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ABSTRACT

Message passing graph neural networks (GNNs) are known to have limited ex-
pressive power in their ability to distinguish some non-isomorphic graphs. Be-
cause of this, it is well known that they are unable to detect or count arbitrary
graph substructures (i.e., solving the subgraph isomorphism problem), a task that
is of great importance for several types of graph-structured data. However, we
observe that GNNs are in fact able to count graph patterns quite accurately across
several real-world graph datasets. Motivated by this observation, we provide an
analysis of the subgraph-counting capabilities of GNNs beyond the worst case,
deriving several sufficient conditions for GNNs to be able to count subgraphs and,
more importantly, to be able to sample-efficiently learn to count subgraphs. More-
over, we develop novel dynamic programming algorithms for solving the subgraph
isomorphism problem on restricted classes of pattern and target graphs, and show
that message-passing GNNs can efficiently simulate these dynamic programs. Fi-
nally, we empirically validate that our sufficient conditions for GNNs to count
subgraphs hold on many real-world datasets, providing a theoretically-grounded
explanation to our motivating observations.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as powerful tools for learning on graph-structured
data, achieving significant empirical success across diverse domains including computational chem-
istry, bioinformatics, and social network analysis. However, the expressivity of these models in the
context of graph classification, i.e., their ability to distinguish non-isomorphic graphs, is intrinsically
limited by the capabilities of the Weisfeiler-Leman (1-WL) algorithm (Weisfeiler & Leman, 1968),
a heuristic used for the graph isomorphism problem (Morris et al., 2019; Xu et al., 2018). 1-WL is
known to fail to distinguish certain classes of graphs, such as regular graphs (Arvind et al., 2017).

Table 1: Test set results for subgraph counting
with a GNN on molecular graphs. Reported:
AUROC for the multi-class classification problem
and the mean avg. error of the prediction.

Pattern

Dataset Metric

Mutagenicity MAE 0.479 0.263 0.594 0.477
AUC 0.899 0.900 0.931 0.912

MCF-7 MAE 0.044 0.080 0.090 0.021
AUC 0.900 0.861 0.986 0.951

ZINC MAE 0.046 0.021 0.060 0.010
AUC 0.971 0.981 1.000 0.973

ogbg-molhiv MAE 0.010 0.024 1.171 0.004
AUC 0.949 0.941 0.904 0.964

ogbg-molpcba MAE 0.000 0.000 0.002 0.000
AUC 0.995 0.938 0.977 1.000

Peptides-func MAE 0.197 0.006 0.015 0.006
AUC 0.988 0.853 0.850 0.791

PCQM-Contact MAE 0.206 0.001 0.006 0.002
AUC 0.947 0.970 0.940 1.000

As a consequence of this, in the seminal work
”Can Graph Neural Networks Count Substruc-
tures?” (Chen et al., 2020), it has been shown
that GNNs are unable to count arbitrary sub-
graphs, a capability that is crucial for many
real-world applications. The ability to detect
and count substructures in graphs is of partic-
ular importance in fields such as chemistry and
biology, where specific molecular substructures
often determine functional properties.

The limited expressivity of GNNs has moti-
vated the development of more expressive ar-
chitectures, including higher-order GNNs that
operate on k-tuples of nodes (Morris et al.,
2019; Maron et al., 2019), subgraph GNNs,
which transform the original graph into a set of
modified subgraphs for GNN processing (Cotta
et al., 2021; Bevilacqua et al., 2021; Chen et al.,
2020), and models that incorporate unique node
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identifiers (Sato et al., 2021; Pellizzoni et al., 2024). However, these approaches often come at a sig-
nificant computational cost, limiting their practical applicability, or show poor generalizability.

Interestingly, despite these theoretical limitations, we observe that standard GNNs are often able
to count graph patterns with surprising accuracy across a variety of real-world datasets. For exam-
ple, Table 1 reports the test set performance of a simple GNN model (Section A.1) for the induced
subgraph counting task, for several patterns (Section D.1), across several widely used molecular
datasets, which shows a surprisingly good performance for a theoretically unsolvable task. While
these experimental findings are somewhat limited in scope, they suggest that GNNs possess the
capacity to approximate subgraph counts, at least for certain patterns and certain classes of target
graphs. This apparent contradiction between theory and practice motivates our work to better under-
stand the subgraph-counting capabilities of GNNs beyond worst-case scenarios via a more nuanced
analysis of their subgraph-counting abilities. Our contributions are the following:

(1) Provide conditions under which GNNs can efficiently realize functions on graphs that depend
only on local substructures around the nodes (Theorem 2), including subgraph counting;

(2) Propose novel dynamic programming algorithms for restricted variants of subtree isomorphism
(Theorem 4), and show that GNNs can efficiently simulate them (Theorem 5);

(3) Show that, in practice, many real-world graph datasets satisfy the sufficient conditions of
point (1), and experimentally validate the claims of point (2) above.

Our work seeks to provide a theoretically-grounded explanation for the observed ability of GNNs in
subgraph counting, bridging the gap between theoretical limitations and practical performance.

1.1 RELATED WORK

Graph Neural Networks Expressivity Following the influential papers (Morris et al., 2019; Xu
et al., 2018) that exposed the constraints of GNNs due to their expressiveness being limited by the
1-WL test (Weisfeiler & Leman, 1968), there has been a surge in research aimed at developing more
capable GNNs. A notable strategy has been to create GNNs that simulate higher-order WL (Grohe,
2017) or Folklore-WL (Cai et al., 1992) tests, as demonstrated by k-GNNs (Morris et al., 2019) and
k-FGNNsp (Maron et al., 2019). However, their computational and memory requirements are often
impractical. Some of the subsequent approaches exploited graph locality and sparsity (Morris et al.,
2022; Zhang et al., 2023; Frasca et al., 2022). An additional research direction involves subgraph
GNNs (Cotta et al., 2021; Qian et al., 2022; Bevilacqua et al., 2021). Finally, individualization
schemes have been proposed by several works (Sato et al., 2021; Murphy et al., 2019; Dasoulas
et al., 2020; Franks et al., 2021) to enhance the expressivity of GNNs and obtain universal function
approximators (Abboud et al., 2021; Barceló et al., 2020). Sato (2020); Morris et al. (2023b) offer
a more comprehensive overview. Xu et al. (2020) demonstrated that GNNs can learn to mimic
classical graph algorithms, and provided a framework for studying the complexity of simulating
combinatorial algorithms with different architectures. For a comprehensive overview of GNNs’
capabilities in algorithmic tasks, readers are referred to Cappart et al. (2023).

Combinatorial subgraph counting Subgraph (both induced and not) isomorphism, and the re-
lated counting tasks, are NP-hard (Alon et al., 1995). Due to the practical relevance of the task, sev-
eral efficient search algorithms have been developed (Carletti et al., 2017; McCreesh et al., 2020).
Another line of research, called color-coding, uses a dynamic programming approach (Alon et al.,
1995; 2008; Arvind & Raman, 2002). For the task of finding all frequent subgraphs in a dataset,
there exist specialized algorithms (Nijssen & Kok, 2005; Pellizzoni & Vandin, 2023).

Subgraph counting and GNNs Chen et al. (2020) showed that GNNs are unable to count arbitrary
subgraphs, and Zhang et al. (2024) obtain a full characterization of the subgraphs that can be counted
on arbitrary graphs, i.e., considering the worst-case scenario. The subgraph counting problem has
also been addressed on arbitrary graphs with ad-hoc architectures (Chen et al., 2020; Tahmasebi
et al., 2023; Huang et al., 2023b; Paolino et al., 2024), with positional encodings (Huang et al.,
2023a) or with random node features (Kanatsoulis & Ribeiro, 2024). In this work, we instead focus
on going beyond the worst-case analysis by deriving conditions on the target graphs that allow to
count patterns by standard message-passing GNNs. Subgraphs have also been used to improve the
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expressivity of GNNs by using subgraph counts as features (Bouritsas et al., 2022) or by extending
message-passing to subgraphs (Wang et al., 2023).

2 PRELIMINARIES

In what follows, we define a graph as a tuple G = (VG, EG, LG), with VG a finite set of nodes, and
EG ⊆ {{u, v} : u ̸= v ∈ VG} a set of undirected edges. We define the vertex-label function as
LG : VG → Σ, with a finite set of labels Σ. For the sake of simplicity, we consider edges to be
unlabeled. We define the neighborhood of a node as N (v) = {w ∈ VG : {v, w} ∈ EG}. We say
that two graphs G and H are isomorphic, denoted as G ≃ H , if there exists a bijective mapping π :
VG → VH , called isomorphism, such that LG(v) = LH(π(v)), ∀v ∈ VG and {π(u), π(v)} ∈ EH if
and only if {u, v} ∈ EG. The isomorphism relation induces equivalence classes, which we call, with
abuse of notation, graphs. The group of isomorphisms from G to itself is called the automorphism
group Aut(G). A subgraph isomorphism from G into H is a injective mapping π : VG → VH s.t.
{π(u), π(v)} ∈ EH for every {u, v} ∈ EG and LG(v) = LH(π(v)), ∀v ∈ VG. We call it an
induced subgraph isomorphism if furthermore for all pairs u, v ∈ G, if {π(u), π(v)} ∈ EH then
{u, v} ∈ EG. We denote sets of graphs by G. Moreover, given a graph G and nodes u, v ∈ VG,
we say that they belong to the same orbit if ∃π ∈ Aut(G) such that π(u) = v, and denote it with
(G, u) ≃ (G, v). We denote the set of orbits on a set of graphs G with VG = {(G, u) : G ∈ G, v ∈
VG}/ ≃. Given two nodes u, v ∈ VG, we define with dG(u, v) their shortest-path distance in G. A
tree is a graph with no cycles. We denote with Tr the tree rooted in r ∈ VT , and define recursively
children(r) = N (r) and if q ∈ children(p) then children(q) = N (q)\{p}. We define the height of
the tree as maxp∈VT

dT (r, p) and the truncated tree T ℓ
r as the subgraph of Tr induced by the nodes

p such that dT (r, p) ≤ ℓ. An egonet EGOk
u(G) of a node u ∈ VG is defined as the subgraph of G

induced by {v ∈ VG : dG(u, v) ≤ k}.

The Weisfeiler–Leman algorithm The color refinement algorithm, also known as 1-
Weisfeiler–Leman (denoted as WL) algorithm, is a heuristic algorithm for the graph iso-
morphism problem. Let WL0(G, v) = LG(v) ∈ N be the initial color of node v ∈
VG. Then the algorithm updates vertex colors at iteration ℓ > 0 as WLℓ(G, v) =

HASH
(
WLℓ−1(G, v), {{WLℓ−1(G,w) : w ∈ N (v)}}

)
∈ N, with HASH an injective map. Two

graphs are deemed ℓ-hop WL-isomorphic, denoted as G ≃WLℓ
H , if {{WLℓ(G, v) : v ∈ VG}} =

{{WLℓ(H, v) : v ∈ VH}}, and WL-isomorphic if it holds for ℓ = |VG|, denoted as G ≃WL H . Note
that G ≃ H =⇒ G ≃WL H , but the converse is not true. We call a graph G WL-amenable if ∀H
such that G ̸≃ H , G ̸≃WL H .

Coverings of graphs For graphs P andG, the mapping ϕ : VP → VG is called a homomorphism if
it preserves all edges and labels, i.e., if {ϕ(u), ϕ(v)} ∈ EG for all {u, v} ∈ EP and L(v) = L(ϕ(v))
for all v ∈ VP . A homomorphism ϕ is called locally locally injective or bijective if for every node
v ∈ VP , the mapping ϕv : N (v) → N (ϕ(v)) is injective, respectively bijective.

