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ABSTRACT

The most natural way to model language is rarely autoregressive. The structure
of causal language model training assumes that each token can be predicted from
prior context, a process that contrasts with humans’ natural writing and reasoning
process, which is often non-linear and hierarchical. While this mismatch is well-
documented, the working assumption has been that architectural changes are
needed to address it. We argue that by simply rearranging and modifying the
training data, autoregressive modeling can more accurately imitate some aspects
of the true data-generating process without any changes to the architecture or
training infrastructure. We introduce TRELAWNEY, a purely data-centric method
that modifies the training data by interleaving sequences with special lookahead
tokens that contain future information. This simple data augmentation, requiring
no changes to model architecture or training infrastructure, equips models to
both condition on future goals and generate them. We present representative
results on high-entropy tasks like path planning, algorithmic reasoning, zebra
puzzles, and controllable generation, demonstrating improved performance on
tasks with branching paths or long-horizon planning. Finally, our method enables
the generation of plausible long-term goals at no additional cost, potentially opening
doors to new capabilities beyond the current language modeling paradigm.

1 INTRODUCTION

Next-token prediction (NTP) is the primary objective for training sequence models. This objective
involves a technique called teacher forcing (Williams & Zipser, 1989), where the model’s predicted
output at each step is replaced with the ground truth from the real dataset. One of teacher forcing’s
benefits is that it accelerates training by providing the model with the correct previous output, so the
learning does not suffer from error accumulation, and the gradient update is more stable. Another
crucial benefit is that it enables parallelism and hardware acceleration in training because the model
can simultaneously process all time steps, rather than sequentially waiting for its own predictions.
However, Bachmann & Nagarajan (2024) argue that models trained with teacher forcing often fail to
learn long-range dependencies, latching onto local patterns and surface-level correlations instead.

Several recent methods have been proposed to alleviate the issue of teacher forcing. One popular
approach is multi-token prediction, where the model learns to predict multiple tokens at the same
time (Bachmann & Nagarajan, 2024; Gloeckle et al., 2024; Deepseek et al., 2024). Another family
of methods involves modifying the training objective to predict both the next token for a prefix and
the previous token for a suffix by modifying the model architecture (Hu et al., 2025). Most of these
approaches either involve nontrivial modifications or make the learning process much harder by
forcing the model to predict multiple tokens at the same time.

In this work, we investigate a purely data-centric approach to address these limitations. Instead of
modifying the model architecture, our method TRELAWNEY1 modifies the training data by introducing
alternative factorizations that embed inductive biases directly. Concretely, we augment the training
corpus by interleaving it with special lookahead tokens — <T> and </T> — that encapsulate future
information (see Figure 2). Our simple model agnostic data-rearrangement procedure results in
both improved task performance in domains otherwise difficult for models trained with next token
prediction, by decoupling the training objective from the underlying data-generating function the
model needs to learn.

1The name is inspired by the seer who predicts the future in the Harry Potter series.
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One day, Lily was playing in the rain and she saw 
a little frog. "Hello little frog! What are you doing 
here?” Lily asked. The frog replied, "I am looking 
for a friend to play with. Can you be my friend?” 
Lily was happy to have a new friend. She said, 
"Yes, I can be your friend. We can play in the rain 
together.” So, the frog and Lily played in the rain, 
making puddles and having fun. At the end of the 
day, they said goodbye and promised to play 
again the next day. 

Path Planning Zebra Puzzles Story generation

Figure 1: The need for knowledge about the future are inherent to most tasks. In this work, we
explore well-known benchmarks that cleanly demonstrate the need for conditioning on future states,
and show how TRELAWNEY will enable improvement gains even if only used during training.
2 RELATED WORK

Pitfalls of Next token prediction. Bachmann & Nagarajan (2024) characterizes two failures that
occur in next-token prediction, those that emerge from (1) teacher-forced training, and (2) those
emerging at inference, where errors compound. Several prior works (Arora et al., 2022; Ross
et al., 2011) have focused on inference-time errors. Our work is more related to the training time
failure. During training, the maximum likelihood estimation (MLE) objective treats all tokens equally.
However, Bigelow et al. (2024) provides empirical evidence that tokens contribute unequally to
overall performance, suggesting that some tokens are inherently more critical than others. Relatedly,
Lin et al. (2024) proposes leveraging a stronger model to identify and prioritize these important
tokens for more efficient pretraining. Nye et al. (2021) introduces scratchpads to augment the model’s
input with intermediate reasoning steps for multi-step problem solving. Goyal et al. (2023) introduces
pause tokens at training and inference, as a mechanism for delayed next-token prediction, which
improves performance on language tasks.

Of particular importance is awareness of three pitfalls from Bachmann & Nagarajan (2024): (1)
Clever Hans Cheat. When training with teacher-forcing, the model is provided with ground truth
prefixes (e.g., vstart, v1, . . . , vi−1) that include parts of the answer. (2) Indecipherable Token Problem.
Because the later tokens can be easily predicted using the Clever Hans cheat, the crucial early decision
receives insufficient gradient signals. This early token becomes “indecipherable” since its correct
prediction relies on long-range planning that is effectively bypassed during teacher-forced training.
(3) Exposure bias. During inference, the model is likely to make a mistake because the model has not
learned the indecipherable token – the model was never trained to rely on its own predictions.

Non-causal sequence modeling. offers an alternative to the traditional autoregressive, left-to-right
generation constraint by allowing the model to use both past and future context (Gu et al., 2017;
Gong et al., 2022; Nolte et al., 2024). Bavarian et al. (2022) propose a “fill in the middle” strategy
which changes the data ordering, while T5 (Raffel et al., 2020) incorporates span corruption, σ-GPT
(Pannatier et al., 2024) uses on-the-fly order modulation, MLM-U (Kitouni et al., 2024) uses uniform
masking similar to the diffusion objective and XLNet (Yang et al., 2019) leverages permutation-based
training. Inference-time strategies, such as tree generation (Welleck et al., 2019), have also been
explored. Beyond language modeling, video prediction (Han et al., 2019; Vondrick et al., 2016)
similarly relies on non-causal prediction of future frames or states. In control tasks and world
modeling (LeCun, 2022; Hafner et al., 2023; Lin et al.), non-causal approaches provide a more
comprehensive representation of environmental dynamics, thereby enhancing long-term planning.

Controllable generation. Our work is also related to controllable generation, where the models are
conditioned to follow goals or guidelines provided through explicit instructions or auxiliary inputs.
Prominent methods include Keskar et al. (2019); Dathathri et al. (2019); Krause et al. (2020), and
prompting (Brown et al., 2020; Wei et al., 2022). In comparison, TRELAWNEY does not require a
curated dataset or additional classifiers and achieves fine-grained temporal control.

