score function s(x) with respect to the orthonormal basis is

s(L)(x) :=

L∑
ℓ=1

Ep(x′)[s(x
′)⊺ϕℓ(x

′)]ϕℓ(x),

and the approximation error can be written as

Ep(x)[∥s(L)(x)− s(x)∥22]
=

∑
ℓ≥L+1

Ep(x)[s(x)⊺ϕℓ(x)]Ep(x′)[s(x
′)⊺ϕℓ(x

′)]

=
∑

ℓ≥L+1

Ep(x)p(x′)[ϕℓ(x)
⊺s(x)s(x′)⊺ϕℓ(x

′)]

=
∑

ℓ≥L+1

Ep(x)p(x′)[ϕℓ(x)
⊺Γ⋆(x,x′)ϕℓ(x

′)],

where we define the matrix-valued kernel

Γ⋆(x,x′) := s(x)s(x′)⊺ ∈ RD×D.

Hence, to minimize the approximation error one needs to choose Γ⋆(x,x′) as a choice for Γ(x,x′), so that the eigenbasis is
aligned with Γ⋆(x,x′). Since the kernel Γ⋆(x,x′) has rank 1 by definition, we can learn a score model fθ(x) by considering
the rank-1 approximation error, i.e.,

Ep(x)p(x′)∥Γ⋆(x,x′)− fθ(x)fθ(x
′)∥2F ,

which is the lifted score estimation objective.

B. Tweedie’s Formula
Theorem B.1 (A general Tweedie’s formula). For (x, x̃) ∼ p(x)p(x̃|x), we have

Ep(x|x̃)[s(x̃|x)] = s(x̃),

Ep(x|x̃)[s(x̃|x)s(x̃|x)⊺ + s(2)(x̃|x)] = s(x̃)s(x̃)⊺ + s(2)(x̃).

Here, we define s(2)(x̃) := ∇2
x̃ log p(x̃) and s(2)(x̃|x) := ∇2

x̃ log p(x̃|x).

Proof. Consider

s(x̃) = ∇x̃ log p(x̃)

=
∇x̃p(x̃)

p(x̃)

=

∫
∇x̃p(x̃|x)

p(x)

p(x̃)
dx

10
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=

∫ ∇x̃p(x̃|x)
p(x̃|x)

p(x)p(x̃|x)
p(x̃)

dx

=

∫
∇x̃ log p(x̃|x)p(x|x̃) dx

= Ep(x|x̃)[∇x̃ log p(x̃|x)]
= Ep(x|x̃)[s(x̃|x)].

To show the second identity, note that

s(2)(x̃) = ∇2
x̃ log p(x̃)

=
∇2

x̃p(x̃)

p(x̃)
− ∇x̃p(x̃)∇x̃p(x̃)

⊺

p(x̃)2

=
∇2

x̃p(x̃)

p(x̃)
− s(x̃)s(x̃)⊺. (19)

Applying the same logic from above on the first term, we have

∇2
x̃p(x̃)

p(x̃)
= Ep(x|x̃)

[∇2
x̃p(x̃|x)
p(x̃|x)

]
.

However, since
∇2

x̃p(x̃|x)
p(x̃|x) = s(x̃)s(x̃)⊺ + s(2)(x̃),

rearranging the terms in (19) leads to the desired relation.

C. Residual Extension for Sliced and Denoising Score Matching
In §4 and §5 we introduced the residual version of LSE and LDSE respectively. We can similarly define the residual score
estimation procedure in the original (unlifted) space for both SSM and DSM.

C.1. Residual Sliced Score Matching

Recall the exact SM objective which we redefine as follows,

LSM(s; sθ) = −Ep(x)[s(x)⊺sθ(x)] +
1

2
Ep(x)[∥sθ(x)∥2].

We can now extend this objective with residual learning and the slicing trick from SSM (see §2.1). Let F = {fθ : X →
RD|θ ∈ θ} denote a class of parametric functions and let r(1)(x) := s(x) be the level-1 residual. We seek to find the best
f (1) ∈ F that fits r(1)(x), i.e.,

f (1) := argmin
f∈F
LSM(r

(1); f).

Up to this point we have just minimized the standard SM objective. Now, after obtaining f (1), we can define the approximation
error as the level-2 residual r(2) := r(1) − f (1). Then, we can repeatedly apply this learning procedure by considering the
residual as a new object to be estimated. In general, for a given level-ℓ residual r(ℓ) for ℓ ≥ 1, we define

f (ℓ) = argmin
f∈F
LSM(r

(ℓ); f). (20)

Expanding out the objective,

LSM(r
(ℓ); f) = −Ep(x)[r(ℓ)(x)⊺f(x)] +

1

2
Ep(x)[∥f(x)∥22]

= −
(
Ep(x)[s(x)⊺f(x)]−

ℓ−1∑
i=1

Ep(x)[f (i)(x)⊺f(x)]
)
+

1

2
Ep(x)[∥f(x)∥22], (21)
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where in (21) we use the slicing trick to compute the first term. We call this objective with the slicing trick, the residual
sliced score matching estimator and formally define it as,

LSSM(r
(ℓ); f) := −

(
Ep(w)p(x)[w

⊺∇f(x)w]−
ℓ−1∑
i=1

Ep(x)[f (i)(x)⊺f(x)]
)
+

1

2
Ep(x)[∥f(x)∥22]. (22)

Henceforth, we will refer to our SSM extension with ℓ− 1 residuals as SSM (L = ℓ). Algorithm 2 describes the overall
procedure for residual SSM.

