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ABSTRACT

Understanding the relationship between behavior and neural activity is crucial
for understanding brain function. An effective method is to learn embeddings
for interconnected modalities. For simple behavioral tasks, neural features can
be learned based on labels. However, complex behaviors, such as social inter-
actions, require the joint extraction of behavioral and neural characteristics. In
this paper, we present an autoencoder (AE) framework, called Shared-AE, which
includes a novel regularization term that automatically identifies features shared
between neural activity and behavior, while simultaneously capturing the unique
private features specific to each modality. We apply Shared-AE to large-scale
neural activity recorded across the entire dorsal cortex of the mouse, during two
very different behaviors: (i) head-fixed mice performing a self-initiated decision-
making task, and (ii) freely-moving social behavior amongst two mice. Our model
successfully captures both ‘shared features’, shared across neural and behavioral
activity, and ‘private features’, unique to each modality, significantly enhancing
our understanding of the alignment between neural activity and complex behav-
iors. The original code for the entire Shared-AE framework on Pytorch has been
made publicly available at: https://github.com/saxenalab-neuro/
Shared-AE.

1 INTRODUCTION
Recent advances in hardware and storage capabilities enable us to obtain comprehensive behavioral
recordings of the subject along with the corresponding neural activity from large parts of the brain.
It is now widely recognized that understanding the relationship between complex neural activity
and high-dimensional behavior is a crucial step in brain research that has historically been under-
estimated (Pereira et al. (2020); Whiteway et al. (2021)). Understanding this relationship provides
insight into how the brain processes information during different behaviors and tasks. An effective
approach to achieve this is to learn embeddings for these interconnected modalities, which allows
for the identification of patterns within complex datasets.

Current research on learning neural embeddings focuses on simple tasks and is largely based on
behavioral labels (Pandarinath et al. (2017); Schneider et al. (2023); Zhou & Wei (2020)). How-
ever, when it comes to more complex task-related behaviors and social interactions which cannot be
captured by simple labels, understanding relevant features becomes significantly more challenging.
Moreover, effectively aligning the features of the behavioral and neural modalities requires care-
ful consideration. Integrating these features requires preserving the unique characteristics of each
modality while extracting the shared aspects.
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In this article, we propose an Autoencoder-based (AE-based) framework termed Shared-AE, incor-
porating a novel regularization term designed to identify features common to behavior and neural
activity. Autoencoders are particularly well-suited for such tasks, as they capture the underlying
structure of the data while ensuring that latent variables retain meaningful features from the input.
In our approach, we utilize the Cauchy-Schwarz (CS) divergence to enhance the model’s capability
to extract shared information across modalities. Additionally, we apply the inverse CS divergence
to enable private latent variables to capture features unique to each modality.

Our model effectively captures both ‘shared features’, which are common across modalities, and
‘private features’, which are unique to each modality. By clearly partitioning these types of features,
our approach provides a comprehensive understanding of which aspects of neural activity align
with behavior. Compared with other models such as Shi et al. (2019), Gondur et al. (2024), Sani
et al. (2021), and Singh Alvarado et al. (2021), our framework successfully addresses the issue of
modality leakage - where features from one modality undesirably influence the latent representations
of another. This ensures that the shared features truly reflect across-modality insights, while the
private features maintain the distinct characteristics of each data source.

We apply the Shared-AE framework towards understanding two very different datasets: (i) a head-
fixed mouse performing a self-initiated decision-making task, and (ii) a freely-moving mouse en-
gaged in social behavior. In both cases, neural activity is recorded using widefield calcium imaging
(WFCI), capturing many regions across the dorsal cortex. We find that the model successfully
captures shared subspaces across individual and social behavior, identifying brain regions that
are most aligned with the recorded behavior. Additionally, we identify aligned motifs between
the neural and behavioral modalities using a Hidden Markov Model (HMM). Furthermore,
Shared-AE allows us to compare neural alignment when using raw video data as compared to
pose estimation and related extracted features, revealing that the activity of certain brain regions
aligns more closely with raw behavioral videos. Lastly, Shared-AE can generalize beyond two
simultaneously recorded modalities to examine the common subspace across multiple modalities.
With the increase in naturalistic behavioral recordings and large-scale neural data, Shared-AE of-
fers an automated and interpretable framework to identify behaviorally-relevant neural activity and
neurally-relevant behavioral patterns.

We highlight the novelty of Shared-AE through the following key contributions: (i) Enhanced
Interpretability via Latent Subspace Separation: Shared-AE introduces a novel approach that
explicitly separates shared and private latent spaces, improving interpretability by reducing infor-
mation leakage between modalities. This design allows robust inference even when data from one
modality is unavailable or corrupted during testing. (ii) Improved Performance on Paired and
Unpaired Tasks: Shared-AE maintains the integrity of latent representations in data from different
modalities, even when data from one of the modalities is shuffled during evaluation (‘unpaired’ task).
This robustness is demonstrated by its superior performance on the 2AFC dataset, where Shared-AE
outperforms existing models such as Gondur et al. (2024); Sani et al. (2021; 2024); Shi et al. (2019).
(iii) Flexibility with Multiple Modalities and Image Data: Unlike previous methods, Shared-AE
is able to handle complex data types such as raw image data, and is also able to extend to more
than three modalities. This capability significantly expands its applicability compared to previously
published methods, enabling richer behavioral representations than pose estimation alone. (iv) Min-
imizing Distribution Distance Instead of Fitting to Predefined Priors: Rather than conforming
to predefined priors, as done in models such as Yi et al. (2022), Shared-AE minimizes the distances
between distributions learned from data. This approach yields more flexible and meaningful latent
representations. (v) Utility for Downstream Tasks and Improved Variance Explained: The sep-
aration of shared and private latent variables ensures that the learned representations are robust and
suitable for diverse downstream tasks, while enabling insights into brain-behavior relationships. A
detailed discussion on the technical and scientific novelty of Shared-AE can be found in Appendix
A.3

2 RELATED WORKS

2.1 MULTI-MODAL INTEGRATION IN NEUROSCIENCE
Multimodal integration is a rapidly growing area of research within artificial intelligence (AI) and
machine learning Baltrušaitis et al. (2017); Steyaert et al. (2023); Brenner et al. (2024); Radford
et al. (2021); Shi et al. (2021); Tian et al. (2020); Schneider et al. (2023); Zhang et al. (2020); Lake
& Higley (2022); Cardin et al. (2020); Lake et al. (2020); Singh Alvarado et al. (2021); Liu et al.
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(2021); Shi et al. (2019); Gondur et al. (2024); Sani et al. (2024). This field aims to combine and
analyze data from multiple sources to improve the understanding and performance of AI systems.
In neuroscience, multimodal data often refers to different types of recordings, such as fMRI and
PET (Zhang et al. (2020); Steyaert et al. (2023)), which provide complementary information about
brain activity and function. Additionally, multimodality can encompass both behavioral data and
corresponding neural activity, providing a more comprehensive view of brain function.

Recent research, such as Sani et al. (2021; 2024), focuses on using dynamical models to generate
behaviorally-relevant and behaviorally-irrelevant neural latent variables. While introducing private
latent spaces enhances interpretability, these methods struggle when faced with spurious temporal
correlations and high-dimensional data. In contrast, our approach extracts modality-specific shared
subspaces for across-modality relationships while maintaining interpretability through an autoen-
coder framework that reconstructs each modality, enabling scalability to complex behaviors. In
Singh Alvarado et al. (2021), the authors introduced a multi-encoder model that fused different
modalities using a Multimodal Variational Autoencoder (M-VAE) with a product-of-experts (PoE)
approach for modality fusion. Similarly, in the Multimodal Mixture-of-Experts VAE (MM-VAE)
(Shi et al. (2019)), the authors employed a mixture-of-experts (MoE) strategy instead of PoE to fuse
modalities. However, both these methods result in information leakage between modalities, leading
to ambiguities as to the origin of the data in the latent space, drastically reducing the interpretabil-
ity of the latent space. In Gondur et al. (2024), the authors introduced a Gaussian Process (GP)
framework to handle temporal relationships and designed separate latent spaces to capture private
features for each modality. However, their approach falls short when dealing with unpaired tasks,
as it requires both modalities to be present and aligned during inference. This limitation reduces the
model’s flexibility and robustness in scenarios where data from one modality may be unavailable,
shuffled, or otherwise corrupted.

