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ABSTRACT

It has been demonstrated many times that the behavior of the human visual system
is connected to the statistics of natural images. Since machine learning relies
on the statistics of training data as well, the above connection has interesting
implications when using perceptual distances (which mimic the behavior of the
human visual system) as a loss function. In this paper, we aim to unravel the
non-trivial relationships between the probability distribution of the data, perceptual
distances, and unsupervised machine learning. To this end, we show that perceptual
sensitivity is correlated with the probability of an image in its close neighborhood.
We also explore the relation between distances induced by autoencoders and the
probability distribution of the training data, as well as how these induced distances
are correlated with human perception. Finally, we find perceptual distances do not
always lead to noticeable gains in performance over Euclidean distance in common
image processing tasks, except when data is scarce and the perceptual distance
provides regularization. We propose this may be due to a double-counting effect
of the image statistics, once in the perceptual distance and once in the training
procedure.

1 INTRODUCTION

The relationship between the internal representations of supervised learning models and biological
systems has previously been explored (Cadieu et al., 2014), and this connection can be explained by
both systems being optimized to perform the same object recognition task. A much less studied area is
comparing modern representations learned in an unsupervised manner to those of biological systems.
As one of the most influential ideas in this area, the efficient coding hypothesis states that the internal
representations of the brain have evolved to efficiently represent the stimuli (Attneave, 1954; Barlow,
1961) and has been validated against statistical models for images (Simoncelli & Olshausen, 2001;
Malo & Laparra, 2010). Similarly, the explicit constraints of dimensionality reduction or compression
present in many unsupervised representation learning models, mainly autoencoders (Ballé et al., 2018;
2016; Baldi, 2012), impose a type of parsimony on the representation. To understand properties of
these representations of interest, here we consider distance measurements between the representations
of pairs of stimuli. Such distance measurements can be thought of as perceptual distances, which are
rooted in psychophysics: a good perceptual distance mimics the human rating of similarity between
the two stimuli with high accuracy.

Traditionally, perceptual distances have been hand-designed models with few adjustable parameters,
inspired by the physiology or observations in visual psychology, as the Multi-Scale Structural
SIMilarity index (MS-SSIM) (Wang et al., 2003). More recently, it has become common to use an
explicit image representation and ’induce’ a distance from it. For instance, comparing the internal
representations of models trained for image classification for pairs of stimuli has been used for
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perceptual judgments and was shown to correlate well with human opinions (Zhang et al., 2018; Ding
et al., 2020). This is also true for unsupervised representations that focus on learning features of
natural scenes which are information efficient. For example, in the normalized Laplacian pyramid
distance (NLPD) (Laparra et al., 2016), the representation is learned based on redundancy reduction
in neighboring pixels. The Perceptual Information Metric (PIM) (Bhardwaj et al., 2020) uses a
contrastive representation learning technique based on compression and slowness. With regards
to training autoencoders, a particular type of model that can be used to unsupervisedly learn an
explicit representation, here we examine three distinct types of induced distances: the reconstruction
distance Dr, the inner distance Din and the self-distance Ds. These distances correspond to different
representations learned by the autoencoder (see Fig. 1).

While the connection between the biological response and image probability has been examined
before (Laughlin, 1981; Twer & MacLeod, 2001; Malo & Gutiérrez, 2006; Malo & Laparra, 2010;
Laparra et al., 2012; Laparra & Malo, 2015; Hyvärinen et al., 2009), the relation between perceptual
distances, unsupervised image representations, and the statistics of natural images has not been
studied in depth. The current understanding is simply that distances induced by representations
relevant for image classification or compression are useful for perceptual judgments. We show that
the relation is deeper than that, linking it to image statistics.

Furthermore, we examine the unexpected effects of utilizing perceptual distances in the loss functions
of autoencoders, which is a common approach in designing neural image compression methods (Ballé
et al., 2018). One would expect that using a perceptual distance that is closely related to the internal
image representation of the brain would give rise to a representation inside the model that is much
more closely tied to humans, but that does not seem to be the case. This is surprising given the limited
ability of Euclidean distances like Mean Squared Error (MSE) to reproduce human opinion (Girod,
1993; Wang & Bovik, 2009), compared to successful perceptual distances. We argue that this is
because of a double counting effect where the distribution of natural images is taken into account
twice in the training of the autoencoder; once in the training data and again in the perceptual distance,
leading to an over-stressing of high density regions in the data. Conversely, where data is sparse or
contains non-representative samples, this effect can result in regularization by discounting losses
from outliers. Our specific contributions are:

1 We demonstrate that good perceptual distances, i.e. distances that are good at predicting
human psychophysical responses, are also correlated with image likelihoods obtained using a recent
probabilistic image model (PixelCNN++ (Salimans et al., 2017)). This underlines indirectly the idea
that part of the biology is informed by efficient representation, as conjectured by Barlow.

2 The distances induced by autoencoders trained to minimize an Euclidean loss are correlated with
the probability of the training data. Moreover, when autoencoders are trained using natural images,
these induced distances are highly correlated with human perception.

3 Using a perceptual distance instead of a Euclidean loss in the optimization of autoencoders
implies taking into account the data distribution twice: one in the perceptual distance and another
through the empirical risk minimization procedure. We call this the double counting effect. This effect
may explain the limited improvements obtained when using perceptual distances in some machine
learning applications. We find that perceptual distances lead to models that over-stress high density
regions. We emphasize this by showing that image autoencoders can be trained without image data
(just using uniform random noise as input) if a proper perceptual distance is used.

2 ON THE RELATION BETWEEN PERCEPTUAL DISTANCE AND IMAGE
PROBABILITY

The broadest formulation of the classical efficient coding hypothesis in neuroscience (Barlow, 1961)
states that the organization of the sensory system can be explained by the regularities of the natural
signals (Barlow, 2001). This hypothesis has inspired statistical derivations of the nonlinear response
of biological vision based on equalization: maximization of channel capacity (Laughlin, 1981)
and error minimization under noise (Twer & MacLeod, 2001) are one-dimensional equalization
techniques that directly relate signal probability, ppxq, with the response of the system to the visual
input, y “ Spxq, where S is the given system. These univariate equalization techniques have been
generalized to multivariate scenarios to explain the nonlinearities of the biological responses to
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Figure 1: Distances in autoencoders. De is the euclidean distance (green), Dr is the reconstruction
distance (blue), Ds is the self-distance, Din is the inner distance. Red circles illustrate the allowed
error for the points x1 and x2, i.e. the reconstructed points (x̂1 and x̂2) should live inside the circle.
The sizes are inversely proportional to the density (blue background). The autoencoder function, f , is
the composition of the encoder function, e, and the decoder function, d.

spatial texture (Malo & Gutiérrez, 2006), color (Laparra et al., 2012), and motion (Laparra & Malo,
2015). Interestingly, biological networks optimized to reproduce subjective image distortion display
statistical properties despite using no statistical information in fitting their parameters. Divisive
normalization obtained from perceptual distances substantially reduces the redundancy in natural
images (Malo & Laparra, 2010), and captures a large fraction of the available information in the
input (Malo, 2020). A similar factorization is obtained in Wilson-Cowan networks fitted to reproduce
subjective distortions (Gomez-Villa et al., 2020a). Here the perceptual distance between an image
x1 and its distorted version, x2, will be referred to as Dppx1,x2q and is computed in the response
representation y. For small distortions (i.e. x1 close to x2), equalization models imply that there is
an explicit relation between the perceptual distance, Dppx1,x2q, and the probability of the original
image according to the distribution of natural images, ppx1q (see Appendix A):

Dppx1,x2q

||x2 ´ x1||2
“
Dppx1,x2q
?
m RMSE

« ppxqγ (1)

where γ ą 0, and the Euclidean length ||x2 ´ x1||2 is just the Root Mean Squared Error (RMSE)
scaled by the dimensionality of the data m. As we are interested in correlations, ignoring the scaling
term, this relation leads to the first observation that we check experimentally in this work:

Observation 1 The perceptual quantity Dppx1,x2q

RMSEpx1,x2q
is correlated with ppx1q for small distortions

(i.e. when ||x1 ´ x2||2 ă δ for small δ).