Algorithm 2 Iterative Residual Sliced Score Matching

1: Initialize f
(1)
0 , . . . , f

(L)
0 ∈ F .

2: for n = 1, . . . , N do
3: Get minibatch Dn := {xn1, . . . ,xnB}
4: for ℓ = 1, . . . , L do

▷ Update the function at the level-ℓ
5: f

(ℓ)
t ← GradOpt(f

(ℓ)
n−1, ∇̂f

(ℓ)
n−1
LSSM(r

(ℓ)
n ; f

(ℓ)
n−1))

▷ Define the level-ℓ residual
6: r

(ℓ)
n ← s−∑ℓ−1

i=1 f
(i)
n

C.2. Residual Denoising Score Matching

Let pσ(x̃|x) be a noisy channel. DSM learns the marginal score of noisy samples, sσ(x̃) = ∇x̃ log p(x̃) where p(x̃) =∫
pσ(x̃|x)p(x)dx. Again, let F denote a collection of parametric vector-valued functions. We can apply residual learning

to improve the DSM score estimate. For each ℓ ≥ 1,

r(ℓ)(x̃) := sσ(x̃)−
ℓ−1∑
i=1

f (i)(x̃).

Using the residual score estimation framework introduced in the previous section, the ℓ-th residual DSM objective is,

LDSM(r
(ℓ); f) := −

(
Ep(x)pσ(x̃|x)[sσ(x̃|x)⊺f(x̃)]−

ℓ−1∑
i=1

Ep(x̃)[f (i)(x̃)⊺f(x̃)]
)2

+
1

2
Ep(x̃)[∥f(x̃)∥2], (23)

where in (23) we use the DSM trick arising from Tweedie’s formula.

D. Implicit Generative Model Experiments
D.1. Background

Variational Autoencoder (VAE). Traditional VAEs (Kingma & Welling, 2014) with likelihood distribution, pψ(x|z) and
standard normal prior, p(z) = N (0, I), often parametrize the variational distribution as a Gaussian posterior, qθ(z|x) =
N (z;µθ(x), σ

2
θ(x)I), where the mean and covariance are defined by deterministic functions. In practice, for generative

modeling, the Gaussian posterior is restrictive in its expressivity and one can instead define an implicit VAE that leverages
a parametric stochastic encoder to sample latent variables as z = gθ(x, ϵ), where p(ϵ) is an auxilliary noise distribution.
The encoder now prescribes a stochastic procedure to generate latent variables by compromising on an explicit posterior
model. The overall training objective remains unchanged and these models are still trained by maximizing the evidence
lower bound (ELBO) (Kingma & Welling, 2014),

Eqθ(z|x) [log pψ(x|z)p(z)] + Eqθ(z|x) [− log qθ(z|x)]︸ ︷︷ ︸
≜h(qθ(z|x))

.

Maximization of the ELBO via gradient-based methods involves the computation of the derivative of the differential entropy.
Li & Turner (2018) show that this can be readily computed given an estimate of the conditional score and by the fact that the
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Generative Model Name Configuration

VAE Implicit Encoder

5× 5 conv; m maps; Swish
5× 5 conv; 2m maps; Swish
5× 5 conv; 4m maps; Swish
5× 5 conv; 8m maps; Swish

512 Dense, Swish
Dz Dense

WAE Encoder

concat [x, Swish(Dense(ϵ))] along channels
5× 5 conv; 2m maps; Swish
5× 5 conv; 4m maps; Swish
5× 5 conv; 8m maps; Swish

512 Dense, Swish
Dz Dense

VAE and WAE Decoder

Dense, Swish
5× 5 conv⊺; 4m maps; Swish
5× 5 conv⊺; 2m maps; Swish
5× 5 conv⊺; 1m maps; Swish
5× 5 conv⊺; c maps; Tanh

VAE

concat [x, Swish(Dense(z))] along channels
5× 5 conv; m maps; Swish

SSM Score (sθ(z|x)) 5× 5 conv; 4m maps; Swish
Res. SSM and LSE Models (f (ℓ)θ (z|x)) 5× 5 conv; 8m maps; Swish

512 Dense, Swish
Dz Dense

WAE

Reshape(Swish(Dense(z))]) to 1 channel
5× 5 conv; m maps; Swish

SSM Score (sθ(z)) 5× 5 conv; 4m maps; Swish
Res. SSM and LSE Models (f (ℓ)θ (z)) 5× 5 conv; 8m maps; Swish

512 Dense, Swish
Dz Dense

Figure 2: Implicit VAE and WAE architectures for CelebA. All convolutions and transposed convolutions use a stride of 2
with appropriate padding dimensions to preserve feature map spatial resolution.

stochasticity is induced by the auxilliary noise,

∇θh(qθ(z|x)) = −∇θEp(ϵ)[log qθ(gθ(x, ϵ)|x)]
= −Ep(ϵ)[∇θgθ(x, ϵ)⊺∇z log qθ(z|x)|z=gθ(x,ϵ)].

Thus, with a good conditional score estimator ŝϕ(z|x) ≈ ∇z log qθ(z|x), we can approximate the gradient as

∇θh(qθ(z|x)) ≈ −Ep(ϵ)[∇θgθ(x, ϵ)⊺ŝϕ(gθ(x, ϵ)|x)],

which in practice can be computed using automatic differentiation techniques.