3 TRELAWNEY

Consider a sequence of tokens y = (y1, y2, . . . , yT ), where each token yt belongs to a fixed vocab-
ulary V , and that y follows a distribution P (y). An auto-regressive model Pθ factorizes the joint
probability of y = (y1, y2...yT ) as: Pθ(y) =

∏T
t=1 pθ

(
yt | y<t

)
where y<t = (y1, . . . , yt−1)

denotes all tokens before index t. In next token prediction, we maximize the likelihood of each token

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

B C D E F G

A B C D E F

B F’ G’ </T> C

A B <T> F’ G’ </T>

D E F

C D E

G

F

Standard training Trelawney

Regular Masked Future Special

IN
PU

T
O

UT
PU

T

Figure 2: TRELAWNEY. Inserting tokens from the future helps the model capture otherwise diffuse
long-distance relationships. The future, delimited with special tokens <T> and </T>, is incorporated
into the modified sequences, so the model is encouraged to learn what it will generate in the future
(i.e., F’G’) and the path leading there (i.e., CDE), making the actual future (i.e., FG) easier to predict.

under the ground truth context (teacher forcing) from the training corpus. At inference, the model
predicts the next token by sampling or selecting the most likely token, conditioned on an optional con-
text c (e.g., question). In the greedy setting, the next token ŷt is ŷt = argmaxyt

pθ(yt | ŷ<t, c) ,
where, ŷ<t denotes the model’s own generated tokens.

TRELAWNEY is a data augmentation scheme that modifies the given sequence y as follows: first
select a point d and insert a sequence of k conditioning tokens, z = (z1, z2, . . . , zk), delimited with
special tokens <T> and </T>. Concretely, we have the following augmentation:

(y1 y2 . . . yT ) =⇒ (y1 y2 . . . yd <T> z </T> yd+1 . . . yT−1 yT ).

The choices of d, k, and the content of z are flexible, and we present several strategies that can
alleviate the problems of existing models. This provides an easy mechanism for model designers and
practitioners to inject domain knowledge. However, domain knowledge is not necessary to see the
benefits of TRELAWNEY. Our experiments will show that even randomly chosen conditioning tokens
from the future are often sufficient to resolve the aforementioned issues of NTP.

3.1 ENCODING DECISION POINTS & FUTURES

Our strategies for choosing z are as follows:
Copying. We can directly copy a part of the sequence from a point after yd to between the special
tokens. For s such that d<s≤T−k, the conditioning tokens are the subsequence ys:s+k, resulting in

ỹcopy ≡ y1 y2 . . . yd <T> ys:s+k </T> yd+1 . . . yT−1 yT .

The choice of conditioning tokens can have a significant impact on the behavior of the resulting model.
For certain types of data, there are decision points where there are many different possible futures.
These points are good candidates for choosing d. At such points of high uncertainty, conditioning on
specific possible futures allows for more controllable long horizon planning. Analogously, we can
choose conditioning tokens to be future tokens that indicate which future is being generated. Our
experiments will outline ways z might be chosen (§4.1, §4.2, §4.3), but even random selection of d,
s, and k will yield benefits.

Positional information. In the previous approach, d and s can vary between different data points.
This can be problematic if two sequences have very different values of s− d. Intuitively, this makes
the modeling task harder because there may be conflicting information between different sequences.
For example, suppose y1 and y2 share the same prefixes, y1

:d = y2
:d but the relevant future tokens

are at locations with large differences. To mitigate this conflict, we introduce additional positional
information into the future tokens, ζ(k, z). For example, we can have:

ζ(k, z) = “I want the [k]th sentence from here to be z′′,

ỹcopy+pos ≡ y1 y2 . . . yd <T> ζ(k, z) </T> yd+1 . . . yd+k . . . yn.

Once again, the exact design of the positional information can be problem-dependent (§ 4.4), but
does not need to be highly accurate as long as it reduces potential conflict. Similarly, the copied text
z can be a copy of a sequence from the future, yd:d+k, but does not need to be identical, so long as it
contains relevant information (e.g., paraphrase). We express ζ in natural language because this allows
the model to integrate ζ with its pretraining knowledge and also lets the user specify different goals.

3
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3.2 DATASET CONSTRUCTION AND TRAINING OBJECTIVE

Dataset construction. We want to introduce additional capabilities via the augmentation schema
without hurting the traditional language modeling ability of the model. To accomplish this, we
train on both regular text and augmented text simultaneously. Specifically, given an original dataset
D = {y(i)}Ni=1 and an augmentation schema aug. We can construct a distribution for the original
dataset and a distribution for the augmented dataset:

D(s) =
1

N

N∑
i=1

I
{
s = y(i)

}
, Daug(s) =

1

N

N∑
i=1

I
{
s = aug(y(i))

}
.

For a probability p that controls how much of the training distribution comprises the original data,
the training distribution is the following mixture: D′(s) = pD(s) + (1− p)Daug(s).

Training and loss function. During training, the model parameters are optimized using a standard
cross-entropy loss with teacher forcing on D′. This allows us to take advantage of all existing
engineering optimizations for training language models. One caveat for training with the new dataset
D′ is that choosing the decision point and future tokens arbitrarily will result in a large portion of
sequences with the next token being </T> at arbitrary locations.

This would distract from the learning process and does not help learning the underlying distribution,
since the special tokens are synthetically introduced. Instead, we modify the regular cross-entropy
loss by masking the special start token, <T>:

L(D′) = −Ey∼D′

 1

|y|

|y|∑
j=1

I{yj ̸= <T>} logP (yj | y<j)

 .

Here, I{yj ̸= <T>} ensures no loss is computed for the prediction of the special token <T>. Note
that we do not exclude the loss on </T> because there is a utility to predicting the closing of the
future tokens, which we will elaborate on below.

3.3 INFERENCE

With TRELAWNEY, we can have two distinct modes of generation.

Standard autoregressive generation. The model generates sequences autoregressively without any
intervention, following any standard decoding algorithm.

<T>-generation. We aim to enable the model to explicitly consider future context at appropriate
decision points, to improve its ability to plan ahead. At each decision point yd in sequence generation,
we explicitly insert the special token <T>. Subsequently, (a) either the model generates the sequence
z autonomously, enabling it to create plausible future plans, or (b) incorporates a user-specified
sequence z, enhancing controllability. Recall that during the training process, we compute the loss on
the </T> token; this allows the model to generate future goals, which can then be used for conditional
generation. In contrast to existing methods such as Hu et al. (2025) that require specific decoding
mechanisms, our approach can use any off-the-shelf decoding algorithm.