This quantity is related to the sensitivity of the perceptual distance to displacements in the signal
domain, BDp

Bx . In fact, the (n-dimensional) gradient reduces to Dp

RMSE in the 1-d case (Appendix A.1).
The observation states that the perceptual distance is more sensitive in high probability regions.

This observation is experimentally illustrated in Appendix A.2, that shows a strong connection
between the sensitivity of perceptual distances (either NLPD or MS-SSIM) and the distribution of
natural images, as opposed to the sensitivity of Euclidean RMSE, which is not related to the data.

3 ON THE RELATION BETWEEN DISTANCES INDUCED BY AUTOENCODERS
AND PROBABILITY

In section 2 we showed the relation between perceptual distances and the distribution of natural
images, and here we connect the distance induced by a statistical model and the probability of the
data used to train it. We first discuss our observations, followed by describing the experimental setup.

Statistical learning is based on risk minimization which connects the model, the loss to minimize
and the distribution of the data. As a result, the trained model captures the statistics of the data. In
this section we elaborate on this connection by computing Euclidean distances in the representations
induced by the learned model. Here we focus on autoencoders, although the considerations apply to
other statistical learning settings. We will consider the three different options to define the induced
distances by an autoencoder shown in Fig. 1. We will refer to them as self-reconstruction distance
Ds “ ||x´ x̂||2, reconstruction distance Dr “ ||x̂1 ´ x̂2||2, and inner distance Din “ ||y1 ´ y2||2.
The autoencoder model will be denoted as f , which is consists of an encoder ep¨q and a decoder dp¨q,
f “ d ˝ e. The reconstructed data is, x̂ “ fpxq, and y is the data in the inner domain, y “ epxq. We
will explicitly show how all these three distances depend in different ways on the probability of the
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input data.

Given samples x from a distribution ppxq a generic autoencoder minimizes this risk:

R “ ExrLpfpxq,xqs “
ż

Lpfpxq,xqdP pxq “
ż

ppxq ¨ Lpx̂,xqdx (2)

where Exr¨s stands for expectation over variable x L is a loss between the input x and the reconstruc-
tion fpxq “ x̂. Since ppxq is unknown and often intractable, the risk is approximated using the empir-
ical risk minimization principle (Devroye et al., 1996; Vapnik, 1999): Remp “

1
n

řn
i“1 Lpfpxiq,xiq,

where the xi are samples from the training dataset of size n. Although it is well known, it is important
for the reasoning of this work to stress that, the function fpxq that minimizes the empirical risk
Remp is not the same function that would minimize the loss function L uniformly over all space. For
example, if we choose L “ ||xi ´ fpxiq||2, minimizing Remp is not minimizing the RMSE, but the
RMSE weighted by the probability of samples, Eq. 2. Therefore, the distance an autoencoder induces
will be different to the loss function used for training. Once the model, fpxq, is trained, it inherits
some properties of the data distribution, ppxq. This implies that the model’s behavior depends on the
probability of the region of the input space where it is applied.

In what follows, we make some observations on the relation between the distances Ds, Dr, and
Din and the distribution ppxq. We assume that L is the Euclidean distance (or RMSE), but similar
arguments qualitatively apply to distances monotonically related to RMSE.
Observation 2 The self-reconstruction distance in an autoencoder is correlated to the inverse of the
probability: Ds “ ||x´ x̂||29

1
ppxq .

The difference between the original and the reconstructed data point in denoising and contractive
autoencoders has been related with score matching: x ´ x̂ “ Blogpppxqq

Bx (Vincent, 2011; Alain &
Bengio, 2014). This expression can be formulated using the distribution of the noisy data instead
(Miyasawa, 1961; Raphan & Simoncelli, 2011). Here we argue that for a family of distributions the
modulus of the difference (||x ´ x̂||2) can be related with the distribution itself (Obs. 2). This is
true for Gaussian distribution, and a good proxy in general for unimodal distributions as the ones
proposed to describe the distribution of natural images (Portilla et al., 2003; Hyvärinen et al., 2009;
Lyu & Simoncelli, 2009; Malo & Laparra, 2010; Lyu, 2011; van den Oord & Schrauwen, 2014; Ballé
et al., 2016) (see details in Appendix B).

Our intuition comes from Eq. 2 that enforces small reconstruction errors in high probability regions,
i.e. when ppxq is high, ||x´ fpxq||2 should be low. This implies a dependency for the allowed error
(variance of the error) on the probability: V arxp||x´fpxq||2q9 1

ppxq , where V arx is computed around
the point x. This is the idea behind the use of autoencoders for anomaly detection. An autoencoder
trained for data coming from a particular distribution ppxq, obtains high self-reconstruction error
when it is evaluated on data from a different distribution.

Analogous to the distance used in Observation 1, we argue that the quantity Dr

RMSE is correlated with
the probability. The rationale is that if fp.q was trained to minimize the average distortion introduced
in the reconstruction, then Dr has to be more sensitive in high density regions.
Observation 3 The sensitivity of the reconstruction distance induced by an autoencoder in x1,
Dr

RMSE “
||fpx1q´fpx2q||2
||x1´x2||2

, is correlated with ppx1q when ||x1 ´ x2||2 ă δ for small δ.

While the autoencoder aims to reconstruct the original data, there are some restrictions which
make the learned transformation different from the identity. This transformation is going to put
more resources in regions where training data is more likely. This enforces a relation between the
sensitivity (derivative) of the model and the probability distribution, i.e. | Bf

Bx pxq| M ppxq (see an
example in Appendix C). Our hypothesis is that this relation should be positively (possibly non-
linearly) correlated. In particular we will be reasoning in the direction of using ppx1q||x1 ´ x2||2 as
a proxy for the induced reconstruction distance Dr when x1 and x2 are close.

While the distance in the inner domain, Din “ ||y1 ´ y2||2, is highly used (Ding et al., 2020; Zhang
et al., 2018; Gatys et al., 2016), it is the most difficult to interpret. The main problem is to decide
which representation inside the model to use. For autoencoders, the inner representation is usually
selected as the layer with the least dimensions, although it is arbitrary what is defined as the inner
representation. In compression autoencoders one has two suitable candidate representations, before
or after the quantisation step. Both have different interesting properties, however in either cases the
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Figure 2: Illustrating Observations 2, 3, and 4. Spearman correlations ρSpD, ppx1qq between
different distances and the probability of point x1 are shown. Each point corresponds to the correlation
for one autoencoder trained for a particular rate regime.

sensitivity conjecture also makes qualitative sense for Din.

Observation 4 The sensitivity of the distance induced by a compression autoencoder in the inner
domain at point x1, Din

RMSE “
||epx1q´epx2q||2
||x1´x2||2

, correlates with ppx1q when ||x1 ´ x2||2ăδ for small δ.