If there exists a locally bijective homomorphism from a graph H to a graph G, we say that H covers
G. The universal cover (Angluin, 1980) of G given a node u ∈ VG is a (possibly infinite) tree,
denoted Uu(G), that covers any graph which covers G. Formally, Uu(G) has a node w ∈ VUu(G)

for every non-backtracking walk starting at u. Then (w1, w2) is an edge inEUu(G) if the walkw1 is a
one-edge extension of w2 or vice versa, i.e., if w1 = (u, v1, . . . , vn, vn+1) and w2 = (u, v1, . . . , vn)
or w1 = (u, v1, . . . , vn) and w2 = (u, v1, . . . , vn, vn+1). It holds that U ℓ

u(G) ≃ U ℓ
v(H) if and only

if WLℓ(G, u) = WLℓ(H, v) (Krebs & Verbitsky, 2015). An illustration can be found in Figure 1.

Graph neural networks Message passing graph neural networks (GNNs), given a graph G, iter-
atively produce for each node v ∈ VG, at each level ℓ = 1, . . . ,L, the embeddings hℓv ∈ Rdℓ by
taking into account messages coming from its neighbors N (v). More formally, the embedding of
node v is updated as hℓv = fupd

(
hℓ−1
v , fagg

(
{{hℓ−1

u : u ∈ N (v)}}
))
, where fagg and fupd are the

aggregate and the update operations, respectively. The first layer of the GNN is fed with the initial
node embeddings h0v , e.g. one-hot encodings of the node labels. Finally, one can get a graph-level
readout hLG by aggregating the output node embeddings via a function fout. In Xu et al. (2018) it
was shown that there exist injective functions fagg, fupd and fout yielding GNNs that are provably
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u uu

r r r

Figure 1: Three graphs and their universal covers rooted in a node u. Since G1 is a tree, its universal
cover is G1 itself. The graphs G2 and G3 have isomorphic (infinite) universal covers. In fact, G3 is
a covering of G2.

as expressive as color refinement. We denote as GNNnode
ℓ = {(G, v) 7→ hℓv} the class of para-

metric node-level functions formed by such a model with ℓ message passing layers. Moreover, let
GNNℓ = {G 7→ hℓG} be the class of parametric graph-level functions.

3 UNIVERSALITY ON WL-DISTINGUISHABLE GRAPHS

The classical negative result of Chen et al. (2020, Theorem 3.3) is based on pairs of WL-
indistinguishable graphs such that, for a pattern P , one contains it as an induced subgraph while
the other one does not. This result, however, requires that the set of graphs at hand features specific
WL-indistinguishable graphs, which is a scenario that is unrealistic to happen in practice.

To overcome this limitation, we restrict to studying the ability of GNNs to solve the subgraph count-
ing tasks (for a fixed pattern graph P ) on specific sets of graphs G, phrasing the task as a promise
problem (Even et al., 1984). In fact, if the graphs at hand can all be distinguished by WL, we have
the following positive result, which follows directly from Morris et al. (2023a).
Proposition 1. Let G be a set of graphs such that ∀G1, G2 ∈ G, G1 ̸≃WL G2 and |VG| ≤ n, ∀G ∈
G. Let f : G → R be any function. Then, there exists a function class GNNℓ=n realized by a GNN
model such that f ∈ GNNℓ=n.

In particular, if the function f is the (possibly induced) subgraph counting function, GNNs can count
subgraphs on G. In fact, if the set G is composed of WL-amenable graphs, the proposition always
holds. Therefore, for several classes of graphs, such as trees and forests, which are known to be
amenable (Arvind et al., 2017), as well as random graphs, which are known to be amenable with
high probability (Babai et al., 1980), GNNs are indeed able to count subgraphs. This result, although
it is the first step beyond the worst-case analysis of Chen et al. (2020), has several limitations.

First, the proof of universality of GNNs on WL-distinguishable graphs relies on a model with an
impractical number of layers, that is able to distinguish all graphs and remember by heart the value
of the function on each graph. Therefore, the size of the MLP after the graph-level pooling of the
node embeddings must be (at least) linear in |G|. In particular, |G| can in general grow exponentially
with the maximum graph size n. Thus, the results holds only for sets of bounded-size graphs.

Secondly, and relatedly to the first problem, the high sample complexity of the model used in the
proof of the proposition would not allow it to generalize to unseen data. Indeed, for the binary-
output-version of the model, its VC dimension is |G/ ≃WL | = |G| (Morris et al., 2023a), implying
that the model is in general incapable of generalizing to unseen data. Therefore, while such a model
can count subgraphs on the training set, it’s hard to argue that it is able to learn to count subgraphs.
In the next sections, we address this issue.

4 UNIVERSALITY FOR LOCAL FUNCTIONS

The loose results of the previous section are partly due to the fact that we treat subgraph counting
as an arbitrarily complex function. In fact, we can exploit the fact that subgraph counting depends
only on local substructures around each node.
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Figure 2: The set of graphs on the left is not (2, 1)-identifiable, while the one on the right is.

Definition 1. We define a function f : G → R to be node-decomposable if it can be written as
f(G) =

∑
u∈VG

g(G, u), for some function g : VG → R. Moreover, g is said to be k-local if
g(G1, u) ̸= g(G2, v) implies EGOk

u(G1) ̸≃ EGOk
v(G2). With some abuse of notation, we say that

a function f that is node-decomposable into k-local functions is also k-local.

Subgraph counting and induced subgraph counting, i.e., counting the number of (induced) subgraph
isomorphisms ϕ from P to G, are indeed node-decomposable (Lemma 1). Moreover, if P is the
pattern at hand and there exists a node p ∈ VP such that maxq∈VP

dP (p, q) ≤ k, i.e., the pattern has
radius at most k, then these functions are k-local. Indeed, if ϕ is a (induced) subgraph isomorphism
from P to a subgraph ofG such that ϕ(p) = u, we have that ϕ(q) ∈ VEGOk

u(G), ∀q ∈ VP . Therefore,
EGOk

u(G1) ≃ EGOk
v(G2) implies that g(G1, u) = g(G2, v).

This gives hope for a GNN model that relies only on local structures around nodes to correctly solve
the subgraph counting tasks, thus having a number of parameters independent of n, the maximum
graph size. Nonetheless, the following impossibility result shows that message passing GNNs are
not able to represent all functions on node orbits, even when the graphs of the domain of such func-
tion are all distinguishable by WL. Indeed, if two non-isomorphic graphs have isomorphic universal
covers, then there exists nodes that are not distinguishable by a GNN.

Theorem 1. There exists a set of graphs G such that ∀G1, G2 ∈ G, G1 ̸≃WL G2 and a function
f : VG → R for which there exists no function class GNNnode

ℓ realized by a GNN model such that
f ∈ GNNnode

ℓ , ∀ℓ.

In fact, having no two graphs that have isomorphic universal covers is not only a necessary condition
for GNNs to represent any function on node orbits, but also a sufficient one (Krebs & Verbitsky,
2015). In the worst case though, the GNN can need up to 2n−1 message passing layers to distinguish
all node orbits, and the MLP of the last message passing layer must be able to recognize any such
node, therefore requiring a number of parameters that is potentially exponential in n, as in Section 3.
In the next section, we discuss a finer grained sufficient condition for node orbits to be distinguished
by a GNN model with number of layers and number of parameters independent o n, and show that
it allows these models to learn sample efficiently the subgraph counting tasks.

4.1 FINE-GRAINED DISTINGUISHABILITY OF NODES

Since the subgraph counting tasks are k-local, we do not need GNNs to be able to distinguish any
two node orbits, but rather to distinguish ego-nets of radius k. In general, one might need ℓ > k
message passing layers to do so. We define ηG,ℓ = |{U ℓ

u(G) : (u,G) ∈ VG}/ ≃ |, the number of
truncated universal covers in G. Then, we can characterize the functions that can be realized by a
GNN with ℓ layers via the notion of (ℓ, k)-identifiability.

Definition 2. Let G be set of graphs. We say that VG is (ℓ, k)-identifiable if ∀(G1, u), (G2, v) ∈ VG ,
U ℓ
u(G1) ≃ U ℓ

v(G2) implies that EGOk
u(G1) ≃ EGOk

v(G2). If VG is (ℓ, k)-identifiable, we also say
that G is (ℓ, k)-identifiable.

Figure 2 gives a visual representation of a set of graphs that is not (2, 1)-identifiable, as two non-
isomorphic ego-nets of radius 1 have the same truncated universal covers of depth 2, as well as a
set of graphs that is (2, 1)-identifiable. Interestingly, both sets are (3, 1)-identifiable. Indeed, as
experimentally shown in Section 6, graphs sets that are not (ℓ, k)-identifiable are rare in practice.
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Theorem 2. Let G be a (ℓ, k)-identifiable set of graphs. Consider any k-local function f : VG → R.
Then, there exists a function class GNNnode

ℓ realized by a GNN model with O(η2ℓ,G · ℓ) parameters
and ℓ layers such that f ∈ GNNnode

ℓ .

Corollary 1. Let G be a (ℓ, k)-identifiable set of graphs. Let GNNℓ be a function class realized by
a GNN model with sum-aggregation fout({{hℓu : u ∈ VG}}) =

∑
u∈VG

hℓu. Then GNNℓ can perform
both subgraph counting and induced subgraph counting of patterns of radius at most k.

Notably, the GNN model that realizes Corollary 1 has number of parameters that is independent of
the maximum graph size n, depending only on ℓ and ηG,ℓ, and has a simple readout function. This
allows not only to count arbitrary (small) subgraphs on sets of graphs with unrestricted maximum
graph size, but also to learn such tasks sample efficiently, i.e., with fewer training samples.

Informally speaking, the sample complexity of a model class is the number of training samples in
order for the model to generalize well to unseen data, and is usually proportional to the number
of parameters in the model. For real-valued function classes, one can characterize their sample
complexity via the pseudo-dimension (Anthony & Bartlett, 1999; Mohri et al., 2018), obtaining that
lower pseudo-dimension implies lower sample complexity. See Section A.2 for formal definitions.
Theorem 3. The function class GNNℓ of Cor. 1 has pseudo-dimension Pdim(GNNℓ) ≤ ηℓ,G + 1.

5 ALGORITHMICALLY-ALIGNED GNNS FOR TREE PATTERNS

The positive results in previous sections solve subgraph counting by recognizing entire graphs or
ego-nets around nodes. This approach could solve tasks beyond subgraph counting, potentially pro-
ducing unnecessarily large models. We now explore the ability of GNNs to simulate combinatorial
algorithms for subgraph counting-related tasks, as it has been noted in the literature that GNNs align
well with dynamic programming (DP) algorithms (Xu et al., 2020; Cappart et al., 2023). We develop
novel algorithms solving the (non-induced) subgraph isomorphism problem on restricted pattern or
target graph classes. We demonstrate GNNs can efficiently simulate these algorithms, situating the
resulting models within the algorithmic alignment framework (Xu et al., 2020).