Wasserstein Autoencoder (WAE). Let p(z) be a fixed prior distribution and pψ(x|z) a likelihood distribution induced by a
deterministic decoder x = fψ(z). A WAE (Tolstikhin et al., 2018) seeks to solve the optimal transport (OT) problem,

inf
qθ:qθ(z)=p(z)

Ep(x)qθ(z|x) [c(x, fψ(z))] , (24)

where c : Rd×Rd → R is a distance function on a metric space, e.g., the 2-Wasserstein distance c(x, y) = ∥x− y∥2. While
solving the above optimization problem is hard, a relaxed version can be solved with gradient-based methods,

Ep(x)qθ(z|x) [c(x, fψ(z))] +D(qθ(z), p(z)). (25)

Above, the regularizer is an arbitrary divergence that forces the approximate and true posterior to coincide. In our experiments,
we choose the KL divergence DKL(qθ(z) ∥ p(z)) and leverage an implicit encoder defined via the re-parametrization
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trick (Kingma & Welling, 2014), z = µθ(x) + σϵ for ϵ ∼ N (0, I). As for implicit VAEs, gradient-based optimization of
(14) requires computing the entropy term as,

∇θh(qθ(z)) = −∇θEqθ(z)[log qθ(z)]
= −∇θEp(x)p(ϵ)[log qθ(µθ(x) + σϵ)]

= −Ep(x)p(ϵ)[∇θµθ(x)⊺∇z log qθ(z)|z=µθ(x)+σϵ
].

With a good conditional score estimator ŝϕ(z) ≈ ∇z log qθ(z), we can approximate the gradient as

∇θh(qθ(z)) ≈ −Ep(x)p(ϵ)[∇θµθ(x)⊺ŝϕ(µθ(x) + σϵ)].

D.2. Dataset

We used the CelebA dataset (Liu et al., 2015) for our experiments. Following the setup in (Song et al., 2020), we extracted a
140× 140 patch from each image and then resized it to 64× 64. The images were then mapped to the range [−1, 1] and
further dequantized by adding uniform random noise in the interval [−1/128, 1/128] to all pixels.

D.3. Architectures

We reused the architectures of the (implicit) encoder and decoder described in (Song et al., 2020) for all our experiments
with the sole modification of replacing all ReLU activations with Swish activations (Ramachandran et al., 2018) as we
found this to significantly boost FID results of the various baseline methods. For the sake of completion we summarize
the architectures in Table 2. All experiments used a latent dimension size of Dz = 32 and the number of channel maps
was set to m = 64. As alluded to in §3.1, for training WAEs, we found it sufficient to keep track of a single sign to form
the marginal score model for the latent variable z. Surprisingly, in the VAE setting, despite learning the conditional score
s(z|x), we observed that continuing to keep track of single sign that is independent of x worked well in practice too.

D.4. Training Details

We trained all models with a batch size of 128 for 400k iterations on a single NVIDIA 3090 GPU. All baselines and proposed
methods used the RMSProp optimizer with a learning rate of 0.0001 for both the outer encoder/decoder and score models.
Our LSE models use a EMA decay of 0.5 for sign estimation.

D.5. Evaluation

We trained each model three times and evaluated the FID of generated samples across different runs every 10k iterations and
reported the best FID for each method across the entire 400k iterations. It should be noted that the FID of generated samples
for Stein and SSGE significantly worsened with longer training of the implicit VAE generative model. What is reported
is the best FID attained within the earlier stages of training. In contrast, the parametric methods, especially the residual
versions, showed a generally monotonically decreasing FID with increasing iteration number.

E. Diffusion Model Experiments
E.1. Background

Prior work. Sohl-Dickstein et al. (2015) first introduced diffusion probabilistic models (DPMs) as deep VAEs (see §D.1)
based on the principles of thermodynamic diffusion with a Markov-chain variational posterior that maximizes the ELBO.
Several years later, Ho et al. (2020) re-introduced DPMs (DDPMs) with modern neural network architectures and a simplified
loss function that set a new state-of-the-art in image generation. Since then, numerous connections to existing literature in
statistics, information theory and stochastic differential equations (SDEs) have helped bolster the quality of these models.
For example, Song & Ermon (2019) illustrate the equivalence between DDPMs and DSM (see §2.1) at multiple noise levels,
thus bridging the areas of diffusion-based models and score-based models. Subsequently, Song et al. (2021b) showed that in
continuous time, DPMs can be appropriately interpreted as solving for the reverse of a noising process that evolves as an
SDE while Kingma et al. (2021) demonstrated that continuous-time DPMs can interpreted as VAEs and that the variational
lower bound is invariant to the noise schedule except for its endpoints, thus bolstering its density estimation capabilities.
Following the latter discovery, Kong et al. (2023) show that DPMs can in-fact be used for exact likelihood computation by
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leveraging techniques from information theory. To further improve DPMs, extensive research has gone into the choice of
noise schedules, network architectures and loss functions (Nichol & Dhariwal, 2021; Karras et al., 2022; Kingma & Gao,
2024). Many tangentially discovered frameworks such as rectified flows (Liu et al., 2023) and conditional normalizing flows
trained with Gaussian conditional flow matching (Lipman et al., 2023), are also particular instances of (Gaussian) diffusion
models with specialized noise schedules and weighted loss functions, as show in (Kingma & Gao, 2024).