This observation has a strong connection with density estimation, independent component analysis and
data equalization. The density target under a transformation is ppxq “ ppepxqq| Be

Bx pxq|. If one wants
to describe p(x), a suitable target distribution for the transform domain is the uniform distribution.
Therefore, if one assumes ppepxqq constant, the determinant of the Jacobian of the transformation
is equal to the probability distribution as assumed in the equalization model (Observation 1), and
similarly, one would have ||epxq´epx`∆xq||2

||x´x`∆x||2
« ppxq. A similar result can be obtained modeling the

noise in the inner domain (Berardino et al., 2017). Note this observation has parallelisms with the
procedure that the human visual system has to do in order to process the natural images as stated in
Sec. 2.

Experiment. Here we explore the relation of the previously defined distances with the probability
distribution of the training data using a compression autoencoder in a toy 2D example. Compression
using autoencoders is presented as follows (Ballé et al., 2018; 2016); an input x is transformed using
the encoder, or analysis transform, epxq to an encoding y. Scalar quantisation is then applied to y to
create a vector of integer indices q and a reconstruction ŷ. The quantisation is approximated during
training with additive uniform noise ỹ “ y`∆y to get a continuous gradient. It is then transformed
back into the image domain using the decoder dpŷq to create the reconstructed image x̂.

Given x, the aim is to find a quantised representation q that minimizes the approximated entropy, or
rate R “ Hrppỹqs, estimated by a density model p, whilst also minimizing the distortion loss, D,
usually weighted by a Lagrange multiplier in order to achieve different compression rates. Thus the
loss function L “ R` λD becomes

L “ Exr´ log2 ppepxq `∆yqs ` λDpx, dpepxq `∆yqq. (3)

In order to have explicit access to the data distribution, a 2D Student-t distribution is used with one
dimension having high variance and the other low variance. The Student-t distribution is a reasonable
approximation for the distribution of natural images (van den Oord & Schrauwen, 2014). A 2 layer
MLP is used for e and d. For full experimental setup see Appendix C. The induced distances are
calculated for a set of samples taken from the Student-t distribution. Fig. 2 shows that these induced
distances are correlated with the probability ppx1q. The three observations hold for intermediate
regimes, low rate gets bad reconstruction while high rate gets almost no compression. Observation 2
(Ds) holds at low and medium rates where the Spearman correlation is -0.68 to -0.4, but starts to fail
at 4.67bpp (bits-per-pixel) where correlation approaches -0.18. The same occurs for Observation 3
(Dr) where at high entropy the correlation decreases slightly from 0.49 at 2.03bpp to 0.31 at 4.67bpp.
Observation 4 (Din) holds over all rates but especially at high rates where the largest correlation of
0.90 is found. These results indicate that the learned representations inside an autoencoder correlate
with the training distribution. Although we test at a wide range of rates, if the entropy is very
restricted, f “ d ¨ e has no capacity and in the limit may even be a constant function. However, this
is a very extreme case and, in practice, an autoencoder like this would never be used.
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4 ON THE RELATION BETWEEN DISTANCES INDUCED BY AUTOENCODERS
AND PERCEPTION

As stated above, machine learning models trained on natural images for classification or compres-
sion can lead to successful perceptual distances (Zhang et al., 2018; Ding et al., 2020; Bhardwaj
et al., 2020). Similarly, human-like Contrast Sensitivity Functions arise in autoencoders for image
enhancement (Gomez-Villa et al., 2020b; Li et al., 2021). Reproducing CSFs is key in percep-
tual distances (Mannos & Sakrison, 1974; Watson, 1993). The latent space of a machine learning
model can also be used for smooth interpolation between images (Connor & Rozell, 2020; Berthelot
et al., 2018) whilst the statistics of activations in different layers can be used to interpolate between
textures (Vacher et al., 2020).

The emergence of perceptually relevant distances (or key features to compute perceptual distances)
in image classifiers and autoencoders trained to optimize Euclidean distortions over natural images
should not be a surprise given the correlations found in Sections 2 and 3: both the perceptual
distances and the autoencoder-induced distances are correlated with the probability. Therefore, these
two distances should be correlated as well, and more importantly, with the actual opinion of humans.
We indeed find this to be the case:

Observation 5 Both the reconstruction distance induced by an autoencoder, Drpx1,x2q “

||fpx1q ´ fpx2q||2, and the inner distance, Dinpx1,x2q “ ||epx1q ´ epx2q||2 are correlated with
the subjective opinion given by humans.

Experiment. The TID 2013 dataset (Ponomarenko et al., 2013) contains 25 reference images, x1,
and 3000 distorted images, x2, with 24 types and 5 levels of severity of distortion. Also provided
is the mean opinion score (MOS) for each distorted image. This psychophysical MOS represents
the subjective distortion rating given by humans which is the ground truth for perceptual distances –
precisely what human vision models try to explain.

For all experiments, networks to compute Dr and Din are pretrained models from Ballé et al. (2016)1.
See the architecture details in Appendix D.

As in Section 3, the autoencoder induces distances in the reconstruction and inner domain. Fig. 3
reports the Spearman correlations between the induced distance and MOS, ρpD,MOSq, for the TID
2013 database. As a reference, we include the correlation between the MOS and RMSE “ ||x1´x2||2.
Results in Fig. 3 confirm Observation 5: correlations are bigger for both induced distances than for
RMSE, particularly for Din (with a maximum of 0.77). The correlations for models trained with
MSE or MS-SSIM are very similar in medium to high rates where the difference in low rates can be
explained by the double counting effect described in Sec. 5.1. Correlations are bigger in the inner
representation than the reconstructed representation, as in the 2D example in Fig. 2. For both induced
distances, the maximum correlation for the reconstructed domain occurs at the highest bit-rate (more
natural images). Interestingly, for networks trained using the perceptual distance MS-SSIM the
correlations remain similar. It is common practice to use Din distance as a more informative distance
between two data points than Dr, as with LPIPS (Zhang et al., 2018), DISTS (Ding et al., 2020) and
PIM (Bhardwaj et al., 2020), where the correlation these methods achieve with human opinion scores
is explained by the correlation in the inner domain.

It should be noted that specific examples of a reference and distorted image with the same internal
representation, epx1q “ epx2q, are similar to metamers in humans - physically different objects that
elicit the same internal representation and thus have 0 perceptual distance (Freeman & Simoncelli,
2011). Whilst we could find images with maximum RMSE in the image domain but with the
embedded distance being 0, the existence of these data points not included in TID does not reduce
the validity of the experiment.

5 OPTIMIZING MACHINE LEARNING MODELS WITH PERCEPTUAL DISTANCES

In Sec. 2 it was established that the sensitivity of perceptual distances at a point is correlated
with the probability of that point and in Sec. 3 we showed that distances induced by autoencoder

1Code taken from https://github.com/tensorflow/compression, under Apache License 2.0.
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Figure 3: Illustrating Observation 5. Spearman correlations ρS between induced distances (Dr

or Din) and mean opinion score (MOS) for images from TID 2013 dataset (Ponomarenko et al.,
2013). Pretrained compressive autoencoders at different bitrates were used. factorized-mse denotes
networks trained using MSE D “ ||x1 ´ x2||

2
2 in Eq. 3, and factorized-msssim networks use

D “ 1´MS-SSIMpx1 ´ x2q in Eq. 3.

representations also inherit a correlation with the probability of the point (which makes them acquire
perceptual properties as seen in Sec. 4). This raises the question whether perceptual distances can be
used in place of the data distribution. Empirically, we find this to be the case:
Observation 6 Optimizing using a perceptual distance Dp as loss function has a similar ef-
fect as optimizing using the RMSE weighted by the probability, arg min

řn
i“0Dppxi, x̂iq «

arg min
řn
i“0 ppxiq ¨ ||xi, x̂i||2.

