
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOOKING BEYOND THE NEXT TOKEN

Anonymous authors
Paper under double-blind review

ABSTRACT

The most natural way to model language is rarely autoregressive. The structure
of causal language model training assumes that each token can be predicted from
prior context, a process that contrasts with humans’ natural writing and reasoning
process, which is often non-linear and hierarchical. While this mismatch is well-
documented, the working assumption has been that architectural changes are
needed to address it. We argue that by simply rearranging and modifying the
training data, autoregressive modeling can more accurately imitate some aspects
of the true data-generating process without any changes to the architecture or
training infrastructure. We introduce TRELAWNEY, a purely data-centric method
that modifies the training data by interleaving sequences with special lookahead
tokens that contain future information. This simple data augmentation, requiring
no changes to model architecture or training infrastructure, equips models to
both condition on future goals and generate them. We present representative
results on high-entropy tasks like path planning, algorithmic reasoning, zebra
puzzles, and controllable generation, demonstrating improved performance on
tasks with branching paths or long-horizon planning. Finally, our method enables
the generation of plausible long-term goals at no additional cost, potentially opening
doors to new capabilities beyond the current language modeling paradigm.

1 INTRODUCTION

Next-token prediction (NTP) is the primary objective for training sequence models. This objective
involves a technique called teacher forcing (Williams & Zipser, 1989), where the model’s predicted
output at each step is replaced with the ground truth from the real dataset. One of teacher forcing’s
benefits is that it accelerates training by providing the model with the correct previous output, so the
learning does not suffer from error accumulation, and the gradient update is more stable. Another
crucial benefit is that it enables parallelism and hardware acceleration in training because the model
can simultaneously process all time steps, rather than sequentially waiting for its own predictions.
However, Bachmann & Nagarajan (2024) argue that models trained with teacher forcing often fail to
learn long-range dependencies, latching onto local patterns and surface-level correlations instead.

Several recent methods have been proposed to alleviate the issue of teacher forcing. One popular
approach is multi-token prediction, where the model learns to predict multiple tokens at the same
time (Bachmann & Nagarajan, 2024; Gloeckle et al., 2024; Deepseek et al., 2024). Another family
of methods involves modifying the training objective to predict both the next token for a prefix and
the previous token for a suffix by modifying the model architecture (Hu et al., 2025). Most of these
approaches either involve nontrivial modifications or make the learning process much harder by
forcing the model to predict multiple tokens at the same time.

In this work, we investigate a purely data-centric approach to address these limitations. Instead of
modifying the model architecture, our method TRELAWNEY1 modifies the training data by introducing
alternative factorizations that embed inductive biases directly. Concretely, we augment the training
corpus by interleaving it with special lookahead tokens — <T> and </T> — that encapsulate future
information (see Figure 2). Our simple model agnostic data-rearrangement procedure results in
both improved task performance in domains otherwise difficult for models trained with next token
prediction, by decoupling the training objective from the underlying data-generating function the
model needs to learn.

1The name is inspired by the seer who predicts the future in the Harry Potter series.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1

2

6

7

8

9

3
4

5

10
11

12
13

One day, Lily was playing in the rain and she saw
a little frog. "Hello little frog! What are you doing
here?” Lily asked. The frog replied, "I am looking
for a friend to play with. Can you be my friend?”
Lily was happy to have a new friend. She said,
"Yes, I can be your friend. We can play in the rain
together.” So, the frog and Lily played in the rain,
making puddles and having fun. At the end of the
day, they said goodbye and promised to play
again the next day.

Path Planning Zebra Puzzles Story generation

Figure 1: The need for knowledge about the future are inherent to most tasks. In this work, we
explore well-known benchmarks that cleanly demonstrate the need for conditioning on future states,
and show how TRELAWNEY will enable improvement gains even if only used during training.
2 RELATED WORK

Pitfalls of Next token prediction. Bachmann & Nagarajan (2024) characterizes two failures that
occur in next-token prediction, those that emerge from (1) teacher-forced training, and (2) those
emerging at inference, where errors compound. Several prior works (Arora et al., 2022; Ross
et al., 2011) have focused on inference-time errors. Our work is more related to the training time
failure. During training, the maximum likelihood estimation (MLE) objective treats all tokens equally.
However, Bigelow et al. (2024) provides empirical evidence that tokens contribute unequally to
overall performance, suggesting that some tokens are inherently more critical than others. Relatedly,
Lin et al. (2024) proposes leveraging a stronger model to identify and prioritize these important
tokens for more efficient pretraining. Nye et al. (2021) introduces scratchpads to augment the model’s
input with intermediate reasoning steps for multi-step problem solving. Goyal et al. (2023) introduces
pause tokens at training and inference, as a mechanism for delayed next-token prediction, which
improves performance on language tasks.

Of particular importance is awareness of three pitfalls from Bachmann & Nagarajan (2024): (1)
Clever Hans Cheat. When training with teacher-forcing, the model is provided with ground truth
prefixes (e.g., vstart, v1, . . . , vi−1) that include parts of the answer. (2) Indecipherable Token Problem.
Because the later tokens can be easily predicted using the Clever Hans cheat, the crucial early decision
receives insufficient gradient signals. This early token becomes “indecipherable” since its correct
prediction relies on long-range planning that is effectively bypassed during teacher-forced training.
(3) Exposure bias. During inference, the model is likely to make a mistake because the model has not
learned the indecipherable token – the model was never trained to rely on its own predictions.

Non-causal sequence modeling. offers an alternative to the traditional autoregressive, left-to-right
generation constraint by allowing the model to use both past and future context (Gu et al., 2017;
Gong et al., 2022; Nolte et al., 2024). Bavarian et al. (2022) propose a “fill in the middle” strategy
which changes the data ordering, while T5 (Raffel et al., 2020) incorporates span corruption, σ-GPT
(Pannatier et al., 2024) uses on-the-fly order modulation, MLM-U (Kitouni et al., 2024) uses uniform
masking similar to the diffusion objective and XLNet (Yang et al., 2019) leverages permutation-based
training. Inference-time strategies, such as tree generation (Welleck et al., 2019), have also been
explored. Beyond language modeling, video prediction (Han et al., 2019; Vondrick et al., 2016)
similarly relies on non-causal prediction of future frames or states. In control tasks and world
modeling (LeCun, 2022; Hafner et al., 2023; Lin et al.), non-causal approaches provide a more
comprehensive representation of environmental dynamics, thereby enhancing long-term planning.

Controllable generation. Our work is also related to controllable generation, where the models are
conditioned to follow goals or guidelines provided through explicit instructions or auxiliary inputs.
Prominent methods include Keskar et al. (2019); Dathathri et al. (2019); Krause et al. (2020), and
prompting (Brown et al., 2020; Wei et al., 2022). In comparison, TRELAWNEY does not require a
curated dataset or additional classifiers and achieves fine-grained temporal control.

