

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LOOKING BEYOND THE NEXT TOKEN

Anonymous authors

Paper under double-blind review

ABSTRACT

The most natural way to model language is rarely autoregressive. The structure of causal language model training assumes that each token can be predicted from prior context, a process that contrasts with humans' natural writing and reasoning process, which is often non-linear and hierarchical. While this mismatch is well-documented, the working assumption has been that architectural changes are needed to address it. We argue that by simply rearranging and modifying the training data, autoregressive modeling can more accurately imitate some aspects of the true data-generating process without any changes to the architecture or training infrastructure. We introduce TRELAWNEY, a purely data-centric method that modifies the training data by interleaving sequences with special lookahead tokens that contain future information. This simple data augmentation, requiring no changes to model architecture or training infrastructure, equips models to both condition on future goals and generate them. We present representative results on high-entropy tasks like path planning, algorithmic reasoning, zebra puzzles, and controllable generation, demonstrating improved performance on tasks with branching paths or long-horizon planning. Finally, our method enables the generation of plausible long-term goals at no additional cost, potentially opening doors to new capabilities beyond the current language modeling paradigm.

1 INTRODUCTION

Next-token prediction (NTP) is the primary objective for training sequence models. This objective involves a technique called *teacher forcing* (Williams & Zipser, 1989), where the model's predicted output at each step is replaced with the ground truth from the real dataset. One of teacher forcing's benefits is that it accelerates training by providing the model with the correct previous output, so the learning does not suffer from error accumulation, and the gradient update is more stable. Another crucial benefit is that it enables parallelism and hardware acceleration in training because the model can simultaneously process all time steps, rather than sequentially waiting for its own predictions. However, Bachmann & Nagarajan (2024) argue that models trained with teacher forcing often fail to learn long-range dependencies, latching onto local patterns and surface-level correlations instead.

Several recent methods have been proposed to alleviate the issue of teacher forcing. One popular approach is *multi-token prediction*, where the model learns to predict multiple tokens at the same time (Bachmann & Nagarajan, 2024; Gloeckle et al., 2024; Deepseek et al., 2024). Another family of methods involves modifying the training objective to predict both the next token for a prefix and the previous token for a suffix by modifying the model architecture (Hu et al., 2025). Most of these approaches either involve nontrivial modifications or make the learning process much harder by forcing the model to predict multiple tokens at the same time.

In this work, we investigate a data-centric approach to address these limitations. Instead of modifying the model architecture, our method TRELAWNEY¹ modifies the training data by introducing alternative factorizations that embed inductive biases directly. Concretely, we augment the training corpus by interleaving it with special lookahead tokens — $\langle \text{T} \rangle$ and $\langle / \text{T} \rangle$ — that encapsulate future information (see Figure 2).

Our simple model agnostic data-rearrangement procedure results in both improved task performance in domains otherwise difficult for models trained with next token prediction, by decoupling the training objective from the underlying data-generating function the model needs to learn.

¹The name is inspired by the seer who predicts the future in the Harry Potter series.

Story generation

One day, Lily was playing in the rain and she saw a little frog. **Hello little frog!** What are you doing here?" Lily asked. The frog replied, "I am looking for a friend to play with. Can you be my friend?" Lily was happy to have a new friend. She said, "Yes, I can be your friend. We can play in the rain together." So, the frog and Lily played in the rain, making puddles and having fun. At the end of the day, they said goodbye and promised to play again the next day.

065
066
067

Figure 1: The need for knowledge about the future are inherent to most tasks. In this work, we explore well-known benchmarks that cleanly demonstrate the need for conditioning on future states, and show how TRELAWNEY will enable improvement gains even if only used during training.

2 RELATED WORK

070
071
072
073
074
075
076
077
078
079
080
081
082
083

Pitfalls of Next token prediction. Bachmann & Nagarajan (2024) characterizes two failures that occur in next-token prediction, those that emerge from (1) teacher-forced training, and (2) those emerging at inference, where errors compound. Several prior works (Arora et al., 2022; Ross et al., 2011) have focused on inference-time errors. Our work is more related to the training time failure. During training, the maximum likelihood estimation (MLE) objective treats all tokens equally. However, Bigelow et al. (2024) provides empirical evidence that tokens contribute unequally to overall performance, suggesting that some tokens are inherently more critical than others. Relatedly, Lin et al. (2024) proposes leveraging a stronger model to identify and prioritize these important tokens for more efficient pretraining. Nye et al. (2021) introduces scratchpads to augment the model’s input with intermediate reasoning steps for multi-step problem solving. Quiet-STaR Zelikman et al. 2024 similarly encourages models to “think quietly” by sampling token-level internal rationales that explain future text and then optimizing their usefulness for next-token prediction with REINFORCE-style reinforcement learning objectives. Goyal et al. (2023) introduces pause tokens at training and inference, as a mechanism for delayed next-token prediction, which improves performance on language tasks.

084
085
086
087
088
089
090
091
092
093
094

Of particular importance is awareness of three pitfalls from Bachmann & Nagarajan (2024): (1) *Clever Hans Cheat*. When training with teacher-forcing, the model is provided with ground truth prefixes (e.g., $v_{\text{start}}, v_1, \dots, v_{i-1}$) that include parts of the answer. This extra information can enable the model to “cheat” by simply copying the easy tokens that follow without learning the true underlying plan. (2) *Indecipherable Token Problem*. Because the later tokens can be easily predicted using the Clever Hans cheat, the crucial early decision receives insufficient gradient signals. This early token becomes “indecipherable” since its correct prediction relies on long-range planning that is effectively bypassed during teacher-forced training. (3) *Exposure bias*. During inference, the model is likely to make a mistake because the model has not learned the indecipherable token – the model was never trained to rely on its own predictions. The mismatch between training (where the model always sees the correct previous tokens) and inference (where it must rely on its own predictions) can lead to a cascading sequence of errors.

095
096
097
098
099
100
101
102
103
104
105

Non-causal sequence modeling. offers an alternative to the traditional autoregressive, left-to-right generation constraint by allowing the model to use both past and future context (Gu et al., 2017; Gong et al., 2022; Nolte et al., 2024). Bavarian et al. (2022) propose a “fill in the middle” strategy which changes the data ordering, while T5 (Raffel et al., 2020) incorporates span corruption, σ -GPT (Pannatier et al., 2024) uses on-the-fly order modulation, MLM- \mathcal{U} (Kitouni et al., 2024) uses uniform masking similar to the diffusion objective and XLNet (Yang et al., 2019) leverages permutation-based training. Inference-time strategies, such as tree generation (Welleck et al., 2019), have also been explored. Beyond language modeling, video prediction (Han et al., 2019; Vondrick et al., 2016) similarly relies on non-causal prediction of future frames or states. In control tasks and world modeling (LeCun, 2022; Hafner et al., 2023; Lin et al.), non-causal approaches provide a more comprehensive representation of environmental dynamics, thereby enhancing long-term planning.

106
107

Controllable generation. Our work is also related to controllable generation, where the models are conditioned to follow goals or guidelines provided through explicit instructions or auxiliary inputs. Prominent methods include Keskar et al. (2019); Dathathri et al. (2019); Krause et al. (2020), and

Figure 2: TRELAWNEY. Inserting tokens from the future helps the model capture otherwise diffuse long-distance relationships. The future, delimited with special tokens $\langle T \rangle$ and $\langle /T \rangle$, is incorporated into the modified sequences, so the model is encouraged to learn what it will generate in the future (i.e., F' G') and the path leading there (i.e., CDE), making the actual future (i.e., FG) easier to predict.

prompting (Brown et al., 2020; Wei et al., 2022). In comparison, TRELAWNEY does not require a curated dataset or additional classifiers and achieves fine-grained temporal control.

3 TRELAWNEY

Consider a sequence of tokens $\mathbf{y} = (y_1, y_2, \dots, y_T)$, where each token y_t belongs to a fixed vocabulary V , and that \mathbf{y} follows a distribution $P(\mathbf{y})$. An auto-regressive model P_θ factorizes the joint probability of $\mathbf{y} = (y_1, y_2, \dots, y_T)$ as: $P_\theta(\mathbf{y}) = \prod_{t=1}^T p_\theta(y_t | \mathbf{y}_{<t})$ where $\mathbf{y}_{<t} = (y_1, \dots, y_{t-1})$ denotes all tokens before index t . In next token prediction, we maximize the likelihood of each token under the ground truth context (teacher forcing) from the training corpus. At inference, the model predicts the next token by sampling or selecting the most likely token, conditioned on an optional context \mathbf{c} (e.g., question). In the greedy setting, the next token \hat{y}_t is $\hat{y}_t = \arg \max_{y_t} p_\theta(y_t | \hat{\mathbf{y}}_{<t}, \mathbf{c})$, where, $\hat{\mathbf{y}}_{<t}$ denotes the model’s own generated tokens.