4 EXPERIMENTS
We evaluate the effectiveness of TRELAWNEY in both fine-tuning and pretraining settings. Our
primary goal is to assess whether augmenting data with lookahead tokens improves a model’s
capacity for long-range planning, reasoning, and controllable generation.

Finetuning: We use four targeted benchmarks designed to isolate specific challenges. We begin
with synthetic tasks that offer a controlled environment for analysis and then proceed to a natural
language task to test for broader applicability.

• Star Graph (§ 4.1): A task designed to highlight a known failure mode of standard next-token
prediction in simple, long-range dependency settings.

• Algorithmic Reasoning (§ 4.2): A benchmark that requires multi-step, structured reasoning.
This tests whether future anchor points improve the model’s ability to follow complex procedures.

• Zebra Puzzles (§ 4.3): A constraint-satisfaction problem with long-range, cross-coupled clues
that require models to have global consistency and low cascading errors.

4
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• Story Generation (§ 4.4): A creative generation task that requires high-level planning and
fine-grained, user-directed control over the narrative structure.

These fine-tuning experiments are designed to answer the following questions:
• RQ1: Does training with TRELAWNEY improve performance on the downstream task during

standard autoregressive inference (i.e., without any lookahead tokens provided)?
• RQ2: Does providing a ground-truth or user-specified lookahead sequence z at inference time

improve task performance and grant users explicit control over the generation?

Pretraining: To evaluate the generalizability and broader utility of our approach, we apply
TRELAWNEY during the pretraining of a language model on a large-scale corpus. This setting
allows us to investigate whether the benefits observed in fine-tuning transfer to a general-purpose
foundation model. Specifically, we seek to answer:

• RQ3: How does pretraining with TRELAWNEY impact performance on standard language
modeling benchmarks and downstream tasks when using standard autoregressive generation?

• RQ4: After pretraining, does the model retain a general ability to perform lookahead-conditioned
generation on novel, unseen prompts and tasks?

4.1 PATH PLANNING

The star graph is a simple path-finding problem introduced by Bachmann & Nagarajan (2024), where,
given a directed graph G(d, n) with degree d and path length n, the objective is to find a path from
the start node to the goal node (Figure 3). Despite its simplicity, traditional next-token prediction
(NTP) struggles on this task. A key challenge is that the critical decision point occurs at v1, the first
node after vstart. This node is hard to predict because vstart has many outgoing edges. As discussed in
Section 2, teacher forcing can lead to undesirable behavior on this simple dataset.

Next Token Prediction 
Adj(G) | 1, 5  =  1,  2,  3,   4,   5 
Adj(G) | 1,13 = 1, 10, 11, 12, 13 
Adj(G) | 1, 9  = 1,   6,   7,   8,   9

Trelawney - Fixed 
Adj(G) | 1, 5   = 1,  <T>  3,   4,  </T>    2,   3,   4,   5 
Adj(G) | 1,13  = 1,  <T> 11, 12,</T>  10, 11, 12, 13 
Adj(G) | 1, 9   = 1,  <T>  7,   8,    </T>   6,  7,   8,   9

Trelawney - Random 
Adj(G) | 1, 5   = 1,   <T> 3,  4,  </T>   2,   3,   4,   5 
Adj(G) | 1,13  = 1,   <T> 11, </T> 10, 11, 12, 13 
Adj(G) | 1, 9   = 1,   <T>  8,   </T>   6,   7,   8,   9

1

2

6

7

8

9

3
4

5

10
11

12
13

Star graph

Start

Path

Goal

Hard node

Figure 3: In the star graph, there are key “hard
nodes” that indicate the moment of branching,
after which the path and goal become clear.
Above is a visualization of the construction
and linearizations of D′ for the star graph.

Dataset and Augmentation Schema. To mitigate
these issues, we introduce a future subgoal z, as any
contiguous subsection of the path in [v2, vgoal). This
modification compels the model to generate a mean-
ingful intermediate plan rather than simply copying
the full ground truth prefix. As a result, the model
receives a stronger learning signal for critical early
decision-making. Each example y = (p, c) in the
dataset is a prefix and completion pair. The prefix
p is given by the adjacency list of G followed by
the vstart, vgoal =. The completion c is the path
vstart, v1, v2, ...vgoal, i.e., p ≡ Adj(G) | vstart, vgoal =
and c ≡ vstart, v1, v2, . . . , vgoal.

Our task augmentation schema y =⇒ ỹcopy is:

y ≡ Adj(G) | vstart, vgoal = vstart, v1, v2, . . . , vgoal,

ỹcopy ≡ Adj(G) | vstart, vgoal = vstart, <T> z,</T> v1, . . . , vgoal.

Choice of z. We vary z (a contiguous subsequence of future tokens) across experiments and
ablations (see Figure 3). Its role is to guide planning by indicating a subgoal on the path from vstart to
vgoal. We exclude v1 to avoid the Clever Hans cheat discussed above. We also exclude vgoal so that
the model learns the long-term dependency between start and goal without having direct access to the
goal token. An ablation study confirms that including vgoal does not yield further improvements.

Training. Data is generated programmatically via the official implementation. Although we use
pretrained models, each node remains a single token in the tokenizer. Models are trained on 200, 000
examples (§ A.3) with standard teacher forcing training and two augmentation schemas.

TRELAWNEY-fixed: In a single training run, the choice of z is fixed across all examples. Specifi-
cally, z is chosen as a contiguous sequence of 1 to 4 nodes with a fixed start and end point across all
sequences in the dataset (Figure 3).

TRELAWNEY-random: z can vary between examples. We randomly select any contiguous subse-
quence of the path after v1 to serve as z in ỹcopy. We do not include v1 (the hard node) as part of

5
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Path planning G(*,*) Alg Reasoning scc-
G(2,5) G(5,5) G(20,5) G(2,10) scc-4 scc-5 scc-11 scc-12 scc-15

A
ut

oR
eg

. NTP 0.50 0.20 0.05 0.50 1.00 0.99 0.62 0.57 0.27
TRELAWNEY

– Fixed 1.00 1.00 1.00 0.52 – Rule-Based 1.00 1.00 0.73 0.62 0.31
– Random 1.00 1.00 1.00 0.50 – Random 1.00 0.978 0.718 0.706 0.476

G
en

. – Fixed 1.00 1.00 1.00 0.57 – Rule-Based 1.00 1.00 0.73 0.65 0.34
– Random 1.00 1.00 1.00 0.91 – Random 1.00 0.998 0.776 0.79 0.512

Sp
ec

. – Fixed 1.00 1.00 1.00 1.00 – Rule-Based 1.00 1.00 0.84 0.76 0.47
– Random 1.00 1.00 1.00 0.91 – Random 1.00 0.998 0.828 0.812 0.544

Table 1: TRELAWNEY shows strong performance in both Path Planning and Algorithmic Reasoning
across all problem complexities compared to NTP. This result is consistent across all 3 modes of
generation: simple autoregression (AutoReg), a model Generated goal (Gen), or a user Specified goal
(Spec). Notably, random augmentation often outperforms fixed or rule-based augmentation.
z (Figure 3). Without fixed positional information, the model learns to generate its own goals of
varying lengths. We observe that this variant is successful in solving longer planning problems.