Sampling. We can equivalently interpret DPMs as SDEs (Song et al., 2021b) where the forward process in (17) can be
expressed as,

dx̃ = f(x̃, t)dt+ g(t)dw, (26)

where w is a standard Wiener process and x̃0 = x. The time reversal of this process (i.e., the generative process) is known
to follow the reverse SDE,

dx̃ =
[
f(x̃, t)− g2(t)∇x̃ log pt(x̃)

]
dt+ g(t)dw̄. (27)

Note that in practice ∇x̃ log pt(x̃) would be estimated by the score function sθ(x̃t; t) from DSM (18). Sampling can be
simulated through techniques such as annealed Langevin dynamics or ancestral sampling (Song et al., 2021b). While the
above reverse SDE is stochastic in nature, there also exists a deterministic process known as the probability flow ODE that
satisfies the same intermediate marginal distributions,

dx̃ =

[
f(x̃, t)− 1

2
g2(t)∇x̃ log pt(x̃)

]
dt. (28)

The benefit of the ODE formulation is that it can discretized more coarsely and hence sampling can done in fewer timesteps.
Furthermore, sampling is possible by plugging in the updates from (28) into black-box ODE solvers, e.g., the Heun 2nd

order solver (Karras et al., 2022). Sampling can be sped even further if (28) can be solved exactly. Lu et al. (2022) show that
the exact solution to (28) at timestep t given an initial value at timestep s < t is,

x̃t =
αt
αs

x̃s + αt

∫ λ(t)

λ(s)

e−vϵθ
(
x̃λ−1(v);λ

−1(v)
)

dv. (29)

Various samplers can be derived by approximating the exponentially weighted integral in different ways. For example, the
widely used DDIM sampler (Song et al., 2021a) is an example of a first-order Taylor expansion of the integral term. At the
core of all these algorithms is a score estimator/denoiser, which if learned accurately could improve the quality of samples
produced.

E.2. Architectures

We experimented with the iDDPM (Nichol & Dhariwal, 2021) and the EDM (Karras et al., 2022) diffusion model
architectures for generative modeling on the CIFAR-10 dataset in our experiments. We implemented our methods on top
of the authors’ codebase such that their models and each level-ℓ model of the residual LDSE model utilized the same
architecture. For example, this means that the baseline model defined by the authors and LDSE (L = 1) have the same
network backbone and number of parameters. The only change is the objective function itself.

In what follows we will summarize the network architecture of the iDDPM and EDM models. Though each model trains the
noise/score estimator with a different noise schedule and training objective, we can define them under the unified objective
in (17):

LDPM(ϵθ) =
1

2
Ep(λ)p(x)p(ϵ)

[
w(λ)∥ϵ− ϵθ(x̃λ;λ)∥2

]
.

iDDPM. The iDDPM model utilizes a UNet architecture similar to (Ho et al., 2020) with 4× downsampling/upsampling
layers and multi-head attention (Vaswani et al., 2017) at the 16× 16 and 8× 8 spatial resolution feature map layers. The
upsampling stack is a mirror image of the downsampling stack with nearest neighbor upsamplers replacing the convolutional
downsampling layers. From highest resolution to lowest resolution, the UNet uses [128, 256, 256, 256] channels respectively
with dropout of 0.3.

The iDDPM model uses a cosine scaling schedule,

αt = cos

(
π

2
· t+ s

1 + s

)
. (30)

15



Lifted Residual Score Estimation

Under the variance preserving assumption (i.e., α2
t + σ2

t = 1), the log-SNR schedule is,

λ(t) = −2 log
(
tan

(
π

2
· t+ s

1 + s

))
. (31)

and the induced distribution over log-SNRs is,

p(λ) = − d
dλ

1 + s

π/2
arctan

(
e−

λ/2
)

(32)

=
1 + s

2π
sech (λ/2) . (33)

In practice, for training, the interval t ∈ [0, 1] is discretized into 4000 timesteps for training , s = 0.008 and w(λ) = 1.

EDM. The variance preserving diffusion model with EDM preconditioning utilizes the DDPM++ architecture from (Song
et al., 2021b). This is also based on the UNet introduced by Ho et al. (2020) with 4× downsampling/upsampling layers and
attention at the 16× 16 spatial resolution feature map layer. From highest resolution to lowest resolution, the UNet uses
[128, 256, 256, 256] channels respectively with dropout of 0.1.

The EDM model uses a unique noise schedule that is constructed by first defining,

λ̃ := −1

2
log λ and λ̃ ∼ N (−1.2, 1.22). (34)

It is easy to see that p(λ) ∼ N (2.4, 2.42). Rather than regressing against the unscaled additive noise as in DSM, EDM
regresses against the original sample expressed in the following form,

x =
λ̃2

data

αλ(λ̃2 + λ̃2
data)

x̃λ +
λ̃ · λ̃data√
λ̃2 + λ̃2

data

g, (35)

where λ̃data = 0.5. A neural network gθ is trained to estimate g by minimizing the objective,

LEDM(gθ) := Ep(λ̃)p(x)p(ϵ)
[
w̃(λ̃)∥g − gθ (x̃λ;λ) ∥2

]
. (36)

Using (34) and (35) we can show that,

g =

√
e−λ + λ̃2

data

e−λ/2λ̃data
x− λ̃data

αλe−λ/2
√
e−λ + λ̃2

data

x̃λ (37)