TRELAWNEY is a data augmentation scheme that modifies the given sequence \mathbf{y} as follows: first select a point d and insert a sequence of k *conditioning tokens*, $\mathbf{z} = (z_1, z_2, \dots, z_k)$, delimited with special tokens $\langle T \rangle$ and $\langle /T \rangle$. Concretely, we have the following augmentation:

$$(y_1 \ y_2 \ \dots \ y_T) \implies (y_1 \ y_2 \ \dots \ y_d \ \langle T \rangle \ \mathbf{z} \ \langle /T \rangle \ y_{d+1} \ \dots \ y_{T-1} \ y_T).$$

The choices of d , k , and the content of \mathbf{z} are flexible, and we present several strategies that can alleviate the problems of existing models. This provides an easy mechanism for model designers and practitioners to inject domain knowledge. However, domain knowledge is *not necessary* to see the benefits of TRELAWNEY. Our experiments will show that even *randomly chosen* conditioning tokens from the future are often sufficient to resolve the aforementioned issues of NTP.

3.1 ENCODING DECISION POINTS & FUTURES

Our strategies for choosing \mathbf{z} are as follows:

Copying. We can directly copy a part of the sequence from a point after y_d to between the special tokens. For s such that $d < s \leq T - k$, the conditioning tokens are the subsequence $\mathbf{y}_{s:s+k}$, resulting in

$$\tilde{\mathbf{y}}_{\text{copy}} \equiv y_1 \ y_2 \ \dots \ y_d \ \langle T \rangle \ \mathbf{y}_{s:s+k} \ \langle /T \rangle \ y_{d+1} \ \dots \ y_{T-1} \ y_T.$$

The choice of conditioning tokens can have a significant impact on the behavior of the resulting model. For certain types of data, there are *decision points* where there are many different possible futures. These points are good candidates for choosing d . At such points of high uncertainty, conditioning on specific possible futures allows for more controllable long horizon planning. Analogously, we can choose the conditioning tokens to be *future tokens* that indicate which future is being generated. Our experiments will outline ways z might be chosen (§4.1, §4.2, §4.3), but even random selection of d , s , and k will yield benefits.

Positional information. In the previous approach, d and s can vary between different data points. This can be problematic if two sequences have very different values of $s - d$. Intuitively, this makes the modeling task harder because there may be conflicting information between different sequences. For example, suppose \mathbf{y}^1 and \mathbf{y}^2 share the same prefixes, $\mathbf{y}^1_{:d} = \mathbf{y}^2_{:d}$ but the relevant future tokens

162 are at locations with large differences. To mitigate this conflict, we introduce additional *positional*
 163 *information* into the future tokens, $\zeta(k, \mathbf{z})$. For example, we can have:

$$164 \quad \zeta(k, \mathbf{z}) = \text{"I want the [k]th sentence from here to be } \mathbf{z}'' , \\ 165 \quad \tilde{\mathbf{y}}_{\text{copy+pos}} \equiv y_1 y_2 \dots y_d \text{ </T> } \zeta(k, \mathbf{z}) \text{ </T> } y_{d+1} \dots y_{d+k} \dots y_n .$$

167 Once again, the exact design of the positional information can be problem-dependent (§ 4.4), but
 168 does not need to be highly accurate as long as it reduces potential conflict. Similarly, the copied text
 169 \mathbf{z} can be a copy of a sequence from the future, $\mathbf{y}_{d:d+k}$, but does not need to be identical, so long as it
 170 contains relevant information (e.g., paraphrase). We express ζ in natural language because this allows
 171 the model to integrate ζ with its pretraining knowledge and also lets the user specify different goals.

172 3.2 DATASET CONSTRUCTION AND TRAINING OBJECTIVE

174 **Dataset construction.** We want to introduce additional capabilities via the augmentation schema
 175 without hurting the traditional language modeling ability of the model. To accomplish this, we
 176 train on both regular text and augmented text simultaneously. Specifically, given an original dataset
 177 $\mathcal{D} = \{\mathbf{y}^{(i)}\}_{i=1}^N$ and an augmentation schema aug . We can construct a distribution for the original
 178 dataset and a distribution for the augmented dataset:

$$179 \quad \mathcal{D}(\mathbf{s}) = \frac{1}{N} \sum_{i=1}^N \mathbb{I} \left\{ \mathbf{s} = \mathbf{y}^{(i)} \right\} , \quad \mathcal{D}_{\text{aug}}(\mathbf{s}) = \frac{1}{N} \sum_{i=1}^N \mathbb{I} \left\{ \mathbf{s} = \text{aug}(\mathbf{y}^{(i)}) \right\} .$$

182 For a probability p that controls how much of the training distribution comprises the original data,
 183 the training distribution is the following mixture: $\mathcal{D}'(\mathbf{s}) = p \mathcal{D}(\mathbf{s}) + (1 - p) \mathcal{D}_{\text{aug}}(\mathbf{s})$.

184 **Training and loss function.** During training, the model parameters are optimized using a standard
 185 cross-entropy loss with teacher forcing on \mathcal{D}' . This allows us to take advantage of all existing
 186 engineering optimizations for training language models. One caveat for training with the new dataset
 187 \mathcal{D}' is that choosing the decision point and future tokens arbitrarily will result in a large portion of
 188 sequences with the next token being </T> at arbitrary locations.

189 This would distract from the learning process and does not help learning the underlying distribution,
 190 since the special tokens are synthetically introduced. Instead, we modify the regular cross-entropy
 191 loss by masking the special start token, <T>:

$$192 \quad \mathcal{L}(\mathcal{D}') = -\mathbb{E}_{\mathbf{y} \sim \mathcal{D}'} \left[\frac{1}{|\mathbf{y}|} \sum_{j=1}^{|\mathbf{y}|} \mathbb{I}\{y_j \neq \text{<T>}\} \log P(y_j \mid \mathbf{y}_{<j}) \right].$$

196 Here, $\mathbb{I}\{y_j \neq \text{<T>}\}$ ensures no loss is computed for the prediction of the special token <T>. Note
 197 that we do not exclude the loss on </T> because there is a utility to predicting the closing of the
 198 future tokens, which we will elaborate on below.

199 3.3 INFERENCE

201 With TRELAWNEY, we can have two distinct modes of generation.

202 **Standard autoregressive generation.** The model generates sequences autoregressively without any
 203 intervention, following any standard decoding algorithm.

205 **<T>-generation.** We aim to enable the model to explicitly consider future context at appropriate
 206 decision points, to improve its ability to plan ahead. At each decision point y_d in sequence generation,
 207 we explicitly insert the special token <T>. Subsequently, **(a)** either the model generates the sequence
 208 \mathbf{z} autonomously, enabling it to create plausible future plans, or **(b)** incorporates a user-specified
 209 sequence \mathbf{z} , enhancing controllability. Recall that during the training process, we compute the loss on
 210 the </T> token; this allows the model to generate future goals, which can then be used for conditional
 211 generation. In contrast to existing methods such as Hu et al. (2025) that require specific decoding
 212 mechanisms, our approach can use any off-the-shelf decoding algorithm.

213 4 EXPERIMENTS

214 We evaluate the effectiveness of TRELAWNEY in both fine-tuning and pretraining settings. Our
 215 primary goal is to assess whether augmenting data with lookahead tokens improves a model’s
 capacity for long-range planning, reasoning, and controllable generation.

Finetuning: We use four targeted benchmarks designed to isolate specific challenges. We begin with synthetic tasks that offer a controlled environment for analysis and then proceed to a natural language task to test for broader applicability.