2.2 LEARNING EMBEDDINGS IN NEUROSCIENCE

Recent advancements in hardware and storage capabilities have significantly enhanced the quality
and capacity of behavioral and neural recordings. Consequently, a substantial body of research has
focused on extracting lower-dimensional features from these high-dimensional datasets. Learning
embeddings involves extracting lower-dimensional features for both behavior and neural activity. In
the field of learning behavioral embeddings, pose estimation tools such as Lauer et al. (2021); Pereira
et al. (2022) have been broadly applied to track keypoint positions from the behavioral videos, and
methods like Luxem et al. (2022); Wiltschko et al. (2015); Berman et al. (2014) utilize these keypoint
positions to generate lower-dimensional behavioral features. Other works generate behavioral fea-
tures directly from videos, for example, Batty et al. (2019) applied VAEs for capturing the animal’s
behavioral features. Furthermore, Whiteway et al. (2021) and Yi et al. (2022); Klys et al. (2018) pro-
duce interpretable latent spaces by constraining the latent distribution in various ways. Due to the
high-dimensional nature of neural activity, learning lower-dimensional neural representations is also
crucial for uncovering neural dynamics. Models such as Churchland et al. (2012); Sani et al. (2021)
apply linear methods to learn interpretable embeddings from neural activity. Nonlinear models like
Pandarinath et al. (2017); Zhou & Wei (2020) adopt VAE-based approaches to project behavior onto
neural activity. Furthermore, Schneider et al. (2023) uses an encoder-based model and constrains
the latent space during behavioral tasks using contrastive learning. However, none of these models
have effectively addressed more complex behavioral tasks.

3 METHODS

3.1 OVERVIEW

Our goal is to develop representations that capture information shared between different modali-
ties, such as behavior and neural activity. We employ an AE-based model with dual encoders to
extract features from each modality independently (Fig. 1). The latent space of each modality
is subsequently divided into two subspaces: shared and private. To promote commonality across
the modalities for shared latent variables, we regularize these subspaces using the Cauchy-Schwarz
(CS) divergence that encourages alignment between different subspaces. Moreover, the private latent
variables are constrained using the inverse CS divergence regularization that encourages distinctive
subspaces. Finally, the corresponding private latent variables are combined with the shared latent
variables to reconstruct the original data in each modality using modality-specific decoders (Fig. 1).
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Figure 1: Shared-AE architecture: (1) Encoder: each modality is encoded separately. (2) Sepa-
ration into private vs. shared: after encoding, the latents are separated into private and pre-shared
latent variables through linear dense layers. Cauchy-Schwarz (CS) divergence is applied to encour-
age alignment and the inverse form is applied to encourage orthogonality. (3) Decoder: the latents
for each modality are decoded by separate decoders for reconstruction.

3.2 MODEL STRUCTURE
We assume that we can record from C different modalities: i ∈ {1, 2, ..., C}. Let modality i consist
of recorded data Xi over T time points Xi = {xi

1, x
i
2, ..x

i
T }. We use a sliding window approach

based on the recorded data to capture temporal information in each sample of the input; we define
Y i = {yi1, yi2, ..., yiT } as the network input for modality i, where yit = [xi

t−w, x
i
t−w+1, ..., x

i
t)], with

w being the window size. To extract useful representations from each input modality, we apply
separate encoders to each modality fθi with a set of learnable parameters θi.

Let zit = fθi(yit) represent the encoded representation of the t-th sample for modality i. zit maps
onto two subspaces: the shared latent subspace si, where sit = Wsz

i
t + bs, and the private latent

subspace pi, where pit = Wpz
i
t + bp. Here, Ws and Wp are weights while bs and bp are bias terms.

Finally, the shared latents and private latents for each modality are concatenated to form a combined
latent space [si, pi], which is then decoded back to reconstruct the original input ŷit = fλi([sit, p

i
t])

using separate decoders for each modality. Here, ŷit is the reconstruction and fλi is the decoder with
parameters λi.

In this study, we consider the two (or more) modalities to consist of simultaneously recorded neural
activity and behavior. We assume that the behavior is directly recorded using a behavioral video
camera, with either the raw video being considered the behavioral modality, or poses that are cap-
tured by pose estimation methods such as Lauer et al. (2021); Pereira et al. (2022).
3.3 REGULARIZATION ENCOURAGING SHARED VERSUS PRIVATE LATENT VARIABLES
Two modalities: To encourage shared structure in the ‘shared’ latent variables from different modal-
ities, we regularize these using the CS-divergence between s1t and s2t (Santana et al. (2016); Kampa
et al. (2011)). Moreover, to encourage distinct representations in the shared versus private latent
variables for each modality, we regularize these using the inverse CS-divergence between the shared
latents and the private latents for distinctiveness.

For two probability distribution functions (PDFs) f1(x) and f2(x), given the CS inequality (see
Appendix A.4), CS-divergence measures the distance between the two distributions (Jenssen et al.
(2006)) and is given by:

DCS(f1, f2) = − log

∫
f1(x)f2(x)dx√∫

f1(x)dx
∫
f2(x)dx

(1)

DCS(f1, f2) equals zero if and only if the two distributions f1(x) and f2(x) are the same.
For two given latent subspace with dimension d, the 1st and 2nd modalities, s1t and s2t , t = 1, .., N ,
the PDF of each distribution can be approximated by its Parzen window estimator:

f̂i(s) =
1

N

N∑
t=1

Gσ2(s, sit) (2)
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where i = 1, 2; Gσ2 is the Gaussian kernel with kernel size σ (Santana et al. (2016)) and is expressed
as Gσ2(s, sit) =

1

(2πσ2)
d
2
exp{− ||s−sit||

2

2σ2 }. By replacing the actual densities in Eq. 1, the numerator

can be rewritten as:∫
f1(s)f2(s)ds =

∫
f̂1(s)f̂2(s)ds =

1

N1N2

N1,N2∑
j,k=1

∫
Gσ2(s, s1j )Gσ2(s, s2k)ds (3)

According to the convolution theorem for Gaussian functions, the above equation can be simplified
as

∫
f1(s)f2(s)ds = 1

N1N2

∑N1,N2

j,k=1 G(
√
2σ)2(s

1
j , s

2
k). Here we denote

∑N1,N2

j,k=1 G(
√
2σ)2(s

1
j , s

2
k)

as V (f1, f2). Similarly, by replacing the f2(s) by f1(s), the expression becomes
∫
f2
1 (s)ds =

1
N2

1

∑N1,N1

j,j′=1 G(
√
2σ)2(s

1
j , s

2
j′), then the denominator can be written as

√
(V (f1, f1), V (f2, f2)), for

simplification, we put V (fi, fi) as V (fi) where i ∈ {1, 2}.

Finally, equation (1) can be expressed as:

LCS := DCS(f1, f2) = − log
V (f1, f2)√
V (f1)V (f2)

(4)

Here, f1(s1) and f2(s
2) represents the distribution of shared latent space for modality 1 and 2.

In Equation (4), minimizing V (f1) would result in the spreading out of f1(x), while maximizing
V (f1, f2) would make the samples in both distributions closer together (Yi et al. (2022)). Thus, we
minimize LCS for shared latent spaces and maximize it to reduce the similarity between shared and
private latent spaces within the same modality. Additionally, by maximizing this value, we promote
distinctiveness between the private latent spaces of different modalities. There is a close relationship
between the VAE and the CS-regularized AE, as detailed in Appendix A.6.

3.4 OBJECTIVE FUNCTION FOR TWO MODALITIES
Overall, the objective function can be expressed as:

L = LMSE1 + LMSE2 + αLcss1s2
+ βL−1

css1p1
+ γL−1

css2p2
+ δL−1

csp1p2
(5)

Here, the terms LMSE1
and LMSE2

represent the reconstruction loss of the two input modalities,
respectively. The Lcss1s2

, Lcss1p1
, Lcss2p2

, and Lcsp1p2
represents the CS-divergence loss between

different latent subspaces. α is introduced to control the similarity between the shared latent space.
β, γ, and δ are adopted to assist the model in producing independent latent subspaces.