= −

√
e−λ + λ̃2

data

λ̃data
ϵ+

e−λ/2

αλ

√
e−λ + λ̃2

dataλ̃data

x̃λ. (38)

Therefore, in terms of (17) the EDM objective boils down to the unified diffusion objective with noise distribution p(λ) and
weighting function,

w(λ) =
e−λ + λ̃2

data

λ̃2
data

. (39)

E.3. Training Details

We trained all iDDPM models for 500k iterations on the CIFAR-10 dataset with a batch size of 128. As we are interested
in comparing LDSE against DSM, we used the “simple” version of the loss defined in (Nichol & Dhariwal, 2021), and
didn’t include the KL divergence regularization term or the learned noise variance schedule. We also implemented a residual
version (see Appendix C.2). We trained all models with default hyperparameters for unconditional CIFAR-10 used by the
iDDPM authors on a single NVIDIA 3090 GPU. All LDSE models use a EMA decay of 0.5 for sign estimation.
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We compared the same set of models for our EDM experiments on CIFAR-10. However, unlike iDDPM, rather than using
DSM we used the EDM regression objective in (36). All models were trained for 100k iterations with a batch size of 512
distributed across 2 x NVIDIA 3090 GPUs. The baseline EDM model uses the default hyperparameters provided by the
authors whereas the residual DSM and LDSE models use a smaller learning rate of 0.0001. All LDSE models use a EMA
decay of 0.5 for sign estimation.

LDSE-specific training details. In §5 we introduced the LDSE objective but with symmetric channels. During training of
diffusion models, each input is corrupted at a different noise levels and we thus leveraged the asymmetric version of the
objective in practice. Furthermore, since we use the variance preserving noise corruption process, the channel is parametrized
by the log-SNR λ. Let pλ1

(x̃|x) and pλ2
(x̃|x) be two possibly different noisy channels. The asymmetric LDSE objective is,

LLDSE(sλ1 , sλ2 ; fθ)

= −Ep(x)pλ1
(x̃|x)[sλ1

(x̃|x)⊺fθ(x̃;λ1)] · Ep(x)pλ2
(x̃|x)[sλ2

(x̃|x)⊺fθ(x̃;λ2)]

+
1

2
Epλ1

(x̃)[∥fθ(x̃;λ1)∥2] · Epλ2
(x̃)[∥fθ(x̃;λ2)∥2]. (40)

In practice, given a minibatch of samples, we divided it into a batch of paired samples and replaced all expectations with
sample averages. The notable difference is that each sample is corrupted at a different noise levels and the outer product in
the lifted space is between two different estimators.

E.4. Additional Results

Here we provide some preliminary results with the EDM architecture. We extended the EDM objective in (36) to the lifted
space by leveraging LDSE by weighing the objective by the EDM weights (39), which in principle is just a weighted LDSE
loss, with an effective weight of w(λ1)w(λ2), where the weights are defined in (39).

In principle the optimal estimator should be identical to the EDM score estimator and indeed for the L = 1 case, our LDSE
model is almost comparable with the EDM baseline. However, extending the EDM weighted objective for L > 1, resulted
in training instabilites and large gradients which we attribute to the scaling terms w(λ). This leads to an interesting research
question — how do we effectively weigh the lifted score estimation loss and how can we extend the residual variants to
regression objectives beyond naïve DSM?

Table 3: FID, sFID and Inception Score (IS) of EDM trained with DSM (baseline) and LDSE (L = 1).

Method FID↓ sFID↓ IS↑
DSM 2.21 3.83 9.59

LDSE (L = 1) 2.25 3.85 9.48

E.5. Evaluation

We generated 50,000 samples with each model and computed the FID. We did this three times due to the stochasticity of the
sampling scheme and reported the best FID for each model. For the iDDPM models, we used the DDIM sampler (Song
et al., 2021a) with 250 sampling steps. This was chosen for computational purposes and was also based on the results
reported in (Nichol & Dhariwal, 2021), where only marginal improvements in FID were reported with even larger sampling
steps. For the EDM models, we used the default sampling noise schedule and the deterministic Heun 2nd order sampler
(Ascher & Petzold, 1998) with 18 sampling steps or 35 function evaluations per sample.
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F. Implementation
In this section we provide a general implementation for the lifted score estimator. This template can be used for both lifted
slice score matching and lifted denoising score matching.

1 class ResidualSignedEstimator(nn.Module):
2 """
3 The lifted estimator model with sign correction.
4 """
5

6 def __init__(
7 self,
8 basis: nn.Module,
9 num_timesteps: int,

10 decay: float = 0.5,
11 ):
12 super().__init__()
13

14 self.basis = basis
15 self.decay = decay
16

17 # Create a parameter to store the signs
18 self.register_parameter(
19 "score_signs",
20 nn.Parameter(torch.zeros(num_timesteps, len(basis)), requires_grad=False),
21 )
22

23 def modes(
24 self,
25 input: Tensor,
26 **kwargs
27 ) -> Tensor:
28 """
29 Return the basis functions evaluated at the
30 input (and timestep.)
31 """
32 return torch.concat(
33 [
34 basis_l(input, t, **kwargs).unsqueeze(1) for basis_l in self.basis
35 ],
36 dim=1,
37 ) # (b, l, *)
38