Using a perceptual distance in an empirical risk minimization context (Eq. 2) appears to have a double
counting effect of the distribution of natural images; once in the sensitivity of the perceptual distance
and a second time when optimizing over the set of images.

In Sec. 5.1 we show that using a perceptual distance has a similar effect to using MSE weighted by
ppxq. Excessive consideration of ppxq may explain why using perceptual distances instead of MSE
has little gain in some machine learning tasks (Hepburn et al., 2020; Ballé et al., 2016) despite the
large difference in replicating perceptual judgments.

In Sec. 5.2 we present an extreme special case of this setting, where one has no samples from the
distribution to minimize over. Instead, the model has direct access to the perceptual distance, which
acts as a proxy of ppxq. This effect can be also seen in Fig. 3 where the difference of using or not
using a perceptual distance can only be observed at low rates (poor quality / non-natural images):
when dealing with poor quality data, extra regularization is helpful. This regularization effect is
consistent with what was found when using perceptual distances in denoising (Portilla, 2006). Finally,
in Appendix E.1 we show the effect when using a batch size of 1 in training.

5.1 PERCEPTUAL DISTANCES AND PROBABILITY HAVE A SIMILAR EFFECT IN RISK
MINIMIZATION

Here we examine this effect in compression autoencoders, using either RMSE, RMSE weighted by
the probability or a perceptual distance as a loss function. State of the art density estimators like
PixelCNN++ can be used to estimate ppxq only on small patches of images. On the other hand,
perceptual distances are designed to estimate distances with large images. As such, we choose
to compare the effect in two different scenarios: the 2D example used in Sec. 3 and the image
compression autoencoders used in Sec. 4.

The rate/distortion is used as a proxy for the general performance of a network. The relative
performance is obtained by dividing the performance of the network optimized for the RMSE
weighted by the probability (or the perceptual distance) by the performance of the network using
RMSE. A relative performance below 1.0 means a performance gain using the probability (or
perceptual distance). We evaluate the performance with data sampled from a line through the
distribution from high to low probability. Fig. 4 shows the relative performance for both the 2D
example and sampled images. For the 2D case, sampling through the distribution is trivial, px, yq P
pr0, 35s, 0q. For images, we modify image contrast of the Kodak dataset (Kodak, 1993) in order to
create more and less likely samples under the image distribution (low contrast images are generally
more likely (Frazor & Geisler, 2006)). α dictates where in the contrast spectrum the images lie,
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Figure 4: Illustrating observation 6. Figure shows the relative performance of the models for
samples across the support of the respective data distributions. Both training with the probability (left)
and the perceptual distance (right) cause the model to allocate more resources to high probability
regions. Left: models trained with D “ ppxq ¨ ||x1 ´ x2||

2
2 in Eq. 3 divided by performance of

models trained with D “ ||x1 ´ x2||
2
2 on the 2D Student-t and evaluated using samples along x-axis

(see Appendix C). Right: models trained for image compression with D “ 1´MS-SSIMpx1,x2q in
Eq. 3 divided by performance of models trained with D “ ||x1 ´ x2||

2
2.

where α “ 0.0 represents very low contrast (solid gray), α “ 1.0 is the original image and α “ 2.0
illustrates high contrast. Details on how the performance is computed and how the samples from
different probability regions are taken are in Appendix D.

We observe a performance gain in data points that are more probable and a performance loss away
from the center of the distribution. This behavior is similar in both the Student-t example when
multiplying the distortion by the probability, and when using a perceptual distance as the distortion
term with images. In the 2D example (a) the maximum average performance gain across rates at the
center of the distribution is 0.86, whereas with images (b) the maximum average performance gain
is 0.64 at α “ 0.08. This leads us to the conclusion that multiplying by the probability and using a
perceptual distance have a similar effect on the learning process.

5.2 TRAINING WITHOUT DATA

While in Appendix E.1 we show the effect of using a batch size of 1 during training, here we
focus on the most extreme example. We show how explicit access to the samples from the data
distribution might not be needed. If given the probability distribution, one can weight samples
drawn from a uniform distribution with the same dimensionality and evaluate the likelihood of
these points belonging to the original distribution. With the 2D Student-t example, using a uniform
distribution and minimizing a loss weighted by the likelihood the samples belong to the Student-t,
where the optimization would be minx„U L “ minx„U pτ pxq

0.1 ¨ pR` λDq, where pτ pxq denotes
the probability of point x belonging to the 2D Student-t distribution (see Fig. 13b in Appendix C). In
the 2D example this is trivial, however this is not the case for natural images. In Sec. 2, it can be seen
that perceptual distances encode some information about the distribution natural images and, as such,
can be used in a similar fashion to pτ pxq when training on uniform distributed data. The perceptual
distance can be minimized over uniform noise and should result in realistic looking images.

We will use the previous setting of compressive autoencoders but for ease of training, we approximate
the rate-distortion equation in Eq. 3. Instead of optimizing the rate, we set an upper bound on the
entropy of the encoding by rounding the points to a set of known code vectors L and purely optimize
for the distortion (Ding et al., 2021; Agustsson et al., 2019). We use two scenarios, L “ t´1, 1u
leading to an entropy of 0.25 bpp and L “ t´2,´1, 0, 1, 2u 0.5 bpp. We refer the reader to
Appendix E for more details.

Fig. 5 shows the result of minimizing MSE, NLPD and MS-SSIM over uniform data. Clearly, the
networks trained with perceptual distances NLPD and MS-SSIM perform significantly better. The
mean PSNR at 0.25 bpp over the Kodak dataset for the network trained using MSE is 13.17, for
MS-SSIM is 18.92 and for NLPD is 21.21. In Appendix D we report results for each network
evaluated with respect to PSNR, MS-SSIM and NLPD at 0.25 bpp and at 0.50 bpp. Using these
perceptual distances significantly reduces our need for data. Although we have not explored how the
amount of data scales affects the reconstructions, the extreme of having no data from the distribution
of natural images but still obtaining reasonable reconstructions is a clear indication of the relationship
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(a) minupxq ||x ´ x̂||2 (b) minupxq NLPDpx, x̂q (c) minupxq 1 ´ MS-SSIMpx, x̂q

Figure 5: Illustrating observation 6. The perceptual distance provides regularization when one has
no samples from the training distribution. Decoded image (compressed at 0.25 bpp) encoded with
networks trained using data from a uniform distribution and Euclidean vs. perceptual losses.

between perceptual distances, statistical learning and probability.

6 FINAL REMARKS

Discussion Statistical learning and perceptual distances are related through their dependence on the
probability distribution of the input data. While for statistical learning this dependence is direct and
by construction, for perceptual distances the dependence comes from the evolution of human vision
to efficiently process natural images. We are not the first (at all) arguing that human perception has
to be related with the statistics of the natural images. However, the results presented here explicitly
compare reasonable perceptual distances with accurate models of the PDF of natural images for the
first time.