- **Star Graph (§ 4.1):** A task designed to highlight a known failure mode of standard next-token prediction in simple, long-range dependency settings.
- **Algorithmic Reasoning (§ 4.2):** A benchmark that requires multi-step, structured reasoning. This tests whether future anchor points improve the model’s ability to follow complex procedures.
- **Zebra Puzzles (§ 4.3):** A constraint-satisfaction problem with long-range, cross-coupled clues that require models to have global consistency and low cascading errors.
- **Story Generation (§ 4.4):** A creative generation task that requires high-level planning and fine-grained, user-directed control over the narrative structure.

These fine-tuning experiments are designed to answer the following questions:

- **RQ1:** Does training with TRELAWNEY improve performance on the downstream task during standard autoregressive inference (i.e., without any lookahead tokens provided)?
- **RQ2:** Does providing a ground-truth or user-specified lookahead sequence z at inference time improve task performance and grant users explicit control over the generation?

Pretraining: To evaluate the generalizability and broader utility of our approach, we apply TRELAWNEY during the pretraining of a language model on a large-scale corpus. This setting allows us to investigate whether the benefits observed in fine-tuning transfer to a general-purpose foundation model. Specifically, we seek to answer:

- **RQ3:** How does pretraining with TRELAWNEY impact performance on standard language modeling benchmarks and downstream tasks when using standard autoregressive generation?
- **RQ4:** After pretraining, does the model retain a general ability to perform lookahead-conditioned generation on novel, unseen prompts and tasks?

4.1 PATH PLANNING

The star graph is a simple path-finding problem introduced by Bachmann & Nagarajan (2024), where, given a directed graph $G(d, n)$ with degree d and path length n , the objective is to find a path from the start node to the goal node (Figure 3). Despite its simplicity, traditional next-token prediction (NTP) struggles on this task. A key challenge is that the critical decision point occurs at v_1 , the first node after v_{start} . This node is hard to predict because v_{start} has many outgoing edges. As discussed in Section 2, teacher forcing can lead to undesirable behavior on this simple dataset.

Dataset and Augmentation Schema. To mitigate these issues, we introduce a future subgoal z , as any contiguous subsequence of the path in $[v_2, v_{\text{goal}}]$. This modification compels the model to generate a meaningful intermediate plan rather than simply copying the full ground truth prefix. As a result, the model receives a stronger learning signal for critical early decision-making. Each example $y = (p, c)$ in the dataset is a prefix and completion pair. The prefix p is given by the adjacency list of G followed by the $v_{\text{start}}, v_{\text{goal}}$. The completion c is the path $v_{\text{start}}, v_1, v_2, \dots, v_{\text{goal}}$, i.e., $p \equiv \text{Adj}(G) \mid v_{\text{start}}, v_{\text{goal}} =$ and $c \equiv v_{\text{start}}, v_1, v_2, \dots, v_{\text{goal}}$.

Our task augmentation schema $y \implies \tilde{y}_{\text{copy}}$ is:

$$y \equiv \text{Adj}(G) \mid v_{\text{start}}, v_{\text{goal}} = v_{\text{start}}, v_1, v_2, \dots, v_{\text{goal}},$$

$$\tilde{y}_{\text{copy}} \equiv \text{Adj}(G) \mid v_{\text{start}}, v_{\text{goal}} = v_{\text{start}}, \langle \text{T} \rangle z, \langle / \text{T} \rangle v_1, \dots, v_{\text{goal}}.$$

Choice of z . We vary z (a contiguous subsequence of future tokens) across experiments and ablations (see Figure 3). Its role is to guide planning by indicating a subgoal on the path from v_{start} to v_{goal} . We exclude v_1 to avoid the Clever Hans cheat discussed above. We also exclude v_{goal} so that the model learns the long-term dependency between start and goal without having direct access to the goal token. An ablation study confirms that including v_{goal} does not yield further improvements.

Figure 3: In the star graph, there are key “hard nodes” that indicate the moment of branching, after which the path and goal become clear. Above is a visualization of the construction and linearizations of \mathcal{D}' for the star graph.

Path planning G(*,*)					Alg Reasoning scc-						
G(2,5) G(5,5) G(20,5) G(2,10)					scc-4	scc-5	scc-11	scc-12	scc-15		
AutoReg	NTP	0.50	0.20	0.05	0.50	1.00	0.99	0.62	0.57	0.27	
	TRELAWNEY										
	– Fixed	1.00	1.00	1.00	0.52	– Rule-Based	1.00	1.00	0.73	0.62	0.31
	– Random	1.00	1.00	1.00	0.50	– Random	1.00	0.978	0.718	0.706	0.476
Gen.	– Fixed	1.00	1.00	1.00	0.57	– Rule-Based	1.00	1.00	0.73	0.65	0.34
	– Random	1.00	1.00	1.00	0.91	– Random	1.00	0.998	0.776	0.79	0.512
Spec.	– Fixed	1.00	1.00	1.00	1.00	– Rule-Based	1.00	1.00	0.84	0.76	0.47
	– Random	1.00	1.00	1.00	0.91	– Random	1.00	0.998	0.828	0.812	0.544

Table 1: TRELAWNEY shows strong performance in both Path Planning and Algorithmic Reasoning across all problem complexities compared to NTP. This result is consistent across all 3 modes of generation: simple autoregression (AutoReg), a model Generated goal (Gen), or a user Specified goal (Spec). Notably, random augmentation often outperforms fixed or rule-based augmentation.

Training. Data is generated programmatically via the official implementation. Although we use pretrained models, each node remains a single token in the tokenizer. Models are trained on 200,000 examples (§ A.3) with standard teacher forcing training and two augmentation schemas.

TRELAWNEY-fixed: In a single training run, the choice of \mathbf{z} is fixed across all examples. Specifically, \mathbf{z} is chosen as a contiguous sequence of 1 to 4 nodes with a fixed start and end point across all sequences in the dataset (Figure 3).

TRELAWNEY-random: \mathbf{z} can vary between examples. We randomly select any contiguous subsequence of the path after v_1 to serve as \mathbf{z} in $\tilde{\mathbf{y}}_{\text{copy}}$. We do not include v_1 (the hard node) as part of \mathbf{z} (Figure 3). Without fixed positional information, the model learns to generate its own goals of varying lengths. We observe that this variant is successful in solving longer planning problems.

Evaluation (§A.2.1). We evaluate the models on 5,000 held-out examples for each graph, reporting the accuracy of the generated path compared to the ground truth.

Results. In Table 1, we see that all variants of TRELAWNEY outperform next token prediction. Additionally, on shorter graphs $G(2, 5)$, $G(5, 5)$, $G(10, 5)$, $G(20, 5)$, training with TRELAWNEY improves autoregressive generation at no additional cost, suggesting that the model implicitly learns to plan better (possibly due to pre-caching or breadcrumbs proposed by Wu et al.) and can generate long-term goals. For longer graphs $G(2, 10)$, the TRELAWNEY-random variant can complete the task when the model is used to generate its own subgoal sequence \mathbf{z} , indicating that model-generated goals can improve planning and do not require specialized knowledge for choosing \mathbf{z} .

TRELAWNEY-random is notably more performant on graphs with longer paths when compared to TRELAWNEY-fixed. Both variants of TRELAWNEY succeed when user-provided goal sequences are provided, showing that explicit goal hints allow for better controllability. Further, ablations conducted on larger models (See A.5) show that planning abilities improves with model capacity.

4.2 ALGORITHMIC REASONING

CLRS-Text (Markeeva et al., 2024) is a benchmark of algorithmic reasoning. The input is the algorithm name, followed by a step-by-step reasoning trace and the final answer. We pick a representative example from algorithms that require backtracking, i.e., tasks that benefit from information of future states. We choose strongly-connected-components, a step-by-step sequential prediction task where each step is longer than one token, and report results on it. The trace contains the execution of Tarjan’s algorithm (Tarjan, 1972), which computes strongly connected components in linear time by performing a depth-first search that tracks low-link values and uses a stack to detect cycles.