Our algorithms are inspired by the color coding algorithm (Alon et al., 1995; 2008), which finds
subgraph isomorphisms ϕ from the pattern tree T to the target graph G such that c(ϕ(p)) ̸=
c(ϕ(q)),∀p ̸= q ∈ VT , where c(u) represents a color assigned to node u. Enforcing that the
images of the pattern graph’s nodes have different colors ensures injectivity. In the original algo-
rithm, this condition is enforced by assigning random colors to the nodes of G, and repeating the
procedure multiple times to boost the success probability. This assignment of random colors is how-
ever impossible to simulate with message passing. Therefore, we will color the target nodes based
on WL colors, which can be obtained with message passing layers. This however requires to modify
the color coding algorithm to relax the condition on the target graphs’ colors, as it is unrealistic to
assume that any subgraph inGmatching the pattern has all nodes belonging to different WL classes.

5.1 A DYNAMIC PROGRAM FOR COLORFUL SUBTREE ISOMORPHISM

We tackle the subgraph isomorphism problem from tree patterns. Say that the tree pattern at hand is
Tr, rooted in r and with nodes endowed with labels L : VTt → Σ. We denote with Tp the (sub)tree
rooted in p ∈ VT . The nodes of the target graph G are endowed with labels L : VG → Σ and colors
c : VG → Ω such that L(u) ̸= L(v) =⇒ c(u) ̸= c(v).

Our dynamic program TREE-COLSI determines if a subgraph isomorphism ϕ from Tp to G exists,
where ϕ(p) = u, for nodes p ∈ VT and u ∈ VG. For a leaf p, we check if u has the same label.
For internal p with matching label to u, we build ϕ by mapping p to u and its children to distinct
neighbors of u, using inductively gathered information from N (u). Indeed, if there exist subgraph
isomorphisms ϕq from all the nodes q ∈ children(p) to distinct neighbors of u, one can create an
homomorphism from Tp to G by mapping p to u and the nodes in Tq with their image in ϕq .

However, the resulting map could be not injective. Indeed, it could happen, e.g, that in the maps
ϕq1 , ϕq2 a child of q1 and a child of q2 are mapped to the same target graph’s node. To avoid this,
for each map ϕ from Tp to G with ϕ(p) = u, we store a colorset Cϕ with the colors of the images of
the children of p in a set Cu,p. Then, when we create the map ϕ such that ϕ(p) = u by merging the
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Figure 3: On the left, a graph G and a tree pattern P . The copies of G on the right have colors
obtained from one WL iteration. The subgraph isomorphism from P to the red-highlighted subgraph
of G is not quite-colorful, while the one to the green-highlighted subgraph of G is quite-colorful.

maps ϕq from all the nodes q ∈ children(p) to distinct neighbors of u, we require that the images of
any two pattern graph’s nodes that could be mapped to the same target graph’s node have different
colors. This will allow to obtain injectivity.

Let h be the height of the tree Tr and Th = {r}. Let T ℓ−1 = {q ∈ children(p) : p ∈ T ℓ}, ℓ =
1, . . . , h. Clearly, T 0 consists of only leaves of the tree. The dynamic program proceeds in lay-
ers, processing at the same time all the pattern graph’s nodes in T ℓ. Therefore, the output of
TREE-COLSIc(u, ℓ) will be a dictionary mapping nodes p ∈ T ℓ to sets Cu,p. In particular, for
nodes u ∈ VG, p ∈ VT , Cu,p is a set of colorsets C ∈ {0, 1}|Ω|. We have that if Cϕ ∈ Cu,p, then
there exists a subgraph isomorphism ϕ from Tp to G mapping p to u.

Algorithm 1: TREE-COLSIc(u, ℓ)
1 let Cu,ℓ be an empty dictionary
2 if ℓ > 0
3 for v ∈ N (u) do
4 Cv,ℓ−1 = TREE-COLSIc(v, ℓ− 1)

5 Cv,q = Cv,ℓ−1[q], ∀q ∈ children(p), ∀p ∈ T ℓ

6 for p ∈ T ℓ do
7 if children(p) == ∅
8 if L(u) ̸= L(p): Cu,ℓ[p] = {∅}
9 else: Cu,ℓ[p] = ∅

10 continue
11 Cu,p = ∅
12 let (q1, . . . , qδ) = children(p)
13 for seq. of distinct nodes (v1, . . . , vδ) from N (u) do
14 if ∃i : Cvi,qi == ∅: continue
15 let {Cvi,qi

j : j = 1, . . . } = Cvi,qi

16 for seq. of colorsets (Cv1,q1
j1

, . . . , C
vδ,qδ
jδ

) do
17 C = MERGE(C1, . . . , Cδ)
18 if C ̸= ϵ
19 Cu,p = Cu,p ∪ {C}
20 Cu,ℓ[p] = Cu,p

21 return Cu,ℓ

Algorithm 2: MERGE((C1, . . . , Cδ))

1 flag = (c(u) ̸∈ Ci, ∀i)
2 flag = flag and (c(vi) ̸∈ Cj , ∀i ̸= j )
3 flag = flag and (Ci ∩ Cj == ∅ ∀i ̸= j)
4 if flag == false: return ϵ

5 let C̄i = Ci ∪ {c(vi)}, ∀i
6 let C =

⋃
i C̄i

7 return C

The dynamic program TREE-COLSIc, ap-
plied with colors c, is described in Algo-
rithm 1. It takes as input a target graph
node u and a level ℓ. It returns a dictionary
mapping from pattern graph nodes to col-
orset. Lines 2-5 gather information from
the neighbors of u by recursively calling
the procedure on the set of nodes in T ℓ−1,
if ℓ > 0. The for-loop of line 6 iterates
over the nodes p in T ℓ to compute the
sets Cu,p. Lines 7-10 handle the base case
when p is a leaf. For an internal node p, if
L(p) = L(u), the for-loop on line 13 tries

all possible assignments of the nodes in children(p) to the nodes in N (u). The loop on line 16 tries,
for each such assignment, all the combinations of colorsets belonging to the sets Cv1,q1 , . . . , Cvδ,qδ .
For one such sequence C1, . . . , Cδ , the algorithm checks if the recursively-obtained maps can be
used to create a map mapping p to u by checking the colors in the Ci’s. A dummy value ϵ is used
to signal that the map cannot be created. If the map can be created, the algorithm builds a colorset
C(v1,...,vδ),(j1,...,jδ) associated with the map, which is inserted in Cu,p. One would call the algorithm
with TREE-COLSIc(u, h), with h the height of the tree pattern, and would obtain the dictionary Cu,h.
One can then access Cu,r, with r the root of the tree, as Cu,h[r]. An example of the execution of the
algorithm can be found in Section A.4

Due to the ”non-allowed colors” strategy for enforcing injectivity, the dynamic program will not
detect the subgraph isomorphisms from T to G where some specific pairs of pattern graph nodes
are mapped to target graph nodes with the same color. We now formally characterize the family of
maps that can be recognized.
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Definition 3. Let Tr be a tree, G be a graph whose nodes are endowed with colors c : VG → Ω,
and ϕ : VTr

→ VG a map. We say ϕ is quite-colorful (w.r.t. c) if (i) ∀p ∈ VTr
, ∀q ∈ children(p)

and ∀t ∈ children(q) it holds that c(ϕ(p)) ̸= c(ϕ(t)), and (ii) ∀p, q ∈ VTr
such that dTr

(p, q) ≥ 3
it holds that c(ϕ(p)) ̸= c(ϕ(q)).

Theorem 4. Let Tr be a tree, G be a graph whose nodes are endowed with colors c : VG → Ω.
Then, TREE-COLSIc(u, h)[r] ̸= ∅ if and only if there is a quite-colorful subgraph isomorphism ϕ
from Tr to G such that ϕ(r) = u.

A visual representation for a subgraph isomorphism map that is not quite-colorful and for one that
is quite-colorful can be found in Figure 3. A simple sufficient (but not necessary) condition to
ensure that the algorithm solves the subgraph isomorphism problem is that labels of the pattern
graph itself respect the conditions for quite-colorfulness, i.e., ∀p ∈ VTr

, ∀q ∈ children(p) and
∀t ∈ children(q) it holds that L(ϕ(p)) ̸= L(ϕ(t)), and ∀p, q ∈ VTr

such that dTr
(p, q) ≥ 3 it

holds that L(ϕ(p)) ̸= L(ϕ(q)), as the map will be guaranteed to be parent-colorful. We call these
quite-colorful patterns.

The algorithm is designed, rather than to minimize the computational complexity (Section A.3), to
align with message passing, as mapping p to u only requires information from u’s neighbors. This
allows GNNs to simulate the algorithm, as we show in the next section.

5.2 GRAPH NEURAL NETWORKS CAN SIMULATE TREE-COLSI

We show that a GNN model GNNnode
l+h can simulate the execution of TREE-COLSIc(u, h), with the

colors c of the target nodes being WL colors, i.e., such that c(u) = c(v) implies U l
v(G) ≃ U l

u(G).
Note that such WL colors can be obtained by message passing on both labeled and unlabeled graphs.

The structure of the dynamic program is, by design, aligned with the message passing framework
used by GNNs. Indeed, the procedure to compute Cu,p requires just the sets Cv,q for all v ∈ N (u)
and q ∈ children(p), as well as the colors c(v) : v ∈ N (u) ∪ {u}. Therefore, one can en-
code the information (Cv,ℓ−1, c(v)) in the node embedding hℓ−1

v and communicate this informa-
tion to the neighbors of v. Special care needs to be taken in order for fagg

(
{{hℓ−1

v : v ∈ N (u)}}
)

to uniquely represent the multiset {{(Cv,ℓ−1, c(v)) : v ∈ N (u)}}. The function mapping
(Cu,ℓ−1, c(u)), {{(Cv,ℓ−1, c(v)) : v ∈ N (u)}} to (Cu,ℓ, c(u)) can then be realized by a MLP in the
fupd function, which therefore only simulates lines 11-20 of the dynamic program. Because of this,
the GNN algorithmically aligns (Xu et al., 2020, Definition 3.4) with the execution of the dynamic
program, which can lead to better generalization (Xu et al., 2020, Theorem 3.6). Moreover, the
MLP will have a number of parameters that depends on the maximum number of distinct elements
(Cu,ℓ−1, c(u)), {{(Cv,ℓ−1, c(v)) : v ∈ N (u)}}, which we call ζl,T,G . Then, we have that a GNN can
efficiently simulate the DP, and therefore we can apply to GNNs the results of Theorem 4.

Theorem 5. Let G be a set of graphs such that ∀u ∈ VG, |N (u)| < ∆, Tr be a tree of height h. Let
f(G) = 1 if ∃u ∈ VG : TREE-COLSIc(u, h)[r] ̸= ∅ and 0 otherwise. Then, there exists a function
class GNNl+h realized by a GNN model with l + h layers and O

(
η2l,G · l + ζl,Tr,G · h

)
parameters

such that f ∈ GNNl+h.

Note that the quantity ζl,T,G , which plays a crucial role in the complexity of the model, can be upper
bounded by ηl+h,G , recovering a dependency similar to the result of Theorem 2. The quantity can
also be bounded (Lemma 4) based on the maximum degree of the graph ∆, the size of the pattern κ
and the number of used colors as O

(
η∆+1
G,l /∆! · 2(∆+1)ηκ

G,l/(κ−1)!
)
. However, when in practice there

are few distinct elements (Cu,ℓ−1, c(u)), {{(Cv,ℓ−1, c(v)) : v ∈ N (u)}} we get a better bound, which
then leads to better sample complexity.