Evaluation (§A.2.1). We evaluate the models on 5,000 held-out examples for each graph, reporting
the accuracy of the generated path compared to the ground truth.

Results. In Table 1, we see that all variants of TRELAWNEY outperform next token prediction.
Additionally, on shorter graphs G(2, 5), G(5, 5), G(10, 5), G(20, 5), training with TRELAWNEY
improves autoregressive generation at no additional cost, suggesting that the model implicitly learns
to plan better (possibly due to pre-caching or breadcrumbs proposed by Wu et al.) and can generate
long-term goals. For longer graphs G(2, 10), the TRELAWNEY-random variant can complete the
task when the model is used to generate its own subgoal sequence z, indicating that model-generated
goals can improve planning and do not require specialized knowledge for choosing z.

TRELAWNEY-random is notably more performant on graphs with longer paths when compared to
TRELAWNEY-fixed. Both variants of TRELAWNEY succeed when user-provided goal sequences
are provided, showing that explicit goal hints allow for better controllability. Further, ablations
conducted on larger models (See A.5) show that planning abilities improves with model capacity.
4.2 ALGORITHMIC REASONING
CLRS-Text (Markeeva et al., 2024) is a benchmark of algorithmic reasoning. The input is the algo-
rithm name, followed by a step-by-step reasoning trace and the final answer. We pick a representative
example from algorithms that require backtracking, i.e., tasks that benefit from information of future
states. We choose strongly-connected-components, a step-by-step sequential prediction task where
each step is longer than one token, and report results on it. The trace contains the execution of
Tarjan’s algorithm (Tarjan, 1972), which computes strongly connected components in linear time by
performing a depth-first search that tracks low-link values and uses a stack to detect cycles.

Dataset and Augmentation Schema. In each example y = (p, c) of the strongly-connected-
components subset, the prefix p is given by the adjacency matrix of the initial graph. The completion
c is graph execution traces of the algorithm followed by the final answer, i.e., p ≡ Adj(G) =
and c ≡ t1, t2 . . . tn|F where ti is the state of the graphical trace and F is the final answer. Our
augmentation schema y =⇒ ỹcopy for this task is as follows:

y ≡ algo: Adj(G) = t1, t2, . . . , tn|F,
ỹcopy ≡ algo: Adj(G) = t1,<T> z </T> t2, . . . , tn|F.

Unlike the star graph task — where failure typically occurs at a single critical decision point — the
algorithmic reasoning tasks involve multiple branching points where errors can accumulate. In the
strongly connected components subset, the state sequence t represents the graph execution trace and
comprises multiple tokens, each corresponding to a distinct graph state. By segmenting the trace into
these meaningful units, our augmentation schema is better able to capture intermediate reasoning
steps and guide the model’s planning process throughout the entire execution trace.

Choice of z. For simplicity, we fix the decision point yd at the second state in each trace. In
algorithmic reasoning tasks do not present a clear failure point — there can be many points in the
trace at which misprediction causes the entire generation to diverge. We only pick z as a complete
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step ti in the trace and how i is determined for each variant. Gains here further demonstrate generality
as domain-specific knowledge is not required to see performance improvement.

Training. Data for all experiments are sub-selected from the original dataset. We train a single
model on problems of varying sizes. Since we do not test for length generalization, we only report
accuracies on sizes present in the training corpus (60K samples). We train two variants (§C.1):

TRELAWNEY-rule-based: For every example in Daug, z is chosen as the first change in the trace
provided. The position of z in the trace varies across graph sizes and graphs.

TRELAWNEY-random: z is chosen as a single random state in the trace provided. per graph length.
We evaluate the models similar to the star-graph setting, and report the accuracies of the final answer.

Evaluation. We evaluate on 500 examples (CLRS-Text-test)

Results In addition to strong results as task complexity increases, in App. Figure 7 we show
a trend that TRELAWNEY-random consistently improves on next token prediction when using
<T>-generation and, surprisingly, in standard autoregressive generation as well. TRELAWNEY-
rule-based although being chosen more strategically, performs worse than <T>-random.
4.3 ZEBRA PUZZLES

Zebra (Einstein) puzzles are a constraint satisfaction problem specified by clues over m entities and
n attributes (Figure 1); the goal is to deduce a unique grid assignment consistent with all clues. We
follow the symbolic formulation given by Shah et al. (2024).

Dataset and Augmentation Schema Each example y = (p, c) pairs a clue set p with a completion
trace c. Here, p is the puzzle’s set of clues defining the constraints, and c ≡ t1, . . . , tT | F , where
each step ti = (ri, ci, vi) assigns value vi to row ri and column ci; F is the final solution grid
satisfying all clues. Our augmentation y =⇒ ỹcopy for this task is similar to algorithmic reasoning :

y ≡ p = t1, t2, . . . , tn|F,
ỹcopy ≡ p = t1,<T> z </T> t2, . . . , tn|F.

A key difference is that this problem in NP-hard and the choice of which constraints to enforce first
can make the problem easier or harder to solve. In our experiments we use a solver generated ordering
for the trace, which is the simpler choice of steps.

Choice of z. As with 4.2, we fix the decision point yd at the second state in each trace. We pick z as
a set of continuous complete steps ti..ti + n in the trace. We randomize this choice to further test
generality, without domain specific knowledge.

Training. We train on 1,000,000 examples with class balanced samples of 62,500 for each of the 16
different classes of problems.

Evaluation. We evaluate on 800 examples with 50 examples each of puzzles of 16 complexities. We
report the accuracy on the entire puzzle.

Results. Autoregressive generation with TRELAWNEY-random (35.75%) outperforms next token
prediction (30.1%). With user specified goals, TRELAWNEY improves the final accuracy to 53.5%.
Interestingly, model generated goals are often hard to predict and show lower accuracy (9.75%),
indicating that for problems with large branching factor, with few high entropy points can still be
hard to model with only random slices of lookaheads. Remarkably, models trained with TRELAWNEY
solve problems of higher complexity (See 7) , which typically also have longer traces and may point
towards better long horizon planning.