3.5 GENERALIZATION TO MORE THAN TWO MODALITIES

The CS-divergence can also be extended to measure the distance between multiple distributions. For
C number of PDFs, the CS-divergence can be written as follows:

Lmulti−cs = DCS(f1, f2, .., fC) = − log

C−1∑
i=1

∑
j>i

V (fi, fj)

ϵ
√

V (fi)V (fj)
(6)

Here, ϵ =
∑C−1

c=1 c. Similarly, DCS(f1, f2, .., fC) equals zero if and only if the C distributions
f1(x), f2(x), ..., fC(x) are the same. Thus, the objective function for C modalities can be written
as:

L = LMSE1
+ ...+LMSEC

+αLmulti−css1...sC
+δL−1

multi−csp1...pC
+(βL−1

css1p1
+ ...+βL−1

cssCpC
)

(7)
Here, Lmulti−cs represents the CS loss across different modalities. For the above equation, the num-
ber of MSE loss terms and the CS loss terms, which encourage independence between shared and
private latent spaces within the same modality, remain consistent with the total number of modali-
ties. To simplify, the weight β for promoting independence is set to the same value across different
modalities.

4 RESULTS
We evaluated our model using three datasets: one simulated dataset and two experimental datasets.
All evaluations were conducted on held-out data. The training details are provided in Appendix A.7.
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4.1 SIMULATED DATASET: 3DSHAPE

We evaluated our model using a simulated dataset consisting of multiple sessions, each containing
recordings from two modalities. The “image” modality consists of 3D shapes that varied in orien-
tation, scale, shape, and color, with procedural changes applied to these features over time (Burgess
& Kim (2018)). We also simulate the corresponding non-linear time series encoding of the scale
and orientation, with temporally-structured noise that periodically changes value between 1 and 4.
Further details can be found in Appendix A.2.1.

B Shared latent: time series Shared latent:  imageA

Image 

Time series

Latent dimension 1

Latent dim
ension 2

Latent dimension 1

Latent dim
ension 2

Scale
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scale: 8 classes

orientation: 10 classes

Noise: randomly assigned 4 classes

...
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Figure 2: 3Dshape: A. The image modality consists of 3D shapes with different scales, orienta-
tions, and shapes, while the time series modality encodes the scales, orientations, and temporally-
structured noise; the shared information across modalities is the scales and orientations. B. Shared
latent spaces for each modality, each point represents a single frame, color-coded by orientations
and scales. C. Private latent for each modality, color-coded by the corresponding private features:
the private latent spaces retains the private features.

Our goal is to capture the shared information present in both image and time series data within
the shared latent spaces, while ensuring that the private latent spaces are specific to each modality,
retaining only the modality-specific features. By doing so, we can effectively separate the shared
time series and image features from those that are unique to either domain. This approach allows
for a clearer understanding of the underlying relationships between time series and images, and how
the two modalities align or diverge in capturing the intricacies of the data.

To evaluate the success of our model, we compare the correlation matrices across different latent
spaces, specifically focusing on the shared and private latents. The shared latent spaces exhibit
significantly higher correlation scores compared to the private latent spaces (as detailed in Appendix
A.10.1). This higher correlation in the shared spaces suggests that the model effectively captures the
common structure between time series and image data, while the private spaces remain distinct, as
intended.

We further visualize the latent spaces, with the latents color-coded by orientations and scales (Fig.
2B). The latent spaces show a clear and well-aligned separation between different orientations and
scales, further validating the ability of the model to organize key features in the shared latent space.
The alignment in the shared space demonstrates that the model was able to identify the common
underlying patterns between the two modalities in a way that enhances interpretability.

We apply a linear decoding model to each latent space for feature decoding after binning the data
(Fig. 3, Appendix A.12.2). The shared latent spaces demonstrate high accuracy in decoding scales
and orientations, highlighting their ability to capture common features across both modalities. The
private latent spaces perform well in isolating modality-specific information. For example, the pri-
vate image latents retain more shape-related details, leading to better decoding accuracy for shape
features as compared to the shared latents. Similarly, the private time series latents excel in decoding
temporally-structured noise, confirming their success in capturing modality-specific content.

Next, we demonstrate the necessity of applying the CS-divergence to the latent spaces: we train
a model using the same architecture but without applying the CS-divergence. As shown in Ap-
pendix A.12.2, the results indicate a lack of separation between the private and shared latent spaces,
highlighting the necessity of constraints to effectively distinguish shared and private features.
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In comparison to previously explored models such as MM-VAE (Shi et al. (2019)) and joint en-
coding models (Singh Alvarado et al. (2021)), the shared time series and image latents are able to
represent the shared features more accurately (Fig. 3, Appendix A.12.2). In comparison models,

R2

Model comparison

Shared-AE shared latents

Shared-AE private time series latents

MM-VAE shared latents
Joint Encoding shared latents

Shared-AE private image latents

Global latent

Mod 1 latent

Mod 2 latent

Mod 1 encoder

Mod 2 encoder

Mod 1 decoder

Mod 2 decoder

MM-VAE: MoE: Mixture of experts

PoE or MoE

Joint encoding model (M-VAE): PoE: product of experts

Shared latents Private 

latents

Time series latents 

decoding shared features

Image latents 

decoding shared features

Time series latents deocoding

       
 private tim

e series feature

Image latents decoding 

       
private image feature

Private 

latents

Shared latents Private 

latents

Shared latents Private 

latents

Shared latents

Figure 3: Comparison against baseline models while having unpaired the data from the modal-
ities. The Shared-AE shared latent results in better decoding accuracy of shared features, while
private latents retain more modality-specific information. The drop in decoding accuracy from the
shared latents for baseline models clearly indicates that there is information leakage between modal-
ities during training.

information leakage may result in the blending of modalities, thereby yielding unreliable outcomes
in the analysis of relationships between them. For example, in Section 4.2, we aimed to assess the
variance explained by each latent subspace. However, if one latent subspace contains features from
other modalities (as is prone to happen with the presence of a ‘global’ latent), it becomes unclear
where specific features originate from, leading to ambiguities and confusion in interpreting the latent
spaces. Here, we conducted a crucial test to ensure no information leakage between the different
modalities. First, we shuffled the time series data while keeping the image data unchanged. We
then applied this unpaired data to the trained model to generate new latent representations for both
modalities. Using these latent representations, we proceeded with the decoding task. We observed
that the decoding results from the latent representation remained unchanged for the unpaired data,
confirming that no information leakage occurred between the modalities in Shared-AE (Table 4).
This robust performance validates the integrity of the model in maintaining clear boundaries be-
tween the shared and private latent spaces, ensuring that shared information is genuinely mutual
between the two modalities, and not due to unwanted information transfer or contamination.

In contrast, baseline models demonstrated information leakage, as indicated by a noticeable drop
in decoding accuracy when applied to similar tasks (Table 5, Appendix A.12.2). This performance
decline highlights the strength of the Shared-AE model in preventing information leakage between
modalities, making it a more reliable choice for multi-modal integration. Additionally, the baseline
model fails to differentiate between private and shared features, which results in a lack of inter-
pretability in the latent space. Ensuring a clear separation between shared and private latent vari-
ables is essential in multi-modal scenarios, especially when handling complex, high-dimensional
data. This separation guarantees that the insights derived from the model accurately reflect the
true underlying data patterns, rather than being influenced by data contamination. Furthermore, as
shown in Appendix A.12.2, when the shared features across both modalities are weak, our model
outperforms the rest.
4.2 HEAD-FIXED BEHAVIOR: TWO-ALTERNATIVE FORCED CHOICE TASK (2AFC)
We apply Shared-AE to an experimental dataset involving a head-fixed mouse performing a self-
initiated visual discrimination task, with behavioral video recordings from two views (face and
body), that included the mouse and experimental equipment. We labeled the paws, spouts, and levers
using DeepLabCut (DLC). Simultaneously, WFCI across the mouse dorsal cortex was recorded. Fur-
ther details on the experimental setup are in Appendix A.2.2 and recording / preprocessing details
in Musall et al. (2019); Saxena et al. (2020).