Comparison with previous work The result of Theorem 4 yields a generalization of Chen et al.
(2020, Theorem 3.5), as maps from stars are always quite-colorful. Moreover, Zhang et al. (2024,
Theorem 4.5) proves that GNNs can count subgraphs (on general graphs) if and only if the spasm of
the pattern at hand is composed of only trees. Indeed, the spasm of a quite-colorful tree is composed
of only trees. On the other hand, if a tree pattern has two nodes at distance at least 3 with the same
color, and thus is not quite-colorful, it will have a cyclic graph in its spasm, and cannot therefore be
counted by a GNN on general target graphs. Our Theorem 4 therefore helps understand the results of
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Table 2: Number |G/ ≃WLℓ
| of WL isomorphism classes after ℓ iterations and number |G/ ≃ | of

actual isomorphism classes on common molecular datasets. Ratio between the two in brackets.
Dataset |G/ ≃WLℓ

| |G/ ≃ |
ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = ∞

Mutagenicity (Kersting et al., 2016) 3624 (0.835) 4239 (0.977) 4317 (0.995) 4337 (1.000) 4337 (1.000) 4337
MCF-7 (Kersting et al., 2016) 25417 (0.939) 26872 (0.992) 27048 (0.999) 27059 (0.999) 27066 (0.999) 27067
ZINC (Gómez-Bombarelli et al., 2018) 11987 (0.999) 11994 (1.000) 11994 (1.000) 11994 (1.000) 11994 (1.000) 11994
ogbg-molhiv (Hu et al., 2021; Wu et al., 2018) 40788 (0.991) 41061 (0.998) 41105 (0.999) 41125 (0.999) 41127 (1.000) 41127
ogbg-molpcba (Hu et al., 2021; Wu et al., 2018) 432037 (0.989) 436079 (0.998) 436496 (0.999) 436529 (0.999) 436533 (1.000) 436533
Peptides-func (Dwivedi et al., 2022; Singh et al., 2015) 15058 (0.983) 15193 (0.991) 15288 (0.998) 15310 (0.999) 15318 (1.000) 15318
PCQM-Contact (Dwivedi et al., 2022) 501584 (0.954) 525465 (0.999) 525721 (0.999) 525732 (1.000) 525732 (1.000) 525732

Zhang et al. (2024, Theorem 4.5), by providing upper bounds on the number of layers, the parameter
count and the sample complexity of a GNN that is indeed able to count such substructures.

Our results however, go beyond this. Indeed, even when the pattern at hand is not quite-colorful (e.g.,
for an unlabeled pattern), the algorithm can exploit the colors of the target graph to elude the worst-
case analysis of Zhang et al. (2024, Theorem 4.5). Indeed, given that the target graphs have enough
asymmetries, the colors c obtained by l iterations of color refinement (or GNN message passing
layers), are enough to make the subgraph isomorphism maps quite-colorful. This, as we observe in
Section 6, indeed holds in practice on several real-world datasets. Note that, on adversarial examples
like regular graphs, quite-colorfulness cannot be obtained for any value of l.

5.3 EXTENSIONS

We obtained a message-passing-like dynamic program for quite-colorful subgraph isomorphism
from tree patterns. However, the quite-colorful condition can be too restrictive in some scenar-
ios. A similar problem is the locally injective homomorphism problem from tree patterns. In this
relaxation of the subgraph isomorphism problem, the map is required to be injective only on the
neighborhood of each pattern graph’s node. In Section B.1 we propose TREE-LIH, a slightly mod-
ified algorithm that solves the locally injective homomorphism problem under a weaker condition
with respect to quite-colorfulness.

The algorithms described in the previous sections, as the original algorithms (Alon et al., 1995), can
only deal with tree patterns. This is necessary due to the fact that the maps built on different subtrees
can be merged recursively without conflicts. In fact, in Section B.2 we discuss how to extend the
approach, which can still be simulated by a GNN, to cyclic patterns.

Moreover, our algorithms are described in the decision problem variant. As argued in a follow-up
to the original color-coding algorithm Alon et al. (2008), one can modify the dynamic program, and
the associated GNNs, to count maps. We describe how to do so in Section B.3.

6 EXPERIMENTAL EVALUATION

6.1 THE CONDITIONS FOR SUBGRAPH COUNTING HOLD IN PRACTICE

We study whether the sufficient conditions for subgraph counting that we have identified hold in
practice. As in Table 1, we focus on molecular graphs, where subgraph counting has been the focus
of extensive research, due to the relevance of subgraphs corresponding to functional groups. Table 2
reports the number |G/ ≃WLℓ

| of WL isomorphism classes after ℓ = 1, 2, 3, 4,∞ iterations. If one
compares this figure to the number |G/ ≃ | of actual isomorphism classes, it is immediate to see that
the number of WL-indistinguishable graphs is negligible in practice.

Moreover, Table 3 reports the fraction of the nodes in the dataset that are (ℓ, k)-identifiable, namely
such that their universal cover of depth ℓ uniquely identifies their ego-net of radius k. We also report
the fraction of graphs for which all nodes are (ℓ, k)-identifiable. We can observe that already for
ℓ = k + 2, more than 99% of the ego-nets centered around nodes can be identified by the WL color
of the node after ℓ iterations. This result justifies the real-world applicability of Theorem 2.

Finally, Figure 4 reports the proportion of subgraph isomorphisms that are quite-colorful, for in-
creasing numbers of WL iterations l and for several (non quite-colorful) patterns. Full results are
reported in Section D.3. The results show that for real-world datasets, such as MCF-7 and ZINC,
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Table 3: Fraction of nodes in the dataset that are (ℓ, k)-identifiable, and fraction of graphs in the
dataset for which all nodes are (ℓ, k)-identifiable.

Dataset Metric k = 1 k = 2 k = 3

ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6

Mutagenicity node level 0.880 0.978 0.997 0.999 0.647 0.945 0.992 0.997 0.663 0.952 0.994 0.997
graph level 0.265 0.766 0.973 0.994 0.071 0.634 0.932 0.994 0.120 0.673 0.949 0.993

MCF-7 node level 0.389 0.951 0.996 0.999 0.323 0.913 0.995 0.999 0.615 0.953 0.996 0.999
graph level 0.002 0.619 0.960 0.993 0.004 0.308 0.937 0.994 0.029 0.502 0.954 0.995

ZINC node level 0.844 0.982 0.996 1.00 0.548 0.952 0.995 1.000 0.782 0.981 0.998 1.000
graph level 0.116 0.825 0.934 0.998 0.003 0.542 0.934 0.993 0.054 0.781 0.970 0.998

ogbg-molhiv node level 0.940 0.996 1.000 1.000 0.903 0.993 0.999 1.000 0.933 0.995 0.999 1.000
graph level 0.628 0.954 0.997 0.999 0.349 0.916 0.990 1.000 0.398 0.947 0.991 0.999

ogbg-molpcba node level 0.933 0.987 0.998 1.000 0.858 0.981 0.997 1.000 0.892 0.980 0.995 1.000
graph level 0.557 0.837 0.983 0.996 0.221 0.784 0.924 0.999 0.252 0.814 0.914 0.995

Peptides-func node level 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000
graph level 1.000 1.000 1.000 1.000 0.977 1.000 1.000 1.000 0.944 0.995 1.000 1.000

PCQM-Contact node level 0.829 0.987 0.997 1.000 0.655 0.961 0.993 1.000 0.734 0.964 0.992 0.999
graph level 0.155 0.843 0.926 0.999 0.129 0.739 0.913 0.988 0.155 0.776 0.940 0.988

Figure 4: Ratio of the number |Q| of subgraph isomorphisms that are quite-colorful to the total
number |S| of subgraph isomorphisms, reported for increasing numbers of WL iterations l and for
several (non quite-colorful) patterns.

nearly all subgraph isomorphisms are quite-colorful, already when target graphs are node-colored
using only l = 3 iterations of color refinement. In general, we notice that, for the vast majority of
the patterns, most subgraph isomorphism maps are indeed quite-colorful already for l = 2. There
are specific patterns for which not all maps are quite-colorful, no matter the choice of l, and under-
standing the mechanisms for which these patterns can be counted, at least approximately, remains
an open question for future work.

6.2 ADDITIONAL EXPERIMENTAL RESULTS

In Section D we report additional experimental result. In particular, we report an extended version of
Table 1 with several more tree and cyclic patterns, showing that indeed GNNs can count quite well
several substructures. Moreover, we validate the ability of GNNs to count quite-colorful patterns on
challenging synthetic datasets, further proving the results of Section 5.

7 DISCUSSION AND CONCLUSIONS

Our work provides a theoretically-grounded explanation for the observed effectiveness of message
passing graph neural networks (GNNs) in subgraph counting tasks, bridging the gap between theo-
retical limitations and practical performance. Indeed, by moving beyond worst-case scenarios, we
provide a more nuanced analysis of the subgraph-counting abilities of GNNs.

In particular, we derived sufficient conditions under which GNNs can efficiently realize functions
on graphs that depend only on local substructures around nodes, such as subgraph counting, and
we have shown that they often hold in practice. Moreover, we developed novel algorithms for
subtree isomorphism and demonstrated that GNNs can efficiently simulate them, providing a new
perspective on the computational capabilities of GNNs in relation to classical graph algorithms.

Finally, we show that, in practice, more expressivity in GNN architectures is almost never needed,
as in many graph datasets there are no pairs of non-isomorphic graphs that cannot be distinguished
by GNNs. Therefore, having ruled out expressivity, an interesting research avenue is to investigate
the true reasons (e.g. lower sample complexity, or more ease in the optimization) why several GNN
architectures designed to go beyond the limitations of the 1-WL test (Morris et al., 2019) often show
better performance than their simpler counterparts in several prediction tasks.
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A ADDITIONAL DETAILS

A.1 EXPRESSIVE GRAPH NEURAL NETWORKS

An example of functions fagg, fupd and fout that leads to models that are provably as expressive as
color refinement (Morris et al., 2019), denoting ∥ as concatenation, is

hℓv = mlp
(
hℓ−1
v

∥∥∥ ∑
u∈N (v)

hℓ−1
u

)
∈ Rdℓ hG = mlp

( ∑
v∈VG

hlv

)
∈ R.

A.2 SAMPLE COMPLEXITY AND PSEUDO-DIMENSION

Let ℓ(f(x), y) be a loss. Learning theory (Mohri et al., 2018; Shalev-Shwartz & Ben-David, 2014)
is concerned with the task to bound the difference between the true risk R(f) and the empirical risk
R̂(f):

Rℓ(f) = E(x,y)∼D[ℓ(f(x), y)] and R̂D,ℓ(f) =
1

m

m∑
i=1

ℓ(f(xi), yi),

where D = {(xi, yi)}i ∼ Dm represents a training dataset of size m sampled i.i.d. from the data
generating distribution D.

In particular, given a class of functions F , we say that it has the uniform convergence property
Shalev-Shwartz & Ben-David (2014) if there exists a function mF (ϵ, δ) such that, for every ϵ, δ ∈
]0, 1[ and every distribution D, drawing a dataset D of m ≥ mF (ϵ, δ) i.i.d. samples from D yields
that, with probability at least 1− δ over the choices of the samples, supf∈F |R̂D,ℓ(f)−Rℓ(f)| ≤ ϵ.
The function mF (ϵ, δ) is called the sample complexity of the function class.

In general, a model class that has low sample complexity needs fewer training samples in order
to generalize to unseen data. For models outputting real values, their sample complexity can be
characterizes via the pseudo dimension (Anthony & Bartlett, 1999; Mohri et al., 2018).