4.4 NATURAL LANGUAGE PLANNING

Finally, we explore the open-ended language task of story generation. Here, random futures are
probably not of interest as the user will specify their target, but the model should still be required to
sample feasible conclusions. These properties make story generation inherently a planning task, as it
requires the model to set long-term goals, maintain consistency, and control narrative flow. Although
many narratives include complex elements like detailed backstories and conflict resolution, even
simpler story generation requires planning to produce coherent and logically structured output. We
evaluate our approach on the Tiny Stories dataset from Eldan & Li (2023). In this task, the aim is to
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<T> I want the [2]-nd sentence from 
here to be: "Hello little frog!  </T>

Once upon a time, there was a little girl named Lily. Lily loved to play in the rain.

<T> I want the [4]-th sentence from 
here to be: "Hello little frog!  </T>

<T> I want the [8]-th sentence from 
here to be: "Hello little frog!  </T>

One day, Lily was playing in the rain and she saw 
a little frog. "Hello little frog! What are you doing 
here?” Lily asked. The frog replied, "I am looking 
for a friend to play with. Can you be my friend?” 
Lily was happy to have a new friend. She said, 
"Yes, I can be your friend. We can play in the rain 
together.” So, the frog and Lily played in the rain, 
making puddles and having fun. At the end of the 
day, they said goodbye and promised to play 
again the next day. 

One day, Lily went outside to play. She saw a big 
frog on a log. The frog looked sad. "Hello little 
frog! Why are you sad?” Lily asked. The frog 
replied, "I can't jump high. I need help.” Lily 
thought for a moment and said, "I have an idea! 
Let's play together and I will help you jump high.” 
The frog was so happy and thanked Lily. They 
jumped high and played all day. From that day 
on, Lily and the frog became best friends.

One day, Lily went outside to play in the rain. She 
jumped in the puddles and laughed. She loved 
the feeling of the rain on her face. Suddenly, Lily 
saw a frog in a puddle. The frog was small and 
wet. Lily wanted to help the frog. She picked up 
the frog and put it on a rock. ”Hello little frog! 
You are so wet and cold," said Lily. The frog 
smiled and thanked Lily for helping. From that day 
on, Lily and the frog became good friends. 

FU
TU

RE
GE

NE
RA

TI
ON

PROMPT

Figure 4: Illustration of TRELAWNEY’s effect during generation. The top is the prompt, and the
middle is different future tokens. The generations are coherent and read naturally.

generate coherent stories conditioned on specified goals (Fig. 4). This benchmark tests whether our
strategy of inserting future tokens can enhance planning in natural language generation.

Dataset and Augmentation Schema. Each example y = (p, c) is a prefix–completion pair extracted
from a story. We use a sentence parser to segment each story into individual sentences or phrases.
If a story is split into sentences s1, s2, . . . , sn, the prefix p is the beginning of the story (e.g., s1 s2)
and the completion c is the remainder (i.e., s3 s4 . . . sn).

Our augmentation schema y =⇒ ỹcopy+pos is defined as:

y ≡ s1 s2 . . . sn,

ỹcopy+pos ≡ s1 s2 . . . sd <T> ζ(k, sd+k) </T> sd+1 . . . sd+k . . . sn,

ζ(k, s) = “I want the [k]-th sentence from here to be [s] ′′.
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P
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Figure 5: Our story gener-
ation evaluation demonstrates
greatly improved performance
when goal-conditioned, without
hurting unconditional generation.

Choice of ζ(k, s). We choose decision points randomly at the
end of the k-th sentence in the document, as the position to to
insert ζ(k, s). The subgoal [s] is defined in ζ(d, s) as extracted
from the corresponding sentence sd+k.

Training. All models are trained on 300, 000 examples from the
Tiny Stories dataset for 1 epoch using the masked cross-entropy
loss specified in § 3.2 (See App. A.3).

Evaluation: We follow the evaluation protocol used by Hu et al.
(2025) and use GPT-4 to rate 100 generated stories from each
model. The stories are anonymized and shuffled to prevent any
information leakage about the author. Each evaluation is repeated
over 6 trials. We report the win rate with binomial confidence
intervals computed at a 95% significance level. (See Fig. 5, E.3)

RQ1: Does TRELAWNEY improve goal reaching ability i.e.,
resulting in more controllable generation? We compare the
completions from few-shot prompts on the baseline with those
obtained by explicitly specifying goals on TRELAWNEY-implicit.
Qualitatively, we observe that models trained with TRELAWNEY
generate stories that more effectively reach the intended long-term
goals (see Figure 2). Quantitatively, GPT-4 prefers TRELAWNEY
to few-shot prompts on next-token-prediction, 76.53% of the
time, with a confidence interval of [72.9%, 79.9%]. This result suggests that TRELAWNEY is much
more effective at controllable generation than few-shot and natural language prompting. We provide
more details and ablations of prompting variants used in E.2.

RQ2: Preference on stories generated by standard autoregressive generation. We compare the
standard autoregressive generations from models trained with TRELAWNEY and models trained with
NTP. Quantitatively, we observe that GPT-4 prefers autoregressive generations on TRELAWNEY to
next-token-prediction, 40.35% of the time, with a binomial confidence interval of [44.5%, 36.2%].
The justification for judgements appear to be preferences in ending of the stories, which qualitatively,
does not appear to affect factors such as coherence and creativity. We provide examples of GPT-4
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ArcEasy HellaSwag Lambada LogiQA2 MMLU PIQA SciQ WinoGrande Avg

NTP-124M 0.467 0.302 0.335 0.216 0.229 0.669 0.732 0.510 0.433
TRELAWNEY-124M 0.449 0.308 0.348 0.227 0.229 0.669 0.724 0.506 0.433

NTP-1B 0.572 0.413 0.509 0.220 0.234 0.728 0.837 0.549 0.508
TRELAWNEY-1B 0.578 0.415 0.505 0.220 0.249 0.729 0.830 0.549 0.509

Table 3: No performance decrease on zero-shot evaluation across standard downstream evaluations.

preference evaluations in E.2. We evaluate perplexity on Wikitext (Merity et al., 2016) to verify that
TRELAWNEY maintains language model performance, with results comparable to the baseline (§E.4).

4.5 PRETRAINING

Pretraining provides a more general setting to evaluate if TRELAWNEY’s benefits extend beyond
task-specific finetuning. Unlike synthetic tasks where clear decision points can be identified or
constrained natural language tasks, large-scale pretraining lacks obvious choice points. This makes it
a challenging, but important test of whether the augmentation can improve long-horizon planning
without degrading standard language modeling performance.
Dataset and Augmentation Schema: We pretrain decoder-only transformers on 10B tokens of
Fineweb (Penedo et al., 2024). Following the schema from § 4.4, we augment documents with
probability p = 0.5. For each augmented document, an insertion index is selected uniformly at
random every 35 sentences, and the future span z is chosen as a sentence sampled between 2 and 8
sentences ahead of the insertion point. 124M and 1B parameter models are trained with 10B tokens.

NTP TRELAWNEY Draw
A

ut
oR

eg
.

124M 0.461+0.50
−0.42 0.45+0.49

−0.40 0.088+0.11
−0.06

1B 0.436+0.47
−0.39 0.44+0.47

−0.39 0.123+0.15
−0.09

Fe
w

-s
ho

t

124M 0.085+0.11
−0.06 0.761+79

−72 0.153+0.18
−0.12

1B 0.036+0.05
−0.02 0.866+0.89

−0.83 0.096+0.12
−0.07

Table 2: Conditional generation without
task specific finetuning.

Evaluation. We evaluate two aspects of performance.
First, we evaluate standard autoregressive generation by
comparing zero-shot downstream accuracy across stan-
dard language modeling benchmarks - ArcEasy (Clark
et al., 2018), HellaSwag (Zellers et al., 2019), Lambada
(Paperno et al., 2016), LogiQA2(Liu et al., 2023), MMLU
(Hendrycks et al., 2020), PIQA (Bisk et al., 2020), SciQ
(Johannes Welbl, 2017) and WinoGrande (Sakaguchi et al.,
2021) and by reporting perplexity on datasets from the
Paloma (Magnusson et al., 2024) suite. This allows us to
test whether the augmentation preserves baseline language
modeling ability. Second, we evaluate conditional generation following the same protocol used in
§4.4, where explicit goals are provided during inference - See: Tab.2

Results. TRELAWNEY maintains language modeling quality, with perplexity comparable to next-
token prediction (See Table 10). On downstream tasks, performance is unchanged for 124M models
and shows marginal gains for 1B models. Conditional generation confirms that explicit goals can
guide long-horizon planning without reducing fluency. These preliminary findings suggest that the
augmentation scales naturally to pretraining and may yield larger benefits at a greater scale. Prior
work on multi-token prediction (Gloeckle et al., 2024) shows that some methods become more
effective as models grow. A more detailed analysis across domains is beyond the scope of this paper.
5 DISCUSSION

The machinery of autoregressive language modeling is flexible and highly efficient, but autoregressive
modeling is not the most natural choice for many sequence modeling tasks, as we discussed at
the beginning. By simply augmenting training with future states (and training appropriately as we
outline), models can overcome many of the known challenges of next-token prediction and even be
imbued with better controllable generation.

Our finetuning experiments are chosen to directly identify branching and planning complexity
and show the effectiveness of even the TRELAWNEY-random augmentation at improving models.
Further, our pretraining results indicate that the approach could extend to broader domains and be
integrated into standard pipelines without harming performance. Beyond simple copying behaviors,
our method opens the door to future research using reinforcement learning to control generation based
on the information enclosed by the special tokens. One remaining challenge is determining when
the model should leverage these capabilities; uncertainty metrics may offer a promising solution to
identify lookahead points.
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A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

Code and datasets for all experiments are currently in preparation and will be released.

A.2 EVALUATION DETAILS

A.2.1 PATH PLANNING

For the next-token prediction baseline, we evaluate the model using standard autoregressive gen-
eration. For models trained with TRELAWNEY, We evaluate both standard autoregressive and
<T>-generation and compare to a next-token prediction baseline. In the conditional setting, the
model uses either model-generated z’s as goals or user-provided ground truth “future goals” as
hints. Standard autoregressive generation allows us to test whether TRELAWNEY improves regular
generation. <T>-generation demonstrates whether the model has learned to generate plausible future
goals and use these goals for better planning. By providing intermediate hints, we evaluate if the
model can leverage these cues to solve the larger planning problems.

A.3 IMPLEMENTATION DETAILS

Training details: All results are reported on the pretrained-Llama 3.2-1B model. We conducted
experiments by sweeping over learning rates of 1e-5, 2e-5, and 1e-6, using the AdamW optimizer
with a linear learning rate scheduler for one epoch, and reporting the best result. We use the masked
cross-entropy loss specified in § 3.2. We use p = 0.5 for all experiments. All experiments were
run on 4xA6000 GPUs or 4xL40S GPUs. We will also provide the full list of hyperparameters and
release code and datasets used.

A.4 ABLATIONS - AUTOREGRESSIVE ARCHITECTURES

In this section we also compare against other autoregressive architectures. We use mamba as a
representative model class for state space models. We observe that using TRELAWNEY-Random
improves on next token prediction on state space architectures as well.

Path planning G(*,*)
G(2,5) G(5,5) G(20,5) G(2,10)

A
R

. NTP 0.50 0.20 0.05 0.50
TRELAWNEY 1.0 0.998 0.049 0.50

G
en

. NTP – – – –
TRELAWNEY 1.0 0.997 0.048 0.511

Sp
ec

. NTP – – – –
TRELAWNEY 1.0 0.998 0.048 0.50

Table 4: Mamba-1.5B - Results on star graph

A.5 ABLATIONS - MODEL SIZING

To compare the effects of model size on TRELAWNEY-Random, we perform on 0.5B (Qwen2.5-0.5B),
1B (Llama-3.2-1B) and 3B (Llama-3.2-3B) models. We do not account for architectural differences
between the Qwen 0.5B model and the 1B and 3B Llama models.

The smallest model is unable to solve the longest graph that we test for G(2, 10), while the 1B model
is able to solve the graph when allowed to generate z. Finally, the 3B model, is able to solve the graph
with only autoregressive generation when trained with TRELAWNEY. This hints at TRELAWNEY
being more effective on larger models, potentially learning better representations, and being easily
scalable. Interestingly, larger models can solve the simplest graphs (G(2, 5), G(5, 5)) autoregressively.
We speculate that this could be due to pre-caching improving with scale as previously observed by
Wu et al.
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Path planning G(*,*)
G(2,5) G(5,5) G(20,5) G(2,10)

A
R

. NTP 0.50 0.20 0.05 0.50
TRELAWNEY 1.0 1.0 0.874 0.533

G
en

. NTP – – – –
TRELAWNEY 1.0 1.0 0.847 0.514

Sp
ec

. NTP – – – –
TRELAWNEY 1.0 1.0 0.931 0.523

Table 5: Qwen/Qwen2.5-0.5B

Path planning G(*,*)
G(2,5) G(5,5) G(20,5) G(2,10)

A
R

. NTP 1.0 1.0 0.05 0.50
TRELAWNEY 1.0 1.0 1.0 1.0

G
en

. NTP – – – –
TRELAWNEY 1.0 1.0 1.0 1.0

Sp
ec

. NTP – – – –
TRELAWNEY 1.0 1.0 1.0 1.0

Table 6: meta-llama/Llama-3.2-3B

B STAR GRAPH

B.1 RESULTS - LLAMA-3.2-1B
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(a) Accuracies TRELAWNEY-Fixed
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Figure 6: Results on Star Graph.
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C ALGORITHMIC REASONING

C.1 EXAMPLES

We provide examples of the data augmentation schema used in Daug for the strongly connected
components task.Looking at the examples in the data, we see many repeated states t in the trace. The
rule used to pick z was likely more beneficial, since the first change in the trace state contains more
information than a random trace state.

Strongly connected components - Examples

Prefix:
"strongly_connected_components:
A: [[0 0 0 0 0 0],

[0 0 0 0 0 0],
[0 0 0 0 1 0],
[0 0 0 1 1 0],
[0 0 1 1 1 0],
[0 0 0 0 0 1]],

initial_trace: [0 1 2 3 4 5] trace | scc_id:",

Completion:
"[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 2 5], [0 1 2 2 2 5],
[0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5],
[0 1 2 2 2 5], [0 1 2 2 2 5] | [0 1 2 2 2 5]"

Completion for TRELAWNEY–Rule-Based:
"[0 1 2 3 4 5], <T> [0 1 2 3 2 5], </T> [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5],
[0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5] | [0 1 2 2 2 5]"

Completion for TRELAWNEY–Random:
"[0 1 2 3 4 5], <T> [0 1 2 3 4 5] </T> [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 2 5],
[0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5],
[0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5] | [0 1 2 2 2 5]"
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C.2 RESULTS - LLAMA-3.2-1B
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Figure 7: Accuracies - Strongly connected components TRELAWNEY-Rule-Based
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Figure 8: Accuracies - Strongly connected components TRELAWNEY-Random
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D ZEBRA PUZZLES

(4,3) (4,4) (4,5) (4,6) (5,3) (5,4) (5,5) (5,6) (6,3) (6,4) (6,5) (6,6) (7,3) (7,4) (7,5) (7,6) Total

NTP 46/50 27/50 17/50 7/50 36/50 21/50 3/50 4/50 34/50 9/50 2/50 1/50 30/50 3/50 1/50 0/50 241/800
TRELAWNEY-autoreg. 48/50 37/50 16/50 8/50 33/50 27/50 5/50 3/50 34/50 18/50 6/50 3/50 34/50 10/50 4/50 0/50 286/800
TRELAWNEY-spec. 48/50 43/50 37/50 19/50 43/50 37/50 17/50 16/50 43/50 29/50 15/50 7/50 39/50 17/50 16/50 2/50 428/800
TRELAWNEY-gen. 25/50 7/50 4/50 1/50 16/50 3/50 1/50 1/50 8/50 2/50 0/50 0/50 7/50 2/50 0/50 0/50 77/800

Table 7: Number of m x n puzzles solved
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E STORY GENERATION

E.1 EXAMPLES

Once upon a time, there was a little girl 
named Lily. Lily loved to play in the rain. 
<T> I think [3] sentences away should 
be:"Hello little frog! </T> [1] She would 
jump in all the puddles and get very wet. 
[2] One day, Lily saw a cute little frog 
hopping around in the rain. [3] “Hello 
little frog! [4] What are you doing in the 
rain?" asked Lily. [5] “I like the rain 
because it helps create more puddles 
for me to swim in," [6] replied the frog. 
[7] Lily smiled and said, [8] “That’s so 
cool! [9] I love playing in the rain too.” …

Once upon a time, there was a little girl 
named Lily. Lily loved to play in the rain. 
She would jump in all the puddles and 
get very wet. One day, Lily saw a cute 
little frog hopping around in the rain. 
“Hello little frog! What are you doing in 
the rain?" asked Lily. “I like the rain 
because it helps create more puddles 
for me to swim in,” replied the frog. Lily 
smiled and said, “That’s so cool! I love 
playing in the rain too.” …

Once upon a time, there was a little girl 
named Lily. Lily loved to play in the rain. 
<T> I think [3] sentences away should 
be:"Hello little frog! </T> She would 
jump in all the puddles and get very wet. 
One day, Lily saw a cute little frog 
hopping around in the rain. “Hello little 
frog! What are you doing in the rain?" 
asked Lily. “I like the rain because it 
helps create more puddles for me to 
swim in,” replied the frog. Lily smiled 
and said, “That’s so cool! I love playing 
in the rain too.” …

Baseline Trelawney - Explicit Position Trelawney - Implicit Position

Figure 9: Construction of D′

E.2 GPT4-AS-JUDGE

Unconditional generation. System prompt used and an example
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Unconditional generation

System prompt: You are evaluating two story generation models. First, analyze the outputs
and note their properties. Then, make an argument for why one model is better than the other,
or state that both models perform similarly. Finally, Respond with WINNER: Story 1/2
(depending on which is better) or respond with DRAW if both are equal.

User
Story 1:
"Once upon a time, there was a naughty bee named Buzzy.Buzzy

loved to fly around the big tree and play with the other
bees.One day, Buzzy saw a big, juicy flower and wanted to
eat it.But the flower was too high up for Buzzy to
reach.\n\nBuzzy had an idea!He flew up to the top of the
tree and found a long stick.He used the stick to reach
the flower and eat it.Buzzy was very happy and flew back
down to tell the other bees about his adventure.\n\nThe
other bees were impressed with Buzzy's cleverness.They
all decided to try and reach the flower too.They worked
together and used their wings to fly up to the top of the
tree.Buzzy was proud of them and they all shared the
delicious flower together.From that day on, Buzzy and the
other bees were known as the best bee team in the
forest.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Story 2:
"Once upon a time, there was a naughty bee named Buzzy.Buzzy

loved to fly around the big tree and play with the other
bees.One day, Buzzy saw a big, juicy flower and wanted to
eat it.But the flower was too high up for Buzzy to
reach.\n\nBuzzy had an idea!He flew up to the top of the
tree and found a long stick.He used the stick to reach
the flower and eat it.Buzzy was very happy and flew back
down to tell the other bees about his adventure.\n\nThe
other bees were impressed with Buzzy's cleverness.They
all decided to try reaching the flower too.They worked
together and soon they were all able to reach the flower
and eat it.Buzzy was proud of his friends and they all
had a fun day playing together."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Judge
"Both stories have similar structures, characters, and

plotlines. They both follow the adventure of a bee named
Buzzy who uses a stick to reach a flower that was too
high up. The other bees in both stories are impressed by
Buzzy's cleverness and decide to try reaching the flower
too. \n\nHowever, there are subtle differences in the way
the stories are told. Story 1 ends with a stronger
conclusion, stating that Buzzy and the other bees were
known as the best bee team in the forest. This gives a
sense of accomplishment and closure to the story. On the
other hand, Story 2 ends on a more casual note, stating
that they all had a fun day playing together. \n\nIn
terms of language and style, Story 1 uses more
descriptive language and provides more details, such as
the bees using their wings to fly up to the top of the
tree. Story 2 is more straightforward and uses simpler
language.\n\nIn conclusion, while both stories are
similar, Story 1 is slightly better due to its stronger
conclusion and more descriptive language.\n\nWINNER:
Story 1"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→
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Conditional generation : We assess if the model was able to reach the specified goal and if the
generated stories are coherent. We run two ablations of our method on the baseline trained model 1)
Few shot prompts with instructions in natural language - the baseline is unable to reach any of the
goals effectively, 2) Few shot prompts (8 examples) with goals specified as tags. Note: we do not use
special tokens, only patterns resembling tags. For fairness we report the version with tags in the main
paper.
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Conditional generation

System prompt: You are evaluating two story generation models for goal reaching ability.
The goal is specified within <LOOKAHEAD> and </LOOKAHEAD>, analyze if the stories
reach the goal and Then, make an argument for why one model is better than the other, or state
that both models perform similarly. Finally, Respond with WINNER: Story 1/2 (depending
on which is better) or respond with DRAW if both are equal
User
Story 1:

"Once upon a time, there was a goat.The goat was outside and
it was very hot.<LOOKAHEAD> I think [4] sentences away
should be: The goat looked for another way inside but
there was none. </LOOKAHEAD>The goat was very thirsty and
it wanted to drink some water.\n\nThe goat saw a big tree
and it thought it would be a good place to drink
water.But when the goat got to the tree, it was too high
up and the goat couldn't reach the water.\n\nThe goat
looked for another way inside but there was none.So the
goat had to stay outside and wait for the water to come
down from the sky.\n\nFinally, the water came down and
the goat was very happy.It drank the water and felt much
better.The goat was very grateful for the water and it
thanked the sky for providing it.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Story 2:

"Once upon a time, there was a goat.The goat was outside and
it was very hot.<LOOKAHEAD> I think [4] sentences away
should be: The goat looked for another way inside but
there was none. </LOOKAHEAD>Then, the goat saw a big tree
and thought it would be a good place to hide.\n\nThe goat
went to the tree and climbed up.It was very hot inside
the tree, but the goat was happy to be safe.The goat
stayed in the tree for a long time, but it was not happy
because it was not able to get out.\n\nFinally, the sun
went down and the goat was able to get out of the
tree.The goat was very tired and hot, but it was happy to
be outside again.The goat learned that sometimes it is
not good to hide in a tree when it is too hot.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Judge
"Both stories have the same goal: \"The goat looked for

another way inside but there was none.\" Story 1 reaches
this goal perfectly, as the goat tries to find another
way to get water but fails, and the sentence is included
verbatim. Story 2, however, does not reach the goal. The
goat does look for a place to hide, but it successfully
finds one in the tree, and the sentence is not included
in the story.\n\nTherefore, Story 1 is better at reaching
the specified goal than Story 2. Story 1 not only
includes the goal sentence but also builds a coherent
narrative around it, while Story 2 deviates from the goal
and does not include the sentence.\n\nWINNER: Story 1"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→
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E.3 LLM-JUDGE EVALUATIONS

We use GPT-4 as the judge to evaluate stories generated by both models:

Story Generation Baseline Ours Draw

Autoregressive 0.4526+0.494
−0.411 0.4035+0.445

−0.362 0.1439+0.175
−0.116

Few shot natural language v. TRELAWNEY 0.0000+0.006
−0.000 0.8860+0.911

−0.858 0.1139+0.142
−0.089

Few shot tags v. TRELAWNEY 0.1734+0.207
−0.144 0.7653+0.799

−0.729 0.0612+0.084
−0.043

Table 8: Tiny stories win rate with confidence intervals at 95th percentile

Failure modes: Often, both models are unable to reach the goal, then the judge outputs DRAW. In
some generations, we note that while the full sentence may not be copied verbatim, we still have
coherent generations. In implicit generations, the number of sentences away is less accurate than
explicitly specifying them.

E.4 PERPLEXITY

WikiText Perplexity on models trained with TRELAWNEY are comparable to models trained with
standard next token prediction, indicating no noticeable loss in text generation abilities.

Bits-per-byte (↓) Byte-Perplexity (↓) Word-Perplexity (↓)

Next-Token-Prediction 0.6958 1.6198 13.1865

TRELAWNEY 0.6975 1.6217 13.2669

Table 9: Perplexity metrics on wikitext

F PRETRAINING
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Model C4 Dolma FalconRW GAB M2D2-S M2D2-W Mano PTB R.Pajama Twitter Wikitext Avg

Word Perplexity
NTP-124M 67.487 230.671 83.168 14851.327 108.632 99.483 192.435 118.147 1699.826 10240.487 55.138 2522.436
TRELAWNEY-124M 67.822 207.702 81.025 13819.647 107.473 95.961 171.096 111.094 1449.914 10876.189 54.425 2458.332
NTP-1B 39.338 105.296 46.063 5300.855 59.847 51.554 103.952 56.299 585.386 5122.568 28.539 1045.429
TRELAWNEY-1B 39.507 108.858 45.852 5405.941 60.093 51.409 106.616 53.839 735.245 5321.214 28.541 1087.011

Byte Perplexity
NTP-124M 2.018 2.309 2.103 3.644 2.272 2.097 2.599 2.303 2.808 5.300 2.116 2.688
TRELAWNEY-124M 2.019 2.271 2.094 3.609 2.267 2.085 2.544 2.279 2.747 5.358 2.111 2.671
NTP-1B 1.844 2.047 2.047 3.172 2.047 1.886 2.324 2.023 2.422 4.677 1.871 2.383
TRELAWNEY-1B 1.845 2.057 1.903 3.181 2.048 1.886 2.335 2.008 2.500 4.709 1.871 2.395

Bits per Byte
NTP-124M 1.013 1.207 1.073 1.866 1.184 1.068 1.378 1.204 1.490 2.406 1.081 1.361
TRELAWNEY-124M 1.041 1.183 1.066 1.852 1.181 1.060 1.347 1.188 1.458 2.422 1.078 1.350
NTP-1B 0.883 1.033 0.929 1.666 1.033 0.916 1.217 1.017 1.276 2.226 0.904 1.191
TRELAWNEY-1B 0.884 1.041 0.928 1.669 1.034 0.915 1.223 1.005 1.322 2.235 0.904 1.196

Table 10: Perplexity and compression metrics across multiple datasets.
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