39 @torch.no_grad()
40 def get_signs(self, **kwargs) -> Tensor:
41 """
42 Get the signs of the modes.
43 """
44 # If diffusion model then index with t
45 if "t" in kwargs.keys():
46 t = kwargs["t"]
47 return torch.sign(self.score_signs[t.long()].data + 1e-7)
48 else:
49 return torch.sign(self.score_signs.data + 1e-7)
50

51 def update_signs(
52 self,
53 input: Tensor,
54 target: Tensor,
55 **kwargs
56 ) -> Tuple[Tensor, Tensor]:
57 """
58 Update the signs of the modes.
59 """
60 # Compute all the modes (b, l, *)
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61 f = self.modes(input, **kwargs)
62

63 if "t" not in kwargs.keys():
64 # Then use slicing to compute first term
65 w = kwargs["w"]
66 jac_f_w = kwargs["jac_f_w"]
67 # Calculate <s, f> with Hutchinson
68 # trace estimator
69 sign_magnitude = torch.einsum("nbd,nbdl->l", w, jac_f_w) / np.prod(jac_f_w.shape[:2])
70 else:
71 # Update the magnitude of the signs
72 with torch.no_grad():
73 signs = self.get_signs(t)
74 fT_f = torch.triu(
75 torch.einsum("bl...,bL...->blL", f, f) / f.shape[0], diagonal=1
76 )
77 sign_magnitude = torch.einsum(
78 "b...,bl...->bl", target, f
79 ) - torch.einsum(
80 "bl,blL->bL", signs, fT_f
81 )
82

83 return f, sign_magnitude
84

85 def signed_modes(
86 self,
87 input: .Tensor,
88 target: Optional[Tensor] = None,
89 update: bool = True,
90 **kwargs,
91 ) -> Tensor:
92 """
93 Compute the sign corrected modes.
94 """
95 # Update the signs using EMA
96 if self.training and update:
97 assert target is not None, (
98 "Target must be provided"
99 "for training."

100 )
101 f, signs = self.update_signs(input, target, t, **kwargs)
102 with torch.no_grad():
103 if "t" in kwargs.keys():
104 t = kwargs["t"]
105 old_signs = self.score_signs.data[t]
106 new_signs = (
107 self.decay * old_signs
108 + (1 - self.decay) * signs
109 )
110 self.score_signs.data[t] = new_signs
111 else:
112 old_signs = self.score_signs
113 new_signs = (
114 self.decay * old_signs +
115 (1 - self.decay) * signs
116 )
117 self.score_signs = new_signs
118 else:
119 f = self.modes(input, **kwargs)
120

121 signs = self.get_signs(**kwargs)
122 f = torch.einsum(
123 "bl,bl...->bl...",
124 signs.detach(),
125 f
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126 )
127

128 return f
129

130 def forward(
131 self,
132 input: Tensor,
133 update: bool = False,
134 return_modes: bool = False,
135 **kwargs,
136 ) -> Tensor:
137 """
138 Compute the estimator.
139 """
140

141 f = self.f(input, update=update, **kwargs)
142 if return_modes:
143 return f
144 else:
145 return torch.sum(f, dim=1)

Listing 1: Implementation of the residual estimator in the lifted space.

Next we provide the implementation for the target in the sliced version of LSM using JVP. For diffusion models, the
conditional score is just the (scaled) additive noise that we add to the sample.

1 # This computes Jf.w which is needed for
2 # the Hutchinson trace estimator \E[w^TJfw]
3 def _batched_fwd_and_jvp(
4 _target: torch.Tensor, # (b, d)
5 _cotangent: torch.Tensor, # (n, b, d)
6 ) -> Tuple[torch.Tensor, torch.Tensor]:
7 def _f(_y: torch.Tensor) -> torch.Tensor:
8 return self.modes(_y)
9

10 def _jvp(_v: torch.Tensor) -> torch.Tensor:
11 return jvp(_f, (_target,), (_v,))
12

13 return vmap(_jvp)(_cotangent)

Listing 2: V-Mapped JVP calculation for Hutchinson trace estimator.

Now we can define the LSE and LDSE objectives with manual gradient computation for implicit and diffusion generative
model training respectively.

1 class LiftedScoreEstimationFunction(torch.autograd.Function):
2 @staticmethod
3 @torch.cuda.amp.custom_fwd
4 def forward(
5 ctx: torch.autograd.function.FunctionCtx,
6 w1: Tensor, # (n, b, d)
7 f1: Tensor, # (b, d, l)
8 jac_f1_w1: Tensor, # (n, b, d, l)
9 w2: Tensor, # (n, b, d)

10 f2: Tensor, # (b, d, l)
11 jac_f2_w2: Tensor, # (n, b, d, l)
12 ) -> Tensor:
13 N, B, D, L = jac_f1_w1.shape
14

15 # Hutchinson trace estimator
16 w1T_jac_f1_w1 = torch.einsum("nbd,nbdl->l", w1, jac_f1_w1) / N / B
17 w2T_jac_f2_w2 = torch.einsum("nbd,nbdl->l", w2, jac_f2_w2) / N / B
18

19 f1T_f1 = torch.einsum("bdl,bdL->lL", f1, f1) / B
20 f2T_f2 = torch.einsum("bdl,bdL->lL", f2, f2) / B
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21