Dataset and Augmentation Schema. In each example $\mathbf{y} = (\mathbf{p}, \mathbf{c})$ of the strongly-connected-components subset, the prefix \mathbf{p} is given by the adjacency matrix of the initial graph. The completion \mathbf{c} is graph execution traces of the algorithm followed by the final answer, i.e., $\mathbf{p} \equiv \text{Adj}(G) =$ and $\mathbf{c} \equiv t_1, t_2 \dots t_n | F$ where t_i is the state of the graphical trace and F is the final answer. Our augmentation schema $\mathbf{y} \Rightarrow \tilde{\mathbf{y}}_{\text{copy}}$ for this task is as follows:

$$\mathbf{y} \equiv \text{algo: } \text{Adj}(G) = t_1, t_2, \dots, t_n | F,$$

$$\tilde{\mathbf{y}}_{\text{copy}} \equiv \text{algo: } \text{Adj}(G) = t_1, \langle \text{T} \rangle \mathbf{z} \langle / \text{T} \rangle t_2, \dots, t_n | F.$$

324 Unlike the star graph task — where failure typically occurs at a single critical decision point — the
 325 algorithmic reasoning tasks involve multiple branching points where errors can accumulate. In the
 326 strongly connected components subset, the state sequence t represents the graph execution trace and
 327 comprises multiple tokens, each corresponding to a distinct graph state. By segmenting the trace into
 328 these meaningful units, our augmentation schema is better able to capture intermediate reasoning
 329 steps and guide the model’s planning process throughout the entire execution trace.

330 **Choice of z .** For simplicity, we fix the decision point y_d at the second state in each trace. In
 331 algorithmic reasoning tasks do not present a clear failure point — there can be many points in the
 332 trace at which misprediction causes the entire generation to diverge. We only pick z as a complete
 333 step t_i in the trace and how i is determined for each variant. Gains here further demonstrate generality
 334 as domain-specific knowledge is not required to see performance improvement.

335 **Training.** Data for all experiments are sub-selected from the original dataset. We train a single
 336 model on problems of varying sizes. Since we do not test for length generalization, we only report
 337 accuracies on sizes present in the training corpus (60K samples). We train two variants (§C.1):

338 **TRELAWNEY-rule-based:** For every example in \mathcal{D}_{aug} , z is chosen as the first change in the trace
 339 provided. The position of z in the trace varies across graph sizes and graphs.

340 **TRELAWNEY-random:** z is chosen as a single random state in the trace provided. per graph length.
 341 We evaluate the models similar to the star-graph setting, and report the accuracies of the final answer.

342 **Evaluation.** We evaluate on 500 examples (CLRS-Text-test)

343 **Results** In addition to strong results as task complexity increases, in App. Figure 7 we show
 344 a trend that TRELAWNEY-random consistently improves on next token prediction when using
 345 $\langle T \rangle$ -generation and, surprisingly, in standard autoregressive generation as well. TRELAWNEY-
 346 rule-based although being chosen more strategically, performs worse than $\langle T \rangle$ -random.

347 4.3 ZEBRA PUZZLES

348 Zebra (Einstein) puzzles are a constraint satisfaction problem specified by clues over m entities (e.g.,
 349 houses) and n attributes (e.g., color, nationality, pet), (Figure 1); the goal is to deduce a unique grid
 350 assignment that satisfies all clues. We follow the symbolic formulation given by Shah et al. (2024).

351 **Dataset and Augmentation Schema** Each example $y = (p, c)$ pairs a clue set p with a completion
 352 trace c . Here, p is the puzzle’s set of clues defining the constraints, and $c \equiv t_1, \dots, t_T \mid F$, where
 353 each step $t_i = (r_i, c_i, v_i)$ assigns value v_i to row r_i and column c_i ; F is the final solution grid
 354 satisfying all clues. Our augmentation $y \Rightarrow \tilde{y}_{\text{copy}}$ for this task is similar to algorithmic reasoning :

$$355 \quad y \equiv p = t_1, t_2, \dots, t_n \mid F, \\ 356 \quad \tilde{y}_{\text{copy}} \equiv p = t_1, \langle T \rangle z \langle /T \rangle t_2, \dots, t_n \mid F.$$

357 A key difference is that this problem is NP-hard and the choice of which constraints to enforce first
 358 can make the problem easier or harder to solve. In our experiments we use a solver generated ordering
 359 for the trace, which is the simpler choice of steps.

360 **Choice of z .** As with 4.2, we fix the decision point y_d at the second state in each trace. We pick z as
 361 a set of continuous complete steps $t_i..t_i + n$ in the trace. We randomize this choice to further test
 362 generality, without domain specific knowledge.

363 **Training.** We train on 1,000,000 examples with class balanced samples of 62,500 for each of the 16
 364 different classes of problems.

365 **Evaluation.** We evaluate on 800 examples with 50 examples each of puzzles of 16 complexities. We
 366 report the accuracy on the entire puzzle.

367 **Results.** Autoregressive generation with TRELAWNEY-random (35.75%) outperforms next token
 368 prediction (30.1%). With user specified goals, TRELAWNEY improves the final accuracy to 53.5%
 369 (See Fig. 10). Interestingly, model generated goals are often hard to predict and show lower accuracy
 370 (9.75%), indicating that for problems with large branching factor, with few high entropy points can
 371 still be hard to model with only random slices of lookaheads. Remarkably, models trained with
 372 TRELAWNEY solve problems of higher complexity (See Tab. 6, Fig. 9), which typically also have
 373 longer traces and may point towards better long horizon planning.

378	PROMPT Once upon a time, there was a little girl named Lily. Lily loved to play in the rain.			
379				
380	FUTURE	<T> I want the [2]-nd sentence from here to be: "Hello little frog! </T>	<T> I want the [4]-th sentence from here to be: "Hello little frog! </T>	<T> I want the [8]-th sentence from here to be: "Hello little frog! </T>
381	GENERATION	One day, Lily was playing in the rain and she saw a little frog. "Hello little frog! What are you doing here?" Lily asked. The frog replied, "I am looking for a friend to play with. Can you be my friend?" Lily was happy to have a new friend. She said, "Yes, I can be your friend. We can play in the rain together." So, the frog and Lily played in the rain, making puddles and having fun. At the end of the day, they said goodbye and promised to play again the next day.	One day, Lily went outside to play. She saw a big frog on a log. The frog looked sad. "Hello little frog! Why are you sad?" Lily asked. The frog replied, "I can't jump high. I need help." Lily thought for a moment and said, "I have an idea! Let's play together and I will help you jump high." The frog was so happy and thanked Lily. They jumped high and played all day. From that day on, Lily and the frog became best friends.	One day, Lily went outside to play in the rain. She jumped in the puddles and laughed. She loved the feeling of the rain on her face. Suddenly, Lily saw a frog in a puddle. The frog was small and wet. Lily wanted to help the frog. She picked up the frog and put it on a rock. "Hello little frog! You are so wet and cold," said Lily. The frog smiled and thanked Lily for helping. From that day on, Lily and the frog became good friends.

Figure 4: Illustration of TRELAWNEY’s effect during generation. The top is the prompt, and the middle is different future tokens. The generations are coherent and read naturally.

4.4 NATURAL LANGUAGE PLANNING

Finally, we explore the open-ended language task of story generation. Here, random futures are probably not of interest as the user will specify their target, but the model should still be required to sample feasible conclusions. These properties make story generation inherently a planning task, as it requires the model to set long-term goals, maintain consistency, and control narrative flow. Although many narratives include complex elements like detailed backstories and conflict resolution, even simpler story generation requires planning to produce coherent and logically structured output. We evaluate our approach on the **Tiny Stories** dataset from [Elan & Li \(2023\)](#). In this task, the aim is to generate coherent stories conditioned on specified goals (Fig. 4). This benchmark tests whether our strategy of inserting future tokens can enhance planning in natural language generation.

Dataset and Augmentation Schema. Each example $\mathbf{y} = (\mathbf{p}, \mathbf{c})$ is a prefix–completion pair extracted from a story. We use a sentence parser to segment each story into individual sentences or phrases. If a story is split into sentences s_1, s_2, \dots, s_n , the prefix \mathbf{p} is the beginning of the story (e.g., $s_1 s_2$) and the completion \mathbf{c} is the remainder (i.e., $s_3 s_4 \dots s_n$).

Our augmentation schema $\mathbf{y} \Rightarrow \tilde{\mathbf{y}}_{\text{copy+pos}}$ is defined as:

$$\begin{aligned} \mathbf{y} &\equiv s_1 s_2 \dots s_n, \\ \tilde{\mathbf{y}}_{\text{copy+pos}} &\equiv s_1 s_2 \dots s_d <T> \zeta(k, s_{d+k}) </T> s_{d+1} \dots s_{d+k} \dots s_n, \\ \zeta(k, s) &= \text{"I want the [k]-th sentence from here to be [s] "}. \end{aligned}$$

Choice of $\zeta(k, s)$. We choose decision points randomly at the end of the k -th sentence in the document, as the position to insert $\zeta(k, s)$. The subgoal $[s]$ is defined in $\zeta(d, s)$ as extracted from the corresponding sentence s_{d+k} .