Two Modalities: keypoint positions and WFCI To explore shared information between pose-
estimated behavioral variables and large-scale neural activity (WFCI), we trained Shared-AE with
these two modalities. Based on reconstruction results (Appendix A.9.2), we chose a shared latent
dimension of 50. Post-training, we extracted latent spaces from the held-out dataset for downstream
analyses. We first compared the correlation between the shared latent spaces between the two modal-
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Figure 4: Head-fixed mouse: visualizing shared latents: (A) Correlation coefficients between the
shared latent spaces: the matrix has a strong diagonal component, indicating that the shared latents
are well aligned. (B) In the shared behavioral latent space, we can identify the latent variables
that are most helpful in reconstructing each keypoint, and then identify the brain regions that these
reconstruct. (C) We identify the regions involved in modulating each keypoint using the procedure in
(B). (D)Variance explained for the shared behavioral latents, which indicates how the shared space
contributes to the reconstruction of each behavioral variable (equipment in blue and body parts in
yellow). E. Variance explained for the shared neural latents, which captures most features from the
primary somatosensory and the primary motor area (Abbreviation list in Appendix A.1).

ities. As shown in Fig. 4A, the shared latent spaces of behavioral and neural activities show a high
correlation, whereas the private latent spaces do not exhibit this trait (Fig. 9A). Given the high corre-
lation among the shared latents, we next examined the correspondence between the latent spaces and
the different features in each modality, i.e., the keypoints and brain regions (Fig.4B). Specifically,
we decoded body position and neural activity using each latent in the shared space, establishing a
one-to-many correspondence between the latent variables and the underlying data. As illustrated
in Fig. 4B, this process allows us to identify the corresponding brain regions for each body posi-
tion. We see in Fig. 4C the primary brain regions involved with each behavioral variable; here, the
contralateral side of the brain is shown to be related to each behavior.

Next, we focus on the role of shared latent variables by isolating them from private latents and
employing them to reconstruct the original data using a frozen decoder. This analysis reveals that
the equipment in the experiment has considerable shared information with the neural activity since
the mouse is performing a task, as compared to the mouse’s body parts (Fig. 4D). Notably, the
somatosensory and motor cortices have substantial shared information with the behavior (Fig. 4E).

UMAP: Color coded by HMM motifs

Right paw raise
Spout in: response left Left paw raise

Spout in: response right
Lever in 

Shared neural latents Shared behavioral latentsA

PL
MOs
RSP
VIS

SSp
MOp

L RB

Left paw raise Right paw raise

Lever in Spout in: 
response left

Spout in: 
response right

Figure 5: Head-fixed mouse: shared neuro-behavioral motifs: A. UMAP representation of the
shared neural and behavioral latent subspaces, color-coded by motifs learnt using Hidden Markov
Models (HMMs) applied to the shared behavioral subspace; we see that the shared latent success-
fully captures behavioral motifs, and affords interpretability to the neural subspace.. B. The corre-
spondence between each shared behavioral HMM state and brain regions (details in text).
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Finally, we examine whether the shared latents are able to generate reasonable shared neuro-
behavioral motifs. To understand this, we apply a Hidden Markov Model (HMM) to the shared
behavioral subspace and evaluate its generalization to the shared neural latent in Fig. 5A. In con-
trast, the private neural latent space was unable to capture the patterns observed in the behavior,
highlighting the importance of the shared latent space in identifying cross-modality relationships
(Appendix A.13.3). We further calculate the correspondence between various HMM states and
brain regions (Fig. 5B): for each HMM state, we compute the variance explained by the shared
latent spaces towards each brain region; we only consider those brain regions that are represented
with R2 > 0.3. This variance-explained analysis revealed important insights into how different
brain regions were involved in distinct behavioral states. For instance, the visual cortex displayed
a stronger response to equipment movement, likely reflecting the mouse’s reliance on visual cues
during task performance. Meanwhile, the somatosensory cortex was associated with nearly all of
the identified motifs, suggesting that it played a central role in the task across multiple behaviors.

In comparison with other multi-modal models such as MM-GP-VAE Gondur et al. (2024), PSID
Sani et al. (2021), DPAD Sani et al. (2024), MM-VAE Shi et al. (2019), and Joint Encoding Model
Singh Alvarado et al. (2021), we emphasize that Shared-AE has better decoding accuracy and of-
fers significantly improved interpretability of the latent space, due to the capability of Shared-AE
to form modality-specific shared subspaces. The configuration of each model can be found in Ap-
pendix A.13.1. To evaluate decoding accuracy, we trained a linear regression model on the training
dataset to predict body position using the neural latent representations. In cases where a decoder was
readily available during training, such as in PSID and DPAD, we directly used it to generate these
predictions (Table 1, Appendix A.13.2). Additionally, we compared our model with the baseline
models on unpaired datasets, where Shared-AE has better decoding accuracy (Appendix A.13.2).

Table 1: Behavioral decoding accuracy with paired modalities for 2AFC body positions dataset
Subspace PSID DPAD MM-VAE MM-GP-VAE Shared-AE
Private latents NA NA NA 0.37± 0.00 0.22± 0.03
Shared latents 0.20± 0.03 0.27± 0.02 0.41± 0.07 0.36± 0.01 0.41± 0.05

Two Modalities: behavioral video and neural activity To test the generalization of our model,
we apply Shared-AE to the same head-fixed dataset, while changing the behavioral modality from
keypoints to high-dimensional behavioral images. We see a high correlation between the shared
behavioral and neural latents (Appendix 9C). Using latent traversals, which systematically vary the
latent variables to reveal their influence on the model’s output and help identify specific behavioral
features encoded in the latent space, we demonstrate that the shared behavioral latent captures the
movements of the paw, spout, and lever (Fig. 15A). The private latent however captures the ap-
pearance of the mouse such as the shape of the eyes (Appendix A.13.4). Additionally, we compare
the neural encoding results using shared behavioral latents with (i) the behavioral videos, and (ii)
the keypoint positions being the behavioral modality. We found that during task-unrelated behav-
iors, such as raising the left and right paws, the images’ shared behavioral latents show significantly
higher accuracy for encoding the visual and motor areas (Fig. 15B, Appendix A.11). The behav-
ioral image captures more features than just keypoint positions, which is consistent with the findings
reported in the original paper. (Musall et al. (2019)). Moreover, unlike models such as PSID, Shared-
AE can handle image data, providing greater flexibility for complex multimodal tasks. As shown in
Appendix A.13.2, Shared-AE outperformed the baseline models.

Three Modalities: body position, behavioral video, and neural activity Shared-AE can be ex-
tended to more than two modalities; here, we show this capability using body positions, behavioral
videos, and neural activity from the head-fixed mouse dataset. The shared latent spaces of these three
modalities are highly correlated (Appendix 9B). To test whether the shared neural latents capture
details about the behavior, we predicted future keypoint positions and compared this to predictions
using shared neural latents from two modalities. Results show higher accuracy in predicting right
paw movement with the three-modality model, especially for potentially task-unrelated states such
as ‘right paw raise’, while task-related predictions remain comparable to the two-modality model.
4.3 SOCIAL BEHAVIOR
To further evaluate the performance of our model in a more complex behavioral setting, we con-
ducted experiments on a social behavior dataset. In this scenario, two mice, referred to as the agent
(m1) and subject (m2), were engaged in social interactions, while mesoscopic imaging was simulta-
neously performed using a large field-of-view miniscope on the subject. For more information, see
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Appendix A.2.3. The body positions of the two mice were labeled by DLC (Lauer et al. (2021)),
while the neural activity was preprocessed by LocaNMF (Saxena et al. (2020)). In addition to
tracking the body positions, we extracted several socially-relevant behavioral features, such as the
nose-to-nose distance between the two mice, the relative angle between their body orientations, and
other key interaction metrics. These behavioral features allowed us to quantify the complexity of
social behaviors and understand their relationships with neural activity.

Based on the reconstruction accuracy (Appendix A.9.3), we set the latent dimension to be 60. We
apply principal component analysis (PCA) to the shared latent spaces and show high correlations
across the dominant PCs of the different shared latent subspaces (Fig. 6A). The private latent spaces
do not exhibit this trait (Appendix A.10.3). The latents effectively capture the temporal features,
and the neural and behavioral latents are well aligned (Fig. 6B).