3 TRELAWNEY

Consider a sequence of tokens y = (y1, y2, . . . , yT), where each token yt belongs to a fixed vocab-
ulary V , and that y follows a distribution P (y). An auto-regressive model Pθ factorizes the joint
probability of y = (y1, y2...yT) as: Pθ(y) =

∏T
t=1 pθ

(
yt | y<t

)
where y<t = (y1, . . . , yt−1)

denotes all tokens before index t. In next token prediction, we maximize the likelihood of each token

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

B C D E F G

A B C D E F

B F’ G’ </T> C

A B <T> F’ G’ </T>

D E F

C D E

G

F

Standard training Trelawney

Regular Masked Future Special

IN
PU

T
O

UT
PU

T

Figure 2: TRELAWNEY. Inserting tokens from the future helps the model capture otherwise diffuse
long-distance relationships. The future, delimited with special tokens <T> and </T>, is incorporated
into the modified sequences, so the model is encouraged to learn what it will generate in the future
(i.e., F’G’) and the path leading there (i.e., CDE), making the actual future (i.e., FG) easier to predict.

under the ground truth context (teacher forcing) from the training corpus. At inference, the model
predicts the next token by sampling or selecting the most likely token, conditioned on an optional con-
text c (e.g., question). In the greedy setting, the next token ŷt is ŷt = argmaxyt

pθ(yt | ŷ<t, c) ,
where, ŷ<t denotes the model’s own generated tokens.

TRELAWNEY is a data augmentation scheme that modifies the given sequence y as follows: first
select a point d and insert a sequence of k conditioning tokens, z = (z1, z2, . . . , zk), delimited with
special tokens <T> and </T>. Concretely, we have the following augmentation:

(y1 y2 . . . yT) =⇒ (y1 y2 . . . yd <T> z </T> yd+1 . . . yT−1 yT).

The choices of d, k, and the content of z are flexible, and we present several strategies that can
alleviate the problems of existing models. This provides an easy mechanism for model designers and
practitioners to inject domain knowledge. However, domain knowledge is not necessary to see the
benefits of TRELAWNEY. Our experiments will show that even randomly chosen conditioning tokens
from the future are often sufficient to resolve the aforementioned issues of NTP.

3.1 ENCODING DECISION POINTS & FUTURES

Our strategies for choosing z are as follows:
Copying. We can directly copy a part of the sequence from a point after yd to between the special
tokens. For s such that d<s≤T−k, the conditioning tokens are the subsequence ys:s+k, resulting in

ỹcopy ≡ y1 y2 . . . yd <T> ys:s+k </T> yd+1 . . . yT−1 yT .

The choice of conditioning tokens can have a significant impact on the behavior of the resulting model.
For certain types of data, there are decision points where there are many different possible futures.
These points are good candidates for choosing d. At such points of high uncertainty, conditioning on
specific possible futures allows for more controllable long horizon planning. Analogously, we can
choose conditioning tokens to be future tokens that indicate which future is being generated. Our
experiments will outline ways z might be chosen (§4.1, §4.2, §4.3), but even random selection of d,
s, and k will yield benefits.

Positional information. In the previous approach, d and s can vary between different data points.
This can be problematic if two sequences have very different values of s− d. Intuitively, this makes
the modeling task harder because there may be conflicting information between different sequences.
For example, suppose y1 and y2 share the same prefixes, y1

:d = y2
:d but the relevant future tokens

are at locations with large differences. To mitigate this conflict, we introduce additional positional
information into the future tokens, ζ(k, z). For example, we can have:

ζ(k, z) = “I want the [k]th sentence from here to be z′′,

ỹcopy+pos ≡ y1 y2 . . . yd <T> ζ(k, z) </T> yd+1 . . . yd+k . . . yn.

Once again, the exact design of the positional information can be problem-dependent (§ 4.4), but
does not need to be highly accurate as long as it reduces potential conflict. Similarly, the copied text
z can be a copy of a sequence from the future, yd:d+k, but does not need to be identical, so long as it
contains relevant information (e.g., paraphrase). We express ζ in natural language because this allows
the model to integrate ζ with its pretraining knowledge and also lets the user specify different goals.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 DATASET CONSTRUCTION AND TRAINING OBJECTIVE

Dataset construction. We want to introduce additional capabilities via the augmentation schema
without hurting the traditional language modeling ability of the model. To accomplish this, we
train on both regular text and augmented text simultaneously. Specifically, given an original dataset
D = {y(i)}Ni=1 and an augmentation schema aug. We can construct a distribution for the original
dataset and a distribution for the augmented dataset:

D(s) =
1

N

N∑
i=1

I
{
s = y(i)

}
, Daug(s) =

1

N

N∑
i=1

I
{
s = aug(y(i))

}
.

For a probability p that controls how much of the training distribution comprises the original data,
the training distribution is the following mixture: D′(s) = pD(s) + (1− p)Daug(s).

Training and loss function. During training, the model parameters are optimized using a standard
cross-entropy loss with teacher forcing on D′. This allows us to take advantage of all existing
engineering optimizations for training language models. One caveat for training with the new dataset
D′ is that choosing the decision point and future tokens arbitrarily will result in a large portion of
sequences with the next token being </T> at arbitrary locations.

This would distract from the learning process and does not help learning the underlying distribution,
since the special tokens are synthetically introduced. Instead, we modify the regular cross-entropy
loss by masking the special start token, <T>:

L(D′) = −Ey∼D′

 1

|y|

|y|∑
j=1

I{yj ̸= <T>} logP (yj | y<j)

 .

Here, I{yj ̸= <T>} ensures no loss is computed for the prediction of the special token <T>. Note
that we do not exclude the loss on </T> because there is a utility to predicting the closing of the
future tokens, which we will elaborate on below.

3.3 INFERENCE

With TRELAWNEY, we can have two distinct modes of generation.

Standard autoregressive generation. The model generates sequences autoregressively without any
intervention, following any standard decoding algorithm.

<T>-generation. We aim to enable the model to explicitly consider future context at appropriate
decision points, to improve its ability to plan ahead. At each decision point yd in sequence generation,
we explicitly insert the special token <T>. Subsequently, (a) either the model generates the sequence
z autonomously, enabling it to create plausible future plans, or (b) incorporates a user-specified
sequence z, enhancing controllability. Recall that during the training process, we compute the loss on
the </T> token; this allows the model to generate future goals, which can then be used for conditional
generation. In contrast to existing methods such as Hu et al. (2025) that require specific decoding
mechanisms, our approach can use any off-the-shelf decoding algorithm.

4 EXPERIMENTS
We evaluate the effectiveness of TRELAWNEY in both fine-tuning and pretraining settings. Our
primary goal is to assess whether augmenting data with lookahead tokens improves a model’s
capacity for long-range planning, reasoning, and controllable generation.

Finetuning: We use four targeted benchmarks designed to isolate specific challenges. We begin
with synthetic tasks that offer a controlled environment for analysis and then proceed to a natural
language task to test for broader applicability.

• Star Graph (§ 4.1): A task designed to highlight a known failure mode of standard next-token
prediction in simple, long-range dependency settings.

• Algorithmic Reasoning (§ 4.2): A benchmark that requires multi-step, structured reasoning.
This tests whether future anchor points improve the model’s ability to follow complex procedures.

• Zebra Puzzles (§ 4.3): A constraint-satisfaction problem with long-range, cross-coupled clues
that require models to have global consistency and low cascading errors.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Story Generation (§ 4.4): A creative generation task that requires high-level planning and
fine-grained, user-directed control over the narrative structure.

These fine-tuning experiments are designed to answer the following questions:
• RQ1: Does training with TRELAWNEY improve performance on the downstream task during

standard autoregressive inference (i.e., without any lookahead tokens provided)?
• RQ2: Does providing a ground-truth or user-specified lookahead sequence z at inference time

improve task performance and grant users explicit control over the generation?

Pretraining: To evaluate the generalizability and broader utility of our approach, we apply
TRELAWNEY during the pretraining of a language model on a large-scale corpus. This setting
allows us to investigate whether the benefits observed in fine-tuning transfer to a general-purpose
foundation model. Specifically, we seek to answer:

• RQ3: How does pretraining with TRELAWNEY impact performance on standard language
modeling benchmarks and downstream tasks when using standard autoregressive generation?