22 # Compute the loss
23 f1T_f1_sum = torch.sum(torch.tril(f1T_f1, diagonal=-1), dim=-1)
24 f2T_f2_sum = torch.sum(torch.tril(f2T_f2, diagonal=-1), dim=-1)
25 loss1_unreduced = -(
26 w1T_jac_f1_w1 + f1T_f1_sum
27 ) * (w2T_jac_f2_w2 + f2T_f2_sum)
28 loss1 = torch.sum(loss1_unreduced, dim=-1) / L
29

30 f1T_f1_diagonal = torch.diagonal(f1T_f1)
31 f2T_f2_diagonal = torch.diagonal(f2T_f2)
32 loss2_unreduced = 0.5 * f1T_f1_diagonal * f2T_f2_diagonal
33 loss2 = torch.sum(loss2_unreduced, dim=-1) / L
34

35 loss = loss1 + loss2
36 loss_unreduced = loss1_unreduced + loss2_unreduced
37

38 ctx.save_for_backward(
39 w1,
40 f1,
41 w2,
42 f2,
43 f1T_f1_diagonal,
44 f2T_f2_diagonal,
45 w1T_jac_f1_w1,
46 f1T_f1_sum,
47 w2T_jac_f2_w2,
48 f2T_f2_sum,
49 )
50

51 return loss, loss1, loss2, loss_unreduced
52

53 @staticmethod
54 @torch.cuda.amp.custom_bwd
55 def backward(
56 ctx: torch.autograd.function.FunctionCtx,
57 grad_output_loss: torch.Tensor,
58 grad_output_loss1: torch.Tensor,
59 grad_output_loss2: torch.Tensor,
60 grad_loss_unreduced: torch.Tensor,
61 ) -> Tuple[torch.Tensor, ...]:
62 (
63 w1,
64 f1,
65 w2,
66 f2,
67 f1T_f1_diagonal,
68 f2T_f2_diagonal,
69 w1T_jac_f1_w1,
70 f1T_f1_sum,
71 w2T_jac_f2_w2,
72 f2T_f2_sum,
73 ) = ctx.saved_tensors
74

75 f1_coeff = w2T_jac_f2_w2 + f2T_f2_sum
76 f1_cumsum_roll = torch.cumsum(f1, dim=-1).roll(1, dims=-1)
77 f1_cumsum_roll[:, :, 0] = 0
78 grad_f1 = -torch.einsum(
79 "l,bdl->bdl", f1_coeff, f1_cumsum_roll
80 ) + torch.einsum(
81 "bdl,l->bdl", f1, f2T_f2_diagonal
82 ) # (b, d, l)
83 grad_jac_f1_w1 = -f1_coeff * w1[..., None].expand(-1, -1, -1, f1.shape[-1]) # (n, b, d, l)
84

85 f2_coeff = w1T_jac_f1_w1 + f1T_f1_sum
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86 f2_cumsum_roll = torch.cumsum(f2, dim=-1).roll(1, dims=-1)
87 f2_cumsum_roll[:, :, 0] = 0
88 grad_f2 = -torch.einsum(
89 "l,bdl->bdl", f2_coeff, f2_cumsum_roll
90 ) + torch.einsum(
91 "bdl,l->bdl", f2, f1T_f1_diagonal
92 ) # (b, d, l)
93 grad_jac_f2_w2 = -f2_coeff * w2[..., None].expand(-1, -1, -1, f2.shape[-1]) # (n, b, d, l)
94

95 return (
96 None,
97 grad_f1 * weight,
98 grad_jac_f1_w1 * weight,
99 None,

100 grad_f2 * weight,
101 grad_jac_f2_w2 * weight,
102 )
103

104

105 def lifted_score_estimation_loss(
106 w: Tensor, # (n, b, d)
107 f: Tensor, # (b, d, l)
108 jac_f_w: Tensor, # (n, b, d, l)
109 ) -> Tensor:
110 # The loss involves computing the squared value
111 # of the expectation which can be simulated
112 # by dividing the mini-batch into two
113 f1, f2 = torch.split(f, f.shape[0] // 2, dim=0)
114 jac_f1_w1, jac_f2_w2 = torch.split(jac_f_w, jac_f_w.shape[1] // 2, dim=1)
115 w1, w2 = torch.split(w, w.shape[1] // 2, dim=1)
116

117 return LiftedScoreEstimationFunction.apply(
118 w1,
119 f1,
120 jac_f1_w1,
121 w2,
122 f2,
123 jac_f2_w2,
124 )

Listing 3: LSE loss function.

1 class LiftedEstimationFunction(torch.autograd.Function):
2 @staticmethod
3 @torch.cuda.amp.custom_fwd
4 def forward(
5 ctx: torch.autograd.function.FunctionCtx,
6 target1: Tensor, # (b, *)
7 f1: Tensor, # (b, l, *)
8 target2: Tensor, # (b, *)
9 f2: Tensor, # (b, l, *)

10 ) -> Tensor:
11 # Do shape checking
12 B, L, *_ = f1.shape
13 ctx.shape = f1.shape
14

15 # Reshape the inputs
16 target1 = target1.reshape(B, -1)
17 target2 = target2.reshape(B, -1)
18 f1 = f1.reshape(B, L, -1)
19 f2 = f2.reshape(B, L, -1)
20