Training. All models are trained on 300,000 examples from the Tiny Stories dataset for 1 epoch using the masked cross-entropy loss specified in § 3.2 (See App. A.3).

Evaluation: We follow the evaluation protocol used by [Hu et al. \(2025\)](#) and use GPT-4 to rate 100 generated stories from each model. The stories are anonymized and shuffled to prevent any information leakage about the author. Each evaluation is repeated over 6 trials. We report the win rate with binomial confidence intervals computed at a 95% significance level. (See Fig. 5, E.3)

RQ1: Does TRELAWNEY improve goal reaching ability i.e., resulting in more controllable generation? We compare the completions from few-shot prompts on the baseline with those obtained by explicitly specifying goals on TRELAWNEY-implicit. Qualitatively, we observe that models trained with TRELAWNEY generate stories that more effectively reach the intended long-term goals (see Figure 2). Quantitatively, GPT-4 prefers TRELAWNEY to few-shot prompts on next-token-prediction, 76.53% of the time, with a confidence interval of [72.9%, 79.9%]. This result suggests that TRELAWNEY is much

Figure 5: Our story generation evaluation demonstrates greatly improved performance when goal-conditioned, without hurting unconditional generation.

	ArcEasy	HellaSwag	Lambada	LogiQA2	MMLU	PIQA	SciQ	WinoGrande	Avg
NTP-124M	0.467	0.302	0.335	0.216	0.229	0.669	0.732	0.510	0.433
TRELAWNEY-124M	0.449	0.308	0.348	0.227	0.229	0.669	0.724	0.506	0.433
NTP-1B	0.572	0.413	0.509	0.220	0.234	0.728	0.837	0.549	0.508
TRELAWNEY-1B	0.578	0.415	0.505	0.220	0.249	0.729	0.830	0.549	0.509

Table 2: No performance decrease on zero-shot evaluation across standard downstream evaluations.

more effective at controllable generation than few-shot and natural language prompting. We provide more details and ablations of prompting variants used in E.2.

RQ2: Preference on stories generated by standard autoregressive generation. We compare the standard autoregressive generations from models trained with TRELAWNEY and models trained with NTP. Quantitatively, we observe that GPT-4 prefers autoregressive generations on TRELAWNEY to next-token-prediction, 40.35% of the time, with a binomial confidence interval of [44.5%, 36.2%]. The justification for judgements appear to be preferences in ending of the stories, which qualitatively, does not appear to affect factors such as coherence and creativity. We provide examples of GPT-4 preference evaluations in E.2. We evaluate perplexity on Wikitext (Merity et al., 2016) to verify that TRELAWNEY maintains language model performance, with results comparable to the baseline (§E.4).

4.5 PRETRAINING

Pretraining provides a more general setting to evaluate if TRELAWNEY’s benefits extend beyond task-specific finetuning. Unlike synthetic tasks where clear decision points can be identified or constrained natural language tasks, large-scale pretraining lacks obvious choice points. This makes it a challenging, but important test of whether the augmentation can improve long-horizon planning without degrading standard language modeling performance.

Dataset and Augmentation Schema: We pretrain decoder-only transformers on 10B tokens of Fineweb (Penedo et al., 2024). Following the schema from § 4.4, we augment documents with probability $p = 0.5$. For each augmented document, an insertion index is selected uniformly at random every 35 sentences, and the future span \mathbf{z} is chosen as a sentence sampled between 2 and 8 sentences ahead of the insertion point. 124M and 1B parameter models are trained with 10B tokens.

Evaluation. We evaluate two aspects of performance. First, we evaluate standard autoregressive generation by comparing zero-shot downstream accuracy across standard language modeling benchmarks - ArcEasy (Clark et al., 2018), HellaSwag (Zellers et al., 2019), Lambada (Paperno et al., 2016), LogiQA2(Liu et al., 2023), MMLU (Hendrycks et al., 2020), PIQA (Bisk et al., 2020), SciQ (Johannes Welbl, 2017) and WinoGrande (Sakaguchi et al., 2021) and by reporting perplexity on datasets from the Paloma (Magnusson et al., 2024) suite. This allows us to test whether the augmentation preserves baseline language modeling ability. Second, we evaluate conditional generation following the same protocol used in §4.4, where explicit goals are provided during inference (F.2)

Results. TRELAWNEY maintains language modeling quality, with perplexity comparable to next-token prediction (See Table 9). On downstream tasks, performance is unchanged for 124M models and shows marginal gains for 1B models. Conditional generation confirms that explicit goals can guide long-horizon planning without reducing fluency. These preliminary findings suggest that the augmentation scales naturally to pretraining and may yield larger benefits at a greater scale. Prior work on multi-token prediction (Gloeckle et al., 2024) shows that some methods become more effective as models grow. A more detailed analysis across domains is beyond the scope of this paper.

5 DISCUSSION

The machinery of autoregressive language modeling is flexible and highly efficient, but autoregressive modeling is not the most natural choice for many sequence modeling tasks, as we discussed at the beginning. By simply augmenting training with future states (and training appropriately as we outline), models can overcome many of the known challenges of next-token prediction and even be imbued with better controllable generation.

Our finetuning experiments are chosen to directly identify branching and planning complexity and show the effectiveness of even the TRELAWNEY-random augmentation at improving models. Further, our pretraining results indicate that the approach could extend to broader domains and be integrated into standard pipelines without harming performance. Beyond simple copying behaviors, our method opens the door to future research using reinforcement learning to control generation based

486 on the information enclosed by the special tokens. One remaining challenge is determining when
487 the model should leverage these capabilities; uncertainty metrics may offer a promising solution to
488 identify lookahead points.
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and Jackie Chi Kit Cheung. Why exposure bias
543 matters: An imitation learning perspective of error accumulation in language generation. *arXiv*
544 *preprint arXiv:2204.01171*, 2022.

545 Gregor Bachmann and Vaishnav Nagarajan. The pitfalls of next-token prediction. *arXiv preprint*
546 *arXiv:2403.06963*, 2024.

547 Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
548 Tworek, and Mark Chen. Efficient training of language models to fill in the middle. *arXiv preprint*
549 *arXiv:2207.14255*, 2022.

550 Eric Bigelow, Ari Holtzman, Hidenori Tanaka, and Tomer Ullman. Forking paths in neural text
551 generation. *arXiv preprint arXiv:2412.07961*, 2024.

552 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
553 commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
554 volume 34, pp. 7432–7439, 2020.

555 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
556 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
557 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

558 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
559 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
560 *arXiv:1803.05457v1*, 2018.

561 Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
562 Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
563 generation. *arXiv preprint arXiv:1912.02164*, 2019.

564 Deepseek, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
565 Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv*
566 *preprint arXiv:2412.19437*, 2024.

567 Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent
568 english? *arXiv preprint arXiv:2305.07759*, 2023.

569 Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
570 Better & faster large language models via multi-token prediction. *arXiv preprint arXiv:2404.19737*,
571 2024.

572 Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
573 sequence text generation with diffusion models. *arXiv preprint arXiv:2210.08933*, 2022.

574 Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnav
575 Nagarajan. Think before you speak: Training language models with pause tokens. *arXiv preprint*
576 *arXiv:2310.02226*, 2023.

577 Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. Non-autoregressive
578 neural machine translation. *arXiv preprint arXiv:1711.02281*, 2017.

579 Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
580 through world models. *arXiv preprint arXiv:2301.04104*, 2023.

581 Tengda Han, Weidi Xie, and Andrew Zisserman. Video representation learning by dense predictive
582 coding. In *Proceedings of the IEEE/CVF international conference on computer vision workshops*,
583 pp. 0–0, 2019.

584 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
585 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint*
586 *arXiv:2009.03300*, 2020.

594 Edward S. Hu, Kwangjun Ahn, Qinghua Liu, Haoran Xu, Manan Tomar, Ada Langford, Dinesh
 595 Jayaraman, Alex Lamb, and John Langford. The belief state transformer. In *The Thirteenth*
 596 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=ThRMTcgpvo>.