Definition 4. Let X be a set and F ⊆ f : X → R a class of real-valued functions. We
say that F pseudo-shatters a set S = (x1, . . . , x|S|) with witnesses (r1, . . . , r|S|) ∈ R|S|

if |(sign(f(x1)− r1), . . . , sign(f(x|S|)− r|S|)) : f ∈ F| = 2|S|. Then, we define the pseudo-
dimension of (X,F), denoted Pdim(X,F), as the size of the largest set S that can be pseudo-
shattered by F . If sets of arbitrary size can be pseudo-shattered, we say Pdim(X,F) = +∞.

Analogous to the VC dimension for binary classification, the pseudo-dimension provides upper
bounds on the number of samples required to learn a function from the class F with high probability
and low error. Specifically, for a given error ϵ and confidence δ, the sample complexity of for F is
Õ
(
ϵ−2(Pdim(X,F) + log 1

δ )
)

(Mohri et al., 2018, Theorem 11.8).

A.3 COMPUTATIONAL COMPLEXITY

As discussed in Section 5.1, the algorithm TREE-COLSI is designed, rather than to minimize the
computational complexity, to align with message passing and to allow to detect quite-colorful maps.

The algorithm, for a fixed node u and level ℓ, considers |T ℓ| pattern graph’s nodes. For each of such
nodes, it tries O(N (u)∆T ) sequences of nodes on line 13. A set Cv,q can contain in the worst case(

Ω
|VT |

)
colorsets. Then, for each sequence of nodes (v1, . . . , vδ), the algorithm tries O(

(
Ω

|VT |
)∆T

)

sequences of colorsets on line 14. Therefore, summing over all u ∈ VG and ℓ ∈ 0, . . . , h, we obtain
a complexity of O

(
|VG||VT | ·

(
∆
( |Ω|
|VT |

))∆T
)

.

In contrast, the original color coding algorithm (Alon et al., 2008), if applied on |Ω| colors, would
have a complexity of O

(
|EG||VT | ·

( |Ω|
|VT |

))
= O

(
|VG||VT | ·∆

( |Ω|
|VT |

))
.
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DP(      , 2) =                :                                                                          →  {  } 

DP(      , 0) =        : { {    } }
DP(      , 0) =        : { {    } }
DP(      , 0) =        : { {    } }

DP(      , 0) =        : { {    } }
DP(      , 0) =        : { {    } }
DP(      , 0) =        : { {    } }

DP(      , 0) =        : {  }
DP(      , 0) =        : {  }
DP(      , 0) =        : {  }

DP(      , 0) =        : {  }
DP(      , 0) =        : {  }
DP(      , 0) =        : {  }

DP(      , 1) =           : { {       }, {       } }

DP(      , 0) =           : {  }

DP(      , 1) =           : { {       }, {       } }

DP(      , 0) =           : {  }

DP(      , 1) =           : {  }

DP(      , 0) =           : {  }

DP(      , 1) =           : {  }

DP(      , 0) =           : { {         }, {         }, {         } }

DP(      , 2) =                : {  }

{                  }, {                  }, {                  },
{                  }, {                  }, {                  }

DP(      , 2) =                :                                                                          →  {                  } 

DP(      , 1) =           : {  }

DP(      , 0) =           : { {         }, {         }, {         } }

{                                }

{                                }
{                  }, {                  }, {                  },
{                  }, {                  }, {                  }

Figure 5: A simplified example of the execution of TREE-COLSI for a pattern P and graph G.

A.4 AN EXAMPLE OF THE EXECUTION OF TREE-COLSI

Figure 5 reports a (simplified) example of the execution of TREE-COLSI for a pattern P and target
graph G. The nodes of G are endowed with labels (depicted on the left half of the node) and colors
(depicted on the right half of the node) obtained by one iteration of color refinement. The original
graph can be seen in Figure 3.

At level 0, the algorithm returns for each node u ∈ VG a dictionary from the three leaves of P to
sets of colorsets. We report as an example four such u’s. For nodes u with black label, the algorithm
keeps track of the colors of the images of the pattern graph’s nodes (in fact, in the algorithm, these
colors are maintained implicitly). For nodes u with other labels, the algorithm returns an empty set
since the sub-patterns don’t match.

At level 1, the algorithm returns dictionaries from the two sub-patterns of height 1 of P to sets of
colorsets. For example, consider the first node u1 we report (i.e., with red label and white color).
Here, the sub-pattern rooted at the red-labeled node matches the red label of u1, and the colorsets
received from the two neighbors of u1 both allow for the construction of a subgraph isomorphism
map. Then, the algorithm keeps track of the sets of colors of the images of the pattern graph’s nodes
for the two maps. In particular, it keeps track of a set containing a white and pink color, and of a set
containing a white and purple color.

Finally, at level 2, the algorithm returns dictionaries from the entire pattern P to sets of colorsets.
The first node u1 we report (black label and green color), receives from its black-labeled neighbor
empty sets. Therefore, it also returns an empty set. The second node u2 we report (black label and
purple color) receives from its two neighbors three colorsets each. However, in all such combinations
of colorsets, some colors collide. Therefore, it returns an empty set. The third node u3 we report
(black label and purple color) also receives from its two neighbors three colorsets each. Here, one
such combination of colorsets is valid, which is then returned as a valid colorset. Since 2 is the
height of the tree, it means that there exists a subgraph isomorphism from the tree pattern to G
rooted at u3.

B EXTENSIONS TO THE DYNAMIC PROGRAMMING ALGORITHM

B.1 A DYNAMIC PROGRAM FOR COLORFUL SUBTREE ISOMORPHISM

In Section 5.1, we obtained a message-passing-like dynamic program for quite-colorful subgraph
isomorphism from tree patterns. However, the quite-colorful condition can be too restrictive in
some scenarios. In this section, we tackle the locally injective homomorphism problem from tree
patterns. In this relaxation of the subgraph isomorphism problem, the map from the pattern to the
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target is required to be injective only on the neighborhood of each pattern graph’s node. We then
propose TREE-LIH, a slightly modified algorithm that solves the locally injective homomorphism
problem under a weaker condition with respect to quite-colorfulness.

Algorithm 3: PARENTMERGE((C1, . . . , Cδ))

1 if ∃i : c(u) ∈ Ci: return ϵ
2 return {c(vi), i = 1, . . . , δ}

Inspired by the color coding technique, as
done in Section 5.1, we enforce local in-
jectivity by making sure that the colors
of the images of specific pairs of pattern
nodes are distinct. In particular, we now
require only that for each node p, the image of the parent of its parent has a different color from
the image of p. This condition is enforced by substituting the MERGE procedure of the dynamic
program with PARENTMERGE. In particular, the dynamic program still returns, for nodes u ∈ VG,
p ∈ VT , a set Cu,p of colorsets C ∈ {0, 1}|Ω|. If there is no locally injective homomorphism from
Tp to G mapping p to u the set is empty. If C ∈ Cu,p, then there exists (at least) one associated map
ϕ from Tp to G.

We now formally characterize the family of maps that can be recognized by the dynamic program.
Definition 5. Let Tr be a tree, G be a graph whose nodes are endowed with colors c : VG → Ω,
and ϕ : VTr → VG a map. We say ϕ is parent-colorful (w.r.t. c) if ∀p ∈ VTr , ∀q ∈ children(p) and
∀t ∈ children(q) it holds that c(ϕ(p)) ̸= c(ϕ(t)).
Theorem 6. Let Tr be a tree of height h, G be a graph whose nodes are endowed with colors
c : VG → Ω. Then, TREE-LIHc(u, h)[r] ̸= ∅ if and only if there is a parent-colorful locally
injective homomorphism ϕ from Tr to G such that ϕ(r) = u.

A simple sufficient (but not necessary) condition to ensure that the algorithm solves the locally in-
jective homomorphism problem is that the parent of the parent of any pattern node must have a
different label from the node itself, as the map will be parent-colorful. Moreover, if the discov-
ered homomorphism is (globally) injective, the dynamic problem solves the subgraph isomorphism
problem. A sufficient condition for this is that the cycles in the target graph are long enough.
Corollary 2. Let Tr be a tree of height h, G be a graph whose nodes are endowed with colors
c : VG → Ω. Let T be such that ∀p ∈ VT , ∀q ∈ children(p) and ∀t ∈ children(q) it holds
that L(p) ̸= L(t). Let also G be such that the minimum cycle length is at least 2h + 1. Then,
TREE-LIHc(u, h)[r] ̸= ∅ if and only if there is a subgraph isomorphism ϕ from T to G such that
ϕ(r) = u.

In particular, if we restrict ourselves to tree patterns with no node such that the parent of its parent has
its same label, the dynamic program solves the subgraph isomorphism problem if the target graphs
are trees. Moreover, in many molecular graphs from organic chemistry, the minimum cycle length
is 5. Therefore, on these graphs the dynamic program correctly solves the subgraph isomorphism
problem for (parent-colorful) tree patterns of height at most 2.

B.2 DEALING WITH CYCLIC PATTERNS

The algorithms described in the previous sections, as the original algorithms (Alon et al., 1995), can
only deal with tree patterns. This is necessary due to the fact that the maps built on different subtrees
can be merged recursively without conflicts.

One can deal with cyclic patterns, although with weaker guarantees, by using as a pattern the trun-
cated universal cover of the pattern. Let P be the pattern at hand and u ∈ VP , then one would use
P ′ = U l

u(P ) as the new pattern, with l ≥ maxv dP (u, v). Then, using TREE-LIH one would obtain
a positive answer if P is a subgraph of G, as indeed there exists a locally injective homomorphism
from U l

u(P ) to G for each l. However, there could be false positives. For TREE-COLSI, one would
need to enrich the colorsets to ensure that tree nodes p, q ∈ VU l

u(P ) that correspond to the same
node in P are enforced to have images with the same color, and that tree nodes that correspond to
different nodes in P are enforced to have different colors.

B.3 FROM SUBGRAPH DETECTION TO COUNTING

As argued in a follow-up to the original color-coding algorithm Alon et al. (2008), modifying the
dynamic program to count maps rather than solve the decision problem is relatively straightforward,

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

and can be applied to all the presented versions of the algorithm. Indeed, we endow colorsets with
a counter cnt that keeps track of the number of maps associated with the colorset. Then, when
building the set Cu,p consider a choice of vertices v1, . . . , vδ and a sequence of colorsets C1, . . . , Cδ

with associated counters cnti, . . . , cntδ , which each representing the number of maps from Tqi to G
mapping qi to vi. Let then the resulting merged colorset be C ̸= ϵ. The number of maps from Tp to
G mapping p to u is then ¯cnt =

∏
i cnti. If C already belongs to Cu,p with associated counter cntC ,

we update the counter as cntC = cntC + ¯cnt. Otherwise, we insert C in Cu,p with cntC = ¯cnt. In
this variant of the algorithm there would be an increase in the size of the MLP for a GNN, to store
the counters, to be able to simulate the algorithm.

C PROOFS

C.1 SECTION 3

Proposition 1. Let G be a set of graphs such that ∀G1, G2 ∈ G, G1 ̸≃WL G2 and |VG| ≤ n, ∀G ∈
G. Let f : G → R be any function. Then, there exists a function class GNNℓ=n realized by a GNN
model such that f ∈ GNNℓ=n.

Proof. Since ∀G1, G2 ∈ G, G1 ̸≃WL G2, by Morris et al. (2023a, Proposition 2) the GNN model
can realize any binary function on the set G. In particular, it can realize a one-hot encoding ĥG for
the graph G. Then by appending a linear layer to the model such that WĥG = f(G) we can realize
f .