Next, we perform latent traversals to visualize the contribution of each latent space. As expected,
as shown in Fig. 6C, the shared neural latents capture a higher R2 for the subject’s behavior as
compared to the agent’s. This supports the idea that neural encoding primarily reflects the subject’s
perspective and interaction within the environment. However, the shared behavioral latents also
capture the agent’s behavior and many social features, such as the nose-to-tail distance, suggesting
that proximity to the agent and the agent’s behavior itself plays a significant role in modulating
neural activity. Furthermore, the shared neural latents show widespread activation across regions,
including the somatosensory and motor areas (Fig. 6D). These areas are critical for movement and
sensory integration, further validating the model’s capacity to identify relevant neural substrates that
underpin behavior. This alignment between neural activity and behavior underscores the robustness
of the shared latent representations in capturing social dynamics in multi-agent settings.

A

Behavioral 

Time
6s 0s3s

B

C

Brain Regions

Correlation coe�cient

Variance explained in shared behavioral latent space for behavioral features
agent subject social features

D
Keypoint positions

visual area somatosensory area motor cortex

Variance explained in shared neural latent space for brain regions

other brain regionsNeural

WFCI Social behavior

Figure 6: Socially behaving mice: A. Example neural and behavioral data (top); correlation be-
tween the shared latent spaces (bottom). B. Lower dimensional embedding for each modality found
using PCA, color-coded by the time spent in the arena. C-D: Variance explained by each shared
latent subspace: the shared behavioral latents capture features related to subject and agent, as well
as some social features, represented in the shared neural subspace with distributed neural coding.

5 CONCLUSION AND LIMITATIONS

This paper introduces Shared-AE, an AE-based framework using CS regularization to identify fea-
tures common to both behavior and neural activity, especially useful in settings where both modal-
ities are high-dimensional and represent complex behavior. By utilizing CS divergence and its in-
verse, Shared-AE captures both shared and unique features across modalities, enhancing our under-
standing of the relationship between neural activity and behavior. Despite its numerous hyperpa-
rameters, the model remains robust when well-trained. Limitations include its requirement for equal
latent subspace (Appendix A.5) dimensions, which can be inflexible, and its generalizability across
multiple subjects is uncertain. Overall, Shared-AE is a robust tool for multi-modal research. Fu-
ture work will explore more complex encoder models and pre-trained networks to improve training
efficiency and the ability to capture informative features. Here, we aim to achieve neuroscientific
insight, and do not note any negative societal impact.
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A APPENDIX

A.1 ABBREVIATION LIST

A detailed abbreviation list for different brain regions can be found at Allen Institute for Brain Sci-
ence

A.2 DATASET

A.2.1 DATASET: 3DSHAPE

The 3DShapes dataset is composed of procedurally generated 3D objects, each defined by six in-
dependent ground truth latent factors: floor color, wall color, object color, scale, shape, and orien-
tation. Every possible combination of these factors is uniquely represented, resulting in a dataset
of 480,000 images. For our task, we converted the images to grayscale to remove the color-related
features, leaving three key attributes: (1) scale, with 8 values linearly spaced between 0 and 1, (2)
shape, with 4 distinct categories [0, 1, 2, 3], and (3) orientation, with 15 values linearly spaced be-
tween -30 and 30 degrees. For the labels, we retained the scale and orientation values and introduced
a temporally-structured noise that periodically changes between one and four. For time efficiency,
we applied 8000 images for training and 2000 images for testing.

A.2.2 DATASET: TWO-ALTERNATIVE FORCED CHOICE TASK (2AFC)

We employed a subset of the behavioral dataset from Musall et al. (2019). The task involved mice
pressing a lever to start, displaying a visual stimulus to the left or right, and then making a decision
by licking a spout corresponding to the stimulus direction after a delay. Correct choices were re-
warded with juice. Behavior and neural activity were recorded at 30 Hz. The training set consists of
388 trials, and the test set contains 128 trials, each comprising 189 frames.

A.2.3 DATASET: SOCIAL BEHAVIOR

Our study used a social behavior dataset involving simultaneous brain mesoscopic imaging and
natural behavior recording in mice. Mesoscopic imaging was performed using a large field-of-
view miniscope, while behavior was captured by three cameras at different angles. Two GCaMP6-
expressing mice (slc17a7-cre x ai162) were observed in a cubic box arena, with one mouse equipped
with a miniscope. The video, around 18 minutes long, was split into 326 chunks, with a 3:1 training
to test data ratio. Social features such as nose-to-nose distance, tail-to-nose distance, speed, and
angle between mice were calculated, resulting in 37 features in the behavioral datasets.

A.3 TECHNICAL AND SCIENTIFIC NOVELTY OF SHARED-AE

Shared-AE introduces a novel approach to joint neural and behavioral modeling, addressing key
limitations in existing methods and offering several distinct advantages:
(a) Enhanced Interpretability through Latent Subspace Separation: Unlike the model by
Gondur et al. (2024), which combines neural and behavioral latents into a single subspace, Shared-
AE explicitly separates shared and private latent spaces. This separation preserves interpretability
by reducing information leakage across modalities, allowing us to better disentangle distinct
modality-specific features. Indeed, having common shared subspaces can be detrimental towards
interpretability, since it is unclear which modality is leading to the performance of the shared latent.
As an additional key consequence of modality-specific shared subspaces, if we only have data from
one modality during inference, we do not require data from the other modalities to generate robust
and meaningful representations.
(b) Improved Performance on Paired and Unpaired Tasks: We designed an ‘unpaired’ task
to ensure there is no information leakage between different modalities. Critically, after training
the model, if one modality’s data is corrupted during inference, this should not affect the other
modality’s latent representation or decodability. Here, during inference only, one modality was
shuffled across time, while the other modality remained unchanged. The resulting ‘unpaired’ data
was then input into the trained model to generate new latent representations for the unshuffled
modality. This approach allowed us to assess whether the model could maintain the integrity of the
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unshuffled modality’s latent features, ensuring that the latent representations were unaffected by the
shuffled modality. We compared Shared-AE against existing approaches on the 2AFC dataset (as
requested by the reviewers), demonstrating superior performance in both paired and unpaired tasks
(Table 11, 12). Shared-AE outperforms other models by effectively capturing complex relationships
across modalities, and preserves information in one modality even when the other modality may
be corrupted during inference. This robustness is crucial for practical applications where complete
data may not always be available.
(c) Flexibility with Multiple Modalities and Image Data: Shared-AE is designed to handle
more than three modalities, including image data, significantly broadening its application scope
from previous research; in fact, this capability has not previously been shown in any multi-modal
neuroscience study. As shown in Figure 6B, using raw behavioral images as well as pose estimation
leads to better prediction accuracy of neural activity compared to using pose estimation alone.
This finding aligns with Musall et al. (2019), indicating that raw image data provides a richer
representation of behavior. In contrast, existing models such as PSID are limited in processing data
from more than two modalities effectively.
(d) Minimizing Distribution Distance Instead of Predefined Priors: Previous works such as Yi
et al. (2022) and Tran et al. (2021) do indeed use a CS-divergence, but in a drastically different way
than in our study: they use CS-divergence to fit the latent distribution to a predefined prior, whereas
Shared-AE minimizes the distance between two learned distributions instead. This approach avoids
the limitations of predefined priors and allows for more flexible and meaningful representations.
(e) Utility in Downstream Tasks and Enhanced Variance Explained: By separating the latent
features into distinct shared and private subspaces, Shared-AE provides representations that can be
effectively used for multiple downstream tasks.

A.4 CS INEQUALITY

For two functions h(x) and g(x), the Cauchy-Schwarz inequality is expressed as:∣∣∣∣∫ h(x)g(x)dx

∣∣∣∣2 ≤
∫

|h(x)|2dx
∫

|g(x)|2dx (8)

with equality holding if and only if the two functions are linearly dependent.

A.5 EQUAL LATENT SUBSPACE DIMENSIONS

Mathematically, the CS-divergence requires both distributions to have the same dimensionality, al-
lowing for the calculation of cosine similarity after kernelizing the latent representations. In practice,
as illustrated in Fig. 2, the dimensionality of the latent space often exceeds the actual number of fea-
tures. This implies that when the latent dimension is large, there may be redundancy in each latent
subspace. To overcome this limitation in practice, we perform dimensionality reduction on the latent
subspaces after training, especially for visualization purposes.