597

598 Matt Gardner, Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions.
 599 2017.

600

601 Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher.
 602 Ctrl: A conditional transformer language model for controllable generation. *arXiv preprint*
 603 *arXiv:1909.05858*, 2019.

604

605 Ouail Kitouni, Niklas S Nolte, Adina Williams, Michael Rabbat, Diane Bouchacourt, and Mark
 606 Ibrahim. The factorization curse: Which tokens you predict underlie the reversal curse and more.
 607 *Advances in Neural Information Processing Systems*, 37:112329–112355, 2024.

608

609 Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
 610 Socher, and Nazneen Fatema Rajani. Gedi: Generative discriminator guided sequence generation.
 611 *arXiv preprint arXiv:2009.06367*, 2020.

612

613 Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. *Open
 Review*, 62(1):1–62, 2022.

614

615 Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, Pieter Abbeel, Dan Klein, and Anca Dragan.
 616 Learning to model the world with language.

617

618 Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
 619 Yang, Jian Jiao, Nan Duan, et al. Rho-1: Not all tokens are what you need. *arXiv preprint*
 620 *arXiv:2404.07965*, 2024.

621

622 Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji Zhou, and Yue Zhang. Evaluating the logical
 623 reasoning ability of chatgpt and gpt-4, 2023.

624

625 Ian Magnusson, Akshita Bhagia, Valentin Hofmann, Luca Soldaini, Ananya Harsh Jha, Oyvind
 626 Tafjord, Dustin Schwenk, Evan Walsh, Yanai Elazar, Kyle Lo, et al. Paloma: A benchmark
 627 for evaluating language model fit. *Advances in Neural Information Processing Systems*, 37:
 628 64338–64376, 2024.

629

630 Larisa Markeeva, Sean McLeish, Borja Ibarz, Wilfried Bounsi, Olga Kozlova, Alex Vitvitskyi, Charles
 631 Blundell, Tom Goldstein, Avi Schwarzschild, and Petar Veličković. The clrs-text algorithmic
 632 reasoning language benchmark. *arXiv preprint arXiv:2406.04229*, 2024.

633

634 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 635 models, 2016.

636

637 Niklas Nolte, Ouail Kitouni, Adina Williams, Mike Rabbat, and Mark Ibrahim. Transformers can
 638 navigate mazes with multi-step prediction. *arXiv preprint arXiv:2412.05117*, 2024.

639

640 Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
 641 Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
 642 Scratchpads for intermediate computation with language models. 2021.

643

644 Arnaud Pannatier, Evann Courdier, and François Fleuret. σ -gpts: A new approach to autoregressive
 645 models. In *Joint European Conference on Machine Learning and Knowledge Discovery in
 646 Databases*, pp. 143–159. Springer, 2024.

647

648 Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
 649 Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The LAMBADA dataset:
 650 Word prediction requiring a broad discourse context. In *Proceedings of the 54th Annual Meeting
 651 of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1525–1534,
 652 Berlin, Germany, August 2016. Association for Computational Linguistics. URL <http://www.aclweb.org/anthology/P16-1144>.

648 Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
 649 Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at
 650 scale. *Advances in Neural Information Processing Systems*, 37:30811–30849, 2024.

651

652 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 653 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 654 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

655 Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
 656 prediction to no-regret online learning. In *Proceedings of the fourteenth international conference*
 657 *on artificial intelligence and statistics*, pp. 627–635. JMLR Workshop and Conference Proceedings,
 658 2011.

659

660 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 661 adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106,
 662 2021.

663

664 Kulin Shah, Nishanth Dikkala, Xin Wang, and Rina Panigrahy. Causal language modeling can elicit
 665 search and reasoning capabilities on logic puzzles. *Advances in Neural Information Processing
 Systems*, 37:56674–56702, 2024.

666

667 Robert Tarjan. Depth-first search and linear graph algorithms. *SIAM journal on computing*, 1(2):
 668 146–160, 1972.

669

670 Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Anticipating visual representations from
 671 unlabeled video. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 pp. 98–106, 2016.

672

673 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 674 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 675 neural information processing systems*, 35:24824–24837, 2022.

676

677 Sean Welleck, Kianté Brantley, Hal Daumé Iii, and Kyunghyun Cho. Non-monotonic sequential text
 678 generation. In *International Conference on Machine Learning*, pp. 6716–6726. PMLR, 2019.

679

680 Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
 681 neural networks. *Neural computation*, 1(2):270–280, 1989.

682

683 Wilson Wu, John Xavier Morris, and Lionel Levine. Do language models plan ahead for future
 684 tokens? In *First Conference on Language Modeling*.

685

686 Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
 687 Xlnet: Generalized autoregressive pretraining for language understanding. *Advances in neural
 688 information processing systems*, 32, 2019.

689

690 Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
 691 Quiet-star: Language models can teach themselves to think before speaking. *arXiv preprint
 692 arXiv:2403.09629*, 2024.

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**
703704 **A.1 REPRODUCIBILITY STATEMENT**
705706 Code and datasets for all experiments are currently in preparation and will be released.
707708 **A.2 EVALUATION DETAILS**
709710 **A.2.1 PATH PLANNING**
711712 For the next-token prediction baseline, we evaluate the model using standard autoregressive
713 generation. For models trained with TRELAWNEY, We evaluate both standard autoregressive and
714 $\langle T \rangle$ -generation and compare to a next-token prediction baseline. In the conditional setting, the
715 model uses either model-generated z 's as goals or user-provided ground truth “future goals” as
716 hints. Standard autoregressive generation allows us to test whether TRELAWNEY improves regular
717 generation. $\langle T \rangle$ -generation demonstrates whether the model has learned to generate plausible future
718 goals and use these goals for better planning. By providing intermediate hints, we evaluate if the
719 model can leverage these cues to solve the larger planning problems.
720721 **A.3 IMPLEMENTATION DETAILS**
722723 **Training details:** All results are reported on the pretrained-Llama 3.2-1B model. We conducted
724 experiments by sweeping over learning rates of $1e-5$, $2e-5$, and $1e-6$, using the AdamW optimizer
725 with a linear learning rate scheduler for one epoch, and reporting the best result. We use the masked
726 cross-entropy loss specified in § 3.2. We use $p = 0.5$ for all experiments. All experiments were
727 run on 4xA6000 GPUs or 4xL40S GPUs. We will also provide the full list of hyperparameters and
728 release code and datasets used.
729730 **A.4 ABLATIONS - AUTOREGRESSIVE ARCHITECTURES**
731732 In this section we also compare against other autoregressive architectures. We use mamba as a
733 representative model class for state space models. We observe that using TRELAWNEY-Random
734 improves on next token prediction on state space architectures as well.
735

		Path planning $G^{(*,*)}$			
		$G(2,5)$	$G(5,5)$	$G(20,5)$	$G(2,10)$
AR.	NTP	0.50	0.20	0.05	0.50
	TRELAWNEY	1.0	0.998	0.049	0.50
Gen.	NTP	—	—	—	—
	TRELAWNEY	1.0	0.997	0.048	0.511
Spec.	NTP	—	—	—	—
	TRELAWNEY	1.0	0.998	0.048	0.50

736 Table 3: Mamba-1.5B - Results on star graph
737738 **A.5 ABLATIONS - MODEL SIZING**
739740 To compare the effects of model size on TRELAWNEY-Random, we perform on 0.5B (Qwen2.5-0.5B),
741 1B (Llama-3.2-1B) and 3B (Llama-3.2-3B) models. We do not account for architectural differences
742 between the Qwen 0.5B model and the 1B and 3B Llama models.
743744 The smallest model is unable to solve the longest graph that we test for $G(2, 10)$, while the 1B model
745 is able to solve the graph when allowed to generate z . Finally, the 3B model, is able to solve the graph
746 with only autoregressive generation when trained with TRELAWNEY. This hints at TRELAWNEY
747 being more effective on larger models, potentially learning better representations, and being easily
748 scalable. Interestingly, larger models can solve the simplest graphs ($G(2, 5)$, $G(5, 5)$) autoregressively.
749 We speculate that this could be due to pre-caching improving with scale as previously observed by
750 [Wu et al.](#)
751

Path planning G(*,*)					
	G(2,5)	G(5,5)	G(20,5)	G(2,10)	
AR.	NTP	0.50	0.20	0.05	0.50
	TRELAWNEY	1.0	1.0	<u>0.874</u>	0.533
Gen.	NTP	—	—	—	—
	TRELAWNEY	1.0	1.0	0.847	0.514
Spec.	NTP	—	—	—	—
	TRELAWNEY	1.0	1.0	0.931	0.523

Table 4: Qwen/Qwen2.5-0.5B

Path planning G(*,*)					
	G(2,5)	G(5,5)	G(20,5)	G(2,10)	
AR.	NTP	1.0	1.0	<u>0.05</u>	0.50
	TRELAWNEY	1.0	1.0	1.0	1.0
Gen.	NTP	—	—	—	—
	TRELAWNEY	1.0	1.0	1.0	1.0
Spec.	NTP	—	—	—	—
	TRELAWNEY	1.0	1.0	1.0	1.0

Table 5: meta-llama/Llama-3.2-3B

B STAR GRAPH

B.1 RESULTS - LLAMA-3.2-1B

(a) Accuracies TRELAWNEY-Fixed

(b) Accuracies TRELAWNEY-Random

Figure 6: Results on Star Graph.