C.2 SECTION 4

Theorem 1. There exists a set of graphs G such that ∀G1, G2 ∈ G, G1 ̸≃WL G2 and a function
f : VG → R for which there exists no function class GNNnode

ℓ realized by a GNN model such that
f ∈ GNNnode

ℓ , ∀ℓ.

Proof. The theorem is proven by the two graphs G2, G3 in Figure 1, and f(G, u) the rooted sub-
graph isomorphism function, with as pattern the triangle K3 and p any of its nodes. Clearly
f(G2, u) ≥ 1 and f(G3, u) = 0. These two graphs have isomorphic universal covers. In par-
ticular, rooting the universal covers at u ∈ VG2

and u ∈ VG3
yields Uu(G2) ≃ Uu(G3). We then

have that WLℓ(G2, u) ≃ WLℓ(G3, u), by (Krebs & Verbitsky, 2015). Then, the GNN cannot assign
different outputs to (G2, u) and (G3, u) (Morris et al., 2019, Theorem 1).

Lemma 1. Subgraph counting and induced subgraph counting are node-decomposable.

Proof. Let P be a graph and p ∈ VP any node. The (induced) subgraph counting function f(G)
maps a graph G to |ΦG|, where ΦG is the set of (induced) subgraph isomorphisms ϕ from P to
G. We let g(G, u) be the rooted subgraph counting function (resp. the rooted induced subgraph
counting function), that is g(G, u) = |ΦG,u| with ΦG,u the set of (induced) subgraph isomorphisms
ϕ from P to G such that ϕ(p) = u. We show that f(G) =

∑
u∈VG

g(G, u).

We have that any by ϕ ∈ ΦG,u is a (induced) subgraph isomorphism, so ϕ ∈ ΦG. Conversely, if
ϕ ∈ ΦG, then ϕ ∈ ΦG,ϕ(p) by definition. Therefore ΦG =

⋃
u∈VG

ΦG,u. It then suffices to show
that the sets ΦG,u are disjoint. Indeed, let ϕ ∈ ΦG,u, then ϕ(p) = u. Therefore, ϕ ̸∈ ΦG,v for
v ̸= u, since ϕ(p) ̸= v.

Note that an alternative and equally valid definition of the (induced) subgraph counting function
counts the number of (induced) subgraph isomorphisms up to automorphisms of the pattern graph.
In this case, the function f ′(G) maps a graph to |{V ⊆ VG : exists (induced) subgraph isomorphism
ϕ from P to G such that ϕ(VP ) = V }|. Note that f ′(G) = f(G)/Aut(P ). Also this function is
node-decomposable, as f ′(G) =

∑
u∈VG

g′(G, u) with g′(G, u) = g(G, u)/Aut(P ).

Theorem 2. Let G be a (ℓ, k)-identifiable set of graphs. Consider any k-local function f : VG → R.
Then, there exists a function class GNNnode

ℓ realized by a GNN model with O(η2ℓ,G · ℓ) parameters
and ℓ layers such that f ∈ GNNnode

ℓ .
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Proof. Let h0v be a one-hot encoding of node labels. Then, we apply (Morris et al., 2019, Theorem
2, Lemma 11) to a graph G composed by the disjoint union of the graphs in G. In particular, the
GNN layers require the dimensionality of the node embeddings to be ηℓ,G . Therefore, after ℓ layers
with O(η2ℓ,G) parameters each, we have that the embeddings ĥℓu outputted by the ℓ-th layer are
such that ĥℓu = ĥℓv iff U ℓ

v(G) = U ℓ
u(G). Moreover, ĥℓu ∈ {−1, 1}ηl,G . Let U1, . . . , Uηl,G be an

arbitrary enumeration of the truncated universal covers in G, and h1, . . . , hηℓ,G the corresponding
embeddings.

LetW ∈ Rηℓ,G×ηℓ,G withWi = hi. Let b ∈ Rηℓ,G with bi = −ηl,G+1. We let hℓu = ReLU(Wĥℓu+
b), then hℓu ∈ Rηℓ,G is a one-hot encoding for U ℓ

u(G). Therefore, by appending a linear layer we can
assign any real value to U ℓ

u(G).

If EGOk
u(G2) ̸≃ EGOk

v(G2),∀(G1, u), (G2, v) ∈ VG , we have that U ℓ
u(G1) ̸≃ U ℓ

v(G2), and there-
fore the GNN model can assign different values to the two ego-nets.

Finally, the number of parameters of the model is O(η2ℓ,G · ℓ).

Corollary 1. Let G be a (ℓ, k)-identifiable set of graphs. Let GNNℓ be a function class realized by
a GNN model with sum-aggregation fout({{hℓu : u ∈ VG}}) =

∑
u∈VG

hℓu. Then GNNℓ can perform
both subgraph counting and induced subgraph counting of patterns of radius at most k.

Proof. Both the rooted subgraph counting and rooted induced subgraph counting of patterns of
radius at most k are k-local functions, and we can apply Theorem 2. Then, the sum aggregation
computes the subgraph counting and induced subgraph counting functions at the graph level.

Theorem 3. The function class GNNℓ of Cor. 1 has pseudo-dimension Pdim(GNNℓ) ≤ ηℓ,G + 1.

Proof. We show that a function f(G) ∈ GNNℓ can be written as f(G) = g(xG) = w⊤xG. We
let xG ∈ Rηℓ,G be the multiplicity vector of the truncated universal covers rooted at the nodes of
G. In particular, let U1, . . . , Uηℓ,G an enumeration of the truncated universal covers. Then, the i-th
entry of xG will be k iff there are k nodes u ∈ VG such that Uu(G) = Ui. Note that xG1

= xG2

if and only if G1 ≃WLℓ
G2. Therefore, we can set the i-th entry of the vector w to the output of

the model f(G, u) ∈ GNNnode
ℓ on a node u that has rooted universal cover Ui. Then, f(G) =∑

u∈VG
f(G, u) = w⊤xG. By Anthony & Bartlett (1999, Theorem 11.6), the pseudo-dimension of

a linear function on Rd is d+ 1. Then, by Anthony & Bartlett (1999, Corollary 11.5), we have that
Pdim(GNNℓ) ≤ ηℓ,G + 1.

C.3 SECTION 5.1

Lemma 2. Let G be a graph, Tr be a tree of height h. Let nodes VG be endowed with colors. Let ϕ
be a quite-colorful subgraph isomorphism from T to G. Then Cϕ(r),r ̸= ∅.

Proof. Given a node p ∈ VT , we call Tp the subtree of T rooted at p. We show inductively that the
colorset {c(ϕ(q)) : q ∈ VTp

\ {p}} belongs to Cϕ(p),p.

We first address the base case of the dynamic program, p is a leaf. For each leaf p ∈ VT , we have
that Cϕ(p),p = {∅}.

Suppose now inductively that Cq := {c(ϕ(w)) : w ∈ VTq \ {q}} ∈ Cϕ(q),q , ∀q ∈ children(p).
Since ϕ is injective, and since the sets VTq

: q ∈ children(p) are pairwise disjoint, we have that
the sets Hq := {ψ(w) : w ∈ VTq

\ {q}} : q ∈ children(p) are pairwise disjoint. Thus, ∀v1 ∈
Hq1 , v2 ∈ Hq2 , dG(v1, v2) > 3. Moreover, ∀v ∈ Hq1 , q2 ̸= q1 we have that dG(v, q2) ≥ 3. Finally,
∀v ∈ Hq , we have that either dG(v, ψ(p)) ≥ 3 or ψ(p) = parent(parent(v)). Therefore, since ϕ
is quite-colorful, all three conditions for flag are true and the algorithm inserts in Cu,p the colorset
{c(ϕ(q)) : q ∈ VTp

\ {p}} =
⋃

q(Cq ∪ c(ϕ(q))).

Lemma 3. Let G be a graph, Tr be a tree of height h. Let nodes VG be endowed with colors. If
Cu,r ̸= ∅, then there exists a quite-colorful subgraph isomorphism ϕ from T toG such that ϕ(r) = u.
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Proof. Given a node p ∈ VT , we call Tp the subtree of T rooted at p. We show inductively that
if C ∈ Cu,p, then there exists a quite-colorful subgraph isomorphism ϕ from Tp to G such that
ϕ(p) = u and C = {c(ϕ(q)) : q ∈ VTp

\ {p}}.

We first address the base case of the dynamic program, p is a leaf. For each leaf p ∈ VT , we have
that Cu,p = {∅} ≠ ∅ iff L(u) = L(p), that is if p 7→ u is a subgraph isomorphism.

Let now C ∈ Cu,p for some non-leaf p. Then, there exists a sequence of distinct nodes (v1, . . . , vδ)
from N (u) such that no Cvi,qi is empty. In particular, C was obtained by a sequence of color sets
(C1, . . . , Cδ) such that all three conditions for flag are true.

Then, we have inductively that there exists an isomorphism ϕi from Tqi to a subgraph Hqi of G
for each qi ∈ children(p) and ϕi : qi 7→ vi. The domains of such isomorphisms are all distinct,
since the sets VTq

: q ∈ children(p) are pairwise disjoint. We can therefore define a new map
ϕ : VTp

→
⋃
Hqi ∪ {u} as ϕ|VTqi

= ϕi and ϕ : p 7→ u. This map is a homomorphism. Indeed,
each ϕi is an homomorphism and therefore maps adjacent nodes in VTqi

to adjacent nodes in VG.
Moreover, each qi ∈ children(p) is mapped to a node vi ∈ N (u).

To show that ϕ is a subgraph isomorphism, we just need to show injectivity by showing that the
co-domains Hi of the ϕi and the set {u} are all pairwise distinct. We show first that Hi ∩Hj = ∅.
In particular, by flag condition (1) we have that Ci ∩ Cj = ∅, and therefore z ̸∈ {ϕ(w) : w ∈
VTqj

\ {qj}} for each z ∈ {ϕ(w) : w ∈ VTqi
\ {qi}}. Moreover, c(vi) ̸∈ Cj by flag condition

(2), and therefore vi ̸∈ {ϕ(w) : w ∈ VTqj
\ {qj}}. Also by flag condition (2), c(vj) ̸∈ Ci, so

z ̸= vj = ϕ(qj) for each z ∈ {ϕ(w) : w ∈ VTqi
\ {qi}}. Finally, ϕ(qi) = vi ̸= vj = ϕ(qj). Thus,

Hi ∩Hj = ∅.

We now show that u ̸∈ Hi,∀i. First, we have by flag condition (3) that c(u) ̸∈ Ci,∀i and therefore
u ̸∈ {ϕ(w) : w ∈ VTqi

\ {qi}}. Moreover, u ̸= vi = ϕ(qi). Therefore, ϕ is injective and is a
subgraph isomorphism. Finally, since the colors of the images of the nodes in Tp respect the flag
conditions, ϕ is quite-colorful.

Theorem 4. Let G be a graph, Tr a tree of height h. Then, Cu,r ̸= ∅ if and only if there is a
quite-colorful subgraph isomorphism ϕ from Tr to G such that ϕ(r) = u.

Proof. If there is a quite-colorful subgraph isomorphism ϕ from Tr to G such that ϕ(r) = u, then
by Lemma 2 we have that Cϕ(r),r ̸= ∅. Moreover, by Lemma 3, if Cu,r ̸= ∅, then there exists a
quite-colorful subgraph isomorphism ϕ from Tr to G such that ϕ(r) = u.