21 target1T_f1 = torch.einsum("bd,bld->l", target1, f1) / B
22 f1T_f1 = torch.einsum("bld,bLd->lL", f1, f1) / B
23 target2T_f2 = torch.einsum("bd,bld->l", target2, f2) / B
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24 f2T_f2 = torch.einsum("bld,bLd->lL", f2, f2) / B
25

26 # Compute the loss
27 # \sum_{l=1}^L -2 < s_{(l)} | f_l>^2 + <f_l | f_l>^2
28 f1T_f1_sum = torch.sum(torch.tril(f1T_f1, diagonal=-1), dim=-1)
29 f2T_f2_sum = torch.sum(torch.tril(f2T_f2, diagonal=-1), dim=-1)
30 loss1_unreduced = -(
31 target1T_f1 - f1T_f1_sum
32 ) * (target2T_f2 - f2T_f2_sum)
33 loss1 = torch.sum(loss1_unreduced, dim=-1) / L
34

35 f1T_f1_diagonal = torch.diagonal(f1T_f1)
36 f2T_f2_diagonal = torch.diagonal(f2T_f2)
37 loss2_unreduced = 0.5 * f1T_f1_diagonal * f2T_f2_diagonal
38 loss2 = torch.sum(loss2_unreduced, dim=-1) / L
39

40 loss3 = (
41 0.5
42 * torch.mean(
43 torch.einsum(
44 "bd,bd->b", target1, target1
45 )
46 )
47 * torch.mean(
48 torch.einsum(
49 "bd,bd->b", target2, target2
50 )
51 )
52 )
53

54 loss = (
55 loss1 + loss2 + loss3
56 ) / (target1.shape[-1] ** 2)
57

58 ctx.save_for_backward(
59 target1,
60 target2,
61 f1,
62 f2,
63 f1T_f1_diagonal,
64 f2T_f2_diagonal,
65 target1T_f1,
66 f1T_f1_sum,
67 target2T_f2,
68 f2T_f2_sum,
69 )
70

71 return loss
72

73 @staticmethod
74 @torch.cuda.amp.custom_bwd
75 def backward(
76 ctx: torch.autograd.function.FunctionCtx,
77 grad_output_loss: ensor,
78 ) -> Tuple[Tensor, ...]:
79 del grad_output_loss
80

81 (
82 target1,
83 target2,
84 f1,
85 f2,
86 f1T_f1_diagonal,
87 f2T_f2_diagonal,
88 target1T_f1,

23



Lifted Residual Score Estimation

89 f1T_f1_sum,
90 target2T_f2,
91 f2T_f2_sum,
92 ) = ctx.saved_tensors
93

94 f1_coeff = target2T_f2 - f2T_f2_sum
95 f1_cumsum_roll = torch.cumsum(f1, dim=1).roll(1, dims=1)
96 f1_cumsum_roll[:, 0, :] = 0
97 grad_f1 = -torch.einsum(
98 "l,bld->bld",
99 f1_coeff,

100 target1.unsqueeze(1) - f1_cumsum_roll
101 ) + torch.einsum(
102 "bld,l->bld", f1, f2T_f2_diagonal
103 ) # (b, l, d)
104 f2_coeff = target1T_f1 - f1T_f1_sum
105 f2_cumsum_roll = torch.cumsum(f2, dim=1).roll(1, dims=1)
106 f2_cumsum_roll[:, 0, :] = 0
107 grad_f2 = -torch.einsum(
108 "l,bld->bld",
109 f2_coeff,
110 target2.unsqueeze(1) - f2_cumsum_roll
111 ) + torch.einsum(
112 "bld,l->bld", f2, f1T_f1_diagonal
113 ) # (b, l, d)
114

115 return (
116 None,
117 (grad_f1 * weight).reshape(*ctx.shape) / (target1.shape[-1] ** 2),
118 None,
119 (grad_f2 * weight).reshape(*ctx.shape) / (target1.shape[-1] ** 2),
120 )
121

122

123 class LiftedEstimationLoss(nn.Module):
124 def forward(
125 self,
126 target: torch.Tensor, # (b, *)
127 f: torch.Tensor, # (b, l, *)
128 ) -> torch.Tensor:
129 f1, f2 = torch.split(f, f.shape[0] // 2, dim=0)
130 target1, target2 = torch.split(target, target.shape[0] // 2, dim=0)
131

132 return LiftedEstimationFunction.apply(
133 target1,
134 f1,
135 target2,
136 f2,
137 )

Listing 4: LDSE loss function.
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G. Samples
G.1. CelebA - VAE

(a) Gaussian Posterior (b) Stein

(c) Spectral (d) SSM (L = 1)

Figure 3: VAE samples on CelebA.
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(e) SSM (L = 2) (f) SSM (L = 3)

(g) LSE (L = 1) (h) LSE (L = 2)
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(i) LSE (L = 3)

Figure 4: VAE samples on CelebA ctd.
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G.2. CelebA - WAE

(a) Stein (b) Spectral

(c) SSM (L = 1) (d) SSM (L = 2)

Figure 5: WAE samples on CelebA.
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(e) SSM (L = 3) (f) LSE (L = 1)

(g) LSE (L = 2) (h) LSE (L = 3)

Figure 6: WAE samples on CelebA ctd.
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G.3. CIFAR10 - iDDPM

(a) DSM (L = 1) (b) DSM (L = 2)

(c) LDSE (L = 1) (d) LDSE (L = 2)

Figure 7: iDDPM samples on CIFAR-10

30