Taking inspiration from equalization-based perception models, we show that the sensitivity of
perceptual distances is related to the distribution of natural images (Sec. 2). This is further shown
experimentally in Appendix A. We also show that the distances induced by an autoencoder are
correlated with the distribution used to train it. In particular, similarly to perceptual distances, the
sensitivity of some of these autoencoder-induced distances are positively correlated with the PDF
of images (Sec. 3, Fig. 2). In image compression, without imposing perceptual properties at all,
the autoencoder-induced distances present a high correlation with human perception – a maximum
Spearman correlation of 0.77 (Sec. 4, Fig. 3). The goal in compression is highly related with the
efficient coding hypothesis proposed by Barlow to explain the organization of human vision. Note
that a widely accepted perceptual distance like SSIM has a substantially lower Spearman correlation
with psychophysical MOS in the same experiment (ρpSSIM,MOSq “ 0.63 (Ponomarenko et al.,
2013) while maxpρpDin,MOSqq “ 0.77).

Our observations suggest that there is a double counting effect of the probability distribution when
optimizing models empirically and using perceptual distances. This can be explained by the use of
the data in the expectation, but also implicitly in the perceptual distance. Consequently, perceptual
distances can cause the model to over-allocate resources to high likelihood regions (Sec. 5.1, Fig. 4).
On the positive side, they can act as helpful regularizers in the case of limited or no data (Sec. 5.2,
Fig. 5). By minimizing a perceptual distance over uniform noise, we show it is possible to successfully
reconstruct images with a compressive autoencoder at low entropy. This effect has implications on the
design of generative models, showing that perceptual distances can help when training with limited
datasets where the the statistics of the dataset at hand might not match those of natural images.

Conclusion We present an empirical exploration of the three-way relationship between (a) image
representations (either learned as autoencoders, or natural, as perception models), (b) the distribution
of natural images, and (c) actual human perceptual distances. We describe the experimental setup we
used to examine this relationship and summarize our findings in six concise observations. Naturally,
our experiments have limitations, such as regarding choices of perceptual and density models (MS-
SSIM, PixelCNN++, etc.). However, the presented observations represent a step towards a better
understanding of how both machine learning and biological perception is informed by the distribution
of natural images.
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A ON THE RELATION BETWEEN PERCEPTUAL DISTANCE AND IMAGE
PROBABILITY

A.1 DERIVING EQUATION 1

Classical literature in psychophysics (Mannos & Sakrison, 1974; Watson, 1993; Laparra et al.,
2010) assumes that the perceptual distance (subjective distance) between two images is given by the
Euclidean difference between the inner representations of the original and the distorted images, Spx1q

and Spx2q, where Sp¨q is the function that represents the response of the biological visual system.
Given the non-trivial nature of S, the perceptual distance in the input domain is non-Euclidean, and
described by a non-diagonal (and eventually image dependent) perceptual metric matrix, W :

Dppx1,x2q “ ||∆y||2 «
b

px2 ´ x1q
J ¨W ¨ px2 ´ x1q (4)

where, following (Epifanio et al., 2003; Malo et al., 2006),W “ BS
Bx

J
¨ BS
Bx . Assuming a 1-dimensional

scenario for simplicity:

Dppx1,x2q «
BS

Bx
||x2 ´ x1||2 (5)

Now, following the perceptual equalization literature (Laughlin, 1981; Twer & MacLeod, 2001; Malo
& Gutiérrez, 2006; Laparra et al., 2012; Laparra & Malo, 2015), the determinant of the Jacobian of
the response is related to a monotonic function of the probability, | BS

Bx | “ ppxqγ , and then, we get
Eq. 1:

Dppx1,x2q

||x2 ´ x1||2
“
Dppx1,x2q
?
m RMSE

« ppxqγ (6)

where γ ą 0 (typically γ “ 1 for uniformization and γ “ 1
3 for error minimization) and m is the

dimensionality of the data.

The fact that Eq. 1 is a descriptor of the sensitivity of the distance is easy to see in the 1-d case. Note
that the n-dimensional gradient vector is (Martinez et al., 2018): BDp

Bx “ 1
Dp

∆SJ ¨ BS
Bx . As in the

one-dimensional case Dp “ ||∆S||2, using Eq. 5, it holds BDp

Bx “
Dp?

m RMSE .

A.2 EXPERIMENTAL ILLUSTRATION OF OBSERVATION 1

To illustrate Observation 1 we evaluate the correlation between Dp

RMSE and the probability of the natural
images. The results of the experiment will depend on (a) how closely the considered Dp describes
human perception, and (b) how closely human perception actually equalizes ppxq. In any case, note
that this correlation should be compared to the zero correlation obtained if one naively assumes that
the perceptual distance is just the RMSE. The illustrations consider (a) two representative measures
of perceptual distortion: the Normalized Laplacian Perceptual Distance (the NLPD (Laparra et al.,
2016)) and the classical Multi-Scale SSIM (Wang et al., 2003), and (b) a recent model for the
probability of natural images, the PixelCNN++ (Salimans et al., 2017)2. Here we take images, x,
from the CIFAR-10 dataset (Krizhevsky et al., 2009) which consists of small samples that we can
analyze according to the selected image model. We corrupt the images with additive Gaussian noise
such that ∆x „ N p0, σ2q for a wide range of noise energies. A pretrained PixelCNN++ model is
used to estimate logpppxqq of all original images.

Figure 6 shows the correlations, ρp Dp

RMSE , ppxqq, together with a convenient reference to check the
quality of the selected perceptual distances for natural images: we also show the correlation of NLPD
and MS-SSIM with the naive Euclidean distances ρpDp,RMSEq. In these figures, natural images
live at the left end of the horizontal axis (uncorrupted samples x). Images with progressively higher
noise levels depart from naturalness. The right end of the scale corresponds to highly corrupted and
hence non-natural images. For natural images (those with negligible distortion), both perceptual
distances are not correlated with RMSE (RMSE is not a plausible perceptual distances). For natural
images the correlation considered in the Observation 1 is high (red/gray curves). For σ “ 1, the
Spearman correlation is 0.51 for NLPD and 0.63 for MS-SSIM compared to RMSE (which would be
ρpRMSE
RMSE , ppxqq “ 0). The correlation between the perceptual distances and the Euclidean RMSE

increases for non-natural images, but note also that the relation between Dp

RMSE and ppxq decreases for

2https://github.com/pclucas14/pixel-cnn-pp under MIT License
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progressively non-natural images.

These results indicate a strong connection between the sensitivity of perceptual distances (either
NLPD or MS-SSIM) and the distribution of natural images, as opposed to the sensitivity of Euclidean
RMSE, which is not related to the data.

Figure 6: Illustration of Oberservation 1. Spearman correlations ρS between the sensitivity of the
perceptual distances NLPD and MS-SSIM and logpppxqq (in red/gray). Distances are computed
between x, and a distorted version with additive Gaussian noise, x`∆x, with deviation σ. Correlation
of RMSE with perceptual distortions (in orange/brown) and of RMSE with logpppxqq (in blue) are
included for comparison. MS-SSIM is a similarity index, so 1-(MS-SSIM) is a distortion measure.

A.3 DETAILS OF CIFAR 10 EXPERIMENTS

Fig .7 shows how NLPDpx1,x2q

RMSE and 1´MS-SSIMpx1,x2q

RMSE vary with logpppxqq for each specific image and
the two extreme situations of very low and very high noise variance. It can be seen that for low
variance, σ “ 1, the probability and the fraction of the perceptual metric are more related than for
high variance. This is coherent with the idea of the Observation 1.