A.6 RELATIONSHIP BETWEEN VAE AND THE CS REGULARIZED AE

For a standard VAE with a Gaussian prior, the Evidence Lower Bound (ELBO) is defined as:

ELBO = Eẑ∼qϕ(z|x)[log pθ(x|ẑ) + log pθ(ẑ)] +H[qϕ(ẑ|x)] (9)

= Eẑ∼qϕ(z|x)[log pθ(x|ẑ)] + Eẑ∼qϕ(z|x)[log pθ(ẑ)] +H[qϕ(ẑ|x)] (10)

= Eẑ∼qϕ(z|x)[log pθ(x|ẑ)]−DKL(qϕ(ẑ|x)||pθ(z)) (11)

Where x is the input, z ∼ N (0, 1), ẑ is the learned latent, and pθ(x|ẑ) = N (µnn(z), σnn(z)).
During training, the goal is to maximize the ELBO. Therefore, the objective function is written as:

LN = DKL(qϕ(ẑ|x)||p(z))− Eẑ∼q(z|x)[log pθ(x|ẑ)] (12)
In contrast, our model, Shared-AE, utilizes the CS-divergence for regularization. Unlike the VAE,
which employs KL divergence to measure the difference between the approximate posterior and
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the prior, Shared-AE leverages the CS divergence to encourage the alignment of the approximate
posterior with the prior, enhancing flexibility in capturing the underlying structure of the data.

To place Shared-AE in a probabilistic framework, we consider the objective to maximize the log
marginal likelihood of the model, as below (Tran et al. (2021)).

max
θ

E[log pθ(x)] = max
θ

Ep(x)

[
logEp(z)[pθ(x|ẑ)]

]
, (13)

Using Jensen’s inequality, we can obtain a lower bound to the log-marginal likelihood as follows:
log pθ(x) = logEẑ∼p(z)[pθ(x|ẑ)] ≥ Eẑ∼p(z)[log pθ(x|ẑ)]. (14)

Similarly, as in the VAE framework, we define a mapping qϕ(z|x) which transforms some input x to
(probabilistic) features z. By adding a regularization R, we penalize any deviation between qϕ(z|x)
from p(z). Ideally, this regularization is a metric function for which R > 0 when q ̸= p and R = 0
if and only if q = p.

max
θ,ϕ

Ep(x)Eẑ∼qϕ(z|x)[log pθ(x|ẑ)] (15)

subject to 0 ≤ R(qϕ) < ϵ. (16)
In this formulation, ϵ specifies the magnitude of the applied constraint. If R is defined as the KL
divergence, we have the original ELBO formulation. We diverge from this principle and use the
Cauchy-Schwarz divergence for regularization to match an approximate posterior to a prior, with
the advantage of added flexibility and expressiveness. Thus, the objective function is given by:

max
θ,ϕ

Ep(x)

[
Eẑ∼qϕ(z|x)[log pθ(x|ẑ)]

]
(17)

subject to DCS(qϕ(ẑ|x)∥p(z)) < ϵ. (18)
Rewriting this as a Lagrangian, we obtain:

F(x; θ, ϕ, λ) = Eẑ∼qϕ(z|x)[log pθ(x|ẑ)]− λ(DCS(qϕ(ẑ|x)∥p(z))− ϵ), (19)
where λ is the regularization coefficient ensuring that the posterior distribution is close to the prior
p(z). We can rewrite this as:

F(x; θ, ϕ, λ) ≥ Eẑ∼qϕ(z|x)[log pθ(x|ẑ)]− λDCS(qϕ(ẑ|x)∥p(z)) =: LCS−AE(x; θ, ϕ, λ). (20)
While VAEs rely on KL divergence to regularize the latent space and align the approximate posterior
with the Gaussian prior, CS-AE uses CS divergence, allowing for more flexible and potentially richer
latent space representations. Moreover, our formulation in Shared-AE further defines a specific set
of latent variables from one modality to regularize using the latent variables obtained from a different
modality, to elucidate the shared structure in the data.

A.7 TRAINING DETAILS

All models were trained and tested on a single NVIDIA A100 using PyTorch 2.0.1. For our dataset,
the runtime per batch varied based on the modalities used: approximately 0.398 seconds for keypoint
positions and neural activity, 4.523 seconds for behavioral images and neural activity, and 5.575
seconds for keypoint positions, behavioral images, and neural activity. Each model was trained for
100 epochs with a batch size of 256, using the Adam optimizer with a learning rate of 1e− 4.

A.7.1 3DSHAPE

For each input, we applied a window size of one. A 2D ResNet-18 backbone was used for image
input, and a 1D ResNet-18 backbone for time series data. A 2-layer 2D convolutional decoder was
applied to image data and a 2-layer 1D convolutional decoder to time series data. For classification
tasks, scale and orientation are the shared features between image and time series data. The shape is
the image-only feature while the temporally-structured noise is the time series-only feature.

A.7.2 2AFC

A sequence of 9 frames was stacked together, based on the HMM output of keypoint positions. Each
sequence spans approximately 0.3 seconds. For keypoint positions and neural activity, a 1D ResNet-
18 backbone was used for encoding, and a 4-layer 2D convolutional decoder for behavioral images
and a 2-layer 1D convolutional decoder for keypoint positions and neural activity.

17



Published as a conference paper at ICLR 2025

A.7.3 SOCIAL BEHAVIOR

A sequence of 8 frames was stacked together based on the HMM output of keypoint positions. A
1D ResNet-18 encoder and a 2-layer 1D convolutional decoder were used for both modalities.

A.8 STATISTIC TESTS

We performed t-tests on the test dataset and used the p-value to determine the significance of our
results. The p-value annotation legend is:

ns: 5.00× 10−2 < p ≤ 1.00× 100

*: 1.00× 10−2 < p ≤ 5.00× 10−2

**: 1.00× 10−3 < p ≤ 1.00× 10−2

***: 1.00× 10−4 < p ≤ 1.00× 10−3

****: p ≤ 1.00× 10−4

A.9 HYPERPARAMETER SEARCH

This section describes the procedures for selecting parameters. Due to the nature of the loss, each
subspace should have the same number of latent dimensions.

A.9.1 3DSHAPE

The original dataset includes 6 different features. To simplify the dataset, we grayscaled the images
to have only 3 features. For better reconstruction accuracy, we choose the latent dimensions equal
to 5. The mean MSE loss for the image and the mean R2 for the time series are 0.23e 5 and 0.98 ±
0.007, respectively. The kernel size is set to 15 and the weight for all the CS and inverse loss terms
is 10.

The final training CS loss for the shared latent space is 0.0009; the inverse CS loss is 9.78 ± 0.03
for the individual shared and private latent spaces; the inverse CS loss for the private latent space of
different modalities is 9.78.

A.9.2 2AFC

We choose the latent dimension based on the reconstruction accuracy using 5-fold cross-validation:
the smallest value when the MSE loss converged. For keypoint positions, 7 different parts are
encountered, and we show the mean and maximum R2 values for all keypoints. Similarly, for
neural activity with 21 different regions, we show the mean and maximum R2 values across all
brain regions (Figure 7). We evaluated the decoding accuracy of body positions using shared neural
latents with varying latent dimensions: 50, 80, and 100. As shown in Table 2, the decoding accuracy
remains relatively consistent across these dimensions, indicating that the model’s performance is
robust to changes in latent dimensionality. For this dataset, we chose a latent dimension equal to 50.
The held-out data served as the test set on which all the results are reported. For a two-modality

Table 2: Behavioral decoding accuracy with various latent dimensions using Shared-AE for 2AFC
dataset

50 80 100
Shared neural latent 0.41± 0.05 0.43± 0.03 0.42± 0.04

task with the image as the behavioral input, the reconstruction result for the image is evaluated by
MSE. We choose 85 as the latent dimension. For the three modalities tasks, we choose the latent
dimension to be 85 for comparison. The mean MSE loss and the mean R2 are comparable to the
two modality results being 0.1e− 5 and 0.65± 0.2, respectively.