C.4 SECTION 5.2

Theorem 5. Let G be a set of graphs such that ∀u ∈ VG, |N (u)| < ∆, Tr be a tree of height h. Let
f(G) = 1 if ∃u ∈ VG : TREE-COLSIc(u, h)[r] ̸= ∅ and 0 otherwise. Then, there exists a function

class GNNl+h realized by a GNN model with l + h layers and O
(
η2l,G · l + ζl,Tr,G · h

)
parameters

such that f ∈ GNNl+h.

Proof. We consider the GNNs of Section A.1. Let h0v be a one-hot encoding of node labels. Then,
we use (Morris et al., 2019, Theorem 2, Lemma 11) applied to a graph G composed by the disjoint
union of the graphs in G. In particular, the GNN layers require the dimensionality of the embeddings
to be ηl,G . Therefore, after l layers with O(η2l,G) parameters each, we have that the embeddings h̄lu
outputted by the l-th layer are such that h̄lu = h̄lv iff U l

v(G) = U l
u(G). Moreover, h̄lu ∈ {−1, 1}ηl,G .

We take these embeddings as the colors c used by the dynamic program, and let h̄1, . . . , h̄ηl,G be an
enumeration of them.

Let C1, . . . , CD be an enumeration of the possible elements (Cu,ℓ, c). We suppose, without loss of
generality, that if node u has color c(u) = h̄i, then (Cu,ℓ=0, c(u)) = Ci. This is valid since Cu,ℓ=0 is
uniquely determined by c(u).
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Let W (1) ∈ Rηl,G×ηl,G with W:,i = h̄i. Let b ∈ Rη
l,G with bi = −ηl,G + 1. Then ReLU(Wh̄lu + b)

is the one-hot encoding for the color of u. We take W (2) ∈ R1×ηl,G , with W (2)
1,i = ∆i−1, and let

hlu = W (2)ReLU(W (1)ĥlu + b) ∈ R. This is obtained by appending a two-layer MLP to the MLP
that outputs ĥlu. We then have that hlu = ∆i−1 if and only if (Cu,ℓ=0, c(u)) = Ci.

Then, the following h GNN layers have to simulate the dynamic program. Suppose that hl+ℓ−1
v =

∆i−1 if and only if (Cv,ℓ−1, c(v)) = Ci. This is true by construction for ℓ = 1. Then we have that
ĥl+ℓ(u) =

(
hl+ℓ−1(u)

∥∥∑
v∈N (u) h

l+ℓ−1(v)
)
∈ R2 is a pair of integers that is a unique identi-

fier for the element E = ((Cu,ℓ−1, c(u)), {{(Cv,ℓ−1, c(v)) : v ∈ N (u)}}). Let E1, . . . , Eζl,Tr,G be an
enumeration of the possible elements E , and let ĥ1, . . . , ĥζl,Tr,G ∈ R2 be the associated vectors.

Let W (1) ∈ Rζl,Tr,G×2 with W
(1)
i,: = [∆, 1] and b ∈ Rζl,Tr,G with bi = −[∆, 1] ĥi. Then

1[x=0](W
(1)ĥl+ℓ(u) + b) is a one-hot encoding for ((Cu,ℓ−1, c(u)), {{(Cv,ℓ−1, c(v)) : v ∈ N (u)}}).

Note that the indicator function can be simulated using 3 ReLUs.

Let then W (2) ∈ R1×ζl,Tr,G , with W
(2)
1,i = ∆j−1 such that Cj is the output of one iteration

of the dynamic program (i.e., lines 7 to 21) when it receives as input Ei. Then hl+ℓ(u) =

W (2)
1[x=0](W

(1)ĥl+ℓ(u) + b) is equal to ∆i−1 if and only if (Cu,ℓ, c(v)) = Ci. Then, by induction
on ℓ, we have that hl+h(u) is a unique identifier for (Ch,h, c(v)).

In fact, we modify the last layer MLP by choosingW (2) withW (2)
1,i = 1 if the output of one iteration

of the dynamic program when it receives as input Ei is a (Cu,h, c) with Cu,h[r] ̸= ∅, and 0 otherwise.
Then hl+h(u) = 1 if and only if Cu,h[r] ̸= ∅. Note that we obtained a valid simulation of the
dynamic program by using h GNN layers as defined in Section A.1, with two-layer MLPs.

Finally, if we take as fout({{hl+h
u : u ∈ VG}}) = lsig(

∑
u∈VG

hl+h
u ), we have that the model realizes

the function f(G) = 1 if ∃u ∈ VG : TREE-COLSI(u, h)[r] ̸= ∅ and 0 otherwise.

Lemma 4. Let G be a set of graphs such that ∀u ∈ VG, |N (u)| < ∆. Let T be a tree with VT ≤ κ.
The number ζl,T,G of distinct elements E = ((Cu,ℓ−1, c(u)), {{(Cv,ℓ−1, c(v)) : v ∈ N (u)}}) satisfies

ζl,T,G ∈ O
(
min

(
ηl+h,G , η∆+1

G,l /∆! · 2(∆+1)ηκ
G,l/(κ−1)!

))
.

Proof. T is a tree of height h. There are ηG,l distinct colors. Therefore, there are Q ≤
(
ηG,l

κ

)
=

O(ηκG,l/κ!) possible colorsets C.

Then, we have at most 2Q sets of colorsets Cu,p. In turn, there can be at most D = ηG,l · 2κQ
elements (Cu,ℓ, c(u)). Therefore, we have D = O

(
ηG,l · 2κη

κ
G,l/κ!

)
. Then, there are at most ζl,T,G =

O(D∆/∆! ·D) = O
(η∆+1

G,l

∆! · 2(∆+1)ηκ
G,l/(κ−1)!

)
elements E .

Moreover, the element E = ((Cu,ℓ−1, c(u)), {{(Cv,ℓ−1, c(v)) : v ∈ N (u)}}) is fully characterized by
U l+ℓ
u (G), so we also have ζl,T,G ≤ ηl+h,G .

C.5 SECTION B.1

Lemma 5. Let G be a graph, Tr be a tree of height h. Let nodes VG be endowed with colors. Let ϕ
be a parent-colorful locally injective homomorphism from T to G. Then Cϕ(r),r ̸= ∅.

Proof. Given a node p ∈ VT , we call Tp the subtree of T rooted at p. Let ϕ be a parent-colorful
locally injective homomorphism from Tp to G such that ϕ(p) = u. We show inductively that
C ∈ Cu,p with C the set of forbidden parent colors associated with ϕ. In particular, c ∈ C if there is
a node q ∈ children(p) with c(ϕ(q)) = c.
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We first address the base case of the dynamic program, p is a leaf. For each leaf p ∈ VT and each
homomorphism p 7→ u, we have that L(p) = L(u) and Cu,p = {∅}.

Let now p be a non-leaf and ϕ a parent-colorful locally injective homomorphism from Tp to G such
that ϕ(p) = u. Then, there exists a sequence of distinct neighbors of u ϕ(qi) = vi, qi ∈ children(p)
and, for each i, ϕ|VTqi

is still a parent-colorful locally injective homomorphism. We have inductively
that Ci ∈ Cvi,qi , with Ci the colorset associated with ϕ|VTqi

.

We show that, for each i, c(u) ̸∈ Ci. Since ϕ is parent-colorful, for each t ∈ children(qi) we have
that c(u) ̸= c(ϕ(t)). Then, inductively, c(u) ̸∈ Ci. Therefore, a set C is inserted in Cu,p.

Moreover, for each node q ∈ children(p) with c(ϕ(q)) = c, c is inserted into C, otherwise it is not
inserted.

Lemma 6. Let G be a graph, Tr be a tree of height h. Let nodes VG be endowed with colors. If
Cu,r ̸= ∅, then there exists a parent-colorful locally injective homomorphism ϕ from T to G such
that ϕ(r) = u.

Proof. Given a node p ∈ VT , we call Tp the subtree of T rooted at p. We show inductively that if
C ∈ Cu,p, then there exists a locally injective homomorphism ϕ from Tp to G such that ϕ(p) = u.
Moreover, if c ∈ C(∈ Cu,p), there is a node q ∈ children(p) with c(ϕ(q)) = c.

Let p be a leaf. Then we have that Cu,p = {∅} iff L(u) = L(v), that is p 7→ u is a locally injective
homomorphism.

Let now C ∈ Cu,p for some non-leaf p. Then, there exists a sequence of distinct nodes (v1, . . . , vδ)
from N (u) such that no Cvi,qi is empty. In particular, C was obtained by a sequence of color sets
(C1, . . . , Cδ) such that c(u) ̸∈ Ci,∀i.
Then, we have inductively that, for each qi ∈ children(p), there exists a locally injective homo-
morphism ϕi from Tqi to G such that ϕi(qi) = vi and there is no node t ∈ children(qi) with
c(ϕ(t)) = c(u).

The domains of such isomorphisms are all distinct, since the sets VTq : q ∈ children(p) are pairwise
disjoint. We can therefore define a new map ϕ : VTp →

⋃
Hqi ∪ {u} as ϕ|VTqi

= ϕi and ϕ(p) = u.
This is a homomorphism as children of p are mapped to neighbors of u.

We show that ϕ is locally injective for each node q ∈ VTp
. Note that, for each i, for nodes in VTqi

\qi
the connectivity is the same as the one given by ϕi, and the claim therefore is true inductively.
Moreover, since the nodes v1, . . . , vδ = ϕ(q1), . . . , ϕ(qδ) are all distinct, ϕ is locally injective on p.

Moreover, for qi,∀i, we have that N (qi) = children(qi) ∪ {p}. Clearly ϕ(t1) ̸= ϕ(t2), ∀t1, t2 ∈
children(qi) since ϕ is locally injective on VTqi

. Finally, ϕ(t) ̸= ϕ(p) = u ∀t ∈ children(qi) since
there is no node t ∈ children(qi) with c(ϕ(t)) = c(u).

We just need to show that the algorithm inserts in C only the colors c for which there is a node
q ∈ children(p) with c(ϕ(q)) = c. If the algorithm didn’t insert c in C, it means that c ̸= c(vi) =
c(ϕ(qi)),∀i. Therefore there is no node q ∈ children(p) with c(ϕ(q)) = c.

Theorem 6. Let G be a graph, Tr a tree of height h. Let nodes VG be endowed with colors c.
Then, TREE-LIHc(u, h)[r] = Cu,r ̸= ∅ if and only if there is a parent-colorful locally injective
homomorphism ϕ from Tr to G such that ϕ(r) = u.

Proof. If there is a parent-colorful locally injective homomorphism ϕ from Tr toG such that ϕ(r) =
u, then by Lemma 5 we have that Cϕ(r),r ̸= ∅. Moreover, by Lemma 6, if Cu,r ̸= ∅, then there exists
a locally injective homomorphism ϕ from Tr to G such that ϕ(r) = u.

Corollary 2. Let Tr a tree of height h, G be a graph whose nodes are endowed with colors c. Let T
be such that ∀p ∈ VT , ∀q ∈ children(p) and ∀t ∈ children(q) it holds that L(p) ̸= L(t). Let also
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G be such that the minimum cycle length is at least 2h + 1. Then, TREE-LIHc(u, h)[r] ̸= ∅ if and
only if there is a subgraph isomorphism ϕ from T to G such that ϕ(r) = u.