(a) NLPD (b) MS-SSIM

Figure 7: Scatter plots showing logpppxq and perceptual distances NLPD and MS-SSIM between
images from CIFAR-10 with additive Gaussian noise for σ “ 1, 50

Fig. 8 shows the distribution of logpppx ` N p0, σ2qqq for σ “ t0, 1, 2, 5, 10, 20, 30, 40, 50u. A
pretrained PixelCNN++ model was used to evaluate logpppxqq. It is clear that when more noise is
introduced in the images the probability of being a natural image decrease (As expected).
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Figure 8: Distributions of logpppx`N p0, σ2qqq for various σ where logpppxqq is estimated using
PixelCNN++ model.

B SELF-RECONSTRUCTION DISTANCE AND SCORE MATCHING IN
AUTOENCODERS

In (Vincent, 2011) for denoising autoencoders and in (Alain & Bengio, 2014) for contractive autoen-
coders it is stated that:

x´ x̂ “
Blogpppxqq

Bx
(7)

or equivalently x´ x̂ “ 1
ppxq

Bpppxqq
Bx . From this last formula we can see already that the difference

between the original data and the reconstructed data is proportional to the inverse of the probability,
as stated in Obs. 2 (just ignoring the term Bpppxqq

Bx for now).

In particular for the Gaussian distribution we have that the score matching:
Blogpppxqq

Bx
“ ´2

x´ µ

σ2
, (8)

has a monotonical relation with the inverse of the probability (see Fig. 9).

Score matching has been proven to be more general than the Gaussian noise scenario in denoising
autoencoders (Alain & Bengio, 2014), and our observation (based on Eq. 2) is even more general
than this because Eq. 4 is not attached to any particular noise/metric. Our observation 2 does not
have the same analytical expression than the score matching result, but we see it is consistent with the
score matching solution in the high probability regions (around the mode of the PDF, see Fig. 9).Our
observation observation forDs and the score matching result only differ in the low probability regions.
However there are several things to take into consideration. The obvious one is that we are going to
have few data points that are going to fall in low probability region. This is important not only in
evaluation terms but also during the training procedure of the autoencoder. Note that the autoencoder
is not going to be properly trained in these regions and therefore it will tend to interpolate what it has
learn in medium probability regions. For instance the autoencoder is going to try to project the data
that from very low probability regions into the manifold, therefore the distance between the original
data and the reconstructed data (||x´ x̂||2) is going to be high (although the theory, Eq. 7 infers that
it should be extremely low).
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Figure 9: Magnitude of the deviation introduced by denoising autoencoders in a Gaussian PDF (first
column) and in different PDFs proposed to model natural images (rest of the columns). The score
matching, Blogpppxqq

Bx , is correlated to 1
ppxq in the mode of the distributions. Zoomed-in in the last row.

C 2D EXPERIMENTS

Throughout the paper, a 2D example is used to explore the various observations in a simplified setting.
Here, details can be found on the exact experimental setup.

We define the probability density function of our 2D Student-t distribution as
µ` σtν

where we use µ “ p 0
0 q, σ “

„

0.5 0
0 0.2



and tν are samples from a 2D Student-t distribution with

degrees of freedom ν “ 2. A dimension with high variance and one with low variance were chosen
to mimic the low and high frequency bands in natural images.

A 3-layer multilayer perceptron (MLP) is used for e and d, where the dimensions through the network
are r2 ÝÑ 100 ÝÑ 100 ÝÑ 2s for e and the reverse for d. The quantisation used is rounding to the
nearest integer, which is approximated during training with additive uniform noise as in uniform
scalar quantiastion the gradients are zero almost everywhere. Fig. 10 shows the architecture of the
autoencoder. Softplus activations are used on all hidden layers but omitted from the final layers to not
restrict the sign of the representation or reconstruction. The network is optimized using Eq. 3, using
different λ values to achieve different rates. Adam optimizer was used, with a learning rate of 0.001,
a batch size of 4096 and 500,000 steps where for each step a batch is sampled from the distribution.
The large batch size was to account for the heavy tailed distribution used. Fig. 11 shows a) samples
from the 2D Student-t distribution b) density of the distribution and c) resulting compression to a rate
of 2.65 bits per pixel (bpp) where the dots represent code vectors and lines represent quantisation
boundaries.

In Sec. 5.1, we hypothesize that one can cause a model to focus on high probability regions by
including the probability in the loss function. In order to see the effect of including probability in
the distortion term, similar to what we hypothesize perceptual metrics are doing for images, we use
ppxqγ ¨D as the distortion term, with γ “ t´0.1, 0, 0.1u. γ was chosen to have a small magnitude to
guarantee stable training and to avoid the model collapsing to one code vector assigned at the center
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Figure 10: The network architecture for the 2D example where e is the encoder, d the decoder, Q is
the quantisation step, AE is a arithmetic encoder and AD is the arithmetic decoder. The quantisation
Q used is rounding to the nearest integer, which is approximated by additive uniform noise at training
time.

(a) Samples (b) Density (c) Compressed representation

Figure 11: The 2D Student-t distribution used throughout the paper and one compressed representation
found by minimizing Eq. 3. For c) the lines represent quantisation boundaries (within a bin, all points
are compressed to the same point by e and the dots represent code vectors (where these points are
projected to by d.

of the distribution. Thus the loss functions to optimize for are
L1 “ R` λD (9)

L2 “ R` ppxq0.1 ¨ λD (10)

L3 “ R` ppxq´0.1 ¨ λD (11)
where the λ parameters are tuned so that the networks have similar rate ranges and for D the sum of
squared errors (SSE) is used. Fig. 12 shows examples of compression resulting from optimizing each
of the 3 loss functions. The figure clear shows that when multiplying the distortion by ppxq0.1 the
quantisation bins and code vectors concentrate on the support of the distribution, whereas multiplying
by ppxq´0.1 enforces a more uniform distribution of code vectors.

In Sec. 5.1 we observe the performance gain in using ppxq in the loss function. For a network, given
a set of points to evaluate on we take the general performance to be the distortion over the rate,

P “ D
R

(12)
Note that this is a sort of normalization in order to compare networks that compress to different rates.
For the 2-D example, the gain in performance in including ppxq0.1 in the distortion term can then be
defined as

P1

P2
(13)

where P1 is the performance of a network trained with loss L1 (Eq. 9) and P2 is the performance of
network trained with loss L2 (Eq. 10). For the experiment in Sec. 5.1, the relative performance is
calculated for points samples along the positive x-axis, px, yq P pr0, 35s, 0q and the results shown in
Fig. 4.

In Sec. 5.2, we show that autoencoders can be trained without data. Instead, provided with direct
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(a) L1 “ R` λD (b) L2 “ R` ppxq0.1 ¨ λD (c) L3 “ R` ppxq´0.1
¨ λD

Figure 12: Resulting compression when using the 2D Student-t distribution and including the
probability distribution in the loss function. b) is seen as including information about the distribution
in the loss function and c) is seen as removing it. BPP is bits per pixel (the rate) and SSE is sum
square errors (distortion) evaluated on a validation set.