For other hyperparameters, we set the kernel size σ for this dataset to be 15 (Yi et al. (2022)). For
simplification, we set α, β, γ, and θ to be the same, all of them equal 5. The results are robust to
changes in these hyperparameters, as long as the losses converge to a certain range. In Table 3, we
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Two modalities for head�xed mouse: Keypoint positions and neural activity

Latent Dimensions vs Reconstruction Accuarcy: Keypoint Positions Latent Dimensions vs Reconstruction Accuarcy: neural activity

Two modalities for social behavior: Keypoints position and neural activity

Two modalities for head�xed mouse: Behavioral image and neural activity
Latent Dimensions vs Reconstruction Accuarcy: image MSE error

Latent Dimensions vs Reconstruction Accuarcy: Keypoint Positions Latent Dimensions vs Reconstruction Accuarcy: neural activity

A

B

C

M
SE

Figure 7: Reconstruction accuracy for different datasets with different latent dimensions. The mean
R² represents the average accuracy across all keypoint positions and neural channels, while the max
R² indicates the maximum accuracy observed among these keypoints and channels. This distinction
helps capture both the overall performance and the peak accuracy of our model across different fea-
tures, providing a more comprehensive evaluation of its predictive capabilities: A. 2AFC: 2 modal
tasks with keypoint positions and neural activity B. 2AFC: 2 modal tasks with behavioral image and
neural activity C. social behavior: 2 modal tasks with keypoint positions and neural activity

include the after-training CS divergence loss for each task. For simplicity, we calculated the mean
value of the inverse CS loss for the same modality (reported before inversion).
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Table 3: CS loss and inverse CS loss values for head fixed dataset

tasks
cs loss for

shared latents
inverse cs loss for
the same modal

inverse cs loss for
different modal

keypoint positions+ neural activity 0.01 8.65± 0.05 6.77
image+ neural activity 0.019 8.59± 0.007 5.16

A.9.3 SOCIAL BEHAVIOR

According to the reconstruction plot in Fig.7C, we chose 60 as the number of latent dimensions. The
kernel size is set to 15 and the weight for all the CS and inverse loss terms is 10. The final training
CS loss for the shared latent space is 0.006; the inverse CS loss is 8.35±0.3 for the individual shared
and private latent spaces; the inverse CS loss for the private latent space of different modalities is
6.99.

A.10 CORRELATION COEFFICIENT FOR DIFFERENT LATENT SUBSPACES

A.10.1 3DSHAPE

The correlation coefficient matrices for different latent subspaces are shown in Fig. 8. Despite
some correlations between the shared and private image latent spaces, the other subspaces are well
separated.

latent dimension=5
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Figure 8: 3Dshape: Correlation coefficient for different latent subspaces.

A.10.2 2AFC

The correlation coefficient matrices for different latent subspaces are shown in Fig. 9. As expected,
the shared latents exhibit high correlations, while the shared and private latents for the same modality
show lower correlations.

A.10.3 SOCIAL BEHAVIOR

The correlation coefficient matrices for different latent subspaces are shown in Fig. 10. Despite
some correlations between the shared and private social latent spaces, the other subspaces are well
separated.

A.11 PREDICTION TASKS FOR DIFFERENT MODALITIES

We compared the prediction accuracy between image behavioral latents and keypoint positions be-
havioral latents for different HMM states (Figs. 11 and 12).

We applied the shared neural latent generated by the three-modal tasks for behavior prediction (Fig.
13).
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2 modals: keypoint positions + neural activity

3 modals: keypoint positions + behavioral image + neural activity

2 modals: behavioral image+ neural activity

A

B

C

vs vs vs

vs vs

Figure 9: 2AFC: Correlation coefficient for different latent subspaces. A. Comparison between
different latent spaces for the 2-modal task: keypoint positions and neural activity. (Correlation
should be low for shared vs. private and private vs. private) B. Comparison between shared latent
spaces for the 2-modal task: behavioral image and neural activity. C. Comparison between different
latent spaces for the 3-modal task: behavioral image, keypoint positions, and neural activity.

social behavior (body positions + social features) +neural activity 

Figure 10: Social behavior: Correlation coefficient for different latent subspaces.

21



Published as a conference paper at ICLR 2025

Prediction of Neural Activity using Behavior

Figure 11: Prediction accuracy of neural activity (A): comparison between the image behavioral
latents and key point positions behavioral latents.

A.12 ADDITIONAL RESULTS: 3Dshape dataset

A.12.1 PCA EMBEDDINGS OF THE SHARED AND PRIVATE LATENT SUBSPACE

Fig. 14 illustrates that the shared latent does not capture private features, while the private latent
exhibits lower decoding accuracy for shared features. This further demonstrates that our model
effectively generates distinct shared and private latents.

A.12.2 BASELINE COMPARISON WITH PSID AND DPAD

The key advantage of the Shared-AE model over other approaches lies in its ability to effectively
disentangle shared and private features, resulting in a clearer separation of modality-specific infor-
mation. This distinct separation not only enhances the interpretability of the latent representations
but also supports a wider range of downstream tasks across different data modalities. As shown in
Table 6, when the shared features across both modalities are weak, both PSID and DPAD struggle to
effectively separate the private features from the shared latent spaces. Here, both models resulted in
an erroneously high decoding accuracy of a private feature from the shared latent space. Shared-AE
was able to successfully decouple the shared vs. private features in its latent subspaces.
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Prediction from behavioral latents to neural activity

Figure 12: Prediction accuracy of neural activity (B): comparison between the image behavioral
latents and key point positions behavioral latents

A.12.3 BASELINE COMPARISON WITH BASELINE MODEL WITHOUT CS-DIVERGENCE

As a baseline, we trained the model on a simulated dataset using the same architecture but without
applying CS-divergence. As shown in Table 7, the results indicate a lack of separation between the
private and shared latent spaces, highlighting the necessity of constraints to effectively distinguish
shared and private features. Importantly, the shared subspaces in the Shared-AE are not in fact
reconstructing both modalities; they remain completely separate from each other, with purely the
CS-divergence to regularize them to be similar.
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shared neural latent (task: 2 modal with keypoint position and neural activity)
shared neural latent (task: 2 modal with behavioral image and neural activity)
shared neural latent (task: 3 modal with keypoint position, behavioral, and neural activity)

Prediction of Behavior using Neural Activity

Figure 13: Prediction of keypoint positions using shared neural latents shows that incorporating the
third modality (behavioral image) enhances the neural latents’ ability to capture intricate features.

Shared latent: time series Shared latent:  image

Latent dimension 1
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Decoding accuracy: 0.173    0.04  Decoding accuracy: -0.012    0.001  
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Figure 14: PCA embeddings for shared and private behavioral and neural latent subspace: A. Shared
latent spaces for each modality, each point represents a single frame, color-coded by the correspond-
ing private features: the private latent spaces retains the private features. B. Private latent for each
modality, color-coded by orientations and scales.
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Table 4: Shared-AE unpaired vs paired results: 1. The shared latent results in better classification
accuracy in shared features while private latent retained more modality-specific information. 2.
Shuffling one of the modalities during test time does not affect latent classification accuracy which
indicates that there is no information leakage between modalities.

Shared-AE (unpaired) Shared-AE (paired)
Private time series latents on scale and orientations↓ 0.647± 0.05 0.640± 0.04
Shared time series latents on scale and orientations↑ 0.980± 0.09 0.981± 0.01
Private time series latents on shape↓ 0.017± 0.001 0.008± 0.001
Shared time series latents on shape↓ −0.012± 0.001 −0.015± 0.01
Private time series latents on temporally-structured noise↑ 0.732± 0.012 0.745± 0.005
Shared time series latents on temporally-structured noise↓ 0.183± 0.01 0.173± 0.04

Private image latents on scale and
orientations↓ 0.523± 0.02 0.53± 0.05
Shared image latents on scale and
orientations↑ 0.757± 0.08 0.751± 0.07
Private image latents on shape↑ 0.768± 0.03 0.767± 0.09
Shared image latents on shape↓ 0.288± 0.01 0.289± 0.008
Private image latents on temporally-structured noise↓ 0.012± 0.05 0.011± 0.08
Shared image latents on temporally-structured noise↓ 0.015± 0.01 0.015± 0.007

Table 5: Baseline model performance on unpaired and paired datasets: the drop on classification
indicates that there is information leakage during training