Proof. Let the colors of nodes in G be their labels. Then, any locally injective homomorphism
ϕ from T to G such that ϕ(r) = u is parent-colorful since ∀p ∈ VT , ∀q ∈ children(p) and
∀t ∈ children(q) it holds that L(p) ̸= L(t) and therefore c(ϕ(p)) ̸= c(ϕ(t)).

We apply Theorem 6. We then obtain that Cu,r ̸= ∅ if and only if there is a locally injective
homomorphism ϕ from T to G such that ϕ(r) = u. We need to show injectivity. Suppose by
contradiction that ϕ(q1) = ϕ(q2) for some q1 ̸= q2 ∈ VT . Let p be the lowest common ancestor of q1
and q2. Let (p, t1, . . . , th1

= q1) and (p, s1, . . . , sh2
= q2) be the paths connecting p to respectively

q1 and q2. Let without loss of generality q1 and q2 be such that the quantity h1 + h2 is minimized.
Since h1, h2 ≤ h, h1 + h2 ≤ 2h. Then, (ϕ(p), ϕ(t1), . . . , ϕ(th1

) = ϕ(sh2
), . . . , ϕ(s1), ϕ(p)) is a

cycle of length at most 2h. This is a contradiction as the minimum cycle length is at least 2h+1.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide further experimental results and supplement the experimental section in
the main paper.

D.1 COUNTING IN REAL-WORLD DATASETS

In order to showcase the subgraph counting capabilities of GNNs, we selected a subset of molecular
datasets. We focus on molecular benchmark datasets since subgraph mining and counting in molec-
ular data have been the focus of extensive research, due to the relevance of subgraphs corresponding
to functional groups. Such subgraphs play an essential role in generating molecular fingerprints.

To identify a set of suitable pattern graphs, we used the subgraph miner FSG (Kuramochi & Karypis,
2004), to mine all patterns that occur with a frequency of at least 25% across all considered datasets.
We include all such tree patterns of size 5 and 6 as well as cyclic patterns of size 6 and 7. The condi-
tion on the frequency was implemented to ensure that subgraph counts are non-zero in a substantial
number of cases. To complement the set of patterns with an additional cyclic graph, we furthermore
include the (non-frequent) 5-cycle, which is often of particular interest in molecular structures. Since
node attributes vary between the considered datasets, in Table 4, we depict a pattern graph H with
node colors such that in each dataset the corresponding pattern is obtained by replacing the colors
of H with specific node attributes.

We use the GNNK architecture as described in Section A.1, withK = 4 linear-layer-based message
passing layers. As some datasets include edge attributes, we modified the model to aggregate and
append edge attributes to the node features during the message passing process. The dimensionality
of the GNN embeddings is fixed at 512. We used the Adam optimizer with a variable learning rate
and a batch size of 128. The data is split into 80% for training and 20% for testing. Finally, the
predictive performance is reported after a total of 300 epochs.

Table 4: Test set results for subgraph counting with a GNN on molecular graphs. Node colors
visualize different atom types. Reported: Mean Absolute Error (MAE) and Area Under the Curve
(AUC) for the multi-class classification problem.

Pattern

Dataset Metric

Mutagenicity MAE 0.599 0.283 0.479 0.482 0.437 1.037 0.308 0.597 0.263 0.328 0.007 0.594 0.477 0.374
AUC 0.816 0.964 0.899 0.898 0.944 0.898 0.954 0.869 0.900 0.910 0.980 0.931 0.912 0.797

MCF-7 MAE 0.081 0.022 0.044 0.186 0.039 0.282 0.022 0.089 0.080 0.023 0.017 0.090 0.021 0.066
AUC 0.939 0.846 0.900 0.945 0.952 0.910 0.886 0.918 0.861 0.902 0.904 0.986 0.951 0.934

ZINC MAE 0.048 0.020 0.046 0.095 0.024 0.114 0.021 0.034 0.021 0.015 0.006 0.060 0.010 0.021
AUC 0.994 0.973 0.971 0.988 0.992 0.989 0.981 0.904 0.981 0.958 0.998 1.000 0.973 0.980

ogbg-molhiv MAE 0.017 0.011 0.010 0.141 0.018 0.188 0.005 0.018 0.024 0.012 0.007 1.171 0.004 0.018
AUC 0.951 0.918 0.949 0.926 0.964 0.924 0.974 0.900 0.941 0.923 0.989 0.904 0.964 0.920

ogbg-molpcba MAE 0.001 0.000 0.000 0.006 0.000 0.007 0.000 0.004 0.000 0.000 0.161 0.002 0.000 0.000
AUC 0.916 0.999 0.995 0.980 0.998 0.972 0.996 0.874 0.938 0.996 0.514 0.977 1.000 0.890

Peptides-func MAE 0.033 0.273 0.197 0.866 0.183 0.003 0.006 0.006 0.006 0.052 0.014 0.015 0.006 0.017
AUC 0.955 0.983 0.988 0.932 0.980 0.853 0.790 0.840 0.853 0.995 0.898 0.850 0.791 0.955

PCQM-Contact MAE 0.000 0.069 0.206 0.006 0.004 0.000 0.001 0.001 0.002 0.006 0.002 0.001
AUC 0.996 0.957 0.947 0.992 0.977 1.000 0.991 0.970 0.996 0.940 1.000 0.999
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Table 5: Statistical properties of real-world molecular datasets. We report the number of graphs, as
well as the average number of nodes and of edges, ans the presence od node and edge labels.

Name # Graphs Avg. # nodes Avg. # edges Node labels Edge labels

Mutagenicity (Kersting et al., 2016) 4337 30.32 30.77 + +
MCF-7 (Kersting et al., 2016) 27770 26.40 28.53 + +
ZINC (Gómez-Bombarelli et al., 2018) 12000 23.16 24.92 + +
ogbg-molhiv (Hu et al., 2021; Wu et al., 2018) 41127 25.51 27.47 + +
ogbg-molpcba (Hu et al., 2021; Wu et al., 2018) 437929 25.97 28.11 + +
Peptides-func (Dwivedi et al., 2022; Singh et al., 2015) 15535 150.94 153.65 + +
PCQM-Contact (Dwivedi et al., 2022) 529434 30.14 30.54 + +

We framed the learning problem as a classification task, where the classes correspond to discrete
count values ranging from zero to the maximum count observed in the training set. As evaluation
metrics, we used Mean Absolute Error (MAE) and Area Under the Curve (AUC). For AUC, we
employed the One-vs-One approach to evaluate the model’s performance across multiple classes.

Table 4 presents the predictive performance across a wide range of dataset and pattern graph combi-
nations. Statistical properties of all datasets can be found in Table 5. The results clearly demonstrate
that subgraph counting on real-world molecular graphs can be done very accurately.

D.2 NUMBER OF TRUNCATED UNIVERSAL COVERS

In Table 6, we provide the numbers of distinct WLℓ node labels for ℓ ∈ [1, 6], or equivalently, the
numbers of non-isomorphic truncated universal covers ηℓ,G over a given dataset G.

Table 6: Number of node and edge labels of common molecular datasets, and number ηℓ,G of non-
isomorphic truncated universal covers.

ηℓ,G

Dataset node
labels

edge
labels ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6

Mutagenicity 14 3 334 4997 21118 43750 63568 76920
MCF-7 46 3 668 18163 112803 229231 328616 409294
ZINC 21 3 499 13006 70302 144592 198159 229065
ogbg-molhiv 382 7 13075 115354 268029 404746 515919 603795
ogbg-molpcba 233 11 18489 217488 726392 1574149 2709875 3999234
Peptides-func 53 5 558 2408 10055 40516 137560 339862
PCQM-Contact 136 4 20696 459898 1946034 4269969 6659800 8596597

D.3 QUITE-COLORFULNESS IN MOLECULAR DATASETS

We now experimentally evaluate the assessment made in Section 5.2 on the quite-colorfulness of
subgraph isomorphisms in cases where the pattern at hand is not quite-colourful itself. Figure 6 re-
ports the proportion of quite-colorful subgraph isomorphisms from non-quite-colorful tree patterns.
Specifically, for a given dataset, we iterate over all subgraph isomorphisms from the pattern to the
disjoint union of dataset graphs, and check each subgraph isomorphism for whether it is quite colour-
ful. We report the ratio |Q|/|S| of quite-colorful subgraph isomorphisms |Q| to the total number of
subgraph isomorphisms |S| for increasing numbers of WL iterations l.

The results show that for several real-world datasets, such as MCF-7, Mutagenicity, and ZINC,
nearly all subgraph isomorphisms are quite colourful when target graphs are node-colored using 4
iterations of color refinement. Naturally, as the patterns themselves are not quite-colorful, none of
the subgraph isomorphisms are quite-colorful when target graphs are not node-colored with color
refinement (case l = 0). Notably, an interesting case arises in the Peptides-func dataset, where for
one of the tree patterns none of the subgraph isomorphisms are quite colourful, regardless of the
value of k.
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Figure 6: Proportion of subgraph isomorphisms that are quite colourful, reported for colors c ob-
tained by increasing numbers of color refinement iterations l. The proportion is given as |Q|/|S|,
where |Q| is the number of quite colourful subgraph isomorphisms from the pattern to the dataset
graphs, and |S| is the total number of subgraph isomorphisms.

D.4 RULING OUT STAR PATTERNS

We now empirically validate Corollary 2 and Theorem 5 on challenging synthetic datasets. More
specifically, we demonstrate that (non-induced) subgraph counting can be done in practice for sce-
narios fulfilling parent-colorfulness (see Def. 5) and quite-colorfulness (see Def. 3). Recall that
while Chen et al. (2020) show that subgraph counting cannot be done by GNNs in general, (non-
induced) counting of star-shaped patterns nonetheless remains possible. To rule out the possibility
that a model is leveraging this information in the following experiments, we specifically construct
datasets where every graph has the same multiset of star-shaped patterns.

In all experiments, we used a 4-layer GNN, as specified by the functions in Section A.1, with a
hidden dimension of 512, a batch size of 128, and the Adam optimizer. The data was split into 80%
for training and 20% for testing. We report the predictive performance after 1,000 epochs.

To verify the claim in Corollary 2, we randomly generated 2,000 graphs, each with 32 nodes and
39 edges, ensuring that the minimum cycle length was 5. Node labels were assigned based on node
degree to guarantee that the mappings from the patterns are parent-colorful. More precisely, we first
generated trees of size 32 using a fixed node degree sequence, then added 8 edges while ensuring
that the resulting graphs have the same node degree set and contained no cycles of length 4 or less.

Table 7 (left) shows the predictive performance for several pattern graphs. In accordance with Corol-
lary 2, the results show a near perfect predictive performance on the test set on all pattern graphs.

We furthermore investigate the case where pattern mappings are quite-colorful. For this, we gener-
ated a more challenging dataset of 2,000 randomly generated graphs with 96 nodes and 120 edges
each, with no constraints on the minimum cycle length. More precisely, we randomly generated
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the graphs using a fixed node degree sequence. Node labels were assigned based on node degree.
We consider patterns that ensure mappings are quite-colorful. Table 7 (right) shows that the model
learns to count very accurately. Note that the predictive performance increases for larger patterns,
which might be due to the usually large and diverse subgraph counts of small patterns.

Table 7: Predictive performance for non-induced subgraph counting in scenarios where pattern
matching is parent-colorful (left) and quite-colorful (right).

Metric

MAE 0.000 0.020 0.000 0.090 0.015
AUC 1.000 0.980 1.000 0.959 0.968

Metric

MAE 0.128 0.138 0.015 0.000 0.000
AUC 0.966 0.860 0.986 1.000 1.000
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