• RQ4: After pretraining, does the model retain a general ability to perform lookahead-conditioned
generation on novel, unseen prompts and tasks?

4.1 PATH PLANNING

The star graph is a simple path-finding problem introduced by Bachmann & Nagarajan (2024), where,
given a directed graph G(d, n) with degree d and path length n, the objective is to find a path from
the start node to the goal node (Figure 3). Despite its simplicity, traditional next-token prediction
(NTP) struggles on this task. A key challenge is that the critical decision point occurs at v1, the first
node after vstart. This node is hard to predict because vstart has many outgoing edges. As discussed in
Section 2, teacher forcing can lead to undesirable behavior on this simple dataset.

Next Token Prediction
Adj(G) | 1, 5 = 1, 2, 3, 4, 5
Adj(G) | 1,13 = 1, 10, 11, 12, 13
Adj(G) | 1, 9 = 1, 6, 7, 8, 9

Trelawney - Fixed
Adj(G) | 1, 5 = 1, <T> 3, 4, </T> 2, 3, 4, 5
Adj(G) | 1,13 = 1, <T> 11, 12,</T> 10, 11, 12, 13
Adj(G) | 1, 9 = 1, <T> 7, 8, </T> 6, 7, 8, 9

Trelawney - Random
Adj(G) | 1, 5 = 1, <T> 3, 4, </T> 2, 3, 4, 5
Adj(G) | 1,13 = 1, <T> 11, </T> 10, 11, 12, 13
Adj(G) | 1, 9 = 1, <T> 8, </T> 6, 7, 8, 9

1

2

6

7

8

9

3
4

5

10
11

12
13

Star graph

Start

Path

Goal

Hard node

Figure 3: In the star graph, there are key “hard
nodes” that indicate the moment of branching,
after which the path and goal become clear.
Above is a visualization of the construction
and linearizations of D′ for the star graph.

Dataset and Augmentation Schema. To mitigate
these issues, we introduce a future subgoal z, as any
contiguous subsection of the path in [v2, vgoal). This
modification compels the model to generate a mean-
ingful intermediate plan rather than simply copying
the full ground truth prefix. As a result, the model
receives a stronger learning signal for critical early
decision-making. Each example y = (p, c) in the
dataset is a prefix and completion pair. The prefix
p is given by the adjacency list of G followed by
the vstart, vgoal =. The completion c is the path
vstart, v1, v2, ...vgoal, i.e., p ≡ Adj(G) | vstart, vgoal =
and c ≡ vstart, v1, v2, . . . , vgoal.

Our task augmentation schema y =⇒ ỹcopy is:

y ≡ Adj(G) | vstart, vgoal = vstart, v1, v2, . . . , vgoal,

ỹcopy ≡ Adj(G) | vstart, vgoal = vstart, <T> z,</T> v1, . . . , vgoal.

Choice of z. We vary z (a contiguous subsequence of future tokens) across experiments and
ablations (see Figure 3). Its role is to guide planning by indicating a subgoal on the path from vstart to
vgoal. We exclude v1 to avoid the Clever Hans cheat discussed above. We also exclude vgoal so that
the model learns the long-term dependency between start and goal without having direct access to the
goal token. An ablation study confirms that including vgoal does not yield further improvements.

Training. Data is generated programmatically via the official implementation. Although we use
pretrained models, each node remains a single token in the tokenizer. Models are trained on 200, 000
examples (§ A.3) with standard teacher forcing training and two augmentation schemas.

TRELAWNEY-fixed: In a single training run, the choice of z is fixed across all examples. Specifi-
cally, z is chosen as a contiguous sequence of 1 to 4 nodes with a fixed start and end point across all
sequences in the dataset (Figure 3).

TRELAWNEY-random: z can vary between examples. We randomly select any contiguous subse-
quence of the path after v1 to serve as z in ỹcopy. We do not include v1 (the hard node) as part of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Path planning G(*,*) Alg Reasoning scc-
G(2,5) G(5,5) G(20,5) G(2,10) scc-4 scc-5 scc-11 scc-12 scc-15

A
ut

oR
eg

. NTP 0.50 0.20 0.05 0.50 1.00 0.99 0.62 0.57 0.27
TRELAWNEY

– Fixed 1.00 1.00 1.00 0.52 – Rule-Based 1.00 1.00 0.73 0.62 0.31
– Random 1.00 1.00 1.00 0.50 – Random 1.00 0.978 0.718 0.706 0.476

G
en

. – Fixed 1.00 1.00 1.00 0.57 – Rule-Based 1.00 1.00 0.73 0.65 0.34
– Random 1.00 1.00 1.00 0.91 – Random 1.00 0.998 0.776 0.79 0.512

Sp
ec

. – Fixed 1.00 1.00 1.00 1.00 – Rule-Based 1.00 1.00 0.84 0.76 0.47
– Random 1.00 1.00 1.00 0.91 – Random 1.00 0.998 0.828 0.812 0.544

Table 1: TRELAWNEY shows strong performance in both Path Planning and Algorithmic Reasoning
across all problem complexities compared to NTP. This result is consistent across all 3 modes of
generation: simple autoregression (AutoReg), a model Generated goal (Gen), or a user Specified goal
(Spec). Notably, random augmentation often outperforms fixed or rule-based augmentation.
z (Figure 3). Without fixed positional information, the model learns to generate its own goals of
varying lengths. We observe that this variant is successful in solving longer planning problems.

Evaluation (§A.2.1). We evaluate the models on 5,000 held-out examples for each graph, reporting
the accuracy of the generated path compared to the ground truth.

Results. In Table 1, we see that all variants of TRELAWNEY outperform next token prediction.
Additionally, on shorter graphs G(2, 5), G(5, 5), G(10, 5), G(20, 5), training with TRELAWNEY
improves autoregressive generation at no additional cost, suggesting that the model implicitly learns
to plan better (possibly due to pre-caching or breadcrumbs proposed by Wu et al.) and can generate
long-term goals. For longer graphs G(2, 10), the TRELAWNEY-random variant can complete the
task when the model is used to generate its own subgoal sequence z, indicating that model-generated
goals can improve planning and do not require specialized knowledge for choosing z.

TRELAWNEY-random is notably more performant on graphs with longer paths when compared to
TRELAWNEY-fixed. Both variants of TRELAWNEY succeed when user-provided goal sequences
are provided, showing that explicit goal hints allow for better controllability. Further, ablations
conducted on larger models (See A.5) show that planning abilities improves with model capacity.
4.2 ALGORITHMIC REASONING
CLRS-Text (Markeeva et al., 2024) is a benchmark of algorithmic reasoning. The input is the algo-
rithm name, followed by a step-by-step reasoning trace and the final answer. We pick a representative
example from algorithms that require backtracking, i.e., tasks that benefit from information of future
states. We choose strongly-connected-components, a step-by-step sequential prediction task where
each step is longer than one token, and report results on it. The trace contains the execution of
Tarjan’s algorithm (Tarjan, 1972), which computes strongly connected components in linear time by
performing a depth-first search that tracks low-link values and uses a stack to detect cycles.

Dataset and Augmentation Schema. In each example y = (p, c) of the strongly-connected-
components subset, the prefix p is given by the adjacency matrix of the initial graph. The completion
c is graph execution traces of the algorithm followed by the final answer, i.e., p ≡ Adj(G) =
and c ≡ t1, t2 . . . tn|F where ti is the state of the graphical trace and F is the final answer. Our
augmentation schema y =⇒ ỹcopy for this task is as follows:

y ≡ algo: Adj(G) = t1, t2, . . . , tn|F,
ỹcopy ≡ algo: Adj(G) = t1,<T> z </T> t2, . . . , tn|F.