Baseline comparison for unpaired dataset MM-VAE Joint encoding model
Shared time series latents on scale and orientations 0.52± 0.21 0.58± 0.1
Shared time series latents on shape −0.01± 0.04 0.013± 0.04
Shared time series latents on temporally-structured noise −0.001± 0.007 0.034± 0.08
Shared image latents on scale and orientations 0.42± 0.11 0.55± 0.11
Shared image latents on shape 0.146± 0.001 0.010± 0.01
Shared image latents on temporally-structured noise −0.003± 0.007 0.042± 0.07

Baseline comparison for paired dataset MM-VAE Joint encoding model
Shared time series latents on scale and orientations 0.90± 0.06 0.975± 0.01
Shared time series latents on shape 0.22± 0.03 −0.012± 0.01
Shared time series latents on temporally-structured noise 0.0005± 0.000 0.024± 0.001
Shared image latents on scale and orientations 0.90± 0.06 0.646± 0.001
Shared image latents on shape 0.154± 0.003 0.861± 0.003
Shared image latents on temporally-structured noise 0.003± 0.000 0.071± 0.003

Table 6: Decoding accuracy for temporally-structured noise (private time-series feature) on simu-
lated dataset

Subspace PSID DPAD Shared-AE
Shared latent↓ 0.99± 0.00 0.99± 0.00 0.015± 0.01
Private image latent↓ NA NA 0.012± 0.05
Private time-series latent↑ NA NA 0.732± 0.00

A.13 ADDITIONAL RESULTS: headfixed dataset

A.13.1 BASELINE MODEL CONFIGURATION

In MM-GP-VAE, the dimensions of both the shared and private latent spaces are set to 50, similar
to configurations in MM-VAE and the Joint Encoding model. For PSID: n1 = 5, nx = 50, i = 2.
For DPAD: n1 = 5, nx = 50 and the method code is ′NDMCzNonLin′. These consistent latent
space dimensions across models provide a standardized basis for comparison, ensuring that the
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Table 7: Baseline model without CS-divergence vs. Shared-AE: performance on simulated paired
datasets

Decoding latents and targets Baseline Shared-AE
Shared time series latents on scale and orientations↑ −0.036± 0.01 0.981± 0.01
Shared time series latents on shape ↓ −0.012± 0.01 −0.015± 0.01
Shared time series latents on temporally-structured noise ↓ −0.018± 0.005 0.173± 0.004
Shared image latents on scale and orientations↑ 0.67± 0.04 0.751± 0.07
Shared image latents on shape ↓ 0.52± 0.005 0.289± 0.008
Shared image latents on temporally-structured noise↓ 0.035± 0.003 0.015± 0.007
Private time series latents on scale and orientations↓ −0.030± 0.01 0.674± 0.05
Private time series latents on shape ↓ −0.023± 0.01 0.017± 0.001
Private time series latents on temporally-structured noise ↑ −0.004± 0.001 0.732± 0.0012
Private image latents on scale and orientations↓ 0.70± 0.02 0.523± 0.02
Private image latents on shape ↑ 0.78± 0.005 0.768± 0.03
Private image latents on temporally-structured noise↓ 0.075± 0.006 0.012± 0.05

Prediction of Neural Activity using Behavior: Visual area: left
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Figure 15: Head-fixed mouse: behavioral video and WFCI: A. Latent traversal for the shared
behavioral latents shows automatic identification of neurally-relevant features such as jaw and paw
movement. B. Neural activity prediction: a comparison between the video-based behavioral latents
and the keypoint behavioral latents shows that there is more shared information about behavioral
videos than poses in select brain regions. Full list shown in Appendix A.11

evaluation focuses on differences in model design and methodology rather than variations in latent
space capacity.

A.13.2 BASELINE COMPARISONS

Five baseline models are applied to the 2AFC simultaneously collected neural WFCI and behavioral
video data for comparison: PSID Sani et al. (2021), DPAD Sani et al. (2024), MM-VAE Shi et al.
(2019), the Joint Encoding Model Singh Alvarado et al. (2021), and MM-GP-VAE Gondur et al.
(2024). Importantly, the first four baseline models failed to separate the latent space into distinct
shared and private latent subspaces. In order to quantify the amount of information represented in
each latent subspace, we compared the ability of each model to reconstruct one of the modalities,
the body positions, in Tables 11 and 12 Shared-AE achieves higher decoding accuracy, particularly
on unpaired datasets, compared to existing models. This demonstrates that it does not suffer from
modality leakage, ensuring that during inference, robust representations can be generated even if
only one modality’s data is available. This is particularly advantageous in situations where acquir-
ing all modalities simultaneously is challenging. The ability to produce meaningful latents without
the need for all modalities underscores the practical utility and flexibility of our approach. We em-
phasize that Shared-AE offers significantly improved interpretability of the latent space. Moreover,
unlike PSID, Shared-AE is capable of handling image data and can accommodate more than three
modalities, providing greater flexibility for complex multimodal tasks.

The model proposed by Gondur et al. (2024) combines the behavioral and the neural latent into a
common subspace. This can be detrimental to interpretability since it is unclear which modality is
leading to the performance of the shared latent. As detailed in Appendix A.3, the combined shared
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latent causes information bleeding between different modalities. We implemented MM-GP-VAE
based on Gondur et al. (2024) as well as a similar model by incorporating a single shared latent
space for both modalities and tested it on the 2AFC dataset, referring to this implementation as
MM-nonGP-VAE. These models were used as baselines to compare against our proposed approach.
As shown in Table 8, Shared-AE outperforms both of these models on both paired and unpaired
tasks. Critically, Shared-AE has the ability to generate reasonable latents despite corrupted data in
the other modality during inference.

Table 8: Behavioral decoding accuracy with unpaired modalities for 2AFC body position dataset
tasks MM-GP-VAE MM-nonGP-VAE Shared-AE
Private latent −0.01± 0.00 0.25± 0.02 0.22± 0.03
Shared latent 0.006± 0.00 0.23± 0.03 0.41± 0.05

Table 9: Behavioral decoding accuracy with paired modalities for 2AFC body position dataset
tasks MM-GP-VAE MM-nonGP-VAE Shared-AE
Private latent 0.37± 0.00 0.24± 0.02 0.22± 0.03
Shared latent 0.36± 0.01 0.32± 0.03 0.41± 0.05

For comparison with PSID, we further validate that PSID and DPAD cannot effectively handle im-
age data, we conducted an experiment where the flattened behavioral image was used as the input
behavioral data for PSID and DPAD (Table 10). We then used the generated neural latent represen-
tations for body position decoding and compared the results with those obtained from Shared-AE,
which directly utilizes the behavioral image as input. The decoding results obtained by Shared-AE
outperformed the rest.

Table 10: Behavioral decoding accuracy with paired modalities for 2AFC image dataset
Subspace PSID DPAD Shared-AE
Shared latents 0.32± 0.02 0.31± 0.00 0.38± 0.01

Table 11: Behavioral decoding accuracy with unpaired modalities for 2AFC body position dataset
Subspace MM-VAE Joint Encoding Model MM-GP-VAE Shared-AE
Private latents NA NA −0.01± 0.00 0.22± 0.03
Shared latents 0.22± 0.03 0.20± 0.02 0.006± 0.00 0.41± 0.05

Table 12: Behavioral decoding accuracy with paired modalities for 2AFC body position dataset
Subspace PSID DPAD MM-VAE Joint Encoding Model MM-GP-VAE Shared-AE
Private latents NA NA NA NA 0.37± 0.00 0.22± 0.03
Shared latents 0.20± 0.03 0.27± 0.02 0.41± 0.07 0.40± 0.06 0.36± 0.01 0.41± 0.05

A.13.3 UMAP EMBEDDINGS OF THE PRIVATE LATENT SUBSPACE

We show that the private latent subspaces cannot capture different HMM states inferred by behav-
ioral latents (Fig. 16).

A.13.4 INFLUENCE OF THE PRIVATE BEHAVIORAL LATENT SUBSPACE ON IMAGE
RECONSTRUCTION

We performed the same task as in Sec. 4.2, varying the private behavioral latent from its minimum
value to its maximum value. (Fig. 17).
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Figure 16: UMAP embeddings for private behavioral and neural latent subspace for the 2AFC
dataset.

Original image
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Figure 17: Changing the value of the private latent space from its minimum to its maximum results in
a defection in the image. The private latent captures more about the behaviorally unrelated features.
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