(a) minUpxqR`D (b) minUpxq pτ pxq
0.1
¨R`D

Figure 13: Resulting compression when using a 2D uniform distribution across the space, where
left) optimized the rate-distortion equation over the uniform distribution and right) optimized for
the probability belonging to 2D Student-t weighting the rate-distortion equation over the uniform
distribution.

access or a proxy to the probability distribution, one can achieve reasonable results when training over
samples from a uniform distribution. Fig 13b shows the resulting compression using the 2D Student-t
distribution where the loss that has been minimized is minx„U L “ pτ pxq

0.1 ¨ pR ` λDq, where
pτ pxq denotes the probability of point x belonging to the 2D Student-t distribution. This training
procedure requires no data sampled from the Student-t distribution, only access to evaluations of
the probability and results in code vectors assigned to the support of the distribution, namely the
x-axis which has the highest variance for the 2D student distribution. The loss functions contains
information on the probability distribution and thus does not require samples.

In Fig.4 we show the curves of the relative performance of the 2D example. In order to facilitate the
visualization we use a 20 degree polynomial fitting to soft the curve. In Fig.14 we show the result
after and before the fitting. Note that the fitting makes sense since there will be a variability between
the reconstruction error of close points since point close to the code vectors will be reconstructed
much better than points from the same region but far from the code vector.
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(a) 20 degree polynomial fit to each curve. (b) Raw values.

Figure 14: Relative performance of networks for samples along a line through the support of the
respective distributions. Left: networks trained with D “ ppxq ¨ ||x1 ´ x2||

2
2 in Eq. 3 divided by

performance of networks trained with D “ ||x1 ´ x2||
2
2 on the 2D Student-t and evaluated using

samples along x-axis. Left) shows 20 degree polynomial fit to each network and right) shows the raw
values.

D IMAGES

D.1 COMPRESSION AUTOENCODER

In Sec. 4 & 5.1 pretrained autoencoders are used, namely the factorized prior model from (Ballé
et al., 2018). This model has layers of convolution operations and generalized divisive normalization
activations, the architecture is show in Fig 15.
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Figure 15: Architecture for networks used in Sec. 4 & 5.1 which is the the factorized prior model
from (Ballé et al., 2018) where e is the encoder, d the decoder, Q is the quantisation step, AE is a
arithmetic encoder and AD is the arithmetic decoder. The quantisation Q used is rounding to the
nearest integer, which is approximated by additive uniform noise at training time. GDN denotes
a generalized divisive normalization activation, and Conv2d is a 2-d convolution operation. The
convolution parameters are filters × kernel height × kernel width - down- or upsampling stride. For
the 5 lower bit rates, N “ 128, M “ 192 and for higher rates N “ 192, M “ 320.

We take the performance gain again as Eq. 13, where P1 is the performance of a network trained with
using MSE as the distortion D and P2 is the performance of a network trained with using MS-SSIM
as distortion (akin to ppxq ¨D in the 2D case).

D.2 SAMPLING THROUGH DISTRIBUTION OF IMAGES

Starting from the center of the distribution (high probability), a direction on the support of the
distribution is chosen and samples are generated along this line. For the 2D distribution, we use
px, yq P pr0, 35s, 0q to generate samples along the x-axis. Fig. 4 shows the proportion defined
earlier for samples generated along the x-axis. With the 2D example we have explicit access to the
probability distribution, a luxury we are not afforded when it comes to images due to the probability
distribution being intractable. Drawing a line through the distribution of natural images in the same
way as in the 2D example would be ideal, although infeasible. However, it has been shown that
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lower-contrast images are more likely (Frazor & Geisler, 2006) and as such we use contrast as an
axis to sample through the distribution of natural images. For each image in the Kodak dataset
a low-contrast and high-contrast version is generated. Samples are then taken between a linear
interpolation between the low contrast and original, and the high contrast and original for all images
in the Kodak dataset (Kodak, 1993). For each image in the Kodak dataset, a high contrast version
xhigh and a low contrast version xlow are created. Linear interpolation is used to get a gradual shift
from low contrast-original-high contrast.

x̂ “

"

p1´ αq ¨ x` α ¨ xhigh if α ą 1

p1` αq ¨ x´ α ¨ xlow if α ď 1
(14)

for x images in the Kodak dataset and α P r0, 2s, where α “ 0 denotes the original image. 200 α

Figure 16: Example of altering the contrast of an image from the Kodak Image dataset varying α in
Eq. 14

values are sampled. Fig. 16 shows an example for samples generated for one image. We compare
networks with probability included in the loss function, in the form of perceptual distances, to those
without. The ratio defined earlier will be used, where P1 is the distortion/rate for networks optimized
with MS-SSIM and P0 is distortion/rate for networks optimized for MSE. The ratio defined in
Eq. 13, where the numerator denotes networks optimized using perceptual metric MS-SSIM and the
denominator denotes networks optimized for MSE. All networks were pretrained and taken from the
Tensorflow Compression package. Fig. 4 shows the ratio of performance as we vary α.

E ENTROPY LIMITED AUTOENCODERS

For ease of training, in Sec. 5.2 we simplify the rate-distortion loss function by setting an upper bound
on the entropy and just minimizing for the distortion as in (Ding et al., 2021; Agustsson et al., 2019).
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Figure 17: Architecture of networks used in Sec. 5.2 where e is the encoder, d the decoder, Q is the
quantisation step, AE is a arithmetic encoder and AD is the arithmetic decoder. The quantisation
Q used is rounding to the nearest center defined by L, which is approximated by Eq. 15 at training
time. GDN denotes a generalized divisive normalization activation, and Conv2d is a 2-d convolution
operation. The convolution parameters are filters × kernel height × kernel width - down- or upsampling
stride. For all rates N “ 128, M “ 64

Setting an upper bound on the entropy of the encoding with L centers c1, ..., cL, the soft differentiable
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approximation is

ŷi “
L
ÿ

j“1

expp´spyi ´ cjq
2q

řL
k“1 expp´spyi ´ ckq2q

cj (15)

where s is the quantisation scale parameter which we fix to 1. Given that we know the dimensionality
of y and a maximum of L integers that can be represented, an upper bound on the entropy can be
obtained;

Hpyiq ď
W ˆH

2n ¨ 2n
¨m ¨ log2pLq (16)

where rH,W s are dimensions of the image, n is the number of downsampling layers you have in
the network with stride 2, m is the number of channels in your embedding and L is the number of
centers the embeddings are rounded to.

For all experiments in Sec. 5.2, an architecture is used with 5 convolutional layers and 4 GDN layers
in both e and d. Fig. 17 shows the entire architecture. In this case, the quantisation is performed by
rounding values to the centers defined by L. Table 1 shows the results of training these autoencoders
using different training distributions, a distribution of natural images P pxq and a uniform distribution
Upxq and using different loss functions, perceptual metrics NLPD and MS-SSIM and the MSE. 2
networks for each distribution and loss was trained, one compressing to an upper bound of 0.25bpp
and another 0.5bpp. Probably the most interesting part of this table is shown in the PSNR column.
Note how for high entropy the network trained to minimize NLPD gets better performance in PSNR
than the one trained for MSE (which is basically PSNR). This effect matches with the double counting
effect proposed in sec. 5. The idea is that minimizing the NLPD is related with minimizing the
expected MSE which is what is at the end being evaluated. This effect is much more visible in the
same column when using the uniform distribution for training. In this case the improvement when
using NLPD is clear regard the MSE. This can only be the case if the NLPD has some properties of
the distribution of the natural images.