Unlike the star graph task — where failure typically occurs at a single critical decision point — the
algorithmic reasoning tasks involve multiple branching points where errors can accumulate. In the
strongly connected components subset, the state sequence t represents the graph execution trace and
comprises multiple tokens, each corresponding to a distinct graph state. By segmenting the trace into
these meaningful units, our augmentation schema is better able to capture intermediate reasoning
steps and guide the model’s planning process throughout the entire execution trace.

Choice of z. For simplicity, we fix the decision point yd at the second state in each trace. In
algorithmic reasoning tasks do not present a clear failure point — there can be many points in the
trace at which misprediction causes the entire generation to diverge. We only pick z as a complete

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

step ti in the trace and how i is determined for each variant. Gains here further demonstrate generality
as domain-specific knowledge is not required to see performance improvement.

Training. Data for all experiments are sub-selected from the original dataset. We train a single
model on problems of varying sizes. Since we do not test for length generalization, we only report
accuracies on sizes present in the training corpus (60K samples). We train two variants (§C.1):

TRELAWNEY-rule-based: For every example in Daug, z is chosen as the first change in the trace
provided. The position of z in the trace varies across graph sizes and graphs.

TRELAWNEY-random: z is chosen as a single random state in the trace provided. per graph length.
We evaluate the models similar to the star-graph setting, and report the accuracies of the final answer.

Evaluation. We evaluate on 500 examples (CLRS-Text-test)

Results In addition to strong results as task complexity increases, in App. Figure 7 we show
a trend that TRELAWNEY-random consistently improves on next token prediction when using
<T>-generation and, surprisingly, in standard autoregressive generation as well. TRELAWNEY-
rule-based although being chosen more strategically, performs worse than <T>-random.
4.3 ZEBRA PUZZLES

Zebra (Einstein) puzzles are a constraint satisfaction problem specified by clues over m entities and
n attributes (Figure 1); the goal is to deduce a unique grid assignment consistent with all clues. We
follow the symbolic formulation given by Shah et al. (2024).

Dataset and Augmentation Schema Each example y = (p, c) pairs a clue set p with a completion
trace c. Here, p is the puzzle’s set of clues defining the constraints, and c ≡ t1, . . . , tT | F , where
each step ti = (ri, ci, vi) assigns value vi to row ri and column ci; F is the final solution grid
satisfying all clues. Our augmentation y =⇒ ỹcopy for this task is similar to algorithmic reasoning :

y ≡ p = t1, t2, . . . , tn|F,
ỹcopy ≡ p = t1,<T> z </T> t2, . . . , tn|F.

A key difference is that this problem in NP-hard and the choice of which constraints to enforce first
can make the problem easier or harder to solve. In our experiments we use a solver generated ordering
for the trace, which is the simpler choice of steps.

Choice of z. As with 4.2, we fix the decision point yd at the second state in each trace. We pick z as
a set of continuous complete steps ti..ti + n in the trace. We randomize this choice to further test
generality, without domain specific knowledge.

Training. We train on 1,000,000 examples with class balanced samples of 62,500 for each of the 16
different classes of problems.

Evaluation. We evaluate on 800 examples with 50 examples each of puzzles of 16 complexities. We
report the accuracy on the entire puzzle.

Results. Autoregressive generation with TRELAWNEY-random (35.75%) outperforms next token
prediction (30.1%). With user specified goals, TRELAWNEY improves the final accuracy to 53.5%.
Interestingly, model generated goals are often hard to predict and show lower accuracy (9.75%),
indicating that for problems with large branching factor, with few high entropy points can still be
hard to model with only random slices of lookaheads. Remarkably, models trained with TRELAWNEY
solve problems of higher complexity (See 7) , which typically also have longer traces and may point
towards better long horizon planning.

4.4 NATURAL LANGUAGE PLANNING

Finally, we explore the open-ended language task of story generation. Here, random futures are
probably not of interest as the user will specify their target, but the model should still be required to
sample feasible conclusions. These properties make story generation inherently a planning task, as it
requires the model to set long-term goals, maintain consistency, and control narrative flow. Although
many narratives include complex elements like detailed backstories and conflict resolution, even
simpler story generation requires planning to produce coherent and logically structured output. We
evaluate our approach on the Tiny Stories dataset from Eldan & Li (2023). In this task, the aim is to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

<T> I want the [2]-nd sentence from
here to be: "Hello little frog! </T>

Once upon a time, there was a little girl named Lily. Lily loved to play in the rain.

<T> I want the [4]-th sentence from
here to be: "Hello little frog! </T>

<T> I want the [8]-th sentence from
here to be: "Hello little frog! </T>

One day, Lily was playing in the rain and she saw
a little frog. "Hello little frog! What are you doing
here?” Lily asked. The frog replied, "I am looking
for a friend to play with. Can you be my friend?”
Lily was happy to have a new friend. She said,
"Yes, I can be your friend. We can play in the rain
together.” So, the frog and Lily played in the rain,
making puddles and having fun. At the end of the
day, they said goodbye and promised to play
again the next day.

One day, Lily went outside to play. She saw a big
frog on a log. The frog looked sad. "Hello little
frog! Why are you sad?” Lily asked. The frog
replied, "I can't jump high. I need help.” Lily
thought for a moment and said, "I have an idea!
Let's play together and I will help you jump high.”
The frog was so happy and thanked Lily. They
jumped high and played all day. From that day
on, Lily and the frog became best friends.

One day, Lily went outside to play in the rain. She
jumped in the puddles and laughed. She loved
the feeling of the rain on her face. Suddenly, Lily
saw a frog in a puddle. The frog was small and
wet. Lily wanted to help the frog. She picked up
the frog and put it on a rock. ”Hello little frog!
You are so wet and cold," said Lily. The frog
smiled and thanked Lily for helping. From that day
on, Lily and the frog became good friends.

FU
TU

RE
GE

NE
RA

TI
ON

PROMPT

Figure 4: Illustration of TRELAWNEY’s effect during generation. The top is the prompt, and the
middle is different future tokens. The generations are coherent and read naturally.

generate coherent stories conditioned on specified goals (Fig. 4). This benchmark tests whether our
strategy of inserting future tokens can enhance planning in natural language generation.

Dataset and Augmentation Schema. Each example y = (p, c) is a prefix–completion pair extracted
from a story. We use a sentence parser to segment each story into individual sentences or phrases.
If a story is split into sentences s1, s2, . . . , sn, the prefix p is the beginning of the story (e.g., s1 s2)
and the completion c is the remainder (i.e., s3 s4 . . . sn).

Our augmentation schema y =⇒ ỹcopy+pos is defined as:

y ≡ s1 s2 . . . sn,

ỹcopy+pos ≡ s1 s2 . . . sd <T> ζ(k, sd+k) </T> sd+1 . . . sd+k . . . sn,

ζ(k, s) = “I want the [k]-th sentence from here to be [s] ′′.

0 20 40 60 80 100
Win Rate %

Tr
el

aw
ne

y
NT

P
Dr

aw
Goal conditioned win-rate

0 20 40 60 80 100
Win Rate %

Tr
el

aw
ne

y
NT

P
Dr

aw

Unconditional win-rate

Figure 5: Our story gener-
ation evaluation demonstrates
greatly improved performance
when goal-conditioned, without
hurting unconditional generation.

Choice of ζ(k, s). We choose decision points randomly at the
end of the k-th sentence in the document, as the position to to
insert ζ(k, s). The subgoal [s] is defined in ζ(d, s) as extracted
from the corresponding sentence sd+k.

Training. All models are trained on 300, 000 examples from the
Tiny Stories dataset for 1 epoch using the masked cross-entropy
loss specified in § 3.2 (See App. A.3).

Evaluation: We follow the evaluation protocol used by Hu et al.
(2025) and use GPT-4 to rate 100 generated stories from each
model. The stories are anonymized and shuffled to prevent any
information leakage about the author. Each evaluation is repeated
over 6 trials. We report the win rate with binomial confidence
intervals computed at a 95% significance level. (See Fig. 5, E.3)

RQ1: Does TRELAWNEY improve goal reaching ability i.e.,
resulting in more controllable generation? We compare the
completions from few-shot prompts on the baseline with those
obtained by explicitly specifying goals on TRELAWNEY-implicit.
Qualitatively, we observe that models trained with TRELAWNEY
generate stories that more effectively reach the intended long-term
goals (see Figure 2). Quantitatively, GPT-4 prefers TRELAWNEY
to few-shot prompts on next-token-prediction, 76.53% of the
time, with a confidence interval of [72.9%, 79.9%]. This result suggests that TRELAWNEY is much
more effective at controllable generation than few-shot and natural language prompting. We provide
more details and ablations of prompting variants used in E.2.

RQ2: Preference on stories generated by standard autoregressive generation. We compare the
standard autoregressive generations from models trained with TRELAWNEY and models trained with
NTP. Quantitatively, we observe that GPT-4 prefers autoregressive generations on TRELAWNEY to
next-token-prediction, 40.35% of the time, with a binomial confidence interval of [44.5%, 36.2%].
The justification for judgements appear to be preferences in ending of the stories, which qualitatively,
does not appear to affect factors such as coherence and creativity. We provide examples of GPT-4

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ArcEasy HellaSwag Lambada LogiQA2 MMLU PIQA SciQ WinoGrande Avg

NTP-124M 0.467 0.302 0.335 0.216 0.229 0.669 0.732 0.510 0.433
TRELAWNEY-124M 0.449 0.308 0.348 0.227 0.229 0.669 0.724 0.506 0.433

NTP-1B 0.572 0.413 0.509 0.220 0.234 0.728 0.837 0.549 0.508
TRELAWNEY-1B 0.578 0.415 0.505 0.220 0.249 0.729 0.830 0.549 0.509

Table 3: No performance decrease on zero-shot evaluation across standard downstream evaluations.

preference evaluations in E.2. We evaluate perplexity on Wikitext (Merity et al., 2016) to verify that
TRELAWNEY maintains language model performance, with results comparable to the baseline (§E.4).

4.5 PRETRAINING

Pretraining provides a more general setting to evaluate if TRELAWNEY’s benefits extend beyond
task-specific finetuning. Unlike synthetic tasks where clear decision points can be identified or
constrained natural language tasks, large-scale pretraining lacks obvious choice points. This makes it
a challenging, but important test of whether the augmentation can improve long-horizon planning
without degrading standard language modeling performance.
Dataset and Augmentation Schema: We pretrain decoder-only transformers on 10B tokens of
Fineweb (Penedo et al., 2024). Following the schema from § 4.4, we augment documents with
probability p = 0.5. For each augmented document, an insertion index is selected uniformly at
random every 35 sentences, and the future span z is chosen as a sentence sampled between 2 and 8
sentences ahead of the insertion point. 124M and 1B parameter models are trained with 10B tokens.

NTP TRELAWNEY Draw
A

ut
oR

eg
.

124M 0.461+0.50
−0.42 0.45+0.49

−0.40 0.088+0.11
−0.06

1B 0.436+0.47
−0.39 0.44+0.47

−0.39 0.123+0.15
−0.09

Fe
w

-s
ho

t

124M 0.085+0.11
−0.06 0.761+79

−72 0.153+0.18
−0.12

1B 0.036+0.05
−0.02 0.866+0.89

−0.83 0.096+0.12
−0.07

Table 2: Conditional generation without
task specific finetuning.

Evaluation. We evaluate two aspects of performance.
First, we evaluate standard autoregressive generation by
comparing zero-shot downstream accuracy across stan-
dard language modeling benchmarks - ArcEasy (Clark
et al., 2018), HellaSwag (Zellers et al., 2019), Lambada
(Paperno et al., 2016), LogiQA2(Liu et al., 2023), MMLU
(Hendrycks et al., 2020), PIQA (Bisk et al., 2020), SciQ
(Johannes Welbl, 2017) and WinoGrande (Sakaguchi et al.,
2021) and by reporting perplexity on datasets from the
Paloma (Magnusson et al., 2024) suite. This allows us to
test whether the augmentation preserves baseline language
modeling ability. Second, we evaluate conditional generation following the same protocol used in
§4.4, where explicit goals are provided during inference - See: Tab.2

Results. TRELAWNEY maintains language modeling quality, with perplexity comparable to next-
token prediction (See Table 10). On downstream tasks, performance is unchanged for 124M models
and shows marginal gains for 1B models. Conditional generation confirms that explicit goals can
guide long-horizon planning without reducing fluency. These preliminary findings suggest that the
augmentation scales naturally to pretraining and may yield larger benefits at a greater scale. Prior
work on multi-token prediction (Gloeckle et al., 2024) shows that some methods become more
effective as models grow. A more detailed analysis across domains is beyond the scope of this paper.
5 DISCUSSION

The machinery of autoregressive language modeling is flexible and highly efficient, but autoregressive
modeling is not the most natural choice for many sequence modeling tasks, as we discussed at
the beginning. By simply augmenting training with future states (and training appropriately as we
outline), models can overcome many of the known challenges of next-token prediction and even be
imbued with better controllable generation.

Our finetuning experiments are chosen to directly identify branching and planning complexity
and show the effectiveness of even the TRELAWNEY-random augmentation at improving models.
Further, our pretraining results indicate that the approach could extend to broader domains and be
integrated into standard pipelines without harming performance. Beyond simple copying behaviors,
our method opens the door to future research using reinforcement learning to control generation based
on the information enclosed by the special tokens. One remaining challenge is determining when
the model should leverage these capabilities; uncertainty metrics may offer a promising solution to
identify lookahead points.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and Jackie Chi Kit Cheung. Why exposure bias
matters: An imitation learning perspective of error accumulation in language generation. arXiv
preprint arXiv:2204.01171, 2022.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. arXiv preprint
arXiv:2403.06963, 2024.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. arXiv preprint
arXiv:2207.14255, 2022.

Eric Bigelow, Ari Holtzman, Hidenori Tanaka, and Tomer Ullman. Forking paths in neural text
generation. arXiv preprint arXiv:2412.07961, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. arXiv preprint arXiv:1912.02164, 2019.

Deepseek, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv
preprint arXiv:2412.19437, 2024.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent
english? arXiv preprint arXiv:2305.07759, 2023.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. arXiv preprint arXiv:2404.19737,
2024.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
sequence text generation with diffusion models. arXiv preprint arXiv:2210.08933, 2022.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens. arXiv preprint
arXiv:2310.02226, 2023.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. Non-autoregressive
neural machine translation. arXiv preprint arXiv:1711.02281, 2017.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Tengda Han, Weidi Xie, and Andrew Zisserman. Video representation learning by dense predictive
coding. In Proceedings of the IEEE/CVF international conference on computer vision workshops,
pp. 0–0, 2019.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Edward S. Hu, Kwangjun Ahn, Qinghua Liu, Haoran Xu, Manan Tomar, Ada Langford, Dinesh
Jayaraman, Alex Lamb, and John Langford. The belief state transformer. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=ThRMTCgpvo.

Matt Gardner Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions.
2017.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher.
Ctrl: A conditional transformer language model for controllable generation. arXiv preprint
arXiv:1909.05858, 2019.

Ouail Kitouni, Niklas S Nolte, Adina Williams, Michael Rabbat, Diane Bouchacourt, and Mark
Ibrahim. The factorization curse: Which tokens you predict underlie the reversal curse and more.
Advances in Neural Information Processing Systems, 37:112329–112355, 2024.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. Gedi: Generative discriminator guided sequence generation.
arXiv preprint arXiv:2009.06367, 2020.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62(1):1–62, 2022.

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, Pieter Abbeel, Dan Klein, and Anca Dragan.
Learning to model the world with language.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
Yang, Jian Jiao, Nan Duan, et al. Rho-1: Not all tokens are what you need. arXiv preprint
arXiv:2404.07965, 2024.

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji Zhou, and Yue Zhang. Evaluating the logical
reasoning ability of chatgpt and gpt-4, 2023.

Ian Magnusson, Akshita Bhagia, Valentin Hofmann, Luca Soldaini, Ananya Harsh Jha, Oyvind
Tafjord, Dustin Schwenk, Evan Walsh, Yanai Elazar, Kyle Lo, et al. Paloma: A benchmark
for evaluating language model fit. Advances in Neural Information Processing Systems, 37:
64338–64376, 2024.

Larisa Markeeva, Sean McLeish, Borja Ibarz, Wilfried Bounsi, Olga Kozlova, Alex Vitvitskyi, Charles
Blundell, Tom Goldstein, Avi Schwarzschild, and Petar Veličković. The clrs-text algorithmic
reasoning language benchmark. arXiv preprint arXiv:2406.04229, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Niklas Nolte, Ouail Kitouni, Adina Williams, Mike Rabbat, and Mark Ibrahim. Transformers can
navigate mazes with multi-step prediction. arXiv preprint arXiv:2412.05117, 2024.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. 2021.

Arnaud Pannatier, Evann Courdier, and François Fleuret. σ-gpts: A new approach to autoregressive
models. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 143–159. Springer, 2024.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The LAMBADA dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1525–1534,
Berlin, Germany, August 2016. Association for Computational Linguistics. URL http://www.
aclweb.org/anthology/P16-1144.

11

https://openreview.net/forum?id=ThRMTCgpvo
https://openreview.net/forum?id=ThRMTCgpvo
http://www.aclweb.org/anthology/P16-1144
http://www.aclweb.org/anthology/P16-1144

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at
scale. Advances in Neural Information Processing Systems, 37:30811–30849, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings,
2011.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Kulin Shah, Nishanth Dikkala, Xin Wang, and Rina Panigrahy. Causal language modeling can elicit
search and reasoning capabilities on logic puzzles. Advances in Neural Information Processing
Systems, 37:56674–56702, 2024.

Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing, 1(2):
146–160, 1972.

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Anticipating visual representations from
unlabeled video. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 98–106, 2016.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Sean Welleck, Kianté Brantley, Hal Daumé Iii, and Kyunghyun Cho. Non-monotonic sequential text
generation. In International Conference on Machine Learning, pp. 6716–6726. PMLR, 2019.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

Wilson Wu, John Xavier Morris, and Lionel Levine. Do language models plan ahead for future
tokens? In First Conference on Language Modeling.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

Code and datasets for all experiments are currently in preparation and will be released.

A.2 EVALUATION DETAILS

A.2.1 PATH PLANNING

For the next-token prediction baseline, we evaluate the model using standard autoregressive gen-
eration. For models trained with TRELAWNEY, We evaluate both standard autoregressive and
<T>-generation and compare to a next-token prediction baseline. In the conditional setting, the
model uses either model-generated z’s as goals or user-provided ground truth “future goals” as
hints. Standard autoregressive generation allows us to test whether TRELAWNEY improves regular
generation. <T>-generation demonstrates whether the model has learned to generate plausible future
goals and use these goals for better planning. By providing intermediate hints, we evaluate if the
model can leverage these cues to solve the larger planning problems.

A.3 IMPLEMENTATION DETAILS

Training details: All results are reported on the pretrained-Llama 3.2-1B model. We conducted
experiments by sweeping over learning rates of 1e-5, 2e-5, and 1e-6, using the AdamW optimizer
with a linear learning rate scheduler for one epoch, and reporting the best result. We use the masked
cross-entropy loss specified in § 3.2. We use p = 0.5 for all experiments. All experiments were
run on 4xA6000 GPUs or 4xL40S GPUs. We will also provide the full list of hyperparameters and
release code and datasets used.

A.4 ABLATIONS - AUTOREGRESSIVE ARCHITECTURES

In this section we also compare against other autoregressive architectures. We use mamba as a
representative model class for state space models. We observe that using TRELAWNEY-Random
improves on next token prediction on state space architectures as well.

Path planning G(*,*)
G(2,5) G(5,5) G(20,5) G(2,10)

A
R

. NTP 0.50 0.20 0.05 0.50
TRELAWNEY 1.0 0.998 0.049 0.50

G
en

. NTP – – – –
TRELAWNEY 1.0 0.997 0.048 0.511

Sp
ec

. NTP – – – –
TRELAWNEY 1.0 0.998 0.048 0.50

Table 4: Mamba-1.5B - Results on star graph

A.5 ABLATIONS - MODEL SIZING

To compare the effects of model size on TRELAWNEY-Random, we perform on 0.5B (Qwen2.5-0.5B),
1B (Llama-3.2-1B) and 3B (Llama-3.2-3B) models. We do not account for architectural differences
between the Qwen 0.5B model and the 1B and 3B Llama models.

The smallest model is unable to solve the longest graph that we test for G(2, 10), while the 1B model
is able to solve the graph when allowed to generate z. Finally, the 3B model, is able to solve the graph
with only autoregressive generation when trained with TRELAWNEY. This hints at TRELAWNEY
being more effective on larger models, potentially learning better representations, and being easily
scalable. Interestingly, larger models can solve the simplest graphs (G(2, 5), G(5, 5)) autoregressively.
We speculate that this could be due to pre-caching improving with scale as previously observed by
Wu et al.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Path planning G(*,*)
G(2,5) G(5,5) G(20,5) G(2,10)

A
R

. NTP 0.50 0.20 0.05 0.50
TRELAWNEY 1.0 1.0 0.874 0.533

G
en

. NTP – – – –
TRELAWNEY 1.0 1.0 0.847 0.514

Sp
ec

. NTP – – – –
TRELAWNEY 1.0 1.0 0.931 0.523

Table 5: Qwen/Qwen2.5-0.5B

Path planning G(*,*)
G(2,5) G(5,5) G(20,5) G(2,10)

A
R

. NTP 1.0 1.0 0.05 0.50
TRELAWNEY 1.0 1.0 1.0 1.0

G
en

. NTP – – – –
TRELAWNEY 1.0 1.0 1.0 1.0

Sp
ec

. NTP – – – –
TRELAWNEY 1.0 1.0 1.0 1.0

Table 6: meta-llama/Llama-3.2-3B

B STAR GRAPH

B.1 RESULTS - LLAMA-3.2-1B

G(2,5) G(5,5) G(10,5) G(20,5) G(2,10)
0

20

40

60

80

100

Ac
cu

ra
cy

 %

NTP-AR Trelawney-AR Trelawney-Model-Generated-Goal Trelawney-Specified-Goal

Star-Graph: Trelawney-Fixed

(a) Accuracies TRELAWNEY-Fixed

G(2,5) G(5,5) G(10,5) G(20,5) G(2,10)
0

20

40

60

80

100

Ac
cu

ra
cy

 %

NTP-AR Trelawney-AR Trelawney-Model-Generated-Goal Trelawney-Specified-Goal

Star-Graph: Trelawney-Random

(b) Accuracies TRELAWNEY-Random

Figure 6: Results on Star Graph.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C ALGORITHMIC REASONING

C.1 EXAMPLES

We provide examples of the data augmentation schema used in Daug for the strongly connected
components task.Looking at the examples in the data, we see many repeated states t in the trace. The
rule used to pick z was likely more beneficial, since the first change in the trace state contains more
information than a random trace state.

Strongly connected components - Examples

Prefix:
"strongly_connected_components:
A: [[0 0 0 0 0 0],

[0 0 0 0 0 0],
[0 0 0 0 1 0],
[0 0 0 1 1 0],
[0 0 1 1 1 0],
[0 0 0 0 0 1]],

initial_trace: [0 1 2 3 4 5] trace | scc_id:",

Completion:
"[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 2 5], [0 1 2 2 2 5],
[0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5],
[0 1 2 2 2 5], [0 1 2 2 2 5] | [0 1 2 2 2 5]"

Completion for TRELAWNEY–Rule-Based:
"[0 1 2 3 4 5], <T> [0 1 2 3 2 5], </T> [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5],
[0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5] | [0 1 2 2 2 5]"

Completion for TRELAWNEY–Random:
"[0 1 2 3 4 5], <T> [0 1 2 3 4 5] </T> [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 2 5],
[0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5],
[0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5] | [0 1 2 2 2 5]"

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.2 RESULTS - LLAMA-3.2-1B

scc-4 scc-5 scc-11 scc-12 scc-15
0

20

40

60

80

100

Ac
cu

ra
cy

 %

NTP-AR Trelawney-AR Trelawney-Model-Generated-Goal Trelawney-Specified-Goal

Strongly-connected-components: Trelawney-RuleBased

Figure 7: Accuracies - Strongly connected components TRELAWNEY-Rule-Based

scc-4 scc-5 scc-11 scc-12 scc-15
0

20

40

60

80

100

Ac
cu

ra
cy

 %

NTP-AR Trelawney-AR Trelawney-Model-Generated-Goal Trelawney-Specified-Goal

Strongly-connected-components: Trelawney-Random

Figure 8: Accuracies - Strongly connected components TRELAWNEY-Random

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D ZEBRA PUZZLES

(4,3) (4,4) (4,5) (4,6) (5,3) (5,4) (5,5) (5,6) (6,3) (6,4) (6,5) (6,6) (7,3) (7,4) (7,5) (7,6) Total

NTP 46/50 27/50 17/50 7/50 36/50 21/50 3/50 4/50 34/50 9/50 2/50 1/50 30/50 3/50 1/50 0/50 241/800
TRELAWNEY-autoreg. 48/50 37/50 16/50 8/50 33/50 27/50 5/50 3/50 34/50 18/50 6/50 3/50 34/50 10/50 4/50 0/50 286/800
TRELAWNEY-spec. 48/50 43/50 37/50 19/50 43/50 37/50 17/50 16/50 43/50 29/50 15/50 7/50 39/50 17/50 16/50 2/50 428/800
TRELAWNEY-gen. 25/50 7/50 4/50 1/50 16/50 3/50 1/50 1/50 8/50 2/50 0/50 0/50 7/50 2/50 0/50 0/50 77/800

Table 7: Number of m x n puzzles solved

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E STORY GENERATION

E.1 EXAMPLES

Once upon a time, there was a little girl
named Lily. Lily loved to play in the rain.
<T> I think [3] sentences away should
be:"Hello little frog! </T> [1] She would
jump in all the puddles and get very wet.
[2] One day, Lily saw a cute little frog
hopping around in the rain. [3] “Hello
little frog! [4] What are you doing in the
rain?" asked Lily. [5] “I like the rain
because it helps create more puddles
for me to swim in," [6] replied the frog.
[7] Lily smiled and said, [8] “That’s so
cool! [9] I love playing in the rain too.” …

Once upon a time, there was a little girl
named Lily. Lily loved to play in the rain.
She would jump in all the puddles and
get very wet. One day, Lily saw a cute
little frog hopping around in the rain.
“Hello little frog! What are you doing in
the rain?" asked Lily. “I like the rain
because it helps create more puddles
for me to swim in,” replied the frog. Lily
smiled and said, “That’s so cool! I love
playing in the rain too.” …

Once upon a time, there was a little girl
named Lily. Lily loved to play in the rain.
<T> I think [3] sentences away should
be:"Hello little frog! </T> She would
jump in all the puddles and get very wet.
One day, Lily saw a cute little frog
hopping around in the rain. “Hello little
frog! What are you doing in the rain?"
asked Lily. “I like the rain because it
helps create more puddles for me to
swim in,” replied the frog. Lily smiled
and said, “That’s so cool! I love playing
in the rain too.” …

Baseline Trelawney - Explicit Position Trelawney - Implicit Position

Figure 9: Construction of D′

E.2 GPT4-AS-JUDGE

Unconditional generation. System prompt used and an example

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Unconditional generation

System prompt: You are evaluating two story generation models. First, analyze the outputs
and note their properties. Then, make an argument for why one model is better than the other,
or state that both models perform similarly. Finally, Respond with WINNER: Story 1/2
(depending on which is better) or respond with DRAW if both are equal.

User
Story 1:
"Once upon a time, there was a naughty bee named Buzzy.Buzzy

loved to fly around the big tree and play with the other
bees.One day, Buzzy saw a big, juicy flower and wanted to
eat it.But the flower was too high up for Buzzy to
reach.\n\nBuzzy had an idea!He flew up to the top of the
tree and found a long stick.He used the stick to reach
the flower and eat it.Buzzy was very happy and flew back
down to tell the other bees about his adventure.\n\nThe
other bees were impressed with Buzzy's cleverness.They
all decided to try and reach the flower too.They worked
together and used their wings to fly up to the top of the
tree.Buzzy was proud of them and they all shared the
delicious flower together.From that day on, Buzzy and the
other bees were known as the best bee team in the
forest.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Story 2:
"Once upon a time, there was a naughty bee named Buzzy.Buzzy

loved to fly around the big tree and play with the other
bees.One day, Buzzy saw a big, juicy flower and wanted to
eat it.But the flower was too high up for Buzzy to
reach.\n\nBuzzy had an idea!He flew up to the top of the
tree and found a long stick.He used the stick to reach
the flower and eat it.Buzzy was very happy and flew back
down to tell the other bees about his adventure.\n\nThe
other bees were impressed with Buzzy's cleverness.They
all decided to try reaching the flower too.They worked
together and soon they were all able to reach the flower
and eat it.Buzzy was proud of his friends and they all
had a fun day playing together."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Judge
"Both stories have similar structures, characters, and

plotlines. They both follow the adventure of a bee named
Buzzy who uses a stick to reach a flower that was too
high up. The other bees in both stories are impressed by
Buzzy's cleverness and decide to try reaching the flower
too. \n\nHowever, there are subtle differences in the way
the stories are told. Story 1 ends with a stronger
conclusion, stating that Buzzy and the other bees were
known as the best bee team in the forest. This gives a
sense of accomplishment and closure to the story. On the
other hand, Story 2 ends on a more casual note, stating
that they all had a fun day playing together. \n\nIn
terms of language and style, Story 1 uses more
descriptive language and provides more details, such as
the bees using their wings to fly up to the top of the
tree. Story 2 is more straightforward and uses simpler
language.\n\nIn conclusion, while both stories are
similar, Story 1 is slightly better due to its stronger
conclusion and more descriptive language.\n\nWINNER:
Story 1"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→
19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Conditional generation : We assess if the model was able to reach the specified goal and if the
generated stories are coherent. We run two ablations of our method on the baseline trained model 1)
Few shot prompts with instructions in natural language - the baseline is unable to reach any of the
goals effectively, 2) Few shot prompts (8 examples) with goals specified as tags. Note: we do not use
special tokens, only patterns resembling tags. For fairness we report the version with tags in the main
paper.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Conditional generation

System prompt: You are evaluating two story generation models for goal reaching ability.
The goal is specified within <LOOKAHEAD> and </LOOKAHEAD>, analyze if the stories
reach the goal and Then, make an argument for why one model is better than the other, or state
that both models perform similarly. Finally, Respond with WINNER: Story 1/2 (depending
on which is better) or respond with DRAW if both are equal
User
Story 1:

"Once upon a time, there was a goat.The goat was outside and
it was very hot.<LOOKAHEAD> I think [4] sentences away
should be: The goat looked for another way inside but
there was none. </LOOKAHEAD>The goat was very thirsty and
it wanted to drink some water.\n\nThe goat saw a big tree
and it thought it would be a good place to drink
water.But when the goat got to the tree, it was too high
up and the goat couldn't reach the water.\n\nThe goat
looked for another way inside but there was none.So the
goat had to stay outside and wait for the water to come
down from the sky.\n\nFinally, the water came down and
the goat was very happy.It drank the water and felt much
better.The goat was very grateful for the water and it
thanked the sky for providing it.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Story 2:

"Once upon a time, there was a goat.The goat was outside and
it was very hot.<LOOKAHEAD> I think [4] sentences away
should be: The goat looked for another way inside but
there was none. </LOOKAHEAD>Then, the goat saw a big tree
and thought it would be a good place to hide.\n\nThe goat
went to the tree and climbed up.It was very hot inside
the tree, but the goat was happy to be safe.The goat
stayed in the tree for a long time, but it was not happy
because it was not able to get out.\n\nFinally, the sun
went down and the goat was able to get out of the
tree.The goat was very tired and hot, but it was happy to
be outside again.The goat learned that sometimes it is
not good to hide in a tree when it is too hot.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Judge
"Both stories have the same goal: \"The goat looked for

another way inside but there was none.\" Story 1 reaches
this goal perfectly, as the goat tries to find another
way to get water but fails, and the sentence is included
verbatim. Story 2, however, does not reach the goal. The
goat does look for a place to hide, but it successfully
finds one in the tree, and the sentence is not included
in the story.\n\nTherefore, Story 1 is better at reaching
the specified goal than Story 2. Story 1 not only
includes the goal sentence but also builds a coherent
narrative around it, while Story 2 deviates from the goal
and does not include the sentence.\n\nWINNER: Story 1"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E.3 LLM-JUDGE EVALUATIONS

We use GPT-4 as the judge to evaluate stories generated by both models:

Story Generation Baseline Ours Draw

Autoregressive 0.4526+0.494
−0.411 0.4035+0.445

−0.362 0.1439+0.175
−0.116

Few shot natural language v. TRELAWNEY 0.0000+0.006
−0.000 0.8860+0.911

−0.858 0.1139+0.142
−0.089

Few shot tags v. TRELAWNEY 0.1734+0.207
−0.144 0.7653+0.799

−0.729 0.0612+0.084
−0.043

Table 8: Tiny stories win rate with confidence intervals at 95th percentile

Failure modes: Often, both models are unable to reach the goal, then the judge outputs DRAW. In
some generations, we note that while the full sentence may not be copied verbatim, we still have
coherent generations. In implicit generations, the number of sentences away is less accurate than
explicitly specifying them.

E.4 PERPLEXITY

WikiText Perplexity on models trained with TRELAWNEY are comparable to models trained with
standard next token prediction, indicating no noticeable loss in text generation abilities.

Bits-per-byte (↓) Byte-Perplexity (↓) Word-Perplexity (↓)

Next-Token-Prediction 0.6958 1.6198 13.1865

TRELAWNEY 0.6975 1.6217 13.2669

Table 9: Perplexity metrics on wikitext

F PRETRAINING

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Model C4 Dolma FalconRW GAB M2D2-S M2D2-W Mano PTB R.Pajama Twitter Wikitext Avg

Word Perplexity
NTP-124M 67.487 230.671 83.168 14851.327 108.632 99.483 192.435 118.147 1699.826 10240.487 55.138 2522.436
TRELAWNEY-124M 67.822 207.702 81.025 13819.647 107.473 95.961 171.096 111.094 1449.914 10876.189 54.425 2458.332
NTP-1B 39.338 105.296 46.063 5300.855 59.847 51.554 103.952 56.299 585.386 5122.568 28.539 1045.429
TRELAWNEY-1B 39.507 108.858 45.852 5405.941 60.093 51.409 106.616 53.839 735.245 5321.214 28.541 1087.011

Byte Perplexity
NTP-124M 2.018 2.309 2.103 3.644 2.272 2.097 2.599 2.303 2.808 5.300 2.116 2.688
TRELAWNEY-124M 2.019 2.271 2.094 3.609 2.267 2.085 2.544 2.279 2.747 5.358 2.111 2.671
NTP-1B 1.844 2.047 2.047 3.172 2.047 1.886 2.324 2.023 2.422 4.677 1.871 2.383
TRELAWNEY-1B 1.845 2.057 1.903 3.181 2.048 1.886 2.335 2.008 2.500 4.709 1.871 2.395

Bits per Byte
NTP-124M 1.013 1.207 1.073 1.866 1.184 1.068 1.378 1.204 1.490 2.406 1.081 1.361
TRELAWNEY-124M 1.041 1.183 1.066 1.852 1.181 1.060 1.347 1.188 1.458 2.422 1.078 1.350
NTP-1B 0.883 1.033 0.929 1.666 1.033 0.916 1.217 1.017 1.276 2.226 0.904 1.191
TRELAWNEY-1B 0.884 1.041 0.928 1.669 1.034 0.915 1.223 1.005 1.322 2.235 0.904 1.196

Table 10: Perplexity and compression metrics across multiple datasets.

23

	Introduction
	Related work
	Trelawney
	Encoding Decision Points & Futures
	Dataset Construction and Training Objective
	Inference

	Experiments
	Path Planning
	Algorithmic Reasoning
	Zebra puzzles
	Natural Language Planning
	Pretraining

	Discussion
	Appendix
	Reproducibility statement
	Evaluation Details
	Path Planning

	Implementation details
	Ablations - Autoregressive architectures
	Ablations - Model sizing

	Star graph
	Results - Llama-3.2-1B

	Algorithmic reasoning
	Examples
	Results - Llama-3.2-1B

	Zebra Puzzles
	Story generation
	Examples
	GPT4-as-Judge
	LLM-Judge evaluations
	Perplexity

	Pretraining