810 C ALGORITHMIC REASONING
811812 C.1 EXAMPLES
813814 We provide examples of the data augmentation schema used in D_{aug} for the strongly connected
815 components task. Looking at the examples in the data, we see many repeated states t in the trace. The
816 rule used to pick \mathbf{z} was likely more beneficial, since the first change in the trace state contains more
817 information than a random trace state.

818

819 Strongly connected components - Examples
820821 **Prefix:**822 "strongly_connected_components:
823 A: [[0 0 0 0 0 0],
824 [0 0 0 0 0 0],
825 [0 0 0 0 1 0],
826 [0 0 0 1 1 0],
827 [0 0 1 1 1 0],
828 [0 0 0 0 0 1]],
829 initial_trace: [0 1 2 3 4 5] trace | scc_id:",
830831 **Completion:**832 "[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
833 [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
834 [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
835 [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
836 [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
837 [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
838 [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5],
839 [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5]
840 | [0 1 2 2 2 5]"841 **Completion for TRELAWNEY–Rule-Based:**842 "[0 1 2 3 4 5], <T> [0 1 2 3 2 5], </T> [0 1 2 3 4 5],
843 [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
844 [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
845 [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
846 [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
847 [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
848 [0 1 2 3 4 5], [0 1 2 3 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5],
849 [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5],
850 | [0 1 2 2 2 5]"851 **Completion for TRELAWNEY–Random:**852 "[0 1 2 3 4 5], <T> [0 1 2 3 4 5] </T> [0 1 2 3 4 5],
853 [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
854 [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
855 [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
856 [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
857 [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
858 [0 1 2 3 4 5], [0 1 2 3 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5],
859 [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5],
860 | [0 1 2 2 2 5]"

861

862

863

864 C.2 RESULTS - LLAMA-3 2-1B

Figure 7: Accuracies - Strongly connected components TRELAWNEY-Rule-Based

Figure 8: Accuracies - Strongly connected components TRELAWNEY-Random

918 D ZEBRA PUZZLES
919
920
921

Table 6: Zebra puzzles accuracy by problem complexity. Number of m x n puzzles solved, where m is number of attributes and n is the number of constraints. Trelawney autoregressive outperforms next token prediction on more complex tasks. More constraints often lead to longer traces and chains, which alludes to better long horizon planning. On model generated future goals, our method does not show significant performance gains - by nature of the constraint satisfaction problem, it is inherently hard to find good future branching points.

Figure 10: Our zebra puzzle evaluation demonstrates improved performance on autoregressive generation. On model generated future goals, our method does not show significant performance gains - by nature of the constraint satisfaction problem, it is inherently hard to find good future branching points.

E STORY GENERATION

E.1 EXAMPLES

Once upon a time, there was a little girl named Lily. Lily loved to play in the rain. She would jump in all the puddles and get very wet. One day, Lily saw a cute little frog hopping around in the rain. "Hello little frog! What are you doing in the rain?" asked Lily. "I like the rain because it helps create more puddles for me to swim in," replied the frog. Lily smiled and said, "That's so cool! I love playing in the rain too." ...

Once upon a time, there was a little girl named Lily. Lily loved to play in the rain. <T> I think [3] sentences away should be: "Hello little frog! </T> [1] She would jump in all the puddles and get very wet. [2] One day, Lily saw a cute little frog hopping around in the rain. [3] "Hello little frog! [4] What are you doing in the rain?" asked Lily. [5] "I like the rain because it helps create more puddles for me to swim in," [6] replied the frog. [7] Lily smiled and said, [8] "That's so cool! [9] I love playing in the rain too." ...

Once upon a time, there was a little girl named Lily. Lily loved to play in the rain. <T> I think [3] sentences away should be: "Hello little frog! </T> She would jump in all the puddles and get very wet. One day, Lily saw a cute little frog hopping around in the rain. "Hello little frog! What are you doing in the rain?" asked Lily. "I like the rain because it helps create more puddles for me to swim in," replied the frog. Lily smiled and said, "That's so cool! I love playing in the rain too." ...

Baseline

Trelawney - Explicit Position

Trelawney - Implicit Position

Figure 11: Construction of \mathcal{D}'

E.2 GPT4-AS-JUDGE

Unconditional generation. System prompt used and an example

1026
1027

Unconditional generation

1028
1029
1030
1031

System prompt: You are evaluating two story generation models. First, analyze the outputs and note their properties. Then, make an argument for why one model is better than the other, or state that both models perform similarly. Finally, Respond with WINNER: Story 1/2 (depending on which is better) or respond with DRAW if both are equal.

1032
1033

User

1034

Story 1:

1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

"Once upon a time, there was a naughty bee named Buzzy. Buzzy
 → loved to fly around the big tree and play with the other
 → bees. One day, Buzzy saw a big, juicy flower and wanted to
 → eat it. But the flower was too high up for Buzzy to
 → reach. \n\nBuzzy had an idea! He flew up to the top of the
 → tree and found a long stick. He used the stick to reach
 → the flower and eat it. Buzzy was very happy and flew back
 → down to tell the other bees about his adventure. \n\nThe
 → other bees were impressed with Buzzy's cleverness. They
 → all decided to try and reach the flower too. They worked
 → together and used their wings to fly up to the top of the
 → tree. Buzzy was proud of them and they all shared the
 → delicious flower together. From that day on, Buzzy and the
 → other bees were known as the best bee team in the
 → forest.",

1049

Story 2:

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062

"Once upon a time, there was a naughty bee named Buzzy. Buzzy
 → loved to fly around the big tree and play with the other
 → bees. One day, Buzzy saw a big, juicy flower and wanted to
 → eat it. But the flower was too high up for Buzzy to
 → reach. \n\nBuzzy had an idea! He flew up to the top of the
 → tree and found a long stick. He used the stick to reach
 → the flower and eat it. Buzzy was very happy and flew back
 → down to tell the other bees about his adventure. \n\nThe
 → other bees were impressed with Buzzy's cleverness. They
 → all decided to try reaching the flower too. They worked
 → together and soon they were all able to reach the flower
 → and eat it. Buzzy was proud of his friends and they all
 → had a fun day playing together."

1063

Judge

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

"Both stories have similar structures, characters, and
 → plotlines. They both follow the adventure of a bee named
 → Buzzy who uses a stick to reach a flower that was too
 → high up. The other bees in both stories are impressed by
 → Buzzy's cleverness and decide to try reaching the flower
 → too. \n\nHowever, there are subtle differences in the way
 → the stories are told. Story 1 ends with a stronger
 → conclusion, stating that Buzzy and the other bees were
 → known as the best bee team in the forest. This gives a
 → sense of accomplishment and closure to the story. On the
 → other hand, Story 2 ends on a more casual note, stating
 → that they all had a fun day playing together. \n\nIn
 → terms of language and style, Story 1 uses more
 → descriptive language and provides more details, such as
 → the bees using their wings to fly up to the top of the
 → tree. Story 2 is more straightforward and uses simpler
 → language. \n\nIn conclusion, while both stories are
 → similar, Story 1 is slightly better due to its stronger
 → conclusion and more descriptive language. \n\nWINNER:
 → Story 1"

1080
1081 **Conditional generation** : We assess if the model was able to reach the specified goal and if the
1082 generated stories are coherent. We run two ablations of our method on the baseline trained model 1)
1083 Few shot prompts with instructions in natural language - the baseline is unable to reach any of the
1084 goals effectively, 2) Few shot prompts (8 examples) with goals specified as tags. Note: we do not use
1085 special tokens, only patterns resembling tags. For fairness we report the version with tags in the main
1086 paper.
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
1135

Conditional generation

1136
1137
1138
1139
1140
1141

System prompt: You are evaluating two story generation models for goal reaching ability. The goal is specified within <LOOKAHEAD> and </LOOKAHEAD>, analyze if the stories reach the goal and Then, make an argument for why one model is better than the other, or state that both models perform similarly. Finally, Respond with WINNER: Story 1/2 (depending on which is better) or respond with DRAW if both are equal

User1142
1143

Story 1:

1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157

"Once upon a time, there was a goat. The goat was outside and
 ↳ it was very hot. <LOOKAHEAD> I think [4] sentences away
 ↳ should be: The goat looked for another way inside but
 ↳ there was none. </LOOKAHEAD> The goat was very thirsty and
 ↳ it wanted to drink some water. \n\nThe goat saw a big tree
 ↳ and it thought it would be a good place to drink
 ↳ water. But when the goat got to the tree, it was too high
 ↳ up and the goat couldn't reach the water. \n\nThe goat
 ↳ looked for another way inside but there was none. So the
 ↳ goat had to stay outside and wait for the water to come
 ↳ down from the sky. \n\nFinally, the water came down and
 ↳ the goat was very happy. It drank the water and felt much
 ↳ better. The goat was very grateful for the water and it
 ↳ thanked the sky for providing it.",

1158
1159

Story 2:

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

"Once upon a time, there was a goat. The goat was outside and
 ↳ it was very hot. <LOOKAHEAD> I think [4] sentences away
 ↳ should be: The goat looked for another way inside but
 ↳ there was none. </LOOKAHEAD> Then, the goat saw a big tree
 ↳ and thought it would be a good place to hide. \n\nThe goat
 ↳ went to the tree and climbed up. It was very hot inside
 ↳ the tree, but the goat was happy to be safe. The goat
 ↳ stayed in the tree for a long time, but it was not happy
 ↳ because it was not able to get out. \n\nFinally, the sun
 ↳ went down and the goat was able to get out of the
 ↳ tree. The goat was very tired and hot, but it was happy to
 ↳ be outside again. The goat learned that sometimes it is
 ↳ not good to hide in a tree when it is too hot.",

1173
1174**Judge**1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

"Both stories have the same goal: \"The goat looked for
 ↳ another way inside but there was none.\" Story 1 reaches
 ↳ this goal perfectly, as the goat tries to find another
 ↳ way to get water but fails, and the sentence is included
 ↳ verbatim. Story 2, however, does not reach the goal. The
 ↳ goat does look for a place to hide, but it successfully
 ↳ finds one in the tree, and the sentence is not included
 ↳ in the story. \n\nTherefore, Story 1 is better at reaching
 ↳ the specified goal than Story 2. Story 1 not only
 ↳ includes the goal sentence but also builds a coherent
 ↳ narrative around it, while Story 2 deviates from the goal
 ↳ and does not include the sentence. \n\nWINNER: Story 1"

1188 E.3 LLM-JUDGE EVALUATIONS
11891190 We use GPT-4 as the judge to evaluate stories generated by both models:
1191

Story Generation	Baseline	Ours	Draw
Autoregressive	$0.4526^{+0.494}_{-0.411}$	$0.4035^{+0.445}_{-0.362}$	$0.1439^{+0.175}_{-0.116}$
Few shot natural language v. TRELAWNEY	$0.0000^{+0.006}_{-0.000}$	$0.8860^{+0.911}_{-0.858}$	$0.1139^{+0.142}_{-0.089}$
Few shot tags v. TRELAWNEY	$0.1734^{+0.207}_{-0.144}$	$0.7653^{+0.799}_{-0.729}$	$0.0612^{+0.084}_{-0.043}$

1200 Table 7: Tiny stories win rate with confidence intervals at 95th percentile
12011202 **Failure modes:** Often, both models are unable to reach the goal, then the judge outputs DRAW. In
1203 some generations, we note that while the full sentence may not be copied verbatim, we still have
1204 coherent generations. In implicit generations, the number of sentences away is less accurate than
1205 explicitly specifying them.
12061207 E.4 PERPLEXITY
12081209 WikiText Perplexity on models trained with TRELAWNEY are comparable to models trained with
1210 standard next token prediction, indicating no noticeable loss in text generation abilities.
1211

	Bits-per-byte (↓)	Byte-Perplexity (↓)	Word-Perplexity (↓)
Next-Token-Prediction	0.6958	1.6198	13.1865
TRELAWNEY	0.6975	1.6217	13.2669

1218 Table 8: Perplexity metrics on wikitext
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 **F PRETRAINING**
 1243

1244 **F.1 PERPLEXITY EVALUATIONS**
 1245

Model	C4	Dolma	FalconRW	GAB	M2D2-S	M2D2-W	Mano	PTB	R.Pajama	Twitter	Wikitext	Avg
Word Perplexity												
NTP-124M	67.487	230.671	83.168	14851.327	108.632	99.483	192.435	118.147	1699.826	10240.487	55.138	2522.436
TRELAWNEY-124M	67.822	207.702	81.025	13819.647	107.473	95.961	171.096	111.094	1449.914	10876.189	54.425	2458.332
NTP-1B	39.338	105.296	46.063	5300.855	59.847	51.554	103.952	56.299	585.386	5122.568	28.539	1045.429
TRELAWNEY-1B	39.507	108.858	45.852	5405.941	60.093	51.409	106.616	53.839	735.245	5321.214	28.541	1087.011
Byte Perplexity												
NTP-124M	2.018	2.309	2.103	3.644	2.272	2.097	2.599	2.303	2.808	5.300	2.116	2.688
TRELAWNEY-124M	2.019	2.271	2.094	3.609	2.267	2.085	2.544	2.279	2.747	5.358	2.111	2.671
NTP-1B	1.844	2.047	2.047	3.172	2.047	1.886	2.324	2.023	2.422	4.677	1.871	2.383
TRELAWNEY-1B	1.845	2.057	1.903	3.181	2.048	1.886	2.335	2.008	2.500	4.709	1.871	2.395
Bits per Byte												
NTP-124M	1.013	1.207	1.073	1.866	1.184	1.068	1.378	1.204	1.490	2.406	1.081	1.361
TRELAWNEY-124M	1.041	1.183	1.066	1.852	1.181	1.060	1.347	1.188	1.458	2.422	1.078	1.350
NTP-1B	0.883	1.033	0.929	1.666	1.033	0.916	1.217	1.017	1.276	2.226	0.904	1.191
TRELAWNEY-1B	0.884	1.041	0.928	1.669	1.034	0.915	1.223	1.005	1.322	2.235	0.904	1.196

1259 Table 9: Perplexity and compression metrics across multiple datasets from the Paloma suite.
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296
1297

F.2 STORY GENERATION

1298

1299

1300

1301

1302

1303

1304

1305

		NTP	TRELAWNEY	Draw
Few-shot AutoReg	124M	0.461 ^{+0.50} _{-0.42}	0.45 ^{+0.49} _{-0.40}	0.088 ^{+0.11} _{-0.06}
	1B	0.436 ^{+0.47} _{-0.39}	0.44 ^{+0.47} _{-0.39}	0.123 ^{+0.15} _{-0.09}
Few-shot AutoReg	124M	0.085 ^{+0.11} _{-0.06}	0.761 ^{+.79} _{-.72}	0.153 ^{+0.18} _{-0.12}
	1B	0.036 ^{+0.05} _{-0.02}	0.866 ^{+0.89} _{-0.83}	0.096 ^{+0.12} _{-0.07}

1306
1307
Table 10: Win rate with confidence intervals at 95th percentile for conditional generation without
task specific finetuning on models pretrained with Trelawney and NTP

1308

1309

1310

1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
(a) In few shot evaluations for goal conditioned generation, GPT-4 prefers Trelawney trained models for
goal conditioned behavior.

1321

1322

1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
(b) Across model sizes of 124M (left) and 1B (right), there is little to no degradation in coherence and
clarity in unconditional story generation for models trained with Trelawney.