Table 1: Evaluating autoencoders trained with both uniform distribution Upxq and the OpenImages
dataset (Krasin et al., 2017) Ppxq at two different rates. Reported are the PSNR, MS-SSIM and
NLPD evaluated for all networks. These networks use the approximate in Eq. 15. Bold values
indicate the best value for each evaluation metric at a certain rate (bpp) with a certain distribution.

Training Distribution Bits per pixel
(bpp)

Distortion
Loss PSNR MS-SSIM NLPD

P pxq

0.25
MSE 29.39 0.9755 2.615
MS_SSIM 26.91 0.9754 4.080
NLPD 27.85 0.9655 2.510

0.5
MSE 29.73 0.9777 2.450
MS_SSIM 27.53 0.9827 4.139
NLPD 30.13 0.9809 1.792

Upxq
0.25

MSE 13.17 0.4555 16.50
MS-SSIM 18.92 0.7483 10.43
NLPD 21.21 0.7396 8.090

0.5
MSE 13.15 0.4396 16.89
MS-SSIM 18.90 0.7659 10.37
NLPD 20.59 0.7335 9.132

Fig. 18 shows visual results of the effect in the reconstruction in an image from the Kodak dataset
using each of the networks compressing to 0.25bpp and 0.5bpp and trained using natural images as
input samples. i.e. ppxq. In this case results when using a non perceptual metric as the MSE or a
perceptual metric (NLPD or MS-SSIM) are very similar. Even than the correlation of NLPD and
MS-SSIM with human perception is much higher than the one of MSE. This is because optimizing to
minimize the expected MSE over natural images impose properties of the distribution of the natural
images in the autoencoder (as shown in sec.4) and this translates on a kind of perceptual behavior (as
shown in sec.2).

On the other hand Fig. 19 shows the reconstruction results when training the autoencoders using
data coming from a uniform distribution, i.e. the networks do not see any natural image during the
training. However the networks trained using NLPD and MS-SSIM obtain a good performance when
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evaluated in a natural image. While, as expected, the network trained to minimize MSE obtains a
very bad result.
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(a) Original

(b) minppxq ||x´ x̂||2 at 0.25 bpp (c) minppxq ||x´ x̂||2 at 0.5 bpp

(d) minppxq NLPDpx, x̂q at 0.25 bpp (e) minppxq NLPDpx, x̂q at 0.5 bpp

(f) minppxq 1´MS-SSIMpx, x̂q at 0.25 bpp (g) minppxq 1´MS-SSIMpx, x̂q at 0.5bpp

Figure 18: The reconstruction of image 1 from Kodak dataset from the various networks trained
to compress to a maximum entropy bits per pixel (bpp) specified optimized using the OpenImages
dataset (Krasin et al., 2017).
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(a) Original

(b) minUpxq ||x´ x̂||2 at 0.25 bpp (c) minUpxq ||x´ x̂||2 at 0.5 bpp

(d) minUpxq NLPDpx, x̂q at 0.25 bpp (e) minUpxq NLPDpx, x̂q at 0.5 bpp

(f) minUpxq 1´MS-SSIMpx, x̂q at 0.25 bpp (g) minUpxq 1´MS-SSIMpx, x̂q at 0.5bpp

Figure 19: The reconstruction of image 1 from Kodak dataset from the various networks trained to
compress to a maximum entropy bits per pixel (bpp) specified optimized using random uniform noise.
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E.1 TRAINING WITH SMALL BATCH SIZES

In Sec. 5.2 we explore what happens when one does not have direct access to the data. A more relaxed
version of this is having access to a small amount of data at a time; using small batches of images.

For small batch sizes, the minibatch estimate of the gradient over the whole set of images will have
higher variance and more likely to be effected by outliers. From Sec. 5.1 we can see that using
a perceptual distance is similar to multiplying by the probability, which would weight gradients
calculated from outliers less. In theory, this should lead to a more accurate estimate over several
minibatches for a perceptual distance rather than MSE. For stochastic gradient descent, minibatches of
data are used to estimate the expected loss and aim to minimize the generalization error (Goodfellow
et al., 2016). The exact gradient of the generalization error with loss function L over model f is given
by

g “
ÿ

x

ppxq∇fLpfpxq,xq. (17)

In gradient descent, g is estimated by sampling a batch of size m from data distribution ppxq and
computing the gradient of the loss with respect to f

ĝ “
1

m
∇f

m
ÿ

i

Lpfpxiq,xiq. (18)

Gradient updates are then performed using this ĝ. Given this estimator, we can quantify the degree of
expected variation in the estimated gradients using the standard error of mean

SEpĝmq “

g

f

f

eV ar

«

1

m
∇f

m
ÿ

i

Lpfpxiq,xiq

ff

“
σ
?
m

(19)

where σ2 is the true variance of the gradient of the loss function for point xi. Given that the true
variance σ2 is unknown, if batch size m is small then a loss function with low variance will give
us a better estimate of the generalization error and therefore a better estimate of the gradient too.
When performing stochastic gradient descent (SGD) using extremely small batch size, e.g. 1, the
gradients have higher variance as your estimation of your weight updates become more inaccurate
when attempting to estimate the ideal weight update for the entire training set. For example, with a
batch size of 1 weight updates that come from outliers have the potential to move the weight vector
far away from the optimum value it was in the process of meeting. In order to reduce the effect
of outliers, one would need explicit access to the underlying data distribution. This is exactly the
type of regularization that perceptual distances can perform. Given that they are proportional to the
probability distribution of natural images (Section 2), the perceptual distance between an outlier and
it’s reconstruction will be weighted less than images coming from high density regions, and thus
achieve a lower standard error for the estimator of the generalization error (Eq. 19) compared to
Euclidean distances like MSE.

Tho illustrate this effect we performed an experiment where we train the same network using a
batch size of 1 one to minimize MSE and one is trained to minimize NLPD. We evaluate them on
the expected MSE over the Kodak image dataset (Kodak, 1993). This means that for the network
optimized for NLPD, the loss function we are minimizing and the function we use to measure
generalization error are different. This quantity can be evaluated after every batch of size 1 and
Fig. 20 reports the ratio of generalization error over the test set for the network trained for NLPD over
MSE. Random seeds are fixed so that the two networks are given the exact same initialization and same
order of images. This autoencoder acts purely as dimensionality reduction and has no quantisation in
the embedded domain. It follows the same architecture as in Fig. 17 without the quantisation, AE and
AD steps. 5 different random seeds were used, i.e. different network initialization and different order
of training images, and reported is the mean and standard deviation across runs. The true expected
MSE over the test dataset is given as EtestMSEpx, x̂q. This quantity is evaluated after every batch
of size 1 and Fig. 20 reports the ratio of the expected MSE over the test set for the network trained
for NLPD over MSE.

On average, the network trained using NLPD achieves a lower expected MSE than the network
optimized for MSE, even though we are evaluating using the same function as it’s loss. This ability
to estimate the test set expected MSE is indicative of NLPD being getting a better estimate of the
gradient of the generalization error.
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Figure 20: Gain in using NLPD over MSE as a loss function evaluated in terms of MSE loss on test set
(Kodak dataset) using batch size of 1 and a small learning rate, fixing random seeds. x̂NLPD denotes
the reconstruction of x with a network optimized for NLPD, and x̂MSE for a network optimized for
MSE. The mean (solid line) and standard deviation (solid fill) was taken over 5 runs with different
random seeds, i.e. different network initialization and training image ordering. The dashed line
represents if the two networks had the same expected MSE on the test